Merge remote-tracking branch 'tip/auto-latest'
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio_list *return_bi)
227 {
228 struct bio *bi;
229 while ((bi = bio_list_pop(return_bi)) != NULL) {
230 bi->bi_iter.bi_size = 0;
231 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
232 bi, 0);
233 bio_endio(bi);
234 }
235 }
236
237 static void print_raid5_conf (struct r5conf *conf);
238
239 static int stripe_operations_active(struct stripe_head *sh)
240 {
241 return sh->check_state || sh->reconstruct_state ||
242 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
243 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
244 }
245
246 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
247 {
248 struct r5conf *conf = sh->raid_conf;
249 struct r5worker_group *group;
250 int thread_cnt;
251 int i, cpu = sh->cpu;
252
253 if (!cpu_online(cpu)) {
254 cpu = cpumask_any(cpu_online_mask);
255 sh->cpu = cpu;
256 }
257
258 if (list_empty(&sh->lru)) {
259 struct r5worker_group *group;
260 group = conf->worker_groups + cpu_to_group(cpu);
261 list_add_tail(&sh->lru, &group->handle_list);
262 group->stripes_cnt++;
263 sh->group = group;
264 }
265
266 if (conf->worker_cnt_per_group == 0) {
267 md_wakeup_thread(conf->mddev->thread);
268 return;
269 }
270
271 group = conf->worker_groups + cpu_to_group(sh->cpu);
272
273 group->workers[0].working = true;
274 /* at least one worker should run to avoid race */
275 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
276
277 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
278 /* wakeup more workers */
279 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
280 if (group->workers[i].working == false) {
281 group->workers[i].working = true;
282 queue_work_on(sh->cpu, raid5_wq,
283 &group->workers[i].work);
284 thread_cnt--;
285 }
286 }
287 }
288
289 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
290 struct list_head *temp_inactive_list)
291 {
292 BUG_ON(!list_empty(&sh->lru));
293 BUG_ON(atomic_read(&conf->active_stripes)==0);
294 if (test_bit(STRIPE_HANDLE, &sh->state)) {
295 if (test_bit(STRIPE_DELAYED, &sh->state) &&
296 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
297 list_add_tail(&sh->lru, &conf->delayed_list);
298 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
299 sh->bm_seq - conf->seq_write > 0)
300 list_add_tail(&sh->lru, &conf->bitmap_list);
301 else {
302 clear_bit(STRIPE_DELAYED, &sh->state);
303 clear_bit(STRIPE_BIT_DELAY, &sh->state);
304 if (conf->worker_cnt_per_group == 0) {
305 list_add_tail(&sh->lru, &conf->handle_list);
306 } else {
307 raid5_wakeup_stripe_thread(sh);
308 return;
309 }
310 }
311 md_wakeup_thread(conf->mddev->thread);
312 } else {
313 BUG_ON(stripe_operations_active(sh));
314 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
315 if (atomic_dec_return(&conf->preread_active_stripes)
316 < IO_THRESHOLD)
317 md_wakeup_thread(conf->mddev->thread);
318 atomic_dec(&conf->active_stripes);
319 if (!test_bit(STRIPE_EXPANDING, &sh->state))
320 list_add_tail(&sh->lru, temp_inactive_list);
321 }
322 }
323
324 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
325 struct list_head *temp_inactive_list)
326 {
327 if (atomic_dec_and_test(&sh->count))
328 do_release_stripe(conf, sh, temp_inactive_list);
329 }
330
331 /*
332 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 *
334 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
335 * given time. Adding stripes only takes device lock, while deleting stripes
336 * only takes hash lock.
337 */
338 static void release_inactive_stripe_list(struct r5conf *conf,
339 struct list_head *temp_inactive_list,
340 int hash)
341 {
342 int size;
343 bool do_wakeup = false;
344 unsigned long flags;
345
346 if (hash == NR_STRIPE_HASH_LOCKS) {
347 size = NR_STRIPE_HASH_LOCKS;
348 hash = NR_STRIPE_HASH_LOCKS - 1;
349 } else
350 size = 1;
351 while (size) {
352 struct list_head *list = &temp_inactive_list[size - 1];
353
354 /*
355 * We don't hold any lock here yet, raid5_get_active_stripe() might
356 * remove stripes from the list
357 */
358 if (!list_empty_careful(list)) {
359 spin_lock_irqsave(conf->hash_locks + hash, flags);
360 if (list_empty(conf->inactive_list + hash) &&
361 !list_empty(list))
362 atomic_dec(&conf->empty_inactive_list_nr);
363 list_splice_tail_init(list, conf->inactive_list + hash);
364 do_wakeup = true;
365 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
366 }
367 size--;
368 hash--;
369 }
370
371 if (do_wakeup) {
372 wake_up(&conf->wait_for_stripe);
373 if (atomic_read(&conf->active_stripes) == 0)
374 wake_up(&conf->wait_for_quiescent);
375 if (conf->retry_read_aligned)
376 md_wakeup_thread(conf->mddev->thread);
377 }
378 }
379
380 /* should hold conf->device_lock already */
381 static int release_stripe_list(struct r5conf *conf,
382 struct list_head *temp_inactive_list)
383 {
384 struct stripe_head *sh;
385 int count = 0;
386 struct llist_node *head;
387
388 head = llist_del_all(&conf->released_stripes);
389 head = llist_reverse_order(head);
390 while (head) {
391 int hash;
392
393 sh = llist_entry(head, struct stripe_head, release_list);
394 head = llist_next(head);
395 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
396 smp_mb();
397 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
398 /*
399 * Don't worry the bit is set here, because if the bit is set
400 * again, the count is always > 1. This is true for
401 * STRIPE_ON_UNPLUG_LIST bit too.
402 */
403 hash = sh->hash_lock_index;
404 __release_stripe(conf, sh, &temp_inactive_list[hash]);
405 count++;
406 }
407
408 return count;
409 }
410
411 void raid5_release_stripe(struct stripe_head *sh)
412 {
413 struct r5conf *conf = sh->raid_conf;
414 unsigned long flags;
415 struct list_head list;
416 int hash;
417 bool wakeup;
418
419 /* Avoid release_list until the last reference.
420 */
421 if (atomic_add_unless(&sh->count, -1, 1))
422 return;
423
424 if (unlikely(!conf->mddev->thread) ||
425 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
426 goto slow_path;
427 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
428 if (wakeup)
429 md_wakeup_thread(conf->mddev->thread);
430 return;
431 slow_path:
432 local_irq_save(flags);
433 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
434 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
435 INIT_LIST_HEAD(&list);
436 hash = sh->hash_lock_index;
437 do_release_stripe(conf, sh, &list);
438 spin_unlock(&conf->device_lock);
439 release_inactive_stripe_list(conf, &list, hash);
440 }
441 local_irq_restore(flags);
442 }
443
444 static inline void remove_hash(struct stripe_head *sh)
445 {
446 pr_debug("remove_hash(), stripe %llu\n",
447 (unsigned long long)sh->sector);
448
449 hlist_del_init(&sh->hash);
450 }
451
452 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
453 {
454 struct hlist_head *hp = stripe_hash(conf, sh->sector);
455
456 pr_debug("insert_hash(), stripe %llu\n",
457 (unsigned long long)sh->sector);
458
459 hlist_add_head(&sh->hash, hp);
460 }
461
462 /* find an idle stripe, make sure it is unhashed, and return it. */
463 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
464 {
465 struct stripe_head *sh = NULL;
466 struct list_head *first;
467
468 if (list_empty(conf->inactive_list + hash))
469 goto out;
470 first = (conf->inactive_list + hash)->next;
471 sh = list_entry(first, struct stripe_head, lru);
472 list_del_init(first);
473 remove_hash(sh);
474 atomic_inc(&conf->active_stripes);
475 BUG_ON(hash != sh->hash_lock_index);
476 if (list_empty(conf->inactive_list + hash))
477 atomic_inc(&conf->empty_inactive_list_nr);
478 out:
479 return sh;
480 }
481
482 static void shrink_buffers(struct stripe_head *sh)
483 {
484 struct page *p;
485 int i;
486 int num = sh->raid_conf->pool_size;
487
488 for (i = 0; i < num ; i++) {
489 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
490 p = sh->dev[i].page;
491 if (!p)
492 continue;
493 sh->dev[i].page = NULL;
494 put_page(p);
495 }
496 }
497
498 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
499 {
500 int i;
501 int num = sh->raid_conf->pool_size;
502
503 for (i = 0; i < num; i++) {
504 struct page *page;
505
506 if (!(page = alloc_page(gfp))) {
507 return 1;
508 }
509 sh->dev[i].page = page;
510 sh->dev[i].orig_page = page;
511 }
512 return 0;
513 }
514
515 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
516 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
517 struct stripe_head *sh);
518
519 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
520 {
521 struct r5conf *conf = sh->raid_conf;
522 int i, seq;
523
524 BUG_ON(atomic_read(&sh->count) != 0);
525 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
526 BUG_ON(stripe_operations_active(sh));
527 BUG_ON(sh->batch_head);
528
529 pr_debug("init_stripe called, stripe %llu\n",
530 (unsigned long long)sector);
531 retry:
532 seq = read_seqcount_begin(&conf->gen_lock);
533 sh->generation = conf->generation - previous;
534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 sh->sector = sector;
536 stripe_set_idx(sector, conf, previous, sh);
537 sh->state = 0;
538
539 for (i = sh->disks; i--; ) {
540 struct r5dev *dev = &sh->dev[i];
541
542 if (dev->toread || dev->read || dev->towrite || dev->written ||
543 test_bit(R5_LOCKED, &dev->flags)) {
544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 (unsigned long long)sh->sector, i, dev->toread,
546 dev->read, dev->towrite, dev->written,
547 test_bit(R5_LOCKED, &dev->flags));
548 WARN_ON(1);
549 }
550 dev->flags = 0;
551 raid5_build_block(sh, i, previous);
552 }
553 if (read_seqcount_retry(&conf->gen_lock, seq))
554 goto retry;
555 sh->overwrite_disks = 0;
556 insert_hash(conf, sh);
557 sh->cpu = smp_processor_id();
558 set_bit(STRIPE_BATCH_READY, &sh->state);
559 }
560
561 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
562 short generation)
563 {
564 struct stripe_head *sh;
565
566 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
567 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
568 if (sh->sector == sector && sh->generation == generation)
569 return sh;
570 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
571 return NULL;
572 }
573
574 /*
575 * Need to check if array has failed when deciding whether to:
576 * - start an array
577 * - remove non-faulty devices
578 * - add a spare
579 * - allow a reshape
580 * This determination is simple when no reshape is happening.
581 * However if there is a reshape, we need to carefully check
582 * both the before and after sections.
583 * This is because some failed devices may only affect one
584 * of the two sections, and some non-in_sync devices may
585 * be insync in the section most affected by failed devices.
586 */
587 static int calc_degraded(struct r5conf *conf)
588 {
589 int degraded, degraded2;
590 int i;
591
592 rcu_read_lock();
593 degraded = 0;
594 for (i = 0; i < conf->previous_raid_disks; i++) {
595 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
596 if (rdev && test_bit(Faulty, &rdev->flags))
597 rdev = rcu_dereference(conf->disks[i].replacement);
598 if (!rdev || test_bit(Faulty, &rdev->flags))
599 degraded++;
600 else if (test_bit(In_sync, &rdev->flags))
601 ;
602 else
603 /* not in-sync or faulty.
604 * If the reshape increases the number of devices,
605 * this is being recovered by the reshape, so
606 * this 'previous' section is not in_sync.
607 * If the number of devices is being reduced however,
608 * the device can only be part of the array if
609 * we are reverting a reshape, so this section will
610 * be in-sync.
611 */
612 if (conf->raid_disks >= conf->previous_raid_disks)
613 degraded++;
614 }
615 rcu_read_unlock();
616 if (conf->raid_disks == conf->previous_raid_disks)
617 return degraded;
618 rcu_read_lock();
619 degraded2 = 0;
620 for (i = 0; i < conf->raid_disks; i++) {
621 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
622 if (rdev && test_bit(Faulty, &rdev->flags))
623 rdev = rcu_dereference(conf->disks[i].replacement);
624 if (!rdev || test_bit(Faulty, &rdev->flags))
625 degraded2++;
626 else if (test_bit(In_sync, &rdev->flags))
627 ;
628 else
629 /* not in-sync or faulty.
630 * If reshape increases the number of devices, this
631 * section has already been recovered, else it
632 * almost certainly hasn't.
633 */
634 if (conf->raid_disks <= conf->previous_raid_disks)
635 degraded2++;
636 }
637 rcu_read_unlock();
638 if (degraded2 > degraded)
639 return degraded2;
640 return degraded;
641 }
642
643 static int has_failed(struct r5conf *conf)
644 {
645 int degraded;
646
647 if (conf->mddev->reshape_position == MaxSector)
648 return conf->mddev->degraded > conf->max_degraded;
649
650 degraded = calc_degraded(conf);
651 if (degraded > conf->max_degraded)
652 return 1;
653 return 0;
654 }
655
656 struct stripe_head *
657 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
658 int previous, int noblock, int noquiesce)
659 {
660 struct stripe_head *sh;
661 int hash = stripe_hash_locks_hash(sector);
662 int inc_empty_inactive_list_flag;
663
664 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
665
666 spin_lock_irq(conf->hash_locks + hash);
667
668 do {
669 wait_event_lock_irq(conf->wait_for_quiescent,
670 conf->quiesce == 0 || noquiesce,
671 *(conf->hash_locks + hash));
672 sh = __find_stripe(conf, sector, conf->generation - previous);
673 if (!sh) {
674 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
675 sh = get_free_stripe(conf, hash);
676 if (!sh && !test_bit(R5_DID_ALLOC,
677 &conf->cache_state))
678 set_bit(R5_ALLOC_MORE,
679 &conf->cache_state);
680 }
681 if (noblock && sh == NULL)
682 break;
683 if (!sh) {
684 set_bit(R5_INACTIVE_BLOCKED,
685 &conf->cache_state);
686 wait_event_lock_irq(
687 conf->wait_for_stripe,
688 !list_empty(conf->inactive_list + hash) &&
689 (atomic_read(&conf->active_stripes)
690 < (conf->max_nr_stripes * 3 / 4)
691 || !test_bit(R5_INACTIVE_BLOCKED,
692 &conf->cache_state)),
693 *(conf->hash_locks + hash));
694 clear_bit(R5_INACTIVE_BLOCKED,
695 &conf->cache_state);
696 } else {
697 init_stripe(sh, sector, previous);
698 atomic_inc(&sh->count);
699 }
700 } else if (!atomic_inc_not_zero(&sh->count)) {
701 spin_lock(&conf->device_lock);
702 if (!atomic_read(&sh->count)) {
703 if (!test_bit(STRIPE_HANDLE, &sh->state))
704 atomic_inc(&conf->active_stripes);
705 BUG_ON(list_empty(&sh->lru) &&
706 !test_bit(STRIPE_EXPANDING, &sh->state));
707 inc_empty_inactive_list_flag = 0;
708 if (!list_empty(conf->inactive_list + hash))
709 inc_empty_inactive_list_flag = 1;
710 list_del_init(&sh->lru);
711 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
712 atomic_inc(&conf->empty_inactive_list_nr);
713 if (sh->group) {
714 sh->group->stripes_cnt--;
715 sh->group = NULL;
716 }
717 }
718 atomic_inc(&sh->count);
719 spin_unlock(&conf->device_lock);
720 }
721 } while (sh == NULL);
722
723 spin_unlock_irq(conf->hash_locks + hash);
724 return sh;
725 }
726
727 static bool is_full_stripe_write(struct stripe_head *sh)
728 {
729 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
730 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
731 }
732
733 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735 local_irq_disable();
736 if (sh1 > sh2) {
737 spin_lock(&sh2->stripe_lock);
738 spin_lock_nested(&sh1->stripe_lock, 1);
739 } else {
740 spin_lock(&sh1->stripe_lock);
741 spin_lock_nested(&sh2->stripe_lock, 1);
742 }
743 }
744
745 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
746 {
747 spin_unlock(&sh1->stripe_lock);
748 spin_unlock(&sh2->stripe_lock);
749 local_irq_enable();
750 }
751
752 /* Only freshly new full stripe normal write stripe can be added to a batch list */
753 static bool stripe_can_batch(struct stripe_head *sh)
754 {
755 struct r5conf *conf = sh->raid_conf;
756
757 if (conf->log)
758 return false;
759 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
760 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
761 is_full_stripe_write(sh);
762 }
763
764 /* we only do back search */
765 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
766 {
767 struct stripe_head *head;
768 sector_t head_sector, tmp_sec;
769 int hash;
770 int dd_idx;
771 int inc_empty_inactive_list_flag;
772
773 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
774 tmp_sec = sh->sector;
775 if (!sector_div(tmp_sec, conf->chunk_sectors))
776 return;
777 head_sector = sh->sector - STRIPE_SECTORS;
778
779 hash = stripe_hash_locks_hash(head_sector);
780 spin_lock_irq(conf->hash_locks + hash);
781 head = __find_stripe(conf, head_sector, conf->generation);
782 if (head && !atomic_inc_not_zero(&head->count)) {
783 spin_lock(&conf->device_lock);
784 if (!atomic_read(&head->count)) {
785 if (!test_bit(STRIPE_HANDLE, &head->state))
786 atomic_inc(&conf->active_stripes);
787 BUG_ON(list_empty(&head->lru) &&
788 !test_bit(STRIPE_EXPANDING, &head->state));
789 inc_empty_inactive_list_flag = 0;
790 if (!list_empty(conf->inactive_list + hash))
791 inc_empty_inactive_list_flag = 1;
792 list_del_init(&head->lru);
793 if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
794 atomic_inc(&conf->empty_inactive_list_nr);
795 if (head->group) {
796 head->group->stripes_cnt--;
797 head->group = NULL;
798 }
799 }
800 atomic_inc(&head->count);
801 spin_unlock(&conf->device_lock);
802 }
803 spin_unlock_irq(conf->hash_locks + hash);
804
805 if (!head)
806 return;
807 if (!stripe_can_batch(head))
808 goto out;
809
810 lock_two_stripes(head, sh);
811 /* clear_batch_ready clear the flag */
812 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
813 goto unlock_out;
814
815 if (sh->batch_head)
816 goto unlock_out;
817
818 dd_idx = 0;
819 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
820 dd_idx++;
821 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
822 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
823 goto unlock_out;
824
825 if (head->batch_head) {
826 spin_lock(&head->batch_head->batch_lock);
827 /* This batch list is already running */
828 if (!stripe_can_batch(head)) {
829 spin_unlock(&head->batch_head->batch_lock);
830 goto unlock_out;
831 }
832
833 /*
834 * at this point, head's BATCH_READY could be cleared, but we
835 * can still add the stripe to batch list
836 */
837 list_add(&sh->batch_list, &head->batch_list);
838 spin_unlock(&head->batch_head->batch_lock);
839
840 sh->batch_head = head->batch_head;
841 } else {
842 head->batch_head = head;
843 sh->batch_head = head->batch_head;
844 spin_lock(&head->batch_lock);
845 list_add_tail(&sh->batch_list, &head->batch_list);
846 spin_unlock(&head->batch_lock);
847 }
848
849 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
850 if (atomic_dec_return(&conf->preread_active_stripes)
851 < IO_THRESHOLD)
852 md_wakeup_thread(conf->mddev->thread);
853
854 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
855 int seq = sh->bm_seq;
856 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
857 sh->batch_head->bm_seq > seq)
858 seq = sh->batch_head->bm_seq;
859 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
860 sh->batch_head->bm_seq = seq;
861 }
862
863 atomic_inc(&sh->count);
864 unlock_out:
865 unlock_two_stripes(head, sh);
866 out:
867 raid5_release_stripe(head);
868 }
869
870 /* Determine if 'data_offset' or 'new_data_offset' should be used
871 * in this stripe_head.
872 */
873 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
874 {
875 sector_t progress = conf->reshape_progress;
876 /* Need a memory barrier to make sure we see the value
877 * of conf->generation, or ->data_offset that was set before
878 * reshape_progress was updated.
879 */
880 smp_rmb();
881 if (progress == MaxSector)
882 return 0;
883 if (sh->generation == conf->generation - 1)
884 return 0;
885 /* We are in a reshape, and this is a new-generation stripe,
886 * so use new_data_offset.
887 */
888 return 1;
889 }
890
891 static void
892 raid5_end_read_request(struct bio *bi);
893 static void
894 raid5_end_write_request(struct bio *bi);
895
896 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
897 {
898 struct r5conf *conf = sh->raid_conf;
899 int i, disks = sh->disks;
900 struct stripe_head *head_sh = sh;
901
902 might_sleep();
903
904 if (r5l_write_stripe(conf->log, sh) == 0)
905 return;
906 for (i = disks; i--; ) {
907 int op, op_flags = 0;
908 int replace_only = 0;
909 struct bio *bi, *rbi;
910 struct md_rdev *rdev, *rrdev = NULL;
911
912 sh = head_sh;
913 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
914 op = REQ_OP_WRITE;
915 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
916 op_flags = WRITE_FUA;
917 if (test_bit(R5_Discard, &sh->dev[i].flags))
918 op = REQ_OP_DISCARD;
919 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
920 op = REQ_OP_READ;
921 else if (test_and_clear_bit(R5_WantReplace,
922 &sh->dev[i].flags)) {
923 op = REQ_OP_WRITE;
924 replace_only = 1;
925 } else
926 continue;
927 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
928 op_flags |= REQ_SYNC;
929
930 again:
931 bi = &sh->dev[i].req;
932 rbi = &sh->dev[i].rreq; /* For writing to replacement */
933
934 rcu_read_lock();
935 rrdev = rcu_dereference(conf->disks[i].replacement);
936 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
937 rdev = rcu_dereference(conf->disks[i].rdev);
938 if (!rdev) {
939 rdev = rrdev;
940 rrdev = NULL;
941 }
942 if (op_is_write(op)) {
943 if (replace_only)
944 rdev = NULL;
945 if (rdev == rrdev)
946 /* We raced and saw duplicates */
947 rrdev = NULL;
948 } else {
949 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
950 rdev = rrdev;
951 rrdev = NULL;
952 }
953
954 if (rdev && test_bit(Faulty, &rdev->flags))
955 rdev = NULL;
956 if (rdev)
957 atomic_inc(&rdev->nr_pending);
958 if (rrdev && test_bit(Faulty, &rrdev->flags))
959 rrdev = NULL;
960 if (rrdev)
961 atomic_inc(&rrdev->nr_pending);
962 rcu_read_unlock();
963
964 /* We have already checked bad blocks for reads. Now
965 * need to check for writes. We never accept write errors
966 * on the replacement, so we don't to check rrdev.
967 */
968 while (op_is_write(op) && rdev &&
969 test_bit(WriteErrorSeen, &rdev->flags)) {
970 sector_t first_bad;
971 int bad_sectors;
972 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
973 &first_bad, &bad_sectors);
974 if (!bad)
975 break;
976
977 if (bad < 0) {
978 set_bit(BlockedBadBlocks, &rdev->flags);
979 if (!conf->mddev->external &&
980 conf->mddev->flags) {
981 /* It is very unlikely, but we might
982 * still need to write out the
983 * bad block log - better give it
984 * a chance*/
985 md_check_recovery(conf->mddev);
986 }
987 /*
988 * Because md_wait_for_blocked_rdev
989 * will dec nr_pending, we must
990 * increment it first.
991 */
992 atomic_inc(&rdev->nr_pending);
993 md_wait_for_blocked_rdev(rdev, conf->mddev);
994 } else {
995 /* Acknowledged bad block - skip the write */
996 rdev_dec_pending(rdev, conf->mddev);
997 rdev = NULL;
998 }
999 }
1000
1001 if (rdev) {
1002 if (s->syncing || s->expanding || s->expanded
1003 || s->replacing)
1004 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1005
1006 set_bit(STRIPE_IO_STARTED, &sh->state);
1007
1008 bi->bi_bdev = rdev->bdev;
1009 bio_set_op_attrs(bi, op, op_flags);
1010 bi->bi_end_io = op_is_write(op)
1011 ? raid5_end_write_request
1012 : raid5_end_read_request;
1013 bi->bi_private = sh;
1014
1015 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1016 __func__, (unsigned long long)sh->sector,
1017 bi->bi_opf, i);
1018 atomic_inc(&sh->count);
1019 if (sh != head_sh)
1020 atomic_inc(&head_sh->count);
1021 if (use_new_offset(conf, sh))
1022 bi->bi_iter.bi_sector = (sh->sector
1023 + rdev->new_data_offset);
1024 else
1025 bi->bi_iter.bi_sector = (sh->sector
1026 + rdev->data_offset);
1027 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1028 bi->bi_opf |= REQ_NOMERGE;
1029
1030 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1031 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1032 sh->dev[i].vec.bv_page = sh->dev[i].page;
1033 bi->bi_vcnt = 1;
1034 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1035 bi->bi_io_vec[0].bv_offset = 0;
1036 bi->bi_iter.bi_size = STRIPE_SIZE;
1037 /*
1038 * If this is discard request, set bi_vcnt 0. We don't
1039 * want to confuse SCSI because SCSI will replace payload
1040 */
1041 if (op == REQ_OP_DISCARD)
1042 bi->bi_vcnt = 0;
1043 if (rrdev)
1044 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1045
1046 if (conf->mddev->gendisk)
1047 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1048 bi, disk_devt(conf->mddev->gendisk),
1049 sh->dev[i].sector);
1050 generic_make_request(bi);
1051 }
1052 if (rrdev) {
1053 if (s->syncing || s->expanding || s->expanded
1054 || s->replacing)
1055 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1056
1057 set_bit(STRIPE_IO_STARTED, &sh->state);
1058
1059 rbi->bi_bdev = rrdev->bdev;
1060 bio_set_op_attrs(rbi, op, op_flags);
1061 BUG_ON(!op_is_write(op));
1062 rbi->bi_end_io = raid5_end_write_request;
1063 rbi->bi_private = sh;
1064
1065 pr_debug("%s: for %llu schedule op %d on "
1066 "replacement disc %d\n",
1067 __func__, (unsigned long long)sh->sector,
1068 rbi->bi_opf, i);
1069 atomic_inc(&sh->count);
1070 if (sh != head_sh)
1071 atomic_inc(&head_sh->count);
1072 if (use_new_offset(conf, sh))
1073 rbi->bi_iter.bi_sector = (sh->sector
1074 + rrdev->new_data_offset);
1075 else
1076 rbi->bi_iter.bi_sector = (sh->sector
1077 + rrdev->data_offset);
1078 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1079 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1080 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1081 rbi->bi_vcnt = 1;
1082 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1083 rbi->bi_io_vec[0].bv_offset = 0;
1084 rbi->bi_iter.bi_size = STRIPE_SIZE;
1085 /*
1086 * If this is discard request, set bi_vcnt 0. We don't
1087 * want to confuse SCSI because SCSI will replace payload
1088 */
1089 if (op == REQ_OP_DISCARD)
1090 rbi->bi_vcnt = 0;
1091 if (conf->mddev->gendisk)
1092 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1093 rbi, disk_devt(conf->mddev->gendisk),
1094 sh->dev[i].sector);
1095 generic_make_request(rbi);
1096 }
1097 if (!rdev && !rrdev) {
1098 if (op_is_write(op))
1099 set_bit(STRIPE_DEGRADED, &sh->state);
1100 pr_debug("skip op %d on disc %d for sector %llu\n",
1101 bi->bi_opf, i, (unsigned long long)sh->sector);
1102 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1103 set_bit(STRIPE_HANDLE, &sh->state);
1104 }
1105
1106 if (!head_sh->batch_head)
1107 continue;
1108 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1109 batch_list);
1110 if (sh != head_sh)
1111 goto again;
1112 }
1113 }
1114
1115 static struct dma_async_tx_descriptor *
1116 async_copy_data(int frombio, struct bio *bio, struct page **page,
1117 sector_t sector, struct dma_async_tx_descriptor *tx,
1118 struct stripe_head *sh)
1119 {
1120 struct bio_vec bvl;
1121 struct bvec_iter iter;
1122 struct page *bio_page;
1123 int page_offset;
1124 struct async_submit_ctl submit;
1125 enum async_tx_flags flags = 0;
1126
1127 if (bio->bi_iter.bi_sector >= sector)
1128 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1129 else
1130 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1131
1132 if (frombio)
1133 flags |= ASYNC_TX_FENCE;
1134 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1135
1136 bio_for_each_segment(bvl, bio, iter) {
1137 int len = bvl.bv_len;
1138 int clen;
1139 int b_offset = 0;
1140
1141 if (page_offset < 0) {
1142 b_offset = -page_offset;
1143 page_offset += b_offset;
1144 len -= b_offset;
1145 }
1146
1147 if (len > 0 && page_offset + len > STRIPE_SIZE)
1148 clen = STRIPE_SIZE - page_offset;
1149 else
1150 clen = len;
1151
1152 if (clen > 0) {
1153 b_offset += bvl.bv_offset;
1154 bio_page = bvl.bv_page;
1155 if (frombio) {
1156 if (sh->raid_conf->skip_copy &&
1157 b_offset == 0 && page_offset == 0 &&
1158 clen == STRIPE_SIZE)
1159 *page = bio_page;
1160 else
1161 tx = async_memcpy(*page, bio_page, page_offset,
1162 b_offset, clen, &submit);
1163 } else
1164 tx = async_memcpy(bio_page, *page, b_offset,
1165 page_offset, clen, &submit);
1166 }
1167 /* chain the operations */
1168 submit.depend_tx = tx;
1169
1170 if (clen < len) /* hit end of page */
1171 break;
1172 page_offset += len;
1173 }
1174
1175 return tx;
1176 }
1177
1178 static void ops_complete_biofill(void *stripe_head_ref)
1179 {
1180 struct stripe_head *sh = stripe_head_ref;
1181 struct bio_list return_bi = BIO_EMPTY_LIST;
1182 int i;
1183
1184 pr_debug("%s: stripe %llu\n", __func__,
1185 (unsigned long long)sh->sector);
1186
1187 /* clear completed biofills */
1188 for (i = sh->disks; i--; ) {
1189 struct r5dev *dev = &sh->dev[i];
1190
1191 /* acknowledge completion of a biofill operation */
1192 /* and check if we need to reply to a read request,
1193 * new R5_Wantfill requests are held off until
1194 * !STRIPE_BIOFILL_RUN
1195 */
1196 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1197 struct bio *rbi, *rbi2;
1198
1199 BUG_ON(!dev->read);
1200 rbi = dev->read;
1201 dev->read = NULL;
1202 while (rbi && rbi->bi_iter.bi_sector <
1203 dev->sector + STRIPE_SECTORS) {
1204 rbi2 = r5_next_bio(rbi, dev->sector);
1205 if (!raid5_dec_bi_active_stripes(rbi))
1206 bio_list_add(&return_bi, rbi);
1207 rbi = rbi2;
1208 }
1209 }
1210 }
1211 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1212
1213 return_io(&return_bi);
1214
1215 set_bit(STRIPE_HANDLE, &sh->state);
1216 raid5_release_stripe(sh);
1217 }
1218
1219 static void ops_run_biofill(struct stripe_head *sh)
1220 {
1221 struct dma_async_tx_descriptor *tx = NULL;
1222 struct async_submit_ctl submit;
1223 int i;
1224
1225 BUG_ON(sh->batch_head);
1226 pr_debug("%s: stripe %llu\n", __func__,
1227 (unsigned long long)sh->sector);
1228
1229 for (i = sh->disks; i--; ) {
1230 struct r5dev *dev = &sh->dev[i];
1231 if (test_bit(R5_Wantfill, &dev->flags)) {
1232 struct bio *rbi;
1233 spin_lock_irq(&sh->stripe_lock);
1234 dev->read = rbi = dev->toread;
1235 dev->toread = NULL;
1236 spin_unlock_irq(&sh->stripe_lock);
1237 while (rbi && rbi->bi_iter.bi_sector <
1238 dev->sector + STRIPE_SECTORS) {
1239 tx = async_copy_data(0, rbi, &dev->page,
1240 dev->sector, tx, sh);
1241 rbi = r5_next_bio(rbi, dev->sector);
1242 }
1243 }
1244 }
1245
1246 atomic_inc(&sh->count);
1247 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1248 async_trigger_callback(&submit);
1249 }
1250
1251 static void mark_target_uptodate(struct stripe_head *sh, int target)
1252 {
1253 struct r5dev *tgt;
1254
1255 if (target < 0)
1256 return;
1257
1258 tgt = &sh->dev[target];
1259 set_bit(R5_UPTODATE, &tgt->flags);
1260 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1261 clear_bit(R5_Wantcompute, &tgt->flags);
1262 }
1263
1264 static void ops_complete_compute(void *stripe_head_ref)
1265 {
1266 struct stripe_head *sh = stripe_head_ref;
1267
1268 pr_debug("%s: stripe %llu\n", __func__,
1269 (unsigned long long)sh->sector);
1270
1271 /* mark the computed target(s) as uptodate */
1272 mark_target_uptodate(sh, sh->ops.target);
1273 mark_target_uptodate(sh, sh->ops.target2);
1274
1275 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1276 if (sh->check_state == check_state_compute_run)
1277 sh->check_state = check_state_compute_result;
1278 set_bit(STRIPE_HANDLE, &sh->state);
1279 raid5_release_stripe(sh);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1284 struct raid5_percpu *percpu, int i)
1285 {
1286 void *addr;
1287
1288 addr = flex_array_get(percpu->scribble, i);
1289 return addr + sizeof(struct page *) * (sh->disks + 2);
1290 }
1291
1292 /* return a pointer to the address conversion region of the scribble buffer */
1293 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1294 {
1295 void *addr;
1296
1297 addr = flex_array_get(percpu->scribble, i);
1298 return addr;
1299 }
1300
1301 static struct dma_async_tx_descriptor *
1302 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1303 {
1304 int disks = sh->disks;
1305 struct page **xor_srcs = to_addr_page(percpu, 0);
1306 int target = sh->ops.target;
1307 struct r5dev *tgt = &sh->dev[target];
1308 struct page *xor_dest = tgt->page;
1309 int count = 0;
1310 struct dma_async_tx_descriptor *tx;
1311 struct async_submit_ctl submit;
1312 int i;
1313
1314 BUG_ON(sh->batch_head);
1315
1316 pr_debug("%s: stripe %llu block: %d\n",
1317 __func__, (unsigned long long)sh->sector, target);
1318 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1319
1320 for (i = disks; i--; )
1321 if (i != target)
1322 xor_srcs[count++] = sh->dev[i].page;
1323
1324 atomic_inc(&sh->count);
1325
1326 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1327 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1328 if (unlikely(count == 1))
1329 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1330 else
1331 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1332
1333 return tx;
1334 }
1335
1336 /* set_syndrome_sources - populate source buffers for gen_syndrome
1337 * @srcs - (struct page *) array of size sh->disks
1338 * @sh - stripe_head to parse
1339 *
1340 * Populates srcs in proper layout order for the stripe and returns the
1341 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1342 * destination buffer is recorded in srcs[count] and the Q destination
1343 * is recorded in srcs[count+1]].
1344 */
1345 static int set_syndrome_sources(struct page **srcs,
1346 struct stripe_head *sh,
1347 int srctype)
1348 {
1349 int disks = sh->disks;
1350 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1351 int d0_idx = raid6_d0(sh);
1352 int count;
1353 int i;
1354
1355 for (i = 0; i < disks; i++)
1356 srcs[i] = NULL;
1357
1358 count = 0;
1359 i = d0_idx;
1360 do {
1361 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1362 struct r5dev *dev = &sh->dev[i];
1363
1364 if (i == sh->qd_idx || i == sh->pd_idx ||
1365 (srctype == SYNDROME_SRC_ALL) ||
1366 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1367 test_bit(R5_Wantdrain, &dev->flags)) ||
1368 (srctype == SYNDROME_SRC_WRITTEN &&
1369 dev->written))
1370 srcs[slot] = sh->dev[i].page;
1371 i = raid6_next_disk(i, disks);
1372 } while (i != d0_idx);
1373
1374 return syndrome_disks;
1375 }
1376
1377 static struct dma_async_tx_descriptor *
1378 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1379 {
1380 int disks = sh->disks;
1381 struct page **blocks = to_addr_page(percpu, 0);
1382 int target;
1383 int qd_idx = sh->qd_idx;
1384 struct dma_async_tx_descriptor *tx;
1385 struct async_submit_ctl submit;
1386 struct r5dev *tgt;
1387 struct page *dest;
1388 int i;
1389 int count;
1390
1391 BUG_ON(sh->batch_head);
1392 if (sh->ops.target < 0)
1393 target = sh->ops.target2;
1394 else if (sh->ops.target2 < 0)
1395 target = sh->ops.target;
1396 else
1397 /* we should only have one valid target */
1398 BUG();
1399 BUG_ON(target < 0);
1400 pr_debug("%s: stripe %llu block: %d\n",
1401 __func__, (unsigned long long)sh->sector, target);
1402
1403 tgt = &sh->dev[target];
1404 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1405 dest = tgt->page;
1406
1407 atomic_inc(&sh->count);
1408
1409 if (target == qd_idx) {
1410 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1411 blocks[count] = NULL; /* regenerating p is not necessary */
1412 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1413 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1414 ops_complete_compute, sh,
1415 to_addr_conv(sh, percpu, 0));
1416 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1417 } else {
1418 /* Compute any data- or p-drive using XOR */
1419 count = 0;
1420 for (i = disks; i-- ; ) {
1421 if (i == target || i == qd_idx)
1422 continue;
1423 blocks[count++] = sh->dev[i].page;
1424 }
1425
1426 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1427 NULL, ops_complete_compute, sh,
1428 to_addr_conv(sh, percpu, 0));
1429 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1430 }
1431
1432 return tx;
1433 }
1434
1435 static struct dma_async_tx_descriptor *
1436 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1437 {
1438 int i, count, disks = sh->disks;
1439 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1440 int d0_idx = raid6_d0(sh);
1441 int faila = -1, failb = -1;
1442 int target = sh->ops.target;
1443 int target2 = sh->ops.target2;
1444 struct r5dev *tgt = &sh->dev[target];
1445 struct r5dev *tgt2 = &sh->dev[target2];
1446 struct dma_async_tx_descriptor *tx;
1447 struct page **blocks = to_addr_page(percpu, 0);
1448 struct async_submit_ctl submit;
1449
1450 BUG_ON(sh->batch_head);
1451 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1452 __func__, (unsigned long long)sh->sector, target, target2);
1453 BUG_ON(target < 0 || target2 < 0);
1454 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1456
1457 /* we need to open-code set_syndrome_sources to handle the
1458 * slot number conversion for 'faila' and 'failb'
1459 */
1460 for (i = 0; i < disks ; i++)
1461 blocks[i] = NULL;
1462 count = 0;
1463 i = d0_idx;
1464 do {
1465 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1466
1467 blocks[slot] = sh->dev[i].page;
1468
1469 if (i == target)
1470 faila = slot;
1471 if (i == target2)
1472 failb = slot;
1473 i = raid6_next_disk(i, disks);
1474 } while (i != d0_idx);
1475
1476 BUG_ON(faila == failb);
1477 if (failb < faila)
1478 swap(faila, failb);
1479 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1480 __func__, (unsigned long long)sh->sector, faila, failb);
1481
1482 atomic_inc(&sh->count);
1483
1484 if (failb == syndrome_disks+1) {
1485 /* Q disk is one of the missing disks */
1486 if (faila == syndrome_disks) {
1487 /* Missing P+Q, just recompute */
1488 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1489 ops_complete_compute, sh,
1490 to_addr_conv(sh, percpu, 0));
1491 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1492 STRIPE_SIZE, &submit);
1493 } else {
1494 struct page *dest;
1495 int data_target;
1496 int qd_idx = sh->qd_idx;
1497
1498 /* Missing D+Q: recompute D from P, then recompute Q */
1499 if (target == qd_idx)
1500 data_target = target2;
1501 else
1502 data_target = target;
1503
1504 count = 0;
1505 for (i = disks; i-- ; ) {
1506 if (i == data_target || i == qd_idx)
1507 continue;
1508 blocks[count++] = sh->dev[i].page;
1509 }
1510 dest = sh->dev[data_target].page;
1511 init_async_submit(&submit,
1512 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1513 NULL, NULL, NULL,
1514 to_addr_conv(sh, percpu, 0));
1515 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1516 &submit);
1517
1518 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1519 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1520 ops_complete_compute, sh,
1521 to_addr_conv(sh, percpu, 0));
1522 return async_gen_syndrome(blocks, 0, count+2,
1523 STRIPE_SIZE, &submit);
1524 }
1525 } else {
1526 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1527 ops_complete_compute, sh,
1528 to_addr_conv(sh, percpu, 0));
1529 if (failb == syndrome_disks) {
1530 /* We're missing D+P. */
1531 return async_raid6_datap_recov(syndrome_disks+2,
1532 STRIPE_SIZE, faila,
1533 blocks, &submit);
1534 } else {
1535 /* We're missing D+D. */
1536 return async_raid6_2data_recov(syndrome_disks+2,
1537 STRIPE_SIZE, faila, failb,
1538 blocks, &submit);
1539 }
1540 }
1541 }
1542
1543 static void ops_complete_prexor(void *stripe_head_ref)
1544 {
1545 struct stripe_head *sh = stripe_head_ref;
1546
1547 pr_debug("%s: stripe %llu\n", __func__,
1548 (unsigned long long)sh->sector);
1549 }
1550
1551 static struct dma_async_tx_descriptor *
1552 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1553 struct dma_async_tx_descriptor *tx)
1554 {
1555 int disks = sh->disks;
1556 struct page **xor_srcs = to_addr_page(percpu, 0);
1557 int count = 0, pd_idx = sh->pd_idx, i;
1558 struct async_submit_ctl submit;
1559
1560 /* existing parity data subtracted */
1561 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1562
1563 BUG_ON(sh->batch_head);
1564 pr_debug("%s: stripe %llu\n", __func__,
1565 (unsigned long long)sh->sector);
1566
1567 for (i = disks; i--; ) {
1568 struct r5dev *dev = &sh->dev[i];
1569 /* Only process blocks that are known to be uptodate */
1570 if (test_bit(R5_Wantdrain, &dev->flags))
1571 xor_srcs[count++] = dev->page;
1572 }
1573
1574 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1575 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1576 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1577
1578 return tx;
1579 }
1580
1581 static struct dma_async_tx_descriptor *
1582 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1583 struct dma_async_tx_descriptor *tx)
1584 {
1585 struct page **blocks = to_addr_page(percpu, 0);
1586 int count;
1587 struct async_submit_ctl submit;
1588
1589 pr_debug("%s: stripe %llu\n", __func__,
1590 (unsigned long long)sh->sector);
1591
1592 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1593
1594 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1595 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1596 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1597
1598 return tx;
1599 }
1600
1601 static struct dma_async_tx_descriptor *
1602 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1603 {
1604 int disks = sh->disks;
1605 int i;
1606 struct stripe_head *head_sh = sh;
1607
1608 pr_debug("%s: stripe %llu\n", __func__,
1609 (unsigned long long)sh->sector);
1610
1611 for (i = disks; i--; ) {
1612 struct r5dev *dev;
1613 struct bio *chosen;
1614
1615 sh = head_sh;
1616 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1617 struct bio *wbi;
1618
1619 again:
1620 dev = &sh->dev[i];
1621 spin_lock_irq(&sh->stripe_lock);
1622 chosen = dev->towrite;
1623 dev->towrite = NULL;
1624 sh->overwrite_disks = 0;
1625 BUG_ON(dev->written);
1626 wbi = dev->written = chosen;
1627 spin_unlock_irq(&sh->stripe_lock);
1628 WARN_ON(dev->page != dev->orig_page);
1629
1630 while (wbi && wbi->bi_iter.bi_sector <
1631 dev->sector + STRIPE_SECTORS) {
1632 if (wbi->bi_opf & REQ_FUA)
1633 set_bit(R5_WantFUA, &dev->flags);
1634 if (wbi->bi_opf & REQ_SYNC)
1635 set_bit(R5_SyncIO, &dev->flags);
1636 if (bio_op(wbi) == REQ_OP_DISCARD)
1637 set_bit(R5_Discard, &dev->flags);
1638 else {
1639 tx = async_copy_data(1, wbi, &dev->page,
1640 dev->sector, tx, sh);
1641 if (dev->page != dev->orig_page) {
1642 set_bit(R5_SkipCopy, &dev->flags);
1643 clear_bit(R5_UPTODATE, &dev->flags);
1644 clear_bit(R5_OVERWRITE, &dev->flags);
1645 }
1646 }
1647 wbi = r5_next_bio(wbi, dev->sector);
1648 }
1649
1650 if (head_sh->batch_head) {
1651 sh = list_first_entry(&sh->batch_list,
1652 struct stripe_head,
1653 batch_list);
1654 if (sh == head_sh)
1655 continue;
1656 goto again;
1657 }
1658 }
1659 }
1660
1661 return tx;
1662 }
1663
1664 static void ops_complete_reconstruct(void *stripe_head_ref)
1665 {
1666 struct stripe_head *sh = stripe_head_ref;
1667 int disks = sh->disks;
1668 int pd_idx = sh->pd_idx;
1669 int qd_idx = sh->qd_idx;
1670 int i;
1671 bool fua = false, sync = false, discard = false;
1672
1673 pr_debug("%s: stripe %llu\n", __func__,
1674 (unsigned long long)sh->sector);
1675
1676 for (i = disks; i--; ) {
1677 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1678 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1679 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1680 }
1681
1682 for (i = disks; i--; ) {
1683 struct r5dev *dev = &sh->dev[i];
1684
1685 if (dev->written || i == pd_idx || i == qd_idx) {
1686 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1687 set_bit(R5_UPTODATE, &dev->flags);
1688 if (fua)
1689 set_bit(R5_WantFUA, &dev->flags);
1690 if (sync)
1691 set_bit(R5_SyncIO, &dev->flags);
1692 }
1693 }
1694
1695 if (sh->reconstruct_state == reconstruct_state_drain_run)
1696 sh->reconstruct_state = reconstruct_state_drain_result;
1697 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1698 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1699 else {
1700 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1701 sh->reconstruct_state = reconstruct_state_result;
1702 }
1703
1704 set_bit(STRIPE_HANDLE, &sh->state);
1705 raid5_release_stripe(sh);
1706 }
1707
1708 static void
1709 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1710 struct dma_async_tx_descriptor *tx)
1711 {
1712 int disks = sh->disks;
1713 struct page **xor_srcs;
1714 struct async_submit_ctl submit;
1715 int count, pd_idx = sh->pd_idx, i;
1716 struct page *xor_dest;
1717 int prexor = 0;
1718 unsigned long flags;
1719 int j = 0;
1720 struct stripe_head *head_sh = sh;
1721 int last_stripe;
1722
1723 pr_debug("%s: stripe %llu\n", __func__,
1724 (unsigned long long)sh->sector);
1725
1726 for (i = 0; i < sh->disks; i++) {
1727 if (pd_idx == i)
1728 continue;
1729 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1730 break;
1731 }
1732 if (i >= sh->disks) {
1733 atomic_inc(&sh->count);
1734 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1735 ops_complete_reconstruct(sh);
1736 return;
1737 }
1738 again:
1739 count = 0;
1740 xor_srcs = to_addr_page(percpu, j);
1741 /* check if prexor is active which means only process blocks
1742 * that are part of a read-modify-write (written)
1743 */
1744 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1745 prexor = 1;
1746 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1747 for (i = disks; i--; ) {
1748 struct r5dev *dev = &sh->dev[i];
1749 if (head_sh->dev[i].written)
1750 xor_srcs[count++] = dev->page;
1751 }
1752 } else {
1753 xor_dest = sh->dev[pd_idx].page;
1754 for (i = disks; i--; ) {
1755 struct r5dev *dev = &sh->dev[i];
1756 if (i != pd_idx)
1757 xor_srcs[count++] = dev->page;
1758 }
1759 }
1760
1761 /* 1/ if we prexor'd then the dest is reused as a source
1762 * 2/ if we did not prexor then we are redoing the parity
1763 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1764 * for the synchronous xor case
1765 */
1766 last_stripe = !head_sh->batch_head ||
1767 list_first_entry(&sh->batch_list,
1768 struct stripe_head, batch_list) == head_sh;
1769 if (last_stripe) {
1770 flags = ASYNC_TX_ACK |
1771 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1772
1773 atomic_inc(&head_sh->count);
1774 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1775 to_addr_conv(sh, percpu, j));
1776 } else {
1777 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1778 init_async_submit(&submit, flags, tx, NULL, NULL,
1779 to_addr_conv(sh, percpu, j));
1780 }
1781
1782 if (unlikely(count == 1))
1783 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1784 else
1785 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1786 if (!last_stripe) {
1787 j++;
1788 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1789 batch_list);
1790 goto again;
1791 }
1792 }
1793
1794 static void
1795 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1796 struct dma_async_tx_descriptor *tx)
1797 {
1798 struct async_submit_ctl submit;
1799 struct page **blocks;
1800 int count, i, j = 0;
1801 struct stripe_head *head_sh = sh;
1802 int last_stripe;
1803 int synflags;
1804 unsigned long txflags;
1805
1806 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1807
1808 for (i = 0; i < sh->disks; i++) {
1809 if (sh->pd_idx == i || sh->qd_idx == i)
1810 continue;
1811 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1812 break;
1813 }
1814 if (i >= sh->disks) {
1815 atomic_inc(&sh->count);
1816 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1817 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1818 ops_complete_reconstruct(sh);
1819 return;
1820 }
1821
1822 again:
1823 blocks = to_addr_page(percpu, j);
1824
1825 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1826 synflags = SYNDROME_SRC_WRITTEN;
1827 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1828 } else {
1829 synflags = SYNDROME_SRC_ALL;
1830 txflags = ASYNC_TX_ACK;
1831 }
1832
1833 count = set_syndrome_sources(blocks, sh, synflags);
1834 last_stripe = !head_sh->batch_head ||
1835 list_first_entry(&sh->batch_list,
1836 struct stripe_head, batch_list) == head_sh;
1837
1838 if (last_stripe) {
1839 atomic_inc(&head_sh->count);
1840 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1841 head_sh, to_addr_conv(sh, percpu, j));
1842 } else
1843 init_async_submit(&submit, 0, tx, NULL, NULL,
1844 to_addr_conv(sh, percpu, j));
1845 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1846 if (!last_stripe) {
1847 j++;
1848 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1849 batch_list);
1850 goto again;
1851 }
1852 }
1853
1854 static void ops_complete_check(void *stripe_head_ref)
1855 {
1856 struct stripe_head *sh = stripe_head_ref;
1857
1858 pr_debug("%s: stripe %llu\n", __func__,
1859 (unsigned long long)sh->sector);
1860
1861 sh->check_state = check_state_check_result;
1862 set_bit(STRIPE_HANDLE, &sh->state);
1863 raid5_release_stripe(sh);
1864 }
1865
1866 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1867 {
1868 int disks = sh->disks;
1869 int pd_idx = sh->pd_idx;
1870 int qd_idx = sh->qd_idx;
1871 struct page *xor_dest;
1872 struct page **xor_srcs = to_addr_page(percpu, 0);
1873 struct dma_async_tx_descriptor *tx;
1874 struct async_submit_ctl submit;
1875 int count;
1876 int i;
1877
1878 pr_debug("%s: stripe %llu\n", __func__,
1879 (unsigned long long)sh->sector);
1880
1881 BUG_ON(sh->batch_head);
1882 count = 0;
1883 xor_dest = sh->dev[pd_idx].page;
1884 xor_srcs[count++] = xor_dest;
1885 for (i = disks; i--; ) {
1886 if (i == pd_idx || i == qd_idx)
1887 continue;
1888 xor_srcs[count++] = sh->dev[i].page;
1889 }
1890
1891 init_async_submit(&submit, 0, NULL, NULL, NULL,
1892 to_addr_conv(sh, percpu, 0));
1893 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1894 &sh->ops.zero_sum_result, &submit);
1895
1896 atomic_inc(&sh->count);
1897 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1898 tx = async_trigger_callback(&submit);
1899 }
1900
1901 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1902 {
1903 struct page **srcs = to_addr_page(percpu, 0);
1904 struct async_submit_ctl submit;
1905 int count;
1906
1907 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1908 (unsigned long long)sh->sector, checkp);
1909
1910 BUG_ON(sh->batch_head);
1911 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1912 if (!checkp)
1913 srcs[count] = NULL;
1914
1915 atomic_inc(&sh->count);
1916 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1917 sh, to_addr_conv(sh, percpu, 0));
1918 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1919 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1920 }
1921
1922 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1923 {
1924 int overlap_clear = 0, i, disks = sh->disks;
1925 struct dma_async_tx_descriptor *tx = NULL;
1926 struct r5conf *conf = sh->raid_conf;
1927 int level = conf->level;
1928 struct raid5_percpu *percpu;
1929 unsigned long cpu;
1930
1931 cpu = get_cpu();
1932 percpu = per_cpu_ptr(conf->percpu, cpu);
1933 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1934 ops_run_biofill(sh);
1935 overlap_clear++;
1936 }
1937
1938 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1939 if (level < 6)
1940 tx = ops_run_compute5(sh, percpu);
1941 else {
1942 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1943 tx = ops_run_compute6_1(sh, percpu);
1944 else
1945 tx = ops_run_compute6_2(sh, percpu);
1946 }
1947 /* terminate the chain if reconstruct is not set to be run */
1948 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1949 async_tx_ack(tx);
1950 }
1951
1952 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1953 if (level < 6)
1954 tx = ops_run_prexor5(sh, percpu, tx);
1955 else
1956 tx = ops_run_prexor6(sh, percpu, tx);
1957 }
1958
1959 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1960 tx = ops_run_biodrain(sh, tx);
1961 overlap_clear++;
1962 }
1963
1964 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1965 if (level < 6)
1966 ops_run_reconstruct5(sh, percpu, tx);
1967 else
1968 ops_run_reconstruct6(sh, percpu, tx);
1969 }
1970
1971 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1972 if (sh->check_state == check_state_run)
1973 ops_run_check_p(sh, percpu);
1974 else if (sh->check_state == check_state_run_q)
1975 ops_run_check_pq(sh, percpu, 0);
1976 else if (sh->check_state == check_state_run_pq)
1977 ops_run_check_pq(sh, percpu, 1);
1978 else
1979 BUG();
1980 }
1981
1982 if (overlap_clear && !sh->batch_head)
1983 for (i = disks; i--; ) {
1984 struct r5dev *dev = &sh->dev[i];
1985 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1986 wake_up(&sh->raid_conf->wait_for_overlap);
1987 }
1988 put_cpu();
1989 }
1990
1991 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
1992 int disks)
1993 {
1994 struct stripe_head *sh;
1995 int i;
1996
1997 sh = kmem_cache_zalloc(sc, gfp);
1998 if (sh) {
1999 spin_lock_init(&sh->stripe_lock);
2000 spin_lock_init(&sh->batch_lock);
2001 INIT_LIST_HEAD(&sh->batch_list);
2002 INIT_LIST_HEAD(&sh->lru);
2003 atomic_set(&sh->count, 1);
2004 for (i = 0; i < disks; i++) {
2005 struct r5dev *dev = &sh->dev[i];
2006
2007 bio_init(&dev->req);
2008 dev->req.bi_io_vec = &dev->vec;
2009 dev->req.bi_max_vecs = 1;
2010
2011 bio_init(&dev->rreq);
2012 dev->rreq.bi_io_vec = &dev->rvec;
2013 dev->rreq.bi_max_vecs = 1;
2014 }
2015 }
2016 return sh;
2017 }
2018 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2019 {
2020 struct stripe_head *sh;
2021
2022 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size);
2023 if (!sh)
2024 return 0;
2025
2026 sh->raid_conf = conf;
2027
2028 if (grow_buffers(sh, gfp)) {
2029 shrink_buffers(sh);
2030 kmem_cache_free(conf->slab_cache, sh);
2031 return 0;
2032 }
2033 sh->hash_lock_index =
2034 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2035 /* we just created an active stripe so... */
2036 atomic_inc(&conf->active_stripes);
2037
2038 raid5_release_stripe(sh);
2039 conf->max_nr_stripes++;
2040 return 1;
2041 }
2042
2043 static int grow_stripes(struct r5conf *conf, int num)
2044 {
2045 struct kmem_cache *sc;
2046 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2047
2048 if (conf->mddev->gendisk)
2049 sprintf(conf->cache_name[0],
2050 "raid%d-%s", conf->level, mdname(conf->mddev));
2051 else
2052 sprintf(conf->cache_name[0],
2053 "raid%d-%p", conf->level, conf->mddev);
2054 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2055
2056 conf->active_name = 0;
2057 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2058 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2059 0, 0, NULL);
2060 if (!sc)
2061 return 1;
2062 conf->slab_cache = sc;
2063 conf->pool_size = devs;
2064 while (num--)
2065 if (!grow_one_stripe(conf, GFP_KERNEL))
2066 return 1;
2067
2068 return 0;
2069 }
2070
2071 /**
2072 * scribble_len - return the required size of the scribble region
2073 * @num - total number of disks in the array
2074 *
2075 * The size must be enough to contain:
2076 * 1/ a struct page pointer for each device in the array +2
2077 * 2/ room to convert each entry in (1) to its corresponding dma
2078 * (dma_map_page()) or page (page_address()) address.
2079 *
2080 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2081 * calculate over all devices (not just the data blocks), using zeros in place
2082 * of the P and Q blocks.
2083 */
2084 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2085 {
2086 struct flex_array *ret;
2087 size_t len;
2088
2089 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2090 ret = flex_array_alloc(len, cnt, flags);
2091 if (!ret)
2092 return NULL;
2093 /* always prealloc all elements, so no locking is required */
2094 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2095 flex_array_free(ret);
2096 return NULL;
2097 }
2098 return ret;
2099 }
2100
2101 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2102 {
2103 unsigned long cpu;
2104 int err = 0;
2105
2106 /*
2107 * Never shrink. And mddev_suspend() could deadlock if this is called
2108 * from raid5d. In that case, scribble_disks and scribble_sectors
2109 * should equal to new_disks and new_sectors
2110 */
2111 if (conf->scribble_disks >= new_disks &&
2112 conf->scribble_sectors >= new_sectors)
2113 return 0;
2114 mddev_suspend(conf->mddev);
2115 get_online_cpus();
2116 for_each_present_cpu(cpu) {
2117 struct raid5_percpu *percpu;
2118 struct flex_array *scribble;
2119
2120 percpu = per_cpu_ptr(conf->percpu, cpu);
2121 scribble = scribble_alloc(new_disks,
2122 new_sectors / STRIPE_SECTORS,
2123 GFP_NOIO);
2124
2125 if (scribble) {
2126 flex_array_free(percpu->scribble);
2127 percpu->scribble = scribble;
2128 } else {
2129 err = -ENOMEM;
2130 break;
2131 }
2132 }
2133 put_online_cpus();
2134 mddev_resume(conf->mddev);
2135 if (!err) {
2136 conf->scribble_disks = new_disks;
2137 conf->scribble_sectors = new_sectors;
2138 }
2139 return err;
2140 }
2141
2142 static int resize_stripes(struct r5conf *conf, int newsize)
2143 {
2144 /* Make all the stripes able to hold 'newsize' devices.
2145 * New slots in each stripe get 'page' set to a new page.
2146 *
2147 * This happens in stages:
2148 * 1/ create a new kmem_cache and allocate the required number of
2149 * stripe_heads.
2150 * 2/ gather all the old stripe_heads and transfer the pages across
2151 * to the new stripe_heads. This will have the side effect of
2152 * freezing the array as once all stripe_heads have been collected,
2153 * no IO will be possible. Old stripe heads are freed once their
2154 * pages have been transferred over, and the old kmem_cache is
2155 * freed when all stripes are done.
2156 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2157 * we simple return a failre status - no need to clean anything up.
2158 * 4/ allocate new pages for the new slots in the new stripe_heads.
2159 * If this fails, we don't bother trying the shrink the
2160 * stripe_heads down again, we just leave them as they are.
2161 * As each stripe_head is processed the new one is released into
2162 * active service.
2163 *
2164 * Once step2 is started, we cannot afford to wait for a write,
2165 * so we use GFP_NOIO allocations.
2166 */
2167 struct stripe_head *osh, *nsh;
2168 LIST_HEAD(newstripes);
2169 struct disk_info *ndisks;
2170 int err;
2171 struct kmem_cache *sc;
2172 int i;
2173 int hash, cnt;
2174
2175 if (newsize <= conf->pool_size)
2176 return 0; /* never bother to shrink */
2177
2178 err = md_allow_write(conf->mddev);
2179 if (err)
2180 return err;
2181
2182 /* Step 1 */
2183 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2184 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2185 0, 0, NULL);
2186 if (!sc)
2187 return -ENOMEM;
2188
2189 /* Need to ensure auto-resizing doesn't interfere */
2190 mutex_lock(&conf->cache_size_mutex);
2191
2192 for (i = conf->max_nr_stripes; i; i--) {
2193 nsh = alloc_stripe(sc, GFP_KERNEL, newsize);
2194 if (!nsh)
2195 break;
2196
2197 nsh->raid_conf = conf;
2198 list_add(&nsh->lru, &newstripes);
2199 }
2200 if (i) {
2201 /* didn't get enough, give up */
2202 while (!list_empty(&newstripes)) {
2203 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2204 list_del(&nsh->lru);
2205 kmem_cache_free(sc, nsh);
2206 }
2207 kmem_cache_destroy(sc);
2208 mutex_unlock(&conf->cache_size_mutex);
2209 return -ENOMEM;
2210 }
2211 /* Step 2 - Must use GFP_NOIO now.
2212 * OK, we have enough stripes, start collecting inactive
2213 * stripes and copying them over
2214 */
2215 hash = 0;
2216 cnt = 0;
2217 list_for_each_entry(nsh, &newstripes, lru) {
2218 lock_device_hash_lock(conf, hash);
2219 wait_event_cmd(conf->wait_for_stripe,
2220 !list_empty(conf->inactive_list + hash),
2221 unlock_device_hash_lock(conf, hash),
2222 lock_device_hash_lock(conf, hash));
2223 osh = get_free_stripe(conf, hash);
2224 unlock_device_hash_lock(conf, hash);
2225
2226 for(i=0; i<conf->pool_size; i++) {
2227 nsh->dev[i].page = osh->dev[i].page;
2228 nsh->dev[i].orig_page = osh->dev[i].page;
2229 }
2230 nsh->hash_lock_index = hash;
2231 kmem_cache_free(conf->slab_cache, osh);
2232 cnt++;
2233 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2234 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2235 hash++;
2236 cnt = 0;
2237 }
2238 }
2239 kmem_cache_destroy(conf->slab_cache);
2240
2241 /* Step 3.
2242 * At this point, we are holding all the stripes so the array
2243 * is completely stalled, so now is a good time to resize
2244 * conf->disks and the scribble region
2245 */
2246 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2247 if (ndisks) {
2248 for (i=0; i<conf->raid_disks; i++)
2249 ndisks[i] = conf->disks[i];
2250 kfree(conf->disks);
2251 conf->disks = ndisks;
2252 } else
2253 err = -ENOMEM;
2254
2255 mutex_unlock(&conf->cache_size_mutex);
2256 /* Step 4, return new stripes to service */
2257 while(!list_empty(&newstripes)) {
2258 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2259 list_del_init(&nsh->lru);
2260
2261 for (i=conf->raid_disks; i < newsize; i++)
2262 if (nsh->dev[i].page == NULL) {
2263 struct page *p = alloc_page(GFP_NOIO);
2264 nsh->dev[i].page = p;
2265 nsh->dev[i].orig_page = p;
2266 if (!p)
2267 err = -ENOMEM;
2268 }
2269 raid5_release_stripe(nsh);
2270 }
2271 /* critical section pass, GFP_NOIO no longer needed */
2272
2273 conf->slab_cache = sc;
2274 conf->active_name = 1-conf->active_name;
2275 if (!err)
2276 conf->pool_size = newsize;
2277 return err;
2278 }
2279
2280 static int drop_one_stripe(struct r5conf *conf)
2281 {
2282 struct stripe_head *sh;
2283 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2284
2285 spin_lock_irq(conf->hash_locks + hash);
2286 sh = get_free_stripe(conf, hash);
2287 spin_unlock_irq(conf->hash_locks + hash);
2288 if (!sh)
2289 return 0;
2290 BUG_ON(atomic_read(&sh->count));
2291 shrink_buffers(sh);
2292 kmem_cache_free(conf->slab_cache, sh);
2293 atomic_dec(&conf->active_stripes);
2294 conf->max_nr_stripes--;
2295 return 1;
2296 }
2297
2298 static void shrink_stripes(struct r5conf *conf)
2299 {
2300 while (conf->max_nr_stripes &&
2301 drop_one_stripe(conf))
2302 ;
2303
2304 kmem_cache_destroy(conf->slab_cache);
2305 conf->slab_cache = NULL;
2306 }
2307
2308 static void raid5_end_read_request(struct bio * bi)
2309 {
2310 struct stripe_head *sh = bi->bi_private;
2311 struct r5conf *conf = sh->raid_conf;
2312 int disks = sh->disks, i;
2313 char b[BDEVNAME_SIZE];
2314 struct md_rdev *rdev = NULL;
2315 sector_t s;
2316
2317 for (i=0 ; i<disks; i++)
2318 if (bi == &sh->dev[i].req)
2319 break;
2320
2321 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2322 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2323 bi->bi_error);
2324 if (i == disks) {
2325 bio_reset(bi);
2326 BUG();
2327 return;
2328 }
2329 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2330 /* If replacement finished while this request was outstanding,
2331 * 'replacement' might be NULL already.
2332 * In that case it moved down to 'rdev'.
2333 * rdev is not removed until all requests are finished.
2334 */
2335 rdev = conf->disks[i].replacement;
2336 if (!rdev)
2337 rdev = conf->disks[i].rdev;
2338
2339 if (use_new_offset(conf, sh))
2340 s = sh->sector + rdev->new_data_offset;
2341 else
2342 s = sh->sector + rdev->data_offset;
2343 if (!bi->bi_error) {
2344 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2345 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2346 /* Note that this cannot happen on a
2347 * replacement device. We just fail those on
2348 * any error
2349 */
2350 printk_ratelimited(
2351 KERN_INFO
2352 "md/raid:%s: read error corrected"
2353 " (%lu sectors at %llu on %s)\n",
2354 mdname(conf->mddev), STRIPE_SECTORS,
2355 (unsigned long long)s,
2356 bdevname(rdev->bdev, b));
2357 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2358 clear_bit(R5_ReadError, &sh->dev[i].flags);
2359 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2360 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2361 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2362
2363 if (atomic_read(&rdev->read_errors))
2364 atomic_set(&rdev->read_errors, 0);
2365 } else {
2366 const char *bdn = bdevname(rdev->bdev, b);
2367 int retry = 0;
2368 int set_bad = 0;
2369
2370 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2371 atomic_inc(&rdev->read_errors);
2372 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2373 printk_ratelimited(
2374 KERN_WARNING
2375 "md/raid:%s: read error on replacement device "
2376 "(sector %llu on %s).\n",
2377 mdname(conf->mddev),
2378 (unsigned long long)s,
2379 bdn);
2380 else if (conf->mddev->degraded >= conf->max_degraded) {
2381 set_bad = 1;
2382 printk_ratelimited(
2383 KERN_WARNING
2384 "md/raid:%s: read error not correctable "
2385 "(sector %llu on %s).\n",
2386 mdname(conf->mddev),
2387 (unsigned long long)s,
2388 bdn);
2389 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2390 /* Oh, no!!! */
2391 set_bad = 1;
2392 printk_ratelimited(
2393 KERN_WARNING
2394 "md/raid:%s: read error NOT corrected!! "
2395 "(sector %llu on %s).\n",
2396 mdname(conf->mddev),
2397 (unsigned long long)s,
2398 bdn);
2399 } else if (atomic_read(&rdev->read_errors)
2400 > conf->max_nr_stripes)
2401 printk(KERN_WARNING
2402 "md/raid:%s: Too many read errors, failing device %s.\n",
2403 mdname(conf->mddev), bdn);
2404 else
2405 retry = 1;
2406 if (set_bad && test_bit(In_sync, &rdev->flags)
2407 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2408 retry = 1;
2409 if (retry)
2410 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2411 set_bit(R5_ReadError, &sh->dev[i].flags);
2412 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2413 } else
2414 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2415 else {
2416 clear_bit(R5_ReadError, &sh->dev[i].flags);
2417 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2418 if (!(set_bad
2419 && test_bit(In_sync, &rdev->flags)
2420 && rdev_set_badblocks(
2421 rdev, sh->sector, STRIPE_SECTORS, 0)))
2422 md_error(conf->mddev, rdev);
2423 }
2424 }
2425 rdev_dec_pending(rdev, conf->mddev);
2426 bio_reset(bi);
2427 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2428 set_bit(STRIPE_HANDLE, &sh->state);
2429 raid5_release_stripe(sh);
2430 }
2431
2432 static void raid5_end_write_request(struct bio *bi)
2433 {
2434 struct stripe_head *sh = bi->bi_private;
2435 struct r5conf *conf = sh->raid_conf;
2436 int disks = sh->disks, i;
2437 struct md_rdev *uninitialized_var(rdev);
2438 sector_t first_bad;
2439 int bad_sectors;
2440 int replacement = 0;
2441
2442 for (i = 0 ; i < disks; i++) {
2443 if (bi == &sh->dev[i].req) {
2444 rdev = conf->disks[i].rdev;
2445 break;
2446 }
2447 if (bi == &sh->dev[i].rreq) {
2448 rdev = conf->disks[i].replacement;
2449 if (rdev)
2450 replacement = 1;
2451 else
2452 /* rdev was removed and 'replacement'
2453 * replaced it. rdev is not removed
2454 * until all requests are finished.
2455 */
2456 rdev = conf->disks[i].rdev;
2457 break;
2458 }
2459 }
2460 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2461 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2462 bi->bi_error);
2463 if (i == disks) {
2464 bio_reset(bi);
2465 BUG();
2466 return;
2467 }
2468
2469 if (replacement) {
2470 if (bi->bi_error)
2471 md_error(conf->mddev, rdev);
2472 else if (is_badblock(rdev, sh->sector,
2473 STRIPE_SECTORS,
2474 &first_bad, &bad_sectors))
2475 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2476 } else {
2477 if (bi->bi_error) {
2478 set_bit(STRIPE_DEGRADED, &sh->state);
2479 set_bit(WriteErrorSeen, &rdev->flags);
2480 set_bit(R5_WriteError, &sh->dev[i].flags);
2481 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2482 set_bit(MD_RECOVERY_NEEDED,
2483 &rdev->mddev->recovery);
2484 } else if (is_badblock(rdev, sh->sector,
2485 STRIPE_SECTORS,
2486 &first_bad, &bad_sectors)) {
2487 set_bit(R5_MadeGood, &sh->dev[i].flags);
2488 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2489 /* That was a successful write so make
2490 * sure it looks like we already did
2491 * a re-write.
2492 */
2493 set_bit(R5_ReWrite, &sh->dev[i].flags);
2494 }
2495 }
2496 rdev_dec_pending(rdev, conf->mddev);
2497
2498 if (sh->batch_head && bi->bi_error && !replacement)
2499 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2500
2501 bio_reset(bi);
2502 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2503 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2504 set_bit(STRIPE_HANDLE, &sh->state);
2505 raid5_release_stripe(sh);
2506
2507 if (sh->batch_head && sh != sh->batch_head)
2508 raid5_release_stripe(sh->batch_head);
2509 }
2510
2511 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2512 {
2513 struct r5dev *dev = &sh->dev[i];
2514
2515 dev->flags = 0;
2516 dev->sector = raid5_compute_blocknr(sh, i, previous);
2517 }
2518
2519 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2520 {
2521 char b[BDEVNAME_SIZE];
2522 struct r5conf *conf = mddev->private;
2523 unsigned long flags;
2524 pr_debug("raid456: error called\n");
2525
2526 spin_lock_irqsave(&conf->device_lock, flags);
2527 clear_bit(In_sync, &rdev->flags);
2528 mddev->degraded = calc_degraded(conf);
2529 spin_unlock_irqrestore(&conf->device_lock, flags);
2530 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2531
2532 set_bit(Blocked, &rdev->flags);
2533 set_bit(Faulty, &rdev->flags);
2534 set_mask_bits(&mddev->flags, 0,
2535 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
2536 printk(KERN_ALERT
2537 "md/raid:%s: Disk failure on %s, disabling device.\n"
2538 "md/raid:%s: Operation continuing on %d devices.\n",
2539 mdname(mddev),
2540 bdevname(rdev->bdev, b),
2541 mdname(mddev),
2542 conf->raid_disks - mddev->degraded);
2543 }
2544
2545 /*
2546 * Input: a 'big' sector number,
2547 * Output: index of the data and parity disk, and the sector # in them.
2548 */
2549 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2550 int previous, int *dd_idx,
2551 struct stripe_head *sh)
2552 {
2553 sector_t stripe, stripe2;
2554 sector_t chunk_number;
2555 unsigned int chunk_offset;
2556 int pd_idx, qd_idx;
2557 int ddf_layout = 0;
2558 sector_t new_sector;
2559 int algorithm = previous ? conf->prev_algo
2560 : conf->algorithm;
2561 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2562 : conf->chunk_sectors;
2563 int raid_disks = previous ? conf->previous_raid_disks
2564 : conf->raid_disks;
2565 int data_disks = raid_disks - conf->max_degraded;
2566
2567 /* First compute the information on this sector */
2568
2569 /*
2570 * Compute the chunk number and the sector offset inside the chunk
2571 */
2572 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2573 chunk_number = r_sector;
2574
2575 /*
2576 * Compute the stripe number
2577 */
2578 stripe = chunk_number;
2579 *dd_idx = sector_div(stripe, data_disks);
2580 stripe2 = stripe;
2581 /*
2582 * Select the parity disk based on the user selected algorithm.
2583 */
2584 pd_idx = qd_idx = -1;
2585 switch(conf->level) {
2586 case 4:
2587 pd_idx = data_disks;
2588 break;
2589 case 5:
2590 switch (algorithm) {
2591 case ALGORITHM_LEFT_ASYMMETRIC:
2592 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2593 if (*dd_idx >= pd_idx)
2594 (*dd_idx)++;
2595 break;
2596 case ALGORITHM_RIGHT_ASYMMETRIC:
2597 pd_idx = sector_div(stripe2, raid_disks);
2598 if (*dd_idx >= pd_idx)
2599 (*dd_idx)++;
2600 break;
2601 case ALGORITHM_LEFT_SYMMETRIC:
2602 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2603 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2604 break;
2605 case ALGORITHM_RIGHT_SYMMETRIC:
2606 pd_idx = sector_div(stripe2, raid_disks);
2607 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2608 break;
2609 case ALGORITHM_PARITY_0:
2610 pd_idx = 0;
2611 (*dd_idx)++;
2612 break;
2613 case ALGORITHM_PARITY_N:
2614 pd_idx = data_disks;
2615 break;
2616 default:
2617 BUG();
2618 }
2619 break;
2620 case 6:
2621
2622 switch (algorithm) {
2623 case ALGORITHM_LEFT_ASYMMETRIC:
2624 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2625 qd_idx = pd_idx + 1;
2626 if (pd_idx == raid_disks-1) {
2627 (*dd_idx)++; /* Q D D D P */
2628 qd_idx = 0;
2629 } else if (*dd_idx >= pd_idx)
2630 (*dd_idx) += 2; /* D D P Q D */
2631 break;
2632 case ALGORITHM_RIGHT_ASYMMETRIC:
2633 pd_idx = sector_div(stripe2, raid_disks);
2634 qd_idx = pd_idx + 1;
2635 if (pd_idx == raid_disks-1) {
2636 (*dd_idx)++; /* Q D D D P */
2637 qd_idx = 0;
2638 } else if (*dd_idx >= pd_idx)
2639 (*dd_idx) += 2; /* D D P Q D */
2640 break;
2641 case ALGORITHM_LEFT_SYMMETRIC:
2642 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2643 qd_idx = (pd_idx + 1) % raid_disks;
2644 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2645 break;
2646 case ALGORITHM_RIGHT_SYMMETRIC:
2647 pd_idx = sector_div(stripe2, raid_disks);
2648 qd_idx = (pd_idx + 1) % raid_disks;
2649 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2650 break;
2651
2652 case ALGORITHM_PARITY_0:
2653 pd_idx = 0;
2654 qd_idx = 1;
2655 (*dd_idx) += 2;
2656 break;
2657 case ALGORITHM_PARITY_N:
2658 pd_idx = data_disks;
2659 qd_idx = data_disks + 1;
2660 break;
2661
2662 case ALGORITHM_ROTATING_ZERO_RESTART:
2663 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2664 * of blocks for computing Q is different.
2665 */
2666 pd_idx = sector_div(stripe2, raid_disks);
2667 qd_idx = pd_idx + 1;
2668 if (pd_idx == raid_disks-1) {
2669 (*dd_idx)++; /* Q D D D P */
2670 qd_idx = 0;
2671 } else if (*dd_idx >= pd_idx)
2672 (*dd_idx) += 2; /* D D P Q D */
2673 ddf_layout = 1;
2674 break;
2675
2676 case ALGORITHM_ROTATING_N_RESTART:
2677 /* Same a left_asymmetric, by first stripe is
2678 * D D D P Q rather than
2679 * Q D D D P
2680 */
2681 stripe2 += 1;
2682 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2683 qd_idx = pd_idx + 1;
2684 if (pd_idx == raid_disks-1) {
2685 (*dd_idx)++; /* Q D D D P */
2686 qd_idx = 0;
2687 } else if (*dd_idx >= pd_idx)
2688 (*dd_idx) += 2; /* D D P Q D */
2689 ddf_layout = 1;
2690 break;
2691
2692 case ALGORITHM_ROTATING_N_CONTINUE:
2693 /* Same as left_symmetric but Q is before P */
2694 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2695 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2696 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2697 ddf_layout = 1;
2698 break;
2699
2700 case ALGORITHM_LEFT_ASYMMETRIC_6:
2701 /* RAID5 left_asymmetric, with Q on last device */
2702 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2703 if (*dd_idx >= pd_idx)
2704 (*dd_idx)++;
2705 qd_idx = raid_disks - 1;
2706 break;
2707
2708 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2709 pd_idx = sector_div(stripe2, raid_disks-1);
2710 if (*dd_idx >= pd_idx)
2711 (*dd_idx)++;
2712 qd_idx = raid_disks - 1;
2713 break;
2714
2715 case ALGORITHM_LEFT_SYMMETRIC_6:
2716 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2717 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2718 qd_idx = raid_disks - 1;
2719 break;
2720
2721 case ALGORITHM_RIGHT_SYMMETRIC_6:
2722 pd_idx = sector_div(stripe2, raid_disks-1);
2723 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2724 qd_idx = raid_disks - 1;
2725 break;
2726
2727 case ALGORITHM_PARITY_0_6:
2728 pd_idx = 0;
2729 (*dd_idx)++;
2730 qd_idx = raid_disks - 1;
2731 break;
2732
2733 default:
2734 BUG();
2735 }
2736 break;
2737 }
2738
2739 if (sh) {
2740 sh->pd_idx = pd_idx;
2741 sh->qd_idx = qd_idx;
2742 sh->ddf_layout = ddf_layout;
2743 }
2744 /*
2745 * Finally, compute the new sector number
2746 */
2747 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2748 return new_sector;
2749 }
2750
2751 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2752 {
2753 struct r5conf *conf = sh->raid_conf;
2754 int raid_disks = sh->disks;
2755 int data_disks = raid_disks - conf->max_degraded;
2756 sector_t new_sector = sh->sector, check;
2757 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2758 : conf->chunk_sectors;
2759 int algorithm = previous ? conf->prev_algo
2760 : conf->algorithm;
2761 sector_t stripe;
2762 int chunk_offset;
2763 sector_t chunk_number;
2764 int dummy1, dd_idx = i;
2765 sector_t r_sector;
2766 struct stripe_head sh2;
2767
2768 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2769 stripe = new_sector;
2770
2771 if (i == sh->pd_idx)
2772 return 0;
2773 switch(conf->level) {
2774 case 4: break;
2775 case 5:
2776 switch (algorithm) {
2777 case ALGORITHM_LEFT_ASYMMETRIC:
2778 case ALGORITHM_RIGHT_ASYMMETRIC:
2779 if (i > sh->pd_idx)
2780 i--;
2781 break;
2782 case ALGORITHM_LEFT_SYMMETRIC:
2783 case ALGORITHM_RIGHT_SYMMETRIC:
2784 if (i < sh->pd_idx)
2785 i += raid_disks;
2786 i -= (sh->pd_idx + 1);
2787 break;
2788 case ALGORITHM_PARITY_0:
2789 i -= 1;
2790 break;
2791 case ALGORITHM_PARITY_N:
2792 break;
2793 default:
2794 BUG();
2795 }
2796 break;
2797 case 6:
2798 if (i == sh->qd_idx)
2799 return 0; /* It is the Q disk */
2800 switch (algorithm) {
2801 case ALGORITHM_LEFT_ASYMMETRIC:
2802 case ALGORITHM_RIGHT_ASYMMETRIC:
2803 case ALGORITHM_ROTATING_ZERO_RESTART:
2804 case ALGORITHM_ROTATING_N_RESTART:
2805 if (sh->pd_idx == raid_disks-1)
2806 i--; /* Q D D D P */
2807 else if (i > sh->pd_idx)
2808 i -= 2; /* D D P Q D */
2809 break;
2810 case ALGORITHM_LEFT_SYMMETRIC:
2811 case ALGORITHM_RIGHT_SYMMETRIC:
2812 if (sh->pd_idx == raid_disks-1)
2813 i--; /* Q D D D P */
2814 else {
2815 /* D D P Q D */
2816 if (i < sh->pd_idx)
2817 i += raid_disks;
2818 i -= (sh->pd_idx + 2);
2819 }
2820 break;
2821 case ALGORITHM_PARITY_0:
2822 i -= 2;
2823 break;
2824 case ALGORITHM_PARITY_N:
2825 break;
2826 case ALGORITHM_ROTATING_N_CONTINUE:
2827 /* Like left_symmetric, but P is before Q */
2828 if (sh->pd_idx == 0)
2829 i--; /* P D D D Q */
2830 else {
2831 /* D D Q P D */
2832 if (i < sh->pd_idx)
2833 i += raid_disks;
2834 i -= (sh->pd_idx + 1);
2835 }
2836 break;
2837 case ALGORITHM_LEFT_ASYMMETRIC_6:
2838 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2839 if (i > sh->pd_idx)
2840 i--;
2841 break;
2842 case ALGORITHM_LEFT_SYMMETRIC_6:
2843 case ALGORITHM_RIGHT_SYMMETRIC_6:
2844 if (i < sh->pd_idx)
2845 i += data_disks + 1;
2846 i -= (sh->pd_idx + 1);
2847 break;
2848 case ALGORITHM_PARITY_0_6:
2849 i -= 1;
2850 break;
2851 default:
2852 BUG();
2853 }
2854 break;
2855 }
2856
2857 chunk_number = stripe * data_disks + i;
2858 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2859
2860 check = raid5_compute_sector(conf, r_sector,
2861 previous, &dummy1, &sh2);
2862 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2863 || sh2.qd_idx != sh->qd_idx) {
2864 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2865 mdname(conf->mddev));
2866 return 0;
2867 }
2868 return r_sector;
2869 }
2870
2871 static void
2872 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2873 int rcw, int expand)
2874 {
2875 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2876 struct r5conf *conf = sh->raid_conf;
2877 int level = conf->level;
2878
2879 if (rcw) {
2880
2881 for (i = disks; i--; ) {
2882 struct r5dev *dev = &sh->dev[i];
2883
2884 if (dev->towrite) {
2885 set_bit(R5_LOCKED, &dev->flags);
2886 set_bit(R5_Wantdrain, &dev->flags);
2887 if (!expand)
2888 clear_bit(R5_UPTODATE, &dev->flags);
2889 s->locked++;
2890 }
2891 }
2892 /* if we are not expanding this is a proper write request, and
2893 * there will be bios with new data to be drained into the
2894 * stripe cache
2895 */
2896 if (!expand) {
2897 if (!s->locked)
2898 /* False alarm, nothing to do */
2899 return;
2900 sh->reconstruct_state = reconstruct_state_drain_run;
2901 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2902 } else
2903 sh->reconstruct_state = reconstruct_state_run;
2904
2905 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2906
2907 if (s->locked + conf->max_degraded == disks)
2908 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2909 atomic_inc(&conf->pending_full_writes);
2910 } else {
2911 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2912 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2913 BUG_ON(level == 6 &&
2914 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2915 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2916
2917 for (i = disks; i--; ) {
2918 struct r5dev *dev = &sh->dev[i];
2919 if (i == pd_idx || i == qd_idx)
2920 continue;
2921
2922 if (dev->towrite &&
2923 (test_bit(R5_UPTODATE, &dev->flags) ||
2924 test_bit(R5_Wantcompute, &dev->flags))) {
2925 set_bit(R5_Wantdrain, &dev->flags);
2926 set_bit(R5_LOCKED, &dev->flags);
2927 clear_bit(R5_UPTODATE, &dev->flags);
2928 s->locked++;
2929 }
2930 }
2931 if (!s->locked)
2932 /* False alarm - nothing to do */
2933 return;
2934 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2935 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2936 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2937 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2938 }
2939
2940 /* keep the parity disk(s) locked while asynchronous operations
2941 * are in flight
2942 */
2943 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2944 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2945 s->locked++;
2946
2947 if (level == 6) {
2948 int qd_idx = sh->qd_idx;
2949 struct r5dev *dev = &sh->dev[qd_idx];
2950
2951 set_bit(R5_LOCKED, &dev->flags);
2952 clear_bit(R5_UPTODATE, &dev->flags);
2953 s->locked++;
2954 }
2955
2956 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2957 __func__, (unsigned long long)sh->sector,
2958 s->locked, s->ops_request);
2959 }
2960
2961 /*
2962 * Each stripe/dev can have one or more bion attached.
2963 * toread/towrite point to the first in a chain.
2964 * The bi_next chain must be in order.
2965 */
2966 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2967 int forwrite, int previous)
2968 {
2969 struct bio **bip;
2970 struct r5conf *conf = sh->raid_conf;
2971 int firstwrite=0;
2972
2973 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2974 (unsigned long long)bi->bi_iter.bi_sector,
2975 (unsigned long long)sh->sector);
2976
2977 /*
2978 * If several bio share a stripe. The bio bi_phys_segments acts as a
2979 * reference count to avoid race. The reference count should already be
2980 * increased before this function is called (for example, in
2981 * raid5_make_request()), so other bio sharing this stripe will not free the
2982 * stripe. If a stripe is owned by one stripe, the stripe lock will
2983 * protect it.
2984 */
2985 spin_lock_irq(&sh->stripe_lock);
2986 /* Don't allow new IO added to stripes in batch list */
2987 if (sh->batch_head)
2988 goto overlap;
2989 if (forwrite) {
2990 bip = &sh->dev[dd_idx].towrite;
2991 if (*bip == NULL)
2992 firstwrite = 1;
2993 } else
2994 bip = &sh->dev[dd_idx].toread;
2995 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2996 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2997 goto overlap;
2998 bip = & (*bip)->bi_next;
2999 }
3000 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3001 goto overlap;
3002
3003 if (!forwrite || previous)
3004 clear_bit(STRIPE_BATCH_READY, &sh->state);
3005
3006 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3007 if (*bip)
3008 bi->bi_next = *bip;
3009 *bip = bi;
3010 raid5_inc_bi_active_stripes(bi);
3011
3012 if (forwrite) {
3013 /* check if page is covered */
3014 sector_t sector = sh->dev[dd_idx].sector;
3015 for (bi=sh->dev[dd_idx].towrite;
3016 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3017 bi && bi->bi_iter.bi_sector <= sector;
3018 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3019 if (bio_end_sector(bi) >= sector)
3020 sector = bio_end_sector(bi);
3021 }
3022 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3023 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3024 sh->overwrite_disks++;
3025 }
3026
3027 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3028 (unsigned long long)(*bip)->bi_iter.bi_sector,
3029 (unsigned long long)sh->sector, dd_idx);
3030
3031 if (conf->mddev->bitmap && firstwrite) {
3032 /* Cannot hold spinlock over bitmap_startwrite,
3033 * but must ensure this isn't added to a batch until
3034 * we have added to the bitmap and set bm_seq.
3035 * So set STRIPE_BITMAP_PENDING to prevent
3036 * batching.
3037 * If multiple add_stripe_bio() calls race here they
3038 * much all set STRIPE_BITMAP_PENDING. So only the first one
3039 * to complete "bitmap_startwrite" gets to set
3040 * STRIPE_BIT_DELAY. This is important as once a stripe
3041 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3042 * any more.
3043 */
3044 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3045 spin_unlock_irq(&sh->stripe_lock);
3046 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3047 STRIPE_SECTORS, 0);
3048 spin_lock_irq(&sh->stripe_lock);
3049 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3050 if (!sh->batch_head) {
3051 sh->bm_seq = conf->seq_flush+1;
3052 set_bit(STRIPE_BIT_DELAY, &sh->state);
3053 }
3054 }
3055 spin_unlock_irq(&sh->stripe_lock);
3056
3057 if (stripe_can_batch(sh))
3058 stripe_add_to_batch_list(conf, sh);
3059 return 1;
3060
3061 overlap:
3062 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3063 spin_unlock_irq(&sh->stripe_lock);
3064 return 0;
3065 }
3066
3067 static void end_reshape(struct r5conf *conf);
3068
3069 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3070 struct stripe_head *sh)
3071 {
3072 int sectors_per_chunk =
3073 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3074 int dd_idx;
3075 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3076 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3077
3078 raid5_compute_sector(conf,
3079 stripe * (disks - conf->max_degraded)
3080 *sectors_per_chunk + chunk_offset,
3081 previous,
3082 &dd_idx, sh);
3083 }
3084
3085 static void
3086 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3087 struct stripe_head_state *s, int disks,
3088 struct bio_list *return_bi)
3089 {
3090 int i;
3091 BUG_ON(sh->batch_head);
3092 for (i = disks; i--; ) {
3093 struct bio *bi;
3094 int bitmap_end = 0;
3095
3096 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3097 struct md_rdev *rdev;
3098 rcu_read_lock();
3099 rdev = rcu_dereference(conf->disks[i].rdev);
3100 if (rdev && test_bit(In_sync, &rdev->flags) &&
3101 !test_bit(Faulty, &rdev->flags))
3102 atomic_inc(&rdev->nr_pending);
3103 else
3104 rdev = NULL;
3105 rcu_read_unlock();
3106 if (rdev) {
3107 if (!rdev_set_badblocks(
3108 rdev,
3109 sh->sector,
3110 STRIPE_SECTORS, 0))
3111 md_error(conf->mddev, rdev);
3112 rdev_dec_pending(rdev, conf->mddev);
3113 }
3114 }
3115 spin_lock_irq(&sh->stripe_lock);
3116 /* fail all writes first */
3117 bi = sh->dev[i].towrite;
3118 sh->dev[i].towrite = NULL;
3119 sh->overwrite_disks = 0;
3120 spin_unlock_irq(&sh->stripe_lock);
3121 if (bi)
3122 bitmap_end = 1;
3123
3124 r5l_stripe_write_finished(sh);
3125
3126 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3127 wake_up(&conf->wait_for_overlap);
3128
3129 while (bi && bi->bi_iter.bi_sector <
3130 sh->dev[i].sector + STRIPE_SECTORS) {
3131 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3132
3133 bi->bi_error = -EIO;
3134 if (!raid5_dec_bi_active_stripes(bi)) {
3135 md_write_end(conf->mddev);
3136 bio_list_add(return_bi, bi);
3137 }
3138 bi = nextbi;
3139 }
3140 if (bitmap_end)
3141 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3142 STRIPE_SECTORS, 0, 0);
3143 bitmap_end = 0;
3144 /* and fail all 'written' */
3145 bi = sh->dev[i].written;
3146 sh->dev[i].written = NULL;
3147 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3148 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3149 sh->dev[i].page = sh->dev[i].orig_page;
3150 }
3151
3152 if (bi) bitmap_end = 1;
3153 while (bi && bi->bi_iter.bi_sector <
3154 sh->dev[i].sector + STRIPE_SECTORS) {
3155 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3156
3157 bi->bi_error = -EIO;
3158 if (!raid5_dec_bi_active_stripes(bi)) {
3159 md_write_end(conf->mddev);
3160 bio_list_add(return_bi, bi);
3161 }
3162 bi = bi2;
3163 }
3164
3165 /* fail any reads if this device is non-operational and
3166 * the data has not reached the cache yet.
3167 */
3168 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3169 s->failed > conf->max_degraded &&
3170 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3171 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3172 spin_lock_irq(&sh->stripe_lock);
3173 bi = sh->dev[i].toread;
3174 sh->dev[i].toread = NULL;
3175 spin_unlock_irq(&sh->stripe_lock);
3176 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3177 wake_up(&conf->wait_for_overlap);
3178 if (bi)
3179 s->to_read--;
3180 while (bi && bi->bi_iter.bi_sector <
3181 sh->dev[i].sector + STRIPE_SECTORS) {
3182 struct bio *nextbi =
3183 r5_next_bio(bi, sh->dev[i].sector);
3184
3185 bi->bi_error = -EIO;
3186 if (!raid5_dec_bi_active_stripes(bi))
3187 bio_list_add(return_bi, bi);
3188 bi = nextbi;
3189 }
3190 }
3191 if (bitmap_end)
3192 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3193 STRIPE_SECTORS, 0, 0);
3194 /* If we were in the middle of a write the parity block might
3195 * still be locked - so just clear all R5_LOCKED flags
3196 */
3197 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3198 }
3199 s->to_write = 0;
3200 s->written = 0;
3201
3202 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3203 if (atomic_dec_and_test(&conf->pending_full_writes))
3204 md_wakeup_thread(conf->mddev->thread);
3205 }
3206
3207 static void
3208 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3209 struct stripe_head_state *s)
3210 {
3211 int abort = 0;
3212 int i;
3213
3214 BUG_ON(sh->batch_head);
3215 clear_bit(STRIPE_SYNCING, &sh->state);
3216 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3217 wake_up(&conf->wait_for_overlap);
3218 s->syncing = 0;
3219 s->replacing = 0;
3220 /* There is nothing more to do for sync/check/repair.
3221 * Don't even need to abort as that is handled elsewhere
3222 * if needed, and not always wanted e.g. if there is a known
3223 * bad block here.
3224 * For recover/replace we need to record a bad block on all
3225 * non-sync devices, or abort the recovery
3226 */
3227 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3228 /* During recovery devices cannot be removed, so
3229 * locking and refcounting of rdevs is not needed
3230 */
3231 rcu_read_lock();
3232 for (i = 0; i < conf->raid_disks; i++) {
3233 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3234 if (rdev
3235 && !test_bit(Faulty, &rdev->flags)
3236 && !test_bit(In_sync, &rdev->flags)
3237 && !rdev_set_badblocks(rdev, sh->sector,
3238 STRIPE_SECTORS, 0))
3239 abort = 1;
3240 rdev = rcu_dereference(conf->disks[i].replacement);
3241 if (rdev
3242 && !test_bit(Faulty, &rdev->flags)
3243 && !test_bit(In_sync, &rdev->flags)
3244 && !rdev_set_badblocks(rdev, sh->sector,
3245 STRIPE_SECTORS, 0))
3246 abort = 1;
3247 }
3248 rcu_read_unlock();
3249 if (abort)
3250 conf->recovery_disabled =
3251 conf->mddev->recovery_disabled;
3252 }
3253 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3254 }
3255
3256 static int want_replace(struct stripe_head *sh, int disk_idx)
3257 {
3258 struct md_rdev *rdev;
3259 int rv = 0;
3260
3261 rcu_read_lock();
3262 rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3263 if (rdev
3264 && !test_bit(Faulty, &rdev->flags)
3265 && !test_bit(In_sync, &rdev->flags)
3266 && (rdev->recovery_offset <= sh->sector
3267 || rdev->mddev->recovery_cp <= sh->sector))
3268 rv = 1;
3269 rcu_read_unlock();
3270 return rv;
3271 }
3272
3273 /* fetch_block - checks the given member device to see if its data needs
3274 * to be read or computed to satisfy a request.
3275 *
3276 * Returns 1 when no more member devices need to be checked, otherwise returns
3277 * 0 to tell the loop in handle_stripe_fill to continue
3278 */
3279
3280 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3281 int disk_idx, int disks)
3282 {
3283 struct r5dev *dev = &sh->dev[disk_idx];
3284 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3285 &sh->dev[s->failed_num[1]] };
3286 int i;
3287
3288
3289 if (test_bit(R5_LOCKED, &dev->flags) ||
3290 test_bit(R5_UPTODATE, &dev->flags))
3291 /* No point reading this as we already have it or have
3292 * decided to get it.
3293 */
3294 return 0;
3295
3296 if (dev->toread ||
3297 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3298 /* We need this block to directly satisfy a request */
3299 return 1;
3300
3301 if (s->syncing || s->expanding ||
3302 (s->replacing && want_replace(sh, disk_idx)))
3303 /* When syncing, or expanding we read everything.
3304 * When replacing, we need the replaced block.
3305 */
3306 return 1;
3307
3308 if ((s->failed >= 1 && fdev[0]->toread) ||
3309 (s->failed >= 2 && fdev[1]->toread))
3310 /* If we want to read from a failed device, then
3311 * we need to actually read every other device.
3312 */
3313 return 1;
3314
3315 /* Sometimes neither read-modify-write nor reconstruct-write
3316 * cycles can work. In those cases we read every block we
3317 * can. Then the parity-update is certain to have enough to
3318 * work with.
3319 * This can only be a problem when we need to write something,
3320 * and some device has failed. If either of those tests
3321 * fail we need look no further.
3322 */
3323 if (!s->failed || !s->to_write)
3324 return 0;
3325
3326 if (test_bit(R5_Insync, &dev->flags) &&
3327 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3328 /* Pre-reads at not permitted until after short delay
3329 * to gather multiple requests. However if this
3330 * device is no Insync, the block could only be be computed
3331 * and there is no need to delay that.
3332 */
3333 return 0;
3334
3335 for (i = 0; i < s->failed && i < 2; i++) {
3336 if (fdev[i]->towrite &&
3337 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3338 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3339 /* If we have a partial write to a failed
3340 * device, then we will need to reconstruct
3341 * the content of that device, so all other
3342 * devices must be read.
3343 */
3344 return 1;
3345 }
3346
3347 /* If we are forced to do a reconstruct-write, either because
3348 * the current RAID6 implementation only supports that, or
3349 * or because parity cannot be trusted and we are currently
3350 * recovering it, there is extra need to be careful.
3351 * If one of the devices that we would need to read, because
3352 * it is not being overwritten (and maybe not written at all)
3353 * is missing/faulty, then we need to read everything we can.
3354 */
3355 if (sh->raid_conf->level != 6 &&
3356 sh->sector < sh->raid_conf->mddev->recovery_cp)
3357 /* reconstruct-write isn't being forced */
3358 return 0;
3359 for (i = 0; i < s->failed && i < 2; i++) {
3360 if (s->failed_num[i] != sh->pd_idx &&
3361 s->failed_num[i] != sh->qd_idx &&
3362 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3363 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3364 return 1;
3365 }
3366
3367 return 0;
3368 }
3369
3370 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3371 int disk_idx, int disks)
3372 {
3373 struct r5dev *dev = &sh->dev[disk_idx];
3374
3375 /* is the data in this block needed, and can we get it? */
3376 if (need_this_block(sh, s, disk_idx, disks)) {
3377 /* we would like to get this block, possibly by computing it,
3378 * otherwise read it if the backing disk is insync
3379 */
3380 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3381 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3382 BUG_ON(sh->batch_head);
3383 if ((s->uptodate == disks - 1) &&
3384 (s->failed && (disk_idx == s->failed_num[0] ||
3385 disk_idx == s->failed_num[1]))) {
3386 /* have disk failed, and we're requested to fetch it;
3387 * do compute it
3388 */
3389 pr_debug("Computing stripe %llu block %d\n",
3390 (unsigned long long)sh->sector, disk_idx);
3391 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3392 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3393 set_bit(R5_Wantcompute, &dev->flags);
3394 sh->ops.target = disk_idx;
3395 sh->ops.target2 = -1; /* no 2nd target */
3396 s->req_compute = 1;
3397 /* Careful: from this point on 'uptodate' is in the eye
3398 * of raid_run_ops which services 'compute' operations
3399 * before writes. R5_Wantcompute flags a block that will
3400 * be R5_UPTODATE by the time it is needed for a
3401 * subsequent operation.
3402 */
3403 s->uptodate++;
3404 return 1;
3405 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3406 /* Computing 2-failure is *very* expensive; only
3407 * do it if failed >= 2
3408 */
3409 int other;
3410 for (other = disks; other--; ) {
3411 if (other == disk_idx)
3412 continue;
3413 if (!test_bit(R5_UPTODATE,
3414 &sh->dev[other].flags))
3415 break;
3416 }
3417 BUG_ON(other < 0);
3418 pr_debug("Computing stripe %llu blocks %d,%d\n",
3419 (unsigned long long)sh->sector,
3420 disk_idx, other);
3421 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3422 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3423 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3424 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3425 sh->ops.target = disk_idx;
3426 sh->ops.target2 = other;
3427 s->uptodate += 2;
3428 s->req_compute = 1;
3429 return 1;
3430 } else if (test_bit(R5_Insync, &dev->flags)) {
3431 set_bit(R5_LOCKED, &dev->flags);
3432 set_bit(R5_Wantread, &dev->flags);
3433 s->locked++;
3434 pr_debug("Reading block %d (sync=%d)\n",
3435 disk_idx, s->syncing);
3436 }
3437 }
3438
3439 return 0;
3440 }
3441
3442 /**
3443 * handle_stripe_fill - read or compute data to satisfy pending requests.
3444 */
3445 static void handle_stripe_fill(struct stripe_head *sh,
3446 struct stripe_head_state *s,
3447 int disks)
3448 {
3449 int i;
3450
3451 /* look for blocks to read/compute, skip this if a compute
3452 * is already in flight, or if the stripe contents are in the
3453 * midst of changing due to a write
3454 */
3455 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3456 !sh->reconstruct_state)
3457 for (i = disks; i--; )
3458 if (fetch_block(sh, s, i, disks))
3459 break;
3460 set_bit(STRIPE_HANDLE, &sh->state);
3461 }
3462
3463 static void break_stripe_batch_list(struct stripe_head *head_sh,
3464 unsigned long handle_flags);
3465 /* handle_stripe_clean_event
3466 * any written block on an uptodate or failed drive can be returned.
3467 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3468 * never LOCKED, so we don't need to test 'failed' directly.
3469 */
3470 static void handle_stripe_clean_event(struct r5conf *conf,
3471 struct stripe_head *sh, int disks, struct bio_list *return_bi)
3472 {
3473 int i;
3474 struct r5dev *dev;
3475 int discard_pending = 0;
3476 struct stripe_head *head_sh = sh;
3477 bool do_endio = false;
3478
3479 for (i = disks; i--; )
3480 if (sh->dev[i].written) {
3481 dev = &sh->dev[i];
3482 if (!test_bit(R5_LOCKED, &dev->flags) &&
3483 (test_bit(R5_UPTODATE, &dev->flags) ||
3484 test_bit(R5_Discard, &dev->flags) ||
3485 test_bit(R5_SkipCopy, &dev->flags))) {
3486 /* We can return any write requests */
3487 struct bio *wbi, *wbi2;
3488 pr_debug("Return write for disc %d\n", i);
3489 if (test_and_clear_bit(R5_Discard, &dev->flags))
3490 clear_bit(R5_UPTODATE, &dev->flags);
3491 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3492 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3493 }
3494 do_endio = true;
3495
3496 returnbi:
3497 dev->page = dev->orig_page;
3498 wbi = dev->written;
3499 dev->written = NULL;
3500 while (wbi && wbi->bi_iter.bi_sector <
3501 dev->sector + STRIPE_SECTORS) {
3502 wbi2 = r5_next_bio(wbi, dev->sector);
3503 if (!raid5_dec_bi_active_stripes(wbi)) {
3504 md_write_end(conf->mddev);
3505 bio_list_add(return_bi, wbi);
3506 }
3507 wbi = wbi2;
3508 }
3509 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3510 STRIPE_SECTORS,
3511 !test_bit(STRIPE_DEGRADED, &sh->state),
3512 0);
3513 if (head_sh->batch_head) {
3514 sh = list_first_entry(&sh->batch_list,
3515 struct stripe_head,
3516 batch_list);
3517 if (sh != head_sh) {
3518 dev = &sh->dev[i];
3519 goto returnbi;
3520 }
3521 }
3522 sh = head_sh;
3523 dev = &sh->dev[i];
3524 } else if (test_bit(R5_Discard, &dev->flags))
3525 discard_pending = 1;
3526 }
3527
3528 r5l_stripe_write_finished(sh);
3529
3530 if (!discard_pending &&
3531 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3532 int hash;
3533 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3534 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3535 if (sh->qd_idx >= 0) {
3536 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3537 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3538 }
3539 /* now that discard is done we can proceed with any sync */
3540 clear_bit(STRIPE_DISCARD, &sh->state);
3541 /*
3542 * SCSI discard will change some bio fields and the stripe has
3543 * no updated data, so remove it from hash list and the stripe
3544 * will be reinitialized
3545 */
3546 unhash:
3547 hash = sh->hash_lock_index;
3548 spin_lock_irq(conf->hash_locks + hash);
3549 remove_hash(sh);
3550 spin_unlock_irq(conf->hash_locks + hash);
3551 if (head_sh->batch_head) {
3552 sh = list_first_entry(&sh->batch_list,
3553 struct stripe_head, batch_list);
3554 if (sh != head_sh)
3555 goto unhash;
3556 }
3557 sh = head_sh;
3558
3559 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3560 set_bit(STRIPE_HANDLE, &sh->state);
3561
3562 }
3563
3564 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3565 if (atomic_dec_and_test(&conf->pending_full_writes))
3566 md_wakeup_thread(conf->mddev->thread);
3567
3568 if (head_sh->batch_head && do_endio)
3569 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3570 }
3571
3572 static void handle_stripe_dirtying(struct r5conf *conf,
3573 struct stripe_head *sh,
3574 struct stripe_head_state *s,
3575 int disks)
3576 {
3577 int rmw = 0, rcw = 0, i;
3578 sector_t recovery_cp = conf->mddev->recovery_cp;
3579
3580 /* Check whether resync is now happening or should start.
3581 * If yes, then the array is dirty (after unclean shutdown or
3582 * initial creation), so parity in some stripes might be inconsistent.
3583 * In this case, we need to always do reconstruct-write, to ensure
3584 * that in case of drive failure or read-error correction, we
3585 * generate correct data from the parity.
3586 */
3587 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3588 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3589 s->failed == 0)) {
3590 /* Calculate the real rcw later - for now make it
3591 * look like rcw is cheaper
3592 */
3593 rcw = 1; rmw = 2;
3594 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3595 conf->rmw_level, (unsigned long long)recovery_cp,
3596 (unsigned long long)sh->sector);
3597 } else for (i = disks; i--; ) {
3598 /* would I have to read this buffer for read_modify_write */
3599 struct r5dev *dev = &sh->dev[i];
3600 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3601 !test_bit(R5_LOCKED, &dev->flags) &&
3602 !(test_bit(R5_UPTODATE, &dev->flags) ||
3603 test_bit(R5_Wantcompute, &dev->flags))) {
3604 if (test_bit(R5_Insync, &dev->flags))
3605 rmw++;
3606 else
3607 rmw += 2*disks; /* cannot read it */
3608 }
3609 /* Would I have to read this buffer for reconstruct_write */
3610 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3611 i != sh->pd_idx && i != sh->qd_idx &&
3612 !test_bit(R5_LOCKED, &dev->flags) &&
3613 !(test_bit(R5_UPTODATE, &dev->flags) ||
3614 test_bit(R5_Wantcompute, &dev->flags))) {
3615 if (test_bit(R5_Insync, &dev->flags))
3616 rcw++;
3617 else
3618 rcw += 2*disks;
3619 }
3620 }
3621 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3622 (unsigned long long)sh->sector, rmw, rcw);
3623 set_bit(STRIPE_HANDLE, &sh->state);
3624 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3625 /* prefer read-modify-write, but need to get some data */
3626 if (conf->mddev->queue)
3627 blk_add_trace_msg(conf->mddev->queue,
3628 "raid5 rmw %llu %d",
3629 (unsigned long long)sh->sector, rmw);
3630 for (i = disks; i--; ) {
3631 struct r5dev *dev = &sh->dev[i];
3632 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3633 !test_bit(R5_LOCKED, &dev->flags) &&
3634 !(test_bit(R5_UPTODATE, &dev->flags) ||
3635 test_bit(R5_Wantcompute, &dev->flags)) &&
3636 test_bit(R5_Insync, &dev->flags)) {
3637 if (test_bit(STRIPE_PREREAD_ACTIVE,
3638 &sh->state)) {
3639 pr_debug("Read_old block %d for r-m-w\n",
3640 i);
3641 set_bit(R5_LOCKED, &dev->flags);
3642 set_bit(R5_Wantread, &dev->flags);
3643 s->locked++;
3644 } else {
3645 set_bit(STRIPE_DELAYED, &sh->state);
3646 set_bit(STRIPE_HANDLE, &sh->state);
3647 }
3648 }
3649 }
3650 }
3651 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3652 /* want reconstruct write, but need to get some data */
3653 int qread =0;
3654 rcw = 0;
3655 for (i = disks; i--; ) {
3656 struct r5dev *dev = &sh->dev[i];
3657 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3658 i != sh->pd_idx && i != sh->qd_idx &&
3659 !test_bit(R5_LOCKED, &dev->flags) &&
3660 !(test_bit(R5_UPTODATE, &dev->flags) ||
3661 test_bit(R5_Wantcompute, &dev->flags))) {
3662 rcw++;
3663 if (test_bit(R5_Insync, &dev->flags) &&
3664 test_bit(STRIPE_PREREAD_ACTIVE,
3665 &sh->state)) {
3666 pr_debug("Read_old block "
3667 "%d for Reconstruct\n", i);
3668 set_bit(R5_LOCKED, &dev->flags);
3669 set_bit(R5_Wantread, &dev->flags);
3670 s->locked++;
3671 qread++;
3672 } else {
3673 set_bit(STRIPE_DELAYED, &sh->state);
3674 set_bit(STRIPE_HANDLE, &sh->state);
3675 }
3676 }
3677 }
3678 if (rcw && conf->mddev->queue)
3679 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3680 (unsigned long long)sh->sector,
3681 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3682 }
3683
3684 if (rcw > disks && rmw > disks &&
3685 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3686 set_bit(STRIPE_DELAYED, &sh->state);
3687
3688 /* now if nothing is locked, and if we have enough data,
3689 * we can start a write request
3690 */
3691 /* since handle_stripe can be called at any time we need to handle the
3692 * case where a compute block operation has been submitted and then a
3693 * subsequent call wants to start a write request. raid_run_ops only
3694 * handles the case where compute block and reconstruct are requested
3695 * simultaneously. If this is not the case then new writes need to be
3696 * held off until the compute completes.
3697 */
3698 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3699 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3700 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3701 schedule_reconstruction(sh, s, rcw == 0, 0);
3702 }
3703
3704 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3705 struct stripe_head_state *s, int disks)
3706 {
3707 struct r5dev *dev = NULL;
3708
3709 BUG_ON(sh->batch_head);
3710 set_bit(STRIPE_HANDLE, &sh->state);
3711
3712 switch (sh->check_state) {
3713 case check_state_idle:
3714 /* start a new check operation if there are no failures */
3715 if (s->failed == 0) {
3716 BUG_ON(s->uptodate != disks);
3717 sh->check_state = check_state_run;
3718 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3719 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3720 s->uptodate--;
3721 break;
3722 }
3723 dev = &sh->dev[s->failed_num[0]];
3724 /* fall through */
3725 case check_state_compute_result:
3726 sh->check_state = check_state_idle;
3727 if (!dev)
3728 dev = &sh->dev[sh->pd_idx];
3729
3730 /* check that a write has not made the stripe insync */
3731 if (test_bit(STRIPE_INSYNC, &sh->state))
3732 break;
3733
3734 /* either failed parity check, or recovery is happening */
3735 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3736 BUG_ON(s->uptodate != disks);
3737
3738 set_bit(R5_LOCKED, &dev->flags);
3739 s->locked++;
3740 set_bit(R5_Wantwrite, &dev->flags);
3741
3742 clear_bit(STRIPE_DEGRADED, &sh->state);
3743 set_bit(STRIPE_INSYNC, &sh->state);
3744 break;
3745 case check_state_run:
3746 break; /* we will be called again upon completion */
3747 case check_state_check_result:
3748 sh->check_state = check_state_idle;
3749
3750 /* if a failure occurred during the check operation, leave
3751 * STRIPE_INSYNC not set and let the stripe be handled again
3752 */
3753 if (s->failed)
3754 break;
3755
3756 /* handle a successful check operation, if parity is correct
3757 * we are done. Otherwise update the mismatch count and repair
3758 * parity if !MD_RECOVERY_CHECK
3759 */
3760 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3761 /* parity is correct (on disc,
3762 * not in buffer any more)
3763 */
3764 set_bit(STRIPE_INSYNC, &sh->state);
3765 else {
3766 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3767 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3768 /* don't try to repair!! */
3769 set_bit(STRIPE_INSYNC, &sh->state);
3770 else {
3771 sh->check_state = check_state_compute_run;
3772 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3773 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3774 set_bit(R5_Wantcompute,
3775 &sh->dev[sh->pd_idx].flags);
3776 sh->ops.target = sh->pd_idx;
3777 sh->ops.target2 = -1;
3778 s->uptodate++;
3779 }
3780 }
3781 break;
3782 case check_state_compute_run:
3783 break;
3784 default:
3785 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3786 __func__, sh->check_state,
3787 (unsigned long long) sh->sector);
3788 BUG();
3789 }
3790 }
3791
3792 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3793 struct stripe_head_state *s,
3794 int disks)
3795 {
3796 int pd_idx = sh->pd_idx;
3797 int qd_idx = sh->qd_idx;
3798 struct r5dev *dev;
3799
3800 BUG_ON(sh->batch_head);
3801 set_bit(STRIPE_HANDLE, &sh->state);
3802
3803 BUG_ON(s->failed > 2);
3804
3805 /* Want to check and possibly repair P and Q.
3806 * However there could be one 'failed' device, in which
3807 * case we can only check one of them, possibly using the
3808 * other to generate missing data
3809 */
3810
3811 switch (sh->check_state) {
3812 case check_state_idle:
3813 /* start a new check operation if there are < 2 failures */
3814 if (s->failed == s->q_failed) {
3815 /* The only possible failed device holds Q, so it
3816 * makes sense to check P (If anything else were failed,
3817 * we would have used P to recreate it).
3818 */
3819 sh->check_state = check_state_run;
3820 }
3821 if (!s->q_failed && s->failed < 2) {
3822 /* Q is not failed, and we didn't use it to generate
3823 * anything, so it makes sense to check it
3824 */
3825 if (sh->check_state == check_state_run)
3826 sh->check_state = check_state_run_pq;
3827 else
3828 sh->check_state = check_state_run_q;
3829 }
3830
3831 /* discard potentially stale zero_sum_result */
3832 sh->ops.zero_sum_result = 0;
3833
3834 if (sh->check_state == check_state_run) {
3835 /* async_xor_zero_sum destroys the contents of P */
3836 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3837 s->uptodate--;
3838 }
3839 if (sh->check_state >= check_state_run &&
3840 sh->check_state <= check_state_run_pq) {
3841 /* async_syndrome_zero_sum preserves P and Q, so
3842 * no need to mark them !uptodate here
3843 */
3844 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3845 break;
3846 }
3847
3848 /* we have 2-disk failure */
3849 BUG_ON(s->failed != 2);
3850 /* fall through */
3851 case check_state_compute_result:
3852 sh->check_state = check_state_idle;
3853
3854 /* check that a write has not made the stripe insync */
3855 if (test_bit(STRIPE_INSYNC, &sh->state))
3856 break;
3857
3858 /* now write out any block on a failed drive,
3859 * or P or Q if they were recomputed
3860 */
3861 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3862 if (s->failed == 2) {
3863 dev = &sh->dev[s->failed_num[1]];
3864 s->locked++;
3865 set_bit(R5_LOCKED, &dev->flags);
3866 set_bit(R5_Wantwrite, &dev->flags);
3867 }
3868 if (s->failed >= 1) {
3869 dev = &sh->dev[s->failed_num[0]];
3870 s->locked++;
3871 set_bit(R5_LOCKED, &dev->flags);
3872 set_bit(R5_Wantwrite, &dev->flags);
3873 }
3874 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3875 dev = &sh->dev[pd_idx];
3876 s->locked++;
3877 set_bit(R5_LOCKED, &dev->flags);
3878 set_bit(R5_Wantwrite, &dev->flags);
3879 }
3880 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3881 dev = &sh->dev[qd_idx];
3882 s->locked++;
3883 set_bit(R5_LOCKED, &dev->flags);
3884 set_bit(R5_Wantwrite, &dev->flags);
3885 }
3886 clear_bit(STRIPE_DEGRADED, &sh->state);
3887
3888 set_bit(STRIPE_INSYNC, &sh->state);
3889 break;
3890 case check_state_run:
3891 case check_state_run_q:
3892 case check_state_run_pq:
3893 break; /* we will be called again upon completion */
3894 case check_state_check_result:
3895 sh->check_state = check_state_idle;
3896
3897 /* handle a successful check operation, if parity is correct
3898 * we are done. Otherwise update the mismatch count and repair
3899 * parity if !MD_RECOVERY_CHECK
3900 */
3901 if (sh->ops.zero_sum_result == 0) {
3902 /* both parities are correct */
3903 if (!s->failed)
3904 set_bit(STRIPE_INSYNC, &sh->state);
3905 else {
3906 /* in contrast to the raid5 case we can validate
3907 * parity, but still have a failure to write
3908 * back
3909 */
3910 sh->check_state = check_state_compute_result;
3911 /* Returning at this point means that we may go
3912 * off and bring p and/or q uptodate again so
3913 * we make sure to check zero_sum_result again
3914 * to verify if p or q need writeback
3915 */
3916 }
3917 } else {
3918 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3919 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3920 /* don't try to repair!! */
3921 set_bit(STRIPE_INSYNC, &sh->state);
3922 else {
3923 int *target = &sh->ops.target;
3924
3925 sh->ops.target = -1;
3926 sh->ops.target2 = -1;
3927 sh->check_state = check_state_compute_run;
3928 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3929 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3930 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3931 set_bit(R5_Wantcompute,
3932 &sh->dev[pd_idx].flags);
3933 *target = pd_idx;
3934 target = &sh->ops.target2;
3935 s->uptodate++;
3936 }
3937 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3938 set_bit(R5_Wantcompute,
3939 &sh->dev[qd_idx].flags);
3940 *target = qd_idx;
3941 s->uptodate++;
3942 }
3943 }
3944 }
3945 break;
3946 case check_state_compute_run:
3947 break;
3948 default:
3949 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3950 __func__, sh->check_state,
3951 (unsigned long long) sh->sector);
3952 BUG();
3953 }
3954 }
3955
3956 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3957 {
3958 int i;
3959
3960 /* We have read all the blocks in this stripe and now we need to
3961 * copy some of them into a target stripe for expand.
3962 */
3963 struct dma_async_tx_descriptor *tx = NULL;
3964 BUG_ON(sh->batch_head);
3965 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3966 for (i = 0; i < sh->disks; i++)
3967 if (i != sh->pd_idx && i != sh->qd_idx) {
3968 int dd_idx, j;
3969 struct stripe_head *sh2;
3970 struct async_submit_ctl submit;
3971
3972 sector_t bn = raid5_compute_blocknr(sh, i, 1);
3973 sector_t s = raid5_compute_sector(conf, bn, 0,
3974 &dd_idx, NULL);
3975 sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
3976 if (sh2 == NULL)
3977 /* so far only the early blocks of this stripe
3978 * have been requested. When later blocks
3979 * get requested, we will try again
3980 */
3981 continue;
3982 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3983 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3984 /* must have already done this block */
3985 raid5_release_stripe(sh2);
3986 continue;
3987 }
3988
3989 /* place all the copies on one channel */
3990 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3991 tx = async_memcpy(sh2->dev[dd_idx].page,
3992 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3993 &submit);
3994
3995 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3996 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3997 for (j = 0; j < conf->raid_disks; j++)
3998 if (j != sh2->pd_idx &&
3999 j != sh2->qd_idx &&
4000 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4001 break;
4002 if (j == conf->raid_disks) {
4003 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4004 set_bit(STRIPE_HANDLE, &sh2->state);
4005 }
4006 raid5_release_stripe(sh2);
4007
4008 }
4009 /* done submitting copies, wait for them to complete */
4010 async_tx_quiesce(&tx);
4011 }
4012
4013 /*
4014 * handle_stripe - do things to a stripe.
4015 *
4016 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4017 * state of various bits to see what needs to be done.
4018 * Possible results:
4019 * return some read requests which now have data
4020 * return some write requests which are safely on storage
4021 * schedule a read on some buffers
4022 * schedule a write of some buffers
4023 * return confirmation of parity correctness
4024 *
4025 */
4026
4027 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4028 {
4029 struct r5conf *conf = sh->raid_conf;
4030 int disks = sh->disks;
4031 struct r5dev *dev;
4032 int i;
4033 int do_recovery = 0;
4034
4035 memset(s, 0, sizeof(*s));
4036
4037 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4038 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4039 s->failed_num[0] = -1;
4040 s->failed_num[1] = -1;
4041 s->log_failed = r5l_log_disk_error(conf);
4042
4043 /* Now to look around and see what can be done */
4044 rcu_read_lock();
4045 for (i=disks; i--; ) {
4046 struct md_rdev *rdev;
4047 sector_t first_bad;
4048 int bad_sectors;
4049 int is_bad = 0;
4050
4051 dev = &sh->dev[i];
4052
4053 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4054 i, dev->flags,
4055 dev->toread, dev->towrite, dev->written);
4056 /* maybe we can reply to a read
4057 *
4058 * new wantfill requests are only permitted while
4059 * ops_complete_biofill is guaranteed to be inactive
4060 */
4061 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4062 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4063 set_bit(R5_Wantfill, &dev->flags);
4064
4065 /* now count some things */
4066 if (test_bit(R5_LOCKED, &dev->flags))
4067 s->locked++;
4068 if (test_bit(R5_UPTODATE, &dev->flags))
4069 s->uptodate++;
4070 if (test_bit(R5_Wantcompute, &dev->flags)) {
4071 s->compute++;
4072 BUG_ON(s->compute > 2);
4073 }
4074
4075 if (test_bit(R5_Wantfill, &dev->flags))
4076 s->to_fill++;
4077 else if (dev->toread)
4078 s->to_read++;
4079 if (dev->towrite) {
4080 s->to_write++;
4081 if (!test_bit(R5_OVERWRITE, &dev->flags))
4082 s->non_overwrite++;
4083 }
4084 if (dev->written)
4085 s->written++;
4086 /* Prefer to use the replacement for reads, but only
4087 * if it is recovered enough and has no bad blocks.
4088 */
4089 rdev = rcu_dereference(conf->disks[i].replacement);
4090 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4091 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4092 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4093 &first_bad, &bad_sectors))
4094 set_bit(R5_ReadRepl, &dev->flags);
4095 else {
4096 if (rdev && !test_bit(Faulty, &rdev->flags))
4097 set_bit(R5_NeedReplace, &dev->flags);
4098 else
4099 clear_bit(R5_NeedReplace, &dev->flags);
4100 rdev = rcu_dereference(conf->disks[i].rdev);
4101 clear_bit(R5_ReadRepl, &dev->flags);
4102 }
4103 if (rdev && test_bit(Faulty, &rdev->flags))
4104 rdev = NULL;
4105 if (rdev) {
4106 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4107 &first_bad, &bad_sectors);
4108 if (s->blocked_rdev == NULL
4109 && (test_bit(Blocked, &rdev->flags)
4110 || is_bad < 0)) {
4111 if (is_bad < 0)
4112 set_bit(BlockedBadBlocks,
4113 &rdev->flags);
4114 s->blocked_rdev = rdev;
4115 atomic_inc(&rdev->nr_pending);
4116 }
4117 }
4118 clear_bit(R5_Insync, &dev->flags);
4119 if (!rdev)
4120 /* Not in-sync */;
4121 else if (is_bad) {
4122 /* also not in-sync */
4123 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4124 test_bit(R5_UPTODATE, &dev->flags)) {
4125 /* treat as in-sync, but with a read error
4126 * which we can now try to correct
4127 */
4128 set_bit(R5_Insync, &dev->flags);
4129 set_bit(R5_ReadError, &dev->flags);
4130 }
4131 } else if (test_bit(In_sync, &rdev->flags))
4132 set_bit(R5_Insync, &dev->flags);
4133 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4134 /* in sync if before recovery_offset */
4135 set_bit(R5_Insync, &dev->flags);
4136 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4137 test_bit(R5_Expanded, &dev->flags))
4138 /* If we've reshaped into here, we assume it is Insync.
4139 * We will shortly update recovery_offset to make
4140 * it official.
4141 */
4142 set_bit(R5_Insync, &dev->flags);
4143
4144 if (test_bit(R5_WriteError, &dev->flags)) {
4145 /* This flag does not apply to '.replacement'
4146 * only to .rdev, so make sure to check that*/
4147 struct md_rdev *rdev2 = rcu_dereference(
4148 conf->disks[i].rdev);
4149 if (rdev2 == rdev)
4150 clear_bit(R5_Insync, &dev->flags);
4151 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4152 s->handle_bad_blocks = 1;
4153 atomic_inc(&rdev2->nr_pending);
4154 } else
4155 clear_bit(R5_WriteError, &dev->flags);
4156 }
4157 if (test_bit(R5_MadeGood, &dev->flags)) {
4158 /* This flag does not apply to '.replacement'
4159 * only to .rdev, so make sure to check that*/
4160 struct md_rdev *rdev2 = rcu_dereference(
4161 conf->disks[i].rdev);
4162 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4163 s->handle_bad_blocks = 1;
4164 atomic_inc(&rdev2->nr_pending);
4165 } else
4166 clear_bit(R5_MadeGood, &dev->flags);
4167 }
4168 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4169 struct md_rdev *rdev2 = rcu_dereference(
4170 conf->disks[i].replacement);
4171 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4172 s->handle_bad_blocks = 1;
4173 atomic_inc(&rdev2->nr_pending);
4174 } else
4175 clear_bit(R5_MadeGoodRepl, &dev->flags);
4176 }
4177 if (!test_bit(R5_Insync, &dev->flags)) {
4178 /* The ReadError flag will just be confusing now */
4179 clear_bit(R5_ReadError, &dev->flags);
4180 clear_bit(R5_ReWrite, &dev->flags);
4181 }
4182 if (test_bit(R5_ReadError, &dev->flags))
4183 clear_bit(R5_Insync, &dev->flags);
4184 if (!test_bit(R5_Insync, &dev->flags)) {
4185 if (s->failed < 2)
4186 s->failed_num[s->failed] = i;
4187 s->failed++;
4188 if (rdev && !test_bit(Faulty, &rdev->flags))
4189 do_recovery = 1;
4190 }
4191 }
4192 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4193 /* If there is a failed device being replaced,
4194 * we must be recovering.
4195 * else if we are after recovery_cp, we must be syncing
4196 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4197 * else we can only be replacing
4198 * sync and recovery both need to read all devices, and so
4199 * use the same flag.
4200 */
4201 if (do_recovery ||
4202 sh->sector >= conf->mddev->recovery_cp ||
4203 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4204 s->syncing = 1;
4205 else
4206 s->replacing = 1;
4207 }
4208 rcu_read_unlock();
4209 }
4210
4211 static int clear_batch_ready(struct stripe_head *sh)
4212 {
4213 /* Return '1' if this is a member of batch, or
4214 * '0' if it is a lone stripe or a head which can now be
4215 * handled.
4216 */
4217 struct stripe_head *tmp;
4218 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4219 return (sh->batch_head && sh->batch_head != sh);
4220 spin_lock(&sh->stripe_lock);
4221 if (!sh->batch_head) {
4222 spin_unlock(&sh->stripe_lock);
4223 return 0;
4224 }
4225
4226 /*
4227 * this stripe could be added to a batch list before we check
4228 * BATCH_READY, skips it
4229 */
4230 if (sh->batch_head != sh) {
4231 spin_unlock(&sh->stripe_lock);
4232 return 1;
4233 }
4234 spin_lock(&sh->batch_lock);
4235 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4236 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4237 spin_unlock(&sh->batch_lock);
4238 spin_unlock(&sh->stripe_lock);
4239
4240 /*
4241 * BATCH_READY is cleared, no new stripes can be added.
4242 * batch_list can be accessed without lock
4243 */
4244 return 0;
4245 }
4246
4247 static void break_stripe_batch_list(struct stripe_head *head_sh,
4248 unsigned long handle_flags)
4249 {
4250 struct stripe_head *sh, *next;
4251 int i;
4252 int do_wakeup = 0;
4253
4254 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4255
4256 list_del_init(&sh->batch_list);
4257
4258 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4259 (1 << STRIPE_SYNCING) |
4260 (1 << STRIPE_REPLACED) |
4261 (1 << STRIPE_DELAYED) |
4262 (1 << STRIPE_BIT_DELAY) |
4263 (1 << STRIPE_FULL_WRITE) |
4264 (1 << STRIPE_BIOFILL_RUN) |
4265 (1 << STRIPE_COMPUTE_RUN) |
4266 (1 << STRIPE_OPS_REQ_PENDING) |
4267 (1 << STRIPE_DISCARD) |
4268 (1 << STRIPE_BATCH_READY) |
4269 (1 << STRIPE_BATCH_ERR) |
4270 (1 << STRIPE_BITMAP_PENDING)),
4271 "stripe state: %lx\n", sh->state);
4272 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4273 (1 << STRIPE_REPLACED)),
4274 "head stripe state: %lx\n", head_sh->state);
4275
4276 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4277 (1 << STRIPE_PREREAD_ACTIVE) |
4278 (1 << STRIPE_DEGRADED)),
4279 head_sh->state & (1 << STRIPE_INSYNC));
4280
4281 sh->check_state = head_sh->check_state;
4282 sh->reconstruct_state = head_sh->reconstruct_state;
4283 for (i = 0; i < sh->disks; i++) {
4284 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4285 do_wakeup = 1;
4286 sh->dev[i].flags = head_sh->dev[i].flags &
4287 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4288 }
4289 spin_lock_irq(&sh->stripe_lock);
4290 sh->batch_head = NULL;
4291 spin_unlock_irq(&sh->stripe_lock);
4292 if (handle_flags == 0 ||
4293 sh->state & handle_flags)
4294 set_bit(STRIPE_HANDLE, &sh->state);
4295 raid5_release_stripe(sh);
4296 }
4297 spin_lock_irq(&head_sh->stripe_lock);
4298 head_sh->batch_head = NULL;
4299 spin_unlock_irq(&head_sh->stripe_lock);
4300 for (i = 0; i < head_sh->disks; i++)
4301 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4302 do_wakeup = 1;
4303 if (head_sh->state & handle_flags)
4304 set_bit(STRIPE_HANDLE, &head_sh->state);
4305
4306 if (do_wakeup)
4307 wake_up(&head_sh->raid_conf->wait_for_overlap);
4308 }
4309
4310 static void handle_stripe(struct stripe_head *sh)
4311 {
4312 struct stripe_head_state s;
4313 struct r5conf *conf = sh->raid_conf;
4314 int i;
4315 int prexor;
4316 int disks = sh->disks;
4317 struct r5dev *pdev, *qdev;
4318
4319 clear_bit(STRIPE_HANDLE, &sh->state);
4320 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4321 /* already being handled, ensure it gets handled
4322 * again when current action finishes */
4323 set_bit(STRIPE_HANDLE, &sh->state);
4324 return;
4325 }
4326
4327 if (clear_batch_ready(sh) ) {
4328 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4329 return;
4330 }
4331
4332 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4333 break_stripe_batch_list(sh, 0);
4334
4335 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4336 spin_lock(&sh->stripe_lock);
4337 /* Cannot process 'sync' concurrently with 'discard' */
4338 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4339 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4340 set_bit(STRIPE_SYNCING, &sh->state);
4341 clear_bit(STRIPE_INSYNC, &sh->state);
4342 clear_bit(STRIPE_REPLACED, &sh->state);
4343 }
4344 spin_unlock(&sh->stripe_lock);
4345 }
4346 clear_bit(STRIPE_DELAYED, &sh->state);
4347
4348 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4349 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4350 (unsigned long long)sh->sector, sh->state,
4351 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4352 sh->check_state, sh->reconstruct_state);
4353
4354 analyse_stripe(sh, &s);
4355
4356 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4357 goto finish;
4358
4359 if (s.handle_bad_blocks) {
4360 set_bit(STRIPE_HANDLE, &sh->state);
4361 goto finish;
4362 }
4363
4364 if (unlikely(s.blocked_rdev)) {
4365 if (s.syncing || s.expanding || s.expanded ||
4366 s.replacing || s.to_write || s.written) {
4367 set_bit(STRIPE_HANDLE, &sh->state);
4368 goto finish;
4369 }
4370 /* There is nothing for the blocked_rdev to block */
4371 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4372 s.blocked_rdev = NULL;
4373 }
4374
4375 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4376 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4377 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4378 }
4379
4380 pr_debug("locked=%d uptodate=%d to_read=%d"
4381 " to_write=%d failed=%d failed_num=%d,%d\n",
4382 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4383 s.failed_num[0], s.failed_num[1]);
4384 /* check if the array has lost more than max_degraded devices and,
4385 * if so, some requests might need to be failed.
4386 */
4387 if (s.failed > conf->max_degraded || s.log_failed) {
4388 sh->check_state = 0;
4389 sh->reconstruct_state = 0;
4390 break_stripe_batch_list(sh, 0);
4391 if (s.to_read+s.to_write+s.written)
4392 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4393 if (s.syncing + s.replacing)
4394 handle_failed_sync(conf, sh, &s);
4395 }
4396
4397 /* Now we check to see if any write operations have recently
4398 * completed
4399 */
4400 prexor = 0;
4401 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4402 prexor = 1;
4403 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4404 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4405 sh->reconstruct_state = reconstruct_state_idle;
4406
4407 /* All the 'written' buffers and the parity block are ready to
4408 * be written back to disk
4409 */
4410 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4411 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4412 BUG_ON(sh->qd_idx >= 0 &&
4413 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4414 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4415 for (i = disks; i--; ) {
4416 struct r5dev *dev = &sh->dev[i];
4417 if (test_bit(R5_LOCKED, &dev->flags) &&
4418 (i == sh->pd_idx || i == sh->qd_idx ||
4419 dev->written)) {
4420 pr_debug("Writing block %d\n", i);
4421 set_bit(R5_Wantwrite, &dev->flags);
4422 if (prexor)
4423 continue;
4424 if (s.failed > 1)
4425 continue;
4426 if (!test_bit(R5_Insync, &dev->flags) ||
4427 ((i == sh->pd_idx || i == sh->qd_idx) &&
4428 s.failed == 0))
4429 set_bit(STRIPE_INSYNC, &sh->state);
4430 }
4431 }
4432 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4433 s.dec_preread_active = 1;
4434 }
4435
4436 /*
4437 * might be able to return some write requests if the parity blocks
4438 * are safe, or on a failed drive
4439 */
4440 pdev = &sh->dev[sh->pd_idx];
4441 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4442 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4443 qdev = &sh->dev[sh->qd_idx];
4444 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4445 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4446 || conf->level < 6;
4447
4448 if (s.written &&
4449 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4450 && !test_bit(R5_LOCKED, &pdev->flags)
4451 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4452 test_bit(R5_Discard, &pdev->flags))))) &&
4453 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4454 && !test_bit(R5_LOCKED, &qdev->flags)
4455 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4456 test_bit(R5_Discard, &qdev->flags))))))
4457 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4458
4459 /* Now we might consider reading some blocks, either to check/generate
4460 * parity, or to satisfy requests
4461 * or to load a block that is being partially written.
4462 */
4463 if (s.to_read || s.non_overwrite
4464 || (conf->level == 6 && s.to_write && s.failed)
4465 || (s.syncing && (s.uptodate + s.compute < disks))
4466 || s.replacing
4467 || s.expanding)
4468 handle_stripe_fill(sh, &s, disks);
4469
4470 /* Now to consider new write requests and what else, if anything
4471 * should be read. We do not handle new writes when:
4472 * 1/ A 'write' operation (copy+xor) is already in flight.
4473 * 2/ A 'check' operation is in flight, as it may clobber the parity
4474 * block.
4475 */
4476 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4477 handle_stripe_dirtying(conf, sh, &s, disks);
4478
4479 /* maybe we need to check and possibly fix the parity for this stripe
4480 * Any reads will already have been scheduled, so we just see if enough
4481 * data is available. The parity check is held off while parity
4482 * dependent operations are in flight.
4483 */
4484 if (sh->check_state ||
4485 (s.syncing && s.locked == 0 &&
4486 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4487 !test_bit(STRIPE_INSYNC, &sh->state))) {
4488 if (conf->level == 6)
4489 handle_parity_checks6(conf, sh, &s, disks);
4490 else
4491 handle_parity_checks5(conf, sh, &s, disks);
4492 }
4493
4494 if ((s.replacing || s.syncing) && s.locked == 0
4495 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4496 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4497 /* Write out to replacement devices where possible */
4498 for (i = 0; i < conf->raid_disks; i++)
4499 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4500 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4501 set_bit(R5_WantReplace, &sh->dev[i].flags);
4502 set_bit(R5_LOCKED, &sh->dev[i].flags);
4503 s.locked++;
4504 }
4505 if (s.replacing)
4506 set_bit(STRIPE_INSYNC, &sh->state);
4507 set_bit(STRIPE_REPLACED, &sh->state);
4508 }
4509 if ((s.syncing || s.replacing) && s.locked == 0 &&
4510 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4511 test_bit(STRIPE_INSYNC, &sh->state)) {
4512 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4513 clear_bit(STRIPE_SYNCING, &sh->state);
4514 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4515 wake_up(&conf->wait_for_overlap);
4516 }
4517
4518 /* If the failed drives are just a ReadError, then we might need
4519 * to progress the repair/check process
4520 */
4521 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4522 for (i = 0; i < s.failed; i++) {
4523 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4524 if (test_bit(R5_ReadError, &dev->flags)
4525 && !test_bit(R5_LOCKED, &dev->flags)
4526 && test_bit(R5_UPTODATE, &dev->flags)
4527 ) {
4528 if (!test_bit(R5_ReWrite, &dev->flags)) {
4529 set_bit(R5_Wantwrite, &dev->flags);
4530 set_bit(R5_ReWrite, &dev->flags);
4531 set_bit(R5_LOCKED, &dev->flags);
4532 s.locked++;
4533 } else {
4534 /* let's read it back */
4535 set_bit(R5_Wantread, &dev->flags);
4536 set_bit(R5_LOCKED, &dev->flags);
4537 s.locked++;
4538 }
4539 }
4540 }
4541
4542 /* Finish reconstruct operations initiated by the expansion process */
4543 if (sh->reconstruct_state == reconstruct_state_result) {
4544 struct stripe_head *sh_src
4545 = raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4546 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4547 /* sh cannot be written until sh_src has been read.
4548 * so arrange for sh to be delayed a little
4549 */
4550 set_bit(STRIPE_DELAYED, &sh->state);
4551 set_bit(STRIPE_HANDLE, &sh->state);
4552 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4553 &sh_src->state))
4554 atomic_inc(&conf->preread_active_stripes);
4555 raid5_release_stripe(sh_src);
4556 goto finish;
4557 }
4558 if (sh_src)
4559 raid5_release_stripe(sh_src);
4560
4561 sh->reconstruct_state = reconstruct_state_idle;
4562 clear_bit(STRIPE_EXPANDING, &sh->state);
4563 for (i = conf->raid_disks; i--; ) {
4564 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4565 set_bit(R5_LOCKED, &sh->dev[i].flags);
4566 s.locked++;
4567 }
4568 }
4569
4570 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4571 !sh->reconstruct_state) {
4572 /* Need to write out all blocks after computing parity */
4573 sh->disks = conf->raid_disks;
4574 stripe_set_idx(sh->sector, conf, 0, sh);
4575 schedule_reconstruction(sh, &s, 1, 1);
4576 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4577 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4578 atomic_dec(&conf->reshape_stripes);
4579 wake_up(&conf->wait_for_overlap);
4580 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4581 }
4582
4583 if (s.expanding && s.locked == 0 &&
4584 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4585 handle_stripe_expansion(conf, sh);
4586
4587 finish:
4588 /* wait for this device to become unblocked */
4589 if (unlikely(s.blocked_rdev)) {
4590 if (conf->mddev->external)
4591 md_wait_for_blocked_rdev(s.blocked_rdev,
4592 conf->mddev);
4593 else
4594 /* Internal metadata will immediately
4595 * be written by raid5d, so we don't
4596 * need to wait here.
4597 */
4598 rdev_dec_pending(s.blocked_rdev,
4599 conf->mddev);
4600 }
4601
4602 if (s.handle_bad_blocks)
4603 for (i = disks; i--; ) {
4604 struct md_rdev *rdev;
4605 struct r5dev *dev = &sh->dev[i];
4606 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4607 /* We own a safe reference to the rdev */
4608 rdev = conf->disks[i].rdev;
4609 if (!rdev_set_badblocks(rdev, sh->sector,
4610 STRIPE_SECTORS, 0))
4611 md_error(conf->mddev, rdev);
4612 rdev_dec_pending(rdev, conf->mddev);
4613 }
4614 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4615 rdev = conf->disks[i].rdev;
4616 rdev_clear_badblocks(rdev, sh->sector,
4617 STRIPE_SECTORS, 0);
4618 rdev_dec_pending(rdev, conf->mddev);
4619 }
4620 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4621 rdev = conf->disks[i].replacement;
4622 if (!rdev)
4623 /* rdev have been moved down */
4624 rdev = conf->disks[i].rdev;
4625 rdev_clear_badblocks(rdev, sh->sector,
4626 STRIPE_SECTORS, 0);
4627 rdev_dec_pending(rdev, conf->mddev);
4628 }
4629 }
4630
4631 if (s.ops_request)
4632 raid_run_ops(sh, s.ops_request);
4633
4634 ops_run_io(sh, &s);
4635
4636 if (s.dec_preread_active) {
4637 /* We delay this until after ops_run_io so that if make_request
4638 * is waiting on a flush, it won't continue until the writes
4639 * have actually been submitted.
4640 */
4641 atomic_dec(&conf->preread_active_stripes);
4642 if (atomic_read(&conf->preread_active_stripes) <
4643 IO_THRESHOLD)
4644 md_wakeup_thread(conf->mddev->thread);
4645 }
4646
4647 if (!bio_list_empty(&s.return_bi)) {
4648 if (test_bit(MD_CHANGE_PENDING, &conf->mddev->flags) &&
4649 (s.failed <= conf->max_degraded ||
4650 conf->mddev->external == 0)) {
4651 spin_lock_irq(&conf->device_lock);
4652 bio_list_merge(&conf->return_bi, &s.return_bi);
4653 spin_unlock_irq(&conf->device_lock);
4654 md_wakeup_thread(conf->mddev->thread);
4655 } else
4656 return_io(&s.return_bi);
4657 }
4658
4659 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4660 }
4661
4662 static void raid5_activate_delayed(struct r5conf *conf)
4663 {
4664 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4665 while (!list_empty(&conf->delayed_list)) {
4666 struct list_head *l = conf->delayed_list.next;
4667 struct stripe_head *sh;
4668 sh = list_entry(l, struct stripe_head, lru);
4669 list_del_init(l);
4670 clear_bit(STRIPE_DELAYED, &sh->state);
4671 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4672 atomic_inc(&conf->preread_active_stripes);
4673 list_add_tail(&sh->lru, &conf->hold_list);
4674 raid5_wakeup_stripe_thread(sh);
4675 }
4676 }
4677 }
4678
4679 static void activate_bit_delay(struct r5conf *conf,
4680 struct list_head *temp_inactive_list)
4681 {
4682 /* device_lock is held */
4683 struct list_head head;
4684 list_add(&head, &conf->bitmap_list);
4685 list_del_init(&conf->bitmap_list);
4686 while (!list_empty(&head)) {
4687 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4688 int hash;
4689 list_del_init(&sh->lru);
4690 atomic_inc(&sh->count);
4691 hash = sh->hash_lock_index;
4692 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4693 }
4694 }
4695
4696 static int raid5_congested(struct mddev *mddev, int bits)
4697 {
4698 struct r5conf *conf = mddev->private;
4699
4700 /* No difference between reads and writes. Just check
4701 * how busy the stripe_cache is
4702 */
4703
4704 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4705 return 1;
4706 if (conf->quiesce)
4707 return 1;
4708 if (atomic_read(&conf->empty_inactive_list_nr))
4709 return 1;
4710
4711 return 0;
4712 }
4713
4714 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4715 {
4716 struct r5conf *conf = mddev->private;
4717 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4718 unsigned int chunk_sectors;
4719 unsigned int bio_sectors = bio_sectors(bio);
4720
4721 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
4722 return chunk_sectors >=
4723 ((sector & (chunk_sectors - 1)) + bio_sectors);
4724 }
4725
4726 /*
4727 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4728 * later sampled by raid5d.
4729 */
4730 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4731 {
4732 unsigned long flags;
4733
4734 spin_lock_irqsave(&conf->device_lock, flags);
4735
4736 bi->bi_next = conf->retry_read_aligned_list;
4737 conf->retry_read_aligned_list = bi;
4738
4739 spin_unlock_irqrestore(&conf->device_lock, flags);
4740 md_wakeup_thread(conf->mddev->thread);
4741 }
4742
4743 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4744 {
4745 struct bio *bi;
4746
4747 bi = conf->retry_read_aligned;
4748 if (bi) {
4749 conf->retry_read_aligned = NULL;
4750 return bi;
4751 }
4752 bi = conf->retry_read_aligned_list;
4753 if(bi) {
4754 conf->retry_read_aligned_list = bi->bi_next;
4755 bi->bi_next = NULL;
4756 /*
4757 * this sets the active strip count to 1 and the processed
4758 * strip count to zero (upper 8 bits)
4759 */
4760 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4761 }
4762
4763 return bi;
4764 }
4765
4766 /*
4767 * The "raid5_align_endio" should check if the read succeeded and if it
4768 * did, call bio_endio on the original bio (having bio_put the new bio
4769 * first).
4770 * If the read failed..
4771 */
4772 static void raid5_align_endio(struct bio *bi)
4773 {
4774 struct bio* raid_bi = bi->bi_private;
4775 struct mddev *mddev;
4776 struct r5conf *conf;
4777 struct md_rdev *rdev;
4778 int error = bi->bi_error;
4779
4780 bio_put(bi);
4781
4782 rdev = (void*)raid_bi->bi_next;
4783 raid_bi->bi_next = NULL;
4784 mddev = rdev->mddev;
4785 conf = mddev->private;
4786
4787 rdev_dec_pending(rdev, conf->mddev);
4788
4789 if (!error) {
4790 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4791 raid_bi, 0);
4792 bio_endio(raid_bi);
4793 if (atomic_dec_and_test(&conf->active_aligned_reads))
4794 wake_up(&conf->wait_for_quiescent);
4795 return;
4796 }
4797
4798 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4799
4800 add_bio_to_retry(raid_bi, conf);
4801 }
4802
4803 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
4804 {
4805 struct r5conf *conf = mddev->private;
4806 int dd_idx;
4807 struct bio* align_bi;
4808 struct md_rdev *rdev;
4809 sector_t end_sector;
4810
4811 if (!in_chunk_boundary(mddev, raid_bio)) {
4812 pr_debug("%s: non aligned\n", __func__);
4813 return 0;
4814 }
4815 /*
4816 * use bio_clone_mddev to make a copy of the bio
4817 */
4818 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4819 if (!align_bi)
4820 return 0;
4821 /*
4822 * set bi_end_io to a new function, and set bi_private to the
4823 * original bio.
4824 */
4825 align_bi->bi_end_io = raid5_align_endio;
4826 align_bi->bi_private = raid_bio;
4827 /*
4828 * compute position
4829 */
4830 align_bi->bi_iter.bi_sector =
4831 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4832 0, &dd_idx, NULL);
4833
4834 end_sector = bio_end_sector(align_bi);
4835 rcu_read_lock();
4836 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4837 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4838 rdev->recovery_offset < end_sector) {
4839 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4840 if (rdev &&
4841 (test_bit(Faulty, &rdev->flags) ||
4842 !(test_bit(In_sync, &rdev->flags) ||
4843 rdev->recovery_offset >= end_sector)))
4844 rdev = NULL;
4845 }
4846 if (rdev) {
4847 sector_t first_bad;
4848 int bad_sectors;
4849
4850 atomic_inc(&rdev->nr_pending);
4851 rcu_read_unlock();
4852 raid_bio->bi_next = (void*)rdev;
4853 align_bi->bi_bdev = rdev->bdev;
4854 bio_clear_flag(align_bi, BIO_SEG_VALID);
4855
4856 if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
4857 bio_sectors(align_bi),
4858 &first_bad, &bad_sectors)) {
4859 bio_put(align_bi);
4860 rdev_dec_pending(rdev, mddev);
4861 return 0;
4862 }
4863
4864 /* No reshape active, so we can trust rdev->data_offset */
4865 align_bi->bi_iter.bi_sector += rdev->data_offset;
4866
4867 spin_lock_irq(&conf->device_lock);
4868 wait_event_lock_irq(conf->wait_for_quiescent,
4869 conf->quiesce == 0,
4870 conf->device_lock);
4871 atomic_inc(&conf->active_aligned_reads);
4872 spin_unlock_irq(&conf->device_lock);
4873
4874 if (mddev->gendisk)
4875 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4876 align_bi, disk_devt(mddev->gendisk),
4877 raid_bio->bi_iter.bi_sector);
4878 generic_make_request(align_bi);
4879 return 1;
4880 } else {
4881 rcu_read_unlock();
4882 bio_put(align_bi);
4883 return 0;
4884 }
4885 }
4886
4887 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
4888 {
4889 struct bio *split;
4890
4891 do {
4892 sector_t sector = raid_bio->bi_iter.bi_sector;
4893 unsigned chunk_sects = mddev->chunk_sectors;
4894 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
4895
4896 if (sectors < bio_sectors(raid_bio)) {
4897 split = bio_split(raid_bio, sectors, GFP_NOIO, fs_bio_set);
4898 bio_chain(split, raid_bio);
4899 } else
4900 split = raid_bio;
4901
4902 if (!raid5_read_one_chunk(mddev, split)) {
4903 if (split != raid_bio)
4904 generic_make_request(raid_bio);
4905 return split;
4906 }
4907 } while (split != raid_bio);
4908
4909 return NULL;
4910 }
4911
4912 /* __get_priority_stripe - get the next stripe to process
4913 *
4914 * Full stripe writes are allowed to pass preread active stripes up until
4915 * the bypass_threshold is exceeded. In general the bypass_count
4916 * increments when the handle_list is handled before the hold_list; however, it
4917 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4918 * stripe with in flight i/o. The bypass_count will be reset when the
4919 * head of the hold_list has changed, i.e. the head was promoted to the
4920 * handle_list.
4921 */
4922 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4923 {
4924 struct stripe_head *sh = NULL, *tmp;
4925 struct list_head *handle_list = NULL;
4926 struct r5worker_group *wg = NULL;
4927
4928 if (conf->worker_cnt_per_group == 0) {
4929 handle_list = &conf->handle_list;
4930 } else if (group != ANY_GROUP) {
4931 handle_list = &conf->worker_groups[group].handle_list;
4932 wg = &conf->worker_groups[group];
4933 } else {
4934 int i;
4935 for (i = 0; i < conf->group_cnt; i++) {
4936 handle_list = &conf->worker_groups[i].handle_list;
4937 wg = &conf->worker_groups[i];
4938 if (!list_empty(handle_list))
4939 break;
4940 }
4941 }
4942
4943 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4944 __func__,
4945 list_empty(handle_list) ? "empty" : "busy",
4946 list_empty(&conf->hold_list) ? "empty" : "busy",
4947 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4948
4949 if (!list_empty(handle_list)) {
4950 sh = list_entry(handle_list->next, typeof(*sh), lru);
4951
4952 if (list_empty(&conf->hold_list))
4953 conf->bypass_count = 0;
4954 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4955 if (conf->hold_list.next == conf->last_hold)
4956 conf->bypass_count++;
4957 else {
4958 conf->last_hold = conf->hold_list.next;
4959 conf->bypass_count -= conf->bypass_threshold;
4960 if (conf->bypass_count < 0)
4961 conf->bypass_count = 0;
4962 }
4963 }
4964 } else if (!list_empty(&conf->hold_list) &&
4965 ((conf->bypass_threshold &&
4966 conf->bypass_count > conf->bypass_threshold) ||
4967 atomic_read(&conf->pending_full_writes) == 0)) {
4968
4969 list_for_each_entry(tmp, &conf->hold_list, lru) {
4970 if (conf->worker_cnt_per_group == 0 ||
4971 group == ANY_GROUP ||
4972 !cpu_online(tmp->cpu) ||
4973 cpu_to_group(tmp->cpu) == group) {
4974 sh = tmp;
4975 break;
4976 }
4977 }
4978
4979 if (sh) {
4980 conf->bypass_count -= conf->bypass_threshold;
4981 if (conf->bypass_count < 0)
4982 conf->bypass_count = 0;
4983 }
4984 wg = NULL;
4985 }
4986
4987 if (!sh)
4988 return NULL;
4989
4990 if (wg) {
4991 wg->stripes_cnt--;
4992 sh->group = NULL;
4993 }
4994 list_del_init(&sh->lru);
4995 BUG_ON(atomic_inc_return(&sh->count) != 1);
4996 return sh;
4997 }
4998
4999 struct raid5_plug_cb {
5000 struct blk_plug_cb cb;
5001 struct list_head list;
5002 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5003 };
5004
5005 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5006 {
5007 struct raid5_plug_cb *cb = container_of(
5008 blk_cb, struct raid5_plug_cb, cb);
5009 struct stripe_head *sh;
5010 struct mddev *mddev = cb->cb.data;
5011 struct r5conf *conf = mddev->private;
5012 int cnt = 0;
5013 int hash;
5014
5015 if (cb->list.next && !list_empty(&cb->list)) {
5016 spin_lock_irq(&conf->device_lock);
5017 while (!list_empty(&cb->list)) {
5018 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5019 list_del_init(&sh->lru);
5020 /*
5021 * avoid race release_stripe_plug() sees
5022 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5023 * is still in our list
5024 */
5025 smp_mb__before_atomic();
5026 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5027 /*
5028 * STRIPE_ON_RELEASE_LIST could be set here. In that
5029 * case, the count is always > 1 here
5030 */
5031 hash = sh->hash_lock_index;
5032 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5033 cnt++;
5034 }
5035 spin_unlock_irq(&conf->device_lock);
5036 }
5037 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5038 NR_STRIPE_HASH_LOCKS);
5039 if (mddev->queue)
5040 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5041 kfree(cb);
5042 }
5043
5044 static void release_stripe_plug(struct mddev *mddev,
5045 struct stripe_head *sh)
5046 {
5047 struct blk_plug_cb *blk_cb = blk_check_plugged(
5048 raid5_unplug, mddev,
5049 sizeof(struct raid5_plug_cb));
5050 struct raid5_plug_cb *cb;
5051
5052 if (!blk_cb) {
5053 raid5_release_stripe(sh);
5054 return;
5055 }
5056
5057 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5058
5059 if (cb->list.next == NULL) {
5060 int i;
5061 INIT_LIST_HEAD(&cb->list);
5062 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5063 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5064 }
5065
5066 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5067 list_add_tail(&sh->lru, &cb->list);
5068 else
5069 raid5_release_stripe(sh);
5070 }
5071
5072 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5073 {
5074 struct r5conf *conf = mddev->private;
5075 sector_t logical_sector, last_sector;
5076 struct stripe_head *sh;
5077 int remaining;
5078 int stripe_sectors;
5079
5080 if (mddev->reshape_position != MaxSector)
5081 /* Skip discard while reshape is happening */
5082 return;
5083
5084 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5085 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5086
5087 bi->bi_next = NULL;
5088 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5089
5090 stripe_sectors = conf->chunk_sectors *
5091 (conf->raid_disks - conf->max_degraded);
5092 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5093 stripe_sectors);
5094 sector_div(last_sector, stripe_sectors);
5095
5096 logical_sector *= conf->chunk_sectors;
5097 last_sector *= conf->chunk_sectors;
5098
5099 for (; logical_sector < last_sector;
5100 logical_sector += STRIPE_SECTORS) {
5101 DEFINE_WAIT(w);
5102 int d;
5103 again:
5104 sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5105 prepare_to_wait(&conf->wait_for_overlap, &w,
5106 TASK_UNINTERRUPTIBLE);
5107 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5108 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5109 raid5_release_stripe(sh);
5110 schedule();
5111 goto again;
5112 }
5113 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5114 spin_lock_irq(&sh->stripe_lock);
5115 for (d = 0; d < conf->raid_disks; d++) {
5116 if (d == sh->pd_idx || d == sh->qd_idx)
5117 continue;
5118 if (sh->dev[d].towrite || sh->dev[d].toread) {
5119 set_bit(R5_Overlap, &sh->dev[d].flags);
5120 spin_unlock_irq(&sh->stripe_lock);
5121 raid5_release_stripe(sh);
5122 schedule();
5123 goto again;
5124 }
5125 }
5126 set_bit(STRIPE_DISCARD, &sh->state);
5127 finish_wait(&conf->wait_for_overlap, &w);
5128 sh->overwrite_disks = 0;
5129 for (d = 0; d < conf->raid_disks; d++) {
5130 if (d == sh->pd_idx || d == sh->qd_idx)
5131 continue;
5132 sh->dev[d].towrite = bi;
5133 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5134 raid5_inc_bi_active_stripes(bi);
5135 sh->overwrite_disks++;
5136 }
5137 spin_unlock_irq(&sh->stripe_lock);
5138 if (conf->mddev->bitmap) {
5139 for (d = 0;
5140 d < conf->raid_disks - conf->max_degraded;
5141 d++)
5142 bitmap_startwrite(mddev->bitmap,
5143 sh->sector,
5144 STRIPE_SECTORS,
5145 0);
5146 sh->bm_seq = conf->seq_flush + 1;
5147 set_bit(STRIPE_BIT_DELAY, &sh->state);
5148 }
5149
5150 set_bit(STRIPE_HANDLE, &sh->state);
5151 clear_bit(STRIPE_DELAYED, &sh->state);
5152 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5153 atomic_inc(&conf->preread_active_stripes);
5154 release_stripe_plug(mddev, sh);
5155 }
5156
5157 remaining = raid5_dec_bi_active_stripes(bi);
5158 if (remaining == 0) {
5159 md_write_end(mddev);
5160 bio_endio(bi);
5161 }
5162 }
5163
5164 static void raid5_make_request(struct mddev *mddev, struct bio * bi)
5165 {
5166 struct r5conf *conf = mddev->private;
5167 int dd_idx;
5168 sector_t new_sector;
5169 sector_t logical_sector, last_sector;
5170 struct stripe_head *sh;
5171 const int rw = bio_data_dir(bi);
5172 int remaining;
5173 DEFINE_WAIT(w);
5174 bool do_prepare;
5175
5176 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5177 int ret = r5l_handle_flush_request(conf->log, bi);
5178
5179 if (ret == 0)
5180 return;
5181 if (ret == -ENODEV) {
5182 md_flush_request(mddev, bi);
5183 return;
5184 }
5185 /* ret == -EAGAIN, fallback */
5186 }
5187
5188 md_write_start(mddev, bi);
5189
5190 /*
5191 * If array is degraded, better not do chunk aligned read because
5192 * later we might have to read it again in order to reconstruct
5193 * data on failed drives.
5194 */
5195 if (rw == READ && mddev->degraded == 0 &&
5196 mddev->reshape_position == MaxSector) {
5197 bi = chunk_aligned_read(mddev, bi);
5198 if (!bi)
5199 return;
5200 }
5201
5202 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5203 make_discard_request(mddev, bi);
5204 return;
5205 }
5206
5207 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5208 last_sector = bio_end_sector(bi);
5209 bi->bi_next = NULL;
5210 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5211
5212 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5213 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5214 int previous;
5215 int seq;
5216
5217 do_prepare = false;
5218 retry:
5219 seq = read_seqcount_begin(&conf->gen_lock);
5220 previous = 0;
5221 if (do_prepare)
5222 prepare_to_wait(&conf->wait_for_overlap, &w,
5223 TASK_UNINTERRUPTIBLE);
5224 if (unlikely(conf->reshape_progress != MaxSector)) {
5225 /* spinlock is needed as reshape_progress may be
5226 * 64bit on a 32bit platform, and so it might be
5227 * possible to see a half-updated value
5228 * Of course reshape_progress could change after
5229 * the lock is dropped, so once we get a reference
5230 * to the stripe that we think it is, we will have
5231 * to check again.
5232 */
5233 spin_lock_irq(&conf->device_lock);
5234 if (mddev->reshape_backwards
5235 ? logical_sector < conf->reshape_progress
5236 : logical_sector >= conf->reshape_progress) {
5237 previous = 1;
5238 } else {
5239 if (mddev->reshape_backwards
5240 ? logical_sector < conf->reshape_safe
5241 : logical_sector >= conf->reshape_safe) {
5242 spin_unlock_irq(&conf->device_lock);
5243 schedule();
5244 do_prepare = true;
5245 goto retry;
5246 }
5247 }
5248 spin_unlock_irq(&conf->device_lock);
5249 }
5250
5251 new_sector = raid5_compute_sector(conf, logical_sector,
5252 previous,
5253 &dd_idx, NULL);
5254 pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5255 (unsigned long long)new_sector,
5256 (unsigned long long)logical_sector);
5257
5258 sh = raid5_get_active_stripe(conf, new_sector, previous,
5259 (bi->bi_opf & REQ_RAHEAD), 0);
5260 if (sh) {
5261 if (unlikely(previous)) {
5262 /* expansion might have moved on while waiting for a
5263 * stripe, so we must do the range check again.
5264 * Expansion could still move past after this
5265 * test, but as we are holding a reference to
5266 * 'sh', we know that if that happens,
5267 * STRIPE_EXPANDING will get set and the expansion
5268 * won't proceed until we finish with the stripe.
5269 */
5270 int must_retry = 0;
5271 spin_lock_irq(&conf->device_lock);
5272 if (mddev->reshape_backwards
5273 ? logical_sector >= conf->reshape_progress
5274 : logical_sector < conf->reshape_progress)
5275 /* mismatch, need to try again */
5276 must_retry = 1;
5277 spin_unlock_irq(&conf->device_lock);
5278 if (must_retry) {
5279 raid5_release_stripe(sh);
5280 schedule();
5281 do_prepare = true;
5282 goto retry;
5283 }
5284 }
5285 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5286 /* Might have got the wrong stripe_head
5287 * by accident
5288 */
5289 raid5_release_stripe(sh);
5290 goto retry;
5291 }
5292
5293 if (rw == WRITE &&
5294 logical_sector >= mddev->suspend_lo &&
5295 logical_sector < mddev->suspend_hi) {
5296 raid5_release_stripe(sh);
5297 /* As the suspend_* range is controlled by
5298 * userspace, we want an interruptible
5299 * wait.
5300 */
5301 flush_signals(current);
5302 prepare_to_wait(&conf->wait_for_overlap,
5303 &w, TASK_INTERRUPTIBLE);
5304 if (logical_sector >= mddev->suspend_lo &&
5305 logical_sector < mddev->suspend_hi) {
5306 schedule();
5307 do_prepare = true;
5308 }
5309 goto retry;
5310 }
5311
5312 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5313 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5314 /* Stripe is busy expanding or
5315 * add failed due to overlap. Flush everything
5316 * and wait a while
5317 */
5318 md_wakeup_thread(mddev->thread);
5319 raid5_release_stripe(sh);
5320 schedule();
5321 do_prepare = true;
5322 goto retry;
5323 }
5324 set_bit(STRIPE_HANDLE, &sh->state);
5325 clear_bit(STRIPE_DELAYED, &sh->state);
5326 if ((!sh->batch_head || sh == sh->batch_head) &&
5327 (bi->bi_opf & REQ_SYNC) &&
5328 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5329 atomic_inc(&conf->preread_active_stripes);
5330 release_stripe_plug(mddev, sh);
5331 } else {
5332 /* cannot get stripe for read-ahead, just give-up */
5333 bi->bi_error = -EIO;
5334 break;
5335 }
5336 }
5337 finish_wait(&conf->wait_for_overlap, &w);
5338
5339 remaining = raid5_dec_bi_active_stripes(bi);
5340 if (remaining == 0) {
5341
5342 if ( rw == WRITE )
5343 md_write_end(mddev);
5344
5345 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5346 bi, 0);
5347 bio_endio(bi);
5348 }
5349 }
5350
5351 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5352
5353 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5354 {
5355 /* reshaping is quite different to recovery/resync so it is
5356 * handled quite separately ... here.
5357 *
5358 * On each call to sync_request, we gather one chunk worth of
5359 * destination stripes and flag them as expanding.
5360 * Then we find all the source stripes and request reads.
5361 * As the reads complete, handle_stripe will copy the data
5362 * into the destination stripe and release that stripe.
5363 */
5364 struct r5conf *conf = mddev->private;
5365 struct stripe_head *sh;
5366 sector_t first_sector, last_sector;
5367 int raid_disks = conf->previous_raid_disks;
5368 int data_disks = raid_disks - conf->max_degraded;
5369 int new_data_disks = conf->raid_disks - conf->max_degraded;
5370 int i;
5371 int dd_idx;
5372 sector_t writepos, readpos, safepos;
5373 sector_t stripe_addr;
5374 int reshape_sectors;
5375 struct list_head stripes;
5376 sector_t retn;
5377
5378 if (sector_nr == 0) {
5379 /* If restarting in the middle, skip the initial sectors */
5380 if (mddev->reshape_backwards &&
5381 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5382 sector_nr = raid5_size(mddev, 0, 0)
5383 - conf->reshape_progress;
5384 } else if (mddev->reshape_backwards &&
5385 conf->reshape_progress == MaxSector) {
5386 /* shouldn't happen, but just in case, finish up.*/
5387 sector_nr = MaxSector;
5388 } else if (!mddev->reshape_backwards &&
5389 conf->reshape_progress > 0)
5390 sector_nr = conf->reshape_progress;
5391 sector_div(sector_nr, new_data_disks);
5392 if (sector_nr) {
5393 mddev->curr_resync_completed = sector_nr;
5394 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5395 *skipped = 1;
5396 retn = sector_nr;
5397 goto finish;
5398 }
5399 }
5400
5401 /* We need to process a full chunk at a time.
5402 * If old and new chunk sizes differ, we need to process the
5403 * largest of these
5404 */
5405
5406 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5407
5408 /* We update the metadata at least every 10 seconds, or when
5409 * the data about to be copied would over-write the source of
5410 * the data at the front of the range. i.e. one new_stripe
5411 * along from reshape_progress new_maps to after where
5412 * reshape_safe old_maps to
5413 */
5414 writepos = conf->reshape_progress;
5415 sector_div(writepos, new_data_disks);
5416 readpos = conf->reshape_progress;
5417 sector_div(readpos, data_disks);
5418 safepos = conf->reshape_safe;
5419 sector_div(safepos, data_disks);
5420 if (mddev->reshape_backwards) {
5421 BUG_ON(writepos < reshape_sectors);
5422 writepos -= reshape_sectors;
5423 readpos += reshape_sectors;
5424 safepos += reshape_sectors;
5425 } else {
5426 writepos += reshape_sectors;
5427 /* readpos and safepos are worst-case calculations.
5428 * A negative number is overly pessimistic, and causes
5429 * obvious problems for unsigned storage. So clip to 0.
5430 */
5431 readpos -= min_t(sector_t, reshape_sectors, readpos);
5432 safepos -= min_t(sector_t, reshape_sectors, safepos);
5433 }
5434
5435 /* Having calculated the 'writepos' possibly use it
5436 * to set 'stripe_addr' which is where we will write to.
5437 */
5438 if (mddev->reshape_backwards) {
5439 BUG_ON(conf->reshape_progress == 0);
5440 stripe_addr = writepos;
5441 BUG_ON((mddev->dev_sectors &
5442 ~((sector_t)reshape_sectors - 1))
5443 - reshape_sectors - stripe_addr
5444 != sector_nr);
5445 } else {
5446 BUG_ON(writepos != sector_nr + reshape_sectors);
5447 stripe_addr = sector_nr;
5448 }
5449
5450 /* 'writepos' is the most advanced device address we might write.
5451 * 'readpos' is the least advanced device address we might read.
5452 * 'safepos' is the least address recorded in the metadata as having
5453 * been reshaped.
5454 * If there is a min_offset_diff, these are adjusted either by
5455 * increasing the safepos/readpos if diff is negative, or
5456 * increasing writepos if diff is positive.
5457 * If 'readpos' is then behind 'writepos', there is no way that we can
5458 * ensure safety in the face of a crash - that must be done by userspace
5459 * making a backup of the data. So in that case there is no particular
5460 * rush to update metadata.
5461 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5462 * update the metadata to advance 'safepos' to match 'readpos' so that
5463 * we can be safe in the event of a crash.
5464 * So we insist on updating metadata if safepos is behind writepos and
5465 * readpos is beyond writepos.
5466 * In any case, update the metadata every 10 seconds.
5467 * Maybe that number should be configurable, but I'm not sure it is
5468 * worth it.... maybe it could be a multiple of safemode_delay???
5469 */
5470 if (conf->min_offset_diff < 0) {
5471 safepos += -conf->min_offset_diff;
5472 readpos += -conf->min_offset_diff;
5473 } else
5474 writepos += conf->min_offset_diff;
5475
5476 if ((mddev->reshape_backwards
5477 ? (safepos > writepos && readpos < writepos)
5478 : (safepos < writepos && readpos > writepos)) ||
5479 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5480 /* Cannot proceed until we've updated the superblock... */
5481 wait_event(conf->wait_for_overlap,
5482 atomic_read(&conf->reshape_stripes)==0
5483 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5484 if (atomic_read(&conf->reshape_stripes) != 0)
5485 return 0;
5486 mddev->reshape_position = conf->reshape_progress;
5487 mddev->curr_resync_completed = sector_nr;
5488 conf->reshape_checkpoint = jiffies;
5489 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5490 md_wakeup_thread(mddev->thread);
5491 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5492 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5493 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5494 return 0;
5495 spin_lock_irq(&conf->device_lock);
5496 conf->reshape_safe = mddev->reshape_position;
5497 spin_unlock_irq(&conf->device_lock);
5498 wake_up(&conf->wait_for_overlap);
5499 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5500 }
5501
5502 INIT_LIST_HEAD(&stripes);
5503 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5504 int j;
5505 int skipped_disk = 0;
5506 sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5507 set_bit(STRIPE_EXPANDING, &sh->state);
5508 atomic_inc(&conf->reshape_stripes);
5509 /* If any of this stripe is beyond the end of the old
5510 * array, then we need to zero those blocks
5511 */
5512 for (j=sh->disks; j--;) {
5513 sector_t s;
5514 if (j == sh->pd_idx)
5515 continue;
5516 if (conf->level == 6 &&
5517 j == sh->qd_idx)
5518 continue;
5519 s = raid5_compute_blocknr(sh, j, 0);
5520 if (s < raid5_size(mddev, 0, 0)) {
5521 skipped_disk = 1;
5522 continue;
5523 }
5524 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5525 set_bit(R5_Expanded, &sh->dev[j].flags);
5526 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5527 }
5528 if (!skipped_disk) {
5529 set_bit(STRIPE_EXPAND_READY, &sh->state);
5530 set_bit(STRIPE_HANDLE, &sh->state);
5531 }
5532 list_add(&sh->lru, &stripes);
5533 }
5534 spin_lock_irq(&conf->device_lock);
5535 if (mddev->reshape_backwards)
5536 conf->reshape_progress -= reshape_sectors * new_data_disks;
5537 else
5538 conf->reshape_progress += reshape_sectors * new_data_disks;
5539 spin_unlock_irq(&conf->device_lock);
5540 /* Ok, those stripe are ready. We can start scheduling
5541 * reads on the source stripes.
5542 * The source stripes are determined by mapping the first and last
5543 * block on the destination stripes.
5544 */
5545 first_sector =
5546 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5547 1, &dd_idx, NULL);
5548 last_sector =
5549 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5550 * new_data_disks - 1),
5551 1, &dd_idx, NULL);
5552 if (last_sector >= mddev->dev_sectors)
5553 last_sector = mddev->dev_sectors - 1;
5554 while (first_sector <= last_sector) {
5555 sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5556 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5557 set_bit(STRIPE_HANDLE, &sh->state);
5558 raid5_release_stripe(sh);
5559 first_sector += STRIPE_SECTORS;
5560 }
5561 /* Now that the sources are clearly marked, we can release
5562 * the destination stripes
5563 */
5564 while (!list_empty(&stripes)) {
5565 sh = list_entry(stripes.next, struct stripe_head, lru);
5566 list_del_init(&sh->lru);
5567 raid5_release_stripe(sh);
5568 }
5569 /* If this takes us to the resync_max point where we have to pause,
5570 * then we need to write out the superblock.
5571 */
5572 sector_nr += reshape_sectors;
5573 retn = reshape_sectors;
5574 finish:
5575 if (mddev->curr_resync_completed > mddev->resync_max ||
5576 (sector_nr - mddev->curr_resync_completed) * 2
5577 >= mddev->resync_max - mddev->curr_resync_completed) {
5578 /* Cannot proceed until we've updated the superblock... */
5579 wait_event(conf->wait_for_overlap,
5580 atomic_read(&conf->reshape_stripes) == 0
5581 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5582 if (atomic_read(&conf->reshape_stripes) != 0)
5583 goto ret;
5584 mddev->reshape_position = conf->reshape_progress;
5585 mddev->curr_resync_completed = sector_nr;
5586 conf->reshape_checkpoint = jiffies;
5587 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5588 md_wakeup_thread(mddev->thread);
5589 wait_event(mddev->sb_wait,
5590 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5591 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5592 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5593 goto ret;
5594 spin_lock_irq(&conf->device_lock);
5595 conf->reshape_safe = mddev->reshape_position;
5596 spin_unlock_irq(&conf->device_lock);
5597 wake_up(&conf->wait_for_overlap);
5598 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5599 }
5600 ret:
5601 return retn;
5602 }
5603
5604 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
5605 int *skipped)
5606 {
5607 struct r5conf *conf = mddev->private;
5608 struct stripe_head *sh;
5609 sector_t max_sector = mddev->dev_sectors;
5610 sector_t sync_blocks;
5611 int still_degraded = 0;
5612 int i;
5613
5614 if (sector_nr >= max_sector) {
5615 /* just being told to finish up .. nothing much to do */
5616
5617 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5618 end_reshape(conf);
5619 return 0;
5620 }
5621
5622 if (mddev->curr_resync < max_sector) /* aborted */
5623 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5624 &sync_blocks, 1);
5625 else /* completed sync */
5626 conf->fullsync = 0;
5627 bitmap_close_sync(mddev->bitmap);
5628
5629 return 0;
5630 }
5631
5632 /* Allow raid5_quiesce to complete */
5633 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5634
5635 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5636 return reshape_request(mddev, sector_nr, skipped);
5637
5638 /* No need to check resync_max as we never do more than one
5639 * stripe, and as resync_max will always be on a chunk boundary,
5640 * if the check in md_do_sync didn't fire, there is no chance
5641 * of overstepping resync_max here
5642 */
5643
5644 /* if there is too many failed drives and we are trying
5645 * to resync, then assert that we are finished, because there is
5646 * nothing we can do.
5647 */
5648 if (mddev->degraded >= conf->max_degraded &&
5649 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5650 sector_t rv = mddev->dev_sectors - sector_nr;
5651 *skipped = 1;
5652 return rv;
5653 }
5654 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5655 !conf->fullsync &&
5656 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5657 sync_blocks >= STRIPE_SECTORS) {
5658 /* we can skip this block, and probably more */
5659 sync_blocks /= STRIPE_SECTORS;
5660 *skipped = 1;
5661 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5662 }
5663
5664 bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
5665
5666 sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
5667 if (sh == NULL) {
5668 sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
5669 /* make sure we don't swamp the stripe cache if someone else
5670 * is trying to get access
5671 */
5672 schedule_timeout_uninterruptible(1);
5673 }
5674 /* Need to check if array will still be degraded after recovery/resync
5675 * Note in case of > 1 drive failures it's possible we're rebuilding
5676 * one drive while leaving another faulty drive in array.
5677 */
5678 rcu_read_lock();
5679 for (i = 0; i < conf->raid_disks; i++) {
5680 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5681
5682 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5683 still_degraded = 1;
5684 }
5685 rcu_read_unlock();
5686
5687 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5688
5689 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5690 set_bit(STRIPE_HANDLE, &sh->state);
5691
5692 raid5_release_stripe(sh);
5693
5694 return STRIPE_SECTORS;
5695 }
5696
5697 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5698 {
5699 /* We may not be able to submit a whole bio at once as there
5700 * may not be enough stripe_heads available.
5701 * We cannot pre-allocate enough stripe_heads as we may need
5702 * more than exist in the cache (if we allow ever large chunks).
5703 * So we do one stripe head at a time and record in
5704 * ->bi_hw_segments how many have been done.
5705 *
5706 * We *know* that this entire raid_bio is in one chunk, so
5707 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5708 */
5709 struct stripe_head *sh;
5710 int dd_idx;
5711 sector_t sector, logical_sector, last_sector;
5712 int scnt = 0;
5713 int remaining;
5714 int handled = 0;
5715
5716 logical_sector = raid_bio->bi_iter.bi_sector &
5717 ~((sector_t)STRIPE_SECTORS-1);
5718 sector = raid5_compute_sector(conf, logical_sector,
5719 0, &dd_idx, NULL);
5720 last_sector = bio_end_sector(raid_bio);
5721
5722 for (; logical_sector < last_sector;
5723 logical_sector += STRIPE_SECTORS,
5724 sector += STRIPE_SECTORS,
5725 scnt++) {
5726
5727 if (scnt < raid5_bi_processed_stripes(raid_bio))
5728 /* already done this stripe */
5729 continue;
5730
5731 sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
5732
5733 if (!sh) {
5734 /* failed to get a stripe - must wait */
5735 raid5_set_bi_processed_stripes(raid_bio, scnt);
5736 conf->retry_read_aligned = raid_bio;
5737 return handled;
5738 }
5739
5740 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5741 raid5_release_stripe(sh);
5742 raid5_set_bi_processed_stripes(raid_bio, scnt);
5743 conf->retry_read_aligned = raid_bio;
5744 return handled;
5745 }
5746
5747 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5748 handle_stripe(sh);
5749 raid5_release_stripe(sh);
5750 handled++;
5751 }
5752 remaining = raid5_dec_bi_active_stripes(raid_bio);
5753 if (remaining == 0) {
5754 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5755 raid_bio, 0);
5756 bio_endio(raid_bio);
5757 }
5758 if (atomic_dec_and_test(&conf->active_aligned_reads))
5759 wake_up(&conf->wait_for_quiescent);
5760 return handled;
5761 }
5762
5763 static int handle_active_stripes(struct r5conf *conf, int group,
5764 struct r5worker *worker,
5765 struct list_head *temp_inactive_list)
5766 {
5767 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5768 int i, batch_size = 0, hash;
5769 bool release_inactive = false;
5770
5771 while (batch_size < MAX_STRIPE_BATCH &&
5772 (sh = __get_priority_stripe(conf, group)) != NULL)
5773 batch[batch_size++] = sh;
5774
5775 if (batch_size == 0) {
5776 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5777 if (!list_empty(temp_inactive_list + i))
5778 break;
5779 if (i == NR_STRIPE_HASH_LOCKS) {
5780 spin_unlock_irq(&conf->device_lock);
5781 r5l_flush_stripe_to_raid(conf->log);
5782 spin_lock_irq(&conf->device_lock);
5783 return batch_size;
5784 }
5785 release_inactive = true;
5786 }
5787 spin_unlock_irq(&conf->device_lock);
5788
5789 release_inactive_stripe_list(conf, temp_inactive_list,
5790 NR_STRIPE_HASH_LOCKS);
5791
5792 r5l_flush_stripe_to_raid(conf->log);
5793 if (release_inactive) {
5794 spin_lock_irq(&conf->device_lock);
5795 return 0;
5796 }
5797
5798 for (i = 0; i < batch_size; i++)
5799 handle_stripe(batch[i]);
5800 r5l_write_stripe_run(conf->log);
5801
5802 cond_resched();
5803
5804 spin_lock_irq(&conf->device_lock);
5805 for (i = 0; i < batch_size; i++) {
5806 hash = batch[i]->hash_lock_index;
5807 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5808 }
5809 return batch_size;
5810 }
5811
5812 static void raid5_do_work(struct work_struct *work)
5813 {
5814 struct r5worker *worker = container_of(work, struct r5worker, work);
5815 struct r5worker_group *group = worker->group;
5816 struct r5conf *conf = group->conf;
5817 int group_id = group - conf->worker_groups;
5818 int handled;
5819 struct blk_plug plug;
5820
5821 pr_debug("+++ raid5worker active\n");
5822
5823 blk_start_plug(&plug);
5824 handled = 0;
5825 spin_lock_irq(&conf->device_lock);
5826 while (1) {
5827 int batch_size, released;
5828
5829 released = release_stripe_list(conf, worker->temp_inactive_list);
5830
5831 batch_size = handle_active_stripes(conf, group_id, worker,
5832 worker->temp_inactive_list);
5833 worker->working = false;
5834 if (!batch_size && !released)
5835 break;
5836 handled += batch_size;
5837 }
5838 pr_debug("%d stripes handled\n", handled);
5839
5840 spin_unlock_irq(&conf->device_lock);
5841 blk_finish_plug(&plug);
5842
5843 pr_debug("--- raid5worker inactive\n");
5844 }
5845
5846 /*
5847 * This is our raid5 kernel thread.
5848 *
5849 * We scan the hash table for stripes which can be handled now.
5850 * During the scan, completed stripes are saved for us by the interrupt
5851 * handler, so that they will not have to wait for our next wakeup.
5852 */
5853 static void raid5d(struct md_thread *thread)
5854 {
5855 struct mddev *mddev = thread->mddev;
5856 struct r5conf *conf = mddev->private;
5857 int handled;
5858 struct blk_plug plug;
5859
5860 pr_debug("+++ raid5d active\n");
5861
5862 md_check_recovery(mddev);
5863
5864 if (!bio_list_empty(&conf->return_bi) &&
5865 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5866 struct bio_list tmp = BIO_EMPTY_LIST;
5867 spin_lock_irq(&conf->device_lock);
5868 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
5869 bio_list_merge(&tmp, &conf->return_bi);
5870 bio_list_init(&conf->return_bi);
5871 }
5872 spin_unlock_irq(&conf->device_lock);
5873 return_io(&tmp);
5874 }
5875
5876 blk_start_plug(&plug);
5877 handled = 0;
5878 spin_lock_irq(&conf->device_lock);
5879 while (1) {
5880 struct bio *bio;
5881 int batch_size, released;
5882
5883 released = release_stripe_list(conf, conf->temp_inactive_list);
5884 if (released)
5885 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5886
5887 if (
5888 !list_empty(&conf->bitmap_list)) {
5889 /* Now is a good time to flush some bitmap updates */
5890 conf->seq_flush++;
5891 spin_unlock_irq(&conf->device_lock);
5892 bitmap_unplug(mddev->bitmap);
5893 spin_lock_irq(&conf->device_lock);
5894 conf->seq_write = conf->seq_flush;
5895 activate_bit_delay(conf, conf->temp_inactive_list);
5896 }
5897 raid5_activate_delayed(conf);
5898
5899 while ((bio = remove_bio_from_retry(conf))) {
5900 int ok;
5901 spin_unlock_irq(&conf->device_lock);
5902 ok = retry_aligned_read(conf, bio);
5903 spin_lock_irq(&conf->device_lock);
5904 if (!ok)
5905 break;
5906 handled++;
5907 }
5908
5909 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5910 conf->temp_inactive_list);
5911 if (!batch_size && !released)
5912 break;
5913 handled += batch_size;
5914
5915 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5916 spin_unlock_irq(&conf->device_lock);
5917 md_check_recovery(mddev);
5918 spin_lock_irq(&conf->device_lock);
5919 }
5920 }
5921 pr_debug("%d stripes handled\n", handled);
5922
5923 spin_unlock_irq(&conf->device_lock);
5924 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
5925 mutex_trylock(&conf->cache_size_mutex)) {
5926 grow_one_stripe(conf, __GFP_NOWARN);
5927 /* Set flag even if allocation failed. This helps
5928 * slow down allocation requests when mem is short
5929 */
5930 set_bit(R5_DID_ALLOC, &conf->cache_state);
5931 mutex_unlock(&conf->cache_size_mutex);
5932 }
5933
5934 r5l_flush_stripe_to_raid(conf->log);
5935
5936 async_tx_issue_pending_all();
5937 blk_finish_plug(&plug);
5938
5939 pr_debug("--- raid5d inactive\n");
5940 }
5941
5942 static ssize_t
5943 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5944 {
5945 struct r5conf *conf;
5946 int ret = 0;
5947 spin_lock(&mddev->lock);
5948 conf = mddev->private;
5949 if (conf)
5950 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5951 spin_unlock(&mddev->lock);
5952 return ret;
5953 }
5954
5955 int
5956 raid5_set_cache_size(struct mddev *mddev, int size)
5957 {
5958 struct r5conf *conf = mddev->private;
5959 int err;
5960
5961 if (size <= 16 || size > 32768)
5962 return -EINVAL;
5963
5964 conf->min_nr_stripes = size;
5965 mutex_lock(&conf->cache_size_mutex);
5966 while (size < conf->max_nr_stripes &&
5967 drop_one_stripe(conf))
5968 ;
5969 mutex_unlock(&conf->cache_size_mutex);
5970
5971
5972 err = md_allow_write(mddev);
5973 if (err)
5974 return err;
5975
5976 mutex_lock(&conf->cache_size_mutex);
5977 while (size > conf->max_nr_stripes)
5978 if (!grow_one_stripe(conf, GFP_KERNEL))
5979 break;
5980 mutex_unlock(&conf->cache_size_mutex);
5981
5982 return 0;
5983 }
5984 EXPORT_SYMBOL(raid5_set_cache_size);
5985
5986 static ssize_t
5987 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5988 {
5989 struct r5conf *conf;
5990 unsigned long new;
5991 int err;
5992
5993 if (len >= PAGE_SIZE)
5994 return -EINVAL;
5995 if (kstrtoul(page, 10, &new))
5996 return -EINVAL;
5997 err = mddev_lock(mddev);
5998 if (err)
5999 return err;
6000 conf = mddev->private;
6001 if (!conf)
6002 err = -ENODEV;
6003 else
6004 err = raid5_set_cache_size(mddev, new);
6005 mddev_unlock(mddev);
6006
6007 return err ?: len;
6008 }
6009
6010 static struct md_sysfs_entry
6011 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6012 raid5_show_stripe_cache_size,
6013 raid5_store_stripe_cache_size);
6014
6015 static ssize_t
6016 raid5_show_rmw_level(struct mddev *mddev, char *page)
6017 {
6018 struct r5conf *conf = mddev->private;
6019 if (conf)
6020 return sprintf(page, "%d\n", conf->rmw_level);
6021 else
6022 return 0;
6023 }
6024
6025 static ssize_t
6026 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6027 {
6028 struct r5conf *conf = mddev->private;
6029 unsigned long new;
6030
6031 if (!conf)
6032 return -ENODEV;
6033
6034 if (len >= PAGE_SIZE)
6035 return -EINVAL;
6036
6037 if (kstrtoul(page, 10, &new))
6038 return -EINVAL;
6039
6040 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6041 return -EINVAL;
6042
6043 if (new != PARITY_DISABLE_RMW &&
6044 new != PARITY_ENABLE_RMW &&
6045 new != PARITY_PREFER_RMW)
6046 return -EINVAL;
6047
6048 conf->rmw_level = new;
6049 return len;
6050 }
6051
6052 static struct md_sysfs_entry
6053 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6054 raid5_show_rmw_level,
6055 raid5_store_rmw_level);
6056
6057
6058 static ssize_t
6059 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6060 {
6061 struct r5conf *conf;
6062 int ret = 0;
6063 spin_lock(&mddev->lock);
6064 conf = mddev->private;
6065 if (conf)
6066 ret = sprintf(page, "%d\n", conf->bypass_threshold);
6067 spin_unlock(&mddev->lock);
6068 return ret;
6069 }
6070
6071 static ssize_t
6072 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6073 {
6074 struct r5conf *conf;
6075 unsigned long new;
6076 int err;
6077
6078 if (len >= PAGE_SIZE)
6079 return -EINVAL;
6080 if (kstrtoul(page, 10, &new))
6081 return -EINVAL;
6082
6083 err = mddev_lock(mddev);
6084 if (err)
6085 return err;
6086 conf = mddev->private;
6087 if (!conf)
6088 err = -ENODEV;
6089 else if (new > conf->min_nr_stripes)
6090 err = -EINVAL;
6091 else
6092 conf->bypass_threshold = new;
6093 mddev_unlock(mddev);
6094 return err ?: len;
6095 }
6096
6097 static struct md_sysfs_entry
6098 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6099 S_IRUGO | S_IWUSR,
6100 raid5_show_preread_threshold,
6101 raid5_store_preread_threshold);
6102
6103 static ssize_t
6104 raid5_show_skip_copy(struct mddev *mddev, char *page)
6105 {
6106 struct r5conf *conf;
6107 int ret = 0;
6108 spin_lock(&mddev->lock);
6109 conf = mddev->private;
6110 if (conf)
6111 ret = sprintf(page, "%d\n", conf->skip_copy);
6112 spin_unlock(&mddev->lock);
6113 return ret;
6114 }
6115
6116 static ssize_t
6117 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6118 {
6119 struct r5conf *conf;
6120 unsigned long new;
6121 int err;
6122
6123 if (len >= PAGE_SIZE)
6124 return -EINVAL;
6125 if (kstrtoul(page, 10, &new))
6126 return -EINVAL;
6127 new = !!new;
6128
6129 err = mddev_lock(mddev);
6130 if (err)
6131 return err;
6132 conf = mddev->private;
6133 if (!conf)
6134 err = -ENODEV;
6135 else if (new != conf->skip_copy) {
6136 mddev_suspend(mddev);
6137 conf->skip_copy = new;
6138 if (new)
6139 mddev->queue->backing_dev_info.capabilities |=
6140 BDI_CAP_STABLE_WRITES;
6141 else
6142 mddev->queue->backing_dev_info.capabilities &=
6143 ~BDI_CAP_STABLE_WRITES;
6144 mddev_resume(mddev);
6145 }
6146 mddev_unlock(mddev);
6147 return err ?: len;
6148 }
6149
6150 static struct md_sysfs_entry
6151 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6152 raid5_show_skip_copy,
6153 raid5_store_skip_copy);
6154
6155 static ssize_t
6156 stripe_cache_active_show(struct mddev *mddev, char *page)
6157 {
6158 struct r5conf *conf = mddev->private;
6159 if (conf)
6160 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6161 else
6162 return 0;
6163 }
6164
6165 static struct md_sysfs_entry
6166 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6167
6168 static ssize_t
6169 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6170 {
6171 struct r5conf *conf;
6172 int ret = 0;
6173 spin_lock(&mddev->lock);
6174 conf = mddev->private;
6175 if (conf)
6176 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6177 spin_unlock(&mddev->lock);
6178 return ret;
6179 }
6180
6181 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6182 int *group_cnt,
6183 int *worker_cnt_per_group,
6184 struct r5worker_group **worker_groups);
6185 static ssize_t
6186 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6187 {
6188 struct r5conf *conf;
6189 unsigned long new;
6190 int err;
6191 struct r5worker_group *new_groups, *old_groups;
6192 int group_cnt, worker_cnt_per_group;
6193
6194 if (len >= PAGE_SIZE)
6195 return -EINVAL;
6196 if (kstrtoul(page, 10, &new))
6197 return -EINVAL;
6198
6199 err = mddev_lock(mddev);
6200 if (err)
6201 return err;
6202 conf = mddev->private;
6203 if (!conf)
6204 err = -ENODEV;
6205 else if (new != conf->worker_cnt_per_group) {
6206 mddev_suspend(mddev);
6207
6208 old_groups = conf->worker_groups;
6209 if (old_groups)
6210 flush_workqueue(raid5_wq);
6211
6212 err = alloc_thread_groups(conf, new,
6213 &group_cnt, &worker_cnt_per_group,
6214 &new_groups);
6215 if (!err) {
6216 spin_lock_irq(&conf->device_lock);
6217 conf->group_cnt = group_cnt;
6218 conf->worker_cnt_per_group = worker_cnt_per_group;
6219 conf->worker_groups = new_groups;
6220 spin_unlock_irq(&conf->device_lock);
6221
6222 if (old_groups)
6223 kfree(old_groups[0].workers);
6224 kfree(old_groups);
6225 }
6226 mddev_resume(mddev);
6227 }
6228 mddev_unlock(mddev);
6229
6230 return err ?: len;
6231 }
6232
6233 static struct md_sysfs_entry
6234 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6235 raid5_show_group_thread_cnt,
6236 raid5_store_group_thread_cnt);
6237
6238 static struct attribute *raid5_attrs[] = {
6239 &raid5_stripecache_size.attr,
6240 &raid5_stripecache_active.attr,
6241 &raid5_preread_bypass_threshold.attr,
6242 &raid5_group_thread_cnt.attr,
6243 &raid5_skip_copy.attr,
6244 &raid5_rmw_level.attr,
6245 NULL,
6246 };
6247 static struct attribute_group raid5_attrs_group = {
6248 .name = NULL,
6249 .attrs = raid5_attrs,
6250 };
6251
6252 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6253 int *group_cnt,
6254 int *worker_cnt_per_group,
6255 struct r5worker_group **worker_groups)
6256 {
6257 int i, j, k;
6258 ssize_t size;
6259 struct r5worker *workers;
6260
6261 *worker_cnt_per_group = cnt;
6262 if (cnt == 0) {
6263 *group_cnt = 0;
6264 *worker_groups = NULL;
6265 return 0;
6266 }
6267 *group_cnt = num_possible_nodes();
6268 size = sizeof(struct r5worker) * cnt;
6269 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6270 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6271 *group_cnt, GFP_NOIO);
6272 if (!*worker_groups || !workers) {
6273 kfree(workers);
6274 kfree(*worker_groups);
6275 return -ENOMEM;
6276 }
6277
6278 for (i = 0; i < *group_cnt; i++) {
6279 struct r5worker_group *group;
6280
6281 group = &(*worker_groups)[i];
6282 INIT_LIST_HEAD(&group->handle_list);
6283 group->conf = conf;
6284 group->workers = workers + i * cnt;
6285
6286 for (j = 0; j < cnt; j++) {
6287 struct r5worker *worker = group->workers + j;
6288 worker->group = group;
6289 INIT_WORK(&worker->work, raid5_do_work);
6290
6291 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6292 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6293 }
6294 }
6295
6296 return 0;
6297 }
6298
6299 static void free_thread_groups(struct r5conf *conf)
6300 {
6301 if (conf->worker_groups)
6302 kfree(conf->worker_groups[0].workers);
6303 kfree(conf->worker_groups);
6304 conf->worker_groups = NULL;
6305 }
6306
6307 static sector_t
6308 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6309 {
6310 struct r5conf *conf = mddev->private;
6311
6312 if (!sectors)
6313 sectors = mddev->dev_sectors;
6314 if (!raid_disks)
6315 /* size is defined by the smallest of previous and new size */
6316 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6317
6318 sectors &= ~((sector_t)conf->chunk_sectors - 1);
6319 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6320 return sectors * (raid_disks - conf->max_degraded);
6321 }
6322
6323 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6324 {
6325 safe_put_page(percpu->spare_page);
6326 if (percpu->scribble)
6327 flex_array_free(percpu->scribble);
6328 percpu->spare_page = NULL;
6329 percpu->scribble = NULL;
6330 }
6331
6332 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6333 {
6334 if (conf->level == 6 && !percpu->spare_page)
6335 percpu->spare_page = alloc_page(GFP_KERNEL);
6336 if (!percpu->scribble)
6337 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6338 conf->previous_raid_disks),
6339 max(conf->chunk_sectors,
6340 conf->prev_chunk_sectors)
6341 / STRIPE_SECTORS,
6342 GFP_KERNEL);
6343
6344 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6345 free_scratch_buffer(conf, percpu);
6346 return -ENOMEM;
6347 }
6348
6349 return 0;
6350 }
6351
6352 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6353 {
6354 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6355
6356 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6357 return 0;
6358 }
6359
6360 static void raid5_free_percpu(struct r5conf *conf)
6361 {
6362 if (!conf->percpu)
6363 return;
6364
6365 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6366 free_percpu(conf->percpu);
6367 }
6368
6369 static void free_conf(struct r5conf *conf)
6370 {
6371 if (conf->log)
6372 r5l_exit_log(conf->log);
6373 if (conf->shrinker.seeks)
6374 unregister_shrinker(&conf->shrinker);
6375
6376 free_thread_groups(conf);
6377 shrink_stripes(conf);
6378 raid5_free_percpu(conf);
6379 kfree(conf->disks);
6380 kfree(conf->stripe_hashtbl);
6381 kfree(conf);
6382 }
6383
6384 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6385 {
6386 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6387 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6388
6389 if (alloc_scratch_buffer(conf, percpu)) {
6390 pr_err("%s: failed memory allocation for cpu%u\n",
6391 __func__, cpu);
6392 return -ENOMEM;
6393 }
6394 return 0;
6395 }
6396
6397 static int raid5_alloc_percpu(struct r5conf *conf)
6398 {
6399 int err = 0;
6400
6401 conf->percpu = alloc_percpu(struct raid5_percpu);
6402 if (!conf->percpu)
6403 return -ENOMEM;
6404
6405 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6406 if (!err) {
6407 conf->scribble_disks = max(conf->raid_disks,
6408 conf->previous_raid_disks);
6409 conf->scribble_sectors = max(conf->chunk_sectors,
6410 conf->prev_chunk_sectors);
6411 }
6412 return err;
6413 }
6414
6415 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6416 struct shrink_control *sc)
6417 {
6418 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6419 unsigned long ret = SHRINK_STOP;
6420
6421 if (mutex_trylock(&conf->cache_size_mutex)) {
6422 ret= 0;
6423 while (ret < sc->nr_to_scan &&
6424 conf->max_nr_stripes > conf->min_nr_stripes) {
6425 if (drop_one_stripe(conf) == 0) {
6426 ret = SHRINK_STOP;
6427 break;
6428 }
6429 ret++;
6430 }
6431 mutex_unlock(&conf->cache_size_mutex);
6432 }
6433 return ret;
6434 }
6435
6436 static unsigned long raid5_cache_count(struct shrinker *shrink,
6437 struct shrink_control *sc)
6438 {
6439 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6440
6441 if (conf->max_nr_stripes < conf->min_nr_stripes)
6442 /* unlikely, but not impossible */
6443 return 0;
6444 return conf->max_nr_stripes - conf->min_nr_stripes;
6445 }
6446
6447 static struct r5conf *setup_conf(struct mddev *mddev)
6448 {
6449 struct r5conf *conf;
6450 int raid_disk, memory, max_disks;
6451 struct md_rdev *rdev;
6452 struct disk_info *disk;
6453 char pers_name[6];
6454 int i;
6455 int group_cnt, worker_cnt_per_group;
6456 struct r5worker_group *new_group;
6457
6458 if (mddev->new_level != 5
6459 && mddev->new_level != 4
6460 && mddev->new_level != 6) {
6461 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6462 mdname(mddev), mddev->new_level);
6463 return ERR_PTR(-EIO);
6464 }
6465 if ((mddev->new_level == 5
6466 && !algorithm_valid_raid5(mddev->new_layout)) ||
6467 (mddev->new_level == 6
6468 && !algorithm_valid_raid6(mddev->new_layout))) {
6469 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6470 mdname(mddev), mddev->new_layout);
6471 return ERR_PTR(-EIO);
6472 }
6473 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6474 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6475 mdname(mddev), mddev->raid_disks);
6476 return ERR_PTR(-EINVAL);
6477 }
6478
6479 if (!mddev->new_chunk_sectors ||
6480 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6481 !is_power_of_2(mddev->new_chunk_sectors)) {
6482 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6483 mdname(mddev), mddev->new_chunk_sectors << 9);
6484 return ERR_PTR(-EINVAL);
6485 }
6486
6487 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6488 if (conf == NULL)
6489 goto abort;
6490 /* Don't enable multi-threading by default*/
6491 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6492 &new_group)) {
6493 conf->group_cnt = group_cnt;
6494 conf->worker_cnt_per_group = worker_cnt_per_group;
6495 conf->worker_groups = new_group;
6496 } else
6497 goto abort;
6498 spin_lock_init(&conf->device_lock);
6499 seqcount_init(&conf->gen_lock);
6500 mutex_init(&conf->cache_size_mutex);
6501 init_waitqueue_head(&conf->wait_for_quiescent);
6502 init_waitqueue_head(&conf->wait_for_stripe);
6503 init_waitqueue_head(&conf->wait_for_overlap);
6504 INIT_LIST_HEAD(&conf->handle_list);
6505 INIT_LIST_HEAD(&conf->hold_list);
6506 INIT_LIST_HEAD(&conf->delayed_list);
6507 INIT_LIST_HEAD(&conf->bitmap_list);
6508 bio_list_init(&conf->return_bi);
6509 init_llist_head(&conf->released_stripes);
6510 atomic_set(&conf->active_stripes, 0);
6511 atomic_set(&conf->preread_active_stripes, 0);
6512 atomic_set(&conf->active_aligned_reads, 0);
6513 conf->bypass_threshold = BYPASS_THRESHOLD;
6514 conf->recovery_disabled = mddev->recovery_disabled - 1;
6515
6516 conf->raid_disks = mddev->raid_disks;
6517 if (mddev->reshape_position == MaxSector)
6518 conf->previous_raid_disks = mddev->raid_disks;
6519 else
6520 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6521 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6522
6523 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6524 GFP_KERNEL);
6525 if (!conf->disks)
6526 goto abort;
6527
6528 conf->mddev = mddev;
6529
6530 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6531 goto abort;
6532
6533 /* We init hash_locks[0] separately to that it can be used
6534 * as the reference lock in the spin_lock_nest_lock() call
6535 * in lock_all_device_hash_locks_irq in order to convince
6536 * lockdep that we know what we are doing.
6537 */
6538 spin_lock_init(conf->hash_locks);
6539 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6540 spin_lock_init(conf->hash_locks + i);
6541
6542 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6543 INIT_LIST_HEAD(conf->inactive_list + i);
6544
6545 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6546 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6547
6548 conf->level = mddev->new_level;
6549 conf->chunk_sectors = mddev->new_chunk_sectors;
6550 if (raid5_alloc_percpu(conf) != 0)
6551 goto abort;
6552
6553 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6554
6555 rdev_for_each(rdev, mddev) {
6556 raid_disk = rdev->raid_disk;
6557 if (raid_disk >= max_disks
6558 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
6559 continue;
6560 disk = conf->disks + raid_disk;
6561
6562 if (test_bit(Replacement, &rdev->flags)) {
6563 if (disk->replacement)
6564 goto abort;
6565 disk->replacement = rdev;
6566 } else {
6567 if (disk->rdev)
6568 goto abort;
6569 disk->rdev = rdev;
6570 }
6571
6572 if (test_bit(In_sync, &rdev->flags)) {
6573 char b[BDEVNAME_SIZE];
6574 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6575 " disk %d\n",
6576 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6577 } else if (rdev->saved_raid_disk != raid_disk)
6578 /* Cannot rely on bitmap to complete recovery */
6579 conf->fullsync = 1;
6580 }
6581
6582 conf->level = mddev->new_level;
6583 if (conf->level == 6) {
6584 conf->max_degraded = 2;
6585 if (raid6_call.xor_syndrome)
6586 conf->rmw_level = PARITY_ENABLE_RMW;
6587 else
6588 conf->rmw_level = PARITY_DISABLE_RMW;
6589 } else {
6590 conf->max_degraded = 1;
6591 conf->rmw_level = PARITY_ENABLE_RMW;
6592 }
6593 conf->algorithm = mddev->new_layout;
6594 conf->reshape_progress = mddev->reshape_position;
6595 if (conf->reshape_progress != MaxSector) {
6596 conf->prev_chunk_sectors = mddev->chunk_sectors;
6597 conf->prev_algo = mddev->layout;
6598 } else {
6599 conf->prev_chunk_sectors = conf->chunk_sectors;
6600 conf->prev_algo = conf->algorithm;
6601 }
6602
6603 conf->min_nr_stripes = NR_STRIPES;
6604 if (mddev->reshape_position != MaxSector) {
6605 int stripes = max_t(int,
6606 ((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
6607 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
6608 conf->min_nr_stripes = max(NR_STRIPES, stripes);
6609 if (conf->min_nr_stripes != NR_STRIPES)
6610 printk(KERN_INFO
6611 "md/raid:%s: force stripe size %d for reshape\n",
6612 mdname(mddev), conf->min_nr_stripes);
6613 }
6614 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6615 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6616 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6617 if (grow_stripes(conf, conf->min_nr_stripes)) {
6618 printk(KERN_ERR
6619 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6620 mdname(mddev), memory);
6621 goto abort;
6622 } else
6623 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6624 mdname(mddev), memory);
6625 /*
6626 * Losing a stripe head costs more than the time to refill it,
6627 * it reduces the queue depth and so can hurt throughput.
6628 * So set it rather large, scaled by number of devices.
6629 */
6630 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6631 conf->shrinker.scan_objects = raid5_cache_scan;
6632 conf->shrinker.count_objects = raid5_cache_count;
6633 conf->shrinker.batch = 128;
6634 conf->shrinker.flags = 0;
6635 register_shrinker(&conf->shrinker);
6636
6637 sprintf(pers_name, "raid%d", mddev->new_level);
6638 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6639 if (!conf->thread) {
6640 printk(KERN_ERR
6641 "md/raid:%s: couldn't allocate thread.\n",
6642 mdname(mddev));
6643 goto abort;
6644 }
6645
6646 return conf;
6647
6648 abort:
6649 if (conf) {
6650 free_conf(conf);
6651 return ERR_PTR(-EIO);
6652 } else
6653 return ERR_PTR(-ENOMEM);
6654 }
6655
6656 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6657 {
6658 switch (algo) {
6659 case ALGORITHM_PARITY_0:
6660 if (raid_disk < max_degraded)
6661 return 1;
6662 break;
6663 case ALGORITHM_PARITY_N:
6664 if (raid_disk >= raid_disks - max_degraded)
6665 return 1;
6666 break;
6667 case ALGORITHM_PARITY_0_6:
6668 if (raid_disk == 0 ||
6669 raid_disk == raid_disks - 1)
6670 return 1;
6671 break;
6672 case ALGORITHM_LEFT_ASYMMETRIC_6:
6673 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6674 case ALGORITHM_LEFT_SYMMETRIC_6:
6675 case ALGORITHM_RIGHT_SYMMETRIC_6:
6676 if (raid_disk == raid_disks - 1)
6677 return 1;
6678 }
6679 return 0;
6680 }
6681
6682 static int raid5_run(struct mddev *mddev)
6683 {
6684 struct r5conf *conf;
6685 int working_disks = 0;
6686 int dirty_parity_disks = 0;
6687 struct md_rdev *rdev;
6688 struct md_rdev *journal_dev = NULL;
6689 sector_t reshape_offset = 0;
6690 int i;
6691 long long min_offset_diff = 0;
6692 int first = 1;
6693
6694 if (mddev->recovery_cp != MaxSector)
6695 printk(KERN_NOTICE "md/raid:%s: not clean"
6696 " -- starting background reconstruction\n",
6697 mdname(mddev));
6698
6699 rdev_for_each(rdev, mddev) {
6700 long long diff;
6701
6702 if (test_bit(Journal, &rdev->flags)) {
6703 journal_dev = rdev;
6704 continue;
6705 }
6706 if (rdev->raid_disk < 0)
6707 continue;
6708 diff = (rdev->new_data_offset - rdev->data_offset);
6709 if (first) {
6710 min_offset_diff = diff;
6711 first = 0;
6712 } else if (mddev->reshape_backwards &&
6713 diff < min_offset_diff)
6714 min_offset_diff = diff;
6715 else if (!mddev->reshape_backwards &&
6716 diff > min_offset_diff)
6717 min_offset_diff = diff;
6718 }
6719
6720 if (mddev->reshape_position != MaxSector) {
6721 /* Check that we can continue the reshape.
6722 * Difficulties arise if the stripe we would write to
6723 * next is at or after the stripe we would read from next.
6724 * For a reshape that changes the number of devices, this
6725 * is only possible for a very short time, and mdadm makes
6726 * sure that time appears to have past before assembling
6727 * the array. So we fail if that time hasn't passed.
6728 * For a reshape that keeps the number of devices the same
6729 * mdadm must be monitoring the reshape can keeping the
6730 * critical areas read-only and backed up. It will start
6731 * the array in read-only mode, so we check for that.
6732 */
6733 sector_t here_new, here_old;
6734 int old_disks;
6735 int max_degraded = (mddev->level == 6 ? 2 : 1);
6736 int chunk_sectors;
6737 int new_data_disks;
6738
6739 if (journal_dev) {
6740 printk(KERN_ERR "md/raid:%s: don't support reshape with journal - aborting.\n",
6741 mdname(mddev));
6742 return -EINVAL;
6743 }
6744
6745 if (mddev->new_level != mddev->level) {
6746 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6747 "required - aborting.\n",
6748 mdname(mddev));
6749 return -EINVAL;
6750 }
6751 old_disks = mddev->raid_disks - mddev->delta_disks;
6752 /* reshape_position must be on a new-stripe boundary, and one
6753 * further up in new geometry must map after here in old
6754 * geometry.
6755 * If the chunk sizes are different, then as we perform reshape
6756 * in units of the largest of the two, reshape_position needs
6757 * be a multiple of the largest chunk size times new data disks.
6758 */
6759 here_new = mddev->reshape_position;
6760 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
6761 new_data_disks = mddev->raid_disks - max_degraded;
6762 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
6763 printk(KERN_ERR "md/raid:%s: reshape_position not "
6764 "on a stripe boundary\n", mdname(mddev));
6765 return -EINVAL;
6766 }
6767 reshape_offset = here_new * chunk_sectors;
6768 /* here_new is the stripe we will write to */
6769 here_old = mddev->reshape_position;
6770 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
6771 /* here_old is the first stripe that we might need to read
6772 * from */
6773 if (mddev->delta_disks == 0) {
6774 /* We cannot be sure it is safe to start an in-place
6775 * reshape. It is only safe if user-space is monitoring
6776 * and taking constant backups.
6777 * mdadm always starts a situation like this in
6778 * readonly mode so it can take control before
6779 * allowing any writes. So just check for that.
6780 */
6781 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6782 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6783 /* not really in-place - so OK */;
6784 else if (mddev->ro == 0) {
6785 printk(KERN_ERR "md/raid:%s: in-place reshape "
6786 "must be started in read-only mode "
6787 "- aborting\n",
6788 mdname(mddev));
6789 return -EINVAL;
6790 }
6791 } else if (mddev->reshape_backwards
6792 ? (here_new * chunk_sectors + min_offset_diff <=
6793 here_old * chunk_sectors)
6794 : (here_new * chunk_sectors >=
6795 here_old * chunk_sectors + (-min_offset_diff))) {
6796 /* Reading from the same stripe as writing to - bad */
6797 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6798 "auto-recovery - aborting.\n",
6799 mdname(mddev));
6800 return -EINVAL;
6801 }
6802 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6803 mdname(mddev));
6804 /* OK, we should be able to continue; */
6805 } else {
6806 BUG_ON(mddev->level != mddev->new_level);
6807 BUG_ON(mddev->layout != mddev->new_layout);
6808 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6809 BUG_ON(mddev->delta_disks != 0);
6810 }
6811
6812 if (mddev->private == NULL)
6813 conf = setup_conf(mddev);
6814 else
6815 conf = mddev->private;
6816
6817 if (IS_ERR(conf))
6818 return PTR_ERR(conf);
6819
6820 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
6821 if (!journal_dev) {
6822 pr_err("md/raid:%s: journal disk is missing, force array readonly\n",
6823 mdname(mddev));
6824 mddev->ro = 1;
6825 set_disk_ro(mddev->gendisk, 1);
6826 } else if (mddev->recovery_cp == MaxSector)
6827 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
6828 }
6829
6830 conf->min_offset_diff = min_offset_diff;
6831 mddev->thread = conf->thread;
6832 conf->thread = NULL;
6833 mddev->private = conf;
6834
6835 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6836 i++) {
6837 rdev = conf->disks[i].rdev;
6838 if (!rdev && conf->disks[i].replacement) {
6839 /* The replacement is all we have yet */
6840 rdev = conf->disks[i].replacement;
6841 conf->disks[i].replacement = NULL;
6842 clear_bit(Replacement, &rdev->flags);
6843 conf->disks[i].rdev = rdev;
6844 }
6845 if (!rdev)
6846 continue;
6847 if (conf->disks[i].replacement &&
6848 conf->reshape_progress != MaxSector) {
6849 /* replacements and reshape simply do not mix. */
6850 printk(KERN_ERR "md: cannot handle concurrent "
6851 "replacement and reshape.\n");
6852 goto abort;
6853 }
6854 if (test_bit(In_sync, &rdev->flags)) {
6855 working_disks++;
6856 continue;
6857 }
6858 /* This disc is not fully in-sync. However if it
6859 * just stored parity (beyond the recovery_offset),
6860 * when we don't need to be concerned about the
6861 * array being dirty.
6862 * When reshape goes 'backwards', we never have
6863 * partially completed devices, so we only need
6864 * to worry about reshape going forwards.
6865 */
6866 /* Hack because v0.91 doesn't store recovery_offset properly. */
6867 if (mddev->major_version == 0 &&
6868 mddev->minor_version > 90)
6869 rdev->recovery_offset = reshape_offset;
6870
6871 if (rdev->recovery_offset < reshape_offset) {
6872 /* We need to check old and new layout */
6873 if (!only_parity(rdev->raid_disk,
6874 conf->algorithm,
6875 conf->raid_disks,
6876 conf->max_degraded))
6877 continue;
6878 }
6879 if (!only_parity(rdev->raid_disk,
6880 conf->prev_algo,
6881 conf->previous_raid_disks,
6882 conf->max_degraded))
6883 continue;
6884 dirty_parity_disks++;
6885 }
6886
6887 /*
6888 * 0 for a fully functional array, 1 or 2 for a degraded array.
6889 */
6890 mddev->degraded = calc_degraded(conf);
6891
6892 if (has_failed(conf)) {
6893 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6894 " (%d/%d failed)\n",
6895 mdname(mddev), mddev->degraded, conf->raid_disks);
6896 goto abort;
6897 }
6898
6899 /* device size must be a multiple of chunk size */
6900 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6901 mddev->resync_max_sectors = mddev->dev_sectors;
6902
6903 if (mddev->degraded > dirty_parity_disks &&
6904 mddev->recovery_cp != MaxSector) {
6905 if (mddev->ok_start_degraded)
6906 printk(KERN_WARNING
6907 "md/raid:%s: starting dirty degraded array"
6908 " - data corruption possible.\n",
6909 mdname(mddev));
6910 else {
6911 printk(KERN_ERR
6912 "md/raid:%s: cannot start dirty degraded array.\n",
6913 mdname(mddev));
6914 goto abort;
6915 }
6916 }
6917
6918 if (mddev->degraded == 0)
6919 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6920 " devices, algorithm %d\n", mdname(mddev), conf->level,
6921 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6922 mddev->new_layout);
6923 else
6924 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6925 " out of %d devices, algorithm %d\n",
6926 mdname(mddev), conf->level,
6927 mddev->raid_disks - mddev->degraded,
6928 mddev->raid_disks, mddev->new_layout);
6929
6930 print_raid5_conf(conf);
6931
6932 if (conf->reshape_progress != MaxSector) {
6933 conf->reshape_safe = conf->reshape_progress;
6934 atomic_set(&conf->reshape_stripes, 0);
6935 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6936 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6937 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6938 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6939 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6940 "reshape");
6941 }
6942
6943 /* Ok, everything is just fine now */
6944 if (mddev->to_remove == &raid5_attrs_group)
6945 mddev->to_remove = NULL;
6946 else if (mddev->kobj.sd &&
6947 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6948 printk(KERN_WARNING
6949 "raid5: failed to create sysfs attributes for %s\n",
6950 mdname(mddev));
6951 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6952
6953 if (mddev->queue) {
6954 int chunk_size;
6955 bool discard_supported = true;
6956 /* read-ahead size must cover two whole stripes, which
6957 * is 2 * (datadisks) * chunksize where 'n' is the
6958 * number of raid devices
6959 */
6960 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6961 int stripe = data_disks *
6962 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6963 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6964 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6965
6966 chunk_size = mddev->chunk_sectors << 9;
6967 blk_queue_io_min(mddev->queue, chunk_size);
6968 blk_queue_io_opt(mddev->queue, chunk_size *
6969 (conf->raid_disks - conf->max_degraded));
6970 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6971 /*
6972 * We can only discard a whole stripe. It doesn't make sense to
6973 * discard data disk but write parity disk
6974 */
6975 stripe = stripe * PAGE_SIZE;
6976 /* Round up to power of 2, as discard handling
6977 * currently assumes that */
6978 while ((stripe-1) & stripe)
6979 stripe = (stripe | (stripe-1)) + 1;
6980 mddev->queue->limits.discard_alignment = stripe;
6981 mddev->queue->limits.discard_granularity = stripe;
6982 /*
6983 * unaligned part of discard request will be ignored, so can't
6984 * guarantee discard_zeroes_data
6985 */
6986 mddev->queue->limits.discard_zeroes_data = 0;
6987
6988 blk_queue_max_write_same_sectors(mddev->queue, 0);
6989
6990 rdev_for_each(rdev, mddev) {
6991 disk_stack_limits(mddev->gendisk, rdev->bdev,
6992 rdev->data_offset << 9);
6993 disk_stack_limits(mddev->gendisk, rdev->bdev,
6994 rdev->new_data_offset << 9);
6995 /*
6996 * discard_zeroes_data is required, otherwise data
6997 * could be lost. Consider a scenario: discard a stripe
6998 * (the stripe could be inconsistent if
6999 * discard_zeroes_data is 0); write one disk of the
7000 * stripe (the stripe could be inconsistent again
7001 * depending on which disks are used to calculate
7002 * parity); the disk is broken; The stripe data of this
7003 * disk is lost.
7004 */
7005 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
7006 !bdev_get_queue(rdev->bdev)->
7007 limits.discard_zeroes_data)
7008 discard_supported = false;
7009 /* Unfortunately, discard_zeroes_data is not currently
7010 * a guarantee - just a hint. So we only allow DISCARD
7011 * if the sysadmin has confirmed that only safe devices
7012 * are in use by setting a module parameter.
7013 */
7014 if (!devices_handle_discard_safely) {
7015 if (discard_supported) {
7016 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
7017 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
7018 }
7019 discard_supported = false;
7020 }
7021 }
7022
7023 if (discard_supported &&
7024 mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7025 mddev->queue->limits.discard_granularity >= stripe)
7026 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
7027 mddev->queue);
7028 else
7029 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
7030 mddev->queue);
7031
7032 blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7033 }
7034
7035 if (journal_dev) {
7036 char b[BDEVNAME_SIZE];
7037
7038 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7039 mdname(mddev), bdevname(journal_dev->bdev, b));
7040 r5l_init_log(conf, journal_dev);
7041 }
7042
7043 return 0;
7044 abort:
7045 md_unregister_thread(&mddev->thread);
7046 print_raid5_conf(conf);
7047 free_conf(conf);
7048 mddev->private = NULL;
7049 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
7050 return -EIO;
7051 }
7052
7053 static void raid5_free(struct mddev *mddev, void *priv)
7054 {
7055 struct r5conf *conf = priv;
7056
7057 free_conf(conf);
7058 mddev->to_remove = &raid5_attrs_group;
7059 }
7060
7061 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7062 {
7063 struct r5conf *conf = mddev->private;
7064 int i;
7065
7066 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7067 conf->chunk_sectors / 2, mddev->layout);
7068 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7069 rcu_read_lock();
7070 for (i = 0; i < conf->raid_disks; i++) {
7071 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7072 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7073 }
7074 rcu_read_unlock();
7075 seq_printf (seq, "]");
7076 }
7077
7078 static void print_raid5_conf (struct r5conf *conf)
7079 {
7080 int i;
7081 struct disk_info *tmp;
7082
7083 printk(KERN_DEBUG "RAID conf printout:\n");
7084 if (!conf) {
7085 printk("(conf==NULL)\n");
7086 return;
7087 }
7088 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
7089 conf->raid_disks,
7090 conf->raid_disks - conf->mddev->degraded);
7091
7092 for (i = 0; i < conf->raid_disks; i++) {
7093 char b[BDEVNAME_SIZE];
7094 tmp = conf->disks + i;
7095 if (tmp->rdev)
7096 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
7097 i, !test_bit(Faulty, &tmp->rdev->flags),
7098 bdevname(tmp->rdev->bdev, b));
7099 }
7100 }
7101
7102 static int raid5_spare_active(struct mddev *mddev)
7103 {
7104 int i;
7105 struct r5conf *conf = mddev->private;
7106 struct disk_info *tmp;
7107 int count = 0;
7108 unsigned long flags;
7109
7110 for (i = 0; i < conf->raid_disks; i++) {
7111 tmp = conf->disks + i;
7112 if (tmp->replacement
7113 && tmp->replacement->recovery_offset == MaxSector
7114 && !test_bit(Faulty, &tmp->replacement->flags)
7115 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7116 /* Replacement has just become active. */
7117 if (!tmp->rdev
7118 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7119 count++;
7120 if (tmp->rdev) {
7121 /* Replaced device not technically faulty,
7122 * but we need to be sure it gets removed
7123 * and never re-added.
7124 */
7125 set_bit(Faulty, &tmp->rdev->flags);
7126 sysfs_notify_dirent_safe(
7127 tmp->rdev->sysfs_state);
7128 }
7129 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7130 } else if (tmp->rdev
7131 && tmp->rdev->recovery_offset == MaxSector
7132 && !test_bit(Faulty, &tmp->rdev->flags)
7133 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7134 count++;
7135 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7136 }
7137 }
7138 spin_lock_irqsave(&conf->device_lock, flags);
7139 mddev->degraded = calc_degraded(conf);
7140 spin_unlock_irqrestore(&conf->device_lock, flags);
7141 print_raid5_conf(conf);
7142 return count;
7143 }
7144
7145 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7146 {
7147 struct r5conf *conf = mddev->private;
7148 int err = 0;
7149 int number = rdev->raid_disk;
7150 struct md_rdev **rdevp;
7151 struct disk_info *p = conf->disks + number;
7152
7153 print_raid5_conf(conf);
7154 if (test_bit(Journal, &rdev->flags) && conf->log) {
7155 struct r5l_log *log;
7156 /*
7157 * we can't wait pending write here, as this is called in
7158 * raid5d, wait will deadlock.
7159 */
7160 if (atomic_read(&mddev->writes_pending))
7161 return -EBUSY;
7162 log = conf->log;
7163 conf->log = NULL;
7164 synchronize_rcu();
7165 r5l_exit_log(log);
7166 return 0;
7167 }
7168 if (rdev == p->rdev)
7169 rdevp = &p->rdev;
7170 else if (rdev == p->replacement)
7171 rdevp = &p->replacement;
7172 else
7173 return 0;
7174
7175 if (number >= conf->raid_disks &&
7176 conf->reshape_progress == MaxSector)
7177 clear_bit(In_sync, &rdev->flags);
7178
7179 if (test_bit(In_sync, &rdev->flags) ||
7180 atomic_read(&rdev->nr_pending)) {
7181 err = -EBUSY;
7182 goto abort;
7183 }
7184 /* Only remove non-faulty devices if recovery
7185 * isn't possible.
7186 */
7187 if (!test_bit(Faulty, &rdev->flags) &&
7188 mddev->recovery_disabled != conf->recovery_disabled &&
7189 !has_failed(conf) &&
7190 (!p->replacement || p->replacement == rdev) &&
7191 number < conf->raid_disks) {
7192 err = -EBUSY;
7193 goto abort;
7194 }
7195 *rdevp = NULL;
7196 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7197 synchronize_rcu();
7198 if (atomic_read(&rdev->nr_pending)) {
7199 /* lost the race, try later */
7200 err = -EBUSY;
7201 *rdevp = rdev;
7202 }
7203 }
7204 if (p->replacement) {
7205 /* We must have just cleared 'rdev' */
7206 p->rdev = p->replacement;
7207 clear_bit(Replacement, &p->replacement->flags);
7208 smp_mb(); /* Make sure other CPUs may see both as identical
7209 * but will never see neither - if they are careful
7210 */
7211 p->replacement = NULL;
7212 clear_bit(WantReplacement, &rdev->flags);
7213 } else
7214 /* We might have just removed the Replacement as faulty-
7215 * clear the bit just in case
7216 */
7217 clear_bit(WantReplacement, &rdev->flags);
7218 abort:
7219
7220 print_raid5_conf(conf);
7221 return err;
7222 }
7223
7224 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7225 {
7226 struct r5conf *conf = mddev->private;
7227 int err = -EEXIST;
7228 int disk;
7229 struct disk_info *p;
7230 int first = 0;
7231 int last = conf->raid_disks - 1;
7232
7233 if (test_bit(Journal, &rdev->flags)) {
7234 char b[BDEVNAME_SIZE];
7235 if (conf->log)
7236 return -EBUSY;
7237
7238 rdev->raid_disk = 0;
7239 /*
7240 * The array is in readonly mode if journal is missing, so no
7241 * write requests running. We should be safe
7242 */
7243 r5l_init_log(conf, rdev);
7244 printk(KERN_INFO"md/raid:%s: using device %s as journal\n",
7245 mdname(mddev), bdevname(rdev->bdev, b));
7246 return 0;
7247 }
7248 if (mddev->recovery_disabled == conf->recovery_disabled)
7249 return -EBUSY;
7250
7251 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7252 /* no point adding a device */
7253 return -EINVAL;
7254
7255 if (rdev->raid_disk >= 0)
7256 first = last = rdev->raid_disk;
7257
7258 /*
7259 * find the disk ... but prefer rdev->saved_raid_disk
7260 * if possible.
7261 */
7262 if (rdev->saved_raid_disk >= 0 &&
7263 rdev->saved_raid_disk >= first &&
7264 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7265 first = rdev->saved_raid_disk;
7266
7267 for (disk = first; disk <= last; disk++) {
7268 p = conf->disks + disk;
7269 if (p->rdev == NULL) {
7270 clear_bit(In_sync, &rdev->flags);
7271 rdev->raid_disk = disk;
7272 err = 0;
7273 if (rdev->saved_raid_disk != disk)
7274 conf->fullsync = 1;
7275 rcu_assign_pointer(p->rdev, rdev);
7276 goto out;
7277 }
7278 }
7279 for (disk = first; disk <= last; disk++) {
7280 p = conf->disks + disk;
7281 if (test_bit(WantReplacement, &p->rdev->flags) &&
7282 p->replacement == NULL) {
7283 clear_bit(In_sync, &rdev->flags);
7284 set_bit(Replacement, &rdev->flags);
7285 rdev->raid_disk = disk;
7286 err = 0;
7287 conf->fullsync = 1;
7288 rcu_assign_pointer(p->replacement, rdev);
7289 break;
7290 }
7291 }
7292 out:
7293 print_raid5_conf(conf);
7294 return err;
7295 }
7296
7297 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7298 {
7299 /* no resync is happening, and there is enough space
7300 * on all devices, so we can resize.
7301 * We need to make sure resync covers any new space.
7302 * If the array is shrinking we should possibly wait until
7303 * any io in the removed space completes, but it hardly seems
7304 * worth it.
7305 */
7306 sector_t newsize;
7307 struct r5conf *conf = mddev->private;
7308
7309 if (conf->log)
7310 return -EINVAL;
7311 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7312 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7313 if (mddev->external_size &&
7314 mddev->array_sectors > newsize)
7315 return -EINVAL;
7316 if (mddev->bitmap) {
7317 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7318 if (ret)
7319 return ret;
7320 }
7321 md_set_array_sectors(mddev, newsize);
7322 set_capacity(mddev->gendisk, mddev->array_sectors);
7323 revalidate_disk(mddev->gendisk);
7324 if (sectors > mddev->dev_sectors &&
7325 mddev->recovery_cp > mddev->dev_sectors) {
7326 mddev->recovery_cp = mddev->dev_sectors;
7327 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7328 }
7329 mddev->dev_sectors = sectors;
7330 mddev->resync_max_sectors = sectors;
7331 return 0;
7332 }
7333
7334 static int check_stripe_cache(struct mddev *mddev)
7335 {
7336 /* Can only proceed if there are plenty of stripe_heads.
7337 * We need a minimum of one full stripe,, and for sensible progress
7338 * it is best to have about 4 times that.
7339 * If we require 4 times, then the default 256 4K stripe_heads will
7340 * allow for chunk sizes up to 256K, which is probably OK.
7341 * If the chunk size is greater, user-space should request more
7342 * stripe_heads first.
7343 */
7344 struct r5conf *conf = mddev->private;
7345 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7346 > conf->min_nr_stripes ||
7347 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7348 > conf->min_nr_stripes) {
7349 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7350 mdname(mddev),
7351 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7352 / STRIPE_SIZE)*4);
7353 return 0;
7354 }
7355 return 1;
7356 }
7357
7358 static int check_reshape(struct mddev *mddev)
7359 {
7360 struct r5conf *conf = mddev->private;
7361
7362 if (conf->log)
7363 return -EINVAL;
7364 if (mddev->delta_disks == 0 &&
7365 mddev->new_layout == mddev->layout &&
7366 mddev->new_chunk_sectors == mddev->chunk_sectors)
7367 return 0; /* nothing to do */
7368 if (has_failed(conf))
7369 return -EINVAL;
7370 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7371 /* We might be able to shrink, but the devices must
7372 * be made bigger first.
7373 * For raid6, 4 is the minimum size.
7374 * Otherwise 2 is the minimum
7375 */
7376 int min = 2;
7377 if (mddev->level == 6)
7378 min = 4;
7379 if (mddev->raid_disks + mddev->delta_disks < min)
7380 return -EINVAL;
7381 }
7382
7383 if (!check_stripe_cache(mddev))
7384 return -ENOSPC;
7385
7386 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7387 mddev->delta_disks > 0)
7388 if (resize_chunks(conf,
7389 conf->previous_raid_disks
7390 + max(0, mddev->delta_disks),
7391 max(mddev->new_chunk_sectors,
7392 mddev->chunk_sectors)
7393 ) < 0)
7394 return -ENOMEM;
7395 return resize_stripes(conf, (conf->previous_raid_disks
7396 + mddev->delta_disks));
7397 }
7398
7399 static int raid5_start_reshape(struct mddev *mddev)
7400 {
7401 struct r5conf *conf = mddev->private;
7402 struct md_rdev *rdev;
7403 int spares = 0;
7404 unsigned long flags;
7405
7406 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7407 return -EBUSY;
7408
7409 if (!check_stripe_cache(mddev))
7410 return -ENOSPC;
7411
7412 if (has_failed(conf))
7413 return -EINVAL;
7414
7415 rdev_for_each(rdev, mddev) {
7416 if (!test_bit(In_sync, &rdev->flags)
7417 && !test_bit(Faulty, &rdev->flags))
7418 spares++;
7419 }
7420
7421 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7422 /* Not enough devices even to make a degraded array
7423 * of that size
7424 */
7425 return -EINVAL;
7426
7427 /* Refuse to reduce size of the array. Any reductions in
7428 * array size must be through explicit setting of array_size
7429 * attribute.
7430 */
7431 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7432 < mddev->array_sectors) {
7433 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7434 "before number of disks\n", mdname(mddev));
7435 return -EINVAL;
7436 }
7437
7438 atomic_set(&conf->reshape_stripes, 0);
7439 spin_lock_irq(&conf->device_lock);
7440 write_seqcount_begin(&conf->gen_lock);
7441 conf->previous_raid_disks = conf->raid_disks;
7442 conf->raid_disks += mddev->delta_disks;
7443 conf->prev_chunk_sectors = conf->chunk_sectors;
7444 conf->chunk_sectors = mddev->new_chunk_sectors;
7445 conf->prev_algo = conf->algorithm;
7446 conf->algorithm = mddev->new_layout;
7447 conf->generation++;
7448 /* Code that selects data_offset needs to see the generation update
7449 * if reshape_progress has been set - so a memory barrier needed.
7450 */
7451 smp_mb();
7452 if (mddev->reshape_backwards)
7453 conf->reshape_progress = raid5_size(mddev, 0, 0);
7454 else
7455 conf->reshape_progress = 0;
7456 conf->reshape_safe = conf->reshape_progress;
7457 write_seqcount_end(&conf->gen_lock);
7458 spin_unlock_irq(&conf->device_lock);
7459
7460 /* Now make sure any requests that proceeded on the assumption
7461 * the reshape wasn't running - like Discard or Read - have
7462 * completed.
7463 */
7464 mddev_suspend(mddev);
7465 mddev_resume(mddev);
7466
7467 /* Add some new drives, as many as will fit.
7468 * We know there are enough to make the newly sized array work.
7469 * Don't add devices if we are reducing the number of
7470 * devices in the array. This is because it is not possible
7471 * to correctly record the "partially reconstructed" state of
7472 * such devices during the reshape and confusion could result.
7473 */
7474 if (mddev->delta_disks >= 0) {
7475 rdev_for_each(rdev, mddev)
7476 if (rdev->raid_disk < 0 &&
7477 !test_bit(Faulty, &rdev->flags)) {
7478 if (raid5_add_disk(mddev, rdev) == 0) {
7479 if (rdev->raid_disk
7480 >= conf->previous_raid_disks)
7481 set_bit(In_sync, &rdev->flags);
7482 else
7483 rdev->recovery_offset = 0;
7484
7485 if (sysfs_link_rdev(mddev, rdev))
7486 /* Failure here is OK */;
7487 }
7488 } else if (rdev->raid_disk >= conf->previous_raid_disks
7489 && !test_bit(Faulty, &rdev->flags)) {
7490 /* This is a spare that was manually added */
7491 set_bit(In_sync, &rdev->flags);
7492 }
7493
7494 /* When a reshape changes the number of devices,
7495 * ->degraded is measured against the larger of the
7496 * pre and post number of devices.
7497 */
7498 spin_lock_irqsave(&conf->device_lock, flags);
7499 mddev->degraded = calc_degraded(conf);
7500 spin_unlock_irqrestore(&conf->device_lock, flags);
7501 }
7502 mddev->raid_disks = conf->raid_disks;
7503 mddev->reshape_position = conf->reshape_progress;
7504 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7505
7506 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7507 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7508 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7509 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7510 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7511 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7512 "reshape");
7513 if (!mddev->sync_thread) {
7514 mddev->recovery = 0;
7515 spin_lock_irq(&conf->device_lock);
7516 write_seqcount_begin(&conf->gen_lock);
7517 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7518 mddev->new_chunk_sectors =
7519 conf->chunk_sectors = conf->prev_chunk_sectors;
7520 mddev->new_layout = conf->algorithm = conf->prev_algo;
7521 rdev_for_each(rdev, mddev)
7522 rdev->new_data_offset = rdev->data_offset;
7523 smp_wmb();
7524 conf->generation --;
7525 conf->reshape_progress = MaxSector;
7526 mddev->reshape_position = MaxSector;
7527 write_seqcount_end(&conf->gen_lock);
7528 spin_unlock_irq(&conf->device_lock);
7529 return -EAGAIN;
7530 }
7531 conf->reshape_checkpoint = jiffies;
7532 md_wakeup_thread(mddev->sync_thread);
7533 md_new_event(mddev);
7534 return 0;
7535 }
7536
7537 /* This is called from the reshape thread and should make any
7538 * changes needed in 'conf'
7539 */
7540 static void end_reshape(struct r5conf *conf)
7541 {
7542
7543 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7544 struct md_rdev *rdev;
7545
7546 spin_lock_irq(&conf->device_lock);
7547 conf->previous_raid_disks = conf->raid_disks;
7548 rdev_for_each(rdev, conf->mddev)
7549 rdev->data_offset = rdev->new_data_offset;
7550 smp_wmb();
7551 conf->reshape_progress = MaxSector;
7552 conf->mddev->reshape_position = MaxSector;
7553 spin_unlock_irq(&conf->device_lock);
7554 wake_up(&conf->wait_for_overlap);
7555
7556 /* read-ahead size must cover two whole stripes, which is
7557 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7558 */
7559 if (conf->mddev->queue) {
7560 int data_disks = conf->raid_disks - conf->max_degraded;
7561 int stripe = data_disks * ((conf->chunk_sectors << 9)
7562 / PAGE_SIZE);
7563 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7564 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7565 }
7566 }
7567 }
7568
7569 /* This is called from the raid5d thread with mddev_lock held.
7570 * It makes config changes to the device.
7571 */
7572 static void raid5_finish_reshape(struct mddev *mddev)
7573 {
7574 struct r5conf *conf = mddev->private;
7575
7576 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7577
7578 if (mddev->delta_disks > 0) {
7579 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7580 if (mddev->queue) {
7581 set_capacity(mddev->gendisk, mddev->array_sectors);
7582 revalidate_disk(mddev->gendisk);
7583 }
7584 } else {
7585 int d;
7586 spin_lock_irq(&conf->device_lock);
7587 mddev->degraded = calc_degraded(conf);
7588 spin_unlock_irq(&conf->device_lock);
7589 for (d = conf->raid_disks ;
7590 d < conf->raid_disks - mddev->delta_disks;
7591 d++) {
7592 struct md_rdev *rdev = conf->disks[d].rdev;
7593 if (rdev)
7594 clear_bit(In_sync, &rdev->flags);
7595 rdev = conf->disks[d].replacement;
7596 if (rdev)
7597 clear_bit(In_sync, &rdev->flags);
7598 }
7599 }
7600 mddev->layout = conf->algorithm;
7601 mddev->chunk_sectors = conf->chunk_sectors;
7602 mddev->reshape_position = MaxSector;
7603 mddev->delta_disks = 0;
7604 mddev->reshape_backwards = 0;
7605 }
7606 }
7607
7608 static void raid5_quiesce(struct mddev *mddev, int state)
7609 {
7610 struct r5conf *conf = mddev->private;
7611
7612 switch(state) {
7613 case 2: /* resume for a suspend */
7614 wake_up(&conf->wait_for_overlap);
7615 break;
7616
7617 case 1: /* stop all writes */
7618 lock_all_device_hash_locks_irq(conf);
7619 /* '2' tells resync/reshape to pause so that all
7620 * active stripes can drain
7621 */
7622 conf->quiesce = 2;
7623 wait_event_cmd(conf->wait_for_quiescent,
7624 atomic_read(&conf->active_stripes) == 0 &&
7625 atomic_read(&conf->active_aligned_reads) == 0,
7626 unlock_all_device_hash_locks_irq(conf),
7627 lock_all_device_hash_locks_irq(conf));
7628 conf->quiesce = 1;
7629 unlock_all_device_hash_locks_irq(conf);
7630 /* allow reshape to continue */
7631 wake_up(&conf->wait_for_overlap);
7632 break;
7633
7634 case 0: /* re-enable writes */
7635 lock_all_device_hash_locks_irq(conf);
7636 conf->quiesce = 0;
7637 wake_up(&conf->wait_for_quiescent);
7638 wake_up(&conf->wait_for_overlap);
7639 unlock_all_device_hash_locks_irq(conf);
7640 break;
7641 }
7642 r5l_quiesce(conf->log, state);
7643 }
7644
7645 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7646 {
7647 struct r0conf *raid0_conf = mddev->private;
7648 sector_t sectors;
7649
7650 /* for raid0 takeover only one zone is supported */
7651 if (raid0_conf->nr_strip_zones > 1) {
7652 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7653 mdname(mddev));
7654 return ERR_PTR(-EINVAL);
7655 }
7656
7657 sectors = raid0_conf->strip_zone[0].zone_end;
7658 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7659 mddev->dev_sectors = sectors;
7660 mddev->new_level = level;
7661 mddev->new_layout = ALGORITHM_PARITY_N;
7662 mddev->new_chunk_sectors = mddev->chunk_sectors;
7663 mddev->raid_disks += 1;
7664 mddev->delta_disks = 1;
7665 /* make sure it will be not marked as dirty */
7666 mddev->recovery_cp = MaxSector;
7667
7668 return setup_conf(mddev);
7669 }
7670
7671 static void *raid5_takeover_raid1(struct mddev *mddev)
7672 {
7673 int chunksect;
7674
7675 if (mddev->raid_disks != 2 ||
7676 mddev->degraded > 1)
7677 return ERR_PTR(-EINVAL);
7678
7679 /* Should check if there are write-behind devices? */
7680
7681 chunksect = 64*2; /* 64K by default */
7682
7683 /* The array must be an exact multiple of chunksize */
7684 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7685 chunksect >>= 1;
7686
7687 if ((chunksect<<9) < STRIPE_SIZE)
7688 /* array size does not allow a suitable chunk size */
7689 return ERR_PTR(-EINVAL);
7690
7691 mddev->new_level = 5;
7692 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7693 mddev->new_chunk_sectors = chunksect;
7694
7695 return setup_conf(mddev);
7696 }
7697
7698 static void *raid5_takeover_raid6(struct mddev *mddev)
7699 {
7700 int new_layout;
7701
7702 switch (mddev->layout) {
7703 case ALGORITHM_LEFT_ASYMMETRIC_6:
7704 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7705 break;
7706 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7707 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7708 break;
7709 case ALGORITHM_LEFT_SYMMETRIC_6:
7710 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7711 break;
7712 case ALGORITHM_RIGHT_SYMMETRIC_6:
7713 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7714 break;
7715 case ALGORITHM_PARITY_0_6:
7716 new_layout = ALGORITHM_PARITY_0;
7717 break;
7718 case ALGORITHM_PARITY_N:
7719 new_layout = ALGORITHM_PARITY_N;
7720 break;
7721 default:
7722 return ERR_PTR(-EINVAL);
7723 }
7724 mddev->new_level = 5;
7725 mddev->new_layout = new_layout;
7726 mddev->delta_disks = -1;
7727 mddev->raid_disks -= 1;
7728 return setup_conf(mddev);
7729 }
7730
7731 static int raid5_check_reshape(struct mddev *mddev)
7732 {
7733 /* For a 2-drive array, the layout and chunk size can be changed
7734 * immediately as not restriping is needed.
7735 * For larger arrays we record the new value - after validation
7736 * to be used by a reshape pass.
7737 */
7738 struct r5conf *conf = mddev->private;
7739 int new_chunk = mddev->new_chunk_sectors;
7740
7741 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7742 return -EINVAL;
7743 if (new_chunk > 0) {
7744 if (!is_power_of_2(new_chunk))
7745 return -EINVAL;
7746 if (new_chunk < (PAGE_SIZE>>9))
7747 return -EINVAL;
7748 if (mddev->array_sectors & (new_chunk-1))
7749 /* not factor of array size */
7750 return -EINVAL;
7751 }
7752
7753 /* They look valid */
7754
7755 if (mddev->raid_disks == 2) {
7756 /* can make the change immediately */
7757 if (mddev->new_layout >= 0) {
7758 conf->algorithm = mddev->new_layout;
7759 mddev->layout = mddev->new_layout;
7760 }
7761 if (new_chunk > 0) {
7762 conf->chunk_sectors = new_chunk ;
7763 mddev->chunk_sectors = new_chunk;
7764 }
7765 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7766 md_wakeup_thread(mddev->thread);
7767 }
7768 return check_reshape(mddev);
7769 }
7770
7771 static int raid6_check_reshape(struct mddev *mddev)
7772 {
7773 int new_chunk = mddev->new_chunk_sectors;
7774
7775 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7776 return -EINVAL;
7777 if (new_chunk > 0) {
7778 if (!is_power_of_2(new_chunk))
7779 return -EINVAL;
7780 if (new_chunk < (PAGE_SIZE >> 9))
7781 return -EINVAL;
7782 if (mddev->array_sectors & (new_chunk-1))
7783 /* not factor of array size */
7784 return -EINVAL;
7785 }
7786
7787 /* They look valid */
7788 return check_reshape(mddev);
7789 }
7790
7791 static void *raid5_takeover(struct mddev *mddev)
7792 {
7793 /* raid5 can take over:
7794 * raid0 - if there is only one strip zone - make it a raid4 layout
7795 * raid1 - if there are two drives. We need to know the chunk size
7796 * raid4 - trivial - just use a raid4 layout.
7797 * raid6 - Providing it is a *_6 layout
7798 */
7799 if (mddev->level == 0)
7800 return raid45_takeover_raid0(mddev, 5);
7801 if (mddev->level == 1)
7802 return raid5_takeover_raid1(mddev);
7803 if (mddev->level == 4) {
7804 mddev->new_layout = ALGORITHM_PARITY_N;
7805 mddev->new_level = 5;
7806 return setup_conf(mddev);
7807 }
7808 if (mddev->level == 6)
7809 return raid5_takeover_raid6(mddev);
7810
7811 return ERR_PTR(-EINVAL);
7812 }
7813
7814 static void *raid4_takeover(struct mddev *mddev)
7815 {
7816 /* raid4 can take over:
7817 * raid0 - if there is only one strip zone
7818 * raid5 - if layout is right
7819 */
7820 if (mddev->level == 0)
7821 return raid45_takeover_raid0(mddev, 4);
7822 if (mddev->level == 5 &&
7823 mddev->layout == ALGORITHM_PARITY_N) {
7824 mddev->new_layout = 0;
7825 mddev->new_level = 4;
7826 return setup_conf(mddev);
7827 }
7828 return ERR_PTR(-EINVAL);
7829 }
7830
7831 static struct md_personality raid5_personality;
7832
7833 static void *raid6_takeover(struct mddev *mddev)
7834 {
7835 /* Currently can only take over a raid5. We map the
7836 * personality to an equivalent raid6 personality
7837 * with the Q block at the end.
7838 */
7839 int new_layout;
7840
7841 if (mddev->pers != &raid5_personality)
7842 return ERR_PTR(-EINVAL);
7843 if (mddev->degraded > 1)
7844 return ERR_PTR(-EINVAL);
7845 if (mddev->raid_disks > 253)
7846 return ERR_PTR(-EINVAL);
7847 if (mddev->raid_disks < 3)
7848 return ERR_PTR(-EINVAL);
7849
7850 switch (mddev->layout) {
7851 case ALGORITHM_LEFT_ASYMMETRIC:
7852 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7853 break;
7854 case ALGORITHM_RIGHT_ASYMMETRIC:
7855 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7856 break;
7857 case ALGORITHM_LEFT_SYMMETRIC:
7858 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7859 break;
7860 case ALGORITHM_RIGHT_SYMMETRIC:
7861 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7862 break;
7863 case ALGORITHM_PARITY_0:
7864 new_layout = ALGORITHM_PARITY_0_6;
7865 break;
7866 case ALGORITHM_PARITY_N:
7867 new_layout = ALGORITHM_PARITY_N;
7868 break;
7869 default:
7870 return ERR_PTR(-EINVAL);
7871 }
7872 mddev->new_level = 6;
7873 mddev->new_layout = new_layout;
7874 mddev->delta_disks = 1;
7875 mddev->raid_disks += 1;
7876 return setup_conf(mddev);
7877 }
7878
7879 static struct md_personality raid6_personality =
7880 {
7881 .name = "raid6",
7882 .level = 6,
7883 .owner = THIS_MODULE,
7884 .make_request = raid5_make_request,
7885 .run = raid5_run,
7886 .free = raid5_free,
7887 .status = raid5_status,
7888 .error_handler = raid5_error,
7889 .hot_add_disk = raid5_add_disk,
7890 .hot_remove_disk= raid5_remove_disk,
7891 .spare_active = raid5_spare_active,
7892 .sync_request = raid5_sync_request,
7893 .resize = raid5_resize,
7894 .size = raid5_size,
7895 .check_reshape = raid6_check_reshape,
7896 .start_reshape = raid5_start_reshape,
7897 .finish_reshape = raid5_finish_reshape,
7898 .quiesce = raid5_quiesce,
7899 .takeover = raid6_takeover,
7900 .congested = raid5_congested,
7901 };
7902 static struct md_personality raid5_personality =
7903 {
7904 .name = "raid5",
7905 .level = 5,
7906 .owner = THIS_MODULE,
7907 .make_request = raid5_make_request,
7908 .run = raid5_run,
7909 .free = raid5_free,
7910 .status = raid5_status,
7911 .error_handler = raid5_error,
7912 .hot_add_disk = raid5_add_disk,
7913 .hot_remove_disk= raid5_remove_disk,
7914 .spare_active = raid5_spare_active,
7915 .sync_request = raid5_sync_request,
7916 .resize = raid5_resize,
7917 .size = raid5_size,
7918 .check_reshape = raid5_check_reshape,
7919 .start_reshape = raid5_start_reshape,
7920 .finish_reshape = raid5_finish_reshape,
7921 .quiesce = raid5_quiesce,
7922 .takeover = raid5_takeover,
7923 .congested = raid5_congested,
7924 };
7925
7926 static struct md_personality raid4_personality =
7927 {
7928 .name = "raid4",
7929 .level = 4,
7930 .owner = THIS_MODULE,
7931 .make_request = raid5_make_request,
7932 .run = raid5_run,
7933 .free = raid5_free,
7934 .status = raid5_status,
7935 .error_handler = raid5_error,
7936 .hot_add_disk = raid5_add_disk,
7937 .hot_remove_disk= raid5_remove_disk,
7938 .spare_active = raid5_spare_active,
7939 .sync_request = raid5_sync_request,
7940 .resize = raid5_resize,
7941 .size = raid5_size,
7942 .check_reshape = raid5_check_reshape,
7943 .start_reshape = raid5_start_reshape,
7944 .finish_reshape = raid5_finish_reshape,
7945 .quiesce = raid5_quiesce,
7946 .takeover = raid4_takeover,
7947 .congested = raid5_congested,
7948 };
7949
7950 static int __init raid5_init(void)
7951 {
7952 int ret;
7953
7954 raid5_wq = alloc_workqueue("raid5wq",
7955 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7956 if (!raid5_wq)
7957 return -ENOMEM;
7958
7959 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
7960 "md/raid5:prepare",
7961 raid456_cpu_up_prepare,
7962 raid456_cpu_dead);
7963 if (ret) {
7964 destroy_workqueue(raid5_wq);
7965 return ret;
7966 }
7967 register_md_personality(&raid6_personality);
7968 register_md_personality(&raid5_personality);
7969 register_md_personality(&raid4_personality);
7970 return 0;
7971 }
7972
7973 static void raid5_exit(void)
7974 {
7975 unregister_md_personality(&raid6_personality);
7976 unregister_md_personality(&raid5_personality);
7977 unregister_md_personality(&raid4_personality);
7978 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
7979 destroy_workqueue(raid5_wq);
7980 }
7981
7982 module_init(raid5_init);
7983 module_exit(raid5_exit);
7984 MODULE_LICENSE("GPL");
7985 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7986 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7987 MODULE_ALIAS("md-raid5");
7988 MODULE_ALIAS("md-raid4");
7989 MODULE_ALIAS("md-level-5");
7990 MODULE_ALIAS("md-level-4");
7991 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7992 MODULE_ALIAS("md-raid6");
7993 MODULE_ALIAS("md-level-6");
7994
7995 /* This used to be two separate modules, they were: */
7996 MODULE_ALIAS("raid5");
7997 MODULE_ALIAS("raid6");
This page took 0.213148 seconds and 5 git commands to generate.