1e72722abbf1265716790bc25ea24376e7e7e22f
[deliverable/linux.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
56
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 void __iomem *d, u32 value)
77 {
78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 void __iomem *d)
83 {
84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 void __iomem *d,
89 dma_addr_t addr)
90 {
91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93 /* Register writes to GISB bus can take couple hundred nanoseconds
94 * and are done for each packet, save these expensive writes unless
95 * the platform is explicitly configured for 64-bits/LPAE.
96 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 if (priv->hw_params->flags & GENET_HAS_40BITS)
99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 dmadesc_set_length_status(priv, d, val);
108 dmadesc_set_addr(priv, d, addr);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 void __iomem *d)
113 {
114 dma_addr_t addr;
115
116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118 /* Register writes to GISB bus can take couple hundred nanoseconds
119 * and are done for each packet, save these expensive writes unless
120 * the platform is explicitly configured for 64-bits/LPAE.
121 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 if (priv->hw_params->flags & GENET_HAS_40BITS)
124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 return addr;
127 }
128
129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 if (GENET_IS_V1(priv))
137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 else
139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 if (GENET_IS_V1(priv))
145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 else
147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151 * between GENET1.1 and GENET2. Only those currently being used
152 * by driver are defined.
153 */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 if (GENET_IS_V1(priv))
157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 else
159 return __raw_readl(priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 if (GENET_IS_V1(priv))
166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 else
168 __raw_writel(val, priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 if (GENET_IS_V1(priv))
175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 else
177 return __raw_readl(priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 if (GENET_IS_V1(priv))
184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 else
186 __raw_writel(val, priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 DMA_RING_CFG = 0,
193 DMA_CTRL,
194 DMA_STATUS,
195 DMA_SCB_BURST_SIZE,
196 DMA_ARB_CTRL,
197 DMA_PRIORITY_0,
198 DMA_PRIORITY_1,
199 DMA_PRIORITY_2,
200 DMA_INDEX2RING_0,
201 DMA_INDEX2RING_1,
202 DMA_INDEX2RING_2,
203 DMA_INDEX2RING_3,
204 DMA_INDEX2RING_4,
205 DMA_INDEX2RING_5,
206 DMA_INDEX2RING_6,
207 DMA_INDEX2RING_7,
208 DMA_RING0_TIMEOUT,
209 DMA_RING1_TIMEOUT,
210 DMA_RING2_TIMEOUT,
211 DMA_RING3_TIMEOUT,
212 DMA_RING4_TIMEOUT,
213 DMA_RING5_TIMEOUT,
214 DMA_RING6_TIMEOUT,
215 DMA_RING7_TIMEOUT,
216 DMA_RING8_TIMEOUT,
217 DMA_RING9_TIMEOUT,
218 DMA_RING10_TIMEOUT,
219 DMA_RING11_TIMEOUT,
220 DMA_RING12_TIMEOUT,
221 DMA_RING13_TIMEOUT,
222 DMA_RING14_TIMEOUT,
223 DMA_RING15_TIMEOUT,
224 DMA_RING16_TIMEOUT,
225 };
226
227 static const u8 bcmgenet_dma_regs_v3plus[] = {
228 [DMA_RING_CFG] = 0x00,
229 [DMA_CTRL] = 0x04,
230 [DMA_STATUS] = 0x08,
231 [DMA_SCB_BURST_SIZE] = 0x0C,
232 [DMA_ARB_CTRL] = 0x2C,
233 [DMA_PRIORITY_0] = 0x30,
234 [DMA_PRIORITY_1] = 0x34,
235 [DMA_PRIORITY_2] = 0x38,
236 [DMA_RING0_TIMEOUT] = 0x2C,
237 [DMA_RING1_TIMEOUT] = 0x30,
238 [DMA_RING2_TIMEOUT] = 0x34,
239 [DMA_RING3_TIMEOUT] = 0x38,
240 [DMA_RING4_TIMEOUT] = 0x3c,
241 [DMA_RING5_TIMEOUT] = 0x40,
242 [DMA_RING6_TIMEOUT] = 0x44,
243 [DMA_RING7_TIMEOUT] = 0x48,
244 [DMA_RING8_TIMEOUT] = 0x4c,
245 [DMA_RING9_TIMEOUT] = 0x50,
246 [DMA_RING10_TIMEOUT] = 0x54,
247 [DMA_RING11_TIMEOUT] = 0x58,
248 [DMA_RING12_TIMEOUT] = 0x5c,
249 [DMA_RING13_TIMEOUT] = 0x60,
250 [DMA_RING14_TIMEOUT] = 0x64,
251 [DMA_RING15_TIMEOUT] = 0x68,
252 [DMA_RING16_TIMEOUT] = 0x6C,
253 [DMA_INDEX2RING_0] = 0x70,
254 [DMA_INDEX2RING_1] = 0x74,
255 [DMA_INDEX2RING_2] = 0x78,
256 [DMA_INDEX2RING_3] = 0x7C,
257 [DMA_INDEX2RING_4] = 0x80,
258 [DMA_INDEX2RING_5] = 0x84,
259 [DMA_INDEX2RING_6] = 0x88,
260 [DMA_INDEX2RING_7] = 0x8C,
261 };
262
263 static const u8 bcmgenet_dma_regs_v2[] = {
264 [DMA_RING_CFG] = 0x00,
265 [DMA_CTRL] = 0x04,
266 [DMA_STATUS] = 0x08,
267 [DMA_SCB_BURST_SIZE] = 0x0C,
268 [DMA_ARB_CTRL] = 0x30,
269 [DMA_PRIORITY_0] = 0x34,
270 [DMA_PRIORITY_1] = 0x38,
271 [DMA_PRIORITY_2] = 0x3C,
272 [DMA_RING0_TIMEOUT] = 0x2C,
273 [DMA_RING1_TIMEOUT] = 0x30,
274 [DMA_RING2_TIMEOUT] = 0x34,
275 [DMA_RING3_TIMEOUT] = 0x38,
276 [DMA_RING4_TIMEOUT] = 0x3c,
277 [DMA_RING5_TIMEOUT] = 0x40,
278 [DMA_RING6_TIMEOUT] = 0x44,
279 [DMA_RING7_TIMEOUT] = 0x48,
280 [DMA_RING8_TIMEOUT] = 0x4c,
281 [DMA_RING9_TIMEOUT] = 0x50,
282 [DMA_RING10_TIMEOUT] = 0x54,
283 [DMA_RING11_TIMEOUT] = 0x58,
284 [DMA_RING12_TIMEOUT] = 0x5c,
285 [DMA_RING13_TIMEOUT] = 0x60,
286 [DMA_RING14_TIMEOUT] = 0x64,
287 [DMA_RING15_TIMEOUT] = 0x68,
288 [DMA_RING16_TIMEOUT] = 0x6C,
289 };
290
291 static const u8 bcmgenet_dma_regs_v1[] = {
292 [DMA_CTRL] = 0x00,
293 [DMA_STATUS] = 0x04,
294 [DMA_SCB_BURST_SIZE] = 0x0C,
295 [DMA_ARB_CTRL] = 0x30,
296 [DMA_PRIORITY_0] = 0x34,
297 [DMA_PRIORITY_1] = 0x38,
298 [DMA_PRIORITY_2] = 0x3C,
299 [DMA_RING0_TIMEOUT] = 0x2C,
300 [DMA_RING1_TIMEOUT] = 0x30,
301 [DMA_RING2_TIMEOUT] = 0x34,
302 [DMA_RING3_TIMEOUT] = 0x38,
303 [DMA_RING4_TIMEOUT] = 0x3c,
304 [DMA_RING5_TIMEOUT] = 0x40,
305 [DMA_RING6_TIMEOUT] = 0x44,
306 [DMA_RING7_TIMEOUT] = 0x48,
307 [DMA_RING8_TIMEOUT] = 0x4c,
308 [DMA_RING9_TIMEOUT] = 0x50,
309 [DMA_RING10_TIMEOUT] = 0x54,
310 [DMA_RING11_TIMEOUT] = 0x58,
311 [DMA_RING12_TIMEOUT] = 0x5c,
312 [DMA_RING13_TIMEOUT] = 0x60,
313 [DMA_RING14_TIMEOUT] = 0x64,
314 [DMA_RING15_TIMEOUT] = 0x68,
315 [DMA_RING16_TIMEOUT] = 0x6C,
316 };
317
318 /* Set at runtime once bcmgenet version is known */
319 static const u8 *bcmgenet_dma_regs;
320
321 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
322 {
323 return netdev_priv(dev_get_drvdata(dev));
324 }
325
326 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
327 enum dma_reg r)
328 {
329 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
330 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
331 }
332
333 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
334 u32 val, enum dma_reg r)
335 {
336 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
337 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
338 }
339
340 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
341 enum dma_reg r)
342 {
343 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
344 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
345 }
346
347 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
348 u32 val, enum dma_reg r)
349 {
350 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
351 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
352 }
353
354 /* RDMA/TDMA ring registers and accessors
355 * we merge the common fields and just prefix with T/D the registers
356 * having different meaning depending on the direction
357 */
358 enum dma_ring_reg {
359 TDMA_READ_PTR = 0,
360 RDMA_WRITE_PTR = TDMA_READ_PTR,
361 TDMA_READ_PTR_HI,
362 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
363 TDMA_CONS_INDEX,
364 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
365 TDMA_PROD_INDEX,
366 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
367 DMA_RING_BUF_SIZE,
368 DMA_START_ADDR,
369 DMA_START_ADDR_HI,
370 DMA_END_ADDR,
371 DMA_END_ADDR_HI,
372 DMA_MBUF_DONE_THRESH,
373 TDMA_FLOW_PERIOD,
374 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
375 TDMA_WRITE_PTR,
376 RDMA_READ_PTR = TDMA_WRITE_PTR,
377 TDMA_WRITE_PTR_HI,
378 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
379 };
380
381 /* GENET v4 supports 40-bits pointer addressing
382 * for obvious reasons the LO and HI word parts
383 * are contiguous, but this offsets the other
384 * registers.
385 */
386 static const u8 genet_dma_ring_regs_v4[] = {
387 [TDMA_READ_PTR] = 0x00,
388 [TDMA_READ_PTR_HI] = 0x04,
389 [TDMA_CONS_INDEX] = 0x08,
390 [TDMA_PROD_INDEX] = 0x0C,
391 [DMA_RING_BUF_SIZE] = 0x10,
392 [DMA_START_ADDR] = 0x14,
393 [DMA_START_ADDR_HI] = 0x18,
394 [DMA_END_ADDR] = 0x1C,
395 [DMA_END_ADDR_HI] = 0x20,
396 [DMA_MBUF_DONE_THRESH] = 0x24,
397 [TDMA_FLOW_PERIOD] = 0x28,
398 [TDMA_WRITE_PTR] = 0x2C,
399 [TDMA_WRITE_PTR_HI] = 0x30,
400 };
401
402 static const u8 genet_dma_ring_regs_v123[] = {
403 [TDMA_READ_PTR] = 0x00,
404 [TDMA_CONS_INDEX] = 0x04,
405 [TDMA_PROD_INDEX] = 0x08,
406 [DMA_RING_BUF_SIZE] = 0x0C,
407 [DMA_START_ADDR] = 0x10,
408 [DMA_END_ADDR] = 0x14,
409 [DMA_MBUF_DONE_THRESH] = 0x18,
410 [TDMA_FLOW_PERIOD] = 0x1C,
411 [TDMA_WRITE_PTR] = 0x20,
412 };
413
414 /* Set at runtime once GENET version is known */
415 static const u8 *genet_dma_ring_regs;
416
417 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
418 unsigned int ring,
419 enum dma_ring_reg r)
420 {
421 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
422 (DMA_RING_SIZE * ring) +
423 genet_dma_ring_regs[r]);
424 }
425
426 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
427 unsigned int ring, u32 val,
428 enum dma_ring_reg r)
429 {
430 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
431 (DMA_RING_SIZE * ring) +
432 genet_dma_ring_regs[r]);
433 }
434
435 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
436 unsigned int ring,
437 enum dma_ring_reg r)
438 {
439 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
440 (DMA_RING_SIZE * ring) +
441 genet_dma_ring_regs[r]);
442 }
443
444 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
445 unsigned int ring, u32 val,
446 enum dma_ring_reg r)
447 {
448 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
449 (DMA_RING_SIZE * ring) +
450 genet_dma_ring_regs[r]);
451 }
452
453 static int bcmgenet_get_settings(struct net_device *dev,
454 struct ethtool_cmd *cmd)
455 {
456 struct bcmgenet_priv *priv = netdev_priv(dev);
457
458 if (!netif_running(dev))
459 return -EINVAL;
460
461 if (!priv->phydev)
462 return -ENODEV;
463
464 return phy_ethtool_gset(priv->phydev, cmd);
465 }
466
467 static int bcmgenet_set_settings(struct net_device *dev,
468 struct ethtool_cmd *cmd)
469 {
470 struct bcmgenet_priv *priv = netdev_priv(dev);
471
472 if (!netif_running(dev))
473 return -EINVAL;
474
475 if (!priv->phydev)
476 return -ENODEV;
477
478 return phy_ethtool_sset(priv->phydev, cmd);
479 }
480
481 static int bcmgenet_set_rx_csum(struct net_device *dev,
482 netdev_features_t wanted)
483 {
484 struct bcmgenet_priv *priv = netdev_priv(dev);
485 u32 rbuf_chk_ctrl;
486 bool rx_csum_en;
487
488 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
489
490 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
491
492 /* enable rx checksumming */
493 if (rx_csum_en)
494 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
495 else
496 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
497 priv->desc_rxchk_en = rx_csum_en;
498
499 /* If UniMAC forwards CRC, we need to skip over it to get
500 * a valid CHK bit to be set in the per-packet status word
501 */
502 if (rx_csum_en && priv->crc_fwd_en)
503 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
504 else
505 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
506
507 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
508
509 return 0;
510 }
511
512 static int bcmgenet_set_tx_csum(struct net_device *dev,
513 netdev_features_t wanted)
514 {
515 struct bcmgenet_priv *priv = netdev_priv(dev);
516 bool desc_64b_en;
517 u32 tbuf_ctrl, rbuf_ctrl;
518
519 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
520 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
521
522 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
523
524 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
525 if (desc_64b_en) {
526 tbuf_ctrl |= RBUF_64B_EN;
527 rbuf_ctrl |= RBUF_64B_EN;
528 } else {
529 tbuf_ctrl &= ~RBUF_64B_EN;
530 rbuf_ctrl &= ~RBUF_64B_EN;
531 }
532 priv->desc_64b_en = desc_64b_en;
533
534 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
535 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
536
537 return 0;
538 }
539
540 static int bcmgenet_set_features(struct net_device *dev,
541 netdev_features_t features)
542 {
543 netdev_features_t changed = features ^ dev->features;
544 netdev_features_t wanted = dev->wanted_features;
545 int ret = 0;
546
547 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
548 ret = bcmgenet_set_tx_csum(dev, wanted);
549 if (changed & (NETIF_F_RXCSUM))
550 ret = bcmgenet_set_rx_csum(dev, wanted);
551
552 return ret;
553 }
554
555 static u32 bcmgenet_get_msglevel(struct net_device *dev)
556 {
557 struct bcmgenet_priv *priv = netdev_priv(dev);
558
559 return priv->msg_enable;
560 }
561
562 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
563 {
564 struct bcmgenet_priv *priv = netdev_priv(dev);
565
566 priv->msg_enable = level;
567 }
568
569 static int bcmgenet_get_coalesce(struct net_device *dev,
570 struct ethtool_coalesce *ec)
571 {
572 struct bcmgenet_priv *priv = netdev_priv(dev);
573
574 ec->tx_max_coalesced_frames =
575 bcmgenet_tdma_ring_readl(priv, DESC_INDEX,
576 DMA_MBUF_DONE_THRESH);
577 ec->rx_max_coalesced_frames =
578 bcmgenet_rdma_ring_readl(priv, DESC_INDEX,
579 DMA_MBUF_DONE_THRESH);
580 ec->rx_coalesce_usecs =
581 bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000;
582
583 return 0;
584 }
585
586 static int bcmgenet_set_coalesce(struct net_device *dev,
587 struct ethtool_coalesce *ec)
588 {
589 struct bcmgenet_priv *priv = netdev_priv(dev);
590 unsigned int i;
591 u32 reg;
592
593 /* Base system clock is 125Mhz, DMA timeout is this reference clock
594 * divided by 1024, which yields roughly 8.192us, our maximum value
595 * has to fit in the DMA_TIMEOUT_MASK (16 bits)
596 */
597 if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
598 ec->tx_max_coalesced_frames == 0 ||
599 ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK ||
600 ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1)
601 return -EINVAL;
602
603 if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)
604 return -EINVAL;
605
606 /* GENET TDMA hardware does not support a configurable timeout, but will
607 * always generate an interrupt either after MBDONE packets have been
608 * transmitted, or when the ring is emtpy.
609 */
610 if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high ||
611 ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_high ||
612 ec->tx_coalesce_usecs_low)
613 return -EOPNOTSUPP;
614
615 /* Program all TX queues with the same values, as there is no
616 * ethtool knob to do coalescing on a per-queue basis
617 */
618 for (i = 0; i < priv->hw_params->tx_queues; i++)
619 bcmgenet_tdma_ring_writel(priv, i,
620 ec->tx_max_coalesced_frames,
621 DMA_MBUF_DONE_THRESH);
622 bcmgenet_tdma_ring_writel(priv, DESC_INDEX,
623 ec->tx_max_coalesced_frames,
624 DMA_MBUF_DONE_THRESH);
625
626 for (i = 0; i < priv->hw_params->rx_queues; i++) {
627 bcmgenet_rdma_ring_writel(priv, i,
628 ec->rx_max_coalesced_frames,
629 DMA_MBUF_DONE_THRESH);
630
631 reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i);
632 reg &= ~DMA_TIMEOUT_MASK;
633 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
634 bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i);
635 }
636
637 bcmgenet_rdma_ring_writel(priv, DESC_INDEX,
638 ec->rx_max_coalesced_frames,
639 DMA_MBUF_DONE_THRESH);
640
641 reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT);
642 reg &= ~DMA_TIMEOUT_MASK;
643 reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192);
644 bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT);
645
646 return 0;
647 }
648
649 /* standard ethtool support functions. */
650 enum bcmgenet_stat_type {
651 BCMGENET_STAT_NETDEV = -1,
652 BCMGENET_STAT_MIB_RX,
653 BCMGENET_STAT_MIB_TX,
654 BCMGENET_STAT_RUNT,
655 BCMGENET_STAT_MISC,
656 BCMGENET_STAT_SOFT,
657 };
658
659 struct bcmgenet_stats {
660 char stat_string[ETH_GSTRING_LEN];
661 int stat_sizeof;
662 int stat_offset;
663 enum bcmgenet_stat_type type;
664 /* reg offset from UMAC base for misc counters */
665 u16 reg_offset;
666 };
667
668 #define STAT_NETDEV(m) { \
669 .stat_string = __stringify(m), \
670 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
671 .stat_offset = offsetof(struct net_device_stats, m), \
672 .type = BCMGENET_STAT_NETDEV, \
673 }
674
675 #define STAT_GENET_MIB(str, m, _type) { \
676 .stat_string = str, \
677 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
678 .stat_offset = offsetof(struct bcmgenet_priv, m), \
679 .type = _type, \
680 }
681
682 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
683 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
684 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
685 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
686
687 #define STAT_GENET_MISC(str, m, offset) { \
688 .stat_string = str, \
689 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
690 .stat_offset = offsetof(struct bcmgenet_priv, m), \
691 .type = BCMGENET_STAT_MISC, \
692 .reg_offset = offset, \
693 }
694
695
696 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
697 * between the end of TX stats and the beginning of the RX RUNT
698 */
699 #define BCMGENET_STAT_OFFSET 0xc
700
701 /* Hardware counters must be kept in sync because the order/offset
702 * is important here (order in structure declaration = order in hardware)
703 */
704 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
705 /* general stats */
706 STAT_NETDEV(rx_packets),
707 STAT_NETDEV(tx_packets),
708 STAT_NETDEV(rx_bytes),
709 STAT_NETDEV(tx_bytes),
710 STAT_NETDEV(rx_errors),
711 STAT_NETDEV(tx_errors),
712 STAT_NETDEV(rx_dropped),
713 STAT_NETDEV(tx_dropped),
714 STAT_NETDEV(multicast),
715 /* UniMAC RSV counters */
716 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
717 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
718 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
719 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
720 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
721 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
722 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
723 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
724 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
725 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
726 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
727 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
728 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
729 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
730 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
731 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
732 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
733 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
734 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
735 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
736 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
737 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
738 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
739 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
740 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
741 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
742 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
743 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
744 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
745 /* UniMAC TSV counters */
746 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
747 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
748 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
749 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
750 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
751 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
752 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
753 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
754 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
755 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
756 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
757 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
758 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
759 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
760 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
761 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
762 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
763 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
764 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
765 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
766 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
767 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
768 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
769 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
770 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
771 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
772 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
773 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
774 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
775 /* UniMAC RUNT counters */
776 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
777 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
778 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
779 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
780 /* Misc UniMAC counters */
781 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
782 UMAC_RBUF_OVFL_CNT),
783 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
784 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
785 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
786 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
787 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
788 };
789
790 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
791
792 static void bcmgenet_get_drvinfo(struct net_device *dev,
793 struct ethtool_drvinfo *info)
794 {
795 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
796 strlcpy(info->version, "v2.0", sizeof(info->version));
797 info->n_stats = BCMGENET_STATS_LEN;
798 }
799
800 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
801 {
802 switch (string_set) {
803 case ETH_SS_STATS:
804 return BCMGENET_STATS_LEN;
805 default:
806 return -EOPNOTSUPP;
807 }
808 }
809
810 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
811 u8 *data)
812 {
813 int i;
814
815 switch (stringset) {
816 case ETH_SS_STATS:
817 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
818 memcpy(data + i * ETH_GSTRING_LEN,
819 bcmgenet_gstrings_stats[i].stat_string,
820 ETH_GSTRING_LEN);
821 }
822 break;
823 }
824 }
825
826 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
827 {
828 int i, j = 0;
829
830 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
831 const struct bcmgenet_stats *s;
832 u8 offset = 0;
833 u32 val = 0;
834 char *p;
835
836 s = &bcmgenet_gstrings_stats[i];
837 switch (s->type) {
838 case BCMGENET_STAT_NETDEV:
839 case BCMGENET_STAT_SOFT:
840 continue;
841 case BCMGENET_STAT_MIB_RX:
842 case BCMGENET_STAT_MIB_TX:
843 case BCMGENET_STAT_RUNT:
844 if (s->type != BCMGENET_STAT_MIB_RX)
845 offset = BCMGENET_STAT_OFFSET;
846 val = bcmgenet_umac_readl(priv,
847 UMAC_MIB_START + j + offset);
848 break;
849 case BCMGENET_STAT_MISC:
850 val = bcmgenet_umac_readl(priv, s->reg_offset);
851 /* clear if overflowed */
852 if (val == ~0)
853 bcmgenet_umac_writel(priv, 0, s->reg_offset);
854 break;
855 }
856
857 j += s->stat_sizeof;
858 p = (char *)priv + s->stat_offset;
859 *(u32 *)p = val;
860 }
861 }
862
863 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
864 struct ethtool_stats *stats,
865 u64 *data)
866 {
867 struct bcmgenet_priv *priv = netdev_priv(dev);
868 int i;
869
870 if (netif_running(dev))
871 bcmgenet_update_mib_counters(priv);
872
873 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
874 const struct bcmgenet_stats *s;
875 char *p;
876
877 s = &bcmgenet_gstrings_stats[i];
878 if (s->type == BCMGENET_STAT_NETDEV)
879 p = (char *)&dev->stats;
880 else
881 p = (char *)priv;
882 p += s->stat_offset;
883 data[i] = *(u32 *)p;
884 }
885 }
886
887 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
888 {
889 struct bcmgenet_priv *priv = netdev_priv(dev);
890 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
891 u32 reg;
892
893 if (enable && !priv->clk_eee_enabled) {
894 clk_prepare_enable(priv->clk_eee);
895 priv->clk_eee_enabled = true;
896 }
897
898 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
899 if (enable)
900 reg |= EEE_EN;
901 else
902 reg &= ~EEE_EN;
903 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
904
905 /* Enable EEE and switch to a 27Mhz clock automatically */
906 reg = __raw_readl(priv->base + off);
907 if (enable)
908 reg |= TBUF_EEE_EN | TBUF_PM_EN;
909 else
910 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
911 __raw_writel(reg, priv->base + off);
912
913 /* Do the same for thing for RBUF */
914 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
915 if (enable)
916 reg |= RBUF_EEE_EN | RBUF_PM_EN;
917 else
918 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
919 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
920
921 if (!enable && priv->clk_eee_enabled) {
922 clk_disable_unprepare(priv->clk_eee);
923 priv->clk_eee_enabled = false;
924 }
925
926 priv->eee.eee_enabled = enable;
927 priv->eee.eee_active = enable;
928 }
929
930 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
931 {
932 struct bcmgenet_priv *priv = netdev_priv(dev);
933 struct ethtool_eee *p = &priv->eee;
934
935 if (GENET_IS_V1(priv))
936 return -EOPNOTSUPP;
937
938 e->eee_enabled = p->eee_enabled;
939 e->eee_active = p->eee_active;
940 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
941
942 return phy_ethtool_get_eee(priv->phydev, e);
943 }
944
945 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
946 {
947 struct bcmgenet_priv *priv = netdev_priv(dev);
948 struct ethtool_eee *p = &priv->eee;
949 int ret = 0;
950
951 if (GENET_IS_V1(priv))
952 return -EOPNOTSUPP;
953
954 p->eee_enabled = e->eee_enabled;
955
956 if (!p->eee_enabled) {
957 bcmgenet_eee_enable_set(dev, false);
958 } else {
959 ret = phy_init_eee(priv->phydev, 0);
960 if (ret) {
961 netif_err(priv, hw, dev, "EEE initialization failed\n");
962 return ret;
963 }
964
965 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
966 bcmgenet_eee_enable_set(dev, true);
967 }
968
969 return phy_ethtool_set_eee(priv->phydev, e);
970 }
971
972 static int bcmgenet_nway_reset(struct net_device *dev)
973 {
974 struct bcmgenet_priv *priv = netdev_priv(dev);
975
976 return genphy_restart_aneg(priv->phydev);
977 }
978
979 /* standard ethtool support functions. */
980 static struct ethtool_ops bcmgenet_ethtool_ops = {
981 .get_strings = bcmgenet_get_strings,
982 .get_sset_count = bcmgenet_get_sset_count,
983 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
984 .get_settings = bcmgenet_get_settings,
985 .set_settings = bcmgenet_set_settings,
986 .get_drvinfo = bcmgenet_get_drvinfo,
987 .get_link = ethtool_op_get_link,
988 .get_msglevel = bcmgenet_get_msglevel,
989 .set_msglevel = bcmgenet_set_msglevel,
990 .get_wol = bcmgenet_get_wol,
991 .set_wol = bcmgenet_set_wol,
992 .get_eee = bcmgenet_get_eee,
993 .set_eee = bcmgenet_set_eee,
994 .nway_reset = bcmgenet_nway_reset,
995 .get_coalesce = bcmgenet_get_coalesce,
996 .set_coalesce = bcmgenet_set_coalesce,
997 };
998
999 /* Power down the unimac, based on mode. */
1000 static int bcmgenet_power_down(struct bcmgenet_priv *priv,
1001 enum bcmgenet_power_mode mode)
1002 {
1003 int ret = 0;
1004 u32 reg;
1005
1006 switch (mode) {
1007 case GENET_POWER_CABLE_SENSE:
1008 phy_detach(priv->phydev);
1009 break;
1010
1011 case GENET_POWER_WOL_MAGIC:
1012 ret = bcmgenet_wol_power_down_cfg(priv, mode);
1013 break;
1014
1015 case GENET_POWER_PASSIVE:
1016 /* Power down LED */
1017 if (priv->hw_params->flags & GENET_HAS_EXT) {
1018 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1019 reg |= (EXT_PWR_DOWN_PHY |
1020 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
1021 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1022
1023 bcmgenet_phy_power_set(priv->dev, false);
1024 }
1025 break;
1026 default:
1027 break;
1028 }
1029
1030 return 0;
1031 }
1032
1033 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
1034 enum bcmgenet_power_mode mode)
1035 {
1036 u32 reg;
1037
1038 if (!(priv->hw_params->flags & GENET_HAS_EXT))
1039 return;
1040
1041 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
1042
1043 switch (mode) {
1044 case GENET_POWER_PASSIVE:
1045 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
1046 EXT_PWR_DOWN_BIAS);
1047 /* fallthrough */
1048 case GENET_POWER_CABLE_SENSE:
1049 /* enable APD */
1050 reg |= EXT_PWR_DN_EN_LD;
1051 break;
1052 case GENET_POWER_WOL_MAGIC:
1053 bcmgenet_wol_power_up_cfg(priv, mode);
1054 return;
1055 default:
1056 break;
1057 }
1058
1059 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
1060 if (mode == GENET_POWER_PASSIVE)
1061 bcmgenet_phy_power_set(priv->dev, true);
1062 }
1063
1064 /* ioctl handle special commands that are not present in ethtool. */
1065 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1066 {
1067 struct bcmgenet_priv *priv = netdev_priv(dev);
1068 int val = 0;
1069
1070 if (!netif_running(dev))
1071 return -EINVAL;
1072
1073 switch (cmd) {
1074 case SIOCGMIIPHY:
1075 case SIOCGMIIREG:
1076 case SIOCSMIIREG:
1077 if (!priv->phydev)
1078 val = -ENODEV;
1079 else
1080 val = phy_mii_ioctl(priv->phydev, rq, cmd);
1081 break;
1082
1083 default:
1084 val = -EINVAL;
1085 break;
1086 }
1087
1088 return val;
1089 }
1090
1091 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
1092 struct bcmgenet_tx_ring *ring)
1093 {
1094 struct enet_cb *tx_cb_ptr;
1095
1096 tx_cb_ptr = ring->cbs;
1097 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
1098
1099 /* Advancing local write pointer */
1100 if (ring->write_ptr == ring->end_ptr)
1101 ring->write_ptr = ring->cb_ptr;
1102 else
1103 ring->write_ptr++;
1104
1105 return tx_cb_ptr;
1106 }
1107
1108 /* Simple helper to free a control block's resources */
1109 static void bcmgenet_free_cb(struct enet_cb *cb)
1110 {
1111 dev_kfree_skb_any(cb->skb);
1112 cb->skb = NULL;
1113 dma_unmap_addr_set(cb, dma_addr, 0);
1114 }
1115
1116 static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring)
1117 {
1118 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1119 INTRL2_CPU_MASK_SET);
1120 }
1121
1122 static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring)
1123 {
1124 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE,
1125 INTRL2_CPU_MASK_CLEAR);
1126 }
1127
1128 static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring)
1129 {
1130 bcmgenet_intrl2_1_writel(ring->priv,
1131 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1132 INTRL2_CPU_MASK_SET);
1133 }
1134
1135 static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring)
1136 {
1137 bcmgenet_intrl2_1_writel(ring->priv,
1138 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index),
1139 INTRL2_CPU_MASK_CLEAR);
1140 }
1141
1142 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring)
1143 {
1144 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1145 INTRL2_CPU_MASK_SET);
1146 }
1147
1148 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring)
1149 {
1150 bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE,
1151 INTRL2_CPU_MASK_CLEAR);
1152 }
1153
1154 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring)
1155 {
1156 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1157 INTRL2_CPU_MASK_CLEAR);
1158 }
1159
1160 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring)
1161 {
1162 bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index,
1163 INTRL2_CPU_MASK_SET);
1164 }
1165
1166 /* Unlocked version of the reclaim routine */
1167 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
1168 struct bcmgenet_tx_ring *ring)
1169 {
1170 struct bcmgenet_priv *priv = netdev_priv(dev);
1171 struct enet_cb *tx_cb_ptr;
1172 struct netdev_queue *txq;
1173 unsigned int pkts_compl = 0;
1174 unsigned int c_index;
1175 unsigned int txbds_ready;
1176 unsigned int txbds_processed = 0;
1177
1178 /* Compute how many buffers are transmitted since last xmit call */
1179 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
1180 c_index &= DMA_C_INDEX_MASK;
1181
1182 if (likely(c_index >= ring->c_index))
1183 txbds_ready = c_index - ring->c_index;
1184 else
1185 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
1186
1187 netif_dbg(priv, tx_done, dev,
1188 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1189 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1190
1191 /* Reclaim transmitted buffers */
1192 while (txbds_processed < txbds_ready) {
1193 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1194 if (tx_cb_ptr->skb) {
1195 pkts_compl++;
1196 dev->stats.tx_packets++;
1197 dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1198 dma_unmap_single(&dev->dev,
1199 dma_unmap_addr(tx_cb_ptr, dma_addr),
1200 tx_cb_ptr->skb->len,
1201 DMA_TO_DEVICE);
1202 bcmgenet_free_cb(tx_cb_ptr);
1203 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1204 dev->stats.tx_bytes +=
1205 dma_unmap_len(tx_cb_ptr, dma_len);
1206 dma_unmap_page(&dev->dev,
1207 dma_unmap_addr(tx_cb_ptr, dma_addr),
1208 dma_unmap_len(tx_cb_ptr, dma_len),
1209 DMA_TO_DEVICE);
1210 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1211 }
1212
1213 txbds_processed++;
1214 if (likely(ring->clean_ptr < ring->end_ptr))
1215 ring->clean_ptr++;
1216 else
1217 ring->clean_ptr = ring->cb_ptr;
1218 }
1219
1220 ring->free_bds += txbds_processed;
1221 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1222
1223 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1224 txq = netdev_get_tx_queue(dev, ring->queue);
1225 if (netif_tx_queue_stopped(txq))
1226 netif_tx_wake_queue(txq);
1227 }
1228
1229 return pkts_compl;
1230 }
1231
1232 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1233 struct bcmgenet_tx_ring *ring)
1234 {
1235 unsigned int released;
1236 unsigned long flags;
1237
1238 spin_lock_irqsave(&ring->lock, flags);
1239 released = __bcmgenet_tx_reclaim(dev, ring);
1240 spin_unlock_irqrestore(&ring->lock, flags);
1241
1242 return released;
1243 }
1244
1245 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1246 {
1247 struct bcmgenet_tx_ring *ring =
1248 container_of(napi, struct bcmgenet_tx_ring, napi);
1249 unsigned int work_done = 0;
1250
1251 work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1252
1253 if (work_done == 0) {
1254 napi_complete(napi);
1255 ring->int_enable(ring);
1256
1257 return 0;
1258 }
1259
1260 return budget;
1261 }
1262
1263 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1264 {
1265 struct bcmgenet_priv *priv = netdev_priv(dev);
1266 int i;
1267
1268 if (netif_is_multiqueue(dev)) {
1269 for (i = 0; i < priv->hw_params->tx_queues; i++)
1270 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1271 }
1272
1273 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1274 }
1275
1276 /* Transmits a single SKB (either head of a fragment or a single SKB)
1277 * caller must hold priv->lock
1278 */
1279 static int bcmgenet_xmit_single(struct net_device *dev,
1280 struct sk_buff *skb,
1281 u16 dma_desc_flags,
1282 struct bcmgenet_tx_ring *ring)
1283 {
1284 struct bcmgenet_priv *priv = netdev_priv(dev);
1285 struct device *kdev = &priv->pdev->dev;
1286 struct enet_cb *tx_cb_ptr;
1287 unsigned int skb_len;
1288 dma_addr_t mapping;
1289 u32 length_status;
1290 int ret;
1291
1292 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1293
1294 if (unlikely(!tx_cb_ptr))
1295 BUG();
1296
1297 tx_cb_ptr->skb = skb;
1298
1299 skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1300
1301 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1302 ret = dma_mapping_error(kdev, mapping);
1303 if (ret) {
1304 priv->mib.tx_dma_failed++;
1305 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1306 dev_kfree_skb(skb);
1307 return ret;
1308 }
1309
1310 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1311 dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1312 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1313 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1314 DMA_TX_APPEND_CRC;
1315
1316 if (skb->ip_summed == CHECKSUM_PARTIAL)
1317 length_status |= DMA_TX_DO_CSUM;
1318
1319 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1320
1321 return 0;
1322 }
1323
1324 /* Transmit a SKB fragment */
1325 static int bcmgenet_xmit_frag(struct net_device *dev,
1326 skb_frag_t *frag,
1327 u16 dma_desc_flags,
1328 struct bcmgenet_tx_ring *ring)
1329 {
1330 struct bcmgenet_priv *priv = netdev_priv(dev);
1331 struct device *kdev = &priv->pdev->dev;
1332 struct enet_cb *tx_cb_ptr;
1333 dma_addr_t mapping;
1334 int ret;
1335
1336 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1337
1338 if (unlikely(!tx_cb_ptr))
1339 BUG();
1340 tx_cb_ptr->skb = NULL;
1341
1342 mapping = skb_frag_dma_map(kdev, frag, 0,
1343 skb_frag_size(frag), DMA_TO_DEVICE);
1344 ret = dma_mapping_error(kdev, mapping);
1345 if (ret) {
1346 priv->mib.tx_dma_failed++;
1347 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1348 __func__);
1349 return ret;
1350 }
1351
1352 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1353 dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1354
1355 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1356 (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1357 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1358
1359 return 0;
1360 }
1361
1362 /* Reallocate the SKB to put enough headroom in front of it and insert
1363 * the transmit checksum offsets in the descriptors
1364 */
1365 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1366 struct sk_buff *skb)
1367 {
1368 struct status_64 *status = NULL;
1369 struct sk_buff *new_skb;
1370 u16 offset;
1371 u8 ip_proto;
1372 u16 ip_ver;
1373 u32 tx_csum_info;
1374
1375 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1376 /* If 64 byte status block enabled, must make sure skb has
1377 * enough headroom for us to insert 64B status block.
1378 */
1379 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1380 dev_kfree_skb(skb);
1381 if (!new_skb) {
1382 dev->stats.tx_dropped++;
1383 return NULL;
1384 }
1385 skb = new_skb;
1386 }
1387
1388 skb_push(skb, sizeof(*status));
1389 status = (struct status_64 *)skb->data;
1390
1391 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1392 ip_ver = htons(skb->protocol);
1393 switch (ip_ver) {
1394 case ETH_P_IP:
1395 ip_proto = ip_hdr(skb)->protocol;
1396 break;
1397 case ETH_P_IPV6:
1398 ip_proto = ipv6_hdr(skb)->nexthdr;
1399 break;
1400 default:
1401 return skb;
1402 }
1403
1404 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1405 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1406 (offset + skb->csum_offset);
1407
1408 /* Set the length valid bit for TCP and UDP and just set
1409 * the special UDP flag for IPv4, else just set to 0.
1410 */
1411 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1412 tx_csum_info |= STATUS_TX_CSUM_LV;
1413 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1414 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1415 } else {
1416 tx_csum_info = 0;
1417 }
1418
1419 status->tx_csum_info = tx_csum_info;
1420 }
1421
1422 return skb;
1423 }
1424
1425 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1426 {
1427 struct bcmgenet_priv *priv = netdev_priv(dev);
1428 struct bcmgenet_tx_ring *ring = NULL;
1429 struct netdev_queue *txq;
1430 unsigned long flags = 0;
1431 int nr_frags, index;
1432 u16 dma_desc_flags;
1433 int ret;
1434 int i;
1435
1436 index = skb_get_queue_mapping(skb);
1437 /* Mapping strategy:
1438 * queue_mapping = 0, unclassified, packet xmited through ring16
1439 * queue_mapping = 1, goes to ring 0. (highest priority queue
1440 * queue_mapping = 2, goes to ring 1.
1441 * queue_mapping = 3, goes to ring 2.
1442 * queue_mapping = 4, goes to ring 3.
1443 */
1444 if (index == 0)
1445 index = DESC_INDEX;
1446 else
1447 index -= 1;
1448
1449 nr_frags = skb_shinfo(skb)->nr_frags;
1450 ring = &priv->tx_rings[index];
1451 txq = netdev_get_tx_queue(dev, ring->queue);
1452
1453 spin_lock_irqsave(&ring->lock, flags);
1454 if (ring->free_bds <= nr_frags + 1) {
1455 netif_tx_stop_queue(txq);
1456 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1457 __func__, index, ring->queue);
1458 ret = NETDEV_TX_BUSY;
1459 goto out;
1460 }
1461
1462 if (skb_padto(skb, ETH_ZLEN)) {
1463 ret = NETDEV_TX_OK;
1464 goto out;
1465 }
1466
1467 /* set the SKB transmit checksum */
1468 if (priv->desc_64b_en) {
1469 skb = bcmgenet_put_tx_csum(dev, skb);
1470 if (!skb) {
1471 ret = NETDEV_TX_OK;
1472 goto out;
1473 }
1474 }
1475
1476 dma_desc_flags = DMA_SOP;
1477 if (nr_frags == 0)
1478 dma_desc_flags |= DMA_EOP;
1479
1480 /* Transmit single SKB or head of fragment list */
1481 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1482 if (ret) {
1483 ret = NETDEV_TX_OK;
1484 goto out;
1485 }
1486
1487 /* xmit fragment */
1488 for (i = 0; i < nr_frags; i++) {
1489 ret = bcmgenet_xmit_frag(dev,
1490 &skb_shinfo(skb)->frags[i],
1491 (i == nr_frags - 1) ? DMA_EOP : 0,
1492 ring);
1493 if (ret) {
1494 ret = NETDEV_TX_OK;
1495 goto out;
1496 }
1497 }
1498
1499 skb_tx_timestamp(skb);
1500
1501 /* Decrement total BD count and advance our write pointer */
1502 ring->free_bds -= nr_frags + 1;
1503 ring->prod_index += nr_frags + 1;
1504 ring->prod_index &= DMA_P_INDEX_MASK;
1505
1506 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1507 netif_tx_stop_queue(txq);
1508
1509 if (!skb->xmit_more || netif_xmit_stopped(txq))
1510 /* Packets are ready, update producer index */
1511 bcmgenet_tdma_ring_writel(priv, ring->index,
1512 ring->prod_index, TDMA_PROD_INDEX);
1513 out:
1514 spin_unlock_irqrestore(&ring->lock, flags);
1515
1516 return ret;
1517 }
1518
1519 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1520 struct enet_cb *cb)
1521 {
1522 struct device *kdev = &priv->pdev->dev;
1523 struct sk_buff *skb;
1524 struct sk_buff *rx_skb;
1525 dma_addr_t mapping;
1526
1527 /* Allocate a new Rx skb */
1528 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1529 if (!skb) {
1530 priv->mib.alloc_rx_buff_failed++;
1531 netif_err(priv, rx_err, priv->dev,
1532 "%s: Rx skb allocation failed\n", __func__);
1533 return NULL;
1534 }
1535
1536 /* DMA-map the new Rx skb */
1537 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1538 DMA_FROM_DEVICE);
1539 if (dma_mapping_error(kdev, mapping)) {
1540 priv->mib.rx_dma_failed++;
1541 dev_kfree_skb_any(skb);
1542 netif_err(priv, rx_err, priv->dev,
1543 "%s: Rx skb DMA mapping failed\n", __func__);
1544 return NULL;
1545 }
1546
1547 /* Grab the current Rx skb from the ring and DMA-unmap it */
1548 rx_skb = cb->skb;
1549 if (likely(rx_skb))
1550 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1551 priv->rx_buf_len, DMA_FROM_DEVICE);
1552
1553 /* Put the new Rx skb on the ring */
1554 cb->skb = skb;
1555 dma_unmap_addr_set(cb, dma_addr, mapping);
1556 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1557
1558 /* Return the current Rx skb to caller */
1559 return rx_skb;
1560 }
1561
1562 /* bcmgenet_desc_rx - descriptor based rx process.
1563 * this could be called from bottom half, or from NAPI polling method.
1564 */
1565 static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring,
1566 unsigned int budget)
1567 {
1568 struct bcmgenet_priv *priv = ring->priv;
1569 struct net_device *dev = priv->dev;
1570 struct enet_cb *cb;
1571 struct sk_buff *skb;
1572 u32 dma_length_status;
1573 unsigned long dma_flag;
1574 int len;
1575 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1576 unsigned int p_index;
1577 unsigned int discards;
1578 unsigned int chksum_ok = 0;
1579
1580 p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX);
1581
1582 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1583 DMA_P_INDEX_DISCARD_CNT_MASK;
1584 if (discards > ring->old_discards) {
1585 discards = discards - ring->old_discards;
1586 dev->stats.rx_missed_errors += discards;
1587 dev->stats.rx_errors += discards;
1588 ring->old_discards += discards;
1589
1590 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1591 if (ring->old_discards >= 0xC000) {
1592 ring->old_discards = 0;
1593 bcmgenet_rdma_ring_writel(priv, ring->index, 0,
1594 RDMA_PROD_INDEX);
1595 }
1596 }
1597
1598 p_index &= DMA_P_INDEX_MASK;
1599
1600 if (likely(p_index >= ring->c_index))
1601 rxpkttoprocess = p_index - ring->c_index;
1602 else
1603 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1604 p_index;
1605
1606 netif_dbg(priv, rx_status, dev,
1607 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1608
1609 while ((rxpktprocessed < rxpkttoprocess) &&
1610 (rxpktprocessed < budget)) {
1611 cb = &priv->rx_cbs[ring->read_ptr];
1612 skb = bcmgenet_rx_refill(priv, cb);
1613
1614 if (unlikely(!skb)) {
1615 dev->stats.rx_dropped++;
1616 goto next;
1617 }
1618
1619 if (!priv->desc_64b_en) {
1620 dma_length_status =
1621 dmadesc_get_length_status(priv, cb->bd_addr);
1622 } else {
1623 struct status_64 *status;
1624
1625 status = (struct status_64 *)skb->data;
1626 dma_length_status = status->length_status;
1627 }
1628
1629 /* DMA flags and length are still valid no matter how
1630 * we got the Receive Status Vector (64B RSB or register)
1631 */
1632 dma_flag = dma_length_status & 0xffff;
1633 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1634
1635 netif_dbg(priv, rx_status, dev,
1636 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1637 __func__, p_index, ring->c_index,
1638 ring->read_ptr, dma_length_status);
1639
1640 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1641 netif_err(priv, rx_status, dev,
1642 "dropping fragmented packet!\n");
1643 dev->stats.rx_errors++;
1644 dev_kfree_skb_any(skb);
1645 goto next;
1646 }
1647
1648 /* report errors */
1649 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1650 DMA_RX_OV |
1651 DMA_RX_NO |
1652 DMA_RX_LG |
1653 DMA_RX_RXER))) {
1654 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1655 (unsigned int)dma_flag);
1656 if (dma_flag & DMA_RX_CRC_ERROR)
1657 dev->stats.rx_crc_errors++;
1658 if (dma_flag & DMA_RX_OV)
1659 dev->stats.rx_over_errors++;
1660 if (dma_flag & DMA_RX_NO)
1661 dev->stats.rx_frame_errors++;
1662 if (dma_flag & DMA_RX_LG)
1663 dev->stats.rx_length_errors++;
1664 dev->stats.rx_errors++;
1665 dev_kfree_skb_any(skb);
1666 goto next;
1667 } /* error packet */
1668
1669 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1670 priv->desc_rxchk_en;
1671
1672 skb_put(skb, len);
1673 if (priv->desc_64b_en) {
1674 skb_pull(skb, 64);
1675 len -= 64;
1676 }
1677
1678 if (likely(chksum_ok))
1679 skb->ip_summed = CHECKSUM_UNNECESSARY;
1680
1681 /* remove hardware 2bytes added for IP alignment */
1682 skb_pull(skb, 2);
1683 len -= 2;
1684
1685 if (priv->crc_fwd_en) {
1686 skb_trim(skb, len - ETH_FCS_LEN);
1687 len -= ETH_FCS_LEN;
1688 }
1689
1690 /*Finish setting up the received SKB and send it to the kernel*/
1691 skb->protocol = eth_type_trans(skb, priv->dev);
1692 dev->stats.rx_packets++;
1693 dev->stats.rx_bytes += len;
1694 if (dma_flag & DMA_RX_MULT)
1695 dev->stats.multicast++;
1696
1697 /* Notify kernel */
1698 napi_gro_receive(&ring->napi, skb);
1699 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1700
1701 next:
1702 rxpktprocessed++;
1703 if (likely(ring->read_ptr < ring->end_ptr))
1704 ring->read_ptr++;
1705 else
1706 ring->read_ptr = ring->cb_ptr;
1707
1708 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1709 bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX);
1710 }
1711
1712 return rxpktprocessed;
1713 }
1714
1715 /* Rx NAPI polling method */
1716 static int bcmgenet_rx_poll(struct napi_struct *napi, int budget)
1717 {
1718 struct bcmgenet_rx_ring *ring = container_of(napi,
1719 struct bcmgenet_rx_ring, napi);
1720 unsigned int work_done;
1721
1722 work_done = bcmgenet_desc_rx(ring, budget);
1723
1724 if (work_done < budget) {
1725 napi_complete(napi);
1726 ring->int_enable(ring);
1727 }
1728
1729 return work_done;
1730 }
1731
1732 /* Assign skb to RX DMA descriptor. */
1733 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1734 struct bcmgenet_rx_ring *ring)
1735 {
1736 struct enet_cb *cb;
1737 struct sk_buff *skb;
1738 int i;
1739
1740 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1741
1742 /* loop here for each buffer needing assign */
1743 for (i = 0; i < ring->size; i++) {
1744 cb = ring->cbs + i;
1745 skb = bcmgenet_rx_refill(priv, cb);
1746 if (skb)
1747 dev_kfree_skb_any(skb);
1748 if (!cb->skb)
1749 return -ENOMEM;
1750 }
1751
1752 return 0;
1753 }
1754
1755 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1756 {
1757 struct enet_cb *cb;
1758 int i;
1759
1760 for (i = 0; i < priv->num_rx_bds; i++) {
1761 cb = &priv->rx_cbs[i];
1762
1763 if (dma_unmap_addr(cb, dma_addr)) {
1764 dma_unmap_single(&priv->dev->dev,
1765 dma_unmap_addr(cb, dma_addr),
1766 priv->rx_buf_len, DMA_FROM_DEVICE);
1767 dma_unmap_addr_set(cb, dma_addr, 0);
1768 }
1769
1770 if (cb->skb)
1771 bcmgenet_free_cb(cb);
1772 }
1773 }
1774
1775 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1776 {
1777 u32 reg;
1778
1779 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1780 if (enable)
1781 reg |= mask;
1782 else
1783 reg &= ~mask;
1784 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1785
1786 /* UniMAC stops on a packet boundary, wait for a full-size packet
1787 * to be processed
1788 */
1789 if (enable == 0)
1790 usleep_range(1000, 2000);
1791 }
1792
1793 static int reset_umac(struct bcmgenet_priv *priv)
1794 {
1795 struct device *kdev = &priv->pdev->dev;
1796 unsigned int timeout = 0;
1797 u32 reg;
1798
1799 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1800 bcmgenet_rbuf_ctrl_set(priv, 0);
1801 udelay(10);
1802
1803 /* disable MAC while updating its registers */
1804 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1805
1806 /* issue soft reset, wait for it to complete */
1807 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1808 while (timeout++ < 1000) {
1809 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1810 if (!(reg & CMD_SW_RESET))
1811 return 0;
1812
1813 udelay(1);
1814 }
1815
1816 if (timeout == 1000) {
1817 dev_err(kdev,
1818 "timeout waiting for MAC to come out of reset\n");
1819 return -ETIMEDOUT;
1820 }
1821
1822 return 0;
1823 }
1824
1825 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1826 {
1827 /* Mask all interrupts.*/
1828 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1829 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1830 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1831 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1832 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1833 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1834 }
1835
1836 static int init_umac(struct bcmgenet_priv *priv)
1837 {
1838 struct device *kdev = &priv->pdev->dev;
1839 int ret;
1840 u32 reg;
1841 u32 int0_enable = 0;
1842 u32 int1_enable = 0;
1843 int i;
1844
1845 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1846
1847 ret = reset_umac(priv);
1848 if (ret)
1849 return ret;
1850
1851 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1852 /* clear tx/rx counter */
1853 bcmgenet_umac_writel(priv,
1854 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1855 UMAC_MIB_CTRL);
1856 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1857
1858 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1859
1860 /* init rx registers, enable ip header optimization */
1861 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1862 reg |= RBUF_ALIGN_2B;
1863 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1864
1865 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1866 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1867
1868 bcmgenet_intr_disable(priv);
1869
1870 /* Enable Rx default queue 16 interrupts */
1871 int0_enable |= UMAC_IRQ_RXDMA_DONE;
1872
1873 /* Enable Tx default queue 16 interrupts */
1874 int0_enable |= UMAC_IRQ_TXDMA_DONE;
1875
1876 /* Monitor cable plug/unplugged event for internal PHY */
1877 if (priv->internal_phy) {
1878 int0_enable |= UMAC_IRQ_LINK_EVENT;
1879 } else if (priv->ext_phy) {
1880 int0_enable |= UMAC_IRQ_LINK_EVENT;
1881 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1882 if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET)
1883 int0_enable |= UMAC_IRQ_LINK_EVENT;
1884
1885 reg = bcmgenet_bp_mc_get(priv);
1886 reg |= BIT(priv->hw_params->bp_in_en_shift);
1887
1888 /* bp_mask: back pressure mask */
1889 if (netif_is_multiqueue(priv->dev))
1890 reg |= priv->hw_params->bp_in_mask;
1891 else
1892 reg &= ~priv->hw_params->bp_in_mask;
1893 bcmgenet_bp_mc_set(priv, reg);
1894 }
1895
1896 /* Enable MDIO interrupts on GENET v3+ */
1897 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1898 int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
1899
1900 /* Enable Rx priority queue interrupts */
1901 for (i = 0; i < priv->hw_params->rx_queues; ++i)
1902 int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i));
1903
1904 /* Enable Tx priority queue interrupts */
1905 for (i = 0; i < priv->hw_params->tx_queues; ++i)
1906 int1_enable |= (1 << i);
1907
1908 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
1909 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
1910
1911 /* Enable rx/tx engine.*/
1912 dev_dbg(kdev, "done init umac\n");
1913
1914 return 0;
1915 }
1916
1917 /* Initialize a Tx ring along with corresponding hardware registers */
1918 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1919 unsigned int index, unsigned int size,
1920 unsigned int start_ptr, unsigned int end_ptr)
1921 {
1922 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1923 u32 words_per_bd = WORDS_PER_BD(priv);
1924 u32 flow_period_val = 0;
1925
1926 spin_lock_init(&ring->lock);
1927 ring->priv = priv;
1928 ring->index = index;
1929 if (index == DESC_INDEX) {
1930 ring->queue = 0;
1931 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1932 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1933 } else {
1934 ring->queue = index + 1;
1935 ring->int_enable = bcmgenet_tx_ring_int_enable;
1936 ring->int_disable = bcmgenet_tx_ring_int_disable;
1937 }
1938 ring->cbs = priv->tx_cbs + start_ptr;
1939 ring->size = size;
1940 ring->clean_ptr = start_ptr;
1941 ring->c_index = 0;
1942 ring->free_bds = size;
1943 ring->write_ptr = start_ptr;
1944 ring->cb_ptr = start_ptr;
1945 ring->end_ptr = end_ptr - 1;
1946 ring->prod_index = 0;
1947
1948 /* Set flow period for ring != 16 */
1949 if (index != DESC_INDEX)
1950 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1951
1952 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1953 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1954 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1955 /* Disable rate control for now */
1956 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1957 TDMA_FLOW_PERIOD);
1958 bcmgenet_tdma_ring_writel(priv, index,
1959 ((size << DMA_RING_SIZE_SHIFT) |
1960 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1961
1962 /* Set start and end address, read and write pointers */
1963 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1964 DMA_START_ADDR);
1965 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1966 TDMA_READ_PTR);
1967 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1968 TDMA_WRITE_PTR);
1969 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1970 DMA_END_ADDR);
1971 }
1972
1973 /* Initialize a RDMA ring */
1974 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1975 unsigned int index, unsigned int size,
1976 unsigned int start_ptr, unsigned int end_ptr)
1977 {
1978 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1979 u32 words_per_bd = WORDS_PER_BD(priv);
1980 int ret;
1981
1982 ring->priv = priv;
1983 ring->index = index;
1984 if (index == DESC_INDEX) {
1985 ring->int_enable = bcmgenet_rx_ring16_int_enable;
1986 ring->int_disable = bcmgenet_rx_ring16_int_disable;
1987 } else {
1988 ring->int_enable = bcmgenet_rx_ring_int_enable;
1989 ring->int_disable = bcmgenet_rx_ring_int_disable;
1990 }
1991 ring->cbs = priv->rx_cbs + start_ptr;
1992 ring->size = size;
1993 ring->c_index = 0;
1994 ring->read_ptr = start_ptr;
1995 ring->cb_ptr = start_ptr;
1996 ring->end_ptr = end_ptr - 1;
1997
1998 ret = bcmgenet_alloc_rx_buffers(priv, ring);
1999 if (ret)
2000 return ret;
2001
2002 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
2003 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
2004 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
2005 bcmgenet_rdma_ring_writel(priv, index,
2006 ((size << DMA_RING_SIZE_SHIFT) |
2007 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
2008 bcmgenet_rdma_ring_writel(priv, index,
2009 (DMA_FC_THRESH_LO <<
2010 DMA_XOFF_THRESHOLD_SHIFT) |
2011 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
2012
2013 /* Set start and end address, read and write pointers */
2014 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2015 DMA_START_ADDR);
2016 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2017 RDMA_READ_PTR);
2018 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
2019 RDMA_WRITE_PTR);
2020 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
2021 DMA_END_ADDR);
2022
2023 return ret;
2024 }
2025
2026 static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv)
2027 {
2028 unsigned int i;
2029 struct bcmgenet_tx_ring *ring;
2030
2031 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2032 ring = &priv->tx_rings[i];
2033 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2034 }
2035
2036 ring = &priv->tx_rings[DESC_INDEX];
2037 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
2038 }
2039
2040 static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv)
2041 {
2042 unsigned int i;
2043 struct bcmgenet_tx_ring *ring;
2044
2045 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2046 ring = &priv->tx_rings[i];
2047 napi_enable(&ring->napi);
2048 }
2049
2050 ring = &priv->tx_rings[DESC_INDEX];
2051 napi_enable(&ring->napi);
2052 }
2053
2054 static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv)
2055 {
2056 unsigned int i;
2057 struct bcmgenet_tx_ring *ring;
2058
2059 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2060 ring = &priv->tx_rings[i];
2061 napi_disable(&ring->napi);
2062 }
2063
2064 ring = &priv->tx_rings[DESC_INDEX];
2065 napi_disable(&ring->napi);
2066 }
2067
2068 static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv)
2069 {
2070 unsigned int i;
2071 struct bcmgenet_tx_ring *ring;
2072
2073 for (i = 0; i < priv->hw_params->tx_queues; ++i) {
2074 ring = &priv->tx_rings[i];
2075 netif_napi_del(&ring->napi);
2076 }
2077
2078 ring = &priv->tx_rings[DESC_INDEX];
2079 netif_napi_del(&ring->napi);
2080 }
2081
2082 /* Initialize Tx queues
2083 *
2084 * Queues 0-3 are priority-based, each one has 32 descriptors,
2085 * with queue 0 being the highest priority queue.
2086 *
2087 * Queue 16 is the default Tx queue with
2088 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
2089 *
2090 * The transmit control block pool is then partitioned as follows:
2091 * - Tx queue 0 uses tx_cbs[0..31]
2092 * - Tx queue 1 uses tx_cbs[32..63]
2093 * - Tx queue 2 uses tx_cbs[64..95]
2094 * - Tx queue 3 uses tx_cbs[96..127]
2095 * - Tx queue 16 uses tx_cbs[128..255]
2096 */
2097 static void bcmgenet_init_tx_queues(struct net_device *dev)
2098 {
2099 struct bcmgenet_priv *priv = netdev_priv(dev);
2100 u32 i, dma_enable;
2101 u32 dma_ctrl, ring_cfg;
2102 u32 dma_priority[3] = {0, 0, 0};
2103
2104 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
2105 dma_enable = dma_ctrl & DMA_EN;
2106 dma_ctrl &= ~DMA_EN;
2107 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2108
2109 dma_ctrl = 0;
2110 ring_cfg = 0;
2111
2112 /* Enable strict priority arbiter mode */
2113 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
2114
2115 /* Initialize Tx priority queues */
2116 for (i = 0; i < priv->hw_params->tx_queues; i++) {
2117 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
2118 i * priv->hw_params->tx_bds_per_q,
2119 (i + 1) * priv->hw_params->tx_bds_per_q);
2120 ring_cfg |= (1 << i);
2121 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2122 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
2123 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
2124 }
2125
2126 /* Initialize Tx default queue 16 */
2127 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
2128 priv->hw_params->tx_queues *
2129 priv->hw_params->tx_bds_per_q,
2130 TOTAL_DESC);
2131 ring_cfg |= (1 << DESC_INDEX);
2132 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2133 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
2134 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
2135 DMA_PRIO_REG_SHIFT(DESC_INDEX));
2136
2137 /* Set Tx queue priorities */
2138 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
2139 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
2140 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
2141
2142 /* Initialize Tx NAPI */
2143 bcmgenet_init_tx_napi(priv);
2144
2145 /* Enable Tx queues */
2146 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
2147
2148 /* Enable Tx DMA */
2149 if (dma_enable)
2150 dma_ctrl |= DMA_EN;
2151 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
2152 }
2153
2154 static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv)
2155 {
2156 unsigned int i;
2157 struct bcmgenet_rx_ring *ring;
2158
2159 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2160 ring = &priv->rx_rings[i];
2161 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2162 }
2163
2164 ring = &priv->rx_rings[DESC_INDEX];
2165 netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64);
2166 }
2167
2168 static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv)
2169 {
2170 unsigned int i;
2171 struct bcmgenet_rx_ring *ring;
2172
2173 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2174 ring = &priv->rx_rings[i];
2175 napi_enable(&ring->napi);
2176 }
2177
2178 ring = &priv->rx_rings[DESC_INDEX];
2179 napi_enable(&ring->napi);
2180 }
2181
2182 static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv)
2183 {
2184 unsigned int i;
2185 struct bcmgenet_rx_ring *ring;
2186
2187 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2188 ring = &priv->rx_rings[i];
2189 napi_disable(&ring->napi);
2190 }
2191
2192 ring = &priv->rx_rings[DESC_INDEX];
2193 napi_disable(&ring->napi);
2194 }
2195
2196 static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv)
2197 {
2198 unsigned int i;
2199 struct bcmgenet_rx_ring *ring;
2200
2201 for (i = 0; i < priv->hw_params->rx_queues; ++i) {
2202 ring = &priv->rx_rings[i];
2203 netif_napi_del(&ring->napi);
2204 }
2205
2206 ring = &priv->rx_rings[DESC_INDEX];
2207 netif_napi_del(&ring->napi);
2208 }
2209
2210 /* Initialize Rx queues
2211 *
2212 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
2213 * used to direct traffic to these queues.
2214 *
2215 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
2216 */
2217 static int bcmgenet_init_rx_queues(struct net_device *dev)
2218 {
2219 struct bcmgenet_priv *priv = netdev_priv(dev);
2220 u32 i;
2221 u32 dma_enable;
2222 u32 dma_ctrl;
2223 u32 ring_cfg;
2224 int ret;
2225
2226 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
2227 dma_enable = dma_ctrl & DMA_EN;
2228 dma_ctrl &= ~DMA_EN;
2229 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2230
2231 dma_ctrl = 0;
2232 ring_cfg = 0;
2233
2234 /* Initialize Rx priority queues */
2235 for (i = 0; i < priv->hw_params->rx_queues; i++) {
2236 ret = bcmgenet_init_rx_ring(priv, i,
2237 priv->hw_params->rx_bds_per_q,
2238 i * priv->hw_params->rx_bds_per_q,
2239 (i + 1) *
2240 priv->hw_params->rx_bds_per_q);
2241 if (ret)
2242 return ret;
2243
2244 ring_cfg |= (1 << i);
2245 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2246 }
2247
2248 /* Initialize Rx default queue 16 */
2249 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
2250 priv->hw_params->rx_queues *
2251 priv->hw_params->rx_bds_per_q,
2252 TOTAL_DESC);
2253 if (ret)
2254 return ret;
2255
2256 ring_cfg |= (1 << DESC_INDEX);
2257 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
2258
2259 /* Initialize Rx NAPI */
2260 bcmgenet_init_rx_napi(priv);
2261
2262 /* Enable rings */
2263 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
2264
2265 /* Configure ring as descriptor ring and re-enable DMA if enabled */
2266 if (dma_enable)
2267 dma_ctrl |= DMA_EN;
2268 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
2269
2270 return 0;
2271 }
2272
2273 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
2274 {
2275 int ret = 0;
2276 int timeout = 0;
2277 u32 reg;
2278 u32 dma_ctrl;
2279 int i;
2280
2281 /* Disable TDMA to stop add more frames in TX DMA */
2282 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2283 reg &= ~DMA_EN;
2284 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2285
2286 /* Check TDMA status register to confirm TDMA is disabled */
2287 while (timeout++ < DMA_TIMEOUT_VAL) {
2288 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
2289 if (reg & DMA_DISABLED)
2290 break;
2291
2292 udelay(1);
2293 }
2294
2295 if (timeout == DMA_TIMEOUT_VAL) {
2296 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
2297 ret = -ETIMEDOUT;
2298 }
2299
2300 /* Wait 10ms for packet drain in both tx and rx dma */
2301 usleep_range(10000, 20000);
2302
2303 /* Disable RDMA */
2304 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2305 reg &= ~DMA_EN;
2306 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2307
2308 timeout = 0;
2309 /* Check RDMA status register to confirm RDMA is disabled */
2310 while (timeout++ < DMA_TIMEOUT_VAL) {
2311 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
2312 if (reg & DMA_DISABLED)
2313 break;
2314
2315 udelay(1);
2316 }
2317
2318 if (timeout == DMA_TIMEOUT_VAL) {
2319 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
2320 ret = -ETIMEDOUT;
2321 }
2322
2323 dma_ctrl = 0;
2324 for (i = 0; i < priv->hw_params->rx_queues; i++)
2325 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2326 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2327 reg &= ~dma_ctrl;
2328 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2329
2330 dma_ctrl = 0;
2331 for (i = 0; i < priv->hw_params->tx_queues; i++)
2332 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
2333 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2334 reg &= ~dma_ctrl;
2335 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2336
2337 return ret;
2338 }
2339
2340 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2341 {
2342 int i;
2343
2344 bcmgenet_fini_rx_napi(priv);
2345 bcmgenet_fini_tx_napi(priv);
2346
2347 /* disable DMA */
2348 bcmgenet_dma_teardown(priv);
2349
2350 for (i = 0; i < priv->num_tx_bds; i++) {
2351 if (priv->tx_cbs[i].skb != NULL) {
2352 dev_kfree_skb(priv->tx_cbs[i].skb);
2353 priv->tx_cbs[i].skb = NULL;
2354 }
2355 }
2356
2357 bcmgenet_free_rx_buffers(priv);
2358 kfree(priv->rx_cbs);
2359 kfree(priv->tx_cbs);
2360 }
2361
2362 /* init_edma: Initialize DMA control register */
2363 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2364 {
2365 int ret;
2366 unsigned int i;
2367 struct enet_cb *cb;
2368
2369 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2370
2371 /* Initialize common Rx ring structures */
2372 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2373 priv->num_rx_bds = TOTAL_DESC;
2374 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2375 GFP_KERNEL);
2376 if (!priv->rx_cbs)
2377 return -ENOMEM;
2378
2379 for (i = 0; i < priv->num_rx_bds; i++) {
2380 cb = priv->rx_cbs + i;
2381 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2382 }
2383
2384 /* Initialize common TX ring structures */
2385 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2386 priv->num_tx_bds = TOTAL_DESC;
2387 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2388 GFP_KERNEL);
2389 if (!priv->tx_cbs) {
2390 kfree(priv->rx_cbs);
2391 return -ENOMEM;
2392 }
2393
2394 for (i = 0; i < priv->num_tx_bds; i++) {
2395 cb = priv->tx_cbs + i;
2396 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2397 }
2398
2399 /* Init rDma */
2400 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2401
2402 /* Initialize Rx queues */
2403 ret = bcmgenet_init_rx_queues(priv->dev);
2404 if (ret) {
2405 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2406 bcmgenet_free_rx_buffers(priv);
2407 kfree(priv->rx_cbs);
2408 kfree(priv->tx_cbs);
2409 return ret;
2410 }
2411
2412 /* Init tDma */
2413 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2414
2415 /* Initialize Tx queues */
2416 bcmgenet_init_tx_queues(priv->dev);
2417
2418 return 0;
2419 }
2420
2421 /* Interrupt bottom half */
2422 static void bcmgenet_irq_task(struct work_struct *work)
2423 {
2424 struct bcmgenet_priv *priv = container_of(
2425 work, struct bcmgenet_priv, bcmgenet_irq_work);
2426
2427 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2428
2429 if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2430 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2431 netif_dbg(priv, wol, priv->dev,
2432 "magic packet detected, waking up\n");
2433 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2434 }
2435
2436 /* Link UP/DOWN event */
2437 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2438 (priv->irq0_stat & UMAC_IRQ_LINK_EVENT)) {
2439 phy_mac_interrupt(priv->phydev,
2440 !!(priv->irq0_stat & UMAC_IRQ_LINK_UP));
2441 priv->irq0_stat &= ~UMAC_IRQ_LINK_EVENT;
2442 }
2443 }
2444
2445 /* bcmgenet_isr1: handle Rx and Tx priority queues */
2446 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2447 {
2448 struct bcmgenet_priv *priv = dev_id;
2449 struct bcmgenet_rx_ring *rx_ring;
2450 struct bcmgenet_tx_ring *tx_ring;
2451 unsigned int index;
2452
2453 /* Save irq status for bottom-half processing. */
2454 priv->irq1_stat =
2455 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2456 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2457
2458 /* clear interrupts */
2459 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2460
2461 netif_dbg(priv, intr, priv->dev,
2462 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2463
2464 /* Check Rx priority queue interrupts */
2465 for (index = 0; index < priv->hw_params->rx_queues; index++) {
2466 if (!(priv->irq1_stat & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index)))
2467 continue;
2468
2469 rx_ring = &priv->rx_rings[index];
2470
2471 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2472 rx_ring->int_disable(rx_ring);
2473 __napi_schedule(&rx_ring->napi);
2474 }
2475 }
2476
2477 /* Check Tx priority queue interrupts */
2478 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2479 if (!(priv->irq1_stat & BIT(index)))
2480 continue;
2481
2482 tx_ring = &priv->tx_rings[index];
2483
2484 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2485 tx_ring->int_disable(tx_ring);
2486 __napi_schedule(&tx_ring->napi);
2487 }
2488 }
2489
2490 return IRQ_HANDLED;
2491 }
2492
2493 /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */
2494 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2495 {
2496 struct bcmgenet_priv *priv = dev_id;
2497 struct bcmgenet_rx_ring *rx_ring;
2498 struct bcmgenet_tx_ring *tx_ring;
2499
2500 /* Save irq status for bottom-half processing. */
2501 priv->irq0_stat =
2502 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2503 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2504
2505 /* clear interrupts */
2506 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2507
2508 netif_dbg(priv, intr, priv->dev,
2509 "IRQ=0x%x\n", priv->irq0_stat);
2510
2511 if (priv->irq0_stat & UMAC_IRQ_RXDMA_DONE) {
2512 rx_ring = &priv->rx_rings[DESC_INDEX];
2513
2514 if (likely(napi_schedule_prep(&rx_ring->napi))) {
2515 rx_ring->int_disable(rx_ring);
2516 __napi_schedule(&rx_ring->napi);
2517 }
2518 }
2519
2520 if (priv->irq0_stat & UMAC_IRQ_TXDMA_DONE) {
2521 tx_ring = &priv->tx_rings[DESC_INDEX];
2522
2523 if (likely(napi_schedule_prep(&tx_ring->napi))) {
2524 tx_ring->int_disable(tx_ring);
2525 __napi_schedule(&tx_ring->napi);
2526 }
2527 }
2528
2529 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2530 UMAC_IRQ_PHY_DET_F |
2531 UMAC_IRQ_LINK_EVENT |
2532 UMAC_IRQ_HFB_SM |
2533 UMAC_IRQ_HFB_MM |
2534 UMAC_IRQ_MPD_R)) {
2535 /* all other interested interrupts handled in bottom half */
2536 schedule_work(&priv->bcmgenet_irq_work);
2537 }
2538
2539 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2540 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2541 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2542 wake_up(&priv->wq);
2543 }
2544
2545 return IRQ_HANDLED;
2546 }
2547
2548 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2549 {
2550 struct bcmgenet_priv *priv = dev_id;
2551
2552 pm_wakeup_event(&priv->pdev->dev, 0);
2553
2554 return IRQ_HANDLED;
2555 }
2556
2557 #ifdef CONFIG_NET_POLL_CONTROLLER
2558 static void bcmgenet_poll_controller(struct net_device *dev)
2559 {
2560 struct bcmgenet_priv *priv = netdev_priv(dev);
2561
2562 /* Invoke the main RX/TX interrupt handler */
2563 disable_irq(priv->irq0);
2564 bcmgenet_isr0(priv->irq0, priv);
2565 enable_irq(priv->irq0);
2566
2567 /* And the interrupt handler for RX/TX priority queues */
2568 disable_irq(priv->irq1);
2569 bcmgenet_isr1(priv->irq1, priv);
2570 enable_irq(priv->irq1);
2571 }
2572 #endif
2573
2574 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2575 {
2576 u32 reg;
2577
2578 reg = bcmgenet_rbuf_ctrl_get(priv);
2579 reg |= BIT(1);
2580 bcmgenet_rbuf_ctrl_set(priv, reg);
2581 udelay(10);
2582
2583 reg &= ~BIT(1);
2584 bcmgenet_rbuf_ctrl_set(priv, reg);
2585 udelay(10);
2586 }
2587
2588 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2589 unsigned char *addr)
2590 {
2591 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2592 (addr[2] << 8) | addr[3], UMAC_MAC0);
2593 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2594 }
2595
2596 /* Returns a reusable dma control register value */
2597 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2598 {
2599 u32 reg;
2600 u32 dma_ctrl;
2601
2602 /* disable DMA */
2603 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2604 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2605 reg &= ~dma_ctrl;
2606 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2607
2608 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2609 reg &= ~dma_ctrl;
2610 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2611
2612 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2613 udelay(10);
2614 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2615
2616 return dma_ctrl;
2617 }
2618
2619 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2620 {
2621 u32 reg;
2622
2623 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2624 reg |= dma_ctrl;
2625 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2626
2627 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2628 reg |= dma_ctrl;
2629 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2630 }
2631
2632 static bool bcmgenet_hfb_is_filter_enabled(struct bcmgenet_priv *priv,
2633 u32 f_index)
2634 {
2635 u32 offset;
2636 u32 reg;
2637
2638 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2639 reg = bcmgenet_hfb_reg_readl(priv, offset);
2640 return !!(reg & (1 << (f_index % 32)));
2641 }
2642
2643 static void bcmgenet_hfb_enable_filter(struct bcmgenet_priv *priv, u32 f_index)
2644 {
2645 u32 offset;
2646 u32 reg;
2647
2648 offset = HFB_FLT_ENABLE_V3PLUS + (f_index < 32) * sizeof(u32);
2649 reg = bcmgenet_hfb_reg_readl(priv, offset);
2650 reg |= (1 << (f_index % 32));
2651 bcmgenet_hfb_reg_writel(priv, reg, offset);
2652 }
2653
2654 static void bcmgenet_hfb_set_filter_rx_queue_mapping(struct bcmgenet_priv *priv,
2655 u32 f_index, u32 rx_queue)
2656 {
2657 u32 offset;
2658 u32 reg;
2659
2660 offset = f_index / 8;
2661 reg = bcmgenet_rdma_readl(priv, DMA_INDEX2RING_0 + offset);
2662 reg &= ~(0xF << (4 * (f_index % 8)));
2663 reg |= ((rx_queue & 0xF) << (4 * (f_index % 8)));
2664 bcmgenet_rdma_writel(priv, reg, DMA_INDEX2RING_0 + offset);
2665 }
2666
2667 static void bcmgenet_hfb_set_filter_length(struct bcmgenet_priv *priv,
2668 u32 f_index, u32 f_length)
2669 {
2670 u32 offset;
2671 u32 reg;
2672
2673 offset = HFB_FLT_LEN_V3PLUS +
2674 ((priv->hw_params->hfb_filter_cnt - 1 - f_index) / 4) *
2675 sizeof(u32);
2676 reg = bcmgenet_hfb_reg_readl(priv, offset);
2677 reg &= ~(0xFF << (8 * (f_index % 4)));
2678 reg |= ((f_length & 0xFF) << (8 * (f_index % 4)));
2679 bcmgenet_hfb_reg_writel(priv, reg, offset);
2680 }
2681
2682 static int bcmgenet_hfb_find_unused_filter(struct bcmgenet_priv *priv)
2683 {
2684 u32 f_index;
2685
2686 for (f_index = 0; f_index < priv->hw_params->hfb_filter_cnt; f_index++)
2687 if (!bcmgenet_hfb_is_filter_enabled(priv, f_index))
2688 return f_index;
2689
2690 return -ENOMEM;
2691 }
2692
2693 /* bcmgenet_hfb_add_filter
2694 *
2695 * Add new filter to Hardware Filter Block to match and direct Rx traffic to
2696 * desired Rx queue.
2697 *
2698 * f_data is an array of unsigned 32-bit integers where each 32-bit integer
2699 * provides filter data for 2 bytes (4 nibbles) of Rx frame:
2700 *
2701 * bits 31:20 - unused
2702 * bit 19 - nibble 0 match enable
2703 * bit 18 - nibble 1 match enable
2704 * bit 17 - nibble 2 match enable
2705 * bit 16 - nibble 3 match enable
2706 * bits 15:12 - nibble 0 data
2707 * bits 11:8 - nibble 1 data
2708 * bits 7:4 - nibble 2 data
2709 * bits 3:0 - nibble 3 data
2710 *
2711 * Example:
2712 * In order to match:
2713 * - Ethernet frame type = 0x0800 (IP)
2714 * - IP version field = 4
2715 * - IP protocol field = 0x11 (UDP)
2716 *
2717 * The following filter is needed:
2718 * u32 hfb_filter_ipv4_udp[] = {
2719 * Rx frame offset 0x00: 0x00000000, 0x00000000, 0x00000000, 0x00000000,
2720 * Rx frame offset 0x08: 0x00000000, 0x00000000, 0x000F0800, 0x00084000,
2721 * Rx frame offset 0x10: 0x00000000, 0x00000000, 0x00000000, 0x00030011,
2722 * };
2723 *
2724 * To add the filter to HFB and direct the traffic to Rx queue 0, call:
2725 * bcmgenet_hfb_add_filter(priv, hfb_filter_ipv4_udp,
2726 * ARRAY_SIZE(hfb_filter_ipv4_udp), 0);
2727 */
2728 int bcmgenet_hfb_add_filter(struct bcmgenet_priv *priv, u32 *f_data,
2729 u32 f_length, u32 rx_queue)
2730 {
2731 int f_index;
2732 u32 i;
2733
2734 f_index = bcmgenet_hfb_find_unused_filter(priv);
2735 if (f_index < 0)
2736 return -ENOMEM;
2737
2738 if (f_length > priv->hw_params->hfb_filter_size)
2739 return -EINVAL;
2740
2741 for (i = 0; i < f_length; i++)
2742 bcmgenet_hfb_writel(priv, f_data[i],
2743 (f_index * priv->hw_params->hfb_filter_size + i) *
2744 sizeof(u32));
2745
2746 bcmgenet_hfb_set_filter_length(priv, f_index, 2 * f_length);
2747 bcmgenet_hfb_set_filter_rx_queue_mapping(priv, f_index, rx_queue);
2748 bcmgenet_hfb_enable_filter(priv, f_index);
2749 bcmgenet_hfb_reg_writel(priv, 0x1, HFB_CTRL);
2750
2751 return 0;
2752 }
2753
2754 /* bcmgenet_hfb_clear
2755 *
2756 * Clear Hardware Filter Block and disable all filtering.
2757 */
2758 static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv)
2759 {
2760 u32 i;
2761
2762 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL);
2763 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS);
2764 bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4);
2765
2766 for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++)
2767 bcmgenet_rdma_writel(priv, 0x0, i);
2768
2769 for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++)
2770 bcmgenet_hfb_reg_writel(priv, 0x0,
2771 HFB_FLT_LEN_V3PLUS + i * sizeof(u32));
2772
2773 for (i = 0; i < priv->hw_params->hfb_filter_cnt *
2774 priv->hw_params->hfb_filter_size; i++)
2775 bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32));
2776 }
2777
2778 static void bcmgenet_hfb_init(struct bcmgenet_priv *priv)
2779 {
2780 if (GENET_IS_V1(priv) || GENET_IS_V2(priv))
2781 return;
2782
2783 bcmgenet_hfb_clear(priv);
2784 }
2785
2786 static void bcmgenet_netif_start(struct net_device *dev)
2787 {
2788 struct bcmgenet_priv *priv = netdev_priv(dev);
2789
2790 /* Start the network engine */
2791 bcmgenet_enable_rx_napi(priv);
2792 bcmgenet_enable_tx_napi(priv);
2793
2794 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2795
2796 netif_tx_start_all_queues(dev);
2797
2798 phy_start(priv->phydev);
2799 }
2800
2801 static int bcmgenet_open(struct net_device *dev)
2802 {
2803 struct bcmgenet_priv *priv = netdev_priv(dev);
2804 unsigned long dma_ctrl;
2805 u32 reg;
2806 int ret;
2807
2808 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2809
2810 /* Turn on the clock */
2811 clk_prepare_enable(priv->clk);
2812
2813 /* If this is an internal GPHY, power it back on now, before UniMAC is
2814 * brought out of reset as absolutely no UniMAC activity is allowed
2815 */
2816 if (priv->internal_phy)
2817 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2818
2819 /* take MAC out of reset */
2820 bcmgenet_umac_reset(priv);
2821
2822 ret = init_umac(priv);
2823 if (ret)
2824 goto err_clk_disable;
2825
2826 /* disable ethernet MAC while updating its registers */
2827 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2828
2829 /* Make sure we reflect the value of CRC_CMD_FWD */
2830 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2831 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2832
2833 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2834
2835 if (priv->internal_phy) {
2836 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2837 reg |= EXT_ENERGY_DET_MASK;
2838 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2839 }
2840
2841 /* Disable RX/TX DMA and flush TX queues */
2842 dma_ctrl = bcmgenet_dma_disable(priv);
2843
2844 /* Reinitialize TDMA and RDMA and SW housekeeping */
2845 ret = bcmgenet_init_dma(priv);
2846 if (ret) {
2847 netdev_err(dev, "failed to initialize DMA\n");
2848 goto err_clk_disable;
2849 }
2850
2851 /* Always enable ring 16 - descriptor ring */
2852 bcmgenet_enable_dma(priv, dma_ctrl);
2853
2854 /* HFB init */
2855 bcmgenet_hfb_init(priv);
2856
2857 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2858 dev->name, priv);
2859 if (ret < 0) {
2860 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2861 goto err_fini_dma;
2862 }
2863
2864 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2865 dev->name, priv);
2866 if (ret < 0) {
2867 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2868 goto err_irq0;
2869 }
2870
2871 ret = bcmgenet_mii_probe(dev);
2872 if (ret) {
2873 netdev_err(dev, "failed to connect to PHY\n");
2874 goto err_irq1;
2875 }
2876
2877 bcmgenet_netif_start(dev);
2878
2879 return 0;
2880
2881 err_irq1:
2882 free_irq(priv->irq1, priv);
2883 err_irq0:
2884 free_irq(priv->irq0, priv);
2885 err_fini_dma:
2886 bcmgenet_fini_dma(priv);
2887 err_clk_disable:
2888 clk_disable_unprepare(priv->clk);
2889 return ret;
2890 }
2891
2892 static void bcmgenet_netif_stop(struct net_device *dev)
2893 {
2894 struct bcmgenet_priv *priv = netdev_priv(dev);
2895
2896 netif_tx_stop_all_queues(dev);
2897 phy_stop(priv->phydev);
2898 bcmgenet_intr_disable(priv);
2899 bcmgenet_disable_rx_napi(priv);
2900 bcmgenet_disable_tx_napi(priv);
2901
2902 /* Wait for pending work items to complete. Since interrupts are
2903 * disabled no new work will be scheduled.
2904 */
2905 cancel_work_sync(&priv->bcmgenet_irq_work);
2906
2907 priv->old_link = -1;
2908 priv->old_speed = -1;
2909 priv->old_duplex = -1;
2910 priv->old_pause = -1;
2911 }
2912
2913 static int bcmgenet_close(struct net_device *dev)
2914 {
2915 struct bcmgenet_priv *priv = netdev_priv(dev);
2916 int ret;
2917
2918 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2919
2920 bcmgenet_netif_stop(dev);
2921
2922 /* Really kill the PHY state machine and disconnect from it */
2923 phy_disconnect(priv->phydev);
2924
2925 /* Disable MAC receive */
2926 umac_enable_set(priv, CMD_RX_EN, false);
2927
2928 ret = bcmgenet_dma_teardown(priv);
2929 if (ret)
2930 return ret;
2931
2932 /* Disable MAC transmit. TX DMA disabled have to done before this */
2933 umac_enable_set(priv, CMD_TX_EN, false);
2934
2935 /* tx reclaim */
2936 bcmgenet_tx_reclaim_all(dev);
2937 bcmgenet_fini_dma(priv);
2938
2939 free_irq(priv->irq0, priv);
2940 free_irq(priv->irq1, priv);
2941
2942 if (priv->internal_phy)
2943 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2944
2945 clk_disable_unprepare(priv->clk);
2946
2947 return ret;
2948 }
2949
2950 static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring)
2951 {
2952 struct bcmgenet_priv *priv = ring->priv;
2953 u32 p_index, c_index, intsts, intmsk;
2954 struct netdev_queue *txq;
2955 unsigned int free_bds;
2956 unsigned long flags;
2957 bool txq_stopped;
2958
2959 if (!netif_msg_tx_err(priv))
2960 return;
2961
2962 txq = netdev_get_tx_queue(priv->dev, ring->queue);
2963
2964 spin_lock_irqsave(&ring->lock, flags);
2965 if (ring->index == DESC_INDEX) {
2966 intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2967 intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE;
2968 } else {
2969 intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2970 intmsk = 1 << ring->index;
2971 }
2972 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
2973 p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX);
2974 txq_stopped = netif_tx_queue_stopped(txq);
2975 free_bds = ring->free_bds;
2976 spin_unlock_irqrestore(&ring->lock, flags);
2977
2978 netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n"
2979 "TX queue status: %s, interrupts: %s\n"
2980 "(sw)free_bds: %d (sw)size: %d\n"
2981 "(sw)p_index: %d (hw)p_index: %d\n"
2982 "(sw)c_index: %d (hw)c_index: %d\n"
2983 "(sw)clean_p: %d (sw)write_p: %d\n"
2984 "(sw)cb_ptr: %d (sw)end_ptr: %d\n",
2985 ring->index, ring->queue,
2986 txq_stopped ? "stopped" : "active",
2987 intsts & intmsk ? "enabled" : "disabled",
2988 free_bds, ring->size,
2989 ring->prod_index, p_index & DMA_P_INDEX_MASK,
2990 ring->c_index, c_index & DMA_C_INDEX_MASK,
2991 ring->clean_ptr, ring->write_ptr,
2992 ring->cb_ptr, ring->end_ptr);
2993 }
2994
2995 static void bcmgenet_timeout(struct net_device *dev)
2996 {
2997 struct bcmgenet_priv *priv = netdev_priv(dev);
2998 u32 int0_enable = 0;
2999 u32 int1_enable = 0;
3000 unsigned int q;
3001
3002 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
3003
3004 for (q = 0; q < priv->hw_params->tx_queues; q++)
3005 bcmgenet_dump_tx_queue(&priv->tx_rings[q]);
3006 bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]);
3007
3008 bcmgenet_tx_reclaim_all(dev);
3009
3010 for (q = 0; q < priv->hw_params->tx_queues; q++)
3011 int1_enable |= (1 << q);
3012
3013 int0_enable = UMAC_IRQ_TXDMA_DONE;
3014
3015 /* Re-enable TX interrupts if disabled */
3016 bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR);
3017 bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR);
3018
3019 dev->trans_start = jiffies;
3020
3021 dev->stats.tx_errors++;
3022
3023 netif_tx_wake_all_queues(dev);
3024 }
3025
3026 #define MAX_MC_COUNT 16
3027
3028 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
3029 unsigned char *addr,
3030 int *i,
3031 int *mc)
3032 {
3033 u32 reg;
3034
3035 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
3036 UMAC_MDF_ADDR + (*i * 4));
3037 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
3038 addr[4] << 8 | addr[5],
3039 UMAC_MDF_ADDR + ((*i + 1) * 4));
3040 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
3041 reg |= (1 << (MAX_MC_COUNT - *mc));
3042 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
3043 *i += 2;
3044 (*mc)++;
3045 }
3046
3047 static void bcmgenet_set_rx_mode(struct net_device *dev)
3048 {
3049 struct bcmgenet_priv *priv = netdev_priv(dev);
3050 struct netdev_hw_addr *ha;
3051 int i, mc;
3052 u32 reg;
3053
3054 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
3055
3056 /* Promiscuous mode */
3057 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
3058 if (dev->flags & IFF_PROMISC) {
3059 reg |= CMD_PROMISC;
3060 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3061 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
3062 return;
3063 } else {
3064 reg &= ~CMD_PROMISC;
3065 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
3066 }
3067
3068 /* UniMac doesn't support ALLMULTI */
3069 if (dev->flags & IFF_ALLMULTI) {
3070 netdev_warn(dev, "ALLMULTI is not supported\n");
3071 return;
3072 }
3073
3074 /* update MDF filter */
3075 i = 0;
3076 mc = 0;
3077 /* Broadcast */
3078 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
3079 /* my own address.*/
3080 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
3081 /* Unicast list*/
3082 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
3083 return;
3084
3085 if (!netdev_uc_empty(dev))
3086 netdev_for_each_uc_addr(ha, dev)
3087 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3088 /* Multicast */
3089 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
3090 return;
3091
3092 netdev_for_each_mc_addr(ha, dev)
3093 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
3094 }
3095
3096 /* Set the hardware MAC address. */
3097 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
3098 {
3099 struct sockaddr *addr = p;
3100
3101 /* Setting the MAC address at the hardware level is not possible
3102 * without disabling the UniMAC RX/TX enable bits.
3103 */
3104 if (netif_running(dev))
3105 return -EBUSY;
3106
3107 ether_addr_copy(dev->dev_addr, addr->sa_data);
3108
3109 return 0;
3110 }
3111
3112 static const struct net_device_ops bcmgenet_netdev_ops = {
3113 .ndo_open = bcmgenet_open,
3114 .ndo_stop = bcmgenet_close,
3115 .ndo_start_xmit = bcmgenet_xmit,
3116 .ndo_tx_timeout = bcmgenet_timeout,
3117 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
3118 .ndo_set_mac_address = bcmgenet_set_mac_addr,
3119 .ndo_do_ioctl = bcmgenet_ioctl,
3120 .ndo_set_features = bcmgenet_set_features,
3121 #ifdef CONFIG_NET_POLL_CONTROLLER
3122 .ndo_poll_controller = bcmgenet_poll_controller,
3123 #endif
3124 };
3125
3126 /* Array of GENET hardware parameters/characteristics */
3127 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
3128 [GENET_V1] = {
3129 .tx_queues = 0,
3130 .tx_bds_per_q = 0,
3131 .rx_queues = 0,
3132 .rx_bds_per_q = 0,
3133 .bp_in_en_shift = 16,
3134 .bp_in_mask = 0xffff,
3135 .hfb_filter_cnt = 16,
3136 .qtag_mask = 0x1F,
3137 .hfb_offset = 0x1000,
3138 .rdma_offset = 0x2000,
3139 .tdma_offset = 0x3000,
3140 .words_per_bd = 2,
3141 },
3142 [GENET_V2] = {
3143 .tx_queues = 4,
3144 .tx_bds_per_q = 32,
3145 .rx_queues = 0,
3146 .rx_bds_per_q = 0,
3147 .bp_in_en_shift = 16,
3148 .bp_in_mask = 0xffff,
3149 .hfb_filter_cnt = 16,
3150 .qtag_mask = 0x1F,
3151 .tbuf_offset = 0x0600,
3152 .hfb_offset = 0x1000,
3153 .hfb_reg_offset = 0x2000,
3154 .rdma_offset = 0x3000,
3155 .tdma_offset = 0x4000,
3156 .words_per_bd = 2,
3157 .flags = GENET_HAS_EXT,
3158 },
3159 [GENET_V3] = {
3160 .tx_queues = 4,
3161 .tx_bds_per_q = 32,
3162 .rx_queues = 0,
3163 .rx_bds_per_q = 0,
3164 .bp_in_en_shift = 17,
3165 .bp_in_mask = 0x1ffff,
3166 .hfb_filter_cnt = 48,
3167 .hfb_filter_size = 128,
3168 .qtag_mask = 0x3F,
3169 .tbuf_offset = 0x0600,
3170 .hfb_offset = 0x8000,
3171 .hfb_reg_offset = 0xfc00,
3172 .rdma_offset = 0x10000,
3173 .tdma_offset = 0x11000,
3174 .words_per_bd = 2,
3175 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR |
3176 GENET_HAS_MOCA_LINK_DET,
3177 },
3178 [GENET_V4] = {
3179 .tx_queues = 4,
3180 .tx_bds_per_q = 32,
3181 .rx_queues = 0,
3182 .rx_bds_per_q = 0,
3183 .bp_in_en_shift = 17,
3184 .bp_in_mask = 0x1ffff,
3185 .hfb_filter_cnt = 48,
3186 .hfb_filter_size = 128,
3187 .qtag_mask = 0x3F,
3188 .tbuf_offset = 0x0600,
3189 .hfb_offset = 0x8000,
3190 .hfb_reg_offset = 0xfc00,
3191 .rdma_offset = 0x2000,
3192 .tdma_offset = 0x4000,
3193 .words_per_bd = 3,
3194 .flags = GENET_HAS_40BITS | GENET_HAS_EXT |
3195 GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET,
3196 },
3197 };
3198
3199 /* Infer hardware parameters from the detected GENET version */
3200 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
3201 {
3202 struct bcmgenet_hw_params *params;
3203 u32 reg;
3204 u8 major;
3205 u16 gphy_rev;
3206
3207 if (GENET_IS_V4(priv)) {
3208 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3209 genet_dma_ring_regs = genet_dma_ring_regs_v4;
3210 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3211 priv->version = GENET_V4;
3212 } else if (GENET_IS_V3(priv)) {
3213 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
3214 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3215 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
3216 priv->version = GENET_V3;
3217 } else if (GENET_IS_V2(priv)) {
3218 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
3219 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3220 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3221 priv->version = GENET_V2;
3222 } else if (GENET_IS_V1(priv)) {
3223 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
3224 genet_dma_ring_regs = genet_dma_ring_regs_v123;
3225 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
3226 priv->version = GENET_V1;
3227 }
3228
3229 /* enum genet_version starts at 1 */
3230 priv->hw_params = &bcmgenet_hw_params[priv->version];
3231 params = priv->hw_params;
3232
3233 /* Read GENET HW version */
3234 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
3235 major = (reg >> 24 & 0x0f);
3236 if (major == 5)
3237 major = 4;
3238 else if (major == 0)
3239 major = 1;
3240 if (major != priv->version) {
3241 dev_err(&priv->pdev->dev,
3242 "GENET version mismatch, got: %d, configured for: %d\n",
3243 major, priv->version);
3244 }
3245
3246 /* Print the GENET core version */
3247 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
3248 major, (reg >> 16) & 0x0f, reg & 0xffff);
3249
3250 /* Store the integrated PHY revision for the MDIO probing function
3251 * to pass this information to the PHY driver. The PHY driver expects
3252 * to find the PHY major revision in bits 15:8 while the GENET register
3253 * stores that information in bits 7:0, account for that.
3254 *
3255 * On newer chips, starting with PHY revision G0, a new scheme is
3256 * deployed similar to the Starfighter 2 switch with GPHY major
3257 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
3258 * is reserved as well as special value 0x01ff, we have a small
3259 * heuristic to check for the new GPHY revision and re-arrange things
3260 * so the GPHY driver is happy.
3261 */
3262 gphy_rev = reg & 0xffff;
3263
3264 /* This is the good old scheme, just GPHY major, no minor nor patch */
3265 if ((gphy_rev & 0xf0) != 0)
3266 priv->gphy_rev = gphy_rev << 8;
3267
3268 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
3269 else if ((gphy_rev & 0xff00) != 0)
3270 priv->gphy_rev = gphy_rev;
3271
3272 /* This is reserved so should require special treatment */
3273 else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
3274 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
3275 return;
3276 }
3277
3278 #ifdef CONFIG_PHYS_ADDR_T_64BIT
3279 if (!(params->flags & GENET_HAS_40BITS))
3280 pr_warn("GENET does not support 40-bits PA\n");
3281 #endif
3282
3283 pr_debug("Configuration for version: %d\n"
3284 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
3285 "BP << en: %2d, BP msk: 0x%05x\n"
3286 "HFB count: %2d, QTAQ msk: 0x%05x\n"
3287 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
3288 "RDMA: 0x%05x, TDMA: 0x%05x\n"
3289 "Words/BD: %d\n",
3290 priv->version,
3291 params->tx_queues, params->tx_bds_per_q,
3292 params->rx_queues, params->rx_bds_per_q,
3293 params->bp_in_en_shift, params->bp_in_mask,
3294 params->hfb_filter_cnt, params->qtag_mask,
3295 params->tbuf_offset, params->hfb_offset,
3296 params->hfb_reg_offset,
3297 params->rdma_offset, params->tdma_offset,
3298 params->words_per_bd);
3299 }
3300
3301 static const struct of_device_id bcmgenet_match[] = {
3302 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
3303 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
3304 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
3305 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
3306 { },
3307 };
3308
3309 static int bcmgenet_probe(struct platform_device *pdev)
3310 {
3311 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
3312 struct device_node *dn = pdev->dev.of_node;
3313 const struct of_device_id *of_id = NULL;
3314 struct bcmgenet_priv *priv;
3315 struct net_device *dev;
3316 const void *macaddr;
3317 struct resource *r;
3318 int err = -EIO;
3319
3320 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
3321 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
3322 GENET_MAX_MQ_CNT + 1);
3323 if (!dev) {
3324 dev_err(&pdev->dev, "can't allocate net device\n");
3325 return -ENOMEM;
3326 }
3327
3328 if (dn) {
3329 of_id = of_match_node(bcmgenet_match, dn);
3330 if (!of_id)
3331 return -EINVAL;
3332 }
3333
3334 priv = netdev_priv(dev);
3335 priv->irq0 = platform_get_irq(pdev, 0);
3336 priv->irq1 = platform_get_irq(pdev, 1);
3337 priv->wol_irq = platform_get_irq(pdev, 2);
3338 if (!priv->irq0 || !priv->irq1) {
3339 dev_err(&pdev->dev, "can't find IRQs\n");
3340 err = -EINVAL;
3341 goto err;
3342 }
3343
3344 if (dn) {
3345 macaddr = of_get_mac_address(dn);
3346 if (!macaddr) {
3347 dev_err(&pdev->dev, "can't find MAC address\n");
3348 err = -EINVAL;
3349 goto err;
3350 }
3351 } else {
3352 macaddr = pd->mac_address;
3353 }
3354
3355 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3356 priv->base = devm_ioremap_resource(&pdev->dev, r);
3357 if (IS_ERR(priv->base)) {
3358 err = PTR_ERR(priv->base);
3359 goto err;
3360 }
3361
3362 SET_NETDEV_DEV(dev, &pdev->dev);
3363 dev_set_drvdata(&pdev->dev, dev);
3364 ether_addr_copy(dev->dev_addr, macaddr);
3365 dev->watchdog_timeo = 2 * HZ;
3366 dev->ethtool_ops = &bcmgenet_ethtool_ops;
3367 dev->netdev_ops = &bcmgenet_netdev_ops;
3368
3369 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
3370
3371 /* Set hardware features */
3372 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
3373 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
3374
3375 /* Request the WOL interrupt and advertise suspend if available */
3376 priv->wol_irq_disabled = true;
3377 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
3378 dev->name, priv);
3379 if (!err)
3380 device_set_wakeup_capable(&pdev->dev, 1);
3381
3382 /* Set the needed headroom to account for any possible
3383 * features enabling/disabling at runtime
3384 */
3385 dev->needed_headroom += 64;
3386
3387 netdev_boot_setup_check(dev);
3388
3389 priv->dev = dev;
3390 priv->pdev = pdev;
3391 if (of_id)
3392 priv->version = (enum bcmgenet_version)of_id->data;
3393 else
3394 priv->version = pd->genet_version;
3395
3396 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
3397 if (IS_ERR(priv->clk)) {
3398 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
3399 priv->clk = NULL;
3400 }
3401
3402 clk_prepare_enable(priv->clk);
3403
3404 bcmgenet_set_hw_params(priv);
3405
3406 /* Mii wait queue */
3407 init_waitqueue_head(&priv->wq);
3408 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
3409 priv->rx_buf_len = RX_BUF_LENGTH;
3410 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
3411
3412 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
3413 if (IS_ERR(priv->clk_wol)) {
3414 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
3415 priv->clk_wol = NULL;
3416 }
3417
3418 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
3419 if (IS_ERR(priv->clk_eee)) {
3420 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
3421 priv->clk_eee = NULL;
3422 }
3423
3424 err = reset_umac(priv);
3425 if (err)
3426 goto err_clk_disable;
3427
3428 err = bcmgenet_mii_init(dev);
3429 if (err)
3430 goto err_clk_disable;
3431
3432 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
3433 * just the ring 16 descriptor based TX
3434 */
3435 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
3436 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
3437
3438 /* libphy will determine the link state */
3439 netif_carrier_off(dev);
3440
3441 /* Turn off the main clock, WOL clock is handled separately */
3442 clk_disable_unprepare(priv->clk);
3443
3444 err = register_netdev(dev);
3445 if (err)
3446 goto err;
3447
3448 return err;
3449
3450 err_clk_disable:
3451 clk_disable_unprepare(priv->clk);
3452 err:
3453 free_netdev(dev);
3454 return err;
3455 }
3456
3457 static int bcmgenet_remove(struct platform_device *pdev)
3458 {
3459 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
3460
3461 dev_set_drvdata(&pdev->dev, NULL);
3462 unregister_netdev(priv->dev);
3463 bcmgenet_mii_exit(priv->dev);
3464 free_netdev(priv->dev);
3465
3466 return 0;
3467 }
3468
3469 #ifdef CONFIG_PM_SLEEP
3470 static int bcmgenet_suspend(struct device *d)
3471 {
3472 struct net_device *dev = dev_get_drvdata(d);
3473 struct bcmgenet_priv *priv = netdev_priv(dev);
3474 int ret;
3475
3476 if (!netif_running(dev))
3477 return 0;
3478
3479 bcmgenet_netif_stop(dev);
3480
3481 phy_suspend(priv->phydev);
3482
3483 netif_device_detach(dev);
3484
3485 /* Disable MAC receive */
3486 umac_enable_set(priv, CMD_RX_EN, false);
3487
3488 ret = bcmgenet_dma_teardown(priv);
3489 if (ret)
3490 return ret;
3491
3492 /* Disable MAC transmit. TX DMA disabled have to done before this */
3493 umac_enable_set(priv, CMD_TX_EN, false);
3494
3495 /* tx reclaim */
3496 bcmgenet_tx_reclaim_all(dev);
3497 bcmgenet_fini_dma(priv);
3498
3499 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
3500 if (device_may_wakeup(d) && priv->wolopts) {
3501 ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
3502 clk_prepare_enable(priv->clk_wol);
3503 } else if (priv->internal_phy) {
3504 ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
3505 }
3506
3507 /* Turn off the clocks */
3508 clk_disable_unprepare(priv->clk);
3509
3510 return ret;
3511 }
3512
3513 static int bcmgenet_resume(struct device *d)
3514 {
3515 struct net_device *dev = dev_get_drvdata(d);
3516 struct bcmgenet_priv *priv = netdev_priv(dev);
3517 unsigned long dma_ctrl;
3518 int ret;
3519 u32 reg;
3520
3521 if (!netif_running(dev))
3522 return 0;
3523
3524 /* Turn on the clock */
3525 ret = clk_prepare_enable(priv->clk);
3526 if (ret)
3527 return ret;
3528
3529 /* If this is an internal GPHY, power it back on now, before UniMAC is
3530 * brought out of reset as absolutely no UniMAC activity is allowed
3531 */
3532 if (priv->internal_phy)
3533 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
3534
3535 bcmgenet_umac_reset(priv);
3536
3537 ret = init_umac(priv);
3538 if (ret)
3539 goto out_clk_disable;
3540
3541 /* From WOL-enabled suspend, switch to regular clock */
3542 if (priv->wolopts)
3543 clk_disable_unprepare(priv->clk_wol);
3544
3545 phy_init_hw(priv->phydev);
3546 /* Speed settings must be restored */
3547 bcmgenet_mii_config(priv->dev);
3548
3549 /* disable ethernet MAC while updating its registers */
3550 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
3551
3552 bcmgenet_set_hw_addr(priv, dev->dev_addr);
3553
3554 if (priv->internal_phy) {
3555 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
3556 reg |= EXT_ENERGY_DET_MASK;
3557 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
3558 }
3559
3560 if (priv->wolopts)
3561 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
3562
3563 /* Disable RX/TX DMA and flush TX queues */
3564 dma_ctrl = bcmgenet_dma_disable(priv);
3565
3566 /* Reinitialize TDMA and RDMA and SW housekeeping */
3567 ret = bcmgenet_init_dma(priv);
3568 if (ret) {
3569 netdev_err(dev, "failed to initialize DMA\n");
3570 goto out_clk_disable;
3571 }
3572
3573 /* Always enable ring 16 - descriptor ring */
3574 bcmgenet_enable_dma(priv, dma_ctrl);
3575
3576 netif_device_attach(dev);
3577
3578 phy_resume(priv->phydev);
3579
3580 if (priv->eee.eee_enabled)
3581 bcmgenet_eee_enable_set(dev, true);
3582
3583 bcmgenet_netif_start(dev);
3584
3585 return 0;
3586
3587 out_clk_disable:
3588 clk_disable_unprepare(priv->clk);
3589 return ret;
3590 }
3591 #endif /* CONFIG_PM_SLEEP */
3592
3593 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3594
3595 static struct platform_driver bcmgenet_driver = {
3596 .probe = bcmgenet_probe,
3597 .remove = bcmgenet_remove,
3598 .driver = {
3599 .name = "bcmgenet",
3600 .of_match_table = bcmgenet_match,
3601 .pm = &bcmgenet_pm_ops,
3602 },
3603 };
3604 module_platform_driver(bcmgenet_driver);
3605
3606 MODULE_AUTHOR("Broadcom Corporation");
3607 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3608 MODULE_ALIAS("platform:bcmgenet");
3609 MODULE_LICENSE("GPL");
This page took 0.099249 seconds and 4 git commands to generate.