Merge branch 'efi-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT (5 * HZ)
60
61 static const char version[] =
62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75 BCM57301,
76 BCM57302,
77 BCM57304,
78 BCM57402,
79 BCM57404,
80 BCM57406,
81 BCM57304_VF,
82 BCM57404_VF,
83 };
84
85 /* indexed by enum above */
86 static const struct {
87 char *name;
88 } board_info[] = {
89 { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 { 0 }
111 };
112
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114
115 static const u16 bnxt_vf_req_snif[] = {
116 HWRM_FUNC_CFG,
117 HWRM_PORT_PHY_QCFG,
118 HWRM_CFA_L2_FILTER_ALLOC,
119 };
120
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125
126 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
129
130 #define BNXT_CP_DB_REARM(db, raw_cons) \
131 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132
133 #define BNXT_CP_DB(db, raw_cons) \
134 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135
136 #define BNXT_CP_DB_IRQ_DIS(db) \
137 writel(DB_CP_IRQ_DIS_FLAGS, db)
138
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 /* Tell compiler to fetch tx indices from memory. */
142 barrier();
143
144 return bp->tx_ring_size -
145 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147
148 static const u16 bnxt_lhint_arr[] = {
149 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 TX_BD_FLAGS_LHINT_512_TO_1023,
151 TX_BD_FLAGS_LHINT_1024_TO_2047,
152 TX_BD_FLAGS_LHINT_1024_TO_2047,
153 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 struct bnxt *bp = netdev_priv(dev);
173 struct tx_bd *txbd;
174 struct tx_bd_ext *txbd1;
175 struct netdev_queue *txq;
176 int i;
177 dma_addr_t mapping;
178 unsigned int length, pad = 0;
179 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 u16 prod, last_frag;
181 struct pci_dev *pdev = bp->pdev;
182 struct bnxt_tx_ring_info *txr;
183 struct bnxt_sw_tx_bd *tx_buf;
184
185 i = skb_get_queue_mapping(skb);
186 if (unlikely(i >= bp->tx_nr_rings)) {
187 dev_kfree_skb_any(skb);
188 return NETDEV_TX_OK;
189 }
190
191 txr = &bp->tx_ring[i];
192 txq = netdev_get_tx_queue(dev, i);
193 prod = txr->tx_prod;
194
195 free_size = bnxt_tx_avail(bp, txr);
196 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 netif_tx_stop_queue(txq);
198 return NETDEV_TX_BUSY;
199 }
200
201 length = skb->len;
202 len = skb_headlen(skb);
203 last_frag = skb_shinfo(skb)->nr_frags;
204
205 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206
207 txbd->tx_bd_opaque = prod;
208
209 tx_buf = &txr->tx_buf_ring[prod];
210 tx_buf->skb = skb;
211 tx_buf->nr_frags = last_frag;
212
213 vlan_tag_flags = 0;
214 cfa_action = 0;
215 if (skb_vlan_tag_present(skb)) {
216 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 skb_vlan_tag_get(skb);
218 /* Currently supports 8021Q, 8021AD vlan offloads
219 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 */
221 if (skb->vlan_proto == htons(ETH_P_8021Q))
222 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 }
224
225 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 struct tx_push_buffer *tx_push_buf = txr->tx_push;
227 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229 void *pdata = tx_push_buf->data;
230 u64 *end;
231 int j, push_len;
232
233 /* Set COAL_NOW to be ready quickly for the next push */
234 tx_push->tx_bd_len_flags_type =
235 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236 TX_BD_TYPE_LONG_TX_BD |
237 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238 TX_BD_FLAGS_COAL_NOW |
239 TX_BD_FLAGS_PACKET_END |
240 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241
242 if (skb->ip_summed == CHECKSUM_PARTIAL)
243 tx_push1->tx_bd_hsize_lflags =
244 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245 else
246 tx_push1->tx_bd_hsize_lflags = 0;
247
248 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250
251 end = pdata + length;
252 end = PTR_ALIGN(end, 8) - 1;
253 *end = 0;
254
255 skb_copy_from_linear_data(skb, pdata, len);
256 pdata += len;
257 for (j = 0; j < last_frag; j++) {
258 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
259 void *fptr;
260
261 fptr = skb_frag_address_safe(frag);
262 if (!fptr)
263 goto normal_tx;
264
265 memcpy(pdata, fptr, skb_frag_size(frag));
266 pdata += skb_frag_size(frag);
267 }
268
269 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
270 txbd->tx_bd_haddr = txr->data_mapping;
271 prod = NEXT_TX(prod);
272 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
273 memcpy(txbd, tx_push1, sizeof(*txbd));
274 prod = NEXT_TX(prod);
275 tx_push->doorbell =
276 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
277 txr->tx_prod = prod;
278
279 netdev_tx_sent_queue(txq, skb->len);
280
281 push_len = (length + sizeof(*tx_push) + 7) / 8;
282 if (push_len > 16) {
283 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
284 __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
285 push_len - 16);
286 } else {
287 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
288 push_len);
289 }
290
291 tx_buf->is_push = 1;
292 goto tx_done;
293 }
294
295 normal_tx:
296 if (length < BNXT_MIN_PKT_SIZE) {
297 pad = BNXT_MIN_PKT_SIZE - length;
298 if (skb_pad(skb, pad)) {
299 /* SKB already freed. */
300 tx_buf->skb = NULL;
301 return NETDEV_TX_OK;
302 }
303 length = BNXT_MIN_PKT_SIZE;
304 }
305
306 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
307
308 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
309 dev_kfree_skb_any(skb);
310 tx_buf->skb = NULL;
311 return NETDEV_TX_OK;
312 }
313
314 dma_unmap_addr_set(tx_buf, mapping, mapping);
315 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
316 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
317
318 txbd->tx_bd_haddr = cpu_to_le64(mapping);
319
320 prod = NEXT_TX(prod);
321 txbd1 = (struct tx_bd_ext *)
322 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
323
324 txbd1->tx_bd_hsize_lflags = 0;
325 if (skb_is_gso(skb)) {
326 u32 hdr_len;
327
328 if (skb->encapsulation)
329 hdr_len = skb_inner_network_offset(skb) +
330 skb_inner_network_header_len(skb) +
331 inner_tcp_hdrlen(skb);
332 else
333 hdr_len = skb_transport_offset(skb) +
334 tcp_hdrlen(skb);
335
336 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
337 TX_BD_FLAGS_T_IPID |
338 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
339 length = skb_shinfo(skb)->gso_size;
340 txbd1->tx_bd_mss = cpu_to_le32(length);
341 length += hdr_len;
342 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
343 txbd1->tx_bd_hsize_lflags =
344 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
345 txbd1->tx_bd_mss = 0;
346 }
347
348 length >>= 9;
349 flags |= bnxt_lhint_arr[length];
350 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
351
352 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
353 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
354 for (i = 0; i < last_frag; i++) {
355 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
356
357 prod = NEXT_TX(prod);
358 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
359
360 len = skb_frag_size(frag);
361 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
362 DMA_TO_DEVICE);
363
364 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
365 goto tx_dma_error;
366
367 tx_buf = &txr->tx_buf_ring[prod];
368 dma_unmap_addr_set(tx_buf, mapping, mapping);
369
370 txbd->tx_bd_haddr = cpu_to_le64(mapping);
371
372 flags = len << TX_BD_LEN_SHIFT;
373 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
374 }
375
376 flags &= ~TX_BD_LEN;
377 txbd->tx_bd_len_flags_type =
378 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
379 TX_BD_FLAGS_PACKET_END);
380
381 netdev_tx_sent_queue(txq, skb->len);
382
383 /* Sync BD data before updating doorbell */
384 wmb();
385
386 prod = NEXT_TX(prod);
387 txr->tx_prod = prod;
388
389 writel(DB_KEY_TX | prod, txr->tx_doorbell);
390 writel(DB_KEY_TX | prod, txr->tx_doorbell);
391
392 tx_done:
393
394 mmiowb();
395
396 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
397 netif_tx_stop_queue(txq);
398
399 /* netif_tx_stop_queue() must be done before checking
400 * tx index in bnxt_tx_avail() below, because in
401 * bnxt_tx_int(), we update tx index before checking for
402 * netif_tx_queue_stopped().
403 */
404 smp_mb();
405 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
406 netif_tx_wake_queue(txq);
407 }
408 return NETDEV_TX_OK;
409
410 tx_dma_error:
411 last_frag = i;
412
413 /* start back at beginning and unmap skb */
414 prod = txr->tx_prod;
415 tx_buf = &txr->tx_buf_ring[prod];
416 tx_buf->skb = NULL;
417 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
418 skb_headlen(skb), PCI_DMA_TODEVICE);
419 prod = NEXT_TX(prod);
420
421 /* unmap remaining mapped pages */
422 for (i = 0; i < last_frag; i++) {
423 prod = NEXT_TX(prod);
424 tx_buf = &txr->tx_buf_ring[prod];
425 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
426 skb_frag_size(&skb_shinfo(skb)->frags[i]),
427 PCI_DMA_TODEVICE);
428 }
429
430 dev_kfree_skb_any(skb);
431 return NETDEV_TX_OK;
432 }
433
434 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
435 {
436 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
437 int index = txr - &bp->tx_ring[0];
438 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
439 u16 cons = txr->tx_cons;
440 struct pci_dev *pdev = bp->pdev;
441 int i;
442 unsigned int tx_bytes = 0;
443
444 for (i = 0; i < nr_pkts; i++) {
445 struct bnxt_sw_tx_bd *tx_buf;
446 struct sk_buff *skb;
447 int j, last;
448
449 tx_buf = &txr->tx_buf_ring[cons];
450 cons = NEXT_TX(cons);
451 skb = tx_buf->skb;
452 tx_buf->skb = NULL;
453
454 if (tx_buf->is_push) {
455 tx_buf->is_push = 0;
456 goto next_tx_int;
457 }
458
459 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
460 skb_headlen(skb), PCI_DMA_TODEVICE);
461 last = tx_buf->nr_frags;
462
463 for (j = 0; j < last; j++) {
464 cons = NEXT_TX(cons);
465 tx_buf = &txr->tx_buf_ring[cons];
466 dma_unmap_page(
467 &pdev->dev,
468 dma_unmap_addr(tx_buf, mapping),
469 skb_frag_size(&skb_shinfo(skb)->frags[j]),
470 PCI_DMA_TODEVICE);
471 }
472
473 next_tx_int:
474 cons = NEXT_TX(cons);
475
476 tx_bytes += skb->len;
477 dev_kfree_skb_any(skb);
478 }
479
480 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
481 txr->tx_cons = cons;
482
483 /* Need to make the tx_cons update visible to bnxt_start_xmit()
484 * before checking for netif_tx_queue_stopped(). Without the
485 * memory barrier, there is a small possibility that bnxt_start_xmit()
486 * will miss it and cause the queue to be stopped forever.
487 */
488 smp_mb();
489
490 if (unlikely(netif_tx_queue_stopped(txq)) &&
491 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
492 __netif_tx_lock(txq, smp_processor_id());
493 if (netif_tx_queue_stopped(txq) &&
494 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
495 txr->dev_state != BNXT_DEV_STATE_CLOSING)
496 netif_tx_wake_queue(txq);
497 __netif_tx_unlock(txq);
498 }
499 }
500
501 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
502 gfp_t gfp)
503 {
504 u8 *data;
505 struct pci_dev *pdev = bp->pdev;
506
507 data = kmalloc(bp->rx_buf_size, gfp);
508 if (!data)
509 return NULL;
510
511 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
512 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
513
514 if (dma_mapping_error(&pdev->dev, *mapping)) {
515 kfree(data);
516 data = NULL;
517 }
518 return data;
519 }
520
521 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
522 struct bnxt_rx_ring_info *rxr,
523 u16 prod, gfp_t gfp)
524 {
525 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
526 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
527 u8 *data;
528 dma_addr_t mapping;
529
530 data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
531 if (!data)
532 return -ENOMEM;
533
534 rx_buf->data = data;
535 dma_unmap_addr_set(rx_buf, mapping, mapping);
536
537 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
538
539 return 0;
540 }
541
542 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
543 u8 *data)
544 {
545 u16 prod = rxr->rx_prod;
546 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
547 struct rx_bd *cons_bd, *prod_bd;
548
549 prod_rx_buf = &rxr->rx_buf_ring[prod];
550 cons_rx_buf = &rxr->rx_buf_ring[cons];
551
552 prod_rx_buf->data = data;
553
554 dma_unmap_addr_set(prod_rx_buf, mapping,
555 dma_unmap_addr(cons_rx_buf, mapping));
556
557 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
558 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
559
560 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
561 }
562
563 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
564 {
565 u16 next, max = rxr->rx_agg_bmap_size;
566
567 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
568 if (next >= max)
569 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
570 return next;
571 }
572
573 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
574 struct bnxt_rx_ring_info *rxr,
575 u16 prod, gfp_t gfp)
576 {
577 struct rx_bd *rxbd =
578 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
579 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
580 struct pci_dev *pdev = bp->pdev;
581 struct page *page;
582 dma_addr_t mapping;
583 u16 sw_prod = rxr->rx_sw_agg_prod;
584 unsigned int offset = 0;
585
586 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
587 page = rxr->rx_page;
588 if (!page) {
589 page = alloc_page(gfp);
590 if (!page)
591 return -ENOMEM;
592 rxr->rx_page = page;
593 rxr->rx_page_offset = 0;
594 }
595 offset = rxr->rx_page_offset;
596 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
597 if (rxr->rx_page_offset == PAGE_SIZE)
598 rxr->rx_page = NULL;
599 else
600 get_page(page);
601 } else {
602 page = alloc_page(gfp);
603 if (!page)
604 return -ENOMEM;
605 }
606
607 mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
608 PCI_DMA_FROMDEVICE);
609 if (dma_mapping_error(&pdev->dev, mapping)) {
610 __free_page(page);
611 return -EIO;
612 }
613
614 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
615 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
616
617 __set_bit(sw_prod, rxr->rx_agg_bmap);
618 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
619 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
620
621 rx_agg_buf->page = page;
622 rx_agg_buf->offset = offset;
623 rx_agg_buf->mapping = mapping;
624 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
625 rxbd->rx_bd_opaque = sw_prod;
626 return 0;
627 }
628
629 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
630 u32 agg_bufs)
631 {
632 struct bnxt *bp = bnapi->bp;
633 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
634 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
635 u16 prod = rxr->rx_agg_prod;
636 u16 sw_prod = rxr->rx_sw_agg_prod;
637 u32 i;
638
639 for (i = 0; i < agg_bufs; i++) {
640 u16 cons;
641 struct rx_agg_cmp *agg;
642 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
643 struct rx_bd *prod_bd;
644 struct page *page;
645
646 agg = (struct rx_agg_cmp *)
647 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
648 cons = agg->rx_agg_cmp_opaque;
649 __clear_bit(cons, rxr->rx_agg_bmap);
650
651 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
652 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
653
654 __set_bit(sw_prod, rxr->rx_agg_bmap);
655 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
656 cons_rx_buf = &rxr->rx_agg_ring[cons];
657
658 /* It is possible for sw_prod to be equal to cons, so
659 * set cons_rx_buf->page to NULL first.
660 */
661 page = cons_rx_buf->page;
662 cons_rx_buf->page = NULL;
663 prod_rx_buf->page = page;
664 prod_rx_buf->offset = cons_rx_buf->offset;
665
666 prod_rx_buf->mapping = cons_rx_buf->mapping;
667
668 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
669
670 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
671 prod_bd->rx_bd_opaque = sw_prod;
672
673 prod = NEXT_RX_AGG(prod);
674 sw_prod = NEXT_RX_AGG(sw_prod);
675 cp_cons = NEXT_CMP(cp_cons);
676 }
677 rxr->rx_agg_prod = prod;
678 rxr->rx_sw_agg_prod = sw_prod;
679 }
680
681 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
682 struct bnxt_rx_ring_info *rxr, u16 cons,
683 u16 prod, u8 *data, dma_addr_t dma_addr,
684 unsigned int len)
685 {
686 int err;
687 struct sk_buff *skb;
688
689 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
690 if (unlikely(err)) {
691 bnxt_reuse_rx_data(rxr, cons, data);
692 return NULL;
693 }
694
695 skb = build_skb(data, 0);
696 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
697 PCI_DMA_FROMDEVICE);
698 if (!skb) {
699 kfree(data);
700 return NULL;
701 }
702
703 skb_reserve(skb, BNXT_RX_OFFSET);
704 skb_put(skb, len);
705 return skb;
706 }
707
708 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
709 struct sk_buff *skb, u16 cp_cons,
710 u32 agg_bufs)
711 {
712 struct pci_dev *pdev = bp->pdev;
713 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
714 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
715 u16 prod = rxr->rx_agg_prod;
716 u32 i;
717
718 for (i = 0; i < agg_bufs; i++) {
719 u16 cons, frag_len;
720 struct rx_agg_cmp *agg;
721 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
722 struct page *page;
723 dma_addr_t mapping;
724
725 agg = (struct rx_agg_cmp *)
726 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
727 cons = agg->rx_agg_cmp_opaque;
728 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
729 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
730
731 cons_rx_buf = &rxr->rx_agg_ring[cons];
732 skb_fill_page_desc(skb, i, cons_rx_buf->page,
733 cons_rx_buf->offset, frag_len);
734 __clear_bit(cons, rxr->rx_agg_bmap);
735
736 /* It is possible for bnxt_alloc_rx_page() to allocate
737 * a sw_prod index that equals the cons index, so we
738 * need to clear the cons entry now.
739 */
740 mapping = dma_unmap_addr(cons_rx_buf, mapping);
741 page = cons_rx_buf->page;
742 cons_rx_buf->page = NULL;
743
744 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
745 struct skb_shared_info *shinfo;
746 unsigned int nr_frags;
747
748 shinfo = skb_shinfo(skb);
749 nr_frags = --shinfo->nr_frags;
750 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
751
752 dev_kfree_skb(skb);
753
754 cons_rx_buf->page = page;
755
756 /* Update prod since possibly some pages have been
757 * allocated already.
758 */
759 rxr->rx_agg_prod = prod;
760 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
761 return NULL;
762 }
763
764 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
765 PCI_DMA_FROMDEVICE);
766
767 skb->data_len += frag_len;
768 skb->len += frag_len;
769 skb->truesize += PAGE_SIZE;
770
771 prod = NEXT_RX_AGG(prod);
772 cp_cons = NEXT_CMP(cp_cons);
773 }
774 rxr->rx_agg_prod = prod;
775 return skb;
776 }
777
778 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
779 u8 agg_bufs, u32 *raw_cons)
780 {
781 u16 last;
782 struct rx_agg_cmp *agg;
783
784 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
785 last = RING_CMP(*raw_cons);
786 agg = (struct rx_agg_cmp *)
787 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
788 return RX_AGG_CMP_VALID(agg, *raw_cons);
789 }
790
791 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
792 unsigned int len,
793 dma_addr_t mapping)
794 {
795 struct bnxt *bp = bnapi->bp;
796 struct pci_dev *pdev = bp->pdev;
797 struct sk_buff *skb;
798
799 skb = napi_alloc_skb(&bnapi->napi, len);
800 if (!skb)
801 return NULL;
802
803 dma_sync_single_for_cpu(&pdev->dev, mapping,
804 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
805
806 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
807
808 dma_sync_single_for_device(&pdev->dev, mapping,
809 bp->rx_copy_thresh,
810 PCI_DMA_FROMDEVICE);
811
812 skb_put(skb, len);
813 return skb;
814 }
815
816 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
817 struct rx_tpa_start_cmp *tpa_start,
818 struct rx_tpa_start_cmp_ext *tpa_start1)
819 {
820 u8 agg_id = TPA_START_AGG_ID(tpa_start);
821 u16 cons, prod;
822 struct bnxt_tpa_info *tpa_info;
823 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
824 struct rx_bd *prod_bd;
825 dma_addr_t mapping;
826
827 cons = tpa_start->rx_tpa_start_cmp_opaque;
828 prod = rxr->rx_prod;
829 cons_rx_buf = &rxr->rx_buf_ring[cons];
830 prod_rx_buf = &rxr->rx_buf_ring[prod];
831 tpa_info = &rxr->rx_tpa[agg_id];
832
833 prod_rx_buf->data = tpa_info->data;
834
835 mapping = tpa_info->mapping;
836 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
837
838 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
839
840 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
841
842 tpa_info->data = cons_rx_buf->data;
843 cons_rx_buf->data = NULL;
844 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
845
846 tpa_info->len =
847 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
848 RX_TPA_START_CMP_LEN_SHIFT;
849 if (likely(TPA_START_HASH_VALID(tpa_start))) {
850 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
851
852 tpa_info->hash_type = PKT_HASH_TYPE_L4;
853 tpa_info->gso_type = SKB_GSO_TCPV4;
854 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
855 if (hash_type == 3)
856 tpa_info->gso_type = SKB_GSO_TCPV6;
857 tpa_info->rss_hash =
858 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
859 } else {
860 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
861 tpa_info->gso_type = 0;
862 if (netif_msg_rx_err(bp))
863 netdev_warn(bp->dev, "TPA packet without valid hash\n");
864 }
865 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
866 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
867
868 rxr->rx_prod = NEXT_RX(prod);
869 cons = NEXT_RX(cons);
870 cons_rx_buf = &rxr->rx_buf_ring[cons];
871
872 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
873 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
874 cons_rx_buf->data = NULL;
875 }
876
877 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
878 u16 cp_cons, u32 agg_bufs)
879 {
880 if (agg_bufs)
881 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
882 }
883
884 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
885 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
886
887 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
888 struct rx_tpa_end_cmp *tpa_end,
889 struct rx_tpa_end_cmp_ext *tpa_end1,
890 struct sk_buff *skb)
891 {
892 #ifdef CONFIG_INET
893 struct tcphdr *th;
894 int payload_off, tcp_opt_len = 0;
895 int len, nw_off;
896 u16 segs;
897
898 segs = TPA_END_TPA_SEGS(tpa_end);
899 if (segs == 1)
900 return skb;
901
902 NAPI_GRO_CB(skb)->count = segs;
903 skb_shinfo(skb)->gso_size =
904 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
905 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
906 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
907 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
908 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
909 if (TPA_END_GRO_TS(tpa_end))
910 tcp_opt_len = 12;
911
912 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
913 struct iphdr *iph;
914
915 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
916 ETH_HLEN;
917 skb_set_network_header(skb, nw_off);
918 iph = ip_hdr(skb);
919 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
920 len = skb->len - skb_transport_offset(skb);
921 th = tcp_hdr(skb);
922 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
923 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
924 struct ipv6hdr *iph;
925
926 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
927 ETH_HLEN;
928 skb_set_network_header(skb, nw_off);
929 iph = ipv6_hdr(skb);
930 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
931 len = skb->len - skb_transport_offset(skb);
932 th = tcp_hdr(skb);
933 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
934 } else {
935 dev_kfree_skb_any(skb);
936 return NULL;
937 }
938 tcp_gro_complete(skb);
939
940 if (nw_off) { /* tunnel */
941 struct udphdr *uh = NULL;
942
943 if (skb->protocol == htons(ETH_P_IP)) {
944 struct iphdr *iph = (struct iphdr *)skb->data;
945
946 if (iph->protocol == IPPROTO_UDP)
947 uh = (struct udphdr *)(iph + 1);
948 } else {
949 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
950
951 if (iph->nexthdr == IPPROTO_UDP)
952 uh = (struct udphdr *)(iph + 1);
953 }
954 if (uh) {
955 if (uh->check)
956 skb_shinfo(skb)->gso_type |=
957 SKB_GSO_UDP_TUNNEL_CSUM;
958 else
959 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
960 }
961 }
962 #endif
963 return skb;
964 }
965
966 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
967 struct bnxt_napi *bnapi,
968 u32 *raw_cons,
969 struct rx_tpa_end_cmp *tpa_end,
970 struct rx_tpa_end_cmp_ext *tpa_end1,
971 bool *agg_event)
972 {
973 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
974 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
975 u8 agg_id = TPA_END_AGG_ID(tpa_end);
976 u8 *data, agg_bufs;
977 u16 cp_cons = RING_CMP(*raw_cons);
978 unsigned int len;
979 struct bnxt_tpa_info *tpa_info;
980 dma_addr_t mapping;
981 struct sk_buff *skb;
982
983 tpa_info = &rxr->rx_tpa[agg_id];
984 data = tpa_info->data;
985 prefetch(data);
986 len = tpa_info->len;
987 mapping = tpa_info->mapping;
988
989 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
990 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
991
992 if (agg_bufs) {
993 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
994 return ERR_PTR(-EBUSY);
995
996 *agg_event = true;
997 cp_cons = NEXT_CMP(cp_cons);
998 }
999
1000 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1001 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1002 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1003 agg_bufs, (int)MAX_SKB_FRAGS);
1004 return NULL;
1005 }
1006
1007 if (len <= bp->rx_copy_thresh) {
1008 skb = bnxt_copy_skb(bnapi, data, len, mapping);
1009 if (!skb) {
1010 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1011 return NULL;
1012 }
1013 } else {
1014 u8 *new_data;
1015 dma_addr_t new_mapping;
1016
1017 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1018 if (!new_data) {
1019 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1020 return NULL;
1021 }
1022
1023 tpa_info->data = new_data;
1024 tpa_info->mapping = new_mapping;
1025
1026 skb = build_skb(data, 0);
1027 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1028 PCI_DMA_FROMDEVICE);
1029
1030 if (!skb) {
1031 kfree(data);
1032 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1033 return NULL;
1034 }
1035 skb_reserve(skb, BNXT_RX_OFFSET);
1036 skb_put(skb, len);
1037 }
1038
1039 if (agg_bufs) {
1040 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1041 if (!skb) {
1042 /* Page reuse already handled by bnxt_rx_pages(). */
1043 return NULL;
1044 }
1045 }
1046 skb->protocol = eth_type_trans(skb, bp->dev);
1047
1048 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1049 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1050
1051 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1052 netdev_features_t features = skb->dev->features;
1053 u16 vlan_proto = tpa_info->metadata >>
1054 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1055
1056 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1057 vlan_proto == ETH_P_8021Q) ||
1058 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1059 vlan_proto == ETH_P_8021AD)) {
1060 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1061 tpa_info->metadata &
1062 RX_CMP_FLAGS2_METADATA_VID_MASK);
1063 }
1064 }
1065
1066 skb_checksum_none_assert(skb);
1067 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1068 skb->ip_summed = CHECKSUM_UNNECESSARY;
1069 skb->csum_level =
1070 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1071 }
1072
1073 if (TPA_END_GRO(tpa_end))
1074 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1075
1076 return skb;
1077 }
1078
1079 /* returns the following:
1080 * 1 - 1 packet successfully received
1081 * 0 - successful TPA_START, packet not completed yet
1082 * -EBUSY - completion ring does not have all the agg buffers yet
1083 * -ENOMEM - packet aborted due to out of memory
1084 * -EIO - packet aborted due to hw error indicated in BD
1085 */
1086 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1087 bool *agg_event)
1088 {
1089 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1090 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1091 struct net_device *dev = bp->dev;
1092 struct rx_cmp *rxcmp;
1093 struct rx_cmp_ext *rxcmp1;
1094 u32 tmp_raw_cons = *raw_cons;
1095 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1096 struct bnxt_sw_rx_bd *rx_buf;
1097 unsigned int len;
1098 u8 *data, agg_bufs, cmp_type;
1099 dma_addr_t dma_addr;
1100 struct sk_buff *skb;
1101 int rc = 0;
1102
1103 rxcmp = (struct rx_cmp *)
1104 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1105
1106 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1107 cp_cons = RING_CMP(tmp_raw_cons);
1108 rxcmp1 = (struct rx_cmp_ext *)
1109 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1110
1111 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1112 return -EBUSY;
1113
1114 cmp_type = RX_CMP_TYPE(rxcmp);
1115
1116 prod = rxr->rx_prod;
1117
1118 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1119 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1120 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1121
1122 goto next_rx_no_prod;
1123
1124 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1125 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1126 (struct rx_tpa_end_cmp *)rxcmp,
1127 (struct rx_tpa_end_cmp_ext *)rxcmp1,
1128 agg_event);
1129
1130 if (unlikely(IS_ERR(skb)))
1131 return -EBUSY;
1132
1133 rc = -ENOMEM;
1134 if (likely(skb)) {
1135 skb_record_rx_queue(skb, bnapi->index);
1136 skb_mark_napi_id(skb, &bnapi->napi);
1137 if (bnxt_busy_polling(bnapi))
1138 netif_receive_skb(skb);
1139 else
1140 napi_gro_receive(&bnapi->napi, skb);
1141 rc = 1;
1142 }
1143 goto next_rx_no_prod;
1144 }
1145
1146 cons = rxcmp->rx_cmp_opaque;
1147 rx_buf = &rxr->rx_buf_ring[cons];
1148 data = rx_buf->data;
1149 prefetch(data);
1150
1151 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1152 RX_CMP_AGG_BUFS_SHIFT;
1153
1154 if (agg_bufs) {
1155 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1156 return -EBUSY;
1157
1158 cp_cons = NEXT_CMP(cp_cons);
1159 *agg_event = true;
1160 }
1161
1162 rx_buf->data = NULL;
1163 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1164 bnxt_reuse_rx_data(rxr, cons, data);
1165 if (agg_bufs)
1166 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1167
1168 rc = -EIO;
1169 goto next_rx;
1170 }
1171
1172 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1173 dma_addr = dma_unmap_addr(rx_buf, mapping);
1174
1175 if (len <= bp->rx_copy_thresh) {
1176 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1177 bnxt_reuse_rx_data(rxr, cons, data);
1178 if (!skb) {
1179 rc = -ENOMEM;
1180 goto next_rx;
1181 }
1182 } else {
1183 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1184 if (!skb) {
1185 rc = -ENOMEM;
1186 goto next_rx;
1187 }
1188 }
1189
1190 if (agg_bufs) {
1191 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1192 if (!skb) {
1193 rc = -ENOMEM;
1194 goto next_rx;
1195 }
1196 }
1197
1198 if (RX_CMP_HASH_VALID(rxcmp)) {
1199 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1200 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1201
1202 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1203 if (hash_type != 1 && hash_type != 3)
1204 type = PKT_HASH_TYPE_L3;
1205 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1206 }
1207
1208 skb->protocol = eth_type_trans(skb, dev);
1209
1210 if (rxcmp1->rx_cmp_flags2 &
1211 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1212 netdev_features_t features = skb->dev->features;
1213 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1214 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1215
1216 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1217 vlan_proto == ETH_P_8021Q) ||
1218 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1219 vlan_proto == ETH_P_8021AD))
1220 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1221 meta_data &
1222 RX_CMP_FLAGS2_METADATA_VID_MASK);
1223 }
1224
1225 skb_checksum_none_assert(skb);
1226 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1227 if (dev->features & NETIF_F_RXCSUM) {
1228 skb->ip_summed = CHECKSUM_UNNECESSARY;
1229 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1230 }
1231 } else {
1232 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1233 if (dev->features & NETIF_F_RXCSUM)
1234 cpr->rx_l4_csum_errors++;
1235 }
1236 }
1237
1238 skb_record_rx_queue(skb, bnapi->index);
1239 skb_mark_napi_id(skb, &bnapi->napi);
1240 if (bnxt_busy_polling(bnapi))
1241 netif_receive_skb(skb);
1242 else
1243 napi_gro_receive(&bnapi->napi, skb);
1244 rc = 1;
1245
1246 next_rx:
1247 rxr->rx_prod = NEXT_RX(prod);
1248
1249 next_rx_no_prod:
1250 *raw_cons = tmp_raw_cons;
1251
1252 return rc;
1253 }
1254
1255 static int bnxt_async_event_process(struct bnxt *bp,
1256 struct hwrm_async_event_cmpl *cmpl)
1257 {
1258 u16 event_id = le16_to_cpu(cmpl->event_id);
1259
1260 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1261 switch (event_id) {
1262 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1263 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1264 break;
1265 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1266 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1267 break;
1268 default:
1269 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1270 event_id);
1271 goto async_event_process_exit;
1272 }
1273 schedule_work(&bp->sp_task);
1274 async_event_process_exit:
1275 return 0;
1276 }
1277
1278 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1279 {
1280 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1281 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1282 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1283 (struct hwrm_fwd_req_cmpl *)txcmp;
1284
1285 switch (cmpl_type) {
1286 case CMPL_BASE_TYPE_HWRM_DONE:
1287 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1288 if (seq_id == bp->hwrm_intr_seq_id)
1289 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1290 else
1291 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1292 break;
1293
1294 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1295 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1296
1297 if ((vf_id < bp->pf.first_vf_id) ||
1298 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1299 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1300 vf_id);
1301 return -EINVAL;
1302 }
1303
1304 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1305 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1306 schedule_work(&bp->sp_task);
1307 break;
1308
1309 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1310 bnxt_async_event_process(bp,
1311 (struct hwrm_async_event_cmpl *)txcmp);
1312
1313 default:
1314 break;
1315 }
1316
1317 return 0;
1318 }
1319
1320 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1321 {
1322 struct bnxt_napi *bnapi = dev_instance;
1323 struct bnxt *bp = bnapi->bp;
1324 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1325 u32 cons = RING_CMP(cpr->cp_raw_cons);
1326
1327 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1328 napi_schedule(&bnapi->napi);
1329 return IRQ_HANDLED;
1330 }
1331
1332 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1333 {
1334 u32 raw_cons = cpr->cp_raw_cons;
1335 u16 cons = RING_CMP(raw_cons);
1336 struct tx_cmp *txcmp;
1337
1338 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1339
1340 return TX_CMP_VALID(txcmp, raw_cons);
1341 }
1342
1343 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1344 {
1345 struct bnxt_napi *bnapi = dev_instance;
1346 struct bnxt *bp = bnapi->bp;
1347 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1348 u32 cons = RING_CMP(cpr->cp_raw_cons);
1349 u32 int_status;
1350
1351 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1352
1353 if (!bnxt_has_work(bp, cpr)) {
1354 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1355 /* return if erroneous interrupt */
1356 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1357 return IRQ_NONE;
1358 }
1359
1360 /* disable ring IRQ */
1361 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1362
1363 /* Return here if interrupt is shared and is disabled. */
1364 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1365 return IRQ_HANDLED;
1366
1367 napi_schedule(&bnapi->napi);
1368 return IRQ_HANDLED;
1369 }
1370
1371 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1372 {
1373 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1374 u32 raw_cons = cpr->cp_raw_cons;
1375 u32 cons;
1376 int tx_pkts = 0;
1377 int rx_pkts = 0;
1378 bool rx_event = false;
1379 bool agg_event = false;
1380 struct tx_cmp *txcmp;
1381
1382 while (1) {
1383 int rc;
1384
1385 cons = RING_CMP(raw_cons);
1386 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1387
1388 if (!TX_CMP_VALID(txcmp, raw_cons))
1389 break;
1390
1391 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1392 tx_pkts++;
1393 /* return full budget so NAPI will complete. */
1394 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1395 rx_pkts = budget;
1396 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1397 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1398 if (likely(rc >= 0))
1399 rx_pkts += rc;
1400 else if (rc == -EBUSY) /* partial completion */
1401 break;
1402 rx_event = true;
1403 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1404 CMPL_BASE_TYPE_HWRM_DONE) ||
1405 (TX_CMP_TYPE(txcmp) ==
1406 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1407 (TX_CMP_TYPE(txcmp) ==
1408 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1409 bnxt_hwrm_handler(bp, txcmp);
1410 }
1411 raw_cons = NEXT_RAW_CMP(raw_cons);
1412
1413 if (rx_pkts == budget)
1414 break;
1415 }
1416
1417 cpr->cp_raw_cons = raw_cons;
1418 /* ACK completion ring before freeing tx ring and producing new
1419 * buffers in rx/agg rings to prevent overflowing the completion
1420 * ring.
1421 */
1422 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1423
1424 if (tx_pkts)
1425 bnxt_tx_int(bp, bnapi, tx_pkts);
1426
1427 if (rx_event) {
1428 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1429
1430 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1431 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1432 if (agg_event) {
1433 writel(DB_KEY_RX | rxr->rx_agg_prod,
1434 rxr->rx_agg_doorbell);
1435 writel(DB_KEY_RX | rxr->rx_agg_prod,
1436 rxr->rx_agg_doorbell);
1437 }
1438 }
1439 return rx_pkts;
1440 }
1441
1442 static int bnxt_poll(struct napi_struct *napi, int budget)
1443 {
1444 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1445 struct bnxt *bp = bnapi->bp;
1446 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1447 int work_done = 0;
1448
1449 if (!bnxt_lock_napi(bnapi))
1450 return budget;
1451
1452 while (1) {
1453 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1454
1455 if (work_done >= budget)
1456 break;
1457
1458 if (!bnxt_has_work(bp, cpr)) {
1459 napi_complete(napi);
1460 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1461 break;
1462 }
1463 }
1464 mmiowb();
1465 bnxt_unlock_napi(bnapi);
1466 return work_done;
1467 }
1468
1469 #ifdef CONFIG_NET_RX_BUSY_POLL
1470 static int bnxt_busy_poll(struct napi_struct *napi)
1471 {
1472 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1473 struct bnxt *bp = bnapi->bp;
1474 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1475 int rx_work, budget = 4;
1476
1477 if (atomic_read(&bp->intr_sem) != 0)
1478 return LL_FLUSH_FAILED;
1479
1480 if (!bnxt_lock_poll(bnapi))
1481 return LL_FLUSH_BUSY;
1482
1483 rx_work = bnxt_poll_work(bp, bnapi, budget);
1484
1485 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1486
1487 bnxt_unlock_poll(bnapi);
1488 return rx_work;
1489 }
1490 #endif
1491
1492 static void bnxt_free_tx_skbs(struct bnxt *bp)
1493 {
1494 int i, max_idx;
1495 struct pci_dev *pdev = bp->pdev;
1496
1497 if (!bp->tx_ring)
1498 return;
1499
1500 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1501 for (i = 0; i < bp->tx_nr_rings; i++) {
1502 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1503 int j;
1504
1505 for (j = 0; j < max_idx;) {
1506 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1507 struct sk_buff *skb = tx_buf->skb;
1508 int k, last;
1509
1510 if (!skb) {
1511 j++;
1512 continue;
1513 }
1514
1515 tx_buf->skb = NULL;
1516
1517 if (tx_buf->is_push) {
1518 dev_kfree_skb(skb);
1519 j += 2;
1520 continue;
1521 }
1522
1523 dma_unmap_single(&pdev->dev,
1524 dma_unmap_addr(tx_buf, mapping),
1525 skb_headlen(skb),
1526 PCI_DMA_TODEVICE);
1527
1528 last = tx_buf->nr_frags;
1529 j += 2;
1530 for (k = 0; k < last; k++, j++) {
1531 int ring_idx = j & bp->tx_ring_mask;
1532 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1533
1534 tx_buf = &txr->tx_buf_ring[ring_idx];
1535 dma_unmap_page(
1536 &pdev->dev,
1537 dma_unmap_addr(tx_buf, mapping),
1538 skb_frag_size(frag), PCI_DMA_TODEVICE);
1539 }
1540 dev_kfree_skb(skb);
1541 }
1542 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1543 }
1544 }
1545
1546 static void bnxt_free_rx_skbs(struct bnxt *bp)
1547 {
1548 int i, max_idx, max_agg_idx;
1549 struct pci_dev *pdev = bp->pdev;
1550
1551 if (!bp->rx_ring)
1552 return;
1553
1554 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1555 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1556 for (i = 0; i < bp->rx_nr_rings; i++) {
1557 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1558 int j;
1559
1560 if (rxr->rx_tpa) {
1561 for (j = 0; j < MAX_TPA; j++) {
1562 struct bnxt_tpa_info *tpa_info =
1563 &rxr->rx_tpa[j];
1564 u8 *data = tpa_info->data;
1565
1566 if (!data)
1567 continue;
1568
1569 dma_unmap_single(
1570 &pdev->dev,
1571 dma_unmap_addr(tpa_info, mapping),
1572 bp->rx_buf_use_size,
1573 PCI_DMA_FROMDEVICE);
1574
1575 tpa_info->data = NULL;
1576
1577 kfree(data);
1578 }
1579 }
1580
1581 for (j = 0; j < max_idx; j++) {
1582 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1583 u8 *data = rx_buf->data;
1584
1585 if (!data)
1586 continue;
1587
1588 dma_unmap_single(&pdev->dev,
1589 dma_unmap_addr(rx_buf, mapping),
1590 bp->rx_buf_use_size,
1591 PCI_DMA_FROMDEVICE);
1592
1593 rx_buf->data = NULL;
1594
1595 kfree(data);
1596 }
1597
1598 for (j = 0; j < max_agg_idx; j++) {
1599 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1600 &rxr->rx_agg_ring[j];
1601 struct page *page = rx_agg_buf->page;
1602
1603 if (!page)
1604 continue;
1605
1606 dma_unmap_page(&pdev->dev,
1607 dma_unmap_addr(rx_agg_buf, mapping),
1608 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1609
1610 rx_agg_buf->page = NULL;
1611 __clear_bit(j, rxr->rx_agg_bmap);
1612
1613 __free_page(page);
1614 }
1615 if (rxr->rx_page) {
1616 __free_page(rxr->rx_page);
1617 rxr->rx_page = NULL;
1618 }
1619 }
1620 }
1621
1622 static void bnxt_free_skbs(struct bnxt *bp)
1623 {
1624 bnxt_free_tx_skbs(bp);
1625 bnxt_free_rx_skbs(bp);
1626 }
1627
1628 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1629 {
1630 struct pci_dev *pdev = bp->pdev;
1631 int i;
1632
1633 for (i = 0; i < ring->nr_pages; i++) {
1634 if (!ring->pg_arr[i])
1635 continue;
1636
1637 dma_free_coherent(&pdev->dev, ring->page_size,
1638 ring->pg_arr[i], ring->dma_arr[i]);
1639
1640 ring->pg_arr[i] = NULL;
1641 }
1642 if (ring->pg_tbl) {
1643 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1644 ring->pg_tbl, ring->pg_tbl_map);
1645 ring->pg_tbl = NULL;
1646 }
1647 if (ring->vmem_size && *ring->vmem) {
1648 vfree(*ring->vmem);
1649 *ring->vmem = NULL;
1650 }
1651 }
1652
1653 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1654 {
1655 int i;
1656 struct pci_dev *pdev = bp->pdev;
1657
1658 if (ring->nr_pages > 1) {
1659 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1660 ring->nr_pages * 8,
1661 &ring->pg_tbl_map,
1662 GFP_KERNEL);
1663 if (!ring->pg_tbl)
1664 return -ENOMEM;
1665 }
1666
1667 for (i = 0; i < ring->nr_pages; i++) {
1668 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1669 ring->page_size,
1670 &ring->dma_arr[i],
1671 GFP_KERNEL);
1672 if (!ring->pg_arr[i])
1673 return -ENOMEM;
1674
1675 if (ring->nr_pages > 1)
1676 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1677 }
1678
1679 if (ring->vmem_size) {
1680 *ring->vmem = vzalloc(ring->vmem_size);
1681 if (!(*ring->vmem))
1682 return -ENOMEM;
1683 }
1684 return 0;
1685 }
1686
1687 static void bnxt_free_rx_rings(struct bnxt *bp)
1688 {
1689 int i;
1690
1691 if (!bp->rx_ring)
1692 return;
1693
1694 for (i = 0; i < bp->rx_nr_rings; i++) {
1695 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1696 struct bnxt_ring_struct *ring;
1697
1698 kfree(rxr->rx_tpa);
1699 rxr->rx_tpa = NULL;
1700
1701 kfree(rxr->rx_agg_bmap);
1702 rxr->rx_agg_bmap = NULL;
1703
1704 ring = &rxr->rx_ring_struct;
1705 bnxt_free_ring(bp, ring);
1706
1707 ring = &rxr->rx_agg_ring_struct;
1708 bnxt_free_ring(bp, ring);
1709 }
1710 }
1711
1712 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1713 {
1714 int i, rc, agg_rings = 0, tpa_rings = 0;
1715
1716 if (!bp->rx_ring)
1717 return -ENOMEM;
1718
1719 if (bp->flags & BNXT_FLAG_AGG_RINGS)
1720 agg_rings = 1;
1721
1722 if (bp->flags & BNXT_FLAG_TPA)
1723 tpa_rings = 1;
1724
1725 for (i = 0; i < bp->rx_nr_rings; i++) {
1726 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1727 struct bnxt_ring_struct *ring;
1728
1729 ring = &rxr->rx_ring_struct;
1730
1731 rc = bnxt_alloc_ring(bp, ring);
1732 if (rc)
1733 return rc;
1734
1735 if (agg_rings) {
1736 u16 mem_size;
1737
1738 ring = &rxr->rx_agg_ring_struct;
1739 rc = bnxt_alloc_ring(bp, ring);
1740 if (rc)
1741 return rc;
1742
1743 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1744 mem_size = rxr->rx_agg_bmap_size / 8;
1745 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1746 if (!rxr->rx_agg_bmap)
1747 return -ENOMEM;
1748
1749 if (tpa_rings) {
1750 rxr->rx_tpa = kcalloc(MAX_TPA,
1751 sizeof(struct bnxt_tpa_info),
1752 GFP_KERNEL);
1753 if (!rxr->rx_tpa)
1754 return -ENOMEM;
1755 }
1756 }
1757 }
1758 return 0;
1759 }
1760
1761 static void bnxt_free_tx_rings(struct bnxt *bp)
1762 {
1763 int i;
1764 struct pci_dev *pdev = bp->pdev;
1765
1766 if (!bp->tx_ring)
1767 return;
1768
1769 for (i = 0; i < bp->tx_nr_rings; i++) {
1770 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1771 struct bnxt_ring_struct *ring;
1772
1773 if (txr->tx_push) {
1774 dma_free_coherent(&pdev->dev, bp->tx_push_size,
1775 txr->tx_push, txr->tx_push_mapping);
1776 txr->tx_push = NULL;
1777 }
1778
1779 ring = &txr->tx_ring_struct;
1780
1781 bnxt_free_ring(bp, ring);
1782 }
1783 }
1784
1785 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1786 {
1787 int i, j, rc;
1788 struct pci_dev *pdev = bp->pdev;
1789
1790 bp->tx_push_size = 0;
1791 if (bp->tx_push_thresh) {
1792 int push_size;
1793
1794 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1795 bp->tx_push_thresh);
1796
1797 if (push_size > 256) {
1798 push_size = 0;
1799 bp->tx_push_thresh = 0;
1800 }
1801
1802 bp->tx_push_size = push_size;
1803 }
1804
1805 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1806 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1807 struct bnxt_ring_struct *ring;
1808
1809 ring = &txr->tx_ring_struct;
1810
1811 rc = bnxt_alloc_ring(bp, ring);
1812 if (rc)
1813 return rc;
1814
1815 if (bp->tx_push_size) {
1816 dma_addr_t mapping;
1817
1818 /* One pre-allocated DMA buffer to backup
1819 * TX push operation
1820 */
1821 txr->tx_push = dma_alloc_coherent(&pdev->dev,
1822 bp->tx_push_size,
1823 &txr->tx_push_mapping,
1824 GFP_KERNEL);
1825
1826 if (!txr->tx_push)
1827 return -ENOMEM;
1828
1829 mapping = txr->tx_push_mapping +
1830 sizeof(struct tx_push_bd);
1831 txr->data_mapping = cpu_to_le64(mapping);
1832
1833 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1834 }
1835 ring->queue_id = bp->q_info[j].queue_id;
1836 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1837 j++;
1838 }
1839 return 0;
1840 }
1841
1842 static void bnxt_free_cp_rings(struct bnxt *bp)
1843 {
1844 int i;
1845
1846 if (!bp->bnapi)
1847 return;
1848
1849 for (i = 0; i < bp->cp_nr_rings; i++) {
1850 struct bnxt_napi *bnapi = bp->bnapi[i];
1851 struct bnxt_cp_ring_info *cpr;
1852 struct bnxt_ring_struct *ring;
1853
1854 if (!bnapi)
1855 continue;
1856
1857 cpr = &bnapi->cp_ring;
1858 ring = &cpr->cp_ring_struct;
1859
1860 bnxt_free_ring(bp, ring);
1861 }
1862 }
1863
1864 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1865 {
1866 int i, rc;
1867
1868 for (i = 0; i < bp->cp_nr_rings; i++) {
1869 struct bnxt_napi *bnapi = bp->bnapi[i];
1870 struct bnxt_cp_ring_info *cpr;
1871 struct bnxt_ring_struct *ring;
1872
1873 if (!bnapi)
1874 continue;
1875
1876 cpr = &bnapi->cp_ring;
1877 ring = &cpr->cp_ring_struct;
1878
1879 rc = bnxt_alloc_ring(bp, ring);
1880 if (rc)
1881 return rc;
1882 }
1883 return 0;
1884 }
1885
1886 static void bnxt_init_ring_struct(struct bnxt *bp)
1887 {
1888 int i;
1889
1890 for (i = 0; i < bp->cp_nr_rings; i++) {
1891 struct bnxt_napi *bnapi = bp->bnapi[i];
1892 struct bnxt_cp_ring_info *cpr;
1893 struct bnxt_rx_ring_info *rxr;
1894 struct bnxt_tx_ring_info *txr;
1895 struct bnxt_ring_struct *ring;
1896
1897 if (!bnapi)
1898 continue;
1899
1900 cpr = &bnapi->cp_ring;
1901 ring = &cpr->cp_ring_struct;
1902 ring->nr_pages = bp->cp_nr_pages;
1903 ring->page_size = HW_CMPD_RING_SIZE;
1904 ring->pg_arr = (void **)cpr->cp_desc_ring;
1905 ring->dma_arr = cpr->cp_desc_mapping;
1906 ring->vmem_size = 0;
1907
1908 rxr = bnapi->rx_ring;
1909 if (!rxr)
1910 goto skip_rx;
1911
1912 ring = &rxr->rx_ring_struct;
1913 ring->nr_pages = bp->rx_nr_pages;
1914 ring->page_size = HW_RXBD_RING_SIZE;
1915 ring->pg_arr = (void **)rxr->rx_desc_ring;
1916 ring->dma_arr = rxr->rx_desc_mapping;
1917 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1918 ring->vmem = (void **)&rxr->rx_buf_ring;
1919
1920 ring = &rxr->rx_agg_ring_struct;
1921 ring->nr_pages = bp->rx_agg_nr_pages;
1922 ring->page_size = HW_RXBD_RING_SIZE;
1923 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1924 ring->dma_arr = rxr->rx_agg_desc_mapping;
1925 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1926 ring->vmem = (void **)&rxr->rx_agg_ring;
1927
1928 skip_rx:
1929 txr = bnapi->tx_ring;
1930 if (!txr)
1931 continue;
1932
1933 ring = &txr->tx_ring_struct;
1934 ring->nr_pages = bp->tx_nr_pages;
1935 ring->page_size = HW_RXBD_RING_SIZE;
1936 ring->pg_arr = (void **)txr->tx_desc_ring;
1937 ring->dma_arr = txr->tx_desc_mapping;
1938 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1939 ring->vmem = (void **)&txr->tx_buf_ring;
1940 }
1941 }
1942
1943 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1944 {
1945 int i;
1946 u32 prod;
1947 struct rx_bd **rx_buf_ring;
1948
1949 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1950 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1951 int j;
1952 struct rx_bd *rxbd;
1953
1954 rxbd = rx_buf_ring[i];
1955 if (!rxbd)
1956 continue;
1957
1958 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1959 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1960 rxbd->rx_bd_opaque = prod;
1961 }
1962 }
1963 }
1964
1965 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1966 {
1967 struct net_device *dev = bp->dev;
1968 struct bnxt_rx_ring_info *rxr;
1969 struct bnxt_ring_struct *ring;
1970 u32 prod, type;
1971 int i;
1972
1973 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1974 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1975
1976 if (NET_IP_ALIGN == 2)
1977 type |= RX_BD_FLAGS_SOP;
1978
1979 rxr = &bp->rx_ring[ring_nr];
1980 ring = &rxr->rx_ring_struct;
1981 bnxt_init_rxbd_pages(ring, type);
1982
1983 prod = rxr->rx_prod;
1984 for (i = 0; i < bp->rx_ring_size; i++) {
1985 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1986 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1987 ring_nr, i, bp->rx_ring_size);
1988 break;
1989 }
1990 prod = NEXT_RX(prod);
1991 }
1992 rxr->rx_prod = prod;
1993 ring->fw_ring_id = INVALID_HW_RING_ID;
1994
1995 ring = &rxr->rx_agg_ring_struct;
1996 ring->fw_ring_id = INVALID_HW_RING_ID;
1997
1998 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1999 return 0;
2000
2001 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2002 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2003
2004 bnxt_init_rxbd_pages(ring, type);
2005
2006 prod = rxr->rx_agg_prod;
2007 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2008 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2009 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2010 ring_nr, i, bp->rx_ring_size);
2011 break;
2012 }
2013 prod = NEXT_RX_AGG(prod);
2014 }
2015 rxr->rx_agg_prod = prod;
2016
2017 if (bp->flags & BNXT_FLAG_TPA) {
2018 if (rxr->rx_tpa) {
2019 u8 *data;
2020 dma_addr_t mapping;
2021
2022 for (i = 0; i < MAX_TPA; i++) {
2023 data = __bnxt_alloc_rx_data(bp, &mapping,
2024 GFP_KERNEL);
2025 if (!data)
2026 return -ENOMEM;
2027
2028 rxr->rx_tpa[i].data = data;
2029 rxr->rx_tpa[i].mapping = mapping;
2030 }
2031 } else {
2032 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2033 return -ENOMEM;
2034 }
2035 }
2036
2037 return 0;
2038 }
2039
2040 static int bnxt_init_rx_rings(struct bnxt *bp)
2041 {
2042 int i, rc = 0;
2043
2044 for (i = 0; i < bp->rx_nr_rings; i++) {
2045 rc = bnxt_init_one_rx_ring(bp, i);
2046 if (rc)
2047 break;
2048 }
2049
2050 return rc;
2051 }
2052
2053 static int bnxt_init_tx_rings(struct bnxt *bp)
2054 {
2055 u16 i;
2056
2057 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2058 MAX_SKB_FRAGS + 1);
2059
2060 for (i = 0; i < bp->tx_nr_rings; i++) {
2061 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2062 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2063
2064 ring->fw_ring_id = INVALID_HW_RING_ID;
2065 }
2066
2067 return 0;
2068 }
2069
2070 static void bnxt_free_ring_grps(struct bnxt *bp)
2071 {
2072 kfree(bp->grp_info);
2073 bp->grp_info = NULL;
2074 }
2075
2076 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2077 {
2078 int i;
2079
2080 if (irq_re_init) {
2081 bp->grp_info = kcalloc(bp->cp_nr_rings,
2082 sizeof(struct bnxt_ring_grp_info),
2083 GFP_KERNEL);
2084 if (!bp->grp_info)
2085 return -ENOMEM;
2086 }
2087 for (i = 0; i < bp->cp_nr_rings; i++) {
2088 if (irq_re_init)
2089 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2090 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2091 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2092 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2093 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2094 }
2095 return 0;
2096 }
2097
2098 static void bnxt_free_vnics(struct bnxt *bp)
2099 {
2100 kfree(bp->vnic_info);
2101 bp->vnic_info = NULL;
2102 bp->nr_vnics = 0;
2103 }
2104
2105 static int bnxt_alloc_vnics(struct bnxt *bp)
2106 {
2107 int num_vnics = 1;
2108
2109 #ifdef CONFIG_RFS_ACCEL
2110 if (bp->flags & BNXT_FLAG_RFS)
2111 num_vnics += bp->rx_nr_rings;
2112 #endif
2113
2114 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2115 GFP_KERNEL);
2116 if (!bp->vnic_info)
2117 return -ENOMEM;
2118
2119 bp->nr_vnics = num_vnics;
2120 return 0;
2121 }
2122
2123 static void bnxt_init_vnics(struct bnxt *bp)
2124 {
2125 int i;
2126
2127 for (i = 0; i < bp->nr_vnics; i++) {
2128 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2129
2130 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2131 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2132 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2133
2134 if (bp->vnic_info[i].rss_hash_key) {
2135 if (i == 0)
2136 prandom_bytes(vnic->rss_hash_key,
2137 HW_HASH_KEY_SIZE);
2138 else
2139 memcpy(vnic->rss_hash_key,
2140 bp->vnic_info[0].rss_hash_key,
2141 HW_HASH_KEY_SIZE);
2142 }
2143 }
2144 }
2145
2146 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2147 {
2148 int pages;
2149
2150 pages = ring_size / desc_per_pg;
2151
2152 if (!pages)
2153 return 1;
2154
2155 pages++;
2156
2157 while (pages & (pages - 1))
2158 pages++;
2159
2160 return pages;
2161 }
2162
2163 static void bnxt_set_tpa_flags(struct bnxt *bp)
2164 {
2165 bp->flags &= ~BNXT_FLAG_TPA;
2166 if (bp->dev->features & NETIF_F_LRO)
2167 bp->flags |= BNXT_FLAG_LRO;
2168 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2169 bp->flags |= BNXT_FLAG_GRO;
2170 }
2171
2172 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2173 * be set on entry.
2174 */
2175 void bnxt_set_ring_params(struct bnxt *bp)
2176 {
2177 u32 ring_size, rx_size, rx_space;
2178 u32 agg_factor = 0, agg_ring_size = 0;
2179
2180 /* 8 for CRC and VLAN */
2181 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2182
2183 rx_space = rx_size + NET_SKB_PAD +
2184 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2185
2186 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2187 ring_size = bp->rx_ring_size;
2188 bp->rx_agg_ring_size = 0;
2189 bp->rx_agg_nr_pages = 0;
2190
2191 if (bp->flags & BNXT_FLAG_TPA)
2192 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2193
2194 bp->flags &= ~BNXT_FLAG_JUMBO;
2195 if (rx_space > PAGE_SIZE) {
2196 u32 jumbo_factor;
2197
2198 bp->flags |= BNXT_FLAG_JUMBO;
2199 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2200 if (jumbo_factor > agg_factor)
2201 agg_factor = jumbo_factor;
2202 }
2203 agg_ring_size = ring_size * agg_factor;
2204
2205 if (agg_ring_size) {
2206 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2207 RX_DESC_CNT);
2208 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2209 u32 tmp = agg_ring_size;
2210
2211 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2212 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2213 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2214 tmp, agg_ring_size);
2215 }
2216 bp->rx_agg_ring_size = agg_ring_size;
2217 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2218 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2219 rx_space = rx_size + NET_SKB_PAD +
2220 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2221 }
2222
2223 bp->rx_buf_use_size = rx_size;
2224 bp->rx_buf_size = rx_space;
2225
2226 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2227 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2228
2229 ring_size = bp->tx_ring_size;
2230 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2231 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2232
2233 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2234 bp->cp_ring_size = ring_size;
2235
2236 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2237 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2238 bp->cp_nr_pages = MAX_CP_PAGES;
2239 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2240 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2241 ring_size, bp->cp_ring_size);
2242 }
2243 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2244 bp->cp_ring_mask = bp->cp_bit - 1;
2245 }
2246
2247 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2248 {
2249 int i;
2250 struct bnxt_vnic_info *vnic;
2251 struct pci_dev *pdev = bp->pdev;
2252
2253 if (!bp->vnic_info)
2254 return;
2255
2256 for (i = 0; i < bp->nr_vnics; i++) {
2257 vnic = &bp->vnic_info[i];
2258
2259 kfree(vnic->fw_grp_ids);
2260 vnic->fw_grp_ids = NULL;
2261
2262 kfree(vnic->uc_list);
2263 vnic->uc_list = NULL;
2264
2265 if (vnic->mc_list) {
2266 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2267 vnic->mc_list, vnic->mc_list_mapping);
2268 vnic->mc_list = NULL;
2269 }
2270
2271 if (vnic->rss_table) {
2272 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2273 vnic->rss_table,
2274 vnic->rss_table_dma_addr);
2275 vnic->rss_table = NULL;
2276 }
2277
2278 vnic->rss_hash_key = NULL;
2279 vnic->flags = 0;
2280 }
2281 }
2282
2283 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2284 {
2285 int i, rc = 0, size;
2286 struct bnxt_vnic_info *vnic;
2287 struct pci_dev *pdev = bp->pdev;
2288 int max_rings;
2289
2290 for (i = 0; i < bp->nr_vnics; i++) {
2291 vnic = &bp->vnic_info[i];
2292
2293 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2294 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2295
2296 if (mem_size > 0) {
2297 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2298 if (!vnic->uc_list) {
2299 rc = -ENOMEM;
2300 goto out;
2301 }
2302 }
2303 }
2304
2305 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2306 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2307 vnic->mc_list =
2308 dma_alloc_coherent(&pdev->dev,
2309 vnic->mc_list_size,
2310 &vnic->mc_list_mapping,
2311 GFP_KERNEL);
2312 if (!vnic->mc_list) {
2313 rc = -ENOMEM;
2314 goto out;
2315 }
2316 }
2317
2318 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2319 max_rings = bp->rx_nr_rings;
2320 else
2321 max_rings = 1;
2322
2323 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2324 if (!vnic->fw_grp_ids) {
2325 rc = -ENOMEM;
2326 goto out;
2327 }
2328
2329 /* Allocate rss table and hash key */
2330 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2331 &vnic->rss_table_dma_addr,
2332 GFP_KERNEL);
2333 if (!vnic->rss_table) {
2334 rc = -ENOMEM;
2335 goto out;
2336 }
2337
2338 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2339
2340 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2341 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2342 }
2343 return 0;
2344
2345 out:
2346 return rc;
2347 }
2348
2349 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2350 {
2351 struct pci_dev *pdev = bp->pdev;
2352
2353 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2354 bp->hwrm_cmd_resp_dma_addr);
2355
2356 bp->hwrm_cmd_resp_addr = NULL;
2357 if (bp->hwrm_dbg_resp_addr) {
2358 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2359 bp->hwrm_dbg_resp_addr,
2360 bp->hwrm_dbg_resp_dma_addr);
2361
2362 bp->hwrm_dbg_resp_addr = NULL;
2363 }
2364 }
2365
2366 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2367 {
2368 struct pci_dev *pdev = bp->pdev;
2369
2370 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2371 &bp->hwrm_cmd_resp_dma_addr,
2372 GFP_KERNEL);
2373 if (!bp->hwrm_cmd_resp_addr)
2374 return -ENOMEM;
2375 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2376 HWRM_DBG_REG_BUF_SIZE,
2377 &bp->hwrm_dbg_resp_dma_addr,
2378 GFP_KERNEL);
2379 if (!bp->hwrm_dbg_resp_addr)
2380 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2381
2382 return 0;
2383 }
2384
2385 static void bnxt_free_stats(struct bnxt *bp)
2386 {
2387 u32 size, i;
2388 struct pci_dev *pdev = bp->pdev;
2389
2390 if (bp->hw_rx_port_stats) {
2391 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2392 bp->hw_rx_port_stats,
2393 bp->hw_rx_port_stats_map);
2394 bp->hw_rx_port_stats = NULL;
2395 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2396 }
2397
2398 if (!bp->bnapi)
2399 return;
2400
2401 size = sizeof(struct ctx_hw_stats);
2402
2403 for (i = 0; i < bp->cp_nr_rings; i++) {
2404 struct bnxt_napi *bnapi = bp->bnapi[i];
2405 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2406
2407 if (cpr->hw_stats) {
2408 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2409 cpr->hw_stats_map);
2410 cpr->hw_stats = NULL;
2411 }
2412 }
2413 }
2414
2415 static int bnxt_alloc_stats(struct bnxt *bp)
2416 {
2417 u32 size, i;
2418 struct pci_dev *pdev = bp->pdev;
2419
2420 size = sizeof(struct ctx_hw_stats);
2421
2422 for (i = 0; i < bp->cp_nr_rings; i++) {
2423 struct bnxt_napi *bnapi = bp->bnapi[i];
2424 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2425
2426 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2427 &cpr->hw_stats_map,
2428 GFP_KERNEL);
2429 if (!cpr->hw_stats)
2430 return -ENOMEM;
2431
2432 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2433 }
2434
2435 if (BNXT_PF(bp)) {
2436 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2437 sizeof(struct tx_port_stats) + 1024;
2438
2439 bp->hw_rx_port_stats =
2440 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2441 &bp->hw_rx_port_stats_map,
2442 GFP_KERNEL);
2443 if (!bp->hw_rx_port_stats)
2444 return -ENOMEM;
2445
2446 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2447 512;
2448 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2449 sizeof(struct rx_port_stats) + 512;
2450 bp->flags |= BNXT_FLAG_PORT_STATS;
2451 }
2452 return 0;
2453 }
2454
2455 static void bnxt_clear_ring_indices(struct bnxt *bp)
2456 {
2457 int i;
2458
2459 if (!bp->bnapi)
2460 return;
2461
2462 for (i = 0; i < bp->cp_nr_rings; i++) {
2463 struct bnxt_napi *bnapi = bp->bnapi[i];
2464 struct bnxt_cp_ring_info *cpr;
2465 struct bnxt_rx_ring_info *rxr;
2466 struct bnxt_tx_ring_info *txr;
2467
2468 if (!bnapi)
2469 continue;
2470
2471 cpr = &bnapi->cp_ring;
2472 cpr->cp_raw_cons = 0;
2473
2474 txr = bnapi->tx_ring;
2475 if (txr) {
2476 txr->tx_prod = 0;
2477 txr->tx_cons = 0;
2478 }
2479
2480 rxr = bnapi->rx_ring;
2481 if (rxr) {
2482 rxr->rx_prod = 0;
2483 rxr->rx_agg_prod = 0;
2484 rxr->rx_sw_agg_prod = 0;
2485 }
2486 }
2487 }
2488
2489 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2490 {
2491 #ifdef CONFIG_RFS_ACCEL
2492 int i;
2493
2494 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2495 * safe to delete the hash table.
2496 */
2497 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2498 struct hlist_head *head;
2499 struct hlist_node *tmp;
2500 struct bnxt_ntuple_filter *fltr;
2501
2502 head = &bp->ntp_fltr_hash_tbl[i];
2503 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2504 hlist_del(&fltr->hash);
2505 kfree(fltr);
2506 }
2507 }
2508 if (irq_reinit) {
2509 kfree(bp->ntp_fltr_bmap);
2510 bp->ntp_fltr_bmap = NULL;
2511 }
2512 bp->ntp_fltr_count = 0;
2513 #endif
2514 }
2515
2516 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2517 {
2518 #ifdef CONFIG_RFS_ACCEL
2519 int i, rc = 0;
2520
2521 if (!(bp->flags & BNXT_FLAG_RFS))
2522 return 0;
2523
2524 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2525 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2526
2527 bp->ntp_fltr_count = 0;
2528 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2529 GFP_KERNEL);
2530
2531 if (!bp->ntp_fltr_bmap)
2532 rc = -ENOMEM;
2533
2534 return rc;
2535 #else
2536 return 0;
2537 #endif
2538 }
2539
2540 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2541 {
2542 bnxt_free_vnic_attributes(bp);
2543 bnxt_free_tx_rings(bp);
2544 bnxt_free_rx_rings(bp);
2545 bnxt_free_cp_rings(bp);
2546 bnxt_free_ntp_fltrs(bp, irq_re_init);
2547 if (irq_re_init) {
2548 bnxt_free_stats(bp);
2549 bnxt_free_ring_grps(bp);
2550 bnxt_free_vnics(bp);
2551 kfree(bp->tx_ring);
2552 bp->tx_ring = NULL;
2553 kfree(bp->rx_ring);
2554 bp->rx_ring = NULL;
2555 kfree(bp->bnapi);
2556 bp->bnapi = NULL;
2557 } else {
2558 bnxt_clear_ring_indices(bp);
2559 }
2560 }
2561
2562 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2563 {
2564 int i, j, rc, size, arr_size;
2565 void *bnapi;
2566
2567 if (irq_re_init) {
2568 /* Allocate bnapi mem pointer array and mem block for
2569 * all queues
2570 */
2571 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2572 bp->cp_nr_rings);
2573 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2574 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2575 if (!bnapi)
2576 return -ENOMEM;
2577
2578 bp->bnapi = bnapi;
2579 bnapi += arr_size;
2580 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2581 bp->bnapi[i] = bnapi;
2582 bp->bnapi[i]->index = i;
2583 bp->bnapi[i]->bp = bp;
2584 }
2585
2586 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2587 sizeof(struct bnxt_rx_ring_info),
2588 GFP_KERNEL);
2589 if (!bp->rx_ring)
2590 return -ENOMEM;
2591
2592 for (i = 0; i < bp->rx_nr_rings; i++) {
2593 bp->rx_ring[i].bnapi = bp->bnapi[i];
2594 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2595 }
2596
2597 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2598 sizeof(struct bnxt_tx_ring_info),
2599 GFP_KERNEL);
2600 if (!bp->tx_ring)
2601 return -ENOMEM;
2602
2603 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2604 j = 0;
2605 else
2606 j = bp->rx_nr_rings;
2607
2608 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2609 bp->tx_ring[i].bnapi = bp->bnapi[j];
2610 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2611 }
2612
2613 rc = bnxt_alloc_stats(bp);
2614 if (rc)
2615 goto alloc_mem_err;
2616
2617 rc = bnxt_alloc_ntp_fltrs(bp);
2618 if (rc)
2619 goto alloc_mem_err;
2620
2621 rc = bnxt_alloc_vnics(bp);
2622 if (rc)
2623 goto alloc_mem_err;
2624 }
2625
2626 bnxt_init_ring_struct(bp);
2627
2628 rc = bnxt_alloc_rx_rings(bp);
2629 if (rc)
2630 goto alloc_mem_err;
2631
2632 rc = bnxt_alloc_tx_rings(bp);
2633 if (rc)
2634 goto alloc_mem_err;
2635
2636 rc = bnxt_alloc_cp_rings(bp);
2637 if (rc)
2638 goto alloc_mem_err;
2639
2640 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2641 BNXT_VNIC_UCAST_FLAG;
2642 rc = bnxt_alloc_vnic_attributes(bp);
2643 if (rc)
2644 goto alloc_mem_err;
2645 return 0;
2646
2647 alloc_mem_err:
2648 bnxt_free_mem(bp, true);
2649 return rc;
2650 }
2651
2652 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2653 u16 cmpl_ring, u16 target_id)
2654 {
2655 struct input *req = request;
2656
2657 req->req_type = cpu_to_le16(req_type);
2658 req->cmpl_ring = cpu_to_le16(cmpl_ring);
2659 req->target_id = cpu_to_le16(target_id);
2660 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2661 }
2662
2663 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
2664 int timeout, bool silent)
2665 {
2666 int i, intr_process, rc;
2667 struct input *req = msg;
2668 u32 *data = msg;
2669 __le32 *resp_len, *valid;
2670 u16 cp_ring_id, len = 0;
2671 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2672
2673 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
2674 memset(resp, 0, PAGE_SIZE);
2675 cp_ring_id = le16_to_cpu(req->cmpl_ring);
2676 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2677
2678 /* Write request msg to hwrm channel */
2679 __iowrite32_copy(bp->bar0, data, msg_len / 4);
2680
2681 for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
2682 writel(0, bp->bar0 + i);
2683
2684 /* currently supports only one outstanding message */
2685 if (intr_process)
2686 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
2687
2688 /* Ring channel doorbell */
2689 writel(1, bp->bar0 + 0x100);
2690
2691 if (!timeout)
2692 timeout = DFLT_HWRM_CMD_TIMEOUT;
2693
2694 i = 0;
2695 if (intr_process) {
2696 /* Wait until hwrm response cmpl interrupt is processed */
2697 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2698 i++ < timeout) {
2699 usleep_range(600, 800);
2700 }
2701
2702 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2703 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2704 le16_to_cpu(req->req_type));
2705 return -1;
2706 }
2707 } else {
2708 /* Check if response len is updated */
2709 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2710 for (i = 0; i < timeout; i++) {
2711 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2712 HWRM_RESP_LEN_SFT;
2713 if (len)
2714 break;
2715 usleep_range(600, 800);
2716 }
2717
2718 if (i >= timeout) {
2719 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2720 timeout, le16_to_cpu(req->req_type),
2721 le16_to_cpu(req->seq_id), *resp_len);
2722 return -1;
2723 }
2724
2725 /* Last word of resp contains valid bit */
2726 valid = bp->hwrm_cmd_resp_addr + len - 4;
2727 for (i = 0; i < timeout; i++) {
2728 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2729 break;
2730 usleep_range(600, 800);
2731 }
2732
2733 if (i >= timeout) {
2734 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2735 timeout, le16_to_cpu(req->req_type),
2736 le16_to_cpu(req->seq_id), len, *valid);
2737 return -1;
2738 }
2739 }
2740
2741 rc = le16_to_cpu(resp->error_code);
2742 if (rc && !silent)
2743 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2744 le16_to_cpu(resp->req_type),
2745 le16_to_cpu(resp->seq_id), rc);
2746 return rc;
2747 }
2748
2749 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2750 {
2751 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
2752 }
2753
2754 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2755 {
2756 int rc;
2757
2758 mutex_lock(&bp->hwrm_cmd_lock);
2759 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2760 mutex_unlock(&bp->hwrm_cmd_lock);
2761 return rc;
2762 }
2763
2764 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
2765 int timeout)
2766 {
2767 int rc;
2768
2769 mutex_lock(&bp->hwrm_cmd_lock);
2770 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
2771 mutex_unlock(&bp->hwrm_cmd_lock);
2772 return rc;
2773 }
2774
2775 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2776 {
2777 struct hwrm_func_drv_rgtr_input req = {0};
2778 int i;
2779
2780 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2781
2782 req.enables =
2783 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2784 FUNC_DRV_RGTR_REQ_ENABLES_VER |
2785 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2786
2787 /* TODO: current async event fwd bits are not defined and the firmware
2788 * only checks if it is non-zero to enable async event forwarding
2789 */
2790 req.async_event_fwd[0] |= cpu_to_le32(1);
2791 req.os_type = cpu_to_le16(1);
2792 req.ver_maj = DRV_VER_MAJ;
2793 req.ver_min = DRV_VER_MIN;
2794 req.ver_upd = DRV_VER_UPD;
2795
2796 if (BNXT_PF(bp)) {
2797 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2798 u32 *data = (u32 *)vf_req_snif_bmap;
2799
2800 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2801 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2802 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2803
2804 for (i = 0; i < 8; i++)
2805 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2806
2807 req.enables |=
2808 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2809 }
2810
2811 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2812 }
2813
2814 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2815 {
2816 struct hwrm_func_drv_unrgtr_input req = {0};
2817
2818 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2819 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2820 }
2821
2822 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2823 {
2824 u32 rc = 0;
2825 struct hwrm_tunnel_dst_port_free_input req = {0};
2826
2827 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2828 req.tunnel_type = tunnel_type;
2829
2830 switch (tunnel_type) {
2831 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2832 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2833 break;
2834 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2835 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2836 break;
2837 default:
2838 break;
2839 }
2840
2841 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2842 if (rc)
2843 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2844 rc);
2845 return rc;
2846 }
2847
2848 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2849 u8 tunnel_type)
2850 {
2851 u32 rc = 0;
2852 struct hwrm_tunnel_dst_port_alloc_input req = {0};
2853 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2854
2855 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2856
2857 req.tunnel_type = tunnel_type;
2858 req.tunnel_dst_port_val = port;
2859
2860 mutex_lock(&bp->hwrm_cmd_lock);
2861 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2862 if (rc) {
2863 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2864 rc);
2865 goto err_out;
2866 }
2867
2868 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2869 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2870
2871 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2872 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2873 err_out:
2874 mutex_unlock(&bp->hwrm_cmd_lock);
2875 return rc;
2876 }
2877
2878 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2879 {
2880 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2881 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2882
2883 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2884 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2885
2886 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2887 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2888 req.mask = cpu_to_le32(vnic->rx_mask);
2889 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2890 }
2891
2892 #ifdef CONFIG_RFS_ACCEL
2893 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2894 struct bnxt_ntuple_filter *fltr)
2895 {
2896 struct hwrm_cfa_ntuple_filter_free_input req = {0};
2897
2898 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2899 req.ntuple_filter_id = fltr->filter_id;
2900 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2901 }
2902
2903 #define BNXT_NTP_FLTR_FLAGS \
2904 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
2905 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
2906 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
2907 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
2908 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
2909 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
2910 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
2911 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
2912 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
2913 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
2914 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
2915 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
2916 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
2917 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2918
2919 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2920 struct bnxt_ntuple_filter *fltr)
2921 {
2922 int rc = 0;
2923 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2924 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2925 bp->hwrm_cmd_resp_addr;
2926 struct flow_keys *keys = &fltr->fkeys;
2927 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2928
2929 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2930 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2931
2932 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2933
2934 req.ethertype = htons(ETH_P_IP);
2935 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2936 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2937 req.ip_protocol = keys->basic.ip_proto;
2938
2939 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2940 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2941 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2942 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2943
2944 req.src_port = keys->ports.src;
2945 req.src_port_mask = cpu_to_be16(0xffff);
2946 req.dst_port = keys->ports.dst;
2947 req.dst_port_mask = cpu_to_be16(0xffff);
2948
2949 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2950 mutex_lock(&bp->hwrm_cmd_lock);
2951 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2952 if (!rc)
2953 fltr->filter_id = resp->ntuple_filter_id;
2954 mutex_unlock(&bp->hwrm_cmd_lock);
2955 return rc;
2956 }
2957 #endif
2958
2959 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2960 u8 *mac_addr)
2961 {
2962 u32 rc = 0;
2963 struct hwrm_cfa_l2_filter_alloc_input req = {0};
2964 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2965
2966 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2967 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2968 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2969 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2970 req.enables =
2971 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2972 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2973 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2974 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2975 req.l2_addr_mask[0] = 0xff;
2976 req.l2_addr_mask[1] = 0xff;
2977 req.l2_addr_mask[2] = 0xff;
2978 req.l2_addr_mask[3] = 0xff;
2979 req.l2_addr_mask[4] = 0xff;
2980 req.l2_addr_mask[5] = 0xff;
2981
2982 mutex_lock(&bp->hwrm_cmd_lock);
2983 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2984 if (!rc)
2985 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2986 resp->l2_filter_id;
2987 mutex_unlock(&bp->hwrm_cmd_lock);
2988 return rc;
2989 }
2990
2991 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2992 {
2993 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2994 int rc = 0;
2995
2996 /* Any associated ntuple filters will also be cleared by firmware. */
2997 mutex_lock(&bp->hwrm_cmd_lock);
2998 for (i = 0; i < num_of_vnics; i++) {
2999 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3000
3001 for (j = 0; j < vnic->uc_filter_count; j++) {
3002 struct hwrm_cfa_l2_filter_free_input req = {0};
3003
3004 bnxt_hwrm_cmd_hdr_init(bp, &req,
3005 HWRM_CFA_L2_FILTER_FREE, -1, -1);
3006
3007 req.l2_filter_id = vnic->fw_l2_filter_id[j];
3008
3009 rc = _hwrm_send_message(bp, &req, sizeof(req),
3010 HWRM_CMD_TIMEOUT);
3011 }
3012 vnic->uc_filter_count = 0;
3013 }
3014 mutex_unlock(&bp->hwrm_cmd_lock);
3015
3016 return rc;
3017 }
3018
3019 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3020 {
3021 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3022 struct hwrm_vnic_tpa_cfg_input req = {0};
3023
3024 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3025
3026 if (tpa_flags) {
3027 u16 mss = bp->dev->mtu - 40;
3028 u32 nsegs, n, segs = 0, flags;
3029
3030 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3031 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3032 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3033 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3034 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3035 if (tpa_flags & BNXT_FLAG_GRO)
3036 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3037
3038 req.flags = cpu_to_le32(flags);
3039
3040 req.enables =
3041 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3042 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3043 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3044
3045 /* Number of segs are log2 units, and first packet is not
3046 * included as part of this units.
3047 */
3048 if (mss <= BNXT_RX_PAGE_SIZE) {
3049 n = BNXT_RX_PAGE_SIZE / mss;
3050 nsegs = (MAX_SKB_FRAGS - 1) * n;
3051 } else {
3052 n = mss / BNXT_RX_PAGE_SIZE;
3053 if (mss & (BNXT_RX_PAGE_SIZE - 1))
3054 n++;
3055 nsegs = (MAX_SKB_FRAGS - n) / n;
3056 }
3057
3058 segs = ilog2(nsegs);
3059 req.max_agg_segs = cpu_to_le16(segs);
3060 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3061
3062 req.min_agg_len = cpu_to_le32(512);
3063 }
3064 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3065
3066 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3067 }
3068
3069 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3070 {
3071 u32 i, j, max_rings;
3072 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3073 struct hwrm_vnic_rss_cfg_input req = {0};
3074
3075 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3076 return 0;
3077
3078 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3079 if (set_rss) {
3080 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3081 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3082 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3083 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3084
3085 req.hash_type = cpu_to_le32(vnic->hash_type);
3086
3087 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3088 max_rings = bp->rx_nr_rings;
3089 else
3090 max_rings = 1;
3091
3092 /* Fill the RSS indirection table with ring group ids */
3093 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3094 if (j == max_rings)
3095 j = 0;
3096 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3097 }
3098
3099 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3100 req.hash_key_tbl_addr =
3101 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3102 }
3103 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3104 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3105 }
3106
3107 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3108 {
3109 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3110 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3111
3112 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3113 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3114 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3115 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3116 req.enables =
3117 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3118 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3119 /* thresholds not implemented in firmware yet */
3120 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3121 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3122 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3123 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3124 }
3125
3126 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3127 {
3128 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3129
3130 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3131 req.rss_cos_lb_ctx_id =
3132 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3133
3134 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3135 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3136 }
3137
3138 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3139 {
3140 int i;
3141
3142 for (i = 0; i < bp->nr_vnics; i++) {
3143 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3144
3145 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3146 bnxt_hwrm_vnic_ctx_free_one(bp, i);
3147 }
3148 bp->rsscos_nr_ctxs = 0;
3149 }
3150
3151 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3152 {
3153 int rc;
3154 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3155 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3156 bp->hwrm_cmd_resp_addr;
3157
3158 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3159 -1);
3160
3161 mutex_lock(&bp->hwrm_cmd_lock);
3162 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3163 if (!rc)
3164 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3165 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3166 mutex_unlock(&bp->hwrm_cmd_lock);
3167
3168 return rc;
3169 }
3170
3171 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3172 {
3173 unsigned int ring = 0, grp_idx;
3174 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3175 struct hwrm_vnic_cfg_input req = {0};
3176
3177 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3178 /* Only RSS support for now TBD: COS & LB */
3179 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3180 VNIC_CFG_REQ_ENABLES_RSS_RULE);
3181 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3182 req.cos_rule = cpu_to_le16(0xffff);
3183 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3184 ring = 0;
3185 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3186 ring = vnic_id - 1;
3187
3188 grp_idx = bp->rx_ring[ring].bnapi->index;
3189 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3190 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3191
3192 req.lb_rule = cpu_to_le16(0xffff);
3193 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3194 VLAN_HLEN);
3195
3196 if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3197 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3198
3199 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3200 }
3201
3202 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3203 {
3204 u32 rc = 0;
3205
3206 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3207 struct hwrm_vnic_free_input req = {0};
3208
3209 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3210 req.vnic_id =
3211 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3212
3213 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3214 if (rc)
3215 return rc;
3216 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3217 }
3218 return rc;
3219 }
3220
3221 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3222 {
3223 u16 i;
3224
3225 for (i = 0; i < bp->nr_vnics; i++)
3226 bnxt_hwrm_vnic_free_one(bp, i);
3227 }
3228
3229 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3230 unsigned int start_rx_ring_idx,
3231 unsigned int nr_rings)
3232 {
3233 int rc = 0;
3234 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3235 struct hwrm_vnic_alloc_input req = {0};
3236 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3237
3238 /* map ring groups to this vnic */
3239 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3240 grp_idx = bp->rx_ring[i].bnapi->index;
3241 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3242 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3243 j, nr_rings);
3244 break;
3245 }
3246 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3247 bp->grp_info[grp_idx].fw_grp_id;
3248 }
3249
3250 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3251 if (vnic_id == 0)
3252 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3253
3254 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3255
3256 mutex_lock(&bp->hwrm_cmd_lock);
3257 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3258 if (!rc)
3259 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3260 mutex_unlock(&bp->hwrm_cmd_lock);
3261 return rc;
3262 }
3263
3264 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3265 {
3266 u16 i;
3267 u32 rc = 0;
3268
3269 mutex_lock(&bp->hwrm_cmd_lock);
3270 for (i = 0; i < bp->rx_nr_rings; i++) {
3271 struct hwrm_ring_grp_alloc_input req = {0};
3272 struct hwrm_ring_grp_alloc_output *resp =
3273 bp->hwrm_cmd_resp_addr;
3274 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3275
3276 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3277
3278 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3279 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3280 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3281 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3282
3283 rc = _hwrm_send_message(bp, &req, sizeof(req),
3284 HWRM_CMD_TIMEOUT);
3285 if (rc)
3286 break;
3287
3288 bp->grp_info[grp_idx].fw_grp_id =
3289 le32_to_cpu(resp->ring_group_id);
3290 }
3291 mutex_unlock(&bp->hwrm_cmd_lock);
3292 return rc;
3293 }
3294
3295 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3296 {
3297 u16 i;
3298 u32 rc = 0;
3299 struct hwrm_ring_grp_free_input req = {0};
3300
3301 if (!bp->grp_info)
3302 return 0;
3303
3304 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3305
3306 mutex_lock(&bp->hwrm_cmd_lock);
3307 for (i = 0; i < bp->cp_nr_rings; i++) {
3308 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3309 continue;
3310 req.ring_group_id =
3311 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3312
3313 rc = _hwrm_send_message(bp, &req, sizeof(req),
3314 HWRM_CMD_TIMEOUT);
3315 if (rc)
3316 break;
3317 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3318 }
3319 mutex_unlock(&bp->hwrm_cmd_lock);
3320 return rc;
3321 }
3322
3323 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3324 struct bnxt_ring_struct *ring,
3325 u32 ring_type, u32 map_index,
3326 u32 stats_ctx_id)
3327 {
3328 int rc = 0, err = 0;
3329 struct hwrm_ring_alloc_input req = {0};
3330 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3331 u16 ring_id;
3332
3333 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3334
3335 req.enables = 0;
3336 if (ring->nr_pages > 1) {
3337 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3338 /* Page size is in log2 units */
3339 req.page_size = BNXT_PAGE_SHIFT;
3340 req.page_tbl_depth = 1;
3341 } else {
3342 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3343 }
3344 req.fbo = 0;
3345 /* Association of ring index with doorbell index and MSIX number */
3346 req.logical_id = cpu_to_le16(map_index);
3347
3348 switch (ring_type) {
3349 case HWRM_RING_ALLOC_TX:
3350 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3351 /* Association of transmit ring with completion ring */
3352 req.cmpl_ring_id =
3353 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3354 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3355 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3356 req.queue_id = cpu_to_le16(ring->queue_id);
3357 break;
3358 case HWRM_RING_ALLOC_RX:
3359 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3360 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3361 break;
3362 case HWRM_RING_ALLOC_AGG:
3363 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3364 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3365 break;
3366 case HWRM_RING_ALLOC_CMPL:
3367 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3368 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3369 if (bp->flags & BNXT_FLAG_USING_MSIX)
3370 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3371 break;
3372 default:
3373 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3374 ring_type);
3375 return -1;
3376 }
3377
3378 mutex_lock(&bp->hwrm_cmd_lock);
3379 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3380 err = le16_to_cpu(resp->error_code);
3381 ring_id = le16_to_cpu(resp->ring_id);
3382 mutex_unlock(&bp->hwrm_cmd_lock);
3383
3384 if (rc || err) {
3385 switch (ring_type) {
3386 case RING_FREE_REQ_RING_TYPE_CMPL:
3387 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3388 rc, err);
3389 return -1;
3390
3391 case RING_FREE_REQ_RING_TYPE_RX:
3392 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3393 rc, err);
3394 return -1;
3395
3396 case RING_FREE_REQ_RING_TYPE_TX:
3397 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3398 rc, err);
3399 return -1;
3400
3401 default:
3402 netdev_err(bp->dev, "Invalid ring\n");
3403 return -1;
3404 }
3405 }
3406 ring->fw_ring_id = ring_id;
3407 return rc;
3408 }
3409
3410 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3411 {
3412 int i, rc = 0;
3413
3414 for (i = 0; i < bp->cp_nr_rings; i++) {
3415 struct bnxt_napi *bnapi = bp->bnapi[i];
3416 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3417 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3418
3419 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3420 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3421 INVALID_STATS_CTX_ID);
3422 if (rc)
3423 goto err_out;
3424 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3425 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3426 }
3427
3428 for (i = 0; i < bp->tx_nr_rings; i++) {
3429 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3430 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3431 u32 map_idx = txr->bnapi->index;
3432 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3433
3434 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3435 map_idx, fw_stats_ctx);
3436 if (rc)
3437 goto err_out;
3438 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3439 }
3440
3441 for (i = 0; i < bp->rx_nr_rings; i++) {
3442 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3443 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3444 u32 map_idx = rxr->bnapi->index;
3445
3446 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3447 map_idx, INVALID_STATS_CTX_ID);
3448 if (rc)
3449 goto err_out;
3450 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3451 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3452 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3453 }
3454
3455 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3456 for (i = 0; i < bp->rx_nr_rings; i++) {
3457 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3458 struct bnxt_ring_struct *ring =
3459 &rxr->rx_agg_ring_struct;
3460 u32 grp_idx = rxr->bnapi->index;
3461 u32 map_idx = grp_idx + bp->rx_nr_rings;
3462
3463 rc = hwrm_ring_alloc_send_msg(bp, ring,
3464 HWRM_RING_ALLOC_AGG,
3465 map_idx,
3466 INVALID_STATS_CTX_ID);
3467 if (rc)
3468 goto err_out;
3469
3470 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3471 writel(DB_KEY_RX | rxr->rx_agg_prod,
3472 rxr->rx_agg_doorbell);
3473 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3474 }
3475 }
3476 err_out:
3477 return rc;
3478 }
3479
3480 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3481 struct bnxt_ring_struct *ring,
3482 u32 ring_type, int cmpl_ring_id)
3483 {
3484 int rc;
3485 struct hwrm_ring_free_input req = {0};
3486 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3487 u16 error_code;
3488
3489 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3490 req.ring_type = ring_type;
3491 req.ring_id = cpu_to_le16(ring->fw_ring_id);
3492
3493 mutex_lock(&bp->hwrm_cmd_lock);
3494 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3495 error_code = le16_to_cpu(resp->error_code);
3496 mutex_unlock(&bp->hwrm_cmd_lock);
3497
3498 if (rc || error_code) {
3499 switch (ring_type) {
3500 case RING_FREE_REQ_RING_TYPE_CMPL:
3501 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3502 rc);
3503 return rc;
3504 case RING_FREE_REQ_RING_TYPE_RX:
3505 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3506 rc);
3507 return rc;
3508 case RING_FREE_REQ_RING_TYPE_TX:
3509 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3510 rc);
3511 return rc;
3512 default:
3513 netdev_err(bp->dev, "Invalid ring\n");
3514 return -1;
3515 }
3516 }
3517 return 0;
3518 }
3519
3520 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3521 {
3522 int i;
3523
3524 if (!bp->bnapi)
3525 return;
3526
3527 for (i = 0; i < bp->tx_nr_rings; i++) {
3528 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3529 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3530 u32 grp_idx = txr->bnapi->index;
3531 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3532
3533 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3534 hwrm_ring_free_send_msg(bp, ring,
3535 RING_FREE_REQ_RING_TYPE_TX,
3536 close_path ? cmpl_ring_id :
3537 INVALID_HW_RING_ID);
3538 ring->fw_ring_id = INVALID_HW_RING_ID;
3539 }
3540 }
3541
3542 for (i = 0; i < bp->rx_nr_rings; i++) {
3543 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3544 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3545 u32 grp_idx = rxr->bnapi->index;
3546 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3547
3548 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3549 hwrm_ring_free_send_msg(bp, ring,
3550 RING_FREE_REQ_RING_TYPE_RX,
3551 close_path ? cmpl_ring_id :
3552 INVALID_HW_RING_ID);
3553 ring->fw_ring_id = INVALID_HW_RING_ID;
3554 bp->grp_info[grp_idx].rx_fw_ring_id =
3555 INVALID_HW_RING_ID;
3556 }
3557 }
3558
3559 for (i = 0; i < bp->rx_nr_rings; i++) {
3560 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3561 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3562 u32 grp_idx = rxr->bnapi->index;
3563 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3564
3565 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3566 hwrm_ring_free_send_msg(bp, ring,
3567 RING_FREE_REQ_RING_TYPE_RX,
3568 close_path ? cmpl_ring_id :
3569 INVALID_HW_RING_ID);
3570 ring->fw_ring_id = INVALID_HW_RING_ID;
3571 bp->grp_info[grp_idx].agg_fw_ring_id =
3572 INVALID_HW_RING_ID;
3573 }
3574 }
3575
3576 for (i = 0; i < bp->cp_nr_rings; i++) {
3577 struct bnxt_napi *bnapi = bp->bnapi[i];
3578 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3579 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3580
3581 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3582 hwrm_ring_free_send_msg(bp, ring,
3583 RING_FREE_REQ_RING_TYPE_CMPL,
3584 INVALID_HW_RING_ID);
3585 ring->fw_ring_id = INVALID_HW_RING_ID;
3586 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3587 }
3588 }
3589 }
3590
3591 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3592 u32 buf_tmrs, u16 flags,
3593 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3594 {
3595 req->flags = cpu_to_le16(flags);
3596 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3597 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3598 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3599 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3600 /* Minimum time between 2 interrupts set to buf_tmr x 2 */
3601 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3602 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3603 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3604 }
3605
3606 int bnxt_hwrm_set_coal(struct bnxt *bp)
3607 {
3608 int i, rc = 0;
3609 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3610 req_tx = {0}, *req;
3611 u16 max_buf, max_buf_irq;
3612 u16 buf_tmr, buf_tmr_irq;
3613 u32 flags;
3614
3615 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3616 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3617 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3618 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3619
3620 /* Each rx completion (2 records) should be DMAed immediately.
3621 * DMA 1/4 of the completion buffers at a time.
3622 */
3623 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
3624 /* max_buf must not be zero */
3625 max_buf = clamp_t(u16, max_buf, 1, 63);
3626 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
3627 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
3628 /* buf timer set to 1/4 of interrupt timer */
3629 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3630 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
3631 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3632
3633 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3634
3635 /* RING_IDLE generates more IRQs for lower latency. Enable it only
3636 * if coal_ticks is less than 25 us.
3637 */
3638 if (bp->rx_coal_ticks < 25)
3639 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3640
3641 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3642 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
3643
3644 /* max_buf must not be zero */
3645 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
3646 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
3647 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
3648 /* buf timer set to 1/4 of interrupt timer */
3649 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3650 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
3651 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3652
3653 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3654 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3655 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
3656
3657 mutex_lock(&bp->hwrm_cmd_lock);
3658 for (i = 0; i < bp->cp_nr_rings; i++) {
3659 struct bnxt_napi *bnapi = bp->bnapi[i];
3660
3661 req = &req_rx;
3662 if (!bnapi->rx_ring)
3663 req = &req_tx;
3664 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3665
3666 rc = _hwrm_send_message(bp, req, sizeof(*req),
3667 HWRM_CMD_TIMEOUT);
3668 if (rc)
3669 break;
3670 }
3671 mutex_unlock(&bp->hwrm_cmd_lock);
3672 return rc;
3673 }
3674
3675 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3676 {
3677 int rc = 0, i;
3678 struct hwrm_stat_ctx_free_input req = {0};
3679
3680 if (!bp->bnapi)
3681 return 0;
3682
3683 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3684
3685 mutex_lock(&bp->hwrm_cmd_lock);
3686 for (i = 0; i < bp->cp_nr_rings; i++) {
3687 struct bnxt_napi *bnapi = bp->bnapi[i];
3688 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3689
3690 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3691 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3692
3693 rc = _hwrm_send_message(bp, &req, sizeof(req),
3694 HWRM_CMD_TIMEOUT);
3695 if (rc)
3696 break;
3697
3698 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3699 }
3700 }
3701 mutex_unlock(&bp->hwrm_cmd_lock);
3702 return rc;
3703 }
3704
3705 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3706 {
3707 int rc = 0, i;
3708 struct hwrm_stat_ctx_alloc_input req = {0};
3709 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3710
3711 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3712
3713 req.update_period_ms = cpu_to_le32(1000);
3714
3715 mutex_lock(&bp->hwrm_cmd_lock);
3716 for (i = 0; i < bp->cp_nr_rings; i++) {
3717 struct bnxt_napi *bnapi = bp->bnapi[i];
3718 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3719
3720 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3721
3722 rc = _hwrm_send_message(bp, &req, sizeof(req),
3723 HWRM_CMD_TIMEOUT);
3724 if (rc)
3725 break;
3726
3727 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3728
3729 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3730 }
3731 mutex_unlock(&bp->hwrm_cmd_lock);
3732 return 0;
3733 }
3734
3735 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3736 {
3737 int rc = 0;
3738 struct hwrm_func_qcaps_input req = {0};
3739 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3740
3741 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3742 req.fid = cpu_to_le16(0xffff);
3743
3744 mutex_lock(&bp->hwrm_cmd_lock);
3745 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3746 if (rc)
3747 goto hwrm_func_qcaps_exit;
3748
3749 if (BNXT_PF(bp)) {
3750 struct bnxt_pf_info *pf = &bp->pf;
3751
3752 pf->fw_fid = le16_to_cpu(resp->fid);
3753 pf->port_id = le16_to_cpu(resp->port_id);
3754 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3755 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3756 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3757 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3758 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3759 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3760 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3761 if (!pf->max_hw_ring_grps)
3762 pf->max_hw_ring_grps = pf->max_tx_rings;
3763 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3764 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3765 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3766 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3767 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3768 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3769 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3770 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3771 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3772 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3773 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3774 } else {
3775 #ifdef CONFIG_BNXT_SRIOV
3776 struct bnxt_vf_info *vf = &bp->vf;
3777
3778 vf->fw_fid = le16_to_cpu(resp->fid);
3779 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3780 if (is_valid_ether_addr(vf->mac_addr))
3781 /* overwrite netdev dev_adr with admin VF MAC */
3782 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3783 else
3784 random_ether_addr(bp->dev->dev_addr);
3785
3786 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3787 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3788 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3789 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3790 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3791 if (!vf->max_hw_ring_grps)
3792 vf->max_hw_ring_grps = vf->max_tx_rings;
3793 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3794 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3795 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3796 #endif
3797 }
3798
3799 bp->tx_push_thresh = 0;
3800 if (resp->flags &
3801 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3802 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3803
3804 hwrm_func_qcaps_exit:
3805 mutex_unlock(&bp->hwrm_cmd_lock);
3806 return rc;
3807 }
3808
3809 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3810 {
3811 struct hwrm_func_reset_input req = {0};
3812
3813 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3814 req.enables = 0;
3815
3816 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3817 }
3818
3819 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3820 {
3821 int rc = 0;
3822 struct hwrm_queue_qportcfg_input req = {0};
3823 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3824 u8 i, *qptr;
3825
3826 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3827
3828 mutex_lock(&bp->hwrm_cmd_lock);
3829 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3830 if (rc)
3831 goto qportcfg_exit;
3832
3833 if (!resp->max_configurable_queues) {
3834 rc = -EINVAL;
3835 goto qportcfg_exit;
3836 }
3837 bp->max_tc = resp->max_configurable_queues;
3838 if (bp->max_tc > BNXT_MAX_QUEUE)
3839 bp->max_tc = BNXT_MAX_QUEUE;
3840
3841 qptr = &resp->queue_id0;
3842 for (i = 0; i < bp->max_tc; i++) {
3843 bp->q_info[i].queue_id = *qptr++;
3844 bp->q_info[i].queue_profile = *qptr++;
3845 }
3846
3847 qportcfg_exit:
3848 mutex_unlock(&bp->hwrm_cmd_lock);
3849 return rc;
3850 }
3851
3852 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3853 {
3854 int rc;
3855 struct hwrm_ver_get_input req = {0};
3856 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3857
3858 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
3859 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3860 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3861 req.hwrm_intf_min = HWRM_VERSION_MINOR;
3862 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3863 mutex_lock(&bp->hwrm_cmd_lock);
3864 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3865 if (rc)
3866 goto hwrm_ver_get_exit;
3867
3868 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3869
3870 if (resp->hwrm_intf_maj < 1) {
3871 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3872 resp->hwrm_intf_maj, resp->hwrm_intf_min,
3873 resp->hwrm_intf_upd);
3874 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3875 }
3876 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
3877 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3878 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3879
3880 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
3881 if (!bp->hwrm_cmd_timeout)
3882 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
3883
3884 if (resp->hwrm_intf_maj >= 1)
3885 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
3886
3887 hwrm_ver_get_exit:
3888 mutex_unlock(&bp->hwrm_cmd_lock);
3889 return rc;
3890 }
3891
3892 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
3893 {
3894 int rc;
3895 struct bnxt_pf_info *pf = &bp->pf;
3896 struct hwrm_port_qstats_input req = {0};
3897
3898 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
3899 return 0;
3900
3901 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
3902 req.port_id = cpu_to_le16(pf->port_id);
3903 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
3904 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
3905 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3906 return rc;
3907 }
3908
3909 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3910 {
3911 if (bp->vxlan_port_cnt) {
3912 bnxt_hwrm_tunnel_dst_port_free(
3913 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3914 }
3915 bp->vxlan_port_cnt = 0;
3916 if (bp->nge_port_cnt) {
3917 bnxt_hwrm_tunnel_dst_port_free(
3918 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3919 }
3920 bp->nge_port_cnt = 0;
3921 }
3922
3923 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3924 {
3925 int rc, i;
3926 u32 tpa_flags = 0;
3927
3928 if (set_tpa)
3929 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3930 for (i = 0; i < bp->nr_vnics; i++) {
3931 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3932 if (rc) {
3933 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3934 rc, i);
3935 return rc;
3936 }
3937 }
3938 return 0;
3939 }
3940
3941 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3942 {
3943 int i;
3944
3945 for (i = 0; i < bp->nr_vnics; i++)
3946 bnxt_hwrm_vnic_set_rss(bp, i, false);
3947 }
3948
3949 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3950 bool irq_re_init)
3951 {
3952 if (bp->vnic_info) {
3953 bnxt_hwrm_clear_vnic_filter(bp);
3954 /* clear all RSS setting before free vnic ctx */
3955 bnxt_hwrm_clear_vnic_rss(bp);
3956 bnxt_hwrm_vnic_ctx_free(bp);
3957 /* before free the vnic, undo the vnic tpa settings */
3958 if (bp->flags & BNXT_FLAG_TPA)
3959 bnxt_set_tpa(bp, false);
3960 bnxt_hwrm_vnic_free(bp);
3961 }
3962 bnxt_hwrm_ring_free(bp, close_path);
3963 bnxt_hwrm_ring_grp_free(bp);
3964 if (irq_re_init) {
3965 bnxt_hwrm_stat_ctx_free(bp);
3966 bnxt_hwrm_free_tunnel_ports(bp);
3967 }
3968 }
3969
3970 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3971 {
3972 int rc;
3973
3974 /* allocate context for vnic */
3975 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3976 if (rc) {
3977 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3978 vnic_id, rc);
3979 goto vnic_setup_err;
3980 }
3981 bp->rsscos_nr_ctxs++;
3982
3983 /* configure default vnic, ring grp */
3984 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3985 if (rc) {
3986 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3987 vnic_id, rc);
3988 goto vnic_setup_err;
3989 }
3990
3991 /* Enable RSS hashing on vnic */
3992 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3993 if (rc) {
3994 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3995 vnic_id, rc);
3996 goto vnic_setup_err;
3997 }
3998
3999 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4000 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4001 if (rc) {
4002 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4003 vnic_id, rc);
4004 }
4005 }
4006
4007 vnic_setup_err:
4008 return rc;
4009 }
4010
4011 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4012 {
4013 #ifdef CONFIG_RFS_ACCEL
4014 int i, rc = 0;
4015
4016 for (i = 0; i < bp->rx_nr_rings; i++) {
4017 u16 vnic_id = i + 1;
4018 u16 ring_id = i;
4019
4020 if (vnic_id >= bp->nr_vnics)
4021 break;
4022
4023 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4024 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4025 if (rc) {
4026 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4027 vnic_id, rc);
4028 break;
4029 }
4030 rc = bnxt_setup_vnic(bp, vnic_id);
4031 if (rc)
4032 break;
4033 }
4034 return rc;
4035 #else
4036 return 0;
4037 #endif
4038 }
4039
4040 static int bnxt_cfg_rx_mode(struct bnxt *);
4041
4042 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4043 {
4044 int rc = 0;
4045
4046 if (irq_re_init) {
4047 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4048 if (rc) {
4049 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4050 rc);
4051 goto err_out;
4052 }
4053 }
4054
4055 rc = bnxt_hwrm_ring_alloc(bp);
4056 if (rc) {
4057 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4058 goto err_out;
4059 }
4060
4061 rc = bnxt_hwrm_ring_grp_alloc(bp);
4062 if (rc) {
4063 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4064 goto err_out;
4065 }
4066
4067 /* default vnic 0 */
4068 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
4069 if (rc) {
4070 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4071 goto err_out;
4072 }
4073
4074 rc = bnxt_setup_vnic(bp, 0);
4075 if (rc)
4076 goto err_out;
4077
4078 if (bp->flags & BNXT_FLAG_RFS) {
4079 rc = bnxt_alloc_rfs_vnics(bp);
4080 if (rc)
4081 goto err_out;
4082 }
4083
4084 if (bp->flags & BNXT_FLAG_TPA) {
4085 rc = bnxt_set_tpa(bp, true);
4086 if (rc)
4087 goto err_out;
4088 }
4089
4090 if (BNXT_VF(bp))
4091 bnxt_update_vf_mac(bp);
4092
4093 /* Filter for default vnic 0 */
4094 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4095 if (rc) {
4096 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4097 goto err_out;
4098 }
4099 bp->vnic_info[0].uc_filter_count = 1;
4100
4101 bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4102
4103 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4104 bp->vnic_info[0].rx_mask |=
4105 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4106
4107 rc = bnxt_cfg_rx_mode(bp);
4108 if (rc)
4109 goto err_out;
4110
4111 rc = bnxt_hwrm_set_coal(bp);
4112 if (rc)
4113 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4114 rc);
4115
4116 return 0;
4117
4118 err_out:
4119 bnxt_hwrm_resource_free(bp, 0, true);
4120
4121 return rc;
4122 }
4123
4124 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4125 {
4126 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4127 return 0;
4128 }
4129
4130 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4131 {
4132 bnxt_init_rx_rings(bp);
4133 bnxt_init_tx_rings(bp);
4134 bnxt_init_ring_grps(bp, irq_re_init);
4135 bnxt_init_vnics(bp);
4136
4137 return bnxt_init_chip(bp, irq_re_init);
4138 }
4139
4140 static void bnxt_disable_int(struct bnxt *bp)
4141 {
4142 int i;
4143
4144 if (!bp->bnapi)
4145 return;
4146
4147 for (i = 0; i < bp->cp_nr_rings; i++) {
4148 struct bnxt_napi *bnapi = bp->bnapi[i];
4149 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4150
4151 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4152 }
4153 }
4154
4155 static void bnxt_enable_int(struct bnxt *bp)
4156 {
4157 int i;
4158
4159 atomic_set(&bp->intr_sem, 0);
4160 for (i = 0; i < bp->cp_nr_rings; i++) {
4161 struct bnxt_napi *bnapi = bp->bnapi[i];
4162 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4163
4164 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4165 }
4166 }
4167
4168 static int bnxt_set_real_num_queues(struct bnxt *bp)
4169 {
4170 int rc;
4171 struct net_device *dev = bp->dev;
4172
4173 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4174 if (rc)
4175 return rc;
4176
4177 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4178 if (rc)
4179 return rc;
4180
4181 #ifdef CONFIG_RFS_ACCEL
4182 if (bp->flags & BNXT_FLAG_RFS)
4183 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4184 #endif
4185
4186 return rc;
4187 }
4188
4189 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4190 bool shared)
4191 {
4192 int _rx = *rx, _tx = *tx;
4193
4194 if (shared) {
4195 *rx = min_t(int, _rx, max);
4196 *tx = min_t(int, _tx, max);
4197 } else {
4198 if (max < 2)
4199 return -ENOMEM;
4200
4201 while (_rx + _tx > max) {
4202 if (_rx > _tx && _rx > 1)
4203 _rx--;
4204 else if (_tx > 1)
4205 _tx--;
4206 }
4207 *rx = _rx;
4208 *tx = _tx;
4209 }
4210 return 0;
4211 }
4212
4213 static int bnxt_setup_msix(struct bnxt *bp)
4214 {
4215 struct msix_entry *msix_ent;
4216 struct net_device *dev = bp->dev;
4217 int i, total_vecs, rc = 0, min = 1;
4218 const int len = sizeof(bp->irq_tbl[0].name);
4219
4220 bp->flags &= ~BNXT_FLAG_USING_MSIX;
4221 total_vecs = bp->cp_nr_rings;
4222
4223 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4224 if (!msix_ent)
4225 return -ENOMEM;
4226
4227 for (i = 0; i < total_vecs; i++) {
4228 msix_ent[i].entry = i;
4229 msix_ent[i].vector = 0;
4230 }
4231
4232 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4233 min = 2;
4234
4235 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4236 if (total_vecs < 0) {
4237 rc = -ENODEV;
4238 goto msix_setup_exit;
4239 }
4240
4241 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4242 if (bp->irq_tbl) {
4243 int tcs;
4244
4245 /* Trim rings based upon num of vectors allocated */
4246 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4247 total_vecs, min == 1);
4248 if (rc)
4249 goto msix_setup_exit;
4250
4251 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4252 tcs = netdev_get_num_tc(dev);
4253 if (tcs > 1) {
4254 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4255 if (bp->tx_nr_rings_per_tc == 0) {
4256 netdev_reset_tc(dev);
4257 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4258 } else {
4259 int i, off, count;
4260
4261 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4262 for (i = 0; i < tcs; i++) {
4263 count = bp->tx_nr_rings_per_tc;
4264 off = i * count;
4265 netdev_set_tc_queue(dev, i, count, off);
4266 }
4267 }
4268 }
4269 bp->cp_nr_rings = total_vecs;
4270
4271 for (i = 0; i < bp->cp_nr_rings; i++) {
4272 char *attr;
4273
4274 bp->irq_tbl[i].vector = msix_ent[i].vector;
4275 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4276 attr = "TxRx";
4277 else if (i < bp->rx_nr_rings)
4278 attr = "rx";
4279 else
4280 attr = "tx";
4281
4282 snprintf(bp->irq_tbl[i].name, len,
4283 "%s-%s-%d", dev->name, attr, i);
4284 bp->irq_tbl[i].handler = bnxt_msix;
4285 }
4286 rc = bnxt_set_real_num_queues(bp);
4287 if (rc)
4288 goto msix_setup_exit;
4289 } else {
4290 rc = -ENOMEM;
4291 goto msix_setup_exit;
4292 }
4293 bp->flags |= BNXT_FLAG_USING_MSIX;
4294 kfree(msix_ent);
4295 return 0;
4296
4297 msix_setup_exit:
4298 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4299 pci_disable_msix(bp->pdev);
4300 kfree(msix_ent);
4301 return rc;
4302 }
4303
4304 static int bnxt_setup_inta(struct bnxt *bp)
4305 {
4306 int rc;
4307 const int len = sizeof(bp->irq_tbl[0].name);
4308
4309 if (netdev_get_num_tc(bp->dev))
4310 netdev_reset_tc(bp->dev);
4311
4312 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4313 if (!bp->irq_tbl) {
4314 rc = -ENOMEM;
4315 return rc;
4316 }
4317 bp->rx_nr_rings = 1;
4318 bp->tx_nr_rings = 1;
4319 bp->cp_nr_rings = 1;
4320 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4321 bp->flags |= BNXT_FLAG_SHARED_RINGS;
4322 bp->irq_tbl[0].vector = bp->pdev->irq;
4323 snprintf(bp->irq_tbl[0].name, len,
4324 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4325 bp->irq_tbl[0].handler = bnxt_inta;
4326 rc = bnxt_set_real_num_queues(bp);
4327 return rc;
4328 }
4329
4330 static int bnxt_setup_int_mode(struct bnxt *bp)
4331 {
4332 int rc = 0;
4333
4334 if (bp->flags & BNXT_FLAG_MSIX_CAP)
4335 rc = bnxt_setup_msix(bp);
4336
4337 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4338 /* fallback to INTA */
4339 rc = bnxt_setup_inta(bp);
4340 }
4341 return rc;
4342 }
4343
4344 static void bnxt_free_irq(struct bnxt *bp)
4345 {
4346 struct bnxt_irq *irq;
4347 int i;
4348
4349 #ifdef CONFIG_RFS_ACCEL
4350 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4351 bp->dev->rx_cpu_rmap = NULL;
4352 #endif
4353 if (!bp->irq_tbl)
4354 return;
4355
4356 for (i = 0; i < bp->cp_nr_rings; i++) {
4357 irq = &bp->irq_tbl[i];
4358 if (irq->requested)
4359 free_irq(irq->vector, bp->bnapi[i]);
4360 irq->requested = 0;
4361 }
4362 if (bp->flags & BNXT_FLAG_USING_MSIX)
4363 pci_disable_msix(bp->pdev);
4364 kfree(bp->irq_tbl);
4365 bp->irq_tbl = NULL;
4366 }
4367
4368 static int bnxt_request_irq(struct bnxt *bp)
4369 {
4370 int i, j, rc = 0;
4371 unsigned long flags = 0;
4372 #ifdef CONFIG_RFS_ACCEL
4373 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4374 #endif
4375
4376 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4377 flags = IRQF_SHARED;
4378
4379 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4380 struct bnxt_irq *irq = &bp->irq_tbl[i];
4381 #ifdef CONFIG_RFS_ACCEL
4382 if (rmap && bp->bnapi[i]->rx_ring) {
4383 rc = irq_cpu_rmap_add(rmap, irq->vector);
4384 if (rc)
4385 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4386 j);
4387 j++;
4388 }
4389 #endif
4390 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4391 bp->bnapi[i]);
4392 if (rc)
4393 break;
4394
4395 irq->requested = 1;
4396 }
4397 return rc;
4398 }
4399
4400 static void bnxt_del_napi(struct bnxt *bp)
4401 {
4402 int i;
4403
4404 if (!bp->bnapi)
4405 return;
4406
4407 for (i = 0; i < bp->cp_nr_rings; i++) {
4408 struct bnxt_napi *bnapi = bp->bnapi[i];
4409
4410 napi_hash_del(&bnapi->napi);
4411 netif_napi_del(&bnapi->napi);
4412 }
4413 }
4414
4415 static void bnxt_init_napi(struct bnxt *bp)
4416 {
4417 int i;
4418 struct bnxt_napi *bnapi;
4419
4420 if (bp->flags & BNXT_FLAG_USING_MSIX) {
4421 for (i = 0; i < bp->cp_nr_rings; i++) {
4422 bnapi = bp->bnapi[i];
4423 netif_napi_add(bp->dev, &bnapi->napi,
4424 bnxt_poll, 64);
4425 }
4426 } else {
4427 bnapi = bp->bnapi[0];
4428 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4429 }
4430 }
4431
4432 static void bnxt_disable_napi(struct bnxt *bp)
4433 {
4434 int i;
4435
4436 if (!bp->bnapi)
4437 return;
4438
4439 for (i = 0; i < bp->cp_nr_rings; i++) {
4440 napi_disable(&bp->bnapi[i]->napi);
4441 bnxt_disable_poll(bp->bnapi[i]);
4442 }
4443 }
4444
4445 static void bnxt_enable_napi(struct bnxt *bp)
4446 {
4447 int i;
4448
4449 for (i = 0; i < bp->cp_nr_rings; i++) {
4450 bnxt_enable_poll(bp->bnapi[i]);
4451 napi_enable(&bp->bnapi[i]->napi);
4452 }
4453 }
4454
4455 static void bnxt_tx_disable(struct bnxt *bp)
4456 {
4457 int i;
4458 struct bnxt_tx_ring_info *txr;
4459 struct netdev_queue *txq;
4460
4461 if (bp->tx_ring) {
4462 for (i = 0; i < bp->tx_nr_rings; i++) {
4463 txr = &bp->tx_ring[i];
4464 txq = netdev_get_tx_queue(bp->dev, i);
4465 __netif_tx_lock(txq, smp_processor_id());
4466 txr->dev_state = BNXT_DEV_STATE_CLOSING;
4467 __netif_tx_unlock(txq);
4468 }
4469 }
4470 /* Stop all TX queues */
4471 netif_tx_disable(bp->dev);
4472 netif_carrier_off(bp->dev);
4473 }
4474
4475 static void bnxt_tx_enable(struct bnxt *bp)
4476 {
4477 int i;
4478 struct bnxt_tx_ring_info *txr;
4479 struct netdev_queue *txq;
4480
4481 for (i = 0; i < bp->tx_nr_rings; i++) {
4482 txr = &bp->tx_ring[i];
4483 txq = netdev_get_tx_queue(bp->dev, i);
4484 txr->dev_state = 0;
4485 }
4486 netif_tx_wake_all_queues(bp->dev);
4487 if (bp->link_info.link_up)
4488 netif_carrier_on(bp->dev);
4489 }
4490
4491 static void bnxt_report_link(struct bnxt *bp)
4492 {
4493 if (bp->link_info.link_up) {
4494 const char *duplex;
4495 const char *flow_ctrl;
4496 u16 speed;
4497
4498 netif_carrier_on(bp->dev);
4499 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4500 duplex = "full";
4501 else
4502 duplex = "half";
4503 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4504 flow_ctrl = "ON - receive & transmit";
4505 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4506 flow_ctrl = "ON - transmit";
4507 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4508 flow_ctrl = "ON - receive";
4509 else
4510 flow_ctrl = "none";
4511 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4512 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4513 speed, duplex, flow_ctrl);
4514 } else {
4515 netif_carrier_off(bp->dev);
4516 netdev_err(bp->dev, "NIC Link is Down\n");
4517 }
4518 }
4519
4520 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4521 {
4522 int rc = 0;
4523 struct bnxt_link_info *link_info = &bp->link_info;
4524 struct hwrm_port_phy_qcfg_input req = {0};
4525 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4526 u8 link_up = link_info->link_up;
4527
4528 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4529
4530 mutex_lock(&bp->hwrm_cmd_lock);
4531 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4532 if (rc) {
4533 mutex_unlock(&bp->hwrm_cmd_lock);
4534 return rc;
4535 }
4536
4537 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4538 link_info->phy_link_status = resp->link;
4539 link_info->duplex = resp->duplex;
4540 link_info->pause = resp->pause;
4541 link_info->auto_mode = resp->auto_mode;
4542 link_info->auto_pause_setting = resp->auto_pause;
4543 link_info->lp_pause = resp->link_partner_adv_pause;
4544 link_info->force_pause_setting = resp->force_pause;
4545 link_info->duplex_setting = resp->duplex;
4546 if (link_info->phy_link_status == BNXT_LINK_LINK)
4547 link_info->link_speed = le16_to_cpu(resp->link_speed);
4548 else
4549 link_info->link_speed = 0;
4550 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4551 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4552 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4553 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4554 link_info->lp_auto_link_speeds =
4555 le16_to_cpu(resp->link_partner_adv_speeds);
4556 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4557 link_info->phy_ver[0] = resp->phy_maj;
4558 link_info->phy_ver[1] = resp->phy_min;
4559 link_info->phy_ver[2] = resp->phy_bld;
4560 link_info->media_type = resp->media_type;
4561 link_info->transceiver = resp->transceiver_type;
4562 link_info->phy_addr = resp->phy_addr;
4563
4564 /* TODO: need to add more logic to report VF link */
4565 if (chng_link_state) {
4566 if (link_info->phy_link_status == BNXT_LINK_LINK)
4567 link_info->link_up = 1;
4568 else
4569 link_info->link_up = 0;
4570 if (link_up != link_info->link_up)
4571 bnxt_report_link(bp);
4572 } else {
4573 /* alwasy link down if not require to update link state */
4574 link_info->link_up = 0;
4575 }
4576 mutex_unlock(&bp->hwrm_cmd_lock);
4577 return 0;
4578 }
4579
4580 static void
4581 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4582 {
4583 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4584 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4585 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4586 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4587 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
4588 req->enables |=
4589 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4590 } else {
4591 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4592 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4593 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4594 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4595 req->enables |=
4596 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4597 }
4598 }
4599
4600 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4601 struct hwrm_port_phy_cfg_input *req)
4602 {
4603 u8 autoneg = bp->link_info.autoneg;
4604 u16 fw_link_speed = bp->link_info.req_link_speed;
4605 u32 advertising = bp->link_info.advertising;
4606
4607 if (autoneg & BNXT_AUTONEG_SPEED) {
4608 req->auto_mode |=
4609 PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4610
4611 req->enables |= cpu_to_le32(
4612 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4613 req->auto_link_speed_mask = cpu_to_le16(advertising);
4614
4615 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4616 req->flags |=
4617 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4618 } else {
4619 req->force_link_speed = cpu_to_le16(fw_link_speed);
4620 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4621 }
4622
4623 /* currently don't support half duplex */
4624 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4625 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4626 /* tell chimp that the setting takes effect immediately */
4627 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4628 }
4629
4630 int bnxt_hwrm_set_pause(struct bnxt *bp)
4631 {
4632 struct hwrm_port_phy_cfg_input req = {0};
4633 int rc;
4634
4635 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4636 bnxt_hwrm_set_pause_common(bp, &req);
4637
4638 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4639 bp->link_info.force_link_chng)
4640 bnxt_hwrm_set_link_common(bp, &req);
4641
4642 mutex_lock(&bp->hwrm_cmd_lock);
4643 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4644 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4645 /* since changing of pause setting doesn't trigger any link
4646 * change event, the driver needs to update the current pause
4647 * result upon successfully return of the phy_cfg command
4648 */
4649 bp->link_info.pause =
4650 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4651 bp->link_info.auto_pause_setting = 0;
4652 if (!bp->link_info.force_link_chng)
4653 bnxt_report_link(bp);
4654 }
4655 bp->link_info.force_link_chng = false;
4656 mutex_unlock(&bp->hwrm_cmd_lock);
4657 return rc;
4658 }
4659
4660 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4661 {
4662 struct hwrm_port_phy_cfg_input req = {0};
4663
4664 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4665 if (set_pause)
4666 bnxt_hwrm_set_pause_common(bp, &req);
4667
4668 bnxt_hwrm_set_link_common(bp, &req);
4669 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4670 }
4671
4672 static int bnxt_update_phy_setting(struct bnxt *bp)
4673 {
4674 int rc;
4675 bool update_link = false;
4676 bool update_pause = false;
4677 struct bnxt_link_info *link_info = &bp->link_info;
4678
4679 rc = bnxt_update_link(bp, true);
4680 if (rc) {
4681 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4682 rc);
4683 return rc;
4684 }
4685 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4686 link_info->auto_pause_setting != link_info->req_flow_ctrl)
4687 update_pause = true;
4688 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4689 link_info->force_pause_setting != link_info->req_flow_ctrl)
4690 update_pause = true;
4691 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4692 if (BNXT_AUTO_MODE(link_info->auto_mode))
4693 update_link = true;
4694 if (link_info->req_link_speed != link_info->force_link_speed)
4695 update_link = true;
4696 if (link_info->req_duplex != link_info->duplex_setting)
4697 update_link = true;
4698 } else {
4699 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4700 update_link = true;
4701 if (link_info->advertising != link_info->auto_link_speeds)
4702 update_link = true;
4703 }
4704
4705 if (update_link)
4706 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4707 else if (update_pause)
4708 rc = bnxt_hwrm_set_pause(bp);
4709 if (rc) {
4710 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4711 rc);
4712 return rc;
4713 }
4714
4715 return rc;
4716 }
4717
4718 /* Common routine to pre-map certain register block to different GRC window.
4719 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4720 * in PF and 3 windows in VF that can be customized to map in different
4721 * register blocks.
4722 */
4723 static void bnxt_preset_reg_win(struct bnxt *bp)
4724 {
4725 if (BNXT_PF(bp)) {
4726 /* CAG registers map to GRC window #4 */
4727 writel(BNXT_CAG_REG_BASE,
4728 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4729 }
4730 }
4731
4732 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4733 {
4734 int rc = 0;
4735
4736 bnxt_preset_reg_win(bp);
4737 netif_carrier_off(bp->dev);
4738 if (irq_re_init) {
4739 rc = bnxt_setup_int_mode(bp);
4740 if (rc) {
4741 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4742 rc);
4743 return rc;
4744 }
4745 }
4746 if ((bp->flags & BNXT_FLAG_RFS) &&
4747 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4748 /* disable RFS if falling back to INTA */
4749 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4750 bp->flags &= ~BNXT_FLAG_RFS;
4751 }
4752
4753 rc = bnxt_alloc_mem(bp, irq_re_init);
4754 if (rc) {
4755 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4756 goto open_err_free_mem;
4757 }
4758
4759 if (irq_re_init) {
4760 bnxt_init_napi(bp);
4761 rc = bnxt_request_irq(bp);
4762 if (rc) {
4763 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4764 goto open_err;
4765 }
4766 }
4767
4768 bnxt_enable_napi(bp);
4769
4770 rc = bnxt_init_nic(bp, irq_re_init);
4771 if (rc) {
4772 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4773 goto open_err;
4774 }
4775
4776 if (link_re_init) {
4777 rc = bnxt_update_phy_setting(bp);
4778 if (rc)
4779 netdev_warn(bp->dev, "failed to update phy settings\n");
4780 }
4781
4782 if (irq_re_init) {
4783 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4784 vxlan_get_rx_port(bp->dev);
4785 #endif
4786 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4787 bp, htons(0x17c1),
4788 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4789 bp->nge_port_cnt = 1;
4790 }
4791
4792 set_bit(BNXT_STATE_OPEN, &bp->state);
4793 bnxt_enable_int(bp);
4794 /* Enable TX queues */
4795 bnxt_tx_enable(bp);
4796 mod_timer(&bp->timer, jiffies + bp->current_interval);
4797 bnxt_update_link(bp, true);
4798
4799 return 0;
4800
4801 open_err:
4802 bnxt_disable_napi(bp);
4803 bnxt_del_napi(bp);
4804
4805 open_err_free_mem:
4806 bnxt_free_skbs(bp);
4807 bnxt_free_irq(bp);
4808 bnxt_free_mem(bp, true);
4809 return rc;
4810 }
4811
4812 /* rtnl_lock held */
4813 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4814 {
4815 int rc = 0;
4816
4817 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4818 if (rc) {
4819 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4820 dev_close(bp->dev);
4821 }
4822 return rc;
4823 }
4824
4825 static int bnxt_open(struct net_device *dev)
4826 {
4827 struct bnxt *bp = netdev_priv(dev);
4828 int rc = 0;
4829
4830 rc = bnxt_hwrm_func_reset(bp);
4831 if (rc) {
4832 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4833 rc);
4834 rc = -1;
4835 return rc;
4836 }
4837 return __bnxt_open_nic(bp, true, true);
4838 }
4839
4840 static void bnxt_disable_int_sync(struct bnxt *bp)
4841 {
4842 int i;
4843
4844 atomic_inc(&bp->intr_sem);
4845 if (!netif_running(bp->dev))
4846 return;
4847
4848 bnxt_disable_int(bp);
4849 for (i = 0; i < bp->cp_nr_rings; i++)
4850 synchronize_irq(bp->irq_tbl[i].vector);
4851 }
4852
4853 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4854 {
4855 int rc = 0;
4856
4857 #ifdef CONFIG_BNXT_SRIOV
4858 if (bp->sriov_cfg) {
4859 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4860 !bp->sriov_cfg,
4861 BNXT_SRIOV_CFG_WAIT_TMO);
4862 if (rc)
4863 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4864 }
4865 #endif
4866 /* Change device state to avoid TX queue wake up's */
4867 bnxt_tx_disable(bp);
4868
4869 clear_bit(BNXT_STATE_OPEN, &bp->state);
4870 smp_mb__after_atomic();
4871 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4872 msleep(20);
4873
4874 /* Flush rings before disabling interrupts */
4875 bnxt_shutdown_nic(bp, irq_re_init);
4876
4877 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4878
4879 bnxt_disable_napi(bp);
4880 bnxt_disable_int_sync(bp);
4881 del_timer_sync(&bp->timer);
4882 bnxt_free_skbs(bp);
4883
4884 if (irq_re_init) {
4885 bnxt_free_irq(bp);
4886 bnxt_del_napi(bp);
4887 }
4888 bnxt_free_mem(bp, irq_re_init);
4889 return rc;
4890 }
4891
4892 static int bnxt_close(struct net_device *dev)
4893 {
4894 struct bnxt *bp = netdev_priv(dev);
4895
4896 bnxt_close_nic(bp, true, true);
4897 return 0;
4898 }
4899
4900 /* rtnl_lock held */
4901 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4902 {
4903 switch (cmd) {
4904 case SIOCGMIIPHY:
4905 /* fallthru */
4906 case SIOCGMIIREG: {
4907 if (!netif_running(dev))
4908 return -EAGAIN;
4909
4910 return 0;
4911 }
4912
4913 case SIOCSMIIREG:
4914 if (!netif_running(dev))
4915 return -EAGAIN;
4916
4917 return 0;
4918
4919 default:
4920 /* do nothing */
4921 break;
4922 }
4923 return -EOPNOTSUPP;
4924 }
4925
4926 static struct rtnl_link_stats64 *
4927 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4928 {
4929 u32 i;
4930 struct bnxt *bp = netdev_priv(dev);
4931
4932 memset(stats, 0, sizeof(struct rtnl_link_stats64));
4933
4934 if (!bp->bnapi)
4935 return stats;
4936
4937 /* TODO check if we need to synchronize with bnxt_close path */
4938 for (i = 0; i < bp->cp_nr_rings; i++) {
4939 struct bnxt_napi *bnapi = bp->bnapi[i];
4940 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4941 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4942
4943 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4944 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4945 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4946
4947 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4948 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4949 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4950
4951 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4952 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4953 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4954
4955 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4956 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4957 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4958
4959 stats->rx_missed_errors +=
4960 le64_to_cpu(hw_stats->rx_discard_pkts);
4961
4962 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4963
4964 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4965 }
4966
4967 if (bp->flags & BNXT_FLAG_PORT_STATS) {
4968 struct rx_port_stats *rx = bp->hw_rx_port_stats;
4969 struct tx_port_stats *tx = bp->hw_tx_port_stats;
4970
4971 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
4972 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
4973 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
4974 le64_to_cpu(rx->rx_ovrsz_frames) +
4975 le64_to_cpu(rx->rx_runt_frames);
4976 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
4977 le64_to_cpu(rx->rx_jbr_frames);
4978 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
4979 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
4980 stats->tx_errors = le64_to_cpu(tx->tx_err);
4981 }
4982
4983 return stats;
4984 }
4985
4986 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4987 {
4988 struct net_device *dev = bp->dev;
4989 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4990 struct netdev_hw_addr *ha;
4991 u8 *haddr;
4992 int mc_count = 0;
4993 bool update = false;
4994 int off = 0;
4995
4996 netdev_for_each_mc_addr(ha, dev) {
4997 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4998 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4999 vnic->mc_list_count = 0;
5000 return false;
5001 }
5002 haddr = ha->addr;
5003 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5004 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5005 update = true;
5006 }
5007 off += ETH_ALEN;
5008 mc_count++;
5009 }
5010 if (mc_count)
5011 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5012
5013 if (mc_count != vnic->mc_list_count) {
5014 vnic->mc_list_count = mc_count;
5015 update = true;
5016 }
5017 return update;
5018 }
5019
5020 static bool bnxt_uc_list_updated(struct bnxt *bp)
5021 {
5022 struct net_device *dev = bp->dev;
5023 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5024 struct netdev_hw_addr *ha;
5025 int off = 0;
5026
5027 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5028 return true;
5029
5030 netdev_for_each_uc_addr(ha, dev) {
5031 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5032 return true;
5033
5034 off += ETH_ALEN;
5035 }
5036 return false;
5037 }
5038
5039 static void bnxt_set_rx_mode(struct net_device *dev)
5040 {
5041 struct bnxt *bp = netdev_priv(dev);
5042 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5043 u32 mask = vnic->rx_mask;
5044 bool mc_update = false;
5045 bool uc_update;
5046
5047 if (!netif_running(dev))
5048 return;
5049
5050 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5051 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5052 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5053
5054 /* Only allow PF to be in promiscuous mode */
5055 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
5056 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5057
5058 uc_update = bnxt_uc_list_updated(bp);
5059
5060 if (dev->flags & IFF_ALLMULTI) {
5061 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5062 vnic->mc_list_count = 0;
5063 } else {
5064 mc_update = bnxt_mc_list_updated(bp, &mask);
5065 }
5066
5067 if (mask != vnic->rx_mask || uc_update || mc_update) {
5068 vnic->rx_mask = mask;
5069
5070 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5071 schedule_work(&bp->sp_task);
5072 }
5073 }
5074
5075 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5076 {
5077 struct net_device *dev = bp->dev;
5078 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5079 struct netdev_hw_addr *ha;
5080 int i, off = 0, rc;
5081 bool uc_update;
5082
5083 netif_addr_lock_bh(dev);
5084 uc_update = bnxt_uc_list_updated(bp);
5085 netif_addr_unlock_bh(dev);
5086
5087 if (!uc_update)
5088 goto skip_uc;
5089
5090 mutex_lock(&bp->hwrm_cmd_lock);
5091 for (i = 1; i < vnic->uc_filter_count; i++) {
5092 struct hwrm_cfa_l2_filter_free_input req = {0};
5093
5094 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5095 -1);
5096
5097 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5098
5099 rc = _hwrm_send_message(bp, &req, sizeof(req),
5100 HWRM_CMD_TIMEOUT);
5101 }
5102 mutex_unlock(&bp->hwrm_cmd_lock);
5103
5104 vnic->uc_filter_count = 1;
5105
5106 netif_addr_lock_bh(dev);
5107 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5108 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5109 } else {
5110 netdev_for_each_uc_addr(ha, dev) {
5111 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5112 off += ETH_ALEN;
5113 vnic->uc_filter_count++;
5114 }
5115 }
5116 netif_addr_unlock_bh(dev);
5117
5118 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5119 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5120 if (rc) {
5121 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5122 rc);
5123 vnic->uc_filter_count = i;
5124 return rc;
5125 }
5126 }
5127
5128 skip_uc:
5129 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5130 if (rc)
5131 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5132 rc);
5133
5134 return rc;
5135 }
5136
5137 static bool bnxt_rfs_capable(struct bnxt *bp)
5138 {
5139 #ifdef CONFIG_RFS_ACCEL
5140 struct bnxt_pf_info *pf = &bp->pf;
5141 int vnics;
5142
5143 if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5144 return false;
5145
5146 vnics = 1 + bp->rx_nr_rings;
5147 if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
5148 return false;
5149
5150 return true;
5151 #else
5152 return false;
5153 #endif
5154 }
5155
5156 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5157 netdev_features_t features)
5158 {
5159 struct bnxt *bp = netdev_priv(dev);
5160
5161 if (!bnxt_rfs_capable(bp))
5162 features &= ~NETIF_F_NTUPLE;
5163 return features;
5164 }
5165
5166 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5167 {
5168 struct bnxt *bp = netdev_priv(dev);
5169 u32 flags = bp->flags;
5170 u32 changes;
5171 int rc = 0;
5172 bool re_init = false;
5173 bool update_tpa = false;
5174
5175 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5176 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5177 flags |= BNXT_FLAG_GRO;
5178 if (features & NETIF_F_LRO)
5179 flags |= BNXT_FLAG_LRO;
5180
5181 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5182 flags |= BNXT_FLAG_STRIP_VLAN;
5183
5184 if (features & NETIF_F_NTUPLE)
5185 flags |= BNXT_FLAG_RFS;
5186
5187 changes = flags ^ bp->flags;
5188 if (changes & BNXT_FLAG_TPA) {
5189 update_tpa = true;
5190 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5191 (flags & BNXT_FLAG_TPA) == 0)
5192 re_init = true;
5193 }
5194
5195 if (changes & ~BNXT_FLAG_TPA)
5196 re_init = true;
5197
5198 if (flags != bp->flags) {
5199 u32 old_flags = bp->flags;
5200
5201 bp->flags = flags;
5202
5203 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5204 if (update_tpa)
5205 bnxt_set_ring_params(bp);
5206 return rc;
5207 }
5208
5209 if (re_init) {
5210 bnxt_close_nic(bp, false, false);
5211 if (update_tpa)
5212 bnxt_set_ring_params(bp);
5213
5214 return bnxt_open_nic(bp, false, false);
5215 }
5216 if (update_tpa) {
5217 rc = bnxt_set_tpa(bp,
5218 (flags & BNXT_FLAG_TPA) ?
5219 true : false);
5220 if (rc)
5221 bp->flags = old_flags;
5222 }
5223 }
5224 return rc;
5225 }
5226
5227 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5228 {
5229 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5230 int i = bnapi->index;
5231
5232 if (!txr)
5233 return;
5234
5235 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5236 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5237 txr->tx_cons);
5238 }
5239
5240 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5241 {
5242 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5243 int i = bnapi->index;
5244
5245 if (!rxr)
5246 return;
5247
5248 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5249 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5250 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5251 rxr->rx_sw_agg_prod);
5252 }
5253
5254 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5255 {
5256 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5257 int i = bnapi->index;
5258
5259 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5260 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5261 }
5262
5263 static void bnxt_dbg_dump_states(struct bnxt *bp)
5264 {
5265 int i;
5266 struct bnxt_napi *bnapi;
5267
5268 for (i = 0; i < bp->cp_nr_rings; i++) {
5269 bnapi = bp->bnapi[i];
5270 if (netif_msg_drv(bp)) {
5271 bnxt_dump_tx_sw_state(bnapi);
5272 bnxt_dump_rx_sw_state(bnapi);
5273 bnxt_dump_cp_sw_state(bnapi);
5274 }
5275 }
5276 }
5277
5278 static void bnxt_reset_task(struct bnxt *bp)
5279 {
5280 bnxt_dbg_dump_states(bp);
5281 if (netif_running(bp->dev)) {
5282 bnxt_close_nic(bp, false, false);
5283 bnxt_open_nic(bp, false, false);
5284 }
5285 }
5286
5287 static void bnxt_tx_timeout(struct net_device *dev)
5288 {
5289 struct bnxt *bp = netdev_priv(dev);
5290
5291 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
5292 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5293 schedule_work(&bp->sp_task);
5294 }
5295
5296 #ifdef CONFIG_NET_POLL_CONTROLLER
5297 static void bnxt_poll_controller(struct net_device *dev)
5298 {
5299 struct bnxt *bp = netdev_priv(dev);
5300 int i;
5301
5302 for (i = 0; i < bp->cp_nr_rings; i++) {
5303 struct bnxt_irq *irq = &bp->irq_tbl[i];
5304
5305 disable_irq(irq->vector);
5306 irq->handler(irq->vector, bp->bnapi[i]);
5307 enable_irq(irq->vector);
5308 }
5309 }
5310 #endif
5311
5312 static void bnxt_timer(unsigned long data)
5313 {
5314 struct bnxt *bp = (struct bnxt *)data;
5315 struct net_device *dev = bp->dev;
5316
5317 if (!netif_running(dev))
5318 return;
5319
5320 if (atomic_read(&bp->intr_sem) != 0)
5321 goto bnxt_restart_timer;
5322
5323 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
5324 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
5325 schedule_work(&bp->sp_task);
5326 }
5327 bnxt_restart_timer:
5328 mod_timer(&bp->timer, jiffies + bp->current_interval);
5329 }
5330
5331 static void bnxt_cfg_ntp_filters(struct bnxt *);
5332
5333 static void bnxt_sp_task(struct work_struct *work)
5334 {
5335 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5336 int rc;
5337
5338 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5339 smp_mb__after_atomic();
5340 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5341 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5342 return;
5343 }
5344
5345 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5346 bnxt_cfg_rx_mode(bp);
5347
5348 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5349 bnxt_cfg_ntp_filters(bp);
5350 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5351 rc = bnxt_update_link(bp, true);
5352 if (rc)
5353 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5354 rc);
5355 }
5356 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5357 bnxt_hwrm_exec_fwd_req(bp);
5358 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5359 bnxt_hwrm_tunnel_dst_port_alloc(
5360 bp, bp->vxlan_port,
5361 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5362 }
5363 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5364 bnxt_hwrm_tunnel_dst_port_free(
5365 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5366 }
5367 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5368 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5369 * for BNXT_STATE_IN_SP_TASK to clear.
5370 */
5371 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5372 rtnl_lock();
5373 bnxt_reset_task(bp);
5374 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5375 rtnl_unlock();
5376 }
5377
5378 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
5379 bnxt_hwrm_port_qstats(bp);
5380
5381 smp_mb__before_atomic();
5382 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5383 }
5384
5385 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5386 {
5387 int rc;
5388 struct bnxt *bp = netdev_priv(dev);
5389
5390 SET_NETDEV_DEV(dev, &pdev->dev);
5391
5392 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5393 rc = pci_enable_device(pdev);
5394 if (rc) {
5395 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5396 goto init_err;
5397 }
5398
5399 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5400 dev_err(&pdev->dev,
5401 "Cannot find PCI device base address, aborting\n");
5402 rc = -ENODEV;
5403 goto init_err_disable;
5404 }
5405
5406 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5407 if (rc) {
5408 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5409 goto init_err_disable;
5410 }
5411
5412 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5413 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5414 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5415 goto init_err_disable;
5416 }
5417
5418 pci_set_master(pdev);
5419
5420 bp->dev = dev;
5421 bp->pdev = pdev;
5422
5423 bp->bar0 = pci_ioremap_bar(pdev, 0);
5424 if (!bp->bar0) {
5425 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5426 rc = -ENOMEM;
5427 goto init_err_release;
5428 }
5429
5430 bp->bar1 = pci_ioremap_bar(pdev, 2);
5431 if (!bp->bar1) {
5432 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5433 rc = -ENOMEM;
5434 goto init_err_release;
5435 }
5436
5437 bp->bar2 = pci_ioremap_bar(pdev, 4);
5438 if (!bp->bar2) {
5439 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5440 rc = -ENOMEM;
5441 goto init_err_release;
5442 }
5443
5444 pci_enable_pcie_error_reporting(pdev);
5445
5446 INIT_WORK(&bp->sp_task, bnxt_sp_task);
5447
5448 spin_lock_init(&bp->ntp_fltr_lock);
5449
5450 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5451 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5452
5453 /* tick values in micro seconds */
5454 bp->rx_coal_ticks = 12;
5455 bp->rx_coal_bufs = 30;
5456 bp->rx_coal_ticks_irq = 1;
5457 bp->rx_coal_bufs_irq = 2;
5458
5459 bp->tx_coal_ticks = 25;
5460 bp->tx_coal_bufs = 30;
5461 bp->tx_coal_ticks_irq = 2;
5462 bp->tx_coal_bufs_irq = 2;
5463
5464 init_timer(&bp->timer);
5465 bp->timer.data = (unsigned long)bp;
5466 bp->timer.function = bnxt_timer;
5467 bp->current_interval = BNXT_TIMER_INTERVAL;
5468
5469 clear_bit(BNXT_STATE_OPEN, &bp->state);
5470
5471 return 0;
5472
5473 init_err_release:
5474 if (bp->bar2) {
5475 pci_iounmap(pdev, bp->bar2);
5476 bp->bar2 = NULL;
5477 }
5478
5479 if (bp->bar1) {
5480 pci_iounmap(pdev, bp->bar1);
5481 bp->bar1 = NULL;
5482 }
5483
5484 if (bp->bar0) {
5485 pci_iounmap(pdev, bp->bar0);
5486 bp->bar0 = NULL;
5487 }
5488
5489 pci_release_regions(pdev);
5490
5491 init_err_disable:
5492 pci_disable_device(pdev);
5493
5494 init_err:
5495 return rc;
5496 }
5497
5498 /* rtnl_lock held */
5499 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5500 {
5501 struct sockaddr *addr = p;
5502 struct bnxt *bp = netdev_priv(dev);
5503 int rc = 0;
5504
5505 if (!is_valid_ether_addr(addr->sa_data))
5506 return -EADDRNOTAVAIL;
5507
5508 #ifdef CONFIG_BNXT_SRIOV
5509 if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5510 return -EADDRNOTAVAIL;
5511 #endif
5512
5513 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5514 return 0;
5515
5516 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5517 if (netif_running(dev)) {
5518 bnxt_close_nic(bp, false, false);
5519 rc = bnxt_open_nic(bp, false, false);
5520 }
5521
5522 return rc;
5523 }
5524
5525 /* rtnl_lock held */
5526 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5527 {
5528 struct bnxt *bp = netdev_priv(dev);
5529
5530 if (new_mtu < 60 || new_mtu > 9000)
5531 return -EINVAL;
5532
5533 if (netif_running(dev))
5534 bnxt_close_nic(bp, false, false);
5535
5536 dev->mtu = new_mtu;
5537 bnxt_set_ring_params(bp);
5538
5539 if (netif_running(dev))
5540 return bnxt_open_nic(bp, false, false);
5541
5542 return 0;
5543 }
5544
5545 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
5546 struct tc_to_netdev *ntc)
5547 {
5548 struct bnxt *bp = netdev_priv(dev);
5549 u8 tc;
5550
5551 if (ntc->type != TC_SETUP_MQPRIO)
5552 return -EINVAL;
5553
5554 tc = ntc->tc;
5555
5556 if (tc > bp->max_tc) {
5557 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5558 tc, bp->max_tc);
5559 return -EINVAL;
5560 }
5561
5562 if (netdev_get_num_tc(dev) == tc)
5563 return 0;
5564
5565 if (tc) {
5566 int max_rx_rings, max_tx_rings, rc;
5567 bool sh = false;
5568
5569 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5570 sh = true;
5571
5572 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5573 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5574 return -ENOMEM;
5575 }
5576
5577 /* Needs to close the device and do hw resource re-allocations */
5578 if (netif_running(bp->dev))
5579 bnxt_close_nic(bp, true, false);
5580
5581 if (tc) {
5582 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5583 netdev_set_num_tc(dev, tc);
5584 } else {
5585 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5586 netdev_reset_tc(dev);
5587 }
5588 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5589 bp->num_stat_ctxs = bp->cp_nr_rings;
5590
5591 if (netif_running(bp->dev))
5592 return bnxt_open_nic(bp, true, false);
5593
5594 return 0;
5595 }
5596
5597 #ifdef CONFIG_RFS_ACCEL
5598 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5599 struct bnxt_ntuple_filter *f2)
5600 {
5601 struct flow_keys *keys1 = &f1->fkeys;
5602 struct flow_keys *keys2 = &f2->fkeys;
5603
5604 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5605 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5606 keys1->ports.ports == keys2->ports.ports &&
5607 keys1->basic.ip_proto == keys2->basic.ip_proto &&
5608 keys1->basic.n_proto == keys2->basic.n_proto &&
5609 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5610 return true;
5611
5612 return false;
5613 }
5614
5615 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5616 u16 rxq_index, u32 flow_id)
5617 {
5618 struct bnxt *bp = netdev_priv(dev);
5619 struct bnxt_ntuple_filter *fltr, *new_fltr;
5620 struct flow_keys *fkeys;
5621 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5622 int rc = 0, idx, bit_id;
5623 struct hlist_head *head;
5624
5625 if (skb->encapsulation)
5626 return -EPROTONOSUPPORT;
5627
5628 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5629 if (!new_fltr)
5630 return -ENOMEM;
5631
5632 fkeys = &new_fltr->fkeys;
5633 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5634 rc = -EPROTONOSUPPORT;
5635 goto err_free;
5636 }
5637
5638 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5639 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5640 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5641 rc = -EPROTONOSUPPORT;
5642 goto err_free;
5643 }
5644
5645 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5646
5647 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5648 head = &bp->ntp_fltr_hash_tbl[idx];
5649 rcu_read_lock();
5650 hlist_for_each_entry_rcu(fltr, head, hash) {
5651 if (bnxt_fltr_match(fltr, new_fltr)) {
5652 rcu_read_unlock();
5653 rc = 0;
5654 goto err_free;
5655 }
5656 }
5657 rcu_read_unlock();
5658
5659 spin_lock_bh(&bp->ntp_fltr_lock);
5660 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5661 BNXT_NTP_FLTR_MAX_FLTR, 0);
5662 if (bit_id < 0) {
5663 spin_unlock_bh(&bp->ntp_fltr_lock);
5664 rc = -ENOMEM;
5665 goto err_free;
5666 }
5667
5668 new_fltr->sw_id = (u16)bit_id;
5669 new_fltr->flow_id = flow_id;
5670 new_fltr->rxq = rxq_index;
5671 hlist_add_head_rcu(&new_fltr->hash, head);
5672 bp->ntp_fltr_count++;
5673 spin_unlock_bh(&bp->ntp_fltr_lock);
5674
5675 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5676 schedule_work(&bp->sp_task);
5677
5678 return new_fltr->sw_id;
5679
5680 err_free:
5681 kfree(new_fltr);
5682 return rc;
5683 }
5684
5685 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5686 {
5687 int i;
5688
5689 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5690 struct hlist_head *head;
5691 struct hlist_node *tmp;
5692 struct bnxt_ntuple_filter *fltr;
5693 int rc;
5694
5695 head = &bp->ntp_fltr_hash_tbl[i];
5696 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5697 bool del = false;
5698
5699 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5700 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5701 fltr->flow_id,
5702 fltr->sw_id)) {
5703 bnxt_hwrm_cfa_ntuple_filter_free(bp,
5704 fltr);
5705 del = true;
5706 }
5707 } else {
5708 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5709 fltr);
5710 if (rc)
5711 del = true;
5712 else
5713 set_bit(BNXT_FLTR_VALID, &fltr->state);
5714 }
5715
5716 if (del) {
5717 spin_lock_bh(&bp->ntp_fltr_lock);
5718 hlist_del_rcu(&fltr->hash);
5719 bp->ntp_fltr_count--;
5720 spin_unlock_bh(&bp->ntp_fltr_lock);
5721 synchronize_rcu();
5722 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5723 kfree(fltr);
5724 }
5725 }
5726 }
5727 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
5728 netdev_info(bp->dev, "Receive PF driver unload event!");
5729 }
5730
5731 #else
5732
5733 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5734 {
5735 }
5736
5737 #endif /* CONFIG_RFS_ACCEL */
5738
5739 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5740 __be16 port)
5741 {
5742 struct bnxt *bp = netdev_priv(dev);
5743
5744 if (!netif_running(dev))
5745 return;
5746
5747 if (sa_family != AF_INET6 && sa_family != AF_INET)
5748 return;
5749
5750 if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5751 return;
5752
5753 bp->vxlan_port_cnt++;
5754 if (bp->vxlan_port_cnt == 1) {
5755 bp->vxlan_port = port;
5756 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5757 schedule_work(&bp->sp_task);
5758 }
5759 }
5760
5761 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5762 __be16 port)
5763 {
5764 struct bnxt *bp = netdev_priv(dev);
5765
5766 if (!netif_running(dev))
5767 return;
5768
5769 if (sa_family != AF_INET6 && sa_family != AF_INET)
5770 return;
5771
5772 if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5773 bp->vxlan_port_cnt--;
5774
5775 if (bp->vxlan_port_cnt == 0) {
5776 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5777 schedule_work(&bp->sp_task);
5778 }
5779 }
5780 }
5781
5782 static const struct net_device_ops bnxt_netdev_ops = {
5783 .ndo_open = bnxt_open,
5784 .ndo_start_xmit = bnxt_start_xmit,
5785 .ndo_stop = bnxt_close,
5786 .ndo_get_stats64 = bnxt_get_stats64,
5787 .ndo_set_rx_mode = bnxt_set_rx_mode,
5788 .ndo_do_ioctl = bnxt_ioctl,
5789 .ndo_validate_addr = eth_validate_addr,
5790 .ndo_set_mac_address = bnxt_change_mac_addr,
5791 .ndo_change_mtu = bnxt_change_mtu,
5792 .ndo_fix_features = bnxt_fix_features,
5793 .ndo_set_features = bnxt_set_features,
5794 .ndo_tx_timeout = bnxt_tx_timeout,
5795 #ifdef CONFIG_BNXT_SRIOV
5796 .ndo_get_vf_config = bnxt_get_vf_config,
5797 .ndo_set_vf_mac = bnxt_set_vf_mac,
5798 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
5799 .ndo_set_vf_rate = bnxt_set_vf_bw,
5800 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
5801 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
5802 #endif
5803 #ifdef CONFIG_NET_POLL_CONTROLLER
5804 .ndo_poll_controller = bnxt_poll_controller,
5805 #endif
5806 .ndo_setup_tc = bnxt_setup_tc,
5807 #ifdef CONFIG_RFS_ACCEL
5808 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
5809 #endif
5810 .ndo_add_vxlan_port = bnxt_add_vxlan_port,
5811 .ndo_del_vxlan_port = bnxt_del_vxlan_port,
5812 #ifdef CONFIG_NET_RX_BUSY_POLL
5813 .ndo_busy_poll = bnxt_busy_poll,
5814 #endif
5815 };
5816
5817 static void bnxt_remove_one(struct pci_dev *pdev)
5818 {
5819 struct net_device *dev = pci_get_drvdata(pdev);
5820 struct bnxt *bp = netdev_priv(dev);
5821
5822 if (BNXT_PF(bp))
5823 bnxt_sriov_disable(bp);
5824
5825 pci_disable_pcie_error_reporting(pdev);
5826 unregister_netdev(dev);
5827 cancel_work_sync(&bp->sp_task);
5828 bp->sp_event = 0;
5829
5830 bnxt_hwrm_func_drv_unrgtr(bp);
5831 bnxt_free_hwrm_resources(bp);
5832 pci_iounmap(pdev, bp->bar2);
5833 pci_iounmap(pdev, bp->bar1);
5834 pci_iounmap(pdev, bp->bar0);
5835 free_netdev(dev);
5836
5837 pci_release_regions(pdev);
5838 pci_disable_device(pdev);
5839 }
5840
5841 static int bnxt_probe_phy(struct bnxt *bp)
5842 {
5843 int rc = 0;
5844 struct bnxt_link_info *link_info = &bp->link_info;
5845
5846 rc = bnxt_update_link(bp, false);
5847 if (rc) {
5848 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5849 rc);
5850 return rc;
5851 }
5852
5853 /*initialize the ethool setting copy with NVM settings */
5854 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5855 link_info->autoneg = BNXT_AUTONEG_SPEED |
5856 BNXT_AUTONEG_FLOW_CTRL;
5857 link_info->advertising = link_info->auto_link_speeds;
5858 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5859 } else {
5860 link_info->req_link_speed = link_info->force_link_speed;
5861 link_info->req_duplex = link_info->duplex_setting;
5862 link_info->req_flow_ctrl = link_info->force_pause_setting;
5863 }
5864 return rc;
5865 }
5866
5867 static int bnxt_get_max_irq(struct pci_dev *pdev)
5868 {
5869 u16 ctrl;
5870
5871 if (!pdev->msix_cap)
5872 return 1;
5873
5874 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5875 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5876 }
5877
5878 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5879 int *max_cp)
5880 {
5881 int max_ring_grps = 0;
5882
5883 #ifdef CONFIG_BNXT_SRIOV
5884 if (!BNXT_PF(bp)) {
5885 *max_tx = bp->vf.max_tx_rings;
5886 *max_rx = bp->vf.max_rx_rings;
5887 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5888 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5889 max_ring_grps = bp->vf.max_hw_ring_grps;
5890 } else
5891 #endif
5892 {
5893 *max_tx = bp->pf.max_tx_rings;
5894 *max_rx = bp->pf.max_rx_rings;
5895 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5896 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5897 max_ring_grps = bp->pf.max_hw_ring_grps;
5898 }
5899
5900 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5901 *max_rx >>= 1;
5902 *max_rx = min_t(int, *max_rx, max_ring_grps);
5903 }
5904
5905 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5906 {
5907 int rx, tx, cp;
5908
5909 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
5910 if (!rx || !tx || !cp)
5911 return -ENOMEM;
5912
5913 *max_rx = rx;
5914 *max_tx = tx;
5915 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5916 }
5917
5918 static int bnxt_set_dflt_rings(struct bnxt *bp)
5919 {
5920 int dflt_rings, max_rx_rings, max_tx_rings, rc;
5921 bool sh = true;
5922
5923 if (sh)
5924 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5925 dflt_rings = netif_get_num_default_rss_queues();
5926 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5927 if (rc)
5928 return rc;
5929 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5930 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5931 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5932 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5933 bp->tx_nr_rings + bp->rx_nr_rings;
5934 bp->num_stat_ctxs = bp->cp_nr_rings;
5935 return rc;
5936 }
5937
5938 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5939 {
5940 static int version_printed;
5941 struct net_device *dev;
5942 struct bnxt *bp;
5943 int rc, max_irqs;
5944
5945 if (version_printed++ == 0)
5946 pr_info("%s", version);
5947
5948 max_irqs = bnxt_get_max_irq(pdev);
5949 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5950 if (!dev)
5951 return -ENOMEM;
5952
5953 bp = netdev_priv(dev);
5954
5955 if (bnxt_vf_pciid(ent->driver_data))
5956 bp->flags |= BNXT_FLAG_VF;
5957
5958 if (pdev->msix_cap)
5959 bp->flags |= BNXT_FLAG_MSIX_CAP;
5960
5961 rc = bnxt_init_board(pdev, dev);
5962 if (rc < 0)
5963 goto init_err_free;
5964
5965 dev->netdev_ops = &bnxt_netdev_ops;
5966 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5967 dev->ethtool_ops = &bnxt_ethtool_ops;
5968
5969 pci_set_drvdata(pdev, dev);
5970
5971 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5972 NETIF_F_TSO | NETIF_F_TSO6 |
5973 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5974 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5975 NETIF_F_RXHASH |
5976 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5977
5978 dev->hw_enc_features =
5979 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5980 NETIF_F_TSO | NETIF_F_TSO6 |
5981 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5982 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5983 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5984 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5985 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5986 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5987 dev->priv_flags |= IFF_UNICAST_FLT;
5988
5989 #ifdef CONFIG_BNXT_SRIOV
5990 init_waitqueue_head(&bp->sriov_cfg_wait);
5991 #endif
5992 rc = bnxt_alloc_hwrm_resources(bp);
5993 if (rc)
5994 goto init_err;
5995
5996 mutex_init(&bp->hwrm_cmd_lock);
5997 bnxt_hwrm_ver_get(bp);
5998
5999 rc = bnxt_hwrm_func_drv_rgtr(bp);
6000 if (rc)
6001 goto init_err;
6002
6003 /* Get the MAX capabilities for this function */
6004 rc = bnxt_hwrm_func_qcaps(bp);
6005 if (rc) {
6006 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6007 rc);
6008 rc = -1;
6009 goto init_err;
6010 }
6011
6012 rc = bnxt_hwrm_queue_qportcfg(bp);
6013 if (rc) {
6014 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6015 rc);
6016 rc = -1;
6017 goto init_err;
6018 }
6019
6020 bnxt_set_tpa_flags(bp);
6021 bnxt_set_ring_params(bp);
6022 if (BNXT_PF(bp))
6023 bp->pf.max_irqs = max_irqs;
6024 #if defined(CONFIG_BNXT_SRIOV)
6025 else
6026 bp->vf.max_irqs = max_irqs;
6027 #endif
6028 bnxt_set_dflt_rings(bp);
6029
6030 if (BNXT_PF(bp)) {
6031 dev->hw_features |= NETIF_F_NTUPLE;
6032 if (bnxt_rfs_capable(bp)) {
6033 bp->flags |= BNXT_FLAG_RFS;
6034 dev->features |= NETIF_F_NTUPLE;
6035 }
6036 }
6037
6038 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6039 bp->flags |= BNXT_FLAG_STRIP_VLAN;
6040
6041 rc = bnxt_probe_phy(bp);
6042 if (rc)
6043 goto init_err;
6044
6045 rc = register_netdev(dev);
6046 if (rc)
6047 goto init_err;
6048
6049 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6050 board_info[ent->driver_data].name,
6051 (long)pci_resource_start(pdev, 0), dev->dev_addr);
6052
6053 return 0;
6054
6055 init_err:
6056 pci_iounmap(pdev, bp->bar0);
6057 pci_release_regions(pdev);
6058 pci_disable_device(pdev);
6059
6060 init_err_free:
6061 free_netdev(dev);
6062 return rc;
6063 }
6064
6065 /**
6066 * bnxt_io_error_detected - called when PCI error is detected
6067 * @pdev: Pointer to PCI device
6068 * @state: The current pci connection state
6069 *
6070 * This function is called after a PCI bus error affecting
6071 * this device has been detected.
6072 */
6073 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6074 pci_channel_state_t state)
6075 {
6076 struct net_device *netdev = pci_get_drvdata(pdev);
6077
6078 netdev_info(netdev, "PCI I/O error detected\n");
6079
6080 rtnl_lock();
6081 netif_device_detach(netdev);
6082
6083 if (state == pci_channel_io_perm_failure) {
6084 rtnl_unlock();
6085 return PCI_ERS_RESULT_DISCONNECT;
6086 }
6087
6088 if (netif_running(netdev))
6089 bnxt_close(netdev);
6090
6091 pci_disable_device(pdev);
6092 rtnl_unlock();
6093
6094 /* Request a slot slot reset. */
6095 return PCI_ERS_RESULT_NEED_RESET;
6096 }
6097
6098 /**
6099 * bnxt_io_slot_reset - called after the pci bus has been reset.
6100 * @pdev: Pointer to PCI device
6101 *
6102 * Restart the card from scratch, as if from a cold-boot.
6103 * At this point, the card has exprienced a hard reset,
6104 * followed by fixups by BIOS, and has its config space
6105 * set up identically to what it was at cold boot.
6106 */
6107 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6108 {
6109 struct net_device *netdev = pci_get_drvdata(pdev);
6110 struct bnxt *bp = netdev_priv(netdev);
6111 int err = 0;
6112 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6113
6114 netdev_info(bp->dev, "PCI Slot Reset\n");
6115
6116 rtnl_lock();
6117
6118 if (pci_enable_device(pdev)) {
6119 dev_err(&pdev->dev,
6120 "Cannot re-enable PCI device after reset.\n");
6121 } else {
6122 pci_set_master(pdev);
6123
6124 if (netif_running(netdev))
6125 err = bnxt_open(netdev);
6126
6127 if (!err)
6128 result = PCI_ERS_RESULT_RECOVERED;
6129 }
6130
6131 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
6132 dev_close(netdev);
6133
6134 rtnl_unlock();
6135
6136 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6137 if (err) {
6138 dev_err(&pdev->dev,
6139 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
6140 err); /* non-fatal, continue */
6141 }
6142
6143 return PCI_ERS_RESULT_RECOVERED;
6144 }
6145
6146 /**
6147 * bnxt_io_resume - called when traffic can start flowing again.
6148 * @pdev: Pointer to PCI device
6149 *
6150 * This callback is called when the error recovery driver tells
6151 * us that its OK to resume normal operation.
6152 */
6153 static void bnxt_io_resume(struct pci_dev *pdev)
6154 {
6155 struct net_device *netdev = pci_get_drvdata(pdev);
6156
6157 rtnl_lock();
6158
6159 netif_device_attach(netdev);
6160
6161 rtnl_unlock();
6162 }
6163
6164 static const struct pci_error_handlers bnxt_err_handler = {
6165 .error_detected = bnxt_io_error_detected,
6166 .slot_reset = bnxt_io_slot_reset,
6167 .resume = bnxt_io_resume
6168 };
6169
6170 static struct pci_driver bnxt_pci_driver = {
6171 .name = DRV_MODULE_NAME,
6172 .id_table = bnxt_pci_tbl,
6173 .probe = bnxt_init_one,
6174 .remove = bnxt_remove_one,
6175 .err_handler = &bnxt_err_handler,
6176 #if defined(CONFIG_BNXT_SRIOV)
6177 .sriov_configure = bnxt_sriov_configure,
6178 #endif
6179 };
6180
6181 module_pci_driver(bnxt_pci_driver);
This page took 0.161092 seconds and 5 git commands to generate.