powerpc: Fix bad inline asm constraint in create_zero_mask()
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_main.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/pci.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mdio.h>
44 #include <linux/sockios.h>
45 #include <linux/workqueue.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/stringify.h>
51 #include <linux/sched.h>
52 #include <linux/slab.h>
53 #include <asm/uaccess.h>
54
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64
65 enum {
66 MAX_TXQ_ENTRIES = 16384,
67 MAX_CTRL_TXQ_ENTRIES = 1024,
68 MAX_RSPQ_ENTRIES = 16384,
69 MAX_RX_BUFFERS = 16384,
70 MAX_RX_JUMBO_BUFFERS = 16384,
71 MIN_TXQ_ENTRIES = 4,
72 MIN_CTRL_TXQ_ENTRIES = 4,
73 MIN_RSPQ_ENTRIES = 32,
74 MIN_FL_ENTRIES = 32
75 };
76
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82
83 #define EEPROM_MAGIC 0x38E2F10C
84
85 #define CH_DEVICE(devid, idx) \
86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89 CH_DEVICE(0x20, 0), /* PE9000 */
90 CH_DEVICE(0x21, 1), /* T302E */
91 CH_DEVICE(0x22, 2), /* T310E */
92 CH_DEVICE(0x23, 3), /* T320X */
93 CH_DEVICE(0x24, 1), /* T302X */
94 CH_DEVICE(0x25, 3), /* T320E */
95 CH_DEVICE(0x26, 2), /* T310X */
96 CH_DEVICE(0x30, 2), /* T3B10 */
97 CH_DEVICE(0x31, 3), /* T3B20 */
98 CH_DEVICE(0x32, 1), /* T3B02 */
99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
100 CH_DEVICE(0x36, 3), /* S320E-CR */
101 CH_DEVICE(0x37, 7), /* N320E-G2 */
102 {0,}
103 };
104
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_VERSION(DRV_VERSION);
109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
110
111 static int dflt_msg_enable = DFLT_MSG_ENABLE;
112
113 module_param(dflt_msg_enable, int, 0644);
114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
115
116 /*
117 * The driver uses the best interrupt scheme available on a platform in the
118 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
119 * of these schemes the driver may consider as follows:
120 *
121 * msi = 2: choose from among all three options
122 * msi = 1: only consider MSI and pin interrupts
123 * msi = 0: force pin interrupts
124 */
125 static int msi = 2;
126
127 module_param(msi, int, 0644);
128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
129
130 /*
131 * The driver enables offload as a default.
132 * To disable it, use ofld_disable = 1.
133 */
134
135 static int ofld_disable = 0;
136
137 module_param(ofld_disable, int, 0644);
138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
139
140 /*
141 * We have work elements that we need to cancel when an interface is taken
142 * down. Normally the work elements would be executed by keventd but that
143 * can deadlock because of linkwatch. If our close method takes the rtnl
144 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
145 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
146 * for our work to complete. Get our own work queue to solve this.
147 */
148 struct workqueue_struct *cxgb3_wq;
149
150 /**
151 * link_report - show link status and link speed/duplex
152 * @p: the port whose settings are to be reported
153 *
154 * Shows the link status, speed, and duplex of a port.
155 */
156 static void link_report(struct net_device *dev)
157 {
158 if (!netif_carrier_ok(dev))
159 netdev_info(dev, "link down\n");
160 else {
161 const char *s = "10Mbps";
162 const struct port_info *p = netdev_priv(dev);
163
164 switch (p->link_config.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168 case SPEED_1000:
169 s = "1000Mbps";
170 break;
171 case SPEED_100:
172 s = "100Mbps";
173 break;
174 }
175
176 netdev_info(dev, "link up, %s, %s-duplex\n",
177 s, p->link_config.duplex == DUPLEX_FULL
178 ? "full" : "half");
179 }
180 }
181
182 static void enable_tx_fifo_drain(struct adapter *adapter,
183 struct port_info *pi)
184 {
185 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
186 F_ENDROPPKT);
187 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
188 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
189 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
190 }
191
192 static void disable_tx_fifo_drain(struct adapter *adapter,
193 struct port_info *pi)
194 {
195 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
196 F_ENDROPPKT, 0);
197 }
198
199 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
200 {
201 struct net_device *dev = adap->port[port_id];
202 struct port_info *pi = netdev_priv(dev);
203
204 if (state == netif_carrier_ok(dev))
205 return;
206
207 if (state) {
208 struct cmac *mac = &pi->mac;
209
210 netif_carrier_on(dev);
211
212 disable_tx_fifo_drain(adap, pi);
213
214 /* Clear local faults */
215 t3_xgm_intr_disable(adap, pi->port_id);
216 t3_read_reg(adap, A_XGM_INT_STATUS +
217 pi->mac.offset);
218 t3_write_reg(adap,
219 A_XGM_INT_CAUSE + pi->mac.offset,
220 F_XGM_INT);
221
222 t3_set_reg_field(adap,
223 A_XGM_INT_ENABLE +
224 pi->mac.offset,
225 F_XGM_INT, F_XGM_INT);
226 t3_xgm_intr_enable(adap, pi->port_id);
227
228 t3_mac_enable(mac, MAC_DIRECTION_TX);
229 } else {
230 netif_carrier_off(dev);
231
232 /* Flush TX FIFO */
233 enable_tx_fifo_drain(adap, pi);
234 }
235 link_report(dev);
236 }
237
238 /**
239 * t3_os_link_changed - handle link status changes
240 * @adapter: the adapter associated with the link change
241 * @port_id: the port index whose limk status has changed
242 * @link_stat: the new status of the link
243 * @speed: the new speed setting
244 * @duplex: the new duplex setting
245 * @pause: the new flow-control setting
246 *
247 * This is the OS-dependent handler for link status changes. The OS
248 * neutral handler takes care of most of the processing for these events,
249 * then calls this handler for any OS-specific processing.
250 */
251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
252 int speed, int duplex, int pause)
253 {
254 struct net_device *dev = adapter->port[port_id];
255 struct port_info *pi = netdev_priv(dev);
256 struct cmac *mac = &pi->mac;
257
258 /* Skip changes from disabled ports. */
259 if (!netif_running(dev))
260 return;
261
262 if (link_stat != netif_carrier_ok(dev)) {
263 if (link_stat) {
264 disable_tx_fifo_drain(adapter, pi);
265
266 t3_mac_enable(mac, MAC_DIRECTION_RX);
267
268 /* Clear local faults */
269 t3_xgm_intr_disable(adapter, pi->port_id);
270 t3_read_reg(adapter, A_XGM_INT_STATUS +
271 pi->mac.offset);
272 t3_write_reg(adapter,
273 A_XGM_INT_CAUSE + pi->mac.offset,
274 F_XGM_INT);
275
276 t3_set_reg_field(adapter,
277 A_XGM_INT_ENABLE + pi->mac.offset,
278 F_XGM_INT, F_XGM_INT);
279 t3_xgm_intr_enable(adapter, pi->port_id);
280
281 netif_carrier_on(dev);
282 } else {
283 netif_carrier_off(dev);
284
285 t3_xgm_intr_disable(adapter, pi->port_id);
286 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
287 t3_set_reg_field(adapter,
288 A_XGM_INT_ENABLE + pi->mac.offset,
289 F_XGM_INT, 0);
290
291 if (is_10G(adapter))
292 pi->phy.ops->power_down(&pi->phy, 1);
293
294 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
295 t3_mac_disable(mac, MAC_DIRECTION_RX);
296 t3_link_start(&pi->phy, mac, &pi->link_config);
297
298 /* Flush TX FIFO */
299 enable_tx_fifo_drain(adapter, pi);
300 }
301
302 link_report(dev);
303 }
304 }
305
306 /**
307 * t3_os_phymod_changed - handle PHY module changes
308 * @phy: the PHY reporting the module change
309 * @mod_type: new module type
310 *
311 * This is the OS-dependent handler for PHY module changes. It is
312 * invoked when a PHY module is removed or inserted for any OS-specific
313 * processing.
314 */
315 void t3_os_phymod_changed(struct adapter *adap, int port_id)
316 {
317 static const char *mod_str[] = {
318 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
319 };
320
321 const struct net_device *dev = adap->port[port_id];
322 const struct port_info *pi = netdev_priv(dev);
323
324 if (pi->phy.modtype == phy_modtype_none)
325 netdev_info(dev, "PHY module unplugged\n");
326 else
327 netdev_info(dev, "%s PHY module inserted\n",
328 mod_str[pi->phy.modtype]);
329 }
330
331 static void cxgb_set_rxmode(struct net_device *dev)
332 {
333 struct port_info *pi = netdev_priv(dev);
334
335 t3_mac_set_rx_mode(&pi->mac, dev);
336 }
337
338 /**
339 * link_start - enable a port
340 * @dev: the device to enable
341 *
342 * Performs the MAC and PHY actions needed to enable a port.
343 */
344 static void link_start(struct net_device *dev)
345 {
346 struct port_info *pi = netdev_priv(dev);
347 struct cmac *mac = &pi->mac;
348
349 t3_mac_reset(mac);
350 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
351 t3_mac_set_mtu(mac, dev->mtu);
352 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
353 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
354 t3_mac_set_rx_mode(mac, dev);
355 t3_link_start(&pi->phy, mac, &pi->link_config);
356 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
357 }
358
359 static inline void cxgb_disable_msi(struct adapter *adapter)
360 {
361 if (adapter->flags & USING_MSIX) {
362 pci_disable_msix(adapter->pdev);
363 adapter->flags &= ~USING_MSIX;
364 } else if (adapter->flags & USING_MSI) {
365 pci_disable_msi(adapter->pdev);
366 adapter->flags &= ~USING_MSI;
367 }
368 }
369
370 /*
371 * Interrupt handler for asynchronous events used with MSI-X.
372 */
373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
374 {
375 t3_slow_intr_handler(cookie);
376 return IRQ_HANDLED;
377 }
378
379 /*
380 * Name the MSI-X interrupts.
381 */
382 static void name_msix_vecs(struct adapter *adap)
383 {
384 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
385
386 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
387 adap->msix_info[0].desc[n] = 0;
388
389 for_each_port(adap, j) {
390 struct net_device *d = adap->port[j];
391 const struct port_info *pi = netdev_priv(d);
392
393 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
394 snprintf(adap->msix_info[msi_idx].desc, n,
395 "%s-%d", d->name, pi->first_qset + i);
396 adap->msix_info[msi_idx].desc[n] = 0;
397 }
398 }
399 }
400
401 static int request_msix_data_irqs(struct adapter *adap)
402 {
403 int i, j, err, qidx = 0;
404
405 for_each_port(adap, i) {
406 int nqsets = adap2pinfo(adap, i)->nqsets;
407
408 for (j = 0; j < nqsets; ++j) {
409 err = request_irq(adap->msix_info[qidx + 1].vec,
410 t3_intr_handler(adap,
411 adap->sge.qs[qidx].
412 rspq.polling), 0,
413 adap->msix_info[qidx + 1].desc,
414 &adap->sge.qs[qidx]);
415 if (err) {
416 while (--qidx >= 0)
417 free_irq(adap->msix_info[qidx + 1].vec,
418 &adap->sge.qs[qidx]);
419 return err;
420 }
421 qidx++;
422 }
423 }
424 return 0;
425 }
426
427 static void free_irq_resources(struct adapter *adapter)
428 {
429 if (adapter->flags & USING_MSIX) {
430 int i, n = 0;
431
432 free_irq(adapter->msix_info[0].vec, adapter);
433 for_each_port(adapter, i)
434 n += adap2pinfo(adapter, i)->nqsets;
435
436 for (i = 0; i < n; ++i)
437 free_irq(adapter->msix_info[i + 1].vec,
438 &adapter->sge.qs[i]);
439 } else
440 free_irq(adapter->pdev->irq, adapter);
441 }
442
443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
444 unsigned long n)
445 {
446 int attempts = 10;
447
448 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
449 if (!--attempts)
450 return -ETIMEDOUT;
451 msleep(10);
452 }
453 return 0;
454 }
455
456 static int init_tp_parity(struct adapter *adap)
457 {
458 int i;
459 struct sk_buff *skb;
460 struct cpl_set_tcb_field *greq;
461 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
462
463 t3_tp_set_offload_mode(adap, 1);
464
465 for (i = 0; i < 16; i++) {
466 struct cpl_smt_write_req *req;
467
468 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
469 if (!skb)
470 skb = adap->nofail_skb;
471 if (!skb)
472 goto alloc_skb_fail;
473
474 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
475 memset(req, 0, sizeof(*req));
476 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
477 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
478 req->mtu_idx = NMTUS - 1;
479 req->iff = i;
480 t3_mgmt_tx(adap, skb);
481 if (skb == adap->nofail_skb) {
482 await_mgmt_replies(adap, cnt, i + 1);
483 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
484 if (!adap->nofail_skb)
485 goto alloc_skb_fail;
486 }
487 }
488
489 for (i = 0; i < 2048; i++) {
490 struct cpl_l2t_write_req *req;
491
492 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
493 if (!skb)
494 skb = adap->nofail_skb;
495 if (!skb)
496 goto alloc_skb_fail;
497
498 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
499 memset(req, 0, sizeof(*req));
500 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
501 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
502 req->params = htonl(V_L2T_W_IDX(i));
503 t3_mgmt_tx(adap, skb);
504 if (skb == adap->nofail_skb) {
505 await_mgmt_replies(adap, cnt, 16 + i + 1);
506 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
507 if (!adap->nofail_skb)
508 goto alloc_skb_fail;
509 }
510 }
511
512 for (i = 0; i < 2048; i++) {
513 struct cpl_rte_write_req *req;
514
515 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
516 if (!skb)
517 skb = adap->nofail_skb;
518 if (!skb)
519 goto alloc_skb_fail;
520
521 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
522 memset(req, 0, sizeof(*req));
523 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
524 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
525 req->l2t_idx = htonl(V_L2T_W_IDX(i));
526 t3_mgmt_tx(adap, skb);
527 if (skb == adap->nofail_skb) {
528 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
529 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
530 if (!adap->nofail_skb)
531 goto alloc_skb_fail;
532 }
533 }
534
535 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
536 if (!skb)
537 skb = adap->nofail_skb;
538 if (!skb)
539 goto alloc_skb_fail;
540
541 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
542 memset(greq, 0, sizeof(*greq));
543 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
544 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
545 greq->mask = cpu_to_be64(1);
546 t3_mgmt_tx(adap, skb);
547
548 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
549 if (skb == adap->nofail_skb) {
550 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
551 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
552 }
553
554 t3_tp_set_offload_mode(adap, 0);
555 return i;
556
557 alloc_skb_fail:
558 t3_tp_set_offload_mode(adap, 0);
559 return -ENOMEM;
560 }
561
562 /**
563 * setup_rss - configure RSS
564 * @adap: the adapter
565 *
566 * Sets up RSS to distribute packets to multiple receive queues. We
567 * configure the RSS CPU lookup table to distribute to the number of HW
568 * receive queues, and the response queue lookup table to narrow that
569 * down to the response queues actually configured for each port.
570 * We always configure the RSS mapping for two ports since the mapping
571 * table has plenty of entries.
572 */
573 static void setup_rss(struct adapter *adap)
574 {
575 int i;
576 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
577 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
578 u8 cpus[SGE_QSETS + 1];
579 u16 rspq_map[RSS_TABLE_SIZE];
580
581 for (i = 0; i < SGE_QSETS; ++i)
582 cpus[i] = i;
583 cpus[SGE_QSETS] = 0xff; /* terminator */
584
585 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
586 rspq_map[i] = i % nq0;
587 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
588 }
589
590 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
591 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
592 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
593 }
594
595 static void ring_dbs(struct adapter *adap)
596 {
597 int i, j;
598
599 for (i = 0; i < SGE_QSETS; i++) {
600 struct sge_qset *qs = &adap->sge.qs[i];
601
602 if (qs->adap)
603 for (j = 0; j < SGE_TXQ_PER_SET; j++)
604 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
605 }
606 }
607
608 static void init_napi(struct adapter *adap)
609 {
610 int i;
611
612 for (i = 0; i < SGE_QSETS; i++) {
613 struct sge_qset *qs = &adap->sge.qs[i];
614
615 if (qs->adap)
616 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
617 64);
618 }
619
620 /*
621 * netif_napi_add() can be called only once per napi_struct because it
622 * adds each new napi_struct to a list. Be careful not to call it a
623 * second time, e.g., during EEH recovery, by making a note of it.
624 */
625 adap->flags |= NAPI_INIT;
626 }
627
628 /*
629 * Wait until all NAPI handlers are descheduled. This includes the handlers of
630 * both netdevices representing interfaces and the dummy ones for the extra
631 * queues.
632 */
633 static void quiesce_rx(struct adapter *adap)
634 {
635 int i;
636
637 for (i = 0; i < SGE_QSETS; i++)
638 if (adap->sge.qs[i].adap)
639 napi_disable(&adap->sge.qs[i].napi);
640 }
641
642 static void enable_all_napi(struct adapter *adap)
643 {
644 int i;
645 for (i = 0; i < SGE_QSETS; i++)
646 if (adap->sge.qs[i].adap)
647 napi_enable(&adap->sge.qs[i].napi);
648 }
649
650 /**
651 * setup_sge_qsets - configure SGE Tx/Rx/response queues
652 * @adap: the adapter
653 *
654 * Determines how many sets of SGE queues to use and initializes them.
655 * We support multiple queue sets per port if we have MSI-X, otherwise
656 * just one queue set per port.
657 */
658 static int setup_sge_qsets(struct adapter *adap)
659 {
660 int i, j, err, irq_idx = 0, qset_idx = 0;
661 unsigned int ntxq = SGE_TXQ_PER_SET;
662
663 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
664 irq_idx = -1;
665
666 for_each_port(adap, i) {
667 struct net_device *dev = adap->port[i];
668 struct port_info *pi = netdev_priv(dev);
669
670 pi->qs = &adap->sge.qs[pi->first_qset];
671 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
672 err = t3_sge_alloc_qset(adap, qset_idx, 1,
673 (adap->flags & USING_MSIX) ? qset_idx + 1 :
674 irq_idx,
675 &adap->params.sge.qset[qset_idx], ntxq, dev,
676 netdev_get_tx_queue(dev, j));
677 if (err) {
678 t3_free_sge_resources(adap);
679 return err;
680 }
681 }
682 }
683
684 return 0;
685 }
686
687 static ssize_t attr_show(struct device *d, char *buf,
688 ssize_t(*format) (struct net_device *, char *))
689 {
690 ssize_t len;
691
692 /* Synchronize with ioctls that may shut down the device */
693 rtnl_lock();
694 len = (*format) (to_net_dev(d), buf);
695 rtnl_unlock();
696 return len;
697 }
698
699 static ssize_t attr_store(struct device *d,
700 const char *buf, size_t len,
701 ssize_t(*set) (struct net_device *, unsigned int),
702 unsigned int min_val, unsigned int max_val)
703 {
704 ssize_t ret;
705 unsigned int val;
706
707 if (!capable(CAP_NET_ADMIN))
708 return -EPERM;
709
710 ret = kstrtouint(buf, 0, &val);
711 if (ret)
712 return ret;
713 if (val < min_val || val > max_val)
714 return -EINVAL;
715
716 rtnl_lock();
717 ret = (*set) (to_net_dev(d), val);
718 if (!ret)
719 ret = len;
720 rtnl_unlock();
721 return ret;
722 }
723
724 #define CXGB3_SHOW(name, val_expr) \
725 static ssize_t format_##name(struct net_device *dev, char *buf) \
726 { \
727 struct port_info *pi = netdev_priv(dev); \
728 struct adapter *adap = pi->adapter; \
729 return sprintf(buf, "%u\n", val_expr); \
730 } \
731 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
732 char *buf) \
733 { \
734 return attr_show(d, buf, format_##name); \
735 }
736
737 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
738 {
739 struct port_info *pi = netdev_priv(dev);
740 struct adapter *adap = pi->adapter;
741 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
742
743 if (adap->flags & FULL_INIT_DONE)
744 return -EBUSY;
745 if (val && adap->params.rev == 0)
746 return -EINVAL;
747 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
748 min_tids)
749 return -EINVAL;
750 adap->params.mc5.nfilters = val;
751 return 0;
752 }
753
754 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
755 const char *buf, size_t len)
756 {
757 return attr_store(d, buf, len, set_nfilters, 0, ~0);
758 }
759
760 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
761 {
762 struct port_info *pi = netdev_priv(dev);
763 struct adapter *adap = pi->adapter;
764
765 if (adap->flags & FULL_INIT_DONE)
766 return -EBUSY;
767 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
768 MC5_MIN_TIDS)
769 return -EINVAL;
770 adap->params.mc5.nservers = val;
771 return 0;
772 }
773
774 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
775 const char *buf, size_t len)
776 {
777 return attr_store(d, buf, len, set_nservers, 0, ~0);
778 }
779
780 #define CXGB3_ATTR_R(name, val_expr) \
781 CXGB3_SHOW(name, val_expr) \
782 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
783
784 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
785 CXGB3_SHOW(name, val_expr) \
786 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
787
788 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
789 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
790 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
791
792 static struct attribute *cxgb3_attrs[] = {
793 &dev_attr_cam_size.attr,
794 &dev_attr_nfilters.attr,
795 &dev_attr_nservers.attr,
796 NULL
797 };
798
799 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
800
801 static ssize_t tm_attr_show(struct device *d,
802 char *buf, int sched)
803 {
804 struct port_info *pi = netdev_priv(to_net_dev(d));
805 struct adapter *adap = pi->adapter;
806 unsigned int v, addr, bpt, cpt;
807 ssize_t len;
808
809 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
810 rtnl_lock();
811 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
812 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
813 if (sched & 1)
814 v >>= 16;
815 bpt = (v >> 8) & 0xff;
816 cpt = v & 0xff;
817 if (!cpt)
818 len = sprintf(buf, "disabled\n");
819 else {
820 v = (adap->params.vpd.cclk * 1000) / cpt;
821 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
822 }
823 rtnl_unlock();
824 return len;
825 }
826
827 static ssize_t tm_attr_store(struct device *d,
828 const char *buf, size_t len, int sched)
829 {
830 struct port_info *pi = netdev_priv(to_net_dev(d));
831 struct adapter *adap = pi->adapter;
832 unsigned int val;
833 ssize_t ret;
834
835 if (!capable(CAP_NET_ADMIN))
836 return -EPERM;
837
838 ret = kstrtouint(buf, 0, &val);
839 if (ret)
840 return ret;
841 if (val > 10000000)
842 return -EINVAL;
843
844 rtnl_lock();
845 ret = t3_config_sched(adap, val, sched);
846 if (!ret)
847 ret = len;
848 rtnl_unlock();
849 return ret;
850 }
851
852 #define TM_ATTR(name, sched) \
853 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
854 char *buf) \
855 { \
856 return tm_attr_show(d, buf, sched); \
857 } \
858 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
859 const char *buf, size_t len) \
860 { \
861 return tm_attr_store(d, buf, len, sched); \
862 } \
863 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
864
865 TM_ATTR(sched0, 0);
866 TM_ATTR(sched1, 1);
867 TM_ATTR(sched2, 2);
868 TM_ATTR(sched3, 3);
869 TM_ATTR(sched4, 4);
870 TM_ATTR(sched5, 5);
871 TM_ATTR(sched6, 6);
872 TM_ATTR(sched7, 7);
873
874 static struct attribute *offload_attrs[] = {
875 &dev_attr_sched0.attr,
876 &dev_attr_sched1.attr,
877 &dev_attr_sched2.attr,
878 &dev_attr_sched3.attr,
879 &dev_attr_sched4.attr,
880 &dev_attr_sched5.attr,
881 &dev_attr_sched6.attr,
882 &dev_attr_sched7.attr,
883 NULL
884 };
885
886 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
887
888 /*
889 * Sends an sk_buff to an offload queue driver
890 * after dealing with any active network taps.
891 */
892 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
893 {
894 int ret;
895
896 local_bh_disable();
897 ret = t3_offload_tx(tdev, skb);
898 local_bh_enable();
899 return ret;
900 }
901
902 static int write_smt_entry(struct adapter *adapter, int idx)
903 {
904 struct cpl_smt_write_req *req;
905 struct port_info *pi = netdev_priv(adapter->port[idx]);
906 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
907
908 if (!skb)
909 return -ENOMEM;
910
911 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
912 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
913 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
914 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
915 req->iff = idx;
916 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
917 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
918 skb->priority = 1;
919 offload_tx(&adapter->tdev, skb);
920 return 0;
921 }
922
923 static int init_smt(struct adapter *adapter)
924 {
925 int i;
926
927 for_each_port(adapter, i)
928 write_smt_entry(adapter, i);
929 return 0;
930 }
931
932 static void init_port_mtus(struct adapter *adapter)
933 {
934 unsigned int mtus = adapter->port[0]->mtu;
935
936 if (adapter->port[1])
937 mtus |= adapter->port[1]->mtu << 16;
938 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
939 }
940
941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
942 int hi, int port)
943 {
944 struct sk_buff *skb;
945 struct mngt_pktsched_wr *req;
946 int ret;
947
948 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
949 if (!skb)
950 skb = adap->nofail_skb;
951 if (!skb)
952 return -ENOMEM;
953
954 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
955 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
956 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
957 req->sched = sched;
958 req->idx = qidx;
959 req->min = lo;
960 req->max = hi;
961 req->binding = port;
962 ret = t3_mgmt_tx(adap, skb);
963 if (skb == adap->nofail_skb) {
964 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
965 GFP_KERNEL);
966 if (!adap->nofail_skb)
967 ret = -ENOMEM;
968 }
969
970 return ret;
971 }
972
973 static int bind_qsets(struct adapter *adap)
974 {
975 int i, j, err = 0;
976
977 for_each_port(adap, i) {
978 const struct port_info *pi = adap2pinfo(adap, i);
979
980 for (j = 0; j < pi->nqsets; ++j) {
981 int ret = send_pktsched_cmd(adap, 1,
982 pi->first_qset + j, -1,
983 -1, i);
984 if (ret)
985 err = ret;
986 }
987 }
988
989 return err;
990 }
991
992 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
993 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
994 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
995 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
996 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
997 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
998 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
999 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1000 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1001 MODULE_FIRMWARE(FW_FNAME);
1002 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1003 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1005 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1007
1008 static inline const char *get_edc_fw_name(int edc_idx)
1009 {
1010 const char *fw_name = NULL;
1011
1012 switch (edc_idx) {
1013 case EDC_OPT_AEL2005:
1014 fw_name = AEL2005_OPT_EDC_NAME;
1015 break;
1016 case EDC_TWX_AEL2005:
1017 fw_name = AEL2005_TWX_EDC_NAME;
1018 break;
1019 case EDC_TWX_AEL2020:
1020 fw_name = AEL2020_TWX_EDC_NAME;
1021 break;
1022 }
1023 return fw_name;
1024 }
1025
1026 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1027 {
1028 struct adapter *adapter = phy->adapter;
1029 const struct firmware *fw;
1030 const char *fw_name;
1031 u32 csum;
1032 const __be32 *p;
1033 u16 *cache = phy->phy_cache;
1034 int i, ret = -EINVAL;
1035
1036 fw_name = get_edc_fw_name(edc_idx);
1037 if (fw_name)
1038 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1039 if (ret < 0) {
1040 dev_err(&adapter->pdev->dev,
1041 "could not upgrade firmware: unable to load %s\n",
1042 fw_name);
1043 return ret;
1044 }
1045
1046 /* check size, take checksum in account */
1047 if (fw->size > size + 4) {
1048 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1049 (unsigned int)fw->size, size + 4);
1050 ret = -EINVAL;
1051 }
1052
1053 /* compute checksum */
1054 p = (const __be32 *)fw->data;
1055 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1056 csum += ntohl(p[i]);
1057
1058 if (csum != 0xffffffff) {
1059 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1060 csum);
1061 ret = -EINVAL;
1062 }
1063
1064 for (i = 0; i < size / 4 ; i++) {
1065 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1066 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1067 }
1068
1069 release_firmware(fw);
1070
1071 return ret;
1072 }
1073
1074 static int upgrade_fw(struct adapter *adap)
1075 {
1076 int ret;
1077 const struct firmware *fw;
1078 struct device *dev = &adap->pdev->dev;
1079
1080 ret = request_firmware(&fw, FW_FNAME, dev);
1081 if (ret < 0) {
1082 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1083 FW_FNAME);
1084 return ret;
1085 }
1086 ret = t3_load_fw(adap, fw->data, fw->size);
1087 release_firmware(fw);
1088
1089 if (ret == 0)
1090 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1091 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1092 else
1093 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1094 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1095
1096 return ret;
1097 }
1098
1099 static inline char t3rev2char(struct adapter *adapter)
1100 {
1101 char rev = 0;
1102
1103 switch(adapter->params.rev) {
1104 case T3_REV_B:
1105 case T3_REV_B2:
1106 rev = 'b';
1107 break;
1108 case T3_REV_C:
1109 rev = 'c';
1110 break;
1111 }
1112 return rev;
1113 }
1114
1115 static int update_tpsram(struct adapter *adap)
1116 {
1117 const struct firmware *tpsram;
1118 char buf[64];
1119 struct device *dev = &adap->pdev->dev;
1120 int ret;
1121 char rev;
1122
1123 rev = t3rev2char(adap);
1124 if (!rev)
1125 return 0;
1126
1127 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1128
1129 ret = request_firmware(&tpsram, buf, dev);
1130 if (ret < 0) {
1131 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1132 buf);
1133 return ret;
1134 }
1135
1136 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1137 if (ret)
1138 goto release_tpsram;
1139
1140 ret = t3_set_proto_sram(adap, tpsram->data);
1141 if (ret == 0)
1142 dev_info(dev,
1143 "successful update of protocol engine "
1144 "to %d.%d.%d\n",
1145 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1146 else
1147 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1148 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1149 if (ret)
1150 dev_err(dev, "loading protocol SRAM failed\n");
1151
1152 release_tpsram:
1153 release_firmware(tpsram);
1154
1155 return ret;
1156 }
1157
1158 /**
1159 * t3_synchronize_rx - wait for current Rx processing on a port to complete
1160 * @adap: the adapter
1161 * @p: the port
1162 *
1163 * Ensures that current Rx processing on any of the queues associated with
1164 * the given port completes before returning. We do this by acquiring and
1165 * releasing the locks of the response queues associated with the port.
1166 */
1167 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1168 {
1169 int i;
1170
1171 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1172 struct sge_rspq *q = &adap->sge.qs[i].rspq;
1173
1174 spin_lock_irq(&q->lock);
1175 spin_unlock_irq(&q->lock);
1176 }
1177 }
1178
1179 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1180 {
1181 struct port_info *pi = netdev_priv(dev);
1182 struct adapter *adapter = pi->adapter;
1183
1184 if (adapter->params.rev > 0) {
1185 t3_set_vlan_accel(adapter, 1 << pi->port_id,
1186 features & NETIF_F_HW_VLAN_CTAG_RX);
1187 } else {
1188 /* single control for all ports */
1189 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1190
1191 for_each_port(adapter, i)
1192 have_vlans |=
1193 adapter->port[i]->features &
1194 NETIF_F_HW_VLAN_CTAG_RX;
1195
1196 t3_set_vlan_accel(adapter, 1, have_vlans);
1197 }
1198 t3_synchronize_rx(adapter, pi);
1199 }
1200
1201 /**
1202 * cxgb_up - enable the adapter
1203 * @adapter: adapter being enabled
1204 *
1205 * Called when the first port is enabled, this function performs the
1206 * actions necessary to make an adapter operational, such as completing
1207 * the initialization of HW modules, and enabling interrupts.
1208 *
1209 * Must be called with the rtnl lock held.
1210 */
1211 static int cxgb_up(struct adapter *adap)
1212 {
1213 int i, err;
1214
1215 if (!(adap->flags & FULL_INIT_DONE)) {
1216 err = t3_check_fw_version(adap);
1217 if (err == -EINVAL) {
1218 err = upgrade_fw(adap);
1219 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1220 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1221 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1222 }
1223
1224 err = t3_check_tpsram_version(adap);
1225 if (err == -EINVAL) {
1226 err = update_tpsram(adap);
1227 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1228 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1229 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1230 }
1231
1232 /*
1233 * Clear interrupts now to catch errors if t3_init_hw fails.
1234 * We clear them again later as initialization may trigger
1235 * conditions that can interrupt.
1236 */
1237 t3_intr_clear(adap);
1238
1239 err = t3_init_hw(adap, 0);
1240 if (err)
1241 goto out;
1242
1243 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1244 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1245
1246 err = setup_sge_qsets(adap);
1247 if (err)
1248 goto out;
1249
1250 for_each_port(adap, i)
1251 cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1252
1253 setup_rss(adap);
1254 if (!(adap->flags & NAPI_INIT))
1255 init_napi(adap);
1256
1257 t3_start_sge_timers(adap);
1258 adap->flags |= FULL_INIT_DONE;
1259 }
1260
1261 t3_intr_clear(adap);
1262
1263 if (adap->flags & USING_MSIX) {
1264 name_msix_vecs(adap);
1265 err = request_irq(adap->msix_info[0].vec,
1266 t3_async_intr_handler, 0,
1267 adap->msix_info[0].desc, adap);
1268 if (err)
1269 goto irq_err;
1270
1271 err = request_msix_data_irqs(adap);
1272 if (err) {
1273 free_irq(adap->msix_info[0].vec, adap);
1274 goto irq_err;
1275 }
1276 } else if ((err = request_irq(adap->pdev->irq,
1277 t3_intr_handler(adap,
1278 adap->sge.qs[0].rspq.
1279 polling),
1280 (adap->flags & USING_MSI) ?
1281 0 : IRQF_SHARED,
1282 adap->name, adap)))
1283 goto irq_err;
1284
1285 enable_all_napi(adap);
1286 t3_sge_start(adap);
1287 t3_intr_enable(adap);
1288
1289 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1290 is_offload(adap) && init_tp_parity(adap) == 0)
1291 adap->flags |= TP_PARITY_INIT;
1292
1293 if (adap->flags & TP_PARITY_INIT) {
1294 t3_write_reg(adap, A_TP_INT_CAUSE,
1295 F_CMCACHEPERR | F_ARPLUTPERR);
1296 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1297 }
1298
1299 if (!(adap->flags & QUEUES_BOUND)) {
1300 int ret = bind_qsets(adap);
1301
1302 if (ret < 0) {
1303 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1304 t3_intr_disable(adap);
1305 free_irq_resources(adap);
1306 err = ret;
1307 goto out;
1308 }
1309 adap->flags |= QUEUES_BOUND;
1310 }
1311
1312 out:
1313 return err;
1314 irq_err:
1315 CH_ERR(adap, "request_irq failed, err %d\n", err);
1316 goto out;
1317 }
1318
1319 /*
1320 * Release resources when all the ports and offloading have been stopped.
1321 */
1322 static void cxgb_down(struct adapter *adapter, int on_wq)
1323 {
1324 t3_sge_stop(adapter);
1325 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1326 t3_intr_disable(adapter);
1327 spin_unlock_irq(&adapter->work_lock);
1328
1329 free_irq_resources(adapter);
1330 quiesce_rx(adapter);
1331 t3_sge_stop(adapter);
1332 if (!on_wq)
1333 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1334 }
1335
1336 static void schedule_chk_task(struct adapter *adap)
1337 {
1338 unsigned int timeo;
1339
1340 timeo = adap->params.linkpoll_period ?
1341 (HZ * adap->params.linkpoll_period) / 10 :
1342 adap->params.stats_update_period * HZ;
1343 if (timeo)
1344 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1345 }
1346
1347 static int offload_open(struct net_device *dev)
1348 {
1349 struct port_info *pi = netdev_priv(dev);
1350 struct adapter *adapter = pi->adapter;
1351 struct t3cdev *tdev = dev2t3cdev(dev);
1352 int adap_up = adapter->open_device_map & PORT_MASK;
1353 int err;
1354
1355 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1356 return 0;
1357
1358 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1359 goto out;
1360
1361 t3_tp_set_offload_mode(adapter, 1);
1362 tdev->lldev = adapter->port[0];
1363 err = cxgb3_offload_activate(adapter);
1364 if (err)
1365 goto out;
1366
1367 init_port_mtus(adapter);
1368 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1369 adapter->params.b_wnd,
1370 adapter->params.rev == 0 ?
1371 adapter->port[0]->mtu : 0xffff);
1372 init_smt(adapter);
1373
1374 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1375 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1376
1377 /* Call back all registered clients */
1378 cxgb3_add_clients(tdev);
1379
1380 out:
1381 /* restore them in case the offload module has changed them */
1382 if (err) {
1383 t3_tp_set_offload_mode(adapter, 0);
1384 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1385 cxgb3_set_dummy_ops(tdev);
1386 }
1387 return err;
1388 }
1389
1390 static int offload_close(struct t3cdev *tdev)
1391 {
1392 struct adapter *adapter = tdev2adap(tdev);
1393 struct t3c_data *td = T3C_DATA(tdev);
1394
1395 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1396 return 0;
1397
1398 /* Call back all registered clients */
1399 cxgb3_remove_clients(tdev);
1400
1401 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1402
1403 /* Flush work scheduled while releasing TIDs */
1404 flush_work(&td->tid_release_task);
1405
1406 tdev->lldev = NULL;
1407 cxgb3_set_dummy_ops(tdev);
1408 t3_tp_set_offload_mode(adapter, 0);
1409 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1410
1411 if (!adapter->open_device_map)
1412 cxgb_down(adapter, 0);
1413
1414 cxgb3_offload_deactivate(adapter);
1415 return 0;
1416 }
1417
1418 static int cxgb_open(struct net_device *dev)
1419 {
1420 struct port_info *pi = netdev_priv(dev);
1421 struct adapter *adapter = pi->adapter;
1422 int other_ports = adapter->open_device_map & PORT_MASK;
1423 int err;
1424
1425 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1426 return err;
1427
1428 set_bit(pi->port_id, &adapter->open_device_map);
1429 if (is_offload(adapter) && !ofld_disable) {
1430 err = offload_open(dev);
1431 if (err)
1432 pr_warn("Could not initialize offload capabilities\n");
1433 }
1434
1435 netif_set_real_num_tx_queues(dev, pi->nqsets);
1436 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1437 if (err)
1438 return err;
1439 link_start(dev);
1440 t3_port_intr_enable(adapter, pi->port_id);
1441 netif_tx_start_all_queues(dev);
1442 if (!other_ports)
1443 schedule_chk_task(adapter);
1444
1445 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1446 return 0;
1447 }
1448
1449 static int __cxgb_close(struct net_device *dev, int on_wq)
1450 {
1451 struct port_info *pi = netdev_priv(dev);
1452 struct adapter *adapter = pi->adapter;
1453
1454
1455 if (!adapter->open_device_map)
1456 return 0;
1457
1458 /* Stop link fault interrupts */
1459 t3_xgm_intr_disable(adapter, pi->port_id);
1460 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1461
1462 t3_port_intr_disable(adapter, pi->port_id);
1463 netif_tx_stop_all_queues(dev);
1464 pi->phy.ops->power_down(&pi->phy, 1);
1465 netif_carrier_off(dev);
1466 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1467
1468 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1469 clear_bit(pi->port_id, &adapter->open_device_map);
1470 spin_unlock_irq(&adapter->work_lock);
1471
1472 if (!(adapter->open_device_map & PORT_MASK))
1473 cancel_delayed_work_sync(&adapter->adap_check_task);
1474
1475 if (!adapter->open_device_map)
1476 cxgb_down(adapter, on_wq);
1477
1478 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1479 return 0;
1480 }
1481
1482 static int cxgb_close(struct net_device *dev)
1483 {
1484 return __cxgb_close(dev, 0);
1485 }
1486
1487 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1488 {
1489 struct port_info *pi = netdev_priv(dev);
1490 struct adapter *adapter = pi->adapter;
1491 struct net_device_stats *ns = &pi->netstats;
1492 const struct mac_stats *pstats;
1493
1494 spin_lock(&adapter->stats_lock);
1495 pstats = t3_mac_update_stats(&pi->mac);
1496 spin_unlock(&adapter->stats_lock);
1497
1498 ns->tx_bytes = pstats->tx_octets;
1499 ns->tx_packets = pstats->tx_frames;
1500 ns->rx_bytes = pstats->rx_octets;
1501 ns->rx_packets = pstats->rx_frames;
1502 ns->multicast = pstats->rx_mcast_frames;
1503
1504 ns->tx_errors = pstats->tx_underrun;
1505 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1506 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1507 pstats->rx_fifo_ovfl;
1508
1509 /* detailed rx_errors */
1510 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1511 ns->rx_over_errors = 0;
1512 ns->rx_crc_errors = pstats->rx_fcs_errs;
1513 ns->rx_frame_errors = pstats->rx_symbol_errs;
1514 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1515 ns->rx_missed_errors = pstats->rx_cong_drops;
1516
1517 /* detailed tx_errors */
1518 ns->tx_aborted_errors = 0;
1519 ns->tx_carrier_errors = 0;
1520 ns->tx_fifo_errors = pstats->tx_underrun;
1521 ns->tx_heartbeat_errors = 0;
1522 ns->tx_window_errors = 0;
1523 return ns;
1524 }
1525
1526 static u32 get_msglevel(struct net_device *dev)
1527 {
1528 struct port_info *pi = netdev_priv(dev);
1529 struct adapter *adapter = pi->adapter;
1530
1531 return adapter->msg_enable;
1532 }
1533
1534 static void set_msglevel(struct net_device *dev, u32 val)
1535 {
1536 struct port_info *pi = netdev_priv(dev);
1537 struct adapter *adapter = pi->adapter;
1538
1539 adapter->msg_enable = val;
1540 }
1541
1542 static const char stats_strings[][ETH_GSTRING_LEN] = {
1543 "TxOctetsOK ",
1544 "TxFramesOK ",
1545 "TxMulticastFramesOK",
1546 "TxBroadcastFramesOK",
1547 "TxPauseFrames ",
1548 "TxUnderrun ",
1549 "TxExtUnderrun ",
1550
1551 "TxFrames64 ",
1552 "TxFrames65To127 ",
1553 "TxFrames128To255 ",
1554 "TxFrames256To511 ",
1555 "TxFrames512To1023 ",
1556 "TxFrames1024To1518 ",
1557 "TxFrames1519ToMax ",
1558
1559 "RxOctetsOK ",
1560 "RxFramesOK ",
1561 "RxMulticastFramesOK",
1562 "RxBroadcastFramesOK",
1563 "RxPauseFrames ",
1564 "RxFCSErrors ",
1565 "RxSymbolErrors ",
1566 "RxShortErrors ",
1567 "RxJabberErrors ",
1568 "RxLengthErrors ",
1569 "RxFIFOoverflow ",
1570
1571 "RxFrames64 ",
1572 "RxFrames65To127 ",
1573 "RxFrames128To255 ",
1574 "RxFrames256To511 ",
1575 "RxFrames512To1023 ",
1576 "RxFrames1024To1518 ",
1577 "RxFrames1519ToMax ",
1578
1579 "PhyFIFOErrors ",
1580 "TSO ",
1581 "VLANextractions ",
1582 "VLANinsertions ",
1583 "TxCsumOffload ",
1584 "RxCsumGood ",
1585 "LroAggregated ",
1586 "LroFlushed ",
1587 "LroNoDesc ",
1588 "RxDrops ",
1589
1590 "CheckTXEnToggled ",
1591 "CheckResets ",
1592
1593 "LinkFaults ",
1594 };
1595
1596 static int get_sset_count(struct net_device *dev, int sset)
1597 {
1598 switch (sset) {
1599 case ETH_SS_STATS:
1600 return ARRAY_SIZE(stats_strings);
1601 default:
1602 return -EOPNOTSUPP;
1603 }
1604 }
1605
1606 #define T3_REGMAP_SIZE (3 * 1024)
1607
1608 static int get_regs_len(struct net_device *dev)
1609 {
1610 return T3_REGMAP_SIZE;
1611 }
1612
1613 static int get_eeprom_len(struct net_device *dev)
1614 {
1615 return EEPROMSIZE;
1616 }
1617
1618 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1619 {
1620 struct port_info *pi = netdev_priv(dev);
1621 struct adapter *adapter = pi->adapter;
1622 u32 fw_vers = 0;
1623 u32 tp_vers = 0;
1624
1625 spin_lock(&adapter->stats_lock);
1626 t3_get_fw_version(adapter, &fw_vers);
1627 t3_get_tp_version(adapter, &tp_vers);
1628 spin_unlock(&adapter->stats_lock);
1629
1630 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1631 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1632 strlcpy(info->bus_info, pci_name(adapter->pdev),
1633 sizeof(info->bus_info));
1634 if (fw_vers)
1635 snprintf(info->fw_version, sizeof(info->fw_version),
1636 "%s %u.%u.%u TP %u.%u.%u",
1637 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1638 G_FW_VERSION_MAJOR(fw_vers),
1639 G_FW_VERSION_MINOR(fw_vers),
1640 G_FW_VERSION_MICRO(fw_vers),
1641 G_TP_VERSION_MAJOR(tp_vers),
1642 G_TP_VERSION_MINOR(tp_vers),
1643 G_TP_VERSION_MICRO(tp_vers));
1644 }
1645
1646 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1647 {
1648 if (stringset == ETH_SS_STATS)
1649 memcpy(data, stats_strings, sizeof(stats_strings));
1650 }
1651
1652 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1653 struct port_info *p, int idx)
1654 {
1655 int i;
1656 unsigned long tot = 0;
1657
1658 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1659 tot += adapter->sge.qs[i].port_stats[idx];
1660 return tot;
1661 }
1662
1663 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1664 u64 *data)
1665 {
1666 struct port_info *pi = netdev_priv(dev);
1667 struct adapter *adapter = pi->adapter;
1668 const struct mac_stats *s;
1669
1670 spin_lock(&adapter->stats_lock);
1671 s = t3_mac_update_stats(&pi->mac);
1672 spin_unlock(&adapter->stats_lock);
1673
1674 *data++ = s->tx_octets;
1675 *data++ = s->tx_frames;
1676 *data++ = s->tx_mcast_frames;
1677 *data++ = s->tx_bcast_frames;
1678 *data++ = s->tx_pause;
1679 *data++ = s->tx_underrun;
1680 *data++ = s->tx_fifo_urun;
1681
1682 *data++ = s->tx_frames_64;
1683 *data++ = s->tx_frames_65_127;
1684 *data++ = s->tx_frames_128_255;
1685 *data++ = s->tx_frames_256_511;
1686 *data++ = s->tx_frames_512_1023;
1687 *data++ = s->tx_frames_1024_1518;
1688 *data++ = s->tx_frames_1519_max;
1689
1690 *data++ = s->rx_octets;
1691 *data++ = s->rx_frames;
1692 *data++ = s->rx_mcast_frames;
1693 *data++ = s->rx_bcast_frames;
1694 *data++ = s->rx_pause;
1695 *data++ = s->rx_fcs_errs;
1696 *data++ = s->rx_symbol_errs;
1697 *data++ = s->rx_short;
1698 *data++ = s->rx_jabber;
1699 *data++ = s->rx_too_long;
1700 *data++ = s->rx_fifo_ovfl;
1701
1702 *data++ = s->rx_frames_64;
1703 *data++ = s->rx_frames_65_127;
1704 *data++ = s->rx_frames_128_255;
1705 *data++ = s->rx_frames_256_511;
1706 *data++ = s->rx_frames_512_1023;
1707 *data++ = s->rx_frames_1024_1518;
1708 *data++ = s->rx_frames_1519_max;
1709
1710 *data++ = pi->phy.fifo_errors;
1711
1712 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1714 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1715 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1716 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1717 *data++ = 0;
1718 *data++ = 0;
1719 *data++ = 0;
1720 *data++ = s->rx_cong_drops;
1721
1722 *data++ = s->num_toggled;
1723 *data++ = s->num_resets;
1724
1725 *data++ = s->link_faults;
1726 }
1727
1728 static inline void reg_block_dump(struct adapter *ap, void *buf,
1729 unsigned int start, unsigned int end)
1730 {
1731 u32 *p = buf + start;
1732
1733 for (; start <= end; start += sizeof(u32))
1734 *p++ = t3_read_reg(ap, start);
1735 }
1736
1737 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1738 void *buf)
1739 {
1740 struct port_info *pi = netdev_priv(dev);
1741 struct adapter *ap = pi->adapter;
1742
1743 /*
1744 * Version scheme:
1745 * bits 0..9: chip version
1746 * bits 10..15: chip revision
1747 * bit 31: set for PCIe cards
1748 */
1749 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1750
1751 /*
1752 * We skip the MAC statistics registers because they are clear-on-read.
1753 * Also reading multi-register stats would need to synchronize with the
1754 * periodic mac stats accumulation. Hard to justify the complexity.
1755 */
1756 memset(buf, 0, T3_REGMAP_SIZE);
1757 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1758 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1759 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1760 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1761 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1762 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1763 XGM_REG(A_XGM_SERDES_STAT3, 1));
1764 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1765 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1766 }
1767
1768 static int restart_autoneg(struct net_device *dev)
1769 {
1770 struct port_info *p = netdev_priv(dev);
1771
1772 if (!netif_running(dev))
1773 return -EAGAIN;
1774 if (p->link_config.autoneg != AUTONEG_ENABLE)
1775 return -EINVAL;
1776 p->phy.ops->autoneg_restart(&p->phy);
1777 return 0;
1778 }
1779
1780 static int set_phys_id(struct net_device *dev,
1781 enum ethtool_phys_id_state state)
1782 {
1783 struct port_info *pi = netdev_priv(dev);
1784 struct adapter *adapter = pi->adapter;
1785
1786 switch (state) {
1787 case ETHTOOL_ID_ACTIVE:
1788 return 1; /* cycle on/off once per second */
1789
1790 case ETHTOOL_ID_OFF:
1791 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1792 break;
1793
1794 case ETHTOOL_ID_ON:
1795 case ETHTOOL_ID_INACTIVE:
1796 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1797 F_GPIO0_OUT_VAL);
1798 }
1799
1800 return 0;
1801 }
1802
1803 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1804 {
1805 struct port_info *p = netdev_priv(dev);
1806
1807 cmd->supported = p->link_config.supported;
1808 cmd->advertising = p->link_config.advertising;
1809
1810 if (netif_carrier_ok(dev)) {
1811 ethtool_cmd_speed_set(cmd, p->link_config.speed);
1812 cmd->duplex = p->link_config.duplex;
1813 } else {
1814 ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1815 cmd->duplex = DUPLEX_UNKNOWN;
1816 }
1817
1818 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1819 cmd->phy_address = p->phy.mdio.prtad;
1820 cmd->transceiver = XCVR_EXTERNAL;
1821 cmd->autoneg = p->link_config.autoneg;
1822 cmd->maxtxpkt = 0;
1823 cmd->maxrxpkt = 0;
1824 return 0;
1825 }
1826
1827 static int speed_duplex_to_caps(int speed, int duplex)
1828 {
1829 int cap = 0;
1830
1831 switch (speed) {
1832 case SPEED_10:
1833 if (duplex == DUPLEX_FULL)
1834 cap = SUPPORTED_10baseT_Full;
1835 else
1836 cap = SUPPORTED_10baseT_Half;
1837 break;
1838 case SPEED_100:
1839 if (duplex == DUPLEX_FULL)
1840 cap = SUPPORTED_100baseT_Full;
1841 else
1842 cap = SUPPORTED_100baseT_Half;
1843 break;
1844 case SPEED_1000:
1845 if (duplex == DUPLEX_FULL)
1846 cap = SUPPORTED_1000baseT_Full;
1847 else
1848 cap = SUPPORTED_1000baseT_Half;
1849 break;
1850 case SPEED_10000:
1851 if (duplex == DUPLEX_FULL)
1852 cap = SUPPORTED_10000baseT_Full;
1853 }
1854 return cap;
1855 }
1856
1857 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1858 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1859 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1860 ADVERTISED_10000baseT_Full)
1861
1862 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1863 {
1864 struct port_info *p = netdev_priv(dev);
1865 struct link_config *lc = &p->link_config;
1866
1867 if (!(lc->supported & SUPPORTED_Autoneg)) {
1868 /*
1869 * PHY offers a single speed/duplex. See if that's what's
1870 * being requested.
1871 */
1872 if (cmd->autoneg == AUTONEG_DISABLE) {
1873 u32 speed = ethtool_cmd_speed(cmd);
1874 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1875 if (lc->supported & cap)
1876 return 0;
1877 }
1878 return -EINVAL;
1879 }
1880
1881 if (cmd->autoneg == AUTONEG_DISABLE) {
1882 u32 speed = ethtool_cmd_speed(cmd);
1883 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1884
1885 if (!(lc->supported & cap) || (speed == SPEED_1000))
1886 return -EINVAL;
1887 lc->requested_speed = speed;
1888 lc->requested_duplex = cmd->duplex;
1889 lc->advertising = 0;
1890 } else {
1891 cmd->advertising &= ADVERTISED_MASK;
1892 cmd->advertising &= lc->supported;
1893 if (!cmd->advertising)
1894 return -EINVAL;
1895 lc->requested_speed = SPEED_INVALID;
1896 lc->requested_duplex = DUPLEX_INVALID;
1897 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1898 }
1899 lc->autoneg = cmd->autoneg;
1900 if (netif_running(dev))
1901 t3_link_start(&p->phy, &p->mac, lc);
1902 return 0;
1903 }
1904
1905 static void get_pauseparam(struct net_device *dev,
1906 struct ethtool_pauseparam *epause)
1907 {
1908 struct port_info *p = netdev_priv(dev);
1909
1910 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1911 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1912 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1913 }
1914
1915 static int set_pauseparam(struct net_device *dev,
1916 struct ethtool_pauseparam *epause)
1917 {
1918 struct port_info *p = netdev_priv(dev);
1919 struct link_config *lc = &p->link_config;
1920
1921 if (epause->autoneg == AUTONEG_DISABLE)
1922 lc->requested_fc = 0;
1923 else if (lc->supported & SUPPORTED_Autoneg)
1924 lc->requested_fc = PAUSE_AUTONEG;
1925 else
1926 return -EINVAL;
1927
1928 if (epause->rx_pause)
1929 lc->requested_fc |= PAUSE_RX;
1930 if (epause->tx_pause)
1931 lc->requested_fc |= PAUSE_TX;
1932 if (lc->autoneg == AUTONEG_ENABLE) {
1933 if (netif_running(dev))
1934 t3_link_start(&p->phy, &p->mac, lc);
1935 } else {
1936 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1937 if (netif_running(dev))
1938 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1939 }
1940 return 0;
1941 }
1942
1943 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1944 {
1945 struct port_info *pi = netdev_priv(dev);
1946 struct adapter *adapter = pi->adapter;
1947 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1948
1949 e->rx_max_pending = MAX_RX_BUFFERS;
1950 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1951 e->tx_max_pending = MAX_TXQ_ENTRIES;
1952
1953 e->rx_pending = q->fl_size;
1954 e->rx_mini_pending = q->rspq_size;
1955 e->rx_jumbo_pending = q->jumbo_size;
1956 e->tx_pending = q->txq_size[0];
1957 }
1958
1959 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1960 {
1961 struct port_info *pi = netdev_priv(dev);
1962 struct adapter *adapter = pi->adapter;
1963 struct qset_params *q;
1964 int i;
1965
1966 if (e->rx_pending > MAX_RX_BUFFERS ||
1967 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1968 e->tx_pending > MAX_TXQ_ENTRIES ||
1969 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1970 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1971 e->rx_pending < MIN_FL_ENTRIES ||
1972 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1973 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1974 return -EINVAL;
1975
1976 if (adapter->flags & FULL_INIT_DONE)
1977 return -EBUSY;
1978
1979 q = &adapter->params.sge.qset[pi->first_qset];
1980 for (i = 0; i < pi->nqsets; ++i, ++q) {
1981 q->rspq_size = e->rx_mini_pending;
1982 q->fl_size = e->rx_pending;
1983 q->jumbo_size = e->rx_jumbo_pending;
1984 q->txq_size[0] = e->tx_pending;
1985 q->txq_size[1] = e->tx_pending;
1986 q->txq_size[2] = e->tx_pending;
1987 }
1988 return 0;
1989 }
1990
1991 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1992 {
1993 struct port_info *pi = netdev_priv(dev);
1994 struct adapter *adapter = pi->adapter;
1995 struct qset_params *qsp;
1996 struct sge_qset *qs;
1997 int i;
1998
1999 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2000 return -EINVAL;
2001
2002 for (i = 0; i < pi->nqsets; i++) {
2003 qsp = &adapter->params.sge.qset[i];
2004 qs = &adapter->sge.qs[i];
2005 qsp->coalesce_usecs = c->rx_coalesce_usecs;
2006 t3_update_qset_coalesce(qs, qsp);
2007 }
2008
2009 return 0;
2010 }
2011
2012 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2013 {
2014 struct port_info *pi = netdev_priv(dev);
2015 struct adapter *adapter = pi->adapter;
2016 struct qset_params *q = adapter->params.sge.qset;
2017
2018 c->rx_coalesce_usecs = q->coalesce_usecs;
2019 return 0;
2020 }
2021
2022 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2023 u8 * data)
2024 {
2025 struct port_info *pi = netdev_priv(dev);
2026 struct adapter *adapter = pi->adapter;
2027 int i, err = 0;
2028
2029 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2030 if (!buf)
2031 return -ENOMEM;
2032
2033 e->magic = EEPROM_MAGIC;
2034 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2035 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2036
2037 if (!err)
2038 memcpy(data, buf + e->offset, e->len);
2039 kfree(buf);
2040 return err;
2041 }
2042
2043 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2044 u8 * data)
2045 {
2046 struct port_info *pi = netdev_priv(dev);
2047 struct adapter *adapter = pi->adapter;
2048 u32 aligned_offset, aligned_len;
2049 __le32 *p;
2050 u8 *buf;
2051 int err;
2052
2053 if (eeprom->magic != EEPROM_MAGIC)
2054 return -EINVAL;
2055
2056 aligned_offset = eeprom->offset & ~3;
2057 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2058
2059 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2060 buf = kmalloc(aligned_len, GFP_KERNEL);
2061 if (!buf)
2062 return -ENOMEM;
2063 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2064 if (!err && aligned_len > 4)
2065 err = t3_seeprom_read(adapter,
2066 aligned_offset + aligned_len - 4,
2067 (__le32 *) & buf[aligned_len - 4]);
2068 if (err)
2069 goto out;
2070 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2071 } else
2072 buf = data;
2073
2074 err = t3_seeprom_wp(adapter, 0);
2075 if (err)
2076 goto out;
2077
2078 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2079 err = t3_seeprom_write(adapter, aligned_offset, *p);
2080 aligned_offset += 4;
2081 }
2082
2083 if (!err)
2084 err = t3_seeprom_wp(adapter, 1);
2085 out:
2086 if (buf != data)
2087 kfree(buf);
2088 return err;
2089 }
2090
2091 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2092 {
2093 wol->supported = 0;
2094 wol->wolopts = 0;
2095 memset(&wol->sopass, 0, sizeof(wol->sopass));
2096 }
2097
2098 static const struct ethtool_ops cxgb_ethtool_ops = {
2099 .get_settings = get_settings,
2100 .set_settings = set_settings,
2101 .get_drvinfo = get_drvinfo,
2102 .get_msglevel = get_msglevel,
2103 .set_msglevel = set_msglevel,
2104 .get_ringparam = get_sge_param,
2105 .set_ringparam = set_sge_param,
2106 .get_coalesce = get_coalesce,
2107 .set_coalesce = set_coalesce,
2108 .get_eeprom_len = get_eeprom_len,
2109 .get_eeprom = get_eeprom,
2110 .set_eeprom = set_eeprom,
2111 .get_pauseparam = get_pauseparam,
2112 .set_pauseparam = set_pauseparam,
2113 .get_link = ethtool_op_get_link,
2114 .get_strings = get_strings,
2115 .set_phys_id = set_phys_id,
2116 .nway_reset = restart_autoneg,
2117 .get_sset_count = get_sset_count,
2118 .get_ethtool_stats = get_stats,
2119 .get_regs_len = get_regs_len,
2120 .get_regs = get_regs,
2121 .get_wol = get_wol,
2122 };
2123
2124 static int in_range(int val, int lo, int hi)
2125 {
2126 return val < 0 || (val <= hi && val >= lo);
2127 }
2128
2129 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2130 {
2131 struct port_info *pi = netdev_priv(dev);
2132 struct adapter *adapter = pi->adapter;
2133 u32 cmd;
2134 int ret;
2135
2136 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2137 return -EFAULT;
2138
2139 switch (cmd) {
2140 case CHELSIO_SET_QSET_PARAMS:{
2141 int i;
2142 struct qset_params *q;
2143 struct ch_qset_params t;
2144 int q1 = pi->first_qset;
2145 int nqsets = pi->nqsets;
2146
2147 if (!capable(CAP_NET_ADMIN))
2148 return -EPERM;
2149 if (copy_from_user(&t, useraddr, sizeof(t)))
2150 return -EFAULT;
2151 if (t.qset_idx >= SGE_QSETS)
2152 return -EINVAL;
2153 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2154 !in_range(t.cong_thres, 0, 255) ||
2155 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2156 MAX_TXQ_ENTRIES) ||
2157 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2158 MAX_TXQ_ENTRIES) ||
2159 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2160 MAX_CTRL_TXQ_ENTRIES) ||
2161 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2162 MAX_RX_BUFFERS) ||
2163 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2164 MAX_RX_JUMBO_BUFFERS) ||
2165 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2166 MAX_RSPQ_ENTRIES))
2167 return -EINVAL;
2168
2169 if ((adapter->flags & FULL_INIT_DONE) &&
2170 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2171 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2172 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2173 t.polling >= 0 || t.cong_thres >= 0))
2174 return -EBUSY;
2175
2176 /* Allow setting of any available qset when offload enabled */
2177 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2178 q1 = 0;
2179 for_each_port(adapter, i) {
2180 pi = adap2pinfo(adapter, i);
2181 nqsets += pi->first_qset + pi->nqsets;
2182 }
2183 }
2184
2185 if (t.qset_idx < q1)
2186 return -EINVAL;
2187 if (t.qset_idx > q1 + nqsets - 1)
2188 return -EINVAL;
2189
2190 q = &adapter->params.sge.qset[t.qset_idx];
2191
2192 if (t.rspq_size >= 0)
2193 q->rspq_size = t.rspq_size;
2194 if (t.fl_size[0] >= 0)
2195 q->fl_size = t.fl_size[0];
2196 if (t.fl_size[1] >= 0)
2197 q->jumbo_size = t.fl_size[1];
2198 if (t.txq_size[0] >= 0)
2199 q->txq_size[0] = t.txq_size[0];
2200 if (t.txq_size[1] >= 0)
2201 q->txq_size[1] = t.txq_size[1];
2202 if (t.txq_size[2] >= 0)
2203 q->txq_size[2] = t.txq_size[2];
2204 if (t.cong_thres >= 0)
2205 q->cong_thres = t.cong_thres;
2206 if (t.intr_lat >= 0) {
2207 struct sge_qset *qs =
2208 &adapter->sge.qs[t.qset_idx];
2209
2210 q->coalesce_usecs = t.intr_lat;
2211 t3_update_qset_coalesce(qs, q);
2212 }
2213 if (t.polling >= 0) {
2214 if (adapter->flags & USING_MSIX)
2215 q->polling = t.polling;
2216 else {
2217 /* No polling with INTx for T3A */
2218 if (adapter->params.rev == 0 &&
2219 !(adapter->flags & USING_MSI))
2220 t.polling = 0;
2221
2222 for (i = 0; i < SGE_QSETS; i++) {
2223 q = &adapter->params.sge.
2224 qset[i];
2225 q->polling = t.polling;
2226 }
2227 }
2228 }
2229
2230 if (t.lro >= 0) {
2231 if (t.lro)
2232 dev->wanted_features |= NETIF_F_GRO;
2233 else
2234 dev->wanted_features &= ~NETIF_F_GRO;
2235 netdev_update_features(dev);
2236 }
2237
2238 break;
2239 }
2240 case CHELSIO_GET_QSET_PARAMS:{
2241 struct qset_params *q;
2242 struct ch_qset_params t;
2243 int q1 = pi->first_qset;
2244 int nqsets = pi->nqsets;
2245 int i;
2246
2247 if (copy_from_user(&t, useraddr, sizeof(t)))
2248 return -EFAULT;
2249
2250 /* Display qsets for all ports when offload enabled */
2251 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2252 q1 = 0;
2253 for_each_port(adapter, i) {
2254 pi = adap2pinfo(adapter, i);
2255 nqsets = pi->first_qset + pi->nqsets;
2256 }
2257 }
2258
2259 if (t.qset_idx >= nqsets)
2260 return -EINVAL;
2261
2262 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2263 t.rspq_size = q->rspq_size;
2264 t.txq_size[0] = q->txq_size[0];
2265 t.txq_size[1] = q->txq_size[1];
2266 t.txq_size[2] = q->txq_size[2];
2267 t.fl_size[0] = q->fl_size;
2268 t.fl_size[1] = q->jumbo_size;
2269 t.polling = q->polling;
2270 t.lro = !!(dev->features & NETIF_F_GRO);
2271 t.intr_lat = q->coalesce_usecs;
2272 t.cong_thres = q->cong_thres;
2273 t.qnum = q1;
2274
2275 if (adapter->flags & USING_MSIX)
2276 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2277 else
2278 t.vector = adapter->pdev->irq;
2279
2280 if (copy_to_user(useraddr, &t, sizeof(t)))
2281 return -EFAULT;
2282 break;
2283 }
2284 case CHELSIO_SET_QSET_NUM:{
2285 struct ch_reg edata;
2286 unsigned int i, first_qset = 0, other_qsets = 0;
2287
2288 if (!capable(CAP_NET_ADMIN))
2289 return -EPERM;
2290 if (adapter->flags & FULL_INIT_DONE)
2291 return -EBUSY;
2292 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2293 return -EFAULT;
2294 if (edata.val < 1 ||
2295 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2296 return -EINVAL;
2297
2298 for_each_port(adapter, i)
2299 if (adapter->port[i] && adapter->port[i] != dev)
2300 other_qsets += adap2pinfo(adapter, i)->nqsets;
2301
2302 if (edata.val + other_qsets > SGE_QSETS)
2303 return -EINVAL;
2304
2305 pi->nqsets = edata.val;
2306
2307 for_each_port(adapter, i)
2308 if (adapter->port[i]) {
2309 pi = adap2pinfo(adapter, i);
2310 pi->first_qset = first_qset;
2311 first_qset += pi->nqsets;
2312 }
2313 break;
2314 }
2315 case CHELSIO_GET_QSET_NUM:{
2316 struct ch_reg edata;
2317
2318 memset(&edata, 0, sizeof(struct ch_reg));
2319
2320 edata.cmd = CHELSIO_GET_QSET_NUM;
2321 edata.val = pi->nqsets;
2322 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2323 return -EFAULT;
2324 break;
2325 }
2326 case CHELSIO_LOAD_FW:{
2327 u8 *fw_data;
2328 struct ch_mem_range t;
2329
2330 if (!capable(CAP_SYS_RAWIO))
2331 return -EPERM;
2332 if (copy_from_user(&t, useraddr, sizeof(t)))
2333 return -EFAULT;
2334 /* Check t.len sanity ? */
2335 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2336 if (IS_ERR(fw_data))
2337 return PTR_ERR(fw_data);
2338
2339 ret = t3_load_fw(adapter, fw_data, t.len);
2340 kfree(fw_data);
2341 if (ret)
2342 return ret;
2343 break;
2344 }
2345 case CHELSIO_SETMTUTAB:{
2346 struct ch_mtus m;
2347 int i;
2348
2349 if (!is_offload(adapter))
2350 return -EOPNOTSUPP;
2351 if (!capable(CAP_NET_ADMIN))
2352 return -EPERM;
2353 if (offload_running(adapter))
2354 return -EBUSY;
2355 if (copy_from_user(&m, useraddr, sizeof(m)))
2356 return -EFAULT;
2357 if (m.nmtus != NMTUS)
2358 return -EINVAL;
2359 if (m.mtus[0] < 81) /* accommodate SACK */
2360 return -EINVAL;
2361
2362 /* MTUs must be in ascending order */
2363 for (i = 1; i < NMTUS; ++i)
2364 if (m.mtus[i] < m.mtus[i - 1])
2365 return -EINVAL;
2366
2367 memcpy(adapter->params.mtus, m.mtus,
2368 sizeof(adapter->params.mtus));
2369 break;
2370 }
2371 case CHELSIO_GET_PM:{
2372 struct tp_params *p = &adapter->params.tp;
2373 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2374
2375 if (!is_offload(adapter))
2376 return -EOPNOTSUPP;
2377 m.tx_pg_sz = p->tx_pg_size;
2378 m.tx_num_pg = p->tx_num_pgs;
2379 m.rx_pg_sz = p->rx_pg_size;
2380 m.rx_num_pg = p->rx_num_pgs;
2381 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2382 if (copy_to_user(useraddr, &m, sizeof(m)))
2383 return -EFAULT;
2384 break;
2385 }
2386 case CHELSIO_SET_PM:{
2387 struct ch_pm m;
2388 struct tp_params *p = &adapter->params.tp;
2389
2390 if (!is_offload(adapter))
2391 return -EOPNOTSUPP;
2392 if (!capable(CAP_NET_ADMIN))
2393 return -EPERM;
2394 if (adapter->flags & FULL_INIT_DONE)
2395 return -EBUSY;
2396 if (copy_from_user(&m, useraddr, sizeof(m)))
2397 return -EFAULT;
2398 if (!is_power_of_2(m.rx_pg_sz) ||
2399 !is_power_of_2(m.tx_pg_sz))
2400 return -EINVAL; /* not power of 2 */
2401 if (!(m.rx_pg_sz & 0x14000))
2402 return -EINVAL; /* not 16KB or 64KB */
2403 if (!(m.tx_pg_sz & 0x1554000))
2404 return -EINVAL;
2405 if (m.tx_num_pg == -1)
2406 m.tx_num_pg = p->tx_num_pgs;
2407 if (m.rx_num_pg == -1)
2408 m.rx_num_pg = p->rx_num_pgs;
2409 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2410 return -EINVAL;
2411 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2412 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2413 return -EINVAL;
2414 p->rx_pg_size = m.rx_pg_sz;
2415 p->tx_pg_size = m.tx_pg_sz;
2416 p->rx_num_pgs = m.rx_num_pg;
2417 p->tx_num_pgs = m.tx_num_pg;
2418 break;
2419 }
2420 case CHELSIO_GET_MEM:{
2421 struct ch_mem_range t;
2422 struct mc7 *mem;
2423 u64 buf[32];
2424
2425 if (!is_offload(adapter))
2426 return -EOPNOTSUPP;
2427 if (!(adapter->flags & FULL_INIT_DONE))
2428 return -EIO; /* need the memory controllers */
2429 if (copy_from_user(&t, useraddr, sizeof(t)))
2430 return -EFAULT;
2431 if ((t.addr & 7) || (t.len & 7))
2432 return -EINVAL;
2433 if (t.mem_id == MEM_CM)
2434 mem = &adapter->cm;
2435 else if (t.mem_id == MEM_PMRX)
2436 mem = &adapter->pmrx;
2437 else if (t.mem_id == MEM_PMTX)
2438 mem = &adapter->pmtx;
2439 else
2440 return -EINVAL;
2441
2442 /*
2443 * Version scheme:
2444 * bits 0..9: chip version
2445 * bits 10..15: chip revision
2446 */
2447 t.version = 3 | (adapter->params.rev << 10);
2448 if (copy_to_user(useraddr, &t, sizeof(t)))
2449 return -EFAULT;
2450
2451 /*
2452 * Read 256 bytes at a time as len can be large and we don't
2453 * want to use huge intermediate buffers.
2454 */
2455 useraddr += sizeof(t); /* advance to start of buffer */
2456 while (t.len) {
2457 unsigned int chunk =
2458 min_t(unsigned int, t.len, sizeof(buf));
2459
2460 ret =
2461 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2462 buf);
2463 if (ret)
2464 return ret;
2465 if (copy_to_user(useraddr, buf, chunk))
2466 return -EFAULT;
2467 useraddr += chunk;
2468 t.addr += chunk;
2469 t.len -= chunk;
2470 }
2471 break;
2472 }
2473 case CHELSIO_SET_TRACE_FILTER:{
2474 struct ch_trace t;
2475 const struct trace_params *tp;
2476
2477 if (!capable(CAP_NET_ADMIN))
2478 return -EPERM;
2479 if (!offload_running(adapter))
2480 return -EAGAIN;
2481 if (copy_from_user(&t, useraddr, sizeof(t)))
2482 return -EFAULT;
2483
2484 tp = (const struct trace_params *)&t.sip;
2485 if (t.config_tx)
2486 t3_config_trace_filter(adapter, tp, 0,
2487 t.invert_match,
2488 t.trace_tx);
2489 if (t.config_rx)
2490 t3_config_trace_filter(adapter, tp, 1,
2491 t.invert_match,
2492 t.trace_rx);
2493 break;
2494 }
2495 default:
2496 return -EOPNOTSUPP;
2497 }
2498 return 0;
2499 }
2500
2501 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2502 {
2503 struct mii_ioctl_data *data = if_mii(req);
2504 struct port_info *pi = netdev_priv(dev);
2505 struct adapter *adapter = pi->adapter;
2506
2507 switch (cmd) {
2508 case SIOCGMIIREG:
2509 case SIOCSMIIREG:
2510 /* Convert phy_id from older PRTAD/DEVAD format */
2511 if (is_10G(adapter) &&
2512 !mdio_phy_id_is_c45(data->phy_id) &&
2513 (data->phy_id & 0x1f00) &&
2514 !(data->phy_id & 0xe0e0))
2515 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2516 data->phy_id & 0x1f);
2517 /* FALLTHRU */
2518 case SIOCGMIIPHY:
2519 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2520 case SIOCCHIOCTL:
2521 return cxgb_extension_ioctl(dev, req->ifr_data);
2522 default:
2523 return -EOPNOTSUPP;
2524 }
2525 }
2526
2527 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2528 {
2529 struct port_info *pi = netdev_priv(dev);
2530 struct adapter *adapter = pi->adapter;
2531 int ret;
2532
2533 if (new_mtu < 81) /* accommodate SACK */
2534 return -EINVAL;
2535 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2536 return ret;
2537 dev->mtu = new_mtu;
2538 init_port_mtus(adapter);
2539 if (adapter->params.rev == 0 && offload_running(adapter))
2540 t3_load_mtus(adapter, adapter->params.mtus,
2541 adapter->params.a_wnd, adapter->params.b_wnd,
2542 adapter->port[0]->mtu);
2543 return 0;
2544 }
2545
2546 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2547 {
2548 struct port_info *pi = netdev_priv(dev);
2549 struct adapter *adapter = pi->adapter;
2550 struct sockaddr *addr = p;
2551
2552 if (!is_valid_ether_addr(addr->sa_data))
2553 return -EADDRNOTAVAIL;
2554
2555 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2556 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2557 if (offload_running(adapter))
2558 write_smt_entry(adapter, pi->port_id);
2559 return 0;
2560 }
2561
2562 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2563 netdev_features_t features)
2564 {
2565 /*
2566 * Since there is no support for separate rx/tx vlan accel
2567 * enable/disable make sure tx flag is always in same state as rx.
2568 */
2569 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2570 features |= NETIF_F_HW_VLAN_CTAG_TX;
2571 else
2572 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2573
2574 return features;
2575 }
2576
2577 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2578 {
2579 netdev_features_t changed = dev->features ^ features;
2580
2581 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2582 cxgb_vlan_mode(dev, features);
2583
2584 return 0;
2585 }
2586
2587 #ifdef CONFIG_NET_POLL_CONTROLLER
2588 static void cxgb_netpoll(struct net_device *dev)
2589 {
2590 struct port_info *pi = netdev_priv(dev);
2591 struct adapter *adapter = pi->adapter;
2592 int qidx;
2593
2594 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2595 struct sge_qset *qs = &adapter->sge.qs[qidx];
2596 void *source;
2597
2598 if (adapter->flags & USING_MSIX)
2599 source = qs;
2600 else
2601 source = adapter;
2602
2603 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2604 }
2605 }
2606 #endif
2607
2608 /*
2609 * Periodic accumulation of MAC statistics.
2610 */
2611 static void mac_stats_update(struct adapter *adapter)
2612 {
2613 int i;
2614
2615 for_each_port(adapter, i) {
2616 struct net_device *dev = adapter->port[i];
2617 struct port_info *p = netdev_priv(dev);
2618
2619 if (netif_running(dev)) {
2620 spin_lock(&adapter->stats_lock);
2621 t3_mac_update_stats(&p->mac);
2622 spin_unlock(&adapter->stats_lock);
2623 }
2624 }
2625 }
2626
2627 static void check_link_status(struct adapter *adapter)
2628 {
2629 int i;
2630
2631 for_each_port(adapter, i) {
2632 struct net_device *dev = adapter->port[i];
2633 struct port_info *p = netdev_priv(dev);
2634 int link_fault;
2635
2636 spin_lock_irq(&adapter->work_lock);
2637 link_fault = p->link_fault;
2638 spin_unlock_irq(&adapter->work_lock);
2639
2640 if (link_fault) {
2641 t3_link_fault(adapter, i);
2642 continue;
2643 }
2644
2645 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2646 t3_xgm_intr_disable(adapter, i);
2647 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2648
2649 t3_link_changed(adapter, i);
2650 t3_xgm_intr_enable(adapter, i);
2651 }
2652 }
2653 }
2654
2655 static void check_t3b2_mac(struct adapter *adapter)
2656 {
2657 int i;
2658
2659 if (!rtnl_trylock()) /* synchronize with ifdown */
2660 return;
2661
2662 for_each_port(adapter, i) {
2663 struct net_device *dev = adapter->port[i];
2664 struct port_info *p = netdev_priv(dev);
2665 int status;
2666
2667 if (!netif_running(dev))
2668 continue;
2669
2670 status = 0;
2671 if (netif_running(dev) && netif_carrier_ok(dev))
2672 status = t3b2_mac_watchdog_task(&p->mac);
2673 if (status == 1)
2674 p->mac.stats.num_toggled++;
2675 else if (status == 2) {
2676 struct cmac *mac = &p->mac;
2677
2678 t3_mac_set_mtu(mac, dev->mtu);
2679 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2680 cxgb_set_rxmode(dev);
2681 t3_link_start(&p->phy, mac, &p->link_config);
2682 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2683 t3_port_intr_enable(adapter, p->port_id);
2684 p->mac.stats.num_resets++;
2685 }
2686 }
2687 rtnl_unlock();
2688 }
2689
2690
2691 static void t3_adap_check_task(struct work_struct *work)
2692 {
2693 struct adapter *adapter = container_of(work, struct adapter,
2694 adap_check_task.work);
2695 const struct adapter_params *p = &adapter->params;
2696 int port;
2697 unsigned int v, status, reset;
2698
2699 adapter->check_task_cnt++;
2700
2701 check_link_status(adapter);
2702
2703 /* Accumulate MAC stats if needed */
2704 if (!p->linkpoll_period ||
2705 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2706 p->stats_update_period) {
2707 mac_stats_update(adapter);
2708 adapter->check_task_cnt = 0;
2709 }
2710
2711 if (p->rev == T3_REV_B2)
2712 check_t3b2_mac(adapter);
2713
2714 /*
2715 * Scan the XGMAC's to check for various conditions which we want to
2716 * monitor in a periodic polling manner rather than via an interrupt
2717 * condition. This is used for conditions which would otherwise flood
2718 * the system with interrupts and we only really need to know that the
2719 * conditions are "happening" ... For each condition we count the
2720 * detection of the condition and reset it for the next polling loop.
2721 */
2722 for_each_port(adapter, port) {
2723 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2724 u32 cause;
2725
2726 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2727 reset = 0;
2728 if (cause & F_RXFIFO_OVERFLOW) {
2729 mac->stats.rx_fifo_ovfl++;
2730 reset |= F_RXFIFO_OVERFLOW;
2731 }
2732
2733 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2734 }
2735
2736 /*
2737 * We do the same as above for FL_EMPTY interrupts.
2738 */
2739 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2740 reset = 0;
2741
2742 if (status & F_FLEMPTY) {
2743 struct sge_qset *qs = &adapter->sge.qs[0];
2744 int i = 0;
2745
2746 reset |= F_FLEMPTY;
2747
2748 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2749 0xffff;
2750
2751 while (v) {
2752 qs->fl[i].empty += (v & 1);
2753 if (i)
2754 qs++;
2755 i ^= 1;
2756 v >>= 1;
2757 }
2758 }
2759
2760 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2761
2762 /* Schedule the next check update if any port is active. */
2763 spin_lock_irq(&adapter->work_lock);
2764 if (adapter->open_device_map & PORT_MASK)
2765 schedule_chk_task(adapter);
2766 spin_unlock_irq(&adapter->work_lock);
2767 }
2768
2769 static void db_full_task(struct work_struct *work)
2770 {
2771 struct adapter *adapter = container_of(work, struct adapter,
2772 db_full_task);
2773
2774 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2775 }
2776
2777 static void db_empty_task(struct work_struct *work)
2778 {
2779 struct adapter *adapter = container_of(work, struct adapter,
2780 db_empty_task);
2781
2782 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2783 }
2784
2785 static void db_drop_task(struct work_struct *work)
2786 {
2787 struct adapter *adapter = container_of(work, struct adapter,
2788 db_drop_task);
2789 unsigned long delay = 1000;
2790 unsigned short r;
2791
2792 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2793
2794 /*
2795 * Sleep a while before ringing the driver qset dbs.
2796 * The delay is between 1000-2023 usecs.
2797 */
2798 get_random_bytes(&r, 2);
2799 delay += r & 1023;
2800 set_current_state(TASK_UNINTERRUPTIBLE);
2801 schedule_timeout(usecs_to_jiffies(delay));
2802 ring_dbs(adapter);
2803 }
2804
2805 /*
2806 * Processes external (PHY) interrupts in process context.
2807 */
2808 static void ext_intr_task(struct work_struct *work)
2809 {
2810 struct adapter *adapter = container_of(work, struct adapter,
2811 ext_intr_handler_task);
2812 int i;
2813
2814 /* Disable link fault interrupts */
2815 for_each_port(adapter, i) {
2816 struct net_device *dev = adapter->port[i];
2817 struct port_info *p = netdev_priv(dev);
2818
2819 t3_xgm_intr_disable(adapter, i);
2820 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2821 }
2822
2823 /* Re-enable link fault interrupts */
2824 t3_phy_intr_handler(adapter);
2825
2826 for_each_port(adapter, i)
2827 t3_xgm_intr_enable(adapter, i);
2828
2829 /* Now reenable external interrupts */
2830 spin_lock_irq(&adapter->work_lock);
2831 if (adapter->slow_intr_mask) {
2832 adapter->slow_intr_mask |= F_T3DBG;
2833 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2834 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2835 adapter->slow_intr_mask);
2836 }
2837 spin_unlock_irq(&adapter->work_lock);
2838 }
2839
2840 /*
2841 * Interrupt-context handler for external (PHY) interrupts.
2842 */
2843 void t3_os_ext_intr_handler(struct adapter *adapter)
2844 {
2845 /*
2846 * Schedule a task to handle external interrupts as they may be slow
2847 * and we use a mutex to protect MDIO registers. We disable PHY
2848 * interrupts in the meantime and let the task reenable them when
2849 * it's done.
2850 */
2851 spin_lock(&adapter->work_lock);
2852 if (adapter->slow_intr_mask) {
2853 adapter->slow_intr_mask &= ~F_T3DBG;
2854 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2855 adapter->slow_intr_mask);
2856 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2857 }
2858 spin_unlock(&adapter->work_lock);
2859 }
2860
2861 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2862 {
2863 struct net_device *netdev = adapter->port[port_id];
2864 struct port_info *pi = netdev_priv(netdev);
2865
2866 spin_lock(&adapter->work_lock);
2867 pi->link_fault = 1;
2868 spin_unlock(&adapter->work_lock);
2869 }
2870
2871 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2872 {
2873 int i, ret = 0;
2874
2875 if (is_offload(adapter) &&
2876 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2877 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2878 offload_close(&adapter->tdev);
2879 }
2880
2881 /* Stop all ports */
2882 for_each_port(adapter, i) {
2883 struct net_device *netdev = adapter->port[i];
2884
2885 if (netif_running(netdev))
2886 __cxgb_close(netdev, on_wq);
2887 }
2888
2889 /* Stop SGE timers */
2890 t3_stop_sge_timers(adapter);
2891
2892 adapter->flags &= ~FULL_INIT_DONE;
2893
2894 if (reset)
2895 ret = t3_reset_adapter(adapter);
2896
2897 pci_disable_device(adapter->pdev);
2898
2899 return ret;
2900 }
2901
2902 static int t3_reenable_adapter(struct adapter *adapter)
2903 {
2904 if (pci_enable_device(adapter->pdev)) {
2905 dev_err(&adapter->pdev->dev,
2906 "Cannot re-enable PCI device after reset.\n");
2907 goto err;
2908 }
2909 pci_set_master(adapter->pdev);
2910 pci_restore_state(adapter->pdev);
2911 pci_save_state(adapter->pdev);
2912
2913 /* Free sge resources */
2914 t3_free_sge_resources(adapter);
2915
2916 if (t3_replay_prep_adapter(adapter))
2917 goto err;
2918
2919 return 0;
2920 err:
2921 return -1;
2922 }
2923
2924 static void t3_resume_ports(struct adapter *adapter)
2925 {
2926 int i;
2927
2928 /* Restart the ports */
2929 for_each_port(adapter, i) {
2930 struct net_device *netdev = adapter->port[i];
2931
2932 if (netif_running(netdev)) {
2933 if (cxgb_open(netdev)) {
2934 dev_err(&adapter->pdev->dev,
2935 "can't bring device back up"
2936 " after reset\n");
2937 continue;
2938 }
2939 }
2940 }
2941
2942 if (is_offload(adapter) && !ofld_disable)
2943 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2944 }
2945
2946 /*
2947 * processes a fatal error.
2948 * Bring the ports down, reset the chip, bring the ports back up.
2949 */
2950 static void fatal_error_task(struct work_struct *work)
2951 {
2952 struct adapter *adapter = container_of(work, struct adapter,
2953 fatal_error_handler_task);
2954 int err = 0;
2955
2956 rtnl_lock();
2957 err = t3_adapter_error(adapter, 1, 1);
2958 if (!err)
2959 err = t3_reenable_adapter(adapter);
2960 if (!err)
2961 t3_resume_ports(adapter);
2962
2963 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2964 rtnl_unlock();
2965 }
2966
2967 void t3_fatal_err(struct adapter *adapter)
2968 {
2969 unsigned int fw_status[4];
2970
2971 if (adapter->flags & FULL_INIT_DONE) {
2972 t3_sge_stop(adapter);
2973 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2974 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2975 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2976 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2977
2978 spin_lock(&adapter->work_lock);
2979 t3_intr_disable(adapter);
2980 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2981 spin_unlock(&adapter->work_lock);
2982 }
2983 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2984 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2985 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2986 fw_status[0], fw_status[1],
2987 fw_status[2], fw_status[3]);
2988 }
2989
2990 /**
2991 * t3_io_error_detected - called when PCI error is detected
2992 * @pdev: Pointer to PCI device
2993 * @state: The current pci connection state
2994 *
2995 * This function is called after a PCI bus error affecting
2996 * this device has been detected.
2997 */
2998 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2999 pci_channel_state_t state)
3000 {
3001 struct adapter *adapter = pci_get_drvdata(pdev);
3002
3003 if (state == pci_channel_io_perm_failure)
3004 return PCI_ERS_RESULT_DISCONNECT;
3005
3006 t3_adapter_error(adapter, 0, 0);
3007
3008 /* Request a slot reset. */
3009 return PCI_ERS_RESULT_NEED_RESET;
3010 }
3011
3012 /**
3013 * t3_io_slot_reset - called after the pci bus has been reset.
3014 * @pdev: Pointer to PCI device
3015 *
3016 * Restart the card from scratch, as if from a cold-boot.
3017 */
3018 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3019 {
3020 struct adapter *adapter = pci_get_drvdata(pdev);
3021
3022 if (!t3_reenable_adapter(adapter))
3023 return PCI_ERS_RESULT_RECOVERED;
3024
3025 return PCI_ERS_RESULT_DISCONNECT;
3026 }
3027
3028 /**
3029 * t3_io_resume - called when traffic can start flowing again.
3030 * @pdev: Pointer to PCI device
3031 *
3032 * This callback is called when the error recovery driver tells us that
3033 * its OK to resume normal operation.
3034 */
3035 static void t3_io_resume(struct pci_dev *pdev)
3036 {
3037 struct adapter *adapter = pci_get_drvdata(pdev);
3038
3039 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3040 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3041
3042 rtnl_lock();
3043 t3_resume_ports(adapter);
3044 rtnl_unlock();
3045 }
3046
3047 static const struct pci_error_handlers t3_err_handler = {
3048 .error_detected = t3_io_error_detected,
3049 .slot_reset = t3_io_slot_reset,
3050 .resume = t3_io_resume,
3051 };
3052
3053 /*
3054 * Set the number of qsets based on the number of CPUs and the number of ports,
3055 * not to exceed the number of available qsets, assuming there are enough qsets
3056 * per port in HW.
3057 */
3058 static void set_nqsets(struct adapter *adap)
3059 {
3060 int i, j = 0;
3061 int num_cpus = netif_get_num_default_rss_queues();
3062 int hwports = adap->params.nports;
3063 int nqsets = adap->msix_nvectors - 1;
3064
3065 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3066 if (hwports == 2 &&
3067 (hwports * nqsets > SGE_QSETS ||
3068 num_cpus >= nqsets / hwports))
3069 nqsets /= hwports;
3070 if (nqsets > num_cpus)
3071 nqsets = num_cpus;
3072 if (nqsets < 1 || hwports == 4)
3073 nqsets = 1;
3074 } else
3075 nqsets = 1;
3076
3077 for_each_port(adap, i) {
3078 struct port_info *pi = adap2pinfo(adap, i);
3079
3080 pi->first_qset = j;
3081 pi->nqsets = nqsets;
3082 j = pi->first_qset + nqsets;
3083
3084 dev_info(&adap->pdev->dev,
3085 "Port %d using %d queue sets.\n", i, nqsets);
3086 }
3087 }
3088
3089 static int cxgb_enable_msix(struct adapter *adap)
3090 {
3091 struct msix_entry entries[SGE_QSETS + 1];
3092 int vectors;
3093 int i;
3094
3095 vectors = ARRAY_SIZE(entries);
3096 for (i = 0; i < vectors; ++i)
3097 entries[i].entry = i;
3098
3099 vectors = pci_enable_msix_range(adap->pdev, entries,
3100 adap->params.nports + 1, vectors);
3101 if (vectors < 0)
3102 return vectors;
3103
3104 for (i = 0; i < vectors; ++i)
3105 adap->msix_info[i].vec = entries[i].vector;
3106 adap->msix_nvectors = vectors;
3107
3108 return 0;
3109 }
3110
3111 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3112 {
3113 static const char *pci_variant[] = {
3114 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3115 };
3116
3117 int i;
3118 char buf[80];
3119
3120 if (is_pcie(adap))
3121 snprintf(buf, sizeof(buf), "%s x%d",
3122 pci_variant[adap->params.pci.variant],
3123 adap->params.pci.width);
3124 else
3125 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3126 pci_variant[adap->params.pci.variant],
3127 adap->params.pci.speed, adap->params.pci.width);
3128
3129 for_each_port(adap, i) {
3130 struct net_device *dev = adap->port[i];
3131 const struct port_info *pi = netdev_priv(dev);
3132
3133 if (!test_bit(i, &adap->registered_device_map))
3134 continue;
3135 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3136 ai->desc, pi->phy.desc,
3137 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3138 (adap->flags & USING_MSIX) ? " MSI-X" :
3139 (adap->flags & USING_MSI) ? " MSI" : "");
3140 if (adap->name == dev->name && adap->params.vpd.mclk)
3141 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3142 adap->name, t3_mc7_size(&adap->cm) >> 20,
3143 t3_mc7_size(&adap->pmtx) >> 20,
3144 t3_mc7_size(&adap->pmrx) >> 20,
3145 adap->params.vpd.sn);
3146 }
3147 }
3148
3149 static const struct net_device_ops cxgb_netdev_ops = {
3150 .ndo_open = cxgb_open,
3151 .ndo_stop = cxgb_close,
3152 .ndo_start_xmit = t3_eth_xmit,
3153 .ndo_get_stats = cxgb_get_stats,
3154 .ndo_validate_addr = eth_validate_addr,
3155 .ndo_set_rx_mode = cxgb_set_rxmode,
3156 .ndo_do_ioctl = cxgb_ioctl,
3157 .ndo_change_mtu = cxgb_change_mtu,
3158 .ndo_set_mac_address = cxgb_set_mac_addr,
3159 .ndo_fix_features = cxgb_fix_features,
3160 .ndo_set_features = cxgb_set_features,
3161 #ifdef CONFIG_NET_POLL_CONTROLLER
3162 .ndo_poll_controller = cxgb_netpoll,
3163 #endif
3164 };
3165
3166 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3167 {
3168 struct port_info *pi = netdev_priv(dev);
3169
3170 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3171 pi->iscsic.mac_addr[3] |= 0x80;
3172 }
3173
3174 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3175 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3176 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3177 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3178 {
3179 int i, err, pci_using_dac = 0;
3180 resource_size_t mmio_start, mmio_len;
3181 const struct adapter_info *ai;
3182 struct adapter *adapter = NULL;
3183 struct port_info *pi;
3184
3185 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
3186
3187 if (!cxgb3_wq) {
3188 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3189 if (!cxgb3_wq) {
3190 pr_err("cannot initialize work queue\n");
3191 return -ENOMEM;
3192 }
3193 }
3194
3195 err = pci_enable_device(pdev);
3196 if (err) {
3197 dev_err(&pdev->dev, "cannot enable PCI device\n");
3198 goto out;
3199 }
3200
3201 err = pci_request_regions(pdev, DRV_NAME);
3202 if (err) {
3203 /* Just info, some other driver may have claimed the device. */
3204 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3205 goto out_disable_device;
3206 }
3207
3208 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3209 pci_using_dac = 1;
3210 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3211 if (err) {
3212 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3213 "coherent allocations\n");
3214 goto out_release_regions;
3215 }
3216 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3217 dev_err(&pdev->dev, "no usable DMA configuration\n");
3218 goto out_release_regions;
3219 }
3220
3221 pci_set_master(pdev);
3222 pci_save_state(pdev);
3223
3224 mmio_start = pci_resource_start(pdev, 0);
3225 mmio_len = pci_resource_len(pdev, 0);
3226 ai = t3_get_adapter_info(ent->driver_data);
3227
3228 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3229 if (!adapter) {
3230 err = -ENOMEM;
3231 goto out_release_regions;
3232 }
3233
3234 adapter->nofail_skb =
3235 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3236 if (!adapter->nofail_skb) {
3237 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3238 err = -ENOMEM;
3239 goto out_free_adapter;
3240 }
3241
3242 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3243 if (!adapter->regs) {
3244 dev_err(&pdev->dev, "cannot map device registers\n");
3245 err = -ENOMEM;
3246 goto out_free_adapter;
3247 }
3248
3249 adapter->pdev = pdev;
3250 adapter->name = pci_name(pdev);
3251 adapter->msg_enable = dflt_msg_enable;
3252 adapter->mmio_len = mmio_len;
3253
3254 mutex_init(&adapter->mdio_lock);
3255 spin_lock_init(&adapter->work_lock);
3256 spin_lock_init(&adapter->stats_lock);
3257
3258 INIT_LIST_HEAD(&adapter->adapter_list);
3259 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3260 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3261
3262 INIT_WORK(&adapter->db_full_task, db_full_task);
3263 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3264 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3265
3266 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3267
3268 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3269 struct net_device *netdev;
3270
3271 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3272 if (!netdev) {
3273 err = -ENOMEM;
3274 goto out_free_dev;
3275 }
3276
3277 SET_NETDEV_DEV(netdev, &pdev->dev);
3278
3279 adapter->port[i] = netdev;
3280 pi = netdev_priv(netdev);
3281 pi->adapter = adapter;
3282 pi->port_id = i;
3283 netif_carrier_off(netdev);
3284 netdev->irq = pdev->irq;
3285 netdev->mem_start = mmio_start;
3286 netdev->mem_end = mmio_start + mmio_len - 1;
3287 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3288 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3289 netdev->features |= netdev->hw_features |
3290 NETIF_F_HW_VLAN_CTAG_TX;
3291 netdev->vlan_features |= netdev->features & VLAN_FEAT;
3292 if (pci_using_dac)
3293 netdev->features |= NETIF_F_HIGHDMA;
3294
3295 netdev->netdev_ops = &cxgb_netdev_ops;
3296 netdev->ethtool_ops = &cxgb_ethtool_ops;
3297 }
3298
3299 pci_set_drvdata(pdev, adapter);
3300 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3301 err = -ENODEV;
3302 goto out_free_dev;
3303 }
3304
3305 /*
3306 * The card is now ready to go. If any errors occur during device
3307 * registration we do not fail the whole card but rather proceed only
3308 * with the ports we manage to register successfully. However we must
3309 * register at least one net device.
3310 */
3311 for_each_port(adapter, i) {
3312 err = register_netdev(adapter->port[i]);
3313 if (err)
3314 dev_warn(&pdev->dev,
3315 "cannot register net device %s, skipping\n",
3316 adapter->port[i]->name);
3317 else {
3318 /*
3319 * Change the name we use for messages to the name of
3320 * the first successfully registered interface.
3321 */
3322 if (!adapter->registered_device_map)
3323 adapter->name = adapter->port[i]->name;
3324
3325 __set_bit(i, &adapter->registered_device_map);
3326 }
3327 }
3328 if (!adapter->registered_device_map) {
3329 dev_err(&pdev->dev, "could not register any net devices\n");
3330 goto out_free_dev;
3331 }
3332
3333 for_each_port(adapter, i)
3334 cxgb3_init_iscsi_mac(adapter->port[i]);
3335
3336 /* Driver's ready. Reflect it on LEDs */
3337 t3_led_ready(adapter);
3338
3339 if (is_offload(adapter)) {
3340 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3341 cxgb3_adapter_ofld(adapter);
3342 }
3343
3344 /* See what interrupts we'll be using */
3345 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3346 adapter->flags |= USING_MSIX;
3347 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3348 adapter->flags |= USING_MSI;
3349
3350 set_nqsets(adapter);
3351
3352 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3353 &cxgb3_attr_group);
3354
3355 print_port_info(adapter, ai);
3356 return 0;
3357
3358 out_free_dev:
3359 iounmap(adapter->regs);
3360 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3361 if (adapter->port[i])
3362 free_netdev(adapter->port[i]);
3363
3364 out_free_adapter:
3365 kfree(adapter);
3366
3367 out_release_regions:
3368 pci_release_regions(pdev);
3369 out_disable_device:
3370 pci_disable_device(pdev);
3371 out:
3372 return err;
3373 }
3374
3375 static void remove_one(struct pci_dev *pdev)
3376 {
3377 struct adapter *adapter = pci_get_drvdata(pdev);
3378
3379 if (adapter) {
3380 int i;
3381
3382 t3_sge_stop(adapter);
3383 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3384 &cxgb3_attr_group);
3385
3386 if (is_offload(adapter)) {
3387 cxgb3_adapter_unofld(adapter);
3388 if (test_bit(OFFLOAD_DEVMAP_BIT,
3389 &adapter->open_device_map))
3390 offload_close(&adapter->tdev);
3391 }
3392
3393 for_each_port(adapter, i)
3394 if (test_bit(i, &adapter->registered_device_map))
3395 unregister_netdev(adapter->port[i]);
3396
3397 t3_stop_sge_timers(adapter);
3398 t3_free_sge_resources(adapter);
3399 cxgb_disable_msi(adapter);
3400
3401 for_each_port(adapter, i)
3402 if (adapter->port[i])
3403 free_netdev(adapter->port[i]);
3404
3405 iounmap(adapter->regs);
3406 if (adapter->nofail_skb)
3407 kfree_skb(adapter->nofail_skb);
3408 kfree(adapter);
3409 pci_release_regions(pdev);
3410 pci_disable_device(pdev);
3411 }
3412 }
3413
3414 static struct pci_driver driver = {
3415 .name = DRV_NAME,
3416 .id_table = cxgb3_pci_tbl,
3417 .probe = init_one,
3418 .remove = remove_one,
3419 .err_handler = &t3_err_handler,
3420 };
3421
3422 static int __init cxgb3_init_module(void)
3423 {
3424 int ret;
3425
3426 cxgb3_offload_init();
3427
3428 ret = pci_register_driver(&driver);
3429 return ret;
3430 }
3431
3432 static void __exit cxgb3_cleanup_module(void)
3433 {
3434 pci_unregister_driver(&driver);
3435 if (cxgb3_wq)
3436 destroy_workqueue(cxgb3_wq);
3437 }
3438
3439 module_init(cxgb3_init_module);
3440 module_exit(cxgb3_cleanup_module);
This page took 0.103971 seconds and 5 git commands to generate.