fa9b1cb4438a6ff15b71d2fdf253834c553bd5f8
[deliverable/linux.git] / drivers / md / dm.c
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pr.h>
24
25 #define DM_MSG_PREFIX "core"
26
27 #ifdef CONFIG_PRINTK
28 /*
29 * ratelimit state to be used in DMXXX_LIMIT().
30 */
31 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
32 DEFAULT_RATELIMIT_INTERVAL,
33 DEFAULT_RATELIMIT_BURST);
34 EXPORT_SYMBOL(dm_ratelimit_state);
35 #endif
36
37 /*
38 * Cookies are numeric values sent with CHANGE and REMOVE
39 * uevents while resuming, removing or renaming the device.
40 */
41 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
42 #define DM_COOKIE_LENGTH 24
43
44 static const char *_name = DM_NAME;
45
46 static unsigned int major = 0;
47 static unsigned int _major = 0;
48
49 static DEFINE_IDR(_minor_idr);
50
51 static DEFINE_SPINLOCK(_minor_lock);
52
53 static void do_deferred_remove(struct work_struct *w);
54
55 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
56
57 static struct workqueue_struct *deferred_remove_workqueue;
58
59 /*
60 * One of these is allocated per bio.
61 */
62 struct dm_io {
63 struct mapped_device *md;
64 int error;
65 atomic_t io_count;
66 struct bio *bio;
67 unsigned long start_time;
68 spinlock_t endio_lock;
69 struct dm_stats_aux stats_aux;
70 };
71
72 #define MINOR_ALLOCED ((void *)-1)
73
74 /*
75 * Bits for the md->flags field.
76 */
77 #define DMF_BLOCK_IO_FOR_SUSPEND 0
78 #define DMF_SUSPENDED 1
79 #define DMF_FROZEN 2
80 #define DMF_FREEING 3
81 #define DMF_DELETING 4
82 #define DMF_NOFLUSH_SUSPENDING 5
83 #define DMF_DEFERRED_REMOVE 6
84 #define DMF_SUSPENDED_INTERNALLY 7
85
86 #define DM_NUMA_NODE NUMA_NO_NODE
87 static int dm_numa_node = DM_NUMA_NODE;
88
89 /*
90 * For mempools pre-allocation at the table loading time.
91 */
92 struct dm_md_mempools {
93 mempool_t *io_pool;
94 mempool_t *rq_pool;
95 struct bio_set *bs;
96 };
97
98 struct table_device {
99 struct list_head list;
100 atomic_t count;
101 struct dm_dev dm_dev;
102 };
103
104 static struct kmem_cache *_io_cache;
105 static struct kmem_cache *_rq_tio_cache;
106 static struct kmem_cache *_rq_cache;
107
108 /*
109 * Bio-based DM's mempools' reserved IOs set by the user.
110 */
111 #define RESERVED_BIO_BASED_IOS 16
112 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
113
114 static int __dm_get_module_param_int(int *module_param, int min, int max)
115 {
116 int param = ACCESS_ONCE(*module_param);
117 int modified_param = 0;
118 bool modified = true;
119
120 if (param < min)
121 modified_param = min;
122 else if (param > max)
123 modified_param = max;
124 else
125 modified = false;
126
127 if (modified) {
128 (void)cmpxchg(module_param, param, modified_param);
129 param = modified_param;
130 }
131
132 return param;
133 }
134
135 unsigned __dm_get_module_param(unsigned *module_param,
136 unsigned def, unsigned max)
137 {
138 unsigned param = ACCESS_ONCE(*module_param);
139 unsigned modified_param = 0;
140
141 if (!param)
142 modified_param = def;
143 else if (param > max)
144 modified_param = max;
145
146 if (modified_param) {
147 (void)cmpxchg(module_param, param, modified_param);
148 param = modified_param;
149 }
150
151 return param;
152 }
153
154 unsigned dm_get_reserved_bio_based_ios(void)
155 {
156 return __dm_get_module_param(&reserved_bio_based_ios,
157 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
158 }
159 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
160
161 static unsigned dm_get_numa_node(void)
162 {
163 return __dm_get_module_param_int(&dm_numa_node,
164 DM_NUMA_NODE, num_online_nodes() - 1);
165 }
166
167 static int __init local_init(void)
168 {
169 int r = -ENOMEM;
170
171 /* allocate a slab for the dm_ios */
172 _io_cache = KMEM_CACHE(dm_io, 0);
173 if (!_io_cache)
174 return r;
175
176 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
177 if (!_rq_tio_cache)
178 goto out_free_io_cache;
179
180 _rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
181 __alignof__(struct request), 0, NULL);
182 if (!_rq_cache)
183 goto out_free_rq_tio_cache;
184
185 r = dm_uevent_init();
186 if (r)
187 goto out_free_rq_cache;
188
189 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
190 if (!deferred_remove_workqueue) {
191 r = -ENOMEM;
192 goto out_uevent_exit;
193 }
194
195 _major = major;
196 r = register_blkdev(_major, _name);
197 if (r < 0)
198 goto out_free_workqueue;
199
200 if (!_major)
201 _major = r;
202
203 return 0;
204
205 out_free_workqueue:
206 destroy_workqueue(deferred_remove_workqueue);
207 out_uevent_exit:
208 dm_uevent_exit();
209 out_free_rq_cache:
210 kmem_cache_destroy(_rq_cache);
211 out_free_rq_tio_cache:
212 kmem_cache_destroy(_rq_tio_cache);
213 out_free_io_cache:
214 kmem_cache_destroy(_io_cache);
215
216 return r;
217 }
218
219 static void local_exit(void)
220 {
221 flush_scheduled_work();
222 destroy_workqueue(deferred_remove_workqueue);
223
224 kmem_cache_destroy(_rq_cache);
225 kmem_cache_destroy(_rq_tio_cache);
226 kmem_cache_destroy(_io_cache);
227 unregister_blkdev(_major, _name);
228 dm_uevent_exit();
229
230 _major = 0;
231
232 DMINFO("cleaned up");
233 }
234
235 static int (*_inits[])(void) __initdata = {
236 local_init,
237 dm_target_init,
238 dm_linear_init,
239 dm_stripe_init,
240 dm_io_init,
241 dm_kcopyd_init,
242 dm_interface_init,
243 dm_statistics_init,
244 };
245
246 static void (*_exits[])(void) = {
247 local_exit,
248 dm_target_exit,
249 dm_linear_exit,
250 dm_stripe_exit,
251 dm_io_exit,
252 dm_kcopyd_exit,
253 dm_interface_exit,
254 dm_statistics_exit,
255 };
256
257 static int __init dm_init(void)
258 {
259 const int count = ARRAY_SIZE(_inits);
260
261 int r, i;
262
263 for (i = 0; i < count; i++) {
264 r = _inits[i]();
265 if (r)
266 goto bad;
267 }
268
269 return 0;
270
271 bad:
272 while (i--)
273 _exits[i]();
274
275 return r;
276 }
277
278 static void __exit dm_exit(void)
279 {
280 int i = ARRAY_SIZE(_exits);
281
282 while (i--)
283 _exits[i]();
284
285 /*
286 * Should be empty by this point.
287 */
288 idr_destroy(&_minor_idr);
289 }
290
291 /*
292 * Block device functions
293 */
294 int dm_deleting_md(struct mapped_device *md)
295 {
296 return test_bit(DMF_DELETING, &md->flags);
297 }
298
299 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
300 {
301 struct mapped_device *md;
302
303 spin_lock(&_minor_lock);
304
305 md = bdev->bd_disk->private_data;
306 if (!md)
307 goto out;
308
309 if (test_bit(DMF_FREEING, &md->flags) ||
310 dm_deleting_md(md)) {
311 md = NULL;
312 goto out;
313 }
314
315 dm_get(md);
316 atomic_inc(&md->open_count);
317 out:
318 spin_unlock(&_minor_lock);
319
320 return md ? 0 : -ENXIO;
321 }
322
323 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
324 {
325 struct mapped_device *md;
326
327 spin_lock(&_minor_lock);
328
329 md = disk->private_data;
330 if (WARN_ON(!md))
331 goto out;
332
333 if (atomic_dec_and_test(&md->open_count) &&
334 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
335 queue_work(deferred_remove_workqueue, &deferred_remove_work);
336
337 dm_put(md);
338 out:
339 spin_unlock(&_minor_lock);
340 }
341
342 int dm_open_count(struct mapped_device *md)
343 {
344 return atomic_read(&md->open_count);
345 }
346
347 /*
348 * Guarantees nothing is using the device before it's deleted.
349 */
350 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
351 {
352 int r = 0;
353
354 spin_lock(&_minor_lock);
355
356 if (dm_open_count(md)) {
357 r = -EBUSY;
358 if (mark_deferred)
359 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
360 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
361 r = -EEXIST;
362 else
363 set_bit(DMF_DELETING, &md->flags);
364
365 spin_unlock(&_minor_lock);
366
367 return r;
368 }
369
370 int dm_cancel_deferred_remove(struct mapped_device *md)
371 {
372 int r = 0;
373
374 spin_lock(&_minor_lock);
375
376 if (test_bit(DMF_DELETING, &md->flags))
377 r = -EBUSY;
378 else
379 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
380
381 spin_unlock(&_minor_lock);
382
383 return r;
384 }
385
386 static void do_deferred_remove(struct work_struct *w)
387 {
388 dm_deferred_remove();
389 }
390
391 sector_t dm_get_size(struct mapped_device *md)
392 {
393 return get_capacity(md->disk);
394 }
395
396 struct request_queue *dm_get_md_queue(struct mapped_device *md)
397 {
398 return md->queue;
399 }
400
401 struct dm_stats *dm_get_stats(struct mapped_device *md)
402 {
403 return &md->stats;
404 }
405
406 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = bdev->bd_disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
413 static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
414 struct block_device **bdev,
415 fmode_t *mode)
416 {
417 struct dm_target *tgt;
418 struct dm_table *map;
419 int srcu_idx, r;
420
421 retry:
422 r = -ENOTTY;
423 map = dm_get_live_table(md, &srcu_idx);
424 if (!map || !dm_table_get_size(map))
425 goto out;
426
427 /* We only support devices that have a single target */
428 if (dm_table_get_num_targets(map) != 1)
429 goto out;
430
431 tgt = dm_table_get_target(map, 0);
432 if (!tgt->type->prepare_ioctl)
433 goto out;
434
435 if (dm_suspended_md(md)) {
436 r = -EAGAIN;
437 goto out;
438 }
439
440 r = tgt->type->prepare_ioctl(tgt, bdev, mode);
441 if (r < 0)
442 goto out;
443
444 bdgrab(*bdev);
445 dm_put_live_table(md, srcu_idx);
446 return r;
447
448 out:
449 dm_put_live_table(md, srcu_idx);
450 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
451 msleep(10);
452 goto retry;
453 }
454 return r;
455 }
456
457 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
458 unsigned int cmd, unsigned long arg)
459 {
460 struct mapped_device *md = bdev->bd_disk->private_data;
461 int r;
462
463 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
464 if (r < 0)
465 return r;
466
467 if (r > 0) {
468 /*
469 * Target determined this ioctl is being issued against
470 * a logical partition of the parent bdev; so extra
471 * validation is needed.
472 */
473 r = scsi_verify_blk_ioctl(NULL, cmd);
474 if (r)
475 goto out;
476 }
477
478 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
479 out:
480 bdput(bdev);
481 return r;
482 }
483
484 static struct dm_io *alloc_io(struct mapped_device *md)
485 {
486 return mempool_alloc(md->io_pool, GFP_NOIO);
487 }
488
489 static void free_io(struct mapped_device *md, struct dm_io *io)
490 {
491 mempool_free(io, md->io_pool);
492 }
493
494 static void free_tio(struct dm_target_io *tio)
495 {
496 bio_put(&tio->clone);
497 }
498
499 int md_in_flight(struct mapped_device *md)
500 {
501 return atomic_read(&md->pending[READ]) +
502 atomic_read(&md->pending[WRITE]);
503 }
504
505 static void start_io_acct(struct dm_io *io)
506 {
507 struct mapped_device *md = io->md;
508 struct bio *bio = io->bio;
509 int cpu;
510 int rw = bio_data_dir(bio);
511
512 io->start_time = jiffies;
513
514 cpu = part_stat_lock();
515 part_round_stats(cpu, &dm_disk(md)->part0);
516 part_stat_unlock();
517 atomic_set(&dm_disk(md)->part0.in_flight[rw],
518 atomic_inc_return(&md->pending[rw]));
519
520 if (unlikely(dm_stats_used(&md->stats)))
521 dm_stats_account_io(&md->stats, bio_data_dir(bio),
522 bio->bi_iter.bi_sector, bio_sectors(bio),
523 false, 0, &io->stats_aux);
524 }
525
526 static void end_io_acct(struct dm_io *io)
527 {
528 struct mapped_device *md = io->md;
529 struct bio *bio = io->bio;
530 unsigned long duration = jiffies - io->start_time;
531 int pending;
532 int rw = bio_data_dir(bio);
533
534 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
535
536 if (unlikely(dm_stats_used(&md->stats)))
537 dm_stats_account_io(&md->stats, bio_data_dir(bio),
538 bio->bi_iter.bi_sector, bio_sectors(bio),
539 true, duration, &io->stats_aux);
540
541 /*
542 * After this is decremented the bio must not be touched if it is
543 * a flush.
544 */
545 pending = atomic_dec_return(&md->pending[rw]);
546 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
547 pending += atomic_read(&md->pending[rw^0x1]);
548
549 /* nudge anyone waiting on suspend queue */
550 if (!pending)
551 wake_up(&md->wait);
552 }
553
554 /*
555 * Add the bio to the list of deferred io.
556 */
557 static void queue_io(struct mapped_device *md, struct bio *bio)
558 {
559 unsigned long flags;
560
561 spin_lock_irqsave(&md->deferred_lock, flags);
562 bio_list_add(&md->deferred, bio);
563 spin_unlock_irqrestore(&md->deferred_lock, flags);
564 queue_work(md->wq, &md->work);
565 }
566
567 /*
568 * Everyone (including functions in this file), should use this
569 * function to access the md->map field, and make sure they call
570 * dm_put_live_table() when finished.
571 */
572 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
573 {
574 *srcu_idx = srcu_read_lock(&md->io_barrier);
575
576 return srcu_dereference(md->map, &md->io_barrier);
577 }
578
579 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
580 {
581 srcu_read_unlock(&md->io_barrier, srcu_idx);
582 }
583
584 void dm_sync_table(struct mapped_device *md)
585 {
586 synchronize_srcu(&md->io_barrier);
587 synchronize_rcu_expedited();
588 }
589
590 /*
591 * A fast alternative to dm_get_live_table/dm_put_live_table.
592 * The caller must not block between these two functions.
593 */
594 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
595 {
596 rcu_read_lock();
597 return rcu_dereference(md->map);
598 }
599
600 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
601 {
602 rcu_read_unlock();
603 }
604
605 /*
606 * Open a table device so we can use it as a map destination.
607 */
608 static int open_table_device(struct table_device *td, dev_t dev,
609 struct mapped_device *md)
610 {
611 static char *_claim_ptr = "I belong to device-mapper";
612 struct block_device *bdev;
613
614 int r;
615
616 BUG_ON(td->dm_dev.bdev);
617
618 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
619 if (IS_ERR(bdev))
620 return PTR_ERR(bdev);
621
622 r = bd_link_disk_holder(bdev, dm_disk(md));
623 if (r) {
624 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
625 return r;
626 }
627
628 td->dm_dev.bdev = bdev;
629 return 0;
630 }
631
632 /*
633 * Close a table device that we've been using.
634 */
635 static void close_table_device(struct table_device *td, struct mapped_device *md)
636 {
637 if (!td->dm_dev.bdev)
638 return;
639
640 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
641 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
642 td->dm_dev.bdev = NULL;
643 }
644
645 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
646 fmode_t mode) {
647 struct table_device *td;
648
649 list_for_each_entry(td, l, list)
650 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
651 return td;
652
653 return NULL;
654 }
655
656 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
657 struct dm_dev **result) {
658 int r;
659 struct table_device *td;
660
661 mutex_lock(&md->table_devices_lock);
662 td = find_table_device(&md->table_devices, dev, mode);
663 if (!td) {
664 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
665 if (!td) {
666 mutex_unlock(&md->table_devices_lock);
667 return -ENOMEM;
668 }
669
670 td->dm_dev.mode = mode;
671 td->dm_dev.bdev = NULL;
672
673 if ((r = open_table_device(td, dev, md))) {
674 mutex_unlock(&md->table_devices_lock);
675 kfree(td);
676 return r;
677 }
678
679 format_dev_t(td->dm_dev.name, dev);
680
681 atomic_set(&td->count, 0);
682 list_add(&td->list, &md->table_devices);
683 }
684 atomic_inc(&td->count);
685 mutex_unlock(&md->table_devices_lock);
686
687 *result = &td->dm_dev;
688 return 0;
689 }
690 EXPORT_SYMBOL_GPL(dm_get_table_device);
691
692 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
693 {
694 struct table_device *td = container_of(d, struct table_device, dm_dev);
695
696 mutex_lock(&md->table_devices_lock);
697 if (atomic_dec_and_test(&td->count)) {
698 close_table_device(td, md);
699 list_del(&td->list);
700 kfree(td);
701 }
702 mutex_unlock(&md->table_devices_lock);
703 }
704 EXPORT_SYMBOL(dm_put_table_device);
705
706 static void free_table_devices(struct list_head *devices)
707 {
708 struct list_head *tmp, *next;
709
710 list_for_each_safe(tmp, next, devices) {
711 struct table_device *td = list_entry(tmp, struct table_device, list);
712
713 DMWARN("dm_destroy: %s still exists with %d references",
714 td->dm_dev.name, atomic_read(&td->count));
715 kfree(td);
716 }
717 }
718
719 /*
720 * Get the geometry associated with a dm device
721 */
722 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
723 {
724 *geo = md->geometry;
725
726 return 0;
727 }
728
729 /*
730 * Set the geometry of a device.
731 */
732 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
733 {
734 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
735
736 if (geo->start > sz) {
737 DMWARN("Start sector is beyond the geometry limits.");
738 return -EINVAL;
739 }
740
741 md->geometry = *geo;
742
743 return 0;
744 }
745
746 /*-----------------------------------------------------------------
747 * CRUD START:
748 * A more elegant soln is in the works that uses the queue
749 * merge fn, unfortunately there are a couple of changes to
750 * the block layer that I want to make for this. So in the
751 * interests of getting something for people to use I give
752 * you this clearly demarcated crap.
753 *---------------------------------------------------------------*/
754
755 static int __noflush_suspending(struct mapped_device *md)
756 {
757 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
758 }
759
760 /*
761 * Decrements the number of outstanding ios that a bio has been
762 * cloned into, completing the original io if necc.
763 */
764 static void dec_pending(struct dm_io *io, int error)
765 {
766 unsigned long flags;
767 int io_error;
768 struct bio *bio;
769 struct mapped_device *md = io->md;
770
771 /* Push-back supersedes any I/O errors */
772 if (unlikely(error)) {
773 spin_lock_irqsave(&io->endio_lock, flags);
774 if (!(io->error > 0 && __noflush_suspending(md)))
775 io->error = error;
776 spin_unlock_irqrestore(&io->endio_lock, flags);
777 }
778
779 if (atomic_dec_and_test(&io->io_count)) {
780 if (io->error == DM_ENDIO_REQUEUE) {
781 /*
782 * Target requested pushing back the I/O.
783 */
784 spin_lock_irqsave(&md->deferred_lock, flags);
785 if (__noflush_suspending(md))
786 bio_list_add_head(&md->deferred, io->bio);
787 else
788 /* noflush suspend was interrupted. */
789 io->error = -EIO;
790 spin_unlock_irqrestore(&md->deferred_lock, flags);
791 }
792
793 io_error = io->error;
794 bio = io->bio;
795 end_io_acct(io);
796 free_io(md, io);
797
798 if (io_error == DM_ENDIO_REQUEUE)
799 return;
800
801 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
802 /*
803 * Preflush done for flush with data, reissue
804 * without REQ_PREFLUSH.
805 */
806 bio->bi_opf &= ~REQ_PREFLUSH;
807 queue_io(md, bio);
808 } else {
809 /* done with normal IO or empty flush */
810 trace_block_bio_complete(md->queue, bio, io_error);
811 bio->bi_error = io_error;
812 bio_endio(bio);
813 }
814 }
815 }
816
817 void disable_write_same(struct mapped_device *md)
818 {
819 struct queue_limits *limits = dm_get_queue_limits(md);
820
821 /* device doesn't really support WRITE SAME, disable it */
822 limits->max_write_same_sectors = 0;
823 }
824
825 static void clone_endio(struct bio *bio)
826 {
827 int error = bio->bi_error;
828 int r = error;
829 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
830 struct dm_io *io = tio->io;
831 struct mapped_device *md = tio->io->md;
832 dm_endio_fn endio = tio->ti->type->end_io;
833
834 if (endio) {
835 r = endio(tio->ti, bio, error);
836 if (r < 0 || r == DM_ENDIO_REQUEUE)
837 /*
838 * error and requeue request are handled
839 * in dec_pending().
840 */
841 error = r;
842 else if (r == DM_ENDIO_INCOMPLETE)
843 /* The target will handle the io */
844 return;
845 else if (r) {
846 DMWARN("unimplemented target endio return value: %d", r);
847 BUG();
848 }
849 }
850
851 if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
852 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
853 disable_write_same(md);
854
855 free_tio(tio);
856 dec_pending(io, error);
857 }
858
859 /*
860 * Return maximum size of I/O possible at the supplied sector up to the current
861 * target boundary.
862 */
863 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
864 {
865 sector_t target_offset = dm_target_offset(ti, sector);
866
867 return ti->len - target_offset;
868 }
869
870 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
871 {
872 sector_t len = max_io_len_target_boundary(sector, ti);
873 sector_t offset, max_len;
874
875 /*
876 * Does the target need to split even further?
877 */
878 if (ti->max_io_len) {
879 offset = dm_target_offset(ti, sector);
880 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
881 max_len = sector_div(offset, ti->max_io_len);
882 else
883 max_len = offset & (ti->max_io_len - 1);
884 max_len = ti->max_io_len - max_len;
885
886 if (len > max_len)
887 len = max_len;
888 }
889
890 return len;
891 }
892
893 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
894 {
895 if (len > UINT_MAX) {
896 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
897 (unsigned long long)len, UINT_MAX);
898 ti->error = "Maximum size of target IO is too large";
899 return -EINVAL;
900 }
901
902 ti->max_io_len = (uint32_t) len;
903
904 return 0;
905 }
906 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
907
908 static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
909 void **kaddr, pfn_t *pfn, long size)
910 {
911 struct mapped_device *md = bdev->bd_disk->private_data;
912 struct dm_table *map;
913 struct dm_target *ti;
914 int srcu_idx;
915 long len, ret = -EIO;
916
917 map = dm_get_live_table(md, &srcu_idx);
918 if (!map)
919 goto out;
920
921 ti = dm_table_find_target(map, sector);
922 if (!dm_target_is_valid(ti))
923 goto out;
924
925 len = max_io_len(sector, ti) << SECTOR_SHIFT;
926 size = min(len, size);
927
928 if (ti->type->direct_access)
929 ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
930 out:
931 dm_put_live_table(md, srcu_idx);
932 return min(ret, size);
933 }
934
935 /*
936 * A target may call dm_accept_partial_bio only from the map routine. It is
937 * allowed for all bio types except REQ_PREFLUSH.
938 *
939 * dm_accept_partial_bio informs the dm that the target only wants to process
940 * additional n_sectors sectors of the bio and the rest of the data should be
941 * sent in a next bio.
942 *
943 * A diagram that explains the arithmetics:
944 * +--------------------+---------------+-------+
945 * | 1 | 2 | 3 |
946 * +--------------------+---------------+-------+
947 *
948 * <-------------- *tio->len_ptr --------------->
949 * <------- bi_size ------->
950 * <-- n_sectors -->
951 *
952 * Region 1 was already iterated over with bio_advance or similar function.
953 * (it may be empty if the target doesn't use bio_advance)
954 * Region 2 is the remaining bio size that the target wants to process.
955 * (it may be empty if region 1 is non-empty, although there is no reason
956 * to make it empty)
957 * The target requires that region 3 is to be sent in the next bio.
958 *
959 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
960 * the partially processed part (the sum of regions 1+2) must be the same for all
961 * copies of the bio.
962 */
963 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
964 {
965 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
966 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
967 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
968 BUG_ON(bi_size > *tio->len_ptr);
969 BUG_ON(n_sectors > bi_size);
970 *tio->len_ptr -= bi_size - n_sectors;
971 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
972 }
973 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
974
975 static void __map_bio(struct dm_target_io *tio)
976 {
977 int r;
978 sector_t sector;
979 struct bio *clone = &tio->clone;
980 struct dm_target *ti = tio->ti;
981
982 clone->bi_end_io = clone_endio;
983
984 /*
985 * Map the clone. If r == 0 we don't need to do
986 * anything, the target has assumed ownership of
987 * this io.
988 */
989 atomic_inc(&tio->io->io_count);
990 sector = clone->bi_iter.bi_sector;
991 r = ti->type->map(ti, clone);
992 if (r == DM_MAPIO_REMAPPED) {
993 /* the bio has been remapped so dispatch it */
994
995 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
996 tio->io->bio->bi_bdev->bd_dev, sector);
997
998 generic_make_request(clone);
999 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1000 /* error the io and bail out, or requeue it if needed */
1001 dec_pending(tio->io, r);
1002 free_tio(tio);
1003 } else if (r != DM_MAPIO_SUBMITTED) {
1004 DMWARN("unimplemented target map return value: %d", r);
1005 BUG();
1006 }
1007 }
1008
1009 struct clone_info {
1010 struct mapped_device *md;
1011 struct dm_table *map;
1012 struct bio *bio;
1013 struct dm_io *io;
1014 sector_t sector;
1015 unsigned sector_count;
1016 };
1017
1018 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1019 {
1020 bio->bi_iter.bi_sector = sector;
1021 bio->bi_iter.bi_size = to_bytes(len);
1022 }
1023
1024 /*
1025 * Creates a bio that consists of range of complete bvecs.
1026 */
1027 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1028 sector_t sector, unsigned len)
1029 {
1030 struct bio *clone = &tio->clone;
1031
1032 __bio_clone_fast(clone, bio);
1033
1034 if (bio_integrity(bio)) {
1035 int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1036 if (r < 0)
1037 return r;
1038 }
1039
1040 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1041 clone->bi_iter.bi_size = to_bytes(len);
1042
1043 if (bio_integrity(bio))
1044 bio_integrity_trim(clone, 0, len);
1045
1046 return 0;
1047 }
1048
1049 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1050 struct dm_target *ti,
1051 unsigned target_bio_nr)
1052 {
1053 struct dm_target_io *tio;
1054 struct bio *clone;
1055
1056 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1057 tio = container_of(clone, struct dm_target_io, clone);
1058
1059 tio->io = ci->io;
1060 tio->ti = ti;
1061 tio->target_bio_nr = target_bio_nr;
1062
1063 return tio;
1064 }
1065
1066 static void __clone_and_map_simple_bio(struct clone_info *ci,
1067 struct dm_target *ti,
1068 unsigned target_bio_nr, unsigned *len)
1069 {
1070 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1071 struct bio *clone = &tio->clone;
1072
1073 tio->len_ptr = len;
1074
1075 __bio_clone_fast(clone, ci->bio);
1076 if (len)
1077 bio_setup_sector(clone, ci->sector, *len);
1078
1079 __map_bio(tio);
1080 }
1081
1082 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1083 unsigned num_bios, unsigned *len)
1084 {
1085 unsigned target_bio_nr;
1086
1087 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1088 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1089 }
1090
1091 static int __send_empty_flush(struct clone_info *ci)
1092 {
1093 unsigned target_nr = 0;
1094 struct dm_target *ti;
1095
1096 BUG_ON(bio_has_data(ci->bio));
1097 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1098 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1099
1100 return 0;
1101 }
1102
1103 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1104 sector_t sector, unsigned *len)
1105 {
1106 struct bio *bio = ci->bio;
1107 struct dm_target_io *tio;
1108 unsigned target_bio_nr;
1109 unsigned num_target_bios = 1;
1110 int r = 0;
1111
1112 /*
1113 * Does the target want to receive duplicate copies of the bio?
1114 */
1115 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1116 num_target_bios = ti->num_write_bios(ti, bio);
1117
1118 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1119 tio = alloc_tio(ci, ti, target_bio_nr);
1120 tio->len_ptr = len;
1121 r = clone_bio(tio, bio, sector, *len);
1122 if (r < 0) {
1123 free_tio(tio);
1124 break;
1125 }
1126 __map_bio(tio);
1127 }
1128
1129 return r;
1130 }
1131
1132 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1133
1134 static unsigned get_num_discard_bios(struct dm_target *ti)
1135 {
1136 return ti->num_discard_bios;
1137 }
1138
1139 static unsigned get_num_write_same_bios(struct dm_target *ti)
1140 {
1141 return ti->num_write_same_bios;
1142 }
1143
1144 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1145
1146 static bool is_split_required_for_discard(struct dm_target *ti)
1147 {
1148 return ti->split_discard_bios;
1149 }
1150
1151 static int __send_changing_extent_only(struct clone_info *ci,
1152 get_num_bios_fn get_num_bios,
1153 is_split_required_fn is_split_required)
1154 {
1155 struct dm_target *ti;
1156 unsigned len;
1157 unsigned num_bios;
1158
1159 do {
1160 ti = dm_table_find_target(ci->map, ci->sector);
1161 if (!dm_target_is_valid(ti))
1162 return -EIO;
1163
1164 /*
1165 * Even though the device advertised support for this type of
1166 * request, that does not mean every target supports it, and
1167 * reconfiguration might also have changed that since the
1168 * check was performed.
1169 */
1170 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1171 if (!num_bios)
1172 return -EOPNOTSUPP;
1173
1174 if (is_split_required && !is_split_required(ti))
1175 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1176 else
1177 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1178
1179 __send_duplicate_bios(ci, ti, num_bios, &len);
1180
1181 ci->sector += len;
1182 } while (ci->sector_count -= len);
1183
1184 return 0;
1185 }
1186
1187 static int __send_discard(struct clone_info *ci)
1188 {
1189 return __send_changing_extent_only(ci, get_num_discard_bios,
1190 is_split_required_for_discard);
1191 }
1192
1193 static int __send_write_same(struct clone_info *ci)
1194 {
1195 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1196 }
1197
1198 /*
1199 * Select the correct strategy for processing a non-flush bio.
1200 */
1201 static int __split_and_process_non_flush(struct clone_info *ci)
1202 {
1203 struct bio *bio = ci->bio;
1204 struct dm_target *ti;
1205 unsigned len;
1206 int r;
1207
1208 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1209 return __send_discard(ci);
1210 else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1211 return __send_write_same(ci);
1212
1213 ti = dm_table_find_target(ci->map, ci->sector);
1214 if (!dm_target_is_valid(ti))
1215 return -EIO;
1216
1217 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1218
1219 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1220 if (r < 0)
1221 return r;
1222
1223 ci->sector += len;
1224 ci->sector_count -= len;
1225
1226 return 0;
1227 }
1228
1229 /*
1230 * Entry point to split a bio into clones and submit them to the targets.
1231 */
1232 static void __split_and_process_bio(struct mapped_device *md,
1233 struct dm_table *map, struct bio *bio)
1234 {
1235 struct clone_info ci;
1236 int error = 0;
1237
1238 if (unlikely(!map)) {
1239 bio_io_error(bio);
1240 return;
1241 }
1242
1243 ci.map = map;
1244 ci.md = md;
1245 ci.io = alloc_io(md);
1246 ci.io->error = 0;
1247 atomic_set(&ci.io->io_count, 1);
1248 ci.io->bio = bio;
1249 ci.io->md = md;
1250 spin_lock_init(&ci.io->endio_lock);
1251 ci.sector = bio->bi_iter.bi_sector;
1252
1253 start_io_acct(ci.io);
1254
1255 if (bio->bi_opf & REQ_PREFLUSH) {
1256 ci.bio = &ci.md->flush_bio;
1257 ci.sector_count = 0;
1258 error = __send_empty_flush(&ci);
1259 /* dec_pending submits any data associated with flush */
1260 } else {
1261 ci.bio = bio;
1262 ci.sector_count = bio_sectors(bio);
1263 while (ci.sector_count && !error)
1264 error = __split_and_process_non_flush(&ci);
1265 }
1266
1267 /* drop the extra reference count */
1268 dec_pending(ci.io, error);
1269 }
1270 /*-----------------------------------------------------------------
1271 * CRUD END
1272 *---------------------------------------------------------------*/
1273
1274 /*
1275 * The request function that just remaps the bio built up by
1276 * dm_merge_bvec.
1277 */
1278 static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1279 {
1280 int rw = bio_data_dir(bio);
1281 struct mapped_device *md = q->queuedata;
1282 int srcu_idx;
1283 struct dm_table *map;
1284
1285 map = dm_get_live_table(md, &srcu_idx);
1286
1287 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1288
1289 /* if we're suspended, we have to queue this io for later */
1290 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1291 dm_put_live_table(md, srcu_idx);
1292
1293 if (!(bio->bi_opf & REQ_RAHEAD))
1294 queue_io(md, bio);
1295 else
1296 bio_io_error(bio);
1297 return BLK_QC_T_NONE;
1298 }
1299
1300 __split_and_process_bio(md, map, bio);
1301 dm_put_live_table(md, srcu_idx);
1302 return BLK_QC_T_NONE;
1303 }
1304
1305 static int dm_any_congested(void *congested_data, int bdi_bits)
1306 {
1307 int r = bdi_bits;
1308 struct mapped_device *md = congested_data;
1309 struct dm_table *map;
1310
1311 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1312 if (dm_request_based(md)) {
1313 /*
1314 * With request-based DM we only need to check the
1315 * top-level queue for congestion.
1316 */
1317 r = md->queue->backing_dev_info.wb.state & bdi_bits;
1318 } else {
1319 map = dm_get_live_table_fast(md);
1320 if (map)
1321 r = dm_table_any_congested(map, bdi_bits);
1322 dm_put_live_table_fast(md);
1323 }
1324 }
1325
1326 return r;
1327 }
1328
1329 /*-----------------------------------------------------------------
1330 * An IDR is used to keep track of allocated minor numbers.
1331 *---------------------------------------------------------------*/
1332 static void free_minor(int minor)
1333 {
1334 spin_lock(&_minor_lock);
1335 idr_remove(&_minor_idr, minor);
1336 spin_unlock(&_minor_lock);
1337 }
1338
1339 /*
1340 * See if the device with a specific minor # is free.
1341 */
1342 static int specific_minor(int minor)
1343 {
1344 int r;
1345
1346 if (minor >= (1 << MINORBITS))
1347 return -EINVAL;
1348
1349 idr_preload(GFP_KERNEL);
1350 spin_lock(&_minor_lock);
1351
1352 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1353
1354 spin_unlock(&_minor_lock);
1355 idr_preload_end();
1356 if (r < 0)
1357 return r == -ENOSPC ? -EBUSY : r;
1358 return 0;
1359 }
1360
1361 static int next_free_minor(int *minor)
1362 {
1363 int r;
1364
1365 idr_preload(GFP_KERNEL);
1366 spin_lock(&_minor_lock);
1367
1368 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1369
1370 spin_unlock(&_minor_lock);
1371 idr_preload_end();
1372 if (r < 0)
1373 return r;
1374 *minor = r;
1375 return 0;
1376 }
1377
1378 static const struct block_device_operations dm_blk_dops;
1379
1380 static void dm_wq_work(struct work_struct *work);
1381
1382 void dm_init_md_queue(struct mapped_device *md)
1383 {
1384 /*
1385 * Request-based dm devices cannot be stacked on top of bio-based dm
1386 * devices. The type of this dm device may not have been decided yet.
1387 * The type is decided at the first table loading time.
1388 * To prevent problematic device stacking, clear the queue flag
1389 * for request stacking support until then.
1390 *
1391 * This queue is new, so no concurrency on the queue_flags.
1392 */
1393 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1394
1395 /*
1396 * Initialize data that will only be used by a non-blk-mq DM queue
1397 * - must do so here (in alloc_dev callchain) before queue is used
1398 */
1399 md->queue->queuedata = md;
1400 md->queue->backing_dev_info.congested_data = md;
1401 }
1402
1403 void dm_init_normal_md_queue(struct mapped_device *md)
1404 {
1405 md->use_blk_mq = false;
1406 dm_init_md_queue(md);
1407
1408 /*
1409 * Initialize aspects of queue that aren't relevant for blk-mq
1410 */
1411 md->queue->backing_dev_info.congested_fn = dm_any_congested;
1412 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1413 }
1414
1415 static void cleanup_mapped_device(struct mapped_device *md)
1416 {
1417 if (md->wq)
1418 destroy_workqueue(md->wq);
1419 if (md->kworker_task)
1420 kthread_stop(md->kworker_task);
1421 mempool_destroy(md->io_pool);
1422 mempool_destroy(md->rq_pool);
1423 if (md->bs)
1424 bioset_free(md->bs);
1425
1426 cleanup_srcu_struct(&md->io_barrier);
1427
1428 if (md->disk) {
1429 spin_lock(&_minor_lock);
1430 md->disk->private_data = NULL;
1431 spin_unlock(&_minor_lock);
1432 del_gendisk(md->disk);
1433 put_disk(md->disk);
1434 }
1435
1436 if (md->queue)
1437 blk_cleanup_queue(md->queue);
1438
1439 if (md->bdev) {
1440 bdput(md->bdev);
1441 md->bdev = NULL;
1442 }
1443
1444 dm_mq_cleanup_mapped_device(md);
1445 }
1446
1447 /*
1448 * Allocate and initialise a blank device with a given minor.
1449 */
1450 static struct mapped_device *alloc_dev(int minor)
1451 {
1452 int r, numa_node_id = dm_get_numa_node();
1453 struct mapped_device *md;
1454 void *old_md;
1455
1456 md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1457 if (!md) {
1458 DMWARN("unable to allocate device, out of memory.");
1459 return NULL;
1460 }
1461
1462 if (!try_module_get(THIS_MODULE))
1463 goto bad_module_get;
1464
1465 /* get a minor number for the dev */
1466 if (minor == DM_ANY_MINOR)
1467 r = next_free_minor(&minor);
1468 else
1469 r = specific_minor(minor);
1470 if (r < 0)
1471 goto bad_minor;
1472
1473 r = init_srcu_struct(&md->io_barrier);
1474 if (r < 0)
1475 goto bad_io_barrier;
1476
1477 md->numa_node_id = numa_node_id;
1478 md->use_blk_mq = dm_use_blk_mq_default();
1479 md->init_tio_pdu = false;
1480 md->type = DM_TYPE_NONE;
1481 mutex_init(&md->suspend_lock);
1482 mutex_init(&md->type_lock);
1483 mutex_init(&md->table_devices_lock);
1484 spin_lock_init(&md->deferred_lock);
1485 atomic_set(&md->holders, 1);
1486 atomic_set(&md->open_count, 0);
1487 atomic_set(&md->event_nr, 0);
1488 atomic_set(&md->uevent_seq, 0);
1489 INIT_LIST_HEAD(&md->uevent_list);
1490 INIT_LIST_HEAD(&md->table_devices);
1491 spin_lock_init(&md->uevent_lock);
1492
1493 md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1494 if (!md->queue)
1495 goto bad;
1496
1497 dm_init_md_queue(md);
1498
1499 md->disk = alloc_disk_node(1, numa_node_id);
1500 if (!md->disk)
1501 goto bad;
1502
1503 atomic_set(&md->pending[0], 0);
1504 atomic_set(&md->pending[1], 0);
1505 init_waitqueue_head(&md->wait);
1506 INIT_WORK(&md->work, dm_wq_work);
1507 init_waitqueue_head(&md->eventq);
1508 init_completion(&md->kobj_holder.completion);
1509 md->kworker_task = NULL;
1510
1511 md->disk->major = _major;
1512 md->disk->first_minor = minor;
1513 md->disk->fops = &dm_blk_dops;
1514 md->disk->queue = md->queue;
1515 md->disk->private_data = md;
1516 sprintf(md->disk->disk_name, "dm-%d", minor);
1517 add_disk(md->disk);
1518 format_dev_t(md->name, MKDEV(_major, minor));
1519
1520 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1521 if (!md->wq)
1522 goto bad;
1523
1524 md->bdev = bdget_disk(md->disk, 0);
1525 if (!md->bdev)
1526 goto bad;
1527
1528 bio_init(&md->flush_bio);
1529 md->flush_bio.bi_bdev = md->bdev;
1530 bio_set_op_attrs(&md->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
1531
1532 dm_stats_init(&md->stats);
1533
1534 /* Populate the mapping, nobody knows we exist yet */
1535 spin_lock(&_minor_lock);
1536 old_md = idr_replace(&_minor_idr, md, minor);
1537 spin_unlock(&_minor_lock);
1538
1539 BUG_ON(old_md != MINOR_ALLOCED);
1540
1541 return md;
1542
1543 bad:
1544 cleanup_mapped_device(md);
1545 bad_io_barrier:
1546 free_minor(minor);
1547 bad_minor:
1548 module_put(THIS_MODULE);
1549 bad_module_get:
1550 kfree(md);
1551 return NULL;
1552 }
1553
1554 static void unlock_fs(struct mapped_device *md);
1555
1556 static void free_dev(struct mapped_device *md)
1557 {
1558 int minor = MINOR(disk_devt(md->disk));
1559
1560 unlock_fs(md);
1561
1562 cleanup_mapped_device(md);
1563
1564 free_table_devices(&md->table_devices);
1565 dm_stats_cleanup(&md->stats);
1566 free_minor(minor);
1567
1568 module_put(THIS_MODULE);
1569 kfree(md);
1570 }
1571
1572 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1573 {
1574 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1575
1576 if (md->bs) {
1577 /* The md already has necessary mempools. */
1578 if (dm_table_bio_based(t)) {
1579 /*
1580 * Reload bioset because front_pad may have changed
1581 * because a different table was loaded.
1582 */
1583 bioset_free(md->bs);
1584 md->bs = p->bs;
1585 p->bs = NULL;
1586 }
1587 /*
1588 * There's no need to reload with request-based dm
1589 * because the size of front_pad doesn't change.
1590 * Note for future: If you are to reload bioset,
1591 * prep-ed requests in the queue may refer
1592 * to bio from the old bioset, so you must walk
1593 * through the queue to unprep.
1594 */
1595 goto out;
1596 }
1597
1598 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
1599
1600 md->io_pool = p->io_pool;
1601 p->io_pool = NULL;
1602 md->rq_pool = p->rq_pool;
1603 p->rq_pool = NULL;
1604 md->bs = p->bs;
1605 p->bs = NULL;
1606
1607 out:
1608 /* mempool bind completed, no longer need any mempools in the table */
1609 dm_table_free_md_mempools(t);
1610 }
1611
1612 /*
1613 * Bind a table to the device.
1614 */
1615 static void event_callback(void *context)
1616 {
1617 unsigned long flags;
1618 LIST_HEAD(uevents);
1619 struct mapped_device *md = (struct mapped_device *) context;
1620
1621 spin_lock_irqsave(&md->uevent_lock, flags);
1622 list_splice_init(&md->uevent_list, &uevents);
1623 spin_unlock_irqrestore(&md->uevent_lock, flags);
1624
1625 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1626
1627 atomic_inc(&md->event_nr);
1628 wake_up(&md->eventq);
1629 }
1630
1631 /*
1632 * Protected by md->suspend_lock obtained by dm_swap_table().
1633 */
1634 static void __set_size(struct mapped_device *md, sector_t size)
1635 {
1636 set_capacity(md->disk, size);
1637
1638 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1639 }
1640
1641 /*
1642 * Returns old map, which caller must destroy.
1643 */
1644 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1645 struct queue_limits *limits)
1646 {
1647 struct dm_table *old_map;
1648 struct request_queue *q = md->queue;
1649 sector_t size;
1650
1651 size = dm_table_get_size(t);
1652
1653 /*
1654 * Wipe any geometry if the size of the table changed.
1655 */
1656 if (size != dm_get_size(md))
1657 memset(&md->geometry, 0, sizeof(md->geometry));
1658
1659 __set_size(md, size);
1660
1661 dm_table_event_callback(t, event_callback, md);
1662
1663 /*
1664 * The queue hasn't been stopped yet, if the old table type wasn't
1665 * for request-based during suspension. So stop it to prevent
1666 * I/O mapping before resume.
1667 * This must be done before setting the queue restrictions,
1668 * because request-based dm may be run just after the setting.
1669 */
1670 if (dm_table_request_based(t)) {
1671 dm_stop_queue(q);
1672 /*
1673 * Leverage the fact that request-based DM targets are
1674 * immutable singletons and establish md->immutable_target
1675 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1676 */
1677 md->immutable_target = dm_table_get_immutable_target(t);
1678 }
1679
1680 __bind_mempools(md, t);
1681
1682 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1683 rcu_assign_pointer(md->map, (void *)t);
1684 md->immutable_target_type = dm_table_get_immutable_target_type(t);
1685
1686 dm_table_set_restrictions(t, q, limits);
1687 if (old_map)
1688 dm_sync_table(md);
1689
1690 return old_map;
1691 }
1692
1693 /*
1694 * Returns unbound table for the caller to free.
1695 */
1696 static struct dm_table *__unbind(struct mapped_device *md)
1697 {
1698 struct dm_table *map = rcu_dereference_protected(md->map, 1);
1699
1700 if (!map)
1701 return NULL;
1702
1703 dm_table_event_callback(map, NULL, NULL);
1704 RCU_INIT_POINTER(md->map, NULL);
1705 dm_sync_table(md);
1706
1707 return map;
1708 }
1709
1710 /*
1711 * Constructor for a new device.
1712 */
1713 int dm_create(int minor, struct mapped_device **result)
1714 {
1715 struct mapped_device *md;
1716
1717 md = alloc_dev(minor);
1718 if (!md)
1719 return -ENXIO;
1720
1721 dm_sysfs_init(md);
1722
1723 *result = md;
1724 return 0;
1725 }
1726
1727 /*
1728 * Functions to manage md->type.
1729 * All are required to hold md->type_lock.
1730 */
1731 void dm_lock_md_type(struct mapped_device *md)
1732 {
1733 mutex_lock(&md->type_lock);
1734 }
1735
1736 void dm_unlock_md_type(struct mapped_device *md)
1737 {
1738 mutex_unlock(&md->type_lock);
1739 }
1740
1741 void dm_set_md_type(struct mapped_device *md, unsigned type)
1742 {
1743 BUG_ON(!mutex_is_locked(&md->type_lock));
1744 md->type = type;
1745 }
1746
1747 unsigned dm_get_md_type(struct mapped_device *md)
1748 {
1749 return md->type;
1750 }
1751
1752 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1753 {
1754 return md->immutable_target_type;
1755 }
1756
1757 /*
1758 * The queue_limits are only valid as long as you have a reference
1759 * count on 'md'.
1760 */
1761 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1762 {
1763 BUG_ON(!atomic_read(&md->holders));
1764 return &md->queue->limits;
1765 }
1766 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1767
1768 /*
1769 * Setup the DM device's queue based on md's type
1770 */
1771 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1772 {
1773 int r;
1774 unsigned type = dm_get_md_type(md);
1775
1776 switch (type) {
1777 case DM_TYPE_REQUEST_BASED:
1778 r = dm_old_init_request_queue(md);
1779 if (r) {
1780 DMERR("Cannot initialize queue for request-based mapped device");
1781 return r;
1782 }
1783 break;
1784 case DM_TYPE_MQ_REQUEST_BASED:
1785 r = dm_mq_init_request_queue(md, t);
1786 if (r) {
1787 DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1788 return r;
1789 }
1790 break;
1791 case DM_TYPE_BIO_BASED:
1792 case DM_TYPE_DAX_BIO_BASED:
1793 dm_init_normal_md_queue(md);
1794 blk_queue_make_request(md->queue, dm_make_request);
1795 /*
1796 * DM handles splitting bios as needed. Free the bio_split bioset
1797 * since it won't be used (saves 1 process per bio-based DM device).
1798 */
1799 bioset_free(md->queue->bio_split);
1800 md->queue->bio_split = NULL;
1801
1802 if (type == DM_TYPE_DAX_BIO_BASED)
1803 queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1804 break;
1805 }
1806
1807 return 0;
1808 }
1809
1810 struct mapped_device *dm_get_md(dev_t dev)
1811 {
1812 struct mapped_device *md;
1813 unsigned minor = MINOR(dev);
1814
1815 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1816 return NULL;
1817
1818 spin_lock(&_minor_lock);
1819
1820 md = idr_find(&_minor_idr, minor);
1821 if (md) {
1822 if ((md == MINOR_ALLOCED ||
1823 (MINOR(disk_devt(dm_disk(md))) != minor) ||
1824 dm_deleting_md(md) ||
1825 test_bit(DMF_FREEING, &md->flags))) {
1826 md = NULL;
1827 goto out;
1828 }
1829 dm_get(md);
1830 }
1831
1832 out:
1833 spin_unlock(&_minor_lock);
1834
1835 return md;
1836 }
1837 EXPORT_SYMBOL_GPL(dm_get_md);
1838
1839 void *dm_get_mdptr(struct mapped_device *md)
1840 {
1841 return md->interface_ptr;
1842 }
1843
1844 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1845 {
1846 md->interface_ptr = ptr;
1847 }
1848
1849 void dm_get(struct mapped_device *md)
1850 {
1851 atomic_inc(&md->holders);
1852 BUG_ON(test_bit(DMF_FREEING, &md->flags));
1853 }
1854
1855 int dm_hold(struct mapped_device *md)
1856 {
1857 spin_lock(&_minor_lock);
1858 if (test_bit(DMF_FREEING, &md->flags)) {
1859 spin_unlock(&_minor_lock);
1860 return -EBUSY;
1861 }
1862 dm_get(md);
1863 spin_unlock(&_minor_lock);
1864 return 0;
1865 }
1866 EXPORT_SYMBOL_GPL(dm_hold);
1867
1868 const char *dm_device_name(struct mapped_device *md)
1869 {
1870 return md->name;
1871 }
1872 EXPORT_SYMBOL_GPL(dm_device_name);
1873
1874 static void __dm_destroy(struct mapped_device *md, bool wait)
1875 {
1876 struct dm_table *map;
1877 int srcu_idx;
1878
1879 might_sleep();
1880
1881 spin_lock(&_minor_lock);
1882 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1883 set_bit(DMF_FREEING, &md->flags);
1884 spin_unlock(&_minor_lock);
1885
1886 if (dm_request_based(md) && md->kworker_task)
1887 flush_kthread_worker(&md->kworker);
1888
1889 /*
1890 * Take suspend_lock so that presuspend and postsuspend methods
1891 * do not race with internal suspend.
1892 */
1893 mutex_lock(&md->suspend_lock);
1894 map = dm_get_live_table(md, &srcu_idx);
1895 if (!dm_suspended_md(md)) {
1896 dm_table_presuspend_targets(map);
1897 dm_table_postsuspend_targets(map);
1898 }
1899 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1900 dm_put_live_table(md, srcu_idx);
1901 mutex_unlock(&md->suspend_lock);
1902
1903 /*
1904 * Rare, but there may be I/O requests still going to complete,
1905 * for example. Wait for all references to disappear.
1906 * No one should increment the reference count of the mapped_device,
1907 * after the mapped_device state becomes DMF_FREEING.
1908 */
1909 if (wait)
1910 while (atomic_read(&md->holders))
1911 msleep(1);
1912 else if (atomic_read(&md->holders))
1913 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1914 dm_device_name(md), atomic_read(&md->holders));
1915
1916 dm_sysfs_exit(md);
1917 dm_table_destroy(__unbind(md));
1918 free_dev(md);
1919 }
1920
1921 void dm_destroy(struct mapped_device *md)
1922 {
1923 __dm_destroy(md, true);
1924 }
1925
1926 void dm_destroy_immediate(struct mapped_device *md)
1927 {
1928 __dm_destroy(md, false);
1929 }
1930
1931 void dm_put(struct mapped_device *md)
1932 {
1933 atomic_dec(&md->holders);
1934 }
1935 EXPORT_SYMBOL_GPL(dm_put);
1936
1937 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
1938 {
1939 int r = 0;
1940 DECLARE_WAITQUEUE(wait, current);
1941
1942 add_wait_queue(&md->wait, &wait);
1943
1944 while (1) {
1945 set_current_state(interruptible);
1946
1947 if (!md_in_flight(md))
1948 break;
1949
1950 if (interruptible == TASK_INTERRUPTIBLE &&
1951 signal_pending(current)) {
1952 r = -EINTR;
1953 break;
1954 }
1955
1956 io_schedule();
1957 }
1958 set_current_state(TASK_RUNNING);
1959
1960 remove_wait_queue(&md->wait, &wait);
1961
1962 return r;
1963 }
1964
1965 /*
1966 * Process the deferred bios
1967 */
1968 static void dm_wq_work(struct work_struct *work)
1969 {
1970 struct mapped_device *md = container_of(work, struct mapped_device,
1971 work);
1972 struct bio *c;
1973 int srcu_idx;
1974 struct dm_table *map;
1975
1976 map = dm_get_live_table(md, &srcu_idx);
1977
1978 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1979 spin_lock_irq(&md->deferred_lock);
1980 c = bio_list_pop(&md->deferred);
1981 spin_unlock_irq(&md->deferred_lock);
1982
1983 if (!c)
1984 break;
1985
1986 if (dm_request_based(md))
1987 generic_make_request(c);
1988 else
1989 __split_and_process_bio(md, map, c);
1990 }
1991
1992 dm_put_live_table(md, srcu_idx);
1993 }
1994
1995 static void dm_queue_flush(struct mapped_device *md)
1996 {
1997 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
1998 smp_mb__after_atomic();
1999 queue_work(md->wq, &md->work);
2000 }
2001
2002 /*
2003 * Swap in a new table, returning the old one for the caller to destroy.
2004 */
2005 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2006 {
2007 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2008 struct queue_limits limits;
2009 int r;
2010
2011 mutex_lock(&md->suspend_lock);
2012
2013 /* device must be suspended */
2014 if (!dm_suspended_md(md))
2015 goto out;
2016
2017 /*
2018 * If the new table has no data devices, retain the existing limits.
2019 * This helps multipath with queue_if_no_path if all paths disappear,
2020 * then new I/O is queued based on these limits, and then some paths
2021 * reappear.
2022 */
2023 if (dm_table_has_no_data_devices(table)) {
2024 live_map = dm_get_live_table_fast(md);
2025 if (live_map)
2026 limits = md->queue->limits;
2027 dm_put_live_table_fast(md);
2028 }
2029
2030 if (!live_map) {
2031 r = dm_calculate_queue_limits(table, &limits);
2032 if (r) {
2033 map = ERR_PTR(r);
2034 goto out;
2035 }
2036 }
2037
2038 map = __bind(md, table, &limits);
2039
2040 out:
2041 mutex_unlock(&md->suspend_lock);
2042 return map;
2043 }
2044
2045 /*
2046 * Functions to lock and unlock any filesystem running on the
2047 * device.
2048 */
2049 static int lock_fs(struct mapped_device *md)
2050 {
2051 int r;
2052
2053 WARN_ON(md->frozen_sb);
2054
2055 md->frozen_sb = freeze_bdev(md->bdev);
2056 if (IS_ERR(md->frozen_sb)) {
2057 r = PTR_ERR(md->frozen_sb);
2058 md->frozen_sb = NULL;
2059 return r;
2060 }
2061
2062 set_bit(DMF_FROZEN, &md->flags);
2063
2064 return 0;
2065 }
2066
2067 static void unlock_fs(struct mapped_device *md)
2068 {
2069 if (!test_bit(DMF_FROZEN, &md->flags))
2070 return;
2071
2072 thaw_bdev(md->bdev, md->frozen_sb);
2073 md->frozen_sb = NULL;
2074 clear_bit(DMF_FROZEN, &md->flags);
2075 }
2076
2077 /*
2078 * If __dm_suspend returns 0, the device is completely quiescent
2079 * now. There is no request-processing activity. All new requests
2080 * are being added to md->deferred list.
2081 *
2082 * Caller must hold md->suspend_lock
2083 */
2084 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2085 unsigned suspend_flags, int interruptible,
2086 int dmf_suspended_flag)
2087 {
2088 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2089 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2090 int r;
2091
2092 /*
2093 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2094 * This flag is cleared before dm_suspend returns.
2095 */
2096 if (noflush)
2097 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2098
2099 /*
2100 * This gets reverted if there's an error later and the targets
2101 * provide the .presuspend_undo hook.
2102 */
2103 dm_table_presuspend_targets(map);
2104
2105 /*
2106 * Flush I/O to the device.
2107 * Any I/O submitted after lock_fs() may not be flushed.
2108 * noflush takes precedence over do_lockfs.
2109 * (lock_fs() flushes I/Os and waits for them to complete.)
2110 */
2111 if (!noflush && do_lockfs) {
2112 r = lock_fs(md);
2113 if (r) {
2114 dm_table_presuspend_undo_targets(map);
2115 return r;
2116 }
2117 }
2118
2119 /*
2120 * Here we must make sure that no processes are submitting requests
2121 * to target drivers i.e. no one may be executing
2122 * __split_and_process_bio. This is called from dm_request and
2123 * dm_wq_work.
2124 *
2125 * To get all processes out of __split_and_process_bio in dm_request,
2126 * we take the write lock. To prevent any process from reentering
2127 * __split_and_process_bio from dm_request and quiesce the thread
2128 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2129 * flush_workqueue(md->wq).
2130 */
2131 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2132 if (map)
2133 synchronize_srcu(&md->io_barrier);
2134
2135 /*
2136 * Stop md->queue before flushing md->wq in case request-based
2137 * dm defers requests to md->wq from md->queue.
2138 */
2139 if (dm_request_based(md)) {
2140 dm_stop_queue(md->queue);
2141 if (md->kworker_task)
2142 flush_kthread_worker(&md->kworker);
2143 }
2144
2145 flush_workqueue(md->wq);
2146
2147 /*
2148 * At this point no more requests are entering target request routines.
2149 * We call dm_wait_for_completion to wait for all existing requests
2150 * to finish.
2151 */
2152 r = dm_wait_for_completion(md, interruptible);
2153 if (!r)
2154 set_bit(dmf_suspended_flag, &md->flags);
2155
2156 if (noflush)
2157 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2158 if (map)
2159 synchronize_srcu(&md->io_barrier);
2160
2161 /* were we interrupted ? */
2162 if (r < 0) {
2163 dm_queue_flush(md);
2164
2165 if (dm_request_based(md))
2166 dm_start_queue(md->queue);
2167
2168 unlock_fs(md);
2169 dm_table_presuspend_undo_targets(map);
2170 /* pushback list is already flushed, so skip flush */
2171 }
2172
2173 return r;
2174 }
2175
2176 /*
2177 * We need to be able to change a mapping table under a mounted
2178 * filesystem. For example we might want to move some data in
2179 * the background. Before the table can be swapped with
2180 * dm_bind_table, dm_suspend must be called to flush any in
2181 * flight bios and ensure that any further io gets deferred.
2182 */
2183 /*
2184 * Suspend mechanism in request-based dm.
2185 *
2186 * 1. Flush all I/Os by lock_fs() if needed.
2187 * 2. Stop dispatching any I/O by stopping the request_queue.
2188 * 3. Wait for all in-flight I/Os to be completed or requeued.
2189 *
2190 * To abort suspend, start the request_queue.
2191 */
2192 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2193 {
2194 struct dm_table *map = NULL;
2195 int r = 0;
2196
2197 retry:
2198 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2199
2200 if (dm_suspended_md(md)) {
2201 r = -EINVAL;
2202 goto out_unlock;
2203 }
2204
2205 if (dm_suspended_internally_md(md)) {
2206 /* already internally suspended, wait for internal resume */
2207 mutex_unlock(&md->suspend_lock);
2208 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2209 if (r)
2210 return r;
2211 goto retry;
2212 }
2213
2214 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2215
2216 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2217 if (r)
2218 goto out_unlock;
2219
2220 dm_table_postsuspend_targets(map);
2221
2222 out_unlock:
2223 mutex_unlock(&md->suspend_lock);
2224 return r;
2225 }
2226
2227 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2228 {
2229 if (map) {
2230 int r = dm_table_resume_targets(map);
2231 if (r)
2232 return r;
2233 }
2234
2235 dm_queue_flush(md);
2236
2237 /*
2238 * Flushing deferred I/Os must be done after targets are resumed
2239 * so that mapping of targets can work correctly.
2240 * Request-based dm is queueing the deferred I/Os in its request_queue.
2241 */
2242 if (dm_request_based(md))
2243 dm_start_queue(md->queue);
2244
2245 unlock_fs(md);
2246
2247 return 0;
2248 }
2249
2250 int dm_resume(struct mapped_device *md)
2251 {
2252 int r = -EINVAL;
2253 struct dm_table *map = NULL;
2254
2255 retry:
2256 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2257
2258 if (!dm_suspended_md(md))
2259 goto out;
2260
2261 if (dm_suspended_internally_md(md)) {
2262 /* already internally suspended, wait for internal resume */
2263 mutex_unlock(&md->suspend_lock);
2264 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2265 if (r)
2266 return r;
2267 goto retry;
2268 }
2269
2270 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2271 if (!map || !dm_table_get_size(map))
2272 goto out;
2273
2274 r = __dm_resume(md, map);
2275 if (r)
2276 goto out;
2277
2278 clear_bit(DMF_SUSPENDED, &md->flags);
2279
2280 r = 0;
2281 out:
2282 mutex_unlock(&md->suspend_lock);
2283
2284 return r;
2285 }
2286
2287 /*
2288 * Internal suspend/resume works like userspace-driven suspend. It waits
2289 * until all bios finish and prevents issuing new bios to the target drivers.
2290 * It may be used only from the kernel.
2291 */
2292
2293 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2294 {
2295 struct dm_table *map = NULL;
2296
2297 if (md->internal_suspend_count++)
2298 return; /* nested internal suspend */
2299
2300 if (dm_suspended_md(md)) {
2301 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2302 return; /* nest suspend */
2303 }
2304
2305 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2306
2307 /*
2308 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2309 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2310 * would require changing .presuspend to return an error -- avoid this
2311 * until there is a need for more elaborate variants of internal suspend.
2312 */
2313 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2314 DMF_SUSPENDED_INTERNALLY);
2315
2316 dm_table_postsuspend_targets(map);
2317 }
2318
2319 static void __dm_internal_resume(struct mapped_device *md)
2320 {
2321 BUG_ON(!md->internal_suspend_count);
2322
2323 if (--md->internal_suspend_count)
2324 return; /* resume from nested internal suspend */
2325
2326 if (dm_suspended_md(md))
2327 goto done; /* resume from nested suspend */
2328
2329 /*
2330 * NOTE: existing callers don't need to call dm_table_resume_targets
2331 * (which may fail -- so best to avoid it for now by passing NULL map)
2332 */
2333 (void) __dm_resume(md, NULL);
2334
2335 done:
2336 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2337 smp_mb__after_atomic();
2338 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2339 }
2340
2341 void dm_internal_suspend_noflush(struct mapped_device *md)
2342 {
2343 mutex_lock(&md->suspend_lock);
2344 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2345 mutex_unlock(&md->suspend_lock);
2346 }
2347 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2348
2349 void dm_internal_resume(struct mapped_device *md)
2350 {
2351 mutex_lock(&md->suspend_lock);
2352 __dm_internal_resume(md);
2353 mutex_unlock(&md->suspend_lock);
2354 }
2355 EXPORT_SYMBOL_GPL(dm_internal_resume);
2356
2357 /*
2358 * Fast variants of internal suspend/resume hold md->suspend_lock,
2359 * which prevents interaction with userspace-driven suspend.
2360 */
2361
2362 void dm_internal_suspend_fast(struct mapped_device *md)
2363 {
2364 mutex_lock(&md->suspend_lock);
2365 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2366 return;
2367
2368 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2369 synchronize_srcu(&md->io_barrier);
2370 flush_workqueue(md->wq);
2371 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2372 }
2373 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2374
2375 void dm_internal_resume_fast(struct mapped_device *md)
2376 {
2377 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2378 goto done;
2379
2380 dm_queue_flush(md);
2381
2382 done:
2383 mutex_unlock(&md->suspend_lock);
2384 }
2385 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2386
2387 /*-----------------------------------------------------------------
2388 * Event notification.
2389 *---------------------------------------------------------------*/
2390 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2391 unsigned cookie)
2392 {
2393 char udev_cookie[DM_COOKIE_LENGTH];
2394 char *envp[] = { udev_cookie, NULL };
2395
2396 if (!cookie)
2397 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2398 else {
2399 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2400 DM_COOKIE_ENV_VAR_NAME, cookie);
2401 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2402 action, envp);
2403 }
2404 }
2405
2406 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2407 {
2408 return atomic_add_return(1, &md->uevent_seq);
2409 }
2410
2411 uint32_t dm_get_event_nr(struct mapped_device *md)
2412 {
2413 return atomic_read(&md->event_nr);
2414 }
2415
2416 int dm_wait_event(struct mapped_device *md, int event_nr)
2417 {
2418 return wait_event_interruptible(md->eventq,
2419 (event_nr != atomic_read(&md->event_nr)));
2420 }
2421
2422 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2423 {
2424 unsigned long flags;
2425
2426 spin_lock_irqsave(&md->uevent_lock, flags);
2427 list_add(elist, &md->uevent_list);
2428 spin_unlock_irqrestore(&md->uevent_lock, flags);
2429 }
2430
2431 /*
2432 * The gendisk is only valid as long as you have a reference
2433 * count on 'md'.
2434 */
2435 struct gendisk *dm_disk(struct mapped_device *md)
2436 {
2437 return md->disk;
2438 }
2439 EXPORT_SYMBOL_GPL(dm_disk);
2440
2441 struct kobject *dm_kobject(struct mapped_device *md)
2442 {
2443 return &md->kobj_holder.kobj;
2444 }
2445
2446 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2447 {
2448 struct mapped_device *md;
2449
2450 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2451
2452 if (test_bit(DMF_FREEING, &md->flags) ||
2453 dm_deleting_md(md))
2454 return NULL;
2455
2456 dm_get(md);
2457 return md;
2458 }
2459
2460 int dm_suspended_md(struct mapped_device *md)
2461 {
2462 return test_bit(DMF_SUSPENDED, &md->flags);
2463 }
2464
2465 int dm_suspended_internally_md(struct mapped_device *md)
2466 {
2467 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2468 }
2469
2470 int dm_test_deferred_remove_flag(struct mapped_device *md)
2471 {
2472 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2473 }
2474
2475 int dm_suspended(struct dm_target *ti)
2476 {
2477 return dm_suspended_md(dm_table_get_md(ti->table));
2478 }
2479 EXPORT_SYMBOL_GPL(dm_suspended);
2480
2481 int dm_noflush_suspending(struct dm_target *ti)
2482 {
2483 return __noflush_suspending(dm_table_get_md(ti->table));
2484 }
2485 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2486
2487 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2488 unsigned integrity, unsigned per_io_data_size)
2489 {
2490 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2491 struct kmem_cache *cachep = NULL;
2492 unsigned int pool_size = 0;
2493 unsigned int front_pad;
2494
2495 if (!pools)
2496 return NULL;
2497
2498 switch (type) {
2499 case DM_TYPE_BIO_BASED:
2500 case DM_TYPE_DAX_BIO_BASED:
2501 cachep = _io_cache;
2502 pool_size = dm_get_reserved_bio_based_ios();
2503 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2504 break;
2505 case DM_TYPE_REQUEST_BASED:
2506 cachep = _rq_tio_cache;
2507 pool_size = dm_get_reserved_rq_based_ios();
2508 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
2509 if (!pools->rq_pool)
2510 goto out;
2511 /* fall through to setup remaining rq-based pools */
2512 case DM_TYPE_MQ_REQUEST_BASED:
2513 if (!pool_size)
2514 pool_size = dm_get_reserved_rq_based_ios();
2515 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2516 /* per_io_data_size is used for blk-mq pdu at queue allocation */
2517 break;
2518 default:
2519 BUG();
2520 }
2521
2522 if (cachep) {
2523 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2524 if (!pools->io_pool)
2525 goto out;
2526 }
2527
2528 pools->bs = bioset_create_nobvec(pool_size, front_pad);
2529 if (!pools->bs)
2530 goto out;
2531
2532 if (integrity && bioset_integrity_create(pools->bs, pool_size))
2533 goto out;
2534
2535 return pools;
2536
2537 out:
2538 dm_free_md_mempools(pools);
2539
2540 return NULL;
2541 }
2542
2543 void dm_free_md_mempools(struct dm_md_mempools *pools)
2544 {
2545 if (!pools)
2546 return;
2547
2548 mempool_destroy(pools->io_pool);
2549 mempool_destroy(pools->rq_pool);
2550
2551 if (pools->bs)
2552 bioset_free(pools->bs);
2553
2554 kfree(pools);
2555 }
2556
2557 struct dm_pr {
2558 u64 old_key;
2559 u64 new_key;
2560 u32 flags;
2561 bool fail_early;
2562 };
2563
2564 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2565 void *data)
2566 {
2567 struct mapped_device *md = bdev->bd_disk->private_data;
2568 struct dm_table *table;
2569 struct dm_target *ti;
2570 int ret = -ENOTTY, srcu_idx;
2571
2572 table = dm_get_live_table(md, &srcu_idx);
2573 if (!table || !dm_table_get_size(table))
2574 goto out;
2575
2576 /* We only support devices that have a single target */
2577 if (dm_table_get_num_targets(table) != 1)
2578 goto out;
2579 ti = dm_table_get_target(table, 0);
2580
2581 ret = -EINVAL;
2582 if (!ti->type->iterate_devices)
2583 goto out;
2584
2585 ret = ti->type->iterate_devices(ti, fn, data);
2586 out:
2587 dm_put_live_table(md, srcu_idx);
2588 return ret;
2589 }
2590
2591 /*
2592 * For register / unregister we need to manually call out to every path.
2593 */
2594 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2595 sector_t start, sector_t len, void *data)
2596 {
2597 struct dm_pr *pr = data;
2598 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2599
2600 if (!ops || !ops->pr_register)
2601 return -EOPNOTSUPP;
2602 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2603 }
2604
2605 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2606 u32 flags)
2607 {
2608 struct dm_pr pr = {
2609 .old_key = old_key,
2610 .new_key = new_key,
2611 .flags = flags,
2612 .fail_early = true,
2613 };
2614 int ret;
2615
2616 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2617 if (ret && new_key) {
2618 /* unregister all paths if we failed to register any path */
2619 pr.old_key = new_key;
2620 pr.new_key = 0;
2621 pr.flags = 0;
2622 pr.fail_early = false;
2623 dm_call_pr(bdev, __dm_pr_register, &pr);
2624 }
2625
2626 return ret;
2627 }
2628
2629 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2630 u32 flags)
2631 {
2632 struct mapped_device *md = bdev->bd_disk->private_data;
2633 const struct pr_ops *ops;
2634 fmode_t mode;
2635 int r;
2636
2637 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2638 if (r < 0)
2639 return r;
2640
2641 ops = bdev->bd_disk->fops->pr_ops;
2642 if (ops && ops->pr_reserve)
2643 r = ops->pr_reserve(bdev, key, type, flags);
2644 else
2645 r = -EOPNOTSUPP;
2646
2647 bdput(bdev);
2648 return r;
2649 }
2650
2651 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2652 {
2653 struct mapped_device *md = bdev->bd_disk->private_data;
2654 const struct pr_ops *ops;
2655 fmode_t mode;
2656 int r;
2657
2658 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2659 if (r < 0)
2660 return r;
2661
2662 ops = bdev->bd_disk->fops->pr_ops;
2663 if (ops && ops->pr_release)
2664 r = ops->pr_release(bdev, key, type);
2665 else
2666 r = -EOPNOTSUPP;
2667
2668 bdput(bdev);
2669 return r;
2670 }
2671
2672 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2673 enum pr_type type, bool abort)
2674 {
2675 struct mapped_device *md = bdev->bd_disk->private_data;
2676 const struct pr_ops *ops;
2677 fmode_t mode;
2678 int r;
2679
2680 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2681 if (r < 0)
2682 return r;
2683
2684 ops = bdev->bd_disk->fops->pr_ops;
2685 if (ops && ops->pr_preempt)
2686 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2687 else
2688 r = -EOPNOTSUPP;
2689
2690 bdput(bdev);
2691 return r;
2692 }
2693
2694 static int dm_pr_clear(struct block_device *bdev, u64 key)
2695 {
2696 struct mapped_device *md = bdev->bd_disk->private_data;
2697 const struct pr_ops *ops;
2698 fmode_t mode;
2699 int r;
2700
2701 r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2702 if (r < 0)
2703 return r;
2704
2705 ops = bdev->bd_disk->fops->pr_ops;
2706 if (ops && ops->pr_clear)
2707 r = ops->pr_clear(bdev, key);
2708 else
2709 r = -EOPNOTSUPP;
2710
2711 bdput(bdev);
2712 return r;
2713 }
2714
2715 static const struct pr_ops dm_pr_ops = {
2716 .pr_register = dm_pr_register,
2717 .pr_reserve = dm_pr_reserve,
2718 .pr_release = dm_pr_release,
2719 .pr_preempt = dm_pr_preempt,
2720 .pr_clear = dm_pr_clear,
2721 };
2722
2723 static const struct block_device_operations dm_blk_dops = {
2724 .open = dm_blk_open,
2725 .release = dm_blk_close,
2726 .ioctl = dm_blk_ioctl,
2727 .direct_access = dm_blk_direct_access,
2728 .getgeo = dm_blk_getgeo,
2729 .pr_ops = &dm_pr_ops,
2730 .owner = THIS_MODULE
2731 };
2732
2733 /*
2734 * module hooks
2735 */
2736 module_init(dm_init);
2737 module_exit(dm_exit);
2738
2739 module_param(major, uint, 0);
2740 MODULE_PARM_DESC(major, "The major number of the device mapper");
2741
2742 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2743 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2744
2745 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2746 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2747
2748 MODULE_DESCRIPTION(DM_NAME " driver");
2749 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2750 MODULE_LICENSE("GPL");
This page took 0.105214 seconds and 4 git commands to generate.