powerpc: Fix bad inline asm constraint in create_zero_mask()
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/delay.h>
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_values.h"
39 #include "t4fw_api.h"
40 #include "t4fw_version.h"
41
42 /**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
51 *
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
56 */
57 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
59 {
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
62
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
67 }
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
72 }
73 }
74
75 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
77 {
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
80 }
81
82 /**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
88 *
89 * Sets a register field specified by the supplied mask to the
90 * given value.
91 */
92 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
94 {
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
99 }
100
101 /**
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
109 *
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
112 */
113 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
116 {
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
121 }
122 }
123
124 /**
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
132 *
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
135 */
136 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
139 {
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
143 }
144 }
145
146 /*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
152 void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153 {
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
160
161 if (is_t4(adap->params.chip))
162 req |= LOCALCFG_F;
163
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
166
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
171 */
172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
173 }
174
175 /*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
183 static void t4_report_fw_error(struct adapter *adap)
184 {
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
194 };
195 u32 pcie_fw;
196
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
201 }
202
203 /*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
206 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 u32 mbox_addr)
208 {
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211 }
212
213 /*
214 * Handle a FW assertion reported in a mailbox.
215 */
216 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217 {
218 struct fw_debug_cmd asrt;
219
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
225 }
226
227 static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228 {
229 dev_err(adap->pdev_dev,
230 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231 (unsigned long long)t4_read_reg64(adap, data_reg),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239 }
240
241 /**
242 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 * @adap: the adapter
244 * @mbox: index of the mailbox to use
245 * @cmd: the command to write
246 * @size: command length in bytes
247 * @rpl: where to optionally store the reply
248 * @sleep_ok: if true we may sleep while awaiting command completion
249 * @timeout: time to wait for command to finish before timing out
250 *
251 * Sends the given command to FW through the selected mailbox and waits
252 * for the FW to execute the command. If @rpl is not %NULL it is used to
253 * store the FW's reply to the command. The command and its optional
254 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
255 * to respond. @sleep_ok determines whether we may sleep while awaiting
256 * the response. If sleeping is allowed we use progressive backoff
257 * otherwise we spin.
258 *
259 * The return value is 0 on success or a negative errno on failure. A
260 * failure can happen either because we are not able to execute the
261 * command or FW executes it but signals an error. In the latter case
262 * the return value is the error code indicated by FW (negated).
263 */
264 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265 int size, void *rpl, bool sleep_ok, int timeout)
266 {
267 static const int delay[] = {
268 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269 };
270
271 u32 v;
272 u64 res;
273 int i, ms, delay_idx;
274 const __be64 *p = cmd;
275 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
277
278 if ((size & 15) || size > MBOX_LEN)
279 return -EINVAL;
280
281 /*
282 * If the device is off-line, as in EEH, commands will time out.
283 * Fail them early so we don't waste time waiting.
284 */
285 if (adap->pdev->error_state != pci_channel_io_normal)
286 return -EIO;
287
288 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
289 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
290 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
291
292 if (v != MBOX_OWNER_DRV)
293 return v ? -EBUSY : -ETIMEDOUT;
294
295 for (i = 0; i < size; i += 8)
296 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
298 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
299 t4_read_reg(adap, ctl_reg); /* flush write */
300
301 delay_idx = 0;
302 ms = delay[0];
303
304 for (i = 0; i < timeout; i += ms) {
305 if (sleep_ok) {
306 ms = delay[delay_idx]; /* last element may repeat */
307 if (delay_idx < ARRAY_SIZE(delay) - 1)
308 delay_idx++;
309 msleep(ms);
310 } else
311 mdelay(ms);
312
313 v = t4_read_reg(adap, ctl_reg);
314 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315 if (!(v & MBMSGVALID_F)) {
316 t4_write_reg(adap, ctl_reg, 0);
317 continue;
318 }
319
320 res = t4_read_reg64(adap, data_reg);
321 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
322 fw_asrt(adap, data_reg);
323 res = FW_CMD_RETVAL_V(EIO);
324 } else if (rpl) {
325 get_mbox_rpl(adap, rpl, size / 8, data_reg);
326 }
327
328 if (FW_CMD_RETVAL_G((int)res))
329 dump_mbox(adap, mbox, data_reg);
330 t4_write_reg(adap, ctl_reg, 0);
331 return -FW_CMD_RETVAL_G((int)res);
332 }
333 }
334
335 dump_mbox(adap, mbox, data_reg);
336 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337 *(const u8 *)cmd, mbox);
338 t4_report_fw_error(adap);
339 return -ETIMEDOUT;
340 }
341
342 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343 void *rpl, bool sleep_ok)
344 {
345 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346 FW_CMD_MAX_TIMEOUT);
347 }
348
349 static int t4_edc_err_read(struct adapter *adap, int idx)
350 {
351 u32 edc_ecc_err_addr_reg;
352 u32 rdata_reg;
353
354 if (is_t4(adap->params.chip)) {
355 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356 return 0;
357 }
358 if (idx != 0 && idx != 1) {
359 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360 return 0;
361 }
362
363 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366 CH_WARN(adap,
367 "edc%d err addr 0x%x: 0x%x.\n",
368 idx, edc_ecc_err_addr_reg,
369 t4_read_reg(adap, edc_ecc_err_addr_reg));
370 CH_WARN(adap,
371 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372 rdata_reg,
373 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383 return 0;
384 }
385
386 /**
387 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388 * @adap: the adapter
389 * @win: PCI-E Memory Window to use
390 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391 * @addr: address within indicated memory type
392 * @len: amount of memory to transfer
393 * @hbuf: host memory buffer
394 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
395 *
396 * Reads/writes an [almost] arbitrary memory region in the firmware: the
397 * firmware memory address and host buffer must be aligned on 32-bit
398 * boudaries; the length may be arbitrary. The memory is transferred as
399 * a raw byte sequence from/to the firmware's memory. If this memory
400 * contains data structures which contain multi-byte integers, it's the
401 * caller's responsibility to perform appropriate byte order conversions.
402 */
403 int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
404 u32 len, void *hbuf, int dir)
405 {
406 u32 pos, offset, resid, memoffset;
407 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
408 u32 *buf;
409
410 /* Argument sanity checks ...
411 */
412 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
413 return -EINVAL;
414 buf = (u32 *)hbuf;
415
416 /* It's convenient to be able to handle lengths which aren't a
417 * multiple of 32-bits because we often end up transferring files to
418 * the firmware. So we'll handle that by normalizing the length here
419 * and then handling any residual transfer at the end.
420 */
421 resid = len & 0x3;
422 len -= resid;
423
424 /* Offset into the region of memory which is being accessed
425 * MEM_EDC0 = 0
426 * MEM_EDC1 = 1
427 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
428 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
429 */
430 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
431 if (mtype != MEM_MC1)
432 memoffset = (mtype * (edc_size * 1024 * 1024));
433 else {
434 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
435 MA_EXT_MEMORY0_BAR_A));
436 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437 }
438
439 /* Determine the PCIE_MEM_ACCESS_OFFSET */
440 addr = addr + memoffset;
441
442 /* Each PCI-E Memory Window is programmed with a window size -- or
443 * "aperture" -- which controls the granularity of its mapping onto
444 * adapter memory. We need to grab that aperture in order to know
445 * how to use the specified window. The window is also programmed
446 * with the base address of the Memory Window in BAR0's address
447 * space. For T4 this is an absolute PCI-E Bus Address. For T5
448 * the address is relative to BAR0.
449 */
450 mem_reg = t4_read_reg(adap,
451 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
452 win));
453 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
455 if (is_t4(adap->params.chip))
456 mem_base -= adap->t4_bar0;
457 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
458
459 /* Calculate our initial PCI-E Memory Window Position and Offset into
460 * that Window.
461 */
462 pos = addr & ~(mem_aperture-1);
463 offset = addr - pos;
464
465 /* Set up initial PCI-E Memory Window to cover the start of our
466 * transfer. (Read it back to ensure that changes propagate before we
467 * attempt to use the new value.)
468 */
469 t4_write_reg(adap,
470 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
471 pos | win_pf);
472 t4_read_reg(adap,
473 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
474
475 /* Transfer data to/from the adapter as long as there's an integral
476 * number of 32-bit transfers to complete.
477 *
478 * A note on Endianness issues:
479 *
480 * The "register" reads and writes below from/to the PCI-E Memory
481 * Window invoke the standard adapter Big-Endian to PCI-E Link
482 * Little-Endian "swizzel." As a result, if we have the following
483 * data in adapter memory:
484 *
485 * Memory: ... | b0 | b1 | b2 | b3 | ...
486 * Address: i+0 i+1 i+2 i+3
487 *
488 * Then a read of the adapter memory via the PCI-E Memory Window
489 * will yield:
490 *
491 * x = readl(i)
492 * 31 0
493 * [ b3 | b2 | b1 | b0 ]
494 *
495 * If this value is stored into local memory on a Little-Endian system
496 * it will show up correctly in local memory as:
497 *
498 * ( ..., b0, b1, b2, b3, ... )
499 *
500 * But on a Big-Endian system, the store will show up in memory
501 * incorrectly swizzled as:
502 *
503 * ( ..., b3, b2, b1, b0, ... )
504 *
505 * So we need to account for this in the reads and writes to the
506 * PCI-E Memory Window below by undoing the register read/write
507 * swizzels.
508 */
509 while (len > 0) {
510 if (dir == T4_MEMORY_READ)
511 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512 mem_base + offset));
513 else
514 t4_write_reg(adap, mem_base + offset,
515 (__force u32)cpu_to_le32(*buf++));
516 offset += sizeof(__be32);
517 len -= sizeof(__be32);
518
519 /* If we've reached the end of our current window aperture,
520 * move the PCI-E Memory Window on to the next. Note that
521 * doing this here after "len" may be 0 allows us to set up
522 * the PCI-E Memory Window for a possible final residual
523 * transfer below ...
524 */
525 if (offset == mem_aperture) {
526 pos += mem_aperture;
527 offset = 0;
528 t4_write_reg(adap,
529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530 win), pos | win_pf);
531 t4_read_reg(adap,
532 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533 win));
534 }
535 }
536
537 /* If the original transfer had a length which wasn't a multiple of
538 * 32-bits, now's where we need to finish off the transfer of the
539 * residual amount. The PCI-E Memory Window has already been moved
540 * above (if necessary) to cover this final transfer.
541 */
542 if (resid) {
543 union {
544 u32 word;
545 char byte[4];
546 } last;
547 unsigned char *bp;
548 int i;
549
550 if (dir == T4_MEMORY_READ) {
551 last.word = le32_to_cpu(
552 (__force __le32)t4_read_reg(adap,
553 mem_base + offset));
554 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555 bp[i] = last.byte[i];
556 } else {
557 last.word = *buf;
558 for (i = resid; i < 4; i++)
559 last.byte[i] = 0;
560 t4_write_reg(adap, mem_base + offset,
561 (__force u32)cpu_to_le32(last.word));
562 }
563 }
564
565 return 0;
566 }
567
568 /* Return the specified PCI-E Configuration Space register from our Physical
569 * Function. We try first via a Firmware LDST Command since we prefer to let
570 * the firmware own all of these registers, but if that fails we go for it
571 * directly ourselves.
572 */
573 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574 {
575 u32 val, ldst_addrspace;
576
577 /* If fw_attach != 0, construct and send the Firmware LDST Command to
578 * retrieve the specified PCI-E Configuration Space register.
579 */
580 struct fw_ldst_cmd ldst_cmd;
581 int ret;
582
583 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586 FW_CMD_REQUEST_F |
587 FW_CMD_READ_F |
588 ldst_addrspace);
589 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591 ldst_cmd.u.pcie.ctrl_to_fn =
592 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
593 ldst_cmd.u.pcie.r = reg;
594
595 /* If the LDST Command succeeds, return the result, otherwise
596 * fall through to reading it directly ourselves ...
597 */
598 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599 &ldst_cmd);
600 if (ret == 0)
601 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602 else
603 /* Read the desired Configuration Space register via the PCI-E
604 * Backdoor mechanism.
605 */
606 t4_hw_pci_read_cfg4(adap, reg, &val);
607 return val;
608 }
609
610 /* Get the window based on base passed to it.
611 * Window aperture is currently unhandled, but there is no use case for it
612 * right now
613 */
614 static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615 u32 memwin_base)
616 {
617 u32 ret;
618
619 if (is_t4(adap->params.chip)) {
620 u32 bar0;
621
622 /* Truncation intentional: we only read the bottom 32-bits of
623 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
624 * mechanism to read BAR0 instead of using
625 * pci_resource_start() because we could be operating from
626 * within a Virtual Machine which is trapping our accesses to
627 * our Configuration Space and we need to set up the PCI-E
628 * Memory Window decoders with the actual addresses which will
629 * be coming across the PCI-E link.
630 */
631 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632 bar0 &= pci_mask;
633 adap->t4_bar0 = bar0;
634
635 ret = bar0 + memwin_base;
636 } else {
637 /* For T5, only relative offset inside the PCIe BAR is passed */
638 ret = memwin_base;
639 }
640 return ret;
641 }
642
643 /* Get the default utility window (win0) used by everyone */
644 u32 t4_get_util_window(struct adapter *adap)
645 {
646 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648 }
649
650 /* Set up memory window for accessing adapter memory ranges. (Read
651 * back MA register to ensure that changes propagate before we attempt
652 * to use the new values.)
653 */
654 void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655 {
656 t4_write_reg(adap,
657 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658 memwin_base | BIR_V(0) |
659 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660 t4_read_reg(adap,
661 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662 }
663
664 /**
665 * t4_get_regs_len - return the size of the chips register set
666 * @adapter: the adapter
667 *
668 * Returns the size of the chip's BAR0 register space.
669 */
670 unsigned int t4_get_regs_len(struct adapter *adapter)
671 {
672 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674 switch (chip_version) {
675 case CHELSIO_T4:
676 return T4_REGMAP_SIZE;
677
678 case CHELSIO_T5:
679 case CHELSIO_T6:
680 return T5_REGMAP_SIZE;
681 }
682
683 dev_err(adapter->pdev_dev,
684 "Unsupported chip version %d\n", chip_version);
685 return 0;
686 }
687
688 /**
689 * t4_get_regs - read chip registers into provided buffer
690 * @adap: the adapter
691 * @buf: register buffer
692 * @buf_size: size (in bytes) of register buffer
693 *
694 * If the provided register buffer isn't large enough for the chip's
695 * full register range, the register dump will be truncated to the
696 * register buffer's size.
697 */
698 void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699 {
700 static const unsigned int t4_reg_ranges[] = {
701 0x1008, 0x1108,
702 0x1180, 0x1184,
703 0x1190, 0x1194,
704 0x11a0, 0x11a4,
705 0x11b0, 0x11b4,
706 0x11fc, 0x123c,
707 0x1300, 0x173c,
708 0x1800, 0x18fc,
709 0x3000, 0x30d8,
710 0x30e0, 0x30e4,
711 0x30ec, 0x5910,
712 0x5920, 0x5924,
713 0x5960, 0x5960,
714 0x5968, 0x5968,
715 0x5970, 0x5970,
716 0x5978, 0x5978,
717 0x5980, 0x5980,
718 0x5988, 0x5988,
719 0x5990, 0x5990,
720 0x5998, 0x5998,
721 0x59a0, 0x59d4,
722 0x5a00, 0x5ae0,
723 0x5ae8, 0x5ae8,
724 0x5af0, 0x5af0,
725 0x5af8, 0x5af8,
726 0x6000, 0x6098,
727 0x6100, 0x6150,
728 0x6200, 0x6208,
729 0x6240, 0x6248,
730 0x6280, 0x62b0,
731 0x62c0, 0x6338,
732 0x6370, 0x638c,
733 0x6400, 0x643c,
734 0x6500, 0x6524,
735 0x6a00, 0x6a04,
736 0x6a14, 0x6a38,
737 0x6a60, 0x6a70,
738 0x6a78, 0x6a78,
739 0x6b00, 0x6b0c,
740 0x6b1c, 0x6b84,
741 0x6bf0, 0x6bf8,
742 0x6c00, 0x6c0c,
743 0x6c1c, 0x6c84,
744 0x6cf0, 0x6cf8,
745 0x6d00, 0x6d0c,
746 0x6d1c, 0x6d84,
747 0x6df0, 0x6df8,
748 0x6e00, 0x6e0c,
749 0x6e1c, 0x6e84,
750 0x6ef0, 0x6ef8,
751 0x6f00, 0x6f0c,
752 0x6f1c, 0x6f84,
753 0x6ff0, 0x6ff8,
754 0x7000, 0x700c,
755 0x701c, 0x7084,
756 0x70f0, 0x70f8,
757 0x7100, 0x710c,
758 0x711c, 0x7184,
759 0x71f0, 0x71f8,
760 0x7200, 0x720c,
761 0x721c, 0x7284,
762 0x72f0, 0x72f8,
763 0x7300, 0x730c,
764 0x731c, 0x7384,
765 0x73f0, 0x73f8,
766 0x7400, 0x7450,
767 0x7500, 0x7530,
768 0x7600, 0x760c,
769 0x7614, 0x761c,
770 0x7680, 0x76cc,
771 0x7700, 0x7798,
772 0x77c0, 0x77fc,
773 0x7900, 0x79fc,
774 0x7b00, 0x7b58,
775 0x7b60, 0x7b84,
776 0x7b8c, 0x7c38,
777 0x7d00, 0x7d38,
778 0x7d40, 0x7d80,
779 0x7d8c, 0x7ddc,
780 0x7de4, 0x7e04,
781 0x7e10, 0x7e1c,
782 0x7e24, 0x7e38,
783 0x7e40, 0x7e44,
784 0x7e4c, 0x7e78,
785 0x7e80, 0x7ea4,
786 0x7eac, 0x7edc,
787 0x7ee8, 0x7efc,
788 0x8dc0, 0x8e04,
789 0x8e10, 0x8e1c,
790 0x8e30, 0x8e78,
791 0x8ea0, 0x8eb8,
792 0x8ec0, 0x8f6c,
793 0x8fc0, 0x9008,
794 0x9010, 0x9058,
795 0x9060, 0x9060,
796 0x9068, 0x9074,
797 0x90fc, 0x90fc,
798 0x9400, 0x9408,
799 0x9410, 0x9458,
800 0x9600, 0x9600,
801 0x9608, 0x9638,
802 0x9640, 0x96bc,
803 0x9800, 0x9808,
804 0x9820, 0x983c,
805 0x9850, 0x9864,
806 0x9c00, 0x9c6c,
807 0x9c80, 0x9cec,
808 0x9d00, 0x9d6c,
809 0x9d80, 0x9dec,
810 0x9e00, 0x9e6c,
811 0x9e80, 0x9eec,
812 0x9f00, 0x9f6c,
813 0x9f80, 0x9fec,
814 0xd004, 0xd004,
815 0xd010, 0xd03c,
816 0xdfc0, 0xdfe0,
817 0xe000, 0xea7c,
818 0xf000, 0x11190,
819 0x19040, 0x1906c,
820 0x19078, 0x19080,
821 0x1908c, 0x190e4,
822 0x190f0, 0x190f8,
823 0x19100, 0x19110,
824 0x19120, 0x19124,
825 0x19150, 0x19194,
826 0x1919c, 0x191b0,
827 0x191d0, 0x191e8,
828 0x19238, 0x1924c,
829 0x193f8, 0x1943c,
830 0x1944c, 0x19474,
831 0x19490, 0x194e0,
832 0x194f0, 0x194f8,
833 0x19800, 0x19c08,
834 0x19c10, 0x19c90,
835 0x19ca0, 0x19ce4,
836 0x19cf0, 0x19d40,
837 0x19d50, 0x19d94,
838 0x19da0, 0x19de8,
839 0x19df0, 0x19e40,
840 0x19e50, 0x19e90,
841 0x19ea0, 0x19f4c,
842 0x1a000, 0x1a004,
843 0x1a010, 0x1a06c,
844 0x1a0b0, 0x1a0e4,
845 0x1a0ec, 0x1a0f4,
846 0x1a100, 0x1a108,
847 0x1a114, 0x1a120,
848 0x1a128, 0x1a130,
849 0x1a138, 0x1a138,
850 0x1a190, 0x1a1c4,
851 0x1a1fc, 0x1a1fc,
852 0x1e040, 0x1e04c,
853 0x1e284, 0x1e28c,
854 0x1e2c0, 0x1e2c0,
855 0x1e2e0, 0x1e2e0,
856 0x1e300, 0x1e384,
857 0x1e3c0, 0x1e3c8,
858 0x1e440, 0x1e44c,
859 0x1e684, 0x1e68c,
860 0x1e6c0, 0x1e6c0,
861 0x1e6e0, 0x1e6e0,
862 0x1e700, 0x1e784,
863 0x1e7c0, 0x1e7c8,
864 0x1e840, 0x1e84c,
865 0x1ea84, 0x1ea8c,
866 0x1eac0, 0x1eac0,
867 0x1eae0, 0x1eae0,
868 0x1eb00, 0x1eb84,
869 0x1ebc0, 0x1ebc8,
870 0x1ec40, 0x1ec4c,
871 0x1ee84, 0x1ee8c,
872 0x1eec0, 0x1eec0,
873 0x1eee0, 0x1eee0,
874 0x1ef00, 0x1ef84,
875 0x1efc0, 0x1efc8,
876 0x1f040, 0x1f04c,
877 0x1f284, 0x1f28c,
878 0x1f2c0, 0x1f2c0,
879 0x1f2e0, 0x1f2e0,
880 0x1f300, 0x1f384,
881 0x1f3c0, 0x1f3c8,
882 0x1f440, 0x1f44c,
883 0x1f684, 0x1f68c,
884 0x1f6c0, 0x1f6c0,
885 0x1f6e0, 0x1f6e0,
886 0x1f700, 0x1f784,
887 0x1f7c0, 0x1f7c8,
888 0x1f840, 0x1f84c,
889 0x1fa84, 0x1fa8c,
890 0x1fac0, 0x1fac0,
891 0x1fae0, 0x1fae0,
892 0x1fb00, 0x1fb84,
893 0x1fbc0, 0x1fbc8,
894 0x1fc40, 0x1fc4c,
895 0x1fe84, 0x1fe8c,
896 0x1fec0, 0x1fec0,
897 0x1fee0, 0x1fee0,
898 0x1ff00, 0x1ff84,
899 0x1ffc0, 0x1ffc8,
900 0x20000, 0x2002c,
901 0x20100, 0x2013c,
902 0x20190, 0x201a0,
903 0x201a8, 0x201b8,
904 0x201c4, 0x201c8,
905 0x20200, 0x20318,
906 0x20400, 0x204b4,
907 0x204c0, 0x20528,
908 0x20540, 0x20614,
909 0x21000, 0x21040,
910 0x2104c, 0x21060,
911 0x210c0, 0x210ec,
912 0x21200, 0x21268,
913 0x21270, 0x21284,
914 0x212fc, 0x21388,
915 0x21400, 0x21404,
916 0x21500, 0x21500,
917 0x21510, 0x21518,
918 0x2152c, 0x21530,
919 0x2153c, 0x2153c,
920 0x21550, 0x21554,
921 0x21600, 0x21600,
922 0x21608, 0x2161c,
923 0x21624, 0x21628,
924 0x21630, 0x21634,
925 0x2163c, 0x2163c,
926 0x21700, 0x2171c,
927 0x21780, 0x2178c,
928 0x21800, 0x21818,
929 0x21820, 0x21828,
930 0x21830, 0x21848,
931 0x21850, 0x21854,
932 0x21860, 0x21868,
933 0x21870, 0x21870,
934 0x21878, 0x21898,
935 0x218a0, 0x218a8,
936 0x218b0, 0x218c8,
937 0x218d0, 0x218d4,
938 0x218e0, 0x218e8,
939 0x218f0, 0x218f0,
940 0x218f8, 0x21a18,
941 0x21a20, 0x21a28,
942 0x21a30, 0x21a48,
943 0x21a50, 0x21a54,
944 0x21a60, 0x21a68,
945 0x21a70, 0x21a70,
946 0x21a78, 0x21a98,
947 0x21aa0, 0x21aa8,
948 0x21ab0, 0x21ac8,
949 0x21ad0, 0x21ad4,
950 0x21ae0, 0x21ae8,
951 0x21af0, 0x21af0,
952 0x21af8, 0x21c18,
953 0x21c20, 0x21c20,
954 0x21c28, 0x21c30,
955 0x21c38, 0x21c38,
956 0x21c80, 0x21c98,
957 0x21ca0, 0x21ca8,
958 0x21cb0, 0x21cc8,
959 0x21cd0, 0x21cd4,
960 0x21ce0, 0x21ce8,
961 0x21cf0, 0x21cf0,
962 0x21cf8, 0x21d7c,
963 0x21e00, 0x21e04,
964 0x22000, 0x2202c,
965 0x22100, 0x2213c,
966 0x22190, 0x221a0,
967 0x221a8, 0x221b8,
968 0x221c4, 0x221c8,
969 0x22200, 0x22318,
970 0x22400, 0x224b4,
971 0x224c0, 0x22528,
972 0x22540, 0x22614,
973 0x23000, 0x23040,
974 0x2304c, 0x23060,
975 0x230c0, 0x230ec,
976 0x23200, 0x23268,
977 0x23270, 0x23284,
978 0x232fc, 0x23388,
979 0x23400, 0x23404,
980 0x23500, 0x23500,
981 0x23510, 0x23518,
982 0x2352c, 0x23530,
983 0x2353c, 0x2353c,
984 0x23550, 0x23554,
985 0x23600, 0x23600,
986 0x23608, 0x2361c,
987 0x23624, 0x23628,
988 0x23630, 0x23634,
989 0x2363c, 0x2363c,
990 0x23700, 0x2371c,
991 0x23780, 0x2378c,
992 0x23800, 0x23818,
993 0x23820, 0x23828,
994 0x23830, 0x23848,
995 0x23850, 0x23854,
996 0x23860, 0x23868,
997 0x23870, 0x23870,
998 0x23878, 0x23898,
999 0x238a0, 0x238a8,
1000 0x238b0, 0x238c8,
1001 0x238d0, 0x238d4,
1002 0x238e0, 0x238e8,
1003 0x238f0, 0x238f0,
1004 0x238f8, 0x23a18,
1005 0x23a20, 0x23a28,
1006 0x23a30, 0x23a48,
1007 0x23a50, 0x23a54,
1008 0x23a60, 0x23a68,
1009 0x23a70, 0x23a70,
1010 0x23a78, 0x23a98,
1011 0x23aa0, 0x23aa8,
1012 0x23ab0, 0x23ac8,
1013 0x23ad0, 0x23ad4,
1014 0x23ae0, 0x23ae8,
1015 0x23af0, 0x23af0,
1016 0x23af8, 0x23c18,
1017 0x23c20, 0x23c20,
1018 0x23c28, 0x23c30,
1019 0x23c38, 0x23c38,
1020 0x23c80, 0x23c98,
1021 0x23ca0, 0x23ca8,
1022 0x23cb0, 0x23cc8,
1023 0x23cd0, 0x23cd4,
1024 0x23ce0, 0x23ce8,
1025 0x23cf0, 0x23cf0,
1026 0x23cf8, 0x23d7c,
1027 0x23e00, 0x23e04,
1028 0x24000, 0x2402c,
1029 0x24100, 0x2413c,
1030 0x24190, 0x241a0,
1031 0x241a8, 0x241b8,
1032 0x241c4, 0x241c8,
1033 0x24200, 0x24318,
1034 0x24400, 0x244b4,
1035 0x244c0, 0x24528,
1036 0x24540, 0x24614,
1037 0x25000, 0x25040,
1038 0x2504c, 0x25060,
1039 0x250c0, 0x250ec,
1040 0x25200, 0x25268,
1041 0x25270, 0x25284,
1042 0x252fc, 0x25388,
1043 0x25400, 0x25404,
1044 0x25500, 0x25500,
1045 0x25510, 0x25518,
1046 0x2552c, 0x25530,
1047 0x2553c, 0x2553c,
1048 0x25550, 0x25554,
1049 0x25600, 0x25600,
1050 0x25608, 0x2561c,
1051 0x25624, 0x25628,
1052 0x25630, 0x25634,
1053 0x2563c, 0x2563c,
1054 0x25700, 0x2571c,
1055 0x25780, 0x2578c,
1056 0x25800, 0x25818,
1057 0x25820, 0x25828,
1058 0x25830, 0x25848,
1059 0x25850, 0x25854,
1060 0x25860, 0x25868,
1061 0x25870, 0x25870,
1062 0x25878, 0x25898,
1063 0x258a0, 0x258a8,
1064 0x258b0, 0x258c8,
1065 0x258d0, 0x258d4,
1066 0x258e0, 0x258e8,
1067 0x258f0, 0x258f0,
1068 0x258f8, 0x25a18,
1069 0x25a20, 0x25a28,
1070 0x25a30, 0x25a48,
1071 0x25a50, 0x25a54,
1072 0x25a60, 0x25a68,
1073 0x25a70, 0x25a70,
1074 0x25a78, 0x25a98,
1075 0x25aa0, 0x25aa8,
1076 0x25ab0, 0x25ac8,
1077 0x25ad0, 0x25ad4,
1078 0x25ae0, 0x25ae8,
1079 0x25af0, 0x25af0,
1080 0x25af8, 0x25c18,
1081 0x25c20, 0x25c20,
1082 0x25c28, 0x25c30,
1083 0x25c38, 0x25c38,
1084 0x25c80, 0x25c98,
1085 0x25ca0, 0x25ca8,
1086 0x25cb0, 0x25cc8,
1087 0x25cd0, 0x25cd4,
1088 0x25ce0, 0x25ce8,
1089 0x25cf0, 0x25cf0,
1090 0x25cf8, 0x25d7c,
1091 0x25e00, 0x25e04,
1092 0x26000, 0x2602c,
1093 0x26100, 0x2613c,
1094 0x26190, 0x261a0,
1095 0x261a8, 0x261b8,
1096 0x261c4, 0x261c8,
1097 0x26200, 0x26318,
1098 0x26400, 0x264b4,
1099 0x264c0, 0x26528,
1100 0x26540, 0x26614,
1101 0x27000, 0x27040,
1102 0x2704c, 0x27060,
1103 0x270c0, 0x270ec,
1104 0x27200, 0x27268,
1105 0x27270, 0x27284,
1106 0x272fc, 0x27388,
1107 0x27400, 0x27404,
1108 0x27500, 0x27500,
1109 0x27510, 0x27518,
1110 0x2752c, 0x27530,
1111 0x2753c, 0x2753c,
1112 0x27550, 0x27554,
1113 0x27600, 0x27600,
1114 0x27608, 0x2761c,
1115 0x27624, 0x27628,
1116 0x27630, 0x27634,
1117 0x2763c, 0x2763c,
1118 0x27700, 0x2771c,
1119 0x27780, 0x2778c,
1120 0x27800, 0x27818,
1121 0x27820, 0x27828,
1122 0x27830, 0x27848,
1123 0x27850, 0x27854,
1124 0x27860, 0x27868,
1125 0x27870, 0x27870,
1126 0x27878, 0x27898,
1127 0x278a0, 0x278a8,
1128 0x278b0, 0x278c8,
1129 0x278d0, 0x278d4,
1130 0x278e0, 0x278e8,
1131 0x278f0, 0x278f0,
1132 0x278f8, 0x27a18,
1133 0x27a20, 0x27a28,
1134 0x27a30, 0x27a48,
1135 0x27a50, 0x27a54,
1136 0x27a60, 0x27a68,
1137 0x27a70, 0x27a70,
1138 0x27a78, 0x27a98,
1139 0x27aa0, 0x27aa8,
1140 0x27ab0, 0x27ac8,
1141 0x27ad0, 0x27ad4,
1142 0x27ae0, 0x27ae8,
1143 0x27af0, 0x27af0,
1144 0x27af8, 0x27c18,
1145 0x27c20, 0x27c20,
1146 0x27c28, 0x27c30,
1147 0x27c38, 0x27c38,
1148 0x27c80, 0x27c98,
1149 0x27ca0, 0x27ca8,
1150 0x27cb0, 0x27cc8,
1151 0x27cd0, 0x27cd4,
1152 0x27ce0, 0x27ce8,
1153 0x27cf0, 0x27cf0,
1154 0x27cf8, 0x27d7c,
1155 0x27e00, 0x27e04,
1156 };
1157
1158 static const unsigned int t5_reg_ranges[] = {
1159 0x1008, 0x10c0,
1160 0x10cc, 0x10f8,
1161 0x1100, 0x1100,
1162 0x110c, 0x1148,
1163 0x1180, 0x1184,
1164 0x1190, 0x1194,
1165 0x11a0, 0x11a4,
1166 0x11b0, 0x11b4,
1167 0x11fc, 0x123c,
1168 0x1280, 0x173c,
1169 0x1800, 0x18fc,
1170 0x3000, 0x3028,
1171 0x3060, 0x30b0,
1172 0x30b8, 0x30d8,
1173 0x30e0, 0x30fc,
1174 0x3140, 0x357c,
1175 0x35a8, 0x35cc,
1176 0x35ec, 0x35ec,
1177 0x3600, 0x5624,
1178 0x56cc, 0x56ec,
1179 0x56f4, 0x5720,
1180 0x5728, 0x575c,
1181 0x580c, 0x5814,
1182 0x5890, 0x589c,
1183 0x58a4, 0x58ac,
1184 0x58b8, 0x58bc,
1185 0x5940, 0x59c8,
1186 0x59d0, 0x59dc,
1187 0x59fc, 0x5a18,
1188 0x5a60, 0x5a70,
1189 0x5a80, 0x5a9c,
1190 0x5b94, 0x5bfc,
1191 0x6000, 0x6020,
1192 0x6028, 0x6040,
1193 0x6058, 0x609c,
1194 0x60a8, 0x614c,
1195 0x7700, 0x7798,
1196 0x77c0, 0x78fc,
1197 0x7b00, 0x7b58,
1198 0x7b60, 0x7b84,
1199 0x7b8c, 0x7c54,
1200 0x7d00, 0x7d38,
1201 0x7d40, 0x7d80,
1202 0x7d8c, 0x7ddc,
1203 0x7de4, 0x7e04,
1204 0x7e10, 0x7e1c,
1205 0x7e24, 0x7e38,
1206 0x7e40, 0x7e44,
1207 0x7e4c, 0x7e78,
1208 0x7e80, 0x7edc,
1209 0x7ee8, 0x7efc,
1210 0x8dc0, 0x8de0,
1211 0x8df8, 0x8e04,
1212 0x8e10, 0x8e84,
1213 0x8ea0, 0x8f84,
1214 0x8fc0, 0x9058,
1215 0x9060, 0x9060,
1216 0x9068, 0x90f8,
1217 0x9400, 0x9408,
1218 0x9410, 0x9470,
1219 0x9600, 0x9600,
1220 0x9608, 0x9638,
1221 0x9640, 0x96f4,
1222 0x9800, 0x9808,
1223 0x9820, 0x983c,
1224 0x9850, 0x9864,
1225 0x9c00, 0x9c6c,
1226 0x9c80, 0x9cec,
1227 0x9d00, 0x9d6c,
1228 0x9d80, 0x9dec,
1229 0x9e00, 0x9e6c,
1230 0x9e80, 0x9eec,
1231 0x9f00, 0x9f6c,
1232 0x9f80, 0xa020,
1233 0xd004, 0xd004,
1234 0xd010, 0xd03c,
1235 0xdfc0, 0xdfe0,
1236 0xe000, 0x1106c,
1237 0x11074, 0x11088,
1238 0x1109c, 0x1117c,
1239 0x11190, 0x11204,
1240 0x19040, 0x1906c,
1241 0x19078, 0x19080,
1242 0x1908c, 0x190e8,
1243 0x190f0, 0x190f8,
1244 0x19100, 0x19110,
1245 0x19120, 0x19124,
1246 0x19150, 0x19194,
1247 0x1919c, 0x191b0,
1248 0x191d0, 0x191e8,
1249 0x19238, 0x19290,
1250 0x193f8, 0x19428,
1251 0x19430, 0x19444,
1252 0x1944c, 0x1946c,
1253 0x19474, 0x19474,
1254 0x19490, 0x194cc,
1255 0x194f0, 0x194f8,
1256 0x19c00, 0x19c08,
1257 0x19c10, 0x19c60,
1258 0x19c94, 0x19ce4,
1259 0x19cf0, 0x19d40,
1260 0x19d50, 0x19d94,
1261 0x19da0, 0x19de8,
1262 0x19df0, 0x19e10,
1263 0x19e50, 0x19e90,
1264 0x19ea0, 0x19f24,
1265 0x19f34, 0x19f34,
1266 0x19f40, 0x19f50,
1267 0x19f90, 0x19fb4,
1268 0x19fc4, 0x19fe4,
1269 0x1a000, 0x1a004,
1270 0x1a010, 0x1a06c,
1271 0x1a0b0, 0x1a0e4,
1272 0x1a0ec, 0x1a0f8,
1273 0x1a100, 0x1a108,
1274 0x1a114, 0x1a120,
1275 0x1a128, 0x1a130,
1276 0x1a138, 0x1a138,
1277 0x1a190, 0x1a1c4,
1278 0x1a1fc, 0x1a1fc,
1279 0x1e008, 0x1e00c,
1280 0x1e040, 0x1e044,
1281 0x1e04c, 0x1e04c,
1282 0x1e284, 0x1e290,
1283 0x1e2c0, 0x1e2c0,
1284 0x1e2e0, 0x1e2e0,
1285 0x1e300, 0x1e384,
1286 0x1e3c0, 0x1e3c8,
1287 0x1e408, 0x1e40c,
1288 0x1e440, 0x1e444,
1289 0x1e44c, 0x1e44c,
1290 0x1e684, 0x1e690,
1291 0x1e6c0, 0x1e6c0,
1292 0x1e6e0, 0x1e6e0,
1293 0x1e700, 0x1e784,
1294 0x1e7c0, 0x1e7c8,
1295 0x1e808, 0x1e80c,
1296 0x1e840, 0x1e844,
1297 0x1e84c, 0x1e84c,
1298 0x1ea84, 0x1ea90,
1299 0x1eac0, 0x1eac0,
1300 0x1eae0, 0x1eae0,
1301 0x1eb00, 0x1eb84,
1302 0x1ebc0, 0x1ebc8,
1303 0x1ec08, 0x1ec0c,
1304 0x1ec40, 0x1ec44,
1305 0x1ec4c, 0x1ec4c,
1306 0x1ee84, 0x1ee90,
1307 0x1eec0, 0x1eec0,
1308 0x1eee0, 0x1eee0,
1309 0x1ef00, 0x1ef84,
1310 0x1efc0, 0x1efc8,
1311 0x1f008, 0x1f00c,
1312 0x1f040, 0x1f044,
1313 0x1f04c, 0x1f04c,
1314 0x1f284, 0x1f290,
1315 0x1f2c0, 0x1f2c0,
1316 0x1f2e0, 0x1f2e0,
1317 0x1f300, 0x1f384,
1318 0x1f3c0, 0x1f3c8,
1319 0x1f408, 0x1f40c,
1320 0x1f440, 0x1f444,
1321 0x1f44c, 0x1f44c,
1322 0x1f684, 0x1f690,
1323 0x1f6c0, 0x1f6c0,
1324 0x1f6e0, 0x1f6e0,
1325 0x1f700, 0x1f784,
1326 0x1f7c0, 0x1f7c8,
1327 0x1f808, 0x1f80c,
1328 0x1f840, 0x1f844,
1329 0x1f84c, 0x1f84c,
1330 0x1fa84, 0x1fa90,
1331 0x1fac0, 0x1fac0,
1332 0x1fae0, 0x1fae0,
1333 0x1fb00, 0x1fb84,
1334 0x1fbc0, 0x1fbc8,
1335 0x1fc08, 0x1fc0c,
1336 0x1fc40, 0x1fc44,
1337 0x1fc4c, 0x1fc4c,
1338 0x1fe84, 0x1fe90,
1339 0x1fec0, 0x1fec0,
1340 0x1fee0, 0x1fee0,
1341 0x1ff00, 0x1ff84,
1342 0x1ffc0, 0x1ffc8,
1343 0x30000, 0x30030,
1344 0x30038, 0x30038,
1345 0x30040, 0x30040,
1346 0x30100, 0x30144,
1347 0x30190, 0x301a0,
1348 0x301a8, 0x301b8,
1349 0x301c4, 0x301c8,
1350 0x301d0, 0x301d0,
1351 0x30200, 0x30318,
1352 0x30400, 0x304b4,
1353 0x304c0, 0x3052c,
1354 0x30540, 0x3061c,
1355 0x30800, 0x30828,
1356 0x30834, 0x30834,
1357 0x308c0, 0x30908,
1358 0x30910, 0x309ac,
1359 0x30a00, 0x30a14,
1360 0x30a1c, 0x30a2c,
1361 0x30a44, 0x30a50,
1362 0x30a74, 0x30a74,
1363 0x30a7c, 0x30afc,
1364 0x30b08, 0x30c24,
1365 0x30d00, 0x30d00,
1366 0x30d08, 0x30d14,
1367 0x30d1c, 0x30d20,
1368 0x30d3c, 0x30d3c,
1369 0x30d48, 0x30d50,
1370 0x31200, 0x3120c,
1371 0x31220, 0x31220,
1372 0x31240, 0x31240,
1373 0x31600, 0x3160c,
1374 0x31a00, 0x31a1c,
1375 0x31e00, 0x31e20,
1376 0x31e38, 0x31e3c,
1377 0x31e80, 0x31e80,
1378 0x31e88, 0x31ea8,
1379 0x31eb0, 0x31eb4,
1380 0x31ec8, 0x31ed4,
1381 0x31fb8, 0x32004,
1382 0x32200, 0x32200,
1383 0x32208, 0x32240,
1384 0x32248, 0x32280,
1385 0x32288, 0x322c0,
1386 0x322c8, 0x322fc,
1387 0x32600, 0x32630,
1388 0x32a00, 0x32abc,
1389 0x32b00, 0x32b10,
1390 0x32b20, 0x32b30,
1391 0x32b40, 0x32b50,
1392 0x32b60, 0x32b70,
1393 0x33000, 0x33028,
1394 0x33030, 0x33048,
1395 0x33060, 0x33068,
1396 0x33070, 0x3309c,
1397 0x330f0, 0x33128,
1398 0x33130, 0x33148,
1399 0x33160, 0x33168,
1400 0x33170, 0x3319c,
1401 0x331f0, 0x33238,
1402 0x33240, 0x33240,
1403 0x33248, 0x33250,
1404 0x3325c, 0x33264,
1405 0x33270, 0x332b8,
1406 0x332c0, 0x332e4,
1407 0x332f8, 0x33338,
1408 0x33340, 0x33340,
1409 0x33348, 0x33350,
1410 0x3335c, 0x33364,
1411 0x33370, 0x333b8,
1412 0x333c0, 0x333e4,
1413 0x333f8, 0x33428,
1414 0x33430, 0x33448,
1415 0x33460, 0x33468,
1416 0x33470, 0x3349c,
1417 0x334f0, 0x33528,
1418 0x33530, 0x33548,
1419 0x33560, 0x33568,
1420 0x33570, 0x3359c,
1421 0x335f0, 0x33638,
1422 0x33640, 0x33640,
1423 0x33648, 0x33650,
1424 0x3365c, 0x33664,
1425 0x33670, 0x336b8,
1426 0x336c0, 0x336e4,
1427 0x336f8, 0x33738,
1428 0x33740, 0x33740,
1429 0x33748, 0x33750,
1430 0x3375c, 0x33764,
1431 0x33770, 0x337b8,
1432 0x337c0, 0x337e4,
1433 0x337f8, 0x337fc,
1434 0x33814, 0x33814,
1435 0x3382c, 0x3382c,
1436 0x33880, 0x3388c,
1437 0x338e8, 0x338ec,
1438 0x33900, 0x33928,
1439 0x33930, 0x33948,
1440 0x33960, 0x33968,
1441 0x33970, 0x3399c,
1442 0x339f0, 0x33a38,
1443 0x33a40, 0x33a40,
1444 0x33a48, 0x33a50,
1445 0x33a5c, 0x33a64,
1446 0x33a70, 0x33ab8,
1447 0x33ac0, 0x33ae4,
1448 0x33af8, 0x33b10,
1449 0x33b28, 0x33b28,
1450 0x33b3c, 0x33b50,
1451 0x33bf0, 0x33c10,
1452 0x33c28, 0x33c28,
1453 0x33c3c, 0x33c50,
1454 0x33cf0, 0x33cfc,
1455 0x34000, 0x34030,
1456 0x34038, 0x34038,
1457 0x34040, 0x34040,
1458 0x34100, 0x34144,
1459 0x34190, 0x341a0,
1460 0x341a8, 0x341b8,
1461 0x341c4, 0x341c8,
1462 0x341d0, 0x341d0,
1463 0x34200, 0x34318,
1464 0x34400, 0x344b4,
1465 0x344c0, 0x3452c,
1466 0x34540, 0x3461c,
1467 0x34800, 0x34828,
1468 0x34834, 0x34834,
1469 0x348c0, 0x34908,
1470 0x34910, 0x349ac,
1471 0x34a00, 0x34a14,
1472 0x34a1c, 0x34a2c,
1473 0x34a44, 0x34a50,
1474 0x34a74, 0x34a74,
1475 0x34a7c, 0x34afc,
1476 0x34b08, 0x34c24,
1477 0x34d00, 0x34d00,
1478 0x34d08, 0x34d14,
1479 0x34d1c, 0x34d20,
1480 0x34d3c, 0x34d3c,
1481 0x34d48, 0x34d50,
1482 0x35200, 0x3520c,
1483 0x35220, 0x35220,
1484 0x35240, 0x35240,
1485 0x35600, 0x3560c,
1486 0x35a00, 0x35a1c,
1487 0x35e00, 0x35e20,
1488 0x35e38, 0x35e3c,
1489 0x35e80, 0x35e80,
1490 0x35e88, 0x35ea8,
1491 0x35eb0, 0x35eb4,
1492 0x35ec8, 0x35ed4,
1493 0x35fb8, 0x36004,
1494 0x36200, 0x36200,
1495 0x36208, 0x36240,
1496 0x36248, 0x36280,
1497 0x36288, 0x362c0,
1498 0x362c8, 0x362fc,
1499 0x36600, 0x36630,
1500 0x36a00, 0x36abc,
1501 0x36b00, 0x36b10,
1502 0x36b20, 0x36b30,
1503 0x36b40, 0x36b50,
1504 0x36b60, 0x36b70,
1505 0x37000, 0x37028,
1506 0x37030, 0x37048,
1507 0x37060, 0x37068,
1508 0x37070, 0x3709c,
1509 0x370f0, 0x37128,
1510 0x37130, 0x37148,
1511 0x37160, 0x37168,
1512 0x37170, 0x3719c,
1513 0x371f0, 0x37238,
1514 0x37240, 0x37240,
1515 0x37248, 0x37250,
1516 0x3725c, 0x37264,
1517 0x37270, 0x372b8,
1518 0x372c0, 0x372e4,
1519 0x372f8, 0x37338,
1520 0x37340, 0x37340,
1521 0x37348, 0x37350,
1522 0x3735c, 0x37364,
1523 0x37370, 0x373b8,
1524 0x373c0, 0x373e4,
1525 0x373f8, 0x37428,
1526 0x37430, 0x37448,
1527 0x37460, 0x37468,
1528 0x37470, 0x3749c,
1529 0x374f0, 0x37528,
1530 0x37530, 0x37548,
1531 0x37560, 0x37568,
1532 0x37570, 0x3759c,
1533 0x375f0, 0x37638,
1534 0x37640, 0x37640,
1535 0x37648, 0x37650,
1536 0x3765c, 0x37664,
1537 0x37670, 0x376b8,
1538 0x376c0, 0x376e4,
1539 0x376f8, 0x37738,
1540 0x37740, 0x37740,
1541 0x37748, 0x37750,
1542 0x3775c, 0x37764,
1543 0x37770, 0x377b8,
1544 0x377c0, 0x377e4,
1545 0x377f8, 0x377fc,
1546 0x37814, 0x37814,
1547 0x3782c, 0x3782c,
1548 0x37880, 0x3788c,
1549 0x378e8, 0x378ec,
1550 0x37900, 0x37928,
1551 0x37930, 0x37948,
1552 0x37960, 0x37968,
1553 0x37970, 0x3799c,
1554 0x379f0, 0x37a38,
1555 0x37a40, 0x37a40,
1556 0x37a48, 0x37a50,
1557 0x37a5c, 0x37a64,
1558 0x37a70, 0x37ab8,
1559 0x37ac0, 0x37ae4,
1560 0x37af8, 0x37b10,
1561 0x37b28, 0x37b28,
1562 0x37b3c, 0x37b50,
1563 0x37bf0, 0x37c10,
1564 0x37c28, 0x37c28,
1565 0x37c3c, 0x37c50,
1566 0x37cf0, 0x37cfc,
1567 0x38000, 0x38030,
1568 0x38038, 0x38038,
1569 0x38040, 0x38040,
1570 0x38100, 0x38144,
1571 0x38190, 0x381a0,
1572 0x381a8, 0x381b8,
1573 0x381c4, 0x381c8,
1574 0x381d0, 0x381d0,
1575 0x38200, 0x38318,
1576 0x38400, 0x384b4,
1577 0x384c0, 0x3852c,
1578 0x38540, 0x3861c,
1579 0x38800, 0x38828,
1580 0x38834, 0x38834,
1581 0x388c0, 0x38908,
1582 0x38910, 0x389ac,
1583 0x38a00, 0x38a14,
1584 0x38a1c, 0x38a2c,
1585 0x38a44, 0x38a50,
1586 0x38a74, 0x38a74,
1587 0x38a7c, 0x38afc,
1588 0x38b08, 0x38c24,
1589 0x38d00, 0x38d00,
1590 0x38d08, 0x38d14,
1591 0x38d1c, 0x38d20,
1592 0x38d3c, 0x38d3c,
1593 0x38d48, 0x38d50,
1594 0x39200, 0x3920c,
1595 0x39220, 0x39220,
1596 0x39240, 0x39240,
1597 0x39600, 0x3960c,
1598 0x39a00, 0x39a1c,
1599 0x39e00, 0x39e20,
1600 0x39e38, 0x39e3c,
1601 0x39e80, 0x39e80,
1602 0x39e88, 0x39ea8,
1603 0x39eb0, 0x39eb4,
1604 0x39ec8, 0x39ed4,
1605 0x39fb8, 0x3a004,
1606 0x3a200, 0x3a200,
1607 0x3a208, 0x3a240,
1608 0x3a248, 0x3a280,
1609 0x3a288, 0x3a2c0,
1610 0x3a2c8, 0x3a2fc,
1611 0x3a600, 0x3a630,
1612 0x3aa00, 0x3aabc,
1613 0x3ab00, 0x3ab10,
1614 0x3ab20, 0x3ab30,
1615 0x3ab40, 0x3ab50,
1616 0x3ab60, 0x3ab70,
1617 0x3b000, 0x3b028,
1618 0x3b030, 0x3b048,
1619 0x3b060, 0x3b068,
1620 0x3b070, 0x3b09c,
1621 0x3b0f0, 0x3b128,
1622 0x3b130, 0x3b148,
1623 0x3b160, 0x3b168,
1624 0x3b170, 0x3b19c,
1625 0x3b1f0, 0x3b238,
1626 0x3b240, 0x3b240,
1627 0x3b248, 0x3b250,
1628 0x3b25c, 0x3b264,
1629 0x3b270, 0x3b2b8,
1630 0x3b2c0, 0x3b2e4,
1631 0x3b2f8, 0x3b338,
1632 0x3b340, 0x3b340,
1633 0x3b348, 0x3b350,
1634 0x3b35c, 0x3b364,
1635 0x3b370, 0x3b3b8,
1636 0x3b3c0, 0x3b3e4,
1637 0x3b3f8, 0x3b428,
1638 0x3b430, 0x3b448,
1639 0x3b460, 0x3b468,
1640 0x3b470, 0x3b49c,
1641 0x3b4f0, 0x3b528,
1642 0x3b530, 0x3b548,
1643 0x3b560, 0x3b568,
1644 0x3b570, 0x3b59c,
1645 0x3b5f0, 0x3b638,
1646 0x3b640, 0x3b640,
1647 0x3b648, 0x3b650,
1648 0x3b65c, 0x3b664,
1649 0x3b670, 0x3b6b8,
1650 0x3b6c0, 0x3b6e4,
1651 0x3b6f8, 0x3b738,
1652 0x3b740, 0x3b740,
1653 0x3b748, 0x3b750,
1654 0x3b75c, 0x3b764,
1655 0x3b770, 0x3b7b8,
1656 0x3b7c0, 0x3b7e4,
1657 0x3b7f8, 0x3b7fc,
1658 0x3b814, 0x3b814,
1659 0x3b82c, 0x3b82c,
1660 0x3b880, 0x3b88c,
1661 0x3b8e8, 0x3b8ec,
1662 0x3b900, 0x3b928,
1663 0x3b930, 0x3b948,
1664 0x3b960, 0x3b968,
1665 0x3b970, 0x3b99c,
1666 0x3b9f0, 0x3ba38,
1667 0x3ba40, 0x3ba40,
1668 0x3ba48, 0x3ba50,
1669 0x3ba5c, 0x3ba64,
1670 0x3ba70, 0x3bab8,
1671 0x3bac0, 0x3bae4,
1672 0x3baf8, 0x3bb10,
1673 0x3bb28, 0x3bb28,
1674 0x3bb3c, 0x3bb50,
1675 0x3bbf0, 0x3bc10,
1676 0x3bc28, 0x3bc28,
1677 0x3bc3c, 0x3bc50,
1678 0x3bcf0, 0x3bcfc,
1679 0x3c000, 0x3c030,
1680 0x3c038, 0x3c038,
1681 0x3c040, 0x3c040,
1682 0x3c100, 0x3c144,
1683 0x3c190, 0x3c1a0,
1684 0x3c1a8, 0x3c1b8,
1685 0x3c1c4, 0x3c1c8,
1686 0x3c1d0, 0x3c1d0,
1687 0x3c200, 0x3c318,
1688 0x3c400, 0x3c4b4,
1689 0x3c4c0, 0x3c52c,
1690 0x3c540, 0x3c61c,
1691 0x3c800, 0x3c828,
1692 0x3c834, 0x3c834,
1693 0x3c8c0, 0x3c908,
1694 0x3c910, 0x3c9ac,
1695 0x3ca00, 0x3ca14,
1696 0x3ca1c, 0x3ca2c,
1697 0x3ca44, 0x3ca50,
1698 0x3ca74, 0x3ca74,
1699 0x3ca7c, 0x3cafc,
1700 0x3cb08, 0x3cc24,
1701 0x3cd00, 0x3cd00,
1702 0x3cd08, 0x3cd14,
1703 0x3cd1c, 0x3cd20,
1704 0x3cd3c, 0x3cd3c,
1705 0x3cd48, 0x3cd50,
1706 0x3d200, 0x3d20c,
1707 0x3d220, 0x3d220,
1708 0x3d240, 0x3d240,
1709 0x3d600, 0x3d60c,
1710 0x3da00, 0x3da1c,
1711 0x3de00, 0x3de20,
1712 0x3de38, 0x3de3c,
1713 0x3de80, 0x3de80,
1714 0x3de88, 0x3dea8,
1715 0x3deb0, 0x3deb4,
1716 0x3dec8, 0x3ded4,
1717 0x3dfb8, 0x3e004,
1718 0x3e200, 0x3e200,
1719 0x3e208, 0x3e240,
1720 0x3e248, 0x3e280,
1721 0x3e288, 0x3e2c0,
1722 0x3e2c8, 0x3e2fc,
1723 0x3e600, 0x3e630,
1724 0x3ea00, 0x3eabc,
1725 0x3eb00, 0x3eb10,
1726 0x3eb20, 0x3eb30,
1727 0x3eb40, 0x3eb50,
1728 0x3eb60, 0x3eb70,
1729 0x3f000, 0x3f028,
1730 0x3f030, 0x3f048,
1731 0x3f060, 0x3f068,
1732 0x3f070, 0x3f09c,
1733 0x3f0f0, 0x3f128,
1734 0x3f130, 0x3f148,
1735 0x3f160, 0x3f168,
1736 0x3f170, 0x3f19c,
1737 0x3f1f0, 0x3f238,
1738 0x3f240, 0x3f240,
1739 0x3f248, 0x3f250,
1740 0x3f25c, 0x3f264,
1741 0x3f270, 0x3f2b8,
1742 0x3f2c0, 0x3f2e4,
1743 0x3f2f8, 0x3f338,
1744 0x3f340, 0x3f340,
1745 0x3f348, 0x3f350,
1746 0x3f35c, 0x3f364,
1747 0x3f370, 0x3f3b8,
1748 0x3f3c0, 0x3f3e4,
1749 0x3f3f8, 0x3f428,
1750 0x3f430, 0x3f448,
1751 0x3f460, 0x3f468,
1752 0x3f470, 0x3f49c,
1753 0x3f4f0, 0x3f528,
1754 0x3f530, 0x3f548,
1755 0x3f560, 0x3f568,
1756 0x3f570, 0x3f59c,
1757 0x3f5f0, 0x3f638,
1758 0x3f640, 0x3f640,
1759 0x3f648, 0x3f650,
1760 0x3f65c, 0x3f664,
1761 0x3f670, 0x3f6b8,
1762 0x3f6c0, 0x3f6e4,
1763 0x3f6f8, 0x3f738,
1764 0x3f740, 0x3f740,
1765 0x3f748, 0x3f750,
1766 0x3f75c, 0x3f764,
1767 0x3f770, 0x3f7b8,
1768 0x3f7c0, 0x3f7e4,
1769 0x3f7f8, 0x3f7fc,
1770 0x3f814, 0x3f814,
1771 0x3f82c, 0x3f82c,
1772 0x3f880, 0x3f88c,
1773 0x3f8e8, 0x3f8ec,
1774 0x3f900, 0x3f928,
1775 0x3f930, 0x3f948,
1776 0x3f960, 0x3f968,
1777 0x3f970, 0x3f99c,
1778 0x3f9f0, 0x3fa38,
1779 0x3fa40, 0x3fa40,
1780 0x3fa48, 0x3fa50,
1781 0x3fa5c, 0x3fa64,
1782 0x3fa70, 0x3fab8,
1783 0x3fac0, 0x3fae4,
1784 0x3faf8, 0x3fb10,
1785 0x3fb28, 0x3fb28,
1786 0x3fb3c, 0x3fb50,
1787 0x3fbf0, 0x3fc10,
1788 0x3fc28, 0x3fc28,
1789 0x3fc3c, 0x3fc50,
1790 0x3fcf0, 0x3fcfc,
1791 0x40000, 0x4000c,
1792 0x40040, 0x40050,
1793 0x40060, 0x40068,
1794 0x4007c, 0x4008c,
1795 0x40094, 0x400b0,
1796 0x400c0, 0x40144,
1797 0x40180, 0x4018c,
1798 0x40200, 0x40254,
1799 0x40260, 0x40264,
1800 0x40270, 0x40288,
1801 0x40290, 0x40298,
1802 0x402ac, 0x402c8,
1803 0x402d0, 0x402e0,
1804 0x402f0, 0x402f0,
1805 0x40300, 0x4033c,
1806 0x403f8, 0x403fc,
1807 0x41304, 0x413c4,
1808 0x41400, 0x4140c,
1809 0x41414, 0x4141c,
1810 0x41480, 0x414d0,
1811 0x44000, 0x44054,
1812 0x4405c, 0x44078,
1813 0x440c0, 0x44174,
1814 0x44180, 0x441ac,
1815 0x441b4, 0x441b8,
1816 0x441c0, 0x44254,
1817 0x4425c, 0x44278,
1818 0x442c0, 0x44374,
1819 0x44380, 0x443ac,
1820 0x443b4, 0x443b8,
1821 0x443c0, 0x44454,
1822 0x4445c, 0x44478,
1823 0x444c0, 0x44574,
1824 0x44580, 0x445ac,
1825 0x445b4, 0x445b8,
1826 0x445c0, 0x44654,
1827 0x4465c, 0x44678,
1828 0x446c0, 0x44774,
1829 0x44780, 0x447ac,
1830 0x447b4, 0x447b8,
1831 0x447c0, 0x44854,
1832 0x4485c, 0x44878,
1833 0x448c0, 0x44974,
1834 0x44980, 0x449ac,
1835 0x449b4, 0x449b8,
1836 0x449c0, 0x449fc,
1837 0x45000, 0x45004,
1838 0x45010, 0x45030,
1839 0x45040, 0x45060,
1840 0x45068, 0x45068,
1841 0x45080, 0x45084,
1842 0x450a0, 0x450b0,
1843 0x45200, 0x45204,
1844 0x45210, 0x45230,
1845 0x45240, 0x45260,
1846 0x45268, 0x45268,
1847 0x45280, 0x45284,
1848 0x452a0, 0x452b0,
1849 0x460c0, 0x460e4,
1850 0x47000, 0x4703c,
1851 0x47044, 0x4708c,
1852 0x47200, 0x47250,
1853 0x47400, 0x47408,
1854 0x47414, 0x47420,
1855 0x47600, 0x47618,
1856 0x47800, 0x47814,
1857 0x48000, 0x4800c,
1858 0x48040, 0x48050,
1859 0x48060, 0x48068,
1860 0x4807c, 0x4808c,
1861 0x48094, 0x480b0,
1862 0x480c0, 0x48144,
1863 0x48180, 0x4818c,
1864 0x48200, 0x48254,
1865 0x48260, 0x48264,
1866 0x48270, 0x48288,
1867 0x48290, 0x48298,
1868 0x482ac, 0x482c8,
1869 0x482d0, 0x482e0,
1870 0x482f0, 0x482f0,
1871 0x48300, 0x4833c,
1872 0x483f8, 0x483fc,
1873 0x49304, 0x493c4,
1874 0x49400, 0x4940c,
1875 0x49414, 0x4941c,
1876 0x49480, 0x494d0,
1877 0x4c000, 0x4c054,
1878 0x4c05c, 0x4c078,
1879 0x4c0c0, 0x4c174,
1880 0x4c180, 0x4c1ac,
1881 0x4c1b4, 0x4c1b8,
1882 0x4c1c0, 0x4c254,
1883 0x4c25c, 0x4c278,
1884 0x4c2c0, 0x4c374,
1885 0x4c380, 0x4c3ac,
1886 0x4c3b4, 0x4c3b8,
1887 0x4c3c0, 0x4c454,
1888 0x4c45c, 0x4c478,
1889 0x4c4c0, 0x4c574,
1890 0x4c580, 0x4c5ac,
1891 0x4c5b4, 0x4c5b8,
1892 0x4c5c0, 0x4c654,
1893 0x4c65c, 0x4c678,
1894 0x4c6c0, 0x4c774,
1895 0x4c780, 0x4c7ac,
1896 0x4c7b4, 0x4c7b8,
1897 0x4c7c0, 0x4c854,
1898 0x4c85c, 0x4c878,
1899 0x4c8c0, 0x4c974,
1900 0x4c980, 0x4c9ac,
1901 0x4c9b4, 0x4c9b8,
1902 0x4c9c0, 0x4c9fc,
1903 0x4d000, 0x4d004,
1904 0x4d010, 0x4d030,
1905 0x4d040, 0x4d060,
1906 0x4d068, 0x4d068,
1907 0x4d080, 0x4d084,
1908 0x4d0a0, 0x4d0b0,
1909 0x4d200, 0x4d204,
1910 0x4d210, 0x4d230,
1911 0x4d240, 0x4d260,
1912 0x4d268, 0x4d268,
1913 0x4d280, 0x4d284,
1914 0x4d2a0, 0x4d2b0,
1915 0x4e0c0, 0x4e0e4,
1916 0x4f000, 0x4f03c,
1917 0x4f044, 0x4f08c,
1918 0x4f200, 0x4f250,
1919 0x4f400, 0x4f408,
1920 0x4f414, 0x4f420,
1921 0x4f600, 0x4f618,
1922 0x4f800, 0x4f814,
1923 0x50000, 0x50084,
1924 0x50090, 0x500cc,
1925 0x50400, 0x50400,
1926 0x50800, 0x50884,
1927 0x50890, 0x508cc,
1928 0x50c00, 0x50c00,
1929 0x51000, 0x5101c,
1930 0x51300, 0x51308,
1931 };
1932
1933 static const unsigned int t6_reg_ranges[] = {
1934 0x1008, 0x101c,
1935 0x1024, 0x10a8,
1936 0x10b4, 0x10f8,
1937 0x1100, 0x1114,
1938 0x111c, 0x112c,
1939 0x1138, 0x113c,
1940 0x1144, 0x114c,
1941 0x1180, 0x1184,
1942 0x1190, 0x1194,
1943 0x11a0, 0x11a4,
1944 0x11b0, 0x11b4,
1945 0x11fc, 0x1258,
1946 0x1280, 0x12d4,
1947 0x12d9, 0x12d9,
1948 0x12de, 0x12de,
1949 0x12e3, 0x12e3,
1950 0x12e8, 0x133c,
1951 0x1800, 0x18fc,
1952 0x3000, 0x302c,
1953 0x3060, 0x30b0,
1954 0x30b8, 0x30d8,
1955 0x30e0, 0x30fc,
1956 0x3140, 0x357c,
1957 0x35a8, 0x35cc,
1958 0x35ec, 0x35ec,
1959 0x3600, 0x5624,
1960 0x56cc, 0x56ec,
1961 0x56f4, 0x5720,
1962 0x5728, 0x575c,
1963 0x580c, 0x5814,
1964 0x5890, 0x589c,
1965 0x58a4, 0x58ac,
1966 0x58b8, 0x58bc,
1967 0x5940, 0x595c,
1968 0x5980, 0x598c,
1969 0x59b0, 0x59c8,
1970 0x59d0, 0x59dc,
1971 0x59fc, 0x5a18,
1972 0x5a60, 0x5a6c,
1973 0x5a80, 0x5a8c,
1974 0x5a94, 0x5a9c,
1975 0x5b94, 0x5bfc,
1976 0x5c10, 0x5e48,
1977 0x5e50, 0x5e94,
1978 0x5ea0, 0x5eb0,
1979 0x5ec0, 0x5ec0,
1980 0x5ec8, 0x5ed0,
1981 0x6000, 0x6020,
1982 0x6028, 0x6040,
1983 0x6058, 0x609c,
1984 0x60a8, 0x619c,
1985 0x7700, 0x7798,
1986 0x77c0, 0x7880,
1987 0x78cc, 0x78fc,
1988 0x7b00, 0x7b58,
1989 0x7b60, 0x7b84,
1990 0x7b8c, 0x7c54,
1991 0x7d00, 0x7d38,
1992 0x7d40, 0x7d84,
1993 0x7d8c, 0x7ddc,
1994 0x7de4, 0x7e04,
1995 0x7e10, 0x7e1c,
1996 0x7e24, 0x7e38,
1997 0x7e40, 0x7e44,
1998 0x7e4c, 0x7e78,
1999 0x7e80, 0x7edc,
2000 0x7ee8, 0x7efc,
2001 0x8dc0, 0x8de4,
2002 0x8df8, 0x8e04,
2003 0x8e10, 0x8e84,
2004 0x8ea0, 0x8f88,
2005 0x8fb8, 0x9058,
2006 0x9060, 0x9060,
2007 0x9068, 0x90f8,
2008 0x9100, 0x9124,
2009 0x9400, 0x9470,
2010 0x9600, 0x9600,
2011 0x9608, 0x9638,
2012 0x9640, 0x9704,
2013 0x9710, 0x971c,
2014 0x9800, 0x9808,
2015 0x9820, 0x983c,
2016 0x9850, 0x9864,
2017 0x9c00, 0x9c6c,
2018 0x9c80, 0x9cec,
2019 0x9d00, 0x9d6c,
2020 0x9d80, 0x9dec,
2021 0x9e00, 0x9e6c,
2022 0x9e80, 0x9eec,
2023 0x9f00, 0x9f6c,
2024 0x9f80, 0xa020,
2025 0xd004, 0xd03c,
2026 0xd100, 0xd118,
2027 0xd200, 0xd214,
2028 0xd220, 0xd234,
2029 0xd240, 0xd254,
2030 0xd260, 0xd274,
2031 0xd280, 0xd294,
2032 0xd2a0, 0xd2b4,
2033 0xd2c0, 0xd2d4,
2034 0xd2e0, 0xd2f4,
2035 0xd300, 0xd31c,
2036 0xdfc0, 0xdfe0,
2037 0xe000, 0xf008,
2038 0x11000, 0x11014,
2039 0x11048, 0x1106c,
2040 0x11074, 0x11088,
2041 0x11098, 0x11120,
2042 0x1112c, 0x1117c,
2043 0x11190, 0x112e0,
2044 0x11300, 0x1130c,
2045 0x12000, 0x1206c,
2046 0x19040, 0x1906c,
2047 0x19078, 0x19080,
2048 0x1908c, 0x190e8,
2049 0x190f0, 0x190f8,
2050 0x19100, 0x19110,
2051 0x19120, 0x19124,
2052 0x19150, 0x19194,
2053 0x1919c, 0x191b0,
2054 0x191d0, 0x191e8,
2055 0x19238, 0x19290,
2056 0x192a4, 0x192b0,
2057 0x192bc, 0x192bc,
2058 0x19348, 0x1934c,
2059 0x193f8, 0x19418,
2060 0x19420, 0x19428,
2061 0x19430, 0x19444,
2062 0x1944c, 0x1946c,
2063 0x19474, 0x19474,
2064 0x19490, 0x194cc,
2065 0x194f0, 0x194f8,
2066 0x19c00, 0x19c48,
2067 0x19c50, 0x19c80,
2068 0x19c94, 0x19c98,
2069 0x19ca0, 0x19cbc,
2070 0x19ce4, 0x19ce4,
2071 0x19cf0, 0x19cf8,
2072 0x19d00, 0x19d28,
2073 0x19d50, 0x19d78,
2074 0x19d94, 0x19d98,
2075 0x19da0, 0x19dc8,
2076 0x19df0, 0x19e10,
2077 0x19e50, 0x19e6c,
2078 0x19ea0, 0x19ebc,
2079 0x19ec4, 0x19ef4,
2080 0x19f04, 0x19f2c,
2081 0x19f34, 0x19f34,
2082 0x19f40, 0x19f50,
2083 0x19f90, 0x19fac,
2084 0x19fc4, 0x19fc8,
2085 0x19fd0, 0x19fe4,
2086 0x1a000, 0x1a004,
2087 0x1a010, 0x1a06c,
2088 0x1a0b0, 0x1a0e4,
2089 0x1a0ec, 0x1a0f8,
2090 0x1a100, 0x1a108,
2091 0x1a114, 0x1a120,
2092 0x1a128, 0x1a130,
2093 0x1a138, 0x1a138,
2094 0x1a190, 0x1a1c4,
2095 0x1a1fc, 0x1a1fc,
2096 0x1e008, 0x1e00c,
2097 0x1e040, 0x1e044,
2098 0x1e04c, 0x1e04c,
2099 0x1e284, 0x1e290,
2100 0x1e2c0, 0x1e2c0,
2101 0x1e2e0, 0x1e2e0,
2102 0x1e300, 0x1e384,
2103 0x1e3c0, 0x1e3c8,
2104 0x1e408, 0x1e40c,
2105 0x1e440, 0x1e444,
2106 0x1e44c, 0x1e44c,
2107 0x1e684, 0x1e690,
2108 0x1e6c0, 0x1e6c0,
2109 0x1e6e0, 0x1e6e0,
2110 0x1e700, 0x1e784,
2111 0x1e7c0, 0x1e7c8,
2112 0x1e808, 0x1e80c,
2113 0x1e840, 0x1e844,
2114 0x1e84c, 0x1e84c,
2115 0x1ea84, 0x1ea90,
2116 0x1eac0, 0x1eac0,
2117 0x1eae0, 0x1eae0,
2118 0x1eb00, 0x1eb84,
2119 0x1ebc0, 0x1ebc8,
2120 0x1ec08, 0x1ec0c,
2121 0x1ec40, 0x1ec44,
2122 0x1ec4c, 0x1ec4c,
2123 0x1ee84, 0x1ee90,
2124 0x1eec0, 0x1eec0,
2125 0x1eee0, 0x1eee0,
2126 0x1ef00, 0x1ef84,
2127 0x1efc0, 0x1efc8,
2128 0x1f008, 0x1f00c,
2129 0x1f040, 0x1f044,
2130 0x1f04c, 0x1f04c,
2131 0x1f284, 0x1f290,
2132 0x1f2c0, 0x1f2c0,
2133 0x1f2e0, 0x1f2e0,
2134 0x1f300, 0x1f384,
2135 0x1f3c0, 0x1f3c8,
2136 0x1f408, 0x1f40c,
2137 0x1f440, 0x1f444,
2138 0x1f44c, 0x1f44c,
2139 0x1f684, 0x1f690,
2140 0x1f6c0, 0x1f6c0,
2141 0x1f6e0, 0x1f6e0,
2142 0x1f700, 0x1f784,
2143 0x1f7c0, 0x1f7c8,
2144 0x1f808, 0x1f80c,
2145 0x1f840, 0x1f844,
2146 0x1f84c, 0x1f84c,
2147 0x1fa84, 0x1fa90,
2148 0x1fac0, 0x1fac0,
2149 0x1fae0, 0x1fae0,
2150 0x1fb00, 0x1fb84,
2151 0x1fbc0, 0x1fbc8,
2152 0x1fc08, 0x1fc0c,
2153 0x1fc40, 0x1fc44,
2154 0x1fc4c, 0x1fc4c,
2155 0x1fe84, 0x1fe90,
2156 0x1fec0, 0x1fec0,
2157 0x1fee0, 0x1fee0,
2158 0x1ff00, 0x1ff84,
2159 0x1ffc0, 0x1ffc8,
2160 0x30000, 0x30030,
2161 0x30038, 0x30038,
2162 0x30040, 0x30040,
2163 0x30048, 0x30048,
2164 0x30050, 0x30050,
2165 0x3005c, 0x30060,
2166 0x30068, 0x30068,
2167 0x30070, 0x30070,
2168 0x30100, 0x30168,
2169 0x30190, 0x301a0,
2170 0x301a8, 0x301b8,
2171 0x301c4, 0x301c8,
2172 0x301d0, 0x301d0,
2173 0x30200, 0x30320,
2174 0x30400, 0x304b4,
2175 0x304c0, 0x3052c,
2176 0x30540, 0x3061c,
2177 0x30800, 0x308a0,
2178 0x308c0, 0x30908,
2179 0x30910, 0x309b8,
2180 0x30a00, 0x30a04,
2181 0x30a0c, 0x30a14,
2182 0x30a1c, 0x30a2c,
2183 0x30a44, 0x30a50,
2184 0x30a74, 0x30a74,
2185 0x30a7c, 0x30afc,
2186 0x30b08, 0x30c24,
2187 0x30d00, 0x30d14,
2188 0x30d1c, 0x30d3c,
2189 0x30d44, 0x30d4c,
2190 0x30d54, 0x30d74,
2191 0x30d7c, 0x30d7c,
2192 0x30de0, 0x30de0,
2193 0x30e00, 0x30ed4,
2194 0x30f00, 0x30fa4,
2195 0x30fc0, 0x30fc4,
2196 0x31000, 0x31004,
2197 0x31080, 0x310fc,
2198 0x31208, 0x31220,
2199 0x3123c, 0x31254,
2200 0x31300, 0x31300,
2201 0x31308, 0x3131c,
2202 0x31338, 0x3133c,
2203 0x31380, 0x31380,
2204 0x31388, 0x313a8,
2205 0x313b4, 0x313b4,
2206 0x31400, 0x31420,
2207 0x31438, 0x3143c,
2208 0x31480, 0x31480,
2209 0x314a8, 0x314a8,
2210 0x314b0, 0x314b4,
2211 0x314c8, 0x314d4,
2212 0x31a40, 0x31a4c,
2213 0x31af0, 0x31b20,
2214 0x31b38, 0x31b3c,
2215 0x31b80, 0x31b80,
2216 0x31ba8, 0x31ba8,
2217 0x31bb0, 0x31bb4,
2218 0x31bc8, 0x31bd4,
2219 0x32140, 0x3218c,
2220 0x321f0, 0x321f4,
2221 0x32200, 0x32200,
2222 0x32218, 0x32218,
2223 0x32400, 0x32400,
2224 0x32408, 0x3241c,
2225 0x32618, 0x32620,
2226 0x32664, 0x32664,
2227 0x326a8, 0x326a8,
2228 0x326ec, 0x326ec,
2229 0x32a00, 0x32abc,
2230 0x32b00, 0x32b38,
2231 0x32b40, 0x32b58,
2232 0x32b60, 0x32b78,
2233 0x32c00, 0x32c00,
2234 0x32c08, 0x32c3c,
2235 0x32e00, 0x32e2c,
2236 0x32f00, 0x32f2c,
2237 0x33000, 0x3302c,
2238 0x33034, 0x33050,
2239 0x33058, 0x33058,
2240 0x33060, 0x3308c,
2241 0x3309c, 0x330ac,
2242 0x330c0, 0x330c0,
2243 0x330c8, 0x330d0,
2244 0x330d8, 0x330e0,
2245 0x330ec, 0x3312c,
2246 0x33134, 0x33150,
2247 0x33158, 0x33158,
2248 0x33160, 0x3318c,
2249 0x3319c, 0x331ac,
2250 0x331c0, 0x331c0,
2251 0x331c8, 0x331d0,
2252 0x331d8, 0x331e0,
2253 0x331ec, 0x33290,
2254 0x33298, 0x332c4,
2255 0x332e4, 0x33390,
2256 0x33398, 0x333c4,
2257 0x333e4, 0x3342c,
2258 0x33434, 0x33450,
2259 0x33458, 0x33458,
2260 0x33460, 0x3348c,
2261 0x3349c, 0x334ac,
2262 0x334c0, 0x334c0,
2263 0x334c8, 0x334d0,
2264 0x334d8, 0x334e0,
2265 0x334ec, 0x3352c,
2266 0x33534, 0x33550,
2267 0x33558, 0x33558,
2268 0x33560, 0x3358c,
2269 0x3359c, 0x335ac,
2270 0x335c0, 0x335c0,
2271 0x335c8, 0x335d0,
2272 0x335d8, 0x335e0,
2273 0x335ec, 0x33690,
2274 0x33698, 0x336c4,
2275 0x336e4, 0x33790,
2276 0x33798, 0x337c4,
2277 0x337e4, 0x337fc,
2278 0x33814, 0x33814,
2279 0x33854, 0x33868,
2280 0x33880, 0x3388c,
2281 0x338c0, 0x338d0,
2282 0x338e8, 0x338ec,
2283 0x33900, 0x3392c,
2284 0x33934, 0x33950,
2285 0x33958, 0x33958,
2286 0x33960, 0x3398c,
2287 0x3399c, 0x339ac,
2288 0x339c0, 0x339c0,
2289 0x339c8, 0x339d0,
2290 0x339d8, 0x339e0,
2291 0x339ec, 0x33a90,
2292 0x33a98, 0x33ac4,
2293 0x33ae4, 0x33b10,
2294 0x33b24, 0x33b28,
2295 0x33b38, 0x33b50,
2296 0x33bf0, 0x33c10,
2297 0x33c24, 0x33c28,
2298 0x33c38, 0x33c50,
2299 0x33cf0, 0x33cfc,
2300 0x34000, 0x34030,
2301 0x34038, 0x34038,
2302 0x34040, 0x34040,
2303 0x34048, 0x34048,
2304 0x34050, 0x34050,
2305 0x3405c, 0x34060,
2306 0x34068, 0x34068,
2307 0x34070, 0x34070,
2308 0x34100, 0x34168,
2309 0x34190, 0x341a0,
2310 0x341a8, 0x341b8,
2311 0x341c4, 0x341c8,
2312 0x341d0, 0x341d0,
2313 0x34200, 0x34320,
2314 0x34400, 0x344b4,
2315 0x344c0, 0x3452c,
2316 0x34540, 0x3461c,
2317 0x34800, 0x348a0,
2318 0x348c0, 0x34908,
2319 0x34910, 0x349b8,
2320 0x34a00, 0x34a04,
2321 0x34a0c, 0x34a14,
2322 0x34a1c, 0x34a2c,
2323 0x34a44, 0x34a50,
2324 0x34a74, 0x34a74,
2325 0x34a7c, 0x34afc,
2326 0x34b08, 0x34c24,
2327 0x34d00, 0x34d14,
2328 0x34d1c, 0x34d3c,
2329 0x34d44, 0x34d4c,
2330 0x34d54, 0x34d74,
2331 0x34d7c, 0x34d7c,
2332 0x34de0, 0x34de0,
2333 0x34e00, 0x34ed4,
2334 0x34f00, 0x34fa4,
2335 0x34fc0, 0x34fc4,
2336 0x35000, 0x35004,
2337 0x35080, 0x350fc,
2338 0x35208, 0x35220,
2339 0x3523c, 0x35254,
2340 0x35300, 0x35300,
2341 0x35308, 0x3531c,
2342 0x35338, 0x3533c,
2343 0x35380, 0x35380,
2344 0x35388, 0x353a8,
2345 0x353b4, 0x353b4,
2346 0x35400, 0x35420,
2347 0x35438, 0x3543c,
2348 0x35480, 0x35480,
2349 0x354a8, 0x354a8,
2350 0x354b0, 0x354b4,
2351 0x354c8, 0x354d4,
2352 0x35a40, 0x35a4c,
2353 0x35af0, 0x35b20,
2354 0x35b38, 0x35b3c,
2355 0x35b80, 0x35b80,
2356 0x35ba8, 0x35ba8,
2357 0x35bb0, 0x35bb4,
2358 0x35bc8, 0x35bd4,
2359 0x36140, 0x3618c,
2360 0x361f0, 0x361f4,
2361 0x36200, 0x36200,
2362 0x36218, 0x36218,
2363 0x36400, 0x36400,
2364 0x36408, 0x3641c,
2365 0x36618, 0x36620,
2366 0x36664, 0x36664,
2367 0x366a8, 0x366a8,
2368 0x366ec, 0x366ec,
2369 0x36a00, 0x36abc,
2370 0x36b00, 0x36b38,
2371 0x36b40, 0x36b58,
2372 0x36b60, 0x36b78,
2373 0x36c00, 0x36c00,
2374 0x36c08, 0x36c3c,
2375 0x36e00, 0x36e2c,
2376 0x36f00, 0x36f2c,
2377 0x37000, 0x3702c,
2378 0x37034, 0x37050,
2379 0x37058, 0x37058,
2380 0x37060, 0x3708c,
2381 0x3709c, 0x370ac,
2382 0x370c0, 0x370c0,
2383 0x370c8, 0x370d0,
2384 0x370d8, 0x370e0,
2385 0x370ec, 0x3712c,
2386 0x37134, 0x37150,
2387 0x37158, 0x37158,
2388 0x37160, 0x3718c,
2389 0x3719c, 0x371ac,
2390 0x371c0, 0x371c0,
2391 0x371c8, 0x371d0,
2392 0x371d8, 0x371e0,
2393 0x371ec, 0x37290,
2394 0x37298, 0x372c4,
2395 0x372e4, 0x37390,
2396 0x37398, 0x373c4,
2397 0x373e4, 0x3742c,
2398 0x37434, 0x37450,
2399 0x37458, 0x37458,
2400 0x37460, 0x3748c,
2401 0x3749c, 0x374ac,
2402 0x374c0, 0x374c0,
2403 0x374c8, 0x374d0,
2404 0x374d8, 0x374e0,
2405 0x374ec, 0x3752c,
2406 0x37534, 0x37550,
2407 0x37558, 0x37558,
2408 0x37560, 0x3758c,
2409 0x3759c, 0x375ac,
2410 0x375c0, 0x375c0,
2411 0x375c8, 0x375d0,
2412 0x375d8, 0x375e0,
2413 0x375ec, 0x37690,
2414 0x37698, 0x376c4,
2415 0x376e4, 0x37790,
2416 0x37798, 0x377c4,
2417 0x377e4, 0x377fc,
2418 0x37814, 0x37814,
2419 0x37854, 0x37868,
2420 0x37880, 0x3788c,
2421 0x378c0, 0x378d0,
2422 0x378e8, 0x378ec,
2423 0x37900, 0x3792c,
2424 0x37934, 0x37950,
2425 0x37958, 0x37958,
2426 0x37960, 0x3798c,
2427 0x3799c, 0x379ac,
2428 0x379c0, 0x379c0,
2429 0x379c8, 0x379d0,
2430 0x379d8, 0x379e0,
2431 0x379ec, 0x37a90,
2432 0x37a98, 0x37ac4,
2433 0x37ae4, 0x37b10,
2434 0x37b24, 0x37b28,
2435 0x37b38, 0x37b50,
2436 0x37bf0, 0x37c10,
2437 0x37c24, 0x37c28,
2438 0x37c38, 0x37c50,
2439 0x37cf0, 0x37cfc,
2440 0x40040, 0x40040,
2441 0x40080, 0x40084,
2442 0x40100, 0x40100,
2443 0x40140, 0x401bc,
2444 0x40200, 0x40214,
2445 0x40228, 0x40228,
2446 0x40240, 0x40258,
2447 0x40280, 0x40280,
2448 0x40304, 0x40304,
2449 0x40330, 0x4033c,
2450 0x41304, 0x413b8,
2451 0x413c0, 0x413c8,
2452 0x413d0, 0x413dc,
2453 0x413f0, 0x413f0,
2454 0x41400, 0x4140c,
2455 0x41414, 0x4141c,
2456 0x41480, 0x414d0,
2457 0x44000, 0x4407c,
2458 0x440c0, 0x441ac,
2459 0x441b4, 0x4427c,
2460 0x442c0, 0x443ac,
2461 0x443b4, 0x4447c,
2462 0x444c0, 0x445ac,
2463 0x445b4, 0x4467c,
2464 0x446c0, 0x447ac,
2465 0x447b4, 0x4487c,
2466 0x448c0, 0x449ac,
2467 0x449b4, 0x44a7c,
2468 0x44ac0, 0x44bac,
2469 0x44bb4, 0x44c7c,
2470 0x44cc0, 0x44dac,
2471 0x44db4, 0x44e7c,
2472 0x44ec0, 0x44fac,
2473 0x44fb4, 0x4507c,
2474 0x450c0, 0x451ac,
2475 0x451b4, 0x451fc,
2476 0x45800, 0x45804,
2477 0x45810, 0x45830,
2478 0x45840, 0x45860,
2479 0x45868, 0x45868,
2480 0x45880, 0x45884,
2481 0x458a0, 0x458b0,
2482 0x45a00, 0x45a04,
2483 0x45a10, 0x45a30,
2484 0x45a40, 0x45a60,
2485 0x45a68, 0x45a68,
2486 0x45a80, 0x45a84,
2487 0x45aa0, 0x45ab0,
2488 0x460c0, 0x460e4,
2489 0x47000, 0x4703c,
2490 0x47044, 0x4708c,
2491 0x47200, 0x47250,
2492 0x47400, 0x47408,
2493 0x47414, 0x47420,
2494 0x47600, 0x47618,
2495 0x47800, 0x47814,
2496 0x47820, 0x4782c,
2497 0x50000, 0x50084,
2498 0x50090, 0x500cc,
2499 0x50300, 0x50384,
2500 0x50400, 0x50400,
2501 0x50800, 0x50884,
2502 0x50890, 0x508cc,
2503 0x50b00, 0x50b84,
2504 0x50c00, 0x50c00,
2505 0x51000, 0x51020,
2506 0x51028, 0x510b0,
2507 0x51300, 0x51324,
2508 };
2509
2510 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2511 const unsigned int *reg_ranges;
2512 int reg_ranges_size, range;
2513 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2514
2515 /* Select the right set of register ranges to dump depending on the
2516 * adapter chip type.
2517 */
2518 switch (chip_version) {
2519 case CHELSIO_T4:
2520 reg_ranges = t4_reg_ranges;
2521 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2522 break;
2523
2524 case CHELSIO_T5:
2525 reg_ranges = t5_reg_ranges;
2526 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2527 break;
2528
2529 case CHELSIO_T6:
2530 reg_ranges = t6_reg_ranges;
2531 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2532 break;
2533
2534 default:
2535 dev_err(adap->pdev_dev,
2536 "Unsupported chip version %d\n", chip_version);
2537 return;
2538 }
2539
2540 /* Clear the register buffer and insert the appropriate register
2541 * values selected by the above register ranges.
2542 */
2543 memset(buf, 0, buf_size);
2544 for (range = 0; range < reg_ranges_size; range += 2) {
2545 unsigned int reg = reg_ranges[range];
2546 unsigned int last_reg = reg_ranges[range + 1];
2547 u32 *bufp = (u32 *)((char *)buf + reg);
2548
2549 /* Iterate across the register range filling in the register
2550 * buffer but don't write past the end of the register buffer.
2551 */
2552 while (reg <= last_reg && bufp < buf_end) {
2553 *bufp++ = t4_read_reg(adap, reg);
2554 reg += sizeof(u32);
2555 }
2556 }
2557 }
2558
2559 #define EEPROM_STAT_ADDR 0x7bfc
2560 #define VPD_BASE 0x400
2561 #define VPD_BASE_OLD 0
2562 #define VPD_LEN 1024
2563 #define CHELSIO_VPD_UNIQUE_ID 0x82
2564
2565 /**
2566 * t4_seeprom_wp - enable/disable EEPROM write protection
2567 * @adapter: the adapter
2568 * @enable: whether to enable or disable write protection
2569 *
2570 * Enables or disables write protection on the serial EEPROM.
2571 */
2572 int t4_seeprom_wp(struct adapter *adapter, bool enable)
2573 {
2574 unsigned int v = enable ? 0xc : 0;
2575 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2576 return ret < 0 ? ret : 0;
2577 }
2578
2579 /**
2580 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
2581 * @adapter: adapter to read
2582 * @p: where to store the parameters
2583 *
2584 * Reads card parameters stored in VPD EEPROM.
2585 */
2586 int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
2587 {
2588 int i, ret = 0, addr;
2589 int ec, sn, pn, na;
2590 u8 *vpd, csum;
2591 unsigned int vpdr_len, kw_offset, id_len;
2592
2593 vpd = vmalloc(VPD_LEN);
2594 if (!vpd)
2595 return -ENOMEM;
2596
2597 /* Card information normally starts at VPD_BASE but early cards had
2598 * it at 0.
2599 */
2600 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2601 if (ret < 0)
2602 goto out;
2603
2604 /* The VPD shall have a unique identifier specified by the PCI SIG.
2605 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2606 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2607 * is expected to automatically put this entry at the
2608 * beginning of the VPD.
2609 */
2610 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2611
2612 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
2613 if (ret < 0)
2614 goto out;
2615
2616 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2617 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
2618 ret = -EINVAL;
2619 goto out;
2620 }
2621
2622 id_len = pci_vpd_lrdt_size(vpd);
2623 if (id_len > ID_LEN)
2624 id_len = ID_LEN;
2625
2626 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2627 if (i < 0) {
2628 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
2629 ret = -EINVAL;
2630 goto out;
2631 }
2632
2633 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2634 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2635 if (vpdr_len + kw_offset > VPD_LEN) {
2636 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
2637 ret = -EINVAL;
2638 goto out;
2639 }
2640
2641 #define FIND_VPD_KW(var, name) do { \
2642 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
2643 if (var < 0) { \
2644 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
2645 ret = -EINVAL; \
2646 goto out; \
2647 } \
2648 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2649 } while (0)
2650
2651 FIND_VPD_KW(i, "RV");
2652 for (csum = 0; i >= 0; i--)
2653 csum += vpd[i];
2654
2655 if (csum) {
2656 dev_err(adapter->pdev_dev,
2657 "corrupted VPD EEPROM, actual csum %u\n", csum);
2658 ret = -EINVAL;
2659 goto out;
2660 }
2661
2662 FIND_VPD_KW(ec, "EC");
2663 FIND_VPD_KW(sn, "SN");
2664 FIND_VPD_KW(pn, "PN");
2665 FIND_VPD_KW(na, "NA");
2666 #undef FIND_VPD_KW
2667
2668 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
2669 strim(p->id);
2670 memcpy(p->ec, vpd + ec, EC_LEN);
2671 strim(p->ec);
2672 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2673 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
2674 strim(p->sn);
2675 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
2676 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2677 strim(p->pn);
2678 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2679 strim((char *)p->na);
2680
2681 out:
2682 vfree(vpd);
2683 return ret;
2684 }
2685
2686 /**
2687 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2688 * @adapter: adapter to read
2689 * @p: where to store the parameters
2690 *
2691 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2692 * Clock. This can only be called after a connection to the firmware
2693 * is established.
2694 */
2695 int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2696 {
2697 u32 cclk_param, cclk_val;
2698 int ret;
2699
2700 /* Grab the raw VPD parameters.
2701 */
2702 ret = t4_get_raw_vpd_params(adapter, p);
2703 if (ret)
2704 return ret;
2705
2706 /* Ask firmware for the Core Clock since it knows how to translate the
2707 * Reference Clock ('V2') VPD field into a Core Clock value ...
2708 */
2709 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2710 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
2711 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
2712 1, &cclk_param, &cclk_val);
2713
2714 if (ret)
2715 return ret;
2716 p->cclk = cclk_val;
2717
2718 return 0;
2719 }
2720
2721 /* serial flash and firmware constants */
2722 enum {
2723 SF_ATTEMPTS = 10, /* max retries for SF operations */
2724
2725 /* flash command opcodes */
2726 SF_PROG_PAGE = 2, /* program page */
2727 SF_WR_DISABLE = 4, /* disable writes */
2728 SF_RD_STATUS = 5, /* read status register */
2729 SF_WR_ENABLE = 6, /* enable writes */
2730 SF_RD_DATA_FAST = 0xb, /* read flash */
2731 SF_RD_ID = 0x9f, /* read ID */
2732 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2733
2734 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
2735 };
2736
2737 /**
2738 * sf1_read - read data from the serial flash
2739 * @adapter: the adapter
2740 * @byte_cnt: number of bytes to read
2741 * @cont: whether another operation will be chained
2742 * @lock: whether to lock SF for PL access only
2743 * @valp: where to store the read data
2744 *
2745 * Reads up to 4 bytes of data from the serial flash. The location of
2746 * the read needs to be specified prior to calling this by issuing the
2747 * appropriate commands to the serial flash.
2748 */
2749 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2750 int lock, u32 *valp)
2751 {
2752 int ret;
2753
2754 if (!byte_cnt || byte_cnt > 4)
2755 return -EINVAL;
2756 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2757 return -EBUSY;
2758 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2759 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2760 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2761 if (!ret)
2762 *valp = t4_read_reg(adapter, SF_DATA_A);
2763 return ret;
2764 }
2765
2766 /**
2767 * sf1_write - write data to the serial flash
2768 * @adapter: the adapter
2769 * @byte_cnt: number of bytes to write
2770 * @cont: whether another operation will be chained
2771 * @lock: whether to lock SF for PL access only
2772 * @val: value to write
2773 *
2774 * Writes up to 4 bytes of data to the serial flash. The location of
2775 * the write needs to be specified prior to calling this by issuing the
2776 * appropriate commands to the serial flash.
2777 */
2778 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2779 int lock, u32 val)
2780 {
2781 if (!byte_cnt || byte_cnt > 4)
2782 return -EINVAL;
2783 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
2784 return -EBUSY;
2785 t4_write_reg(adapter, SF_DATA_A, val);
2786 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2787 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2788 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
2789 }
2790
2791 /**
2792 * flash_wait_op - wait for a flash operation to complete
2793 * @adapter: the adapter
2794 * @attempts: max number of polls of the status register
2795 * @delay: delay between polls in ms
2796 *
2797 * Wait for a flash operation to complete by polling the status register.
2798 */
2799 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2800 {
2801 int ret;
2802 u32 status;
2803
2804 while (1) {
2805 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2806 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2807 return ret;
2808 if (!(status & 1))
2809 return 0;
2810 if (--attempts == 0)
2811 return -EAGAIN;
2812 if (delay)
2813 msleep(delay);
2814 }
2815 }
2816
2817 /**
2818 * t4_read_flash - read words from serial flash
2819 * @adapter: the adapter
2820 * @addr: the start address for the read
2821 * @nwords: how many 32-bit words to read
2822 * @data: where to store the read data
2823 * @byte_oriented: whether to store data as bytes or as words
2824 *
2825 * Read the specified number of 32-bit words from the serial flash.
2826 * If @byte_oriented is set the read data is stored as a byte array
2827 * (i.e., big-endian), otherwise as 32-bit words in the platform's
2828 * natural endianness.
2829 */
2830 int t4_read_flash(struct adapter *adapter, unsigned int addr,
2831 unsigned int nwords, u32 *data, int byte_oriented)
2832 {
2833 int ret;
2834
2835 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
2836 return -EINVAL;
2837
2838 addr = swab32(addr) | SF_RD_DATA_FAST;
2839
2840 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2841 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2842 return ret;
2843
2844 for ( ; nwords; nwords--, data++) {
2845 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2846 if (nwords == 1)
2847 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2848 if (ret)
2849 return ret;
2850 if (byte_oriented)
2851 *data = (__force __u32)(cpu_to_be32(*data));
2852 }
2853 return 0;
2854 }
2855
2856 /**
2857 * t4_write_flash - write up to a page of data to the serial flash
2858 * @adapter: the adapter
2859 * @addr: the start address to write
2860 * @n: length of data to write in bytes
2861 * @data: the data to write
2862 *
2863 * Writes up to a page of data (256 bytes) to the serial flash starting
2864 * at the given address. All the data must be written to the same page.
2865 */
2866 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2867 unsigned int n, const u8 *data)
2868 {
2869 int ret;
2870 u32 buf[64];
2871 unsigned int i, c, left, val, offset = addr & 0xff;
2872
2873 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
2874 return -EINVAL;
2875
2876 val = swab32(addr) | SF_PROG_PAGE;
2877
2878 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2879 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2880 goto unlock;
2881
2882 for (left = n; left; left -= c) {
2883 c = min(left, 4U);
2884 for (val = 0, i = 0; i < c; ++i)
2885 val = (val << 8) + *data++;
2886
2887 ret = sf1_write(adapter, c, c != left, 1, val);
2888 if (ret)
2889 goto unlock;
2890 }
2891 ret = flash_wait_op(adapter, 8, 1);
2892 if (ret)
2893 goto unlock;
2894
2895 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2896
2897 /* Read the page to verify the write succeeded */
2898 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2899 if (ret)
2900 return ret;
2901
2902 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2903 dev_err(adapter->pdev_dev,
2904 "failed to correctly write the flash page at %#x\n",
2905 addr);
2906 return -EIO;
2907 }
2908 return 0;
2909
2910 unlock:
2911 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
2912 return ret;
2913 }
2914
2915 /**
2916 * t4_get_fw_version - read the firmware version
2917 * @adapter: the adapter
2918 * @vers: where to place the version
2919 *
2920 * Reads the FW version from flash.
2921 */
2922 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
2923 {
2924 return t4_read_flash(adapter, FLASH_FW_START +
2925 offsetof(struct fw_hdr, fw_ver), 1,
2926 vers, 0);
2927 }
2928
2929 /**
2930 * t4_get_tp_version - read the TP microcode version
2931 * @adapter: the adapter
2932 * @vers: where to place the version
2933 *
2934 * Reads the TP microcode version from flash.
2935 */
2936 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
2937 {
2938 return t4_read_flash(adapter, FLASH_FW_START +
2939 offsetof(struct fw_hdr, tp_microcode_ver),
2940 1, vers, 0);
2941 }
2942
2943 /**
2944 * t4_get_exprom_version - return the Expansion ROM version (if any)
2945 * @adapter: the adapter
2946 * @vers: where to place the version
2947 *
2948 * Reads the Expansion ROM header from FLASH and returns the version
2949 * number (if present) through the @vers return value pointer. We return
2950 * this in the Firmware Version Format since it's convenient. Return
2951 * 0 on success, -ENOENT if no Expansion ROM is present.
2952 */
2953 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2954 {
2955 struct exprom_header {
2956 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2957 unsigned char hdr_ver[4]; /* Expansion ROM version */
2958 } *hdr;
2959 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2960 sizeof(u32))];
2961 int ret;
2962
2963 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2964 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2965 0);
2966 if (ret)
2967 return ret;
2968
2969 hdr = (struct exprom_header *)exprom_header_buf;
2970 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2971 return -ENOENT;
2972
2973 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2974 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2975 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2976 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2977 return 0;
2978 }
2979
2980 /**
2981 * t4_check_fw_version - check if the FW is supported with this driver
2982 * @adap: the adapter
2983 *
2984 * Checks if an adapter's FW is compatible with the driver. Returns 0
2985 * if there's exact match, a negative error if the version could not be
2986 * read or there's a major version mismatch
2987 */
2988 int t4_check_fw_version(struct adapter *adap)
2989 {
2990 int i, ret, major, minor, micro;
2991 int exp_major, exp_minor, exp_micro;
2992 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2993
2994 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2995 /* Try multiple times before returning error */
2996 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
2997 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
2998
2999 if (ret)
3000 return ret;
3001
3002 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3003 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3004 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3005
3006 switch (chip_version) {
3007 case CHELSIO_T4:
3008 exp_major = T4FW_MIN_VERSION_MAJOR;
3009 exp_minor = T4FW_MIN_VERSION_MINOR;
3010 exp_micro = T4FW_MIN_VERSION_MICRO;
3011 break;
3012 case CHELSIO_T5:
3013 exp_major = T5FW_MIN_VERSION_MAJOR;
3014 exp_minor = T5FW_MIN_VERSION_MINOR;
3015 exp_micro = T5FW_MIN_VERSION_MICRO;
3016 break;
3017 case CHELSIO_T6:
3018 exp_major = T6FW_MIN_VERSION_MAJOR;
3019 exp_minor = T6FW_MIN_VERSION_MINOR;
3020 exp_micro = T6FW_MIN_VERSION_MICRO;
3021 break;
3022 default:
3023 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3024 adap->chip);
3025 return -EINVAL;
3026 }
3027
3028 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3029 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3030 dev_err(adap->pdev_dev,
3031 "Card has firmware version %u.%u.%u, minimum "
3032 "supported firmware is %u.%u.%u.\n", major, minor,
3033 micro, exp_major, exp_minor, exp_micro);
3034 return -EFAULT;
3035 }
3036 return 0;
3037 }
3038
3039 /* Is the given firmware API compatible with the one the driver was compiled
3040 * with?
3041 */
3042 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
3043 {
3044
3045 /* short circuit if it's the exact same firmware version */
3046 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3047 return 1;
3048
3049 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3050 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3051 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3052 return 1;
3053 #undef SAME_INTF
3054
3055 return 0;
3056 }
3057
3058 /* The firmware in the filesystem is usable, but should it be installed?
3059 * This routine explains itself in detail if it indicates the filesystem
3060 * firmware should be installed.
3061 */
3062 static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3063 int k, int c)
3064 {
3065 const char *reason;
3066
3067 if (!card_fw_usable) {
3068 reason = "incompatible or unusable";
3069 goto install;
3070 }
3071
3072 if (k > c) {
3073 reason = "older than the version supported with this driver";
3074 goto install;
3075 }
3076
3077 return 0;
3078
3079 install:
3080 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3081 "installing firmware %u.%u.%u.%u on card.\n",
3082 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3083 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3084 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3085 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3086
3087 return 1;
3088 }
3089
3090 int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3091 const u8 *fw_data, unsigned int fw_size,
3092 struct fw_hdr *card_fw, enum dev_state state,
3093 int *reset)
3094 {
3095 int ret, card_fw_usable, fs_fw_usable;
3096 const struct fw_hdr *fs_fw;
3097 const struct fw_hdr *drv_fw;
3098
3099 drv_fw = &fw_info->fw_hdr;
3100
3101 /* Read the header of the firmware on the card */
3102 ret = -t4_read_flash(adap, FLASH_FW_START,
3103 sizeof(*card_fw) / sizeof(uint32_t),
3104 (uint32_t *)card_fw, 1);
3105 if (ret == 0) {
3106 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3107 } else {
3108 dev_err(adap->pdev_dev,
3109 "Unable to read card's firmware header: %d\n", ret);
3110 card_fw_usable = 0;
3111 }
3112
3113 if (fw_data != NULL) {
3114 fs_fw = (const void *)fw_data;
3115 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3116 } else {
3117 fs_fw = NULL;
3118 fs_fw_usable = 0;
3119 }
3120
3121 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3122 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3123 /* Common case: the firmware on the card is an exact match and
3124 * the filesystem one is an exact match too, or the filesystem
3125 * one is absent/incompatible.
3126 */
3127 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3128 should_install_fs_fw(adap, card_fw_usable,
3129 be32_to_cpu(fs_fw->fw_ver),
3130 be32_to_cpu(card_fw->fw_ver))) {
3131 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3132 fw_size, 0);
3133 if (ret != 0) {
3134 dev_err(adap->pdev_dev,
3135 "failed to install firmware: %d\n", ret);
3136 goto bye;
3137 }
3138
3139 /* Installed successfully, update the cached header too. */
3140 *card_fw = *fs_fw;
3141 card_fw_usable = 1;
3142 *reset = 0; /* already reset as part of load_fw */
3143 }
3144
3145 if (!card_fw_usable) {
3146 uint32_t d, c, k;
3147
3148 d = be32_to_cpu(drv_fw->fw_ver);
3149 c = be32_to_cpu(card_fw->fw_ver);
3150 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3151
3152 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3153 "chip state %d, "
3154 "driver compiled with %d.%d.%d.%d, "
3155 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3156 state,
3157 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3158 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3159 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3160 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3161 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3162 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
3163 ret = EINVAL;
3164 goto bye;
3165 }
3166
3167 /* We're using whatever's on the card and it's known to be good. */
3168 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3169 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3170
3171 bye:
3172 return ret;
3173 }
3174
3175 /**
3176 * t4_flash_erase_sectors - erase a range of flash sectors
3177 * @adapter: the adapter
3178 * @start: the first sector to erase
3179 * @end: the last sector to erase
3180 *
3181 * Erases the sectors in the given inclusive range.
3182 */
3183 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3184 {
3185 int ret = 0;
3186
3187 if (end >= adapter->params.sf_nsec)
3188 return -EINVAL;
3189
3190 while (start <= end) {
3191 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3192 (ret = sf1_write(adapter, 4, 0, 1,
3193 SF_ERASE_SECTOR | (start << 8))) != 0 ||
3194 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3195 dev_err(adapter->pdev_dev,
3196 "erase of flash sector %d failed, error %d\n",
3197 start, ret);
3198 break;
3199 }
3200 start++;
3201 }
3202 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
3203 return ret;
3204 }
3205
3206 /**
3207 * t4_flash_cfg_addr - return the address of the flash configuration file
3208 * @adapter: the adapter
3209 *
3210 * Return the address within the flash where the Firmware Configuration
3211 * File is stored.
3212 */
3213 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3214 {
3215 if (adapter->params.sf_size == 0x100000)
3216 return FLASH_FPGA_CFG_START;
3217 else
3218 return FLASH_CFG_START;
3219 }
3220
3221 /* Return TRUE if the specified firmware matches the adapter. I.e. T4
3222 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3223 * and emit an error message for mismatched firmware to save our caller the
3224 * effort ...
3225 */
3226 static bool t4_fw_matches_chip(const struct adapter *adap,
3227 const struct fw_hdr *hdr)
3228 {
3229 /* The expression below will return FALSE for any unsupported adapter
3230 * which will keep us "honest" in the future ...
3231 */
3232 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3233 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3234 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
3235 return true;
3236
3237 dev_err(adap->pdev_dev,
3238 "FW image (%d) is not suitable for this adapter (%d)\n",
3239 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3240 return false;
3241 }
3242
3243 /**
3244 * t4_load_fw - download firmware
3245 * @adap: the adapter
3246 * @fw_data: the firmware image to write
3247 * @size: image size
3248 *
3249 * Write the supplied firmware image to the card's serial flash.
3250 */
3251 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3252 {
3253 u32 csum;
3254 int ret, addr;
3255 unsigned int i;
3256 u8 first_page[SF_PAGE_SIZE];
3257 const __be32 *p = (const __be32 *)fw_data;
3258 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3259 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3260 unsigned int fw_img_start = adap->params.sf_fw_start;
3261 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
3262
3263 if (!size) {
3264 dev_err(adap->pdev_dev, "FW image has no data\n");
3265 return -EINVAL;
3266 }
3267 if (size & 511) {
3268 dev_err(adap->pdev_dev,
3269 "FW image size not multiple of 512 bytes\n");
3270 return -EINVAL;
3271 }
3272 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
3273 dev_err(adap->pdev_dev,
3274 "FW image size differs from size in FW header\n");
3275 return -EINVAL;
3276 }
3277 if (size > FW_MAX_SIZE) {
3278 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3279 FW_MAX_SIZE);
3280 return -EFBIG;
3281 }
3282 if (!t4_fw_matches_chip(adap, hdr))
3283 return -EINVAL;
3284
3285 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3286 csum += be32_to_cpu(p[i]);
3287
3288 if (csum != 0xffffffff) {
3289 dev_err(adap->pdev_dev,
3290 "corrupted firmware image, checksum %#x\n", csum);
3291 return -EINVAL;
3292 }
3293
3294 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3295 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3296 if (ret)
3297 goto out;
3298
3299 /*
3300 * We write the correct version at the end so the driver can see a bad
3301 * version if the FW write fails. Start by writing a copy of the
3302 * first page with a bad version.
3303 */
3304 memcpy(first_page, fw_data, SF_PAGE_SIZE);
3305 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3306 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
3307 if (ret)
3308 goto out;
3309
3310 addr = fw_img_start;
3311 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3312 addr += SF_PAGE_SIZE;
3313 fw_data += SF_PAGE_SIZE;
3314 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3315 if (ret)
3316 goto out;
3317 }
3318
3319 ret = t4_write_flash(adap,
3320 fw_img_start + offsetof(struct fw_hdr, fw_ver),
3321 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3322 out:
3323 if (ret)
3324 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3325 ret);
3326 else
3327 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3328 return ret;
3329 }
3330
3331 /**
3332 * t4_phy_fw_ver - return current PHY firmware version
3333 * @adap: the adapter
3334 * @phy_fw_ver: return value buffer for PHY firmware version
3335 *
3336 * Returns the current version of external PHY firmware on the
3337 * adapter.
3338 */
3339 int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3340 {
3341 u32 param, val;
3342 int ret;
3343
3344 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3345 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3346 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3347 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
3348 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3349 &param, &val);
3350 if (ret < 0)
3351 return ret;
3352 *phy_fw_ver = val;
3353 return 0;
3354 }
3355
3356 /**
3357 * t4_load_phy_fw - download port PHY firmware
3358 * @adap: the adapter
3359 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3360 * @win_lock: the lock to use to guard the memory copy
3361 * @phy_fw_version: function to check PHY firmware versions
3362 * @phy_fw_data: the PHY firmware image to write
3363 * @phy_fw_size: image size
3364 *
3365 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3366 * @phy_fw_version is supplied, then it will be used to determine if
3367 * it's necessary to perform the transfer by comparing the version
3368 * of any existing adapter PHY firmware with that of the passed in
3369 * PHY firmware image. If @win_lock is non-NULL then it will be used
3370 * around the call to t4_memory_rw() which transfers the PHY firmware
3371 * to the adapter.
3372 *
3373 * A negative error number will be returned if an error occurs. If
3374 * version number support is available and there's no need to upgrade
3375 * the firmware, 0 will be returned. If firmware is successfully
3376 * transferred to the adapter, 1 will be retured.
3377 *
3378 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3379 * a result, a RESET of the adapter would cause that RAM to lose its
3380 * contents. Thus, loading PHY firmware on such adapters must happen
3381 * after any FW_RESET_CMDs ...
3382 */
3383 int t4_load_phy_fw(struct adapter *adap,
3384 int win, spinlock_t *win_lock,
3385 int (*phy_fw_version)(const u8 *, size_t),
3386 const u8 *phy_fw_data, size_t phy_fw_size)
3387 {
3388 unsigned long mtype = 0, maddr = 0;
3389 u32 param, val;
3390 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3391 int ret;
3392
3393 /* If we have version number support, then check to see if the adapter
3394 * already has up-to-date PHY firmware loaded.
3395 */
3396 if (phy_fw_version) {
3397 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3398 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3399 if (ret < 0)
3400 return ret;
3401
3402 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3403 CH_WARN(adap, "PHY Firmware already up-to-date, "
3404 "version %#x\n", cur_phy_fw_ver);
3405 return 0;
3406 }
3407 }
3408
3409 /* Ask the firmware where it wants us to copy the PHY firmware image.
3410 * The size of the file requires a special version of the READ coommand
3411 * which will pass the file size via the values field in PARAMS_CMD and
3412 * retrieve the return value from firmware and place it in the same
3413 * buffer values
3414 */
3415 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3416 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3417 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3418 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3419 val = phy_fw_size;
3420 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
3421 &param, &val, 1);
3422 if (ret < 0)
3423 return ret;
3424 mtype = val >> 8;
3425 maddr = (val & 0xff) << 16;
3426
3427 /* Copy the supplied PHY Firmware image to the adapter memory location
3428 * allocated by the adapter firmware.
3429 */
3430 if (win_lock)
3431 spin_lock_bh(win_lock);
3432 ret = t4_memory_rw(adap, win, mtype, maddr,
3433 phy_fw_size, (__be32 *)phy_fw_data,
3434 T4_MEMORY_WRITE);
3435 if (win_lock)
3436 spin_unlock_bh(win_lock);
3437 if (ret)
3438 return ret;
3439
3440 /* Tell the firmware that the PHY firmware image has been written to
3441 * RAM and it can now start copying it over to the PHYs. The chip
3442 * firmware will RESET the affected PHYs as part of this operation
3443 * leaving them running the new PHY firmware image.
3444 */
3445 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3446 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3447 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3448 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3449 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
3450 &param, &val, 30000);
3451
3452 /* If we have version number support, then check to see that the new
3453 * firmware got loaded properly.
3454 */
3455 if (phy_fw_version) {
3456 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3457 if (ret < 0)
3458 return ret;
3459
3460 if (cur_phy_fw_ver != new_phy_fw_vers) {
3461 CH_WARN(adap, "PHY Firmware did not update: "
3462 "version on adapter %#x, "
3463 "version flashed %#x\n",
3464 cur_phy_fw_ver, new_phy_fw_vers);
3465 return -ENXIO;
3466 }
3467 }
3468
3469 return 1;
3470 }
3471
3472 /**
3473 * t4_fwcache - firmware cache operation
3474 * @adap: the adapter
3475 * @op : the operation (flush or flush and invalidate)
3476 */
3477 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3478 {
3479 struct fw_params_cmd c;
3480
3481 memset(&c, 0, sizeof(c));
3482 c.op_to_vfn =
3483 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3484 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
3485 FW_PARAMS_CMD_PFN_V(adap->pf) |
3486 FW_PARAMS_CMD_VFN_V(0));
3487 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3488 c.param[0].mnem =
3489 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3490 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3491 c.param[0].val = (__force __be32)op;
3492
3493 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3494 }
3495
3496 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3497 unsigned int *pif_req_wrptr,
3498 unsigned int *pif_rsp_wrptr)
3499 {
3500 int i, j;
3501 u32 cfg, val, req, rsp;
3502
3503 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3504 if (cfg & LADBGEN_F)
3505 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3506
3507 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3508 req = POLADBGWRPTR_G(val);
3509 rsp = PILADBGWRPTR_G(val);
3510 if (pif_req_wrptr)
3511 *pif_req_wrptr = req;
3512 if (pif_rsp_wrptr)
3513 *pif_rsp_wrptr = rsp;
3514
3515 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3516 for (j = 0; j < 6; j++) {
3517 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3518 PILADBGRDPTR_V(rsp));
3519 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3520 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3521 req++;
3522 rsp++;
3523 }
3524 req = (req + 2) & POLADBGRDPTR_M;
3525 rsp = (rsp + 2) & PILADBGRDPTR_M;
3526 }
3527 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3528 }
3529
3530 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3531 {
3532 u32 cfg;
3533 int i, j, idx;
3534
3535 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3536 if (cfg & LADBGEN_F)
3537 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3538
3539 for (i = 0; i < CIM_MALA_SIZE; i++) {
3540 for (j = 0; j < 5; j++) {
3541 idx = 8 * i + j;
3542 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3543 PILADBGRDPTR_V(idx));
3544 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3545 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3546 }
3547 }
3548 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3549 }
3550
3551 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3552 {
3553 unsigned int i, j;
3554
3555 for (i = 0; i < 8; i++) {
3556 u32 *p = la_buf + i;
3557
3558 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3559 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3560 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3561 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3562 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3563 }
3564 }
3565
3566 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3567 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3568 FW_PORT_CAP_ANEG)
3569
3570 /**
3571 * t4_link_l1cfg - apply link configuration to MAC/PHY
3572 * @phy: the PHY to setup
3573 * @mac: the MAC to setup
3574 * @lc: the requested link configuration
3575 *
3576 * Set up a port's MAC and PHY according to a desired link configuration.
3577 * - If the PHY can auto-negotiate first decide what to advertise, then
3578 * enable/disable auto-negotiation as desired, and reset.
3579 * - If the PHY does not auto-negotiate just reset it.
3580 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3581 * otherwise do it later based on the outcome of auto-negotiation.
3582 */
3583 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3584 struct link_config *lc)
3585 {
3586 struct fw_port_cmd c;
3587 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
3588
3589 lc->link_ok = 0;
3590 if (lc->requested_fc & PAUSE_RX)
3591 fc |= FW_PORT_CAP_FC_RX;
3592 if (lc->requested_fc & PAUSE_TX)
3593 fc |= FW_PORT_CAP_FC_TX;
3594
3595 memset(&c, 0, sizeof(c));
3596 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3597 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3598 FW_PORT_CMD_PORTID_V(port));
3599 c.action_to_len16 =
3600 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3601 FW_LEN16(c));
3602
3603 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3604 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3605 fc);
3606 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3607 } else if (lc->autoneg == AUTONEG_DISABLE) {
3608 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3609 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3610 } else
3611 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3612
3613 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3614 }
3615
3616 /**
3617 * t4_restart_aneg - restart autonegotiation
3618 * @adap: the adapter
3619 * @mbox: mbox to use for the FW command
3620 * @port: the port id
3621 *
3622 * Restarts autonegotiation for the selected port.
3623 */
3624 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3625 {
3626 struct fw_port_cmd c;
3627
3628 memset(&c, 0, sizeof(c));
3629 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3630 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3631 FW_PORT_CMD_PORTID_V(port));
3632 c.action_to_len16 =
3633 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3634 FW_LEN16(c));
3635 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3636 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3637 }
3638
3639 typedef void (*int_handler_t)(struct adapter *adap);
3640
3641 struct intr_info {
3642 unsigned int mask; /* bits to check in interrupt status */
3643 const char *msg; /* message to print or NULL */
3644 short stat_idx; /* stat counter to increment or -1 */
3645 unsigned short fatal; /* whether the condition reported is fatal */
3646 int_handler_t int_handler; /* platform-specific int handler */
3647 };
3648
3649 /**
3650 * t4_handle_intr_status - table driven interrupt handler
3651 * @adapter: the adapter that generated the interrupt
3652 * @reg: the interrupt status register to process
3653 * @acts: table of interrupt actions
3654 *
3655 * A table driven interrupt handler that applies a set of masks to an
3656 * interrupt status word and performs the corresponding actions if the
3657 * interrupts described by the mask have occurred. The actions include
3658 * optionally emitting a warning or alert message. The table is terminated
3659 * by an entry specifying mask 0. Returns the number of fatal interrupt
3660 * conditions.
3661 */
3662 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3663 const struct intr_info *acts)
3664 {
3665 int fatal = 0;
3666 unsigned int mask = 0;
3667 unsigned int status = t4_read_reg(adapter, reg);
3668
3669 for ( ; acts->mask; ++acts) {
3670 if (!(status & acts->mask))
3671 continue;
3672 if (acts->fatal) {
3673 fatal++;
3674 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3675 status & acts->mask);
3676 } else if (acts->msg && printk_ratelimit())
3677 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3678 status & acts->mask);
3679 if (acts->int_handler)
3680 acts->int_handler(adapter);
3681 mask |= acts->mask;
3682 }
3683 status &= mask;
3684 if (status) /* clear processed interrupts */
3685 t4_write_reg(adapter, reg, status);
3686 return fatal;
3687 }
3688
3689 /*
3690 * Interrupt handler for the PCIE module.
3691 */
3692 static void pcie_intr_handler(struct adapter *adapter)
3693 {
3694 static const struct intr_info sysbus_intr_info[] = {
3695 { RNPP_F, "RXNP array parity error", -1, 1 },
3696 { RPCP_F, "RXPC array parity error", -1, 1 },
3697 { RCIP_F, "RXCIF array parity error", -1, 1 },
3698 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3699 { RFTP_F, "RXFT array parity error", -1, 1 },
3700 { 0 }
3701 };
3702 static const struct intr_info pcie_port_intr_info[] = {
3703 { TPCP_F, "TXPC array parity error", -1, 1 },
3704 { TNPP_F, "TXNP array parity error", -1, 1 },
3705 { TFTP_F, "TXFT array parity error", -1, 1 },
3706 { TCAP_F, "TXCA array parity error", -1, 1 },
3707 { TCIP_F, "TXCIF array parity error", -1, 1 },
3708 { RCAP_F, "RXCA array parity error", -1, 1 },
3709 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3710 { RDPE_F, "Rx data parity error", -1, 1 },
3711 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
3712 { 0 }
3713 };
3714 static const struct intr_info pcie_intr_info[] = {
3715 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3716 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3717 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3718 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3719 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3720 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3721 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3722 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3723 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3724 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3725 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3726 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3727 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3728 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3729 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3730 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3731 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3732 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3733 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3734 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3735 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3736 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3737 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3738 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3739 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3740 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3741 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3742 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3743 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3744 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3745 -1, 0 },
3746 { 0 }
3747 };
3748
3749 static struct intr_info t5_pcie_intr_info[] = {
3750 { MSTGRPPERR_F, "Master Response Read Queue parity error",
3751 -1, 1 },
3752 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3753 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3754 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3755 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3756 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3757 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3758 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
3759 -1, 1 },
3760 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
3761 -1, 1 },
3762 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3763 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3764 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3765 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3766 { DREQWRPERR_F, "PCI DMA channel write request parity error",
3767 -1, 1 },
3768 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3769 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3770 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3771 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3772 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3773 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3774 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3775 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3776 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3777 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3778 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
3779 -1, 1 },
3780 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3781 -1, 1 },
3782 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3783 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3784 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3785 { READRSPERR_F, "Outbound read error", -1, 0 },
3786 { 0 }
3787 };
3788
3789 int fat;
3790
3791 if (is_t4(adapter->params.chip))
3792 fat = t4_handle_intr_status(adapter,
3793 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3794 sysbus_intr_info) +
3795 t4_handle_intr_status(adapter,
3796 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3797 pcie_port_intr_info) +
3798 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3799 pcie_intr_info);
3800 else
3801 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
3802 t5_pcie_intr_info);
3803
3804 if (fat)
3805 t4_fatal_err(adapter);
3806 }
3807
3808 /*
3809 * TP interrupt handler.
3810 */
3811 static void tp_intr_handler(struct adapter *adapter)
3812 {
3813 static const struct intr_info tp_intr_info[] = {
3814 { 0x3fffffff, "TP parity error", -1, 1 },
3815 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3816 { 0 }
3817 };
3818
3819 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
3820 t4_fatal_err(adapter);
3821 }
3822
3823 /*
3824 * SGE interrupt handler.
3825 */
3826 static void sge_intr_handler(struct adapter *adapter)
3827 {
3828 u64 v;
3829 u32 err;
3830
3831 static const struct intr_info sge_intr_info[] = {
3832 { ERR_CPL_EXCEED_IQE_SIZE_F,
3833 "SGE received CPL exceeding IQE size", -1, 1 },
3834 { ERR_INVALID_CIDX_INC_F,
3835 "SGE GTS CIDX increment too large", -1, 0 },
3836 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3837 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
3838 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3839 "SGE IQID > 1023 received CPL for FL", -1, 0 },
3840 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3841 0 },
3842 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3843 0 },
3844 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3845 0 },
3846 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3847 0 },
3848 { ERR_ING_CTXT_PRIO_F,
3849 "SGE too many priority ingress contexts", -1, 0 },
3850 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3851 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3852 { 0 }
3853 };
3854
3855 static struct intr_info t4t5_sge_intr_info[] = {
3856 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3857 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3858 { ERR_EGR_CTXT_PRIO_F,
3859 "SGE too many priority egress contexts", -1, 0 },
3860 { 0 }
3861 };
3862
3863 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3864 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
3865 if (v) {
3866 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
3867 (unsigned long long)v);
3868 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3869 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
3870 }
3871
3872 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3873 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3874 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3875 t4t5_sge_intr_info);
3876
3877 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3878 if (err & ERROR_QID_VALID_F) {
3879 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3880 ERROR_QID_G(err));
3881 if (err & UNCAPTURED_ERROR_F)
3882 dev_err(adapter->pdev_dev,
3883 "SGE UNCAPTURED_ERROR set (clearing)\n");
3884 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3885 UNCAPTURED_ERROR_F);
3886 }
3887
3888 if (v != 0)
3889 t4_fatal_err(adapter);
3890 }
3891
3892 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3893 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3894 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3895 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3896
3897 /*
3898 * CIM interrupt handler.
3899 */
3900 static void cim_intr_handler(struct adapter *adapter)
3901 {
3902 static const struct intr_info cim_intr_info[] = {
3903 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3904 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3905 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3906 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3907 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3908 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3909 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3910 { 0 }
3911 };
3912 static const struct intr_info cim_upintr_info[] = {
3913 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3914 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3915 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3916 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3917 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3918 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3919 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3920 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3921 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3922 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3923 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3924 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3925 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3926 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3927 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3928 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3929 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3930 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3931 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3932 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3933 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3934 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3935 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3936 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3937 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3938 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3939 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3940 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3941 { 0 }
3942 };
3943
3944 int fat;
3945
3946 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
3947 t4_report_fw_error(adapter);
3948
3949 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
3950 cim_intr_info) +
3951 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
3952 cim_upintr_info);
3953 if (fat)
3954 t4_fatal_err(adapter);
3955 }
3956
3957 /*
3958 * ULP RX interrupt handler.
3959 */
3960 static void ulprx_intr_handler(struct adapter *adapter)
3961 {
3962 static const struct intr_info ulprx_intr_info[] = {
3963 { 0x1800000, "ULPRX context error", -1, 1 },
3964 { 0x7fffff, "ULPRX parity error", -1, 1 },
3965 { 0 }
3966 };
3967
3968 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3969 t4_fatal_err(adapter);
3970 }
3971
3972 /*
3973 * ULP TX interrupt handler.
3974 */
3975 static void ulptx_intr_handler(struct adapter *adapter)
3976 {
3977 static const struct intr_info ulptx_intr_info[] = {
3978 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3979 0 },
3980 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3981 0 },
3982 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3983 0 },
3984 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3985 0 },
3986 { 0xfffffff, "ULPTX parity error", -1, 1 },
3987 { 0 }
3988 };
3989
3990 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3991 t4_fatal_err(adapter);
3992 }
3993
3994 /*
3995 * PM TX interrupt handler.
3996 */
3997 static void pmtx_intr_handler(struct adapter *adapter)
3998 {
3999 static const struct intr_info pmtx_intr_info[] = {
4000 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4001 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4002 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4003 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4004 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4005 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4006 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4007 -1, 1 },
4008 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4009 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
4010 { 0 }
4011 };
4012
4013 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
4014 t4_fatal_err(adapter);
4015 }
4016
4017 /*
4018 * PM RX interrupt handler.
4019 */
4020 static void pmrx_intr_handler(struct adapter *adapter)
4021 {
4022 static const struct intr_info pmrx_intr_info[] = {
4023 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4024 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4025 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4026 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4027 -1, 1 },
4028 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4029 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
4030 { 0 }
4031 };
4032
4033 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
4034 t4_fatal_err(adapter);
4035 }
4036
4037 /*
4038 * CPL switch interrupt handler.
4039 */
4040 static void cplsw_intr_handler(struct adapter *adapter)
4041 {
4042 static const struct intr_info cplsw_intr_info[] = {
4043 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4044 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4045 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4046 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4047 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4048 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
4049 { 0 }
4050 };
4051
4052 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
4053 t4_fatal_err(adapter);
4054 }
4055
4056 /*
4057 * LE interrupt handler.
4058 */
4059 static void le_intr_handler(struct adapter *adap)
4060 {
4061 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
4062 static const struct intr_info le_intr_info[] = {
4063 { LIPMISS_F, "LE LIP miss", -1, 0 },
4064 { LIP0_F, "LE 0 LIP error", -1, 0 },
4065 { PARITYERR_F, "LE parity error", -1, 1 },
4066 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4067 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
4068 { 0 }
4069 };
4070
4071 static struct intr_info t6_le_intr_info[] = {
4072 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4073 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4074 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4075 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4076 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4077 { 0 }
4078 };
4079
4080 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4081 (chip <= CHELSIO_T5) ?
4082 le_intr_info : t6_le_intr_info))
4083 t4_fatal_err(adap);
4084 }
4085
4086 /*
4087 * MPS interrupt handler.
4088 */
4089 static void mps_intr_handler(struct adapter *adapter)
4090 {
4091 static const struct intr_info mps_rx_intr_info[] = {
4092 { 0xffffff, "MPS Rx parity error", -1, 1 },
4093 { 0 }
4094 };
4095 static const struct intr_info mps_tx_intr_info[] = {
4096 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4097 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4098 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4099 -1, 1 },
4100 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4101 -1, 1 },
4102 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4103 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4104 { FRMERR_F, "MPS Tx framing error", -1, 1 },
4105 { 0 }
4106 };
4107 static const struct intr_info mps_trc_intr_info[] = {
4108 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4109 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4110 -1, 1 },
4111 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
4112 { 0 }
4113 };
4114 static const struct intr_info mps_stat_sram_intr_info[] = {
4115 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4116 { 0 }
4117 };
4118 static const struct intr_info mps_stat_tx_intr_info[] = {
4119 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4120 { 0 }
4121 };
4122 static const struct intr_info mps_stat_rx_intr_info[] = {
4123 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4124 { 0 }
4125 };
4126 static const struct intr_info mps_cls_intr_info[] = {
4127 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4128 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4129 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
4130 { 0 }
4131 };
4132
4133 int fat;
4134
4135 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
4136 mps_rx_intr_info) +
4137 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
4138 mps_tx_intr_info) +
4139 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
4140 mps_trc_intr_info) +
4141 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
4142 mps_stat_sram_intr_info) +
4143 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
4144 mps_stat_tx_intr_info) +
4145 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
4146 mps_stat_rx_intr_info) +
4147 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
4148 mps_cls_intr_info);
4149
4150 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4151 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
4152 if (fat)
4153 t4_fatal_err(adapter);
4154 }
4155
4156 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4157 ECC_UE_INT_CAUSE_F)
4158
4159 /*
4160 * EDC/MC interrupt handler.
4161 */
4162 static void mem_intr_handler(struct adapter *adapter, int idx)
4163 {
4164 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4165
4166 unsigned int addr, cnt_addr, v;
4167
4168 if (idx <= MEM_EDC1) {
4169 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4170 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
4171 } else if (idx == MEM_MC) {
4172 if (is_t4(adapter->params.chip)) {
4173 addr = MC_INT_CAUSE_A;
4174 cnt_addr = MC_ECC_STATUS_A;
4175 } else {
4176 addr = MC_P_INT_CAUSE_A;
4177 cnt_addr = MC_P_ECC_STATUS_A;
4178 }
4179 } else {
4180 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4181 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
4182 }
4183
4184 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4185 if (v & PERR_INT_CAUSE_F)
4186 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4187 name[idx]);
4188 if (v & ECC_CE_INT_CAUSE_F) {
4189 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
4190
4191 t4_edc_err_read(adapter, idx);
4192
4193 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
4194 if (printk_ratelimit())
4195 dev_warn(adapter->pdev_dev,
4196 "%u %s correctable ECC data error%s\n",
4197 cnt, name[idx], cnt > 1 ? "s" : "");
4198 }
4199 if (v & ECC_UE_INT_CAUSE_F)
4200 dev_alert(adapter->pdev_dev,
4201 "%s uncorrectable ECC data error\n", name[idx]);
4202
4203 t4_write_reg(adapter, addr, v);
4204 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
4205 t4_fatal_err(adapter);
4206 }
4207
4208 /*
4209 * MA interrupt handler.
4210 */
4211 static void ma_intr_handler(struct adapter *adap)
4212 {
4213 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
4214
4215 if (status & MEM_PERR_INT_CAUSE_F) {
4216 dev_alert(adap->pdev_dev,
4217 "MA parity error, parity status %#x\n",
4218 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
4219 if (is_t5(adap->params.chip))
4220 dev_alert(adap->pdev_dev,
4221 "MA parity error, parity status %#x\n",
4222 t4_read_reg(adap,
4223 MA_PARITY_ERROR_STATUS2_A));
4224 }
4225 if (status & MEM_WRAP_INT_CAUSE_F) {
4226 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
4227 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4228 "client %u to address %#x\n",
4229 MEM_WRAP_CLIENT_NUM_G(v),
4230 MEM_WRAP_ADDRESS_G(v) << 4);
4231 }
4232 t4_write_reg(adap, MA_INT_CAUSE_A, status);
4233 t4_fatal_err(adap);
4234 }
4235
4236 /*
4237 * SMB interrupt handler.
4238 */
4239 static void smb_intr_handler(struct adapter *adap)
4240 {
4241 static const struct intr_info smb_intr_info[] = {
4242 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4243 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4244 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
4245 { 0 }
4246 };
4247
4248 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
4249 t4_fatal_err(adap);
4250 }
4251
4252 /*
4253 * NC-SI interrupt handler.
4254 */
4255 static void ncsi_intr_handler(struct adapter *adap)
4256 {
4257 static const struct intr_info ncsi_intr_info[] = {
4258 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4259 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4260 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4261 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
4262 { 0 }
4263 };
4264
4265 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
4266 t4_fatal_err(adap);
4267 }
4268
4269 /*
4270 * XGMAC interrupt handler.
4271 */
4272 static void xgmac_intr_handler(struct adapter *adap, int port)
4273 {
4274 u32 v, int_cause_reg;
4275
4276 if (is_t4(adap->params.chip))
4277 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
4278 else
4279 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
4280
4281 v = t4_read_reg(adap, int_cause_reg);
4282
4283 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
4284 if (!v)
4285 return;
4286
4287 if (v & TXFIFO_PRTY_ERR_F)
4288 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4289 port);
4290 if (v & RXFIFO_PRTY_ERR_F)
4291 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4292 port);
4293 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
4294 t4_fatal_err(adap);
4295 }
4296
4297 /*
4298 * PL interrupt handler.
4299 */
4300 static void pl_intr_handler(struct adapter *adap)
4301 {
4302 static const struct intr_info pl_intr_info[] = {
4303 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4304 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
4305 { 0 }
4306 };
4307
4308 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
4309 t4_fatal_err(adap);
4310 }
4311
4312 #define PF_INTR_MASK (PFSW_F)
4313 #define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4314 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4315 CPL_SWITCH_F | SGE_F | ULP_TX_F)
4316
4317 /**
4318 * t4_slow_intr_handler - control path interrupt handler
4319 * @adapter: the adapter
4320 *
4321 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4322 * The designation 'slow' is because it involves register reads, while
4323 * data interrupts typically don't involve any MMIOs.
4324 */
4325 int t4_slow_intr_handler(struct adapter *adapter)
4326 {
4327 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
4328
4329 if (!(cause & GLBL_INTR_MASK))
4330 return 0;
4331 if (cause & CIM_F)
4332 cim_intr_handler(adapter);
4333 if (cause & MPS_F)
4334 mps_intr_handler(adapter);
4335 if (cause & NCSI_F)
4336 ncsi_intr_handler(adapter);
4337 if (cause & PL_F)
4338 pl_intr_handler(adapter);
4339 if (cause & SMB_F)
4340 smb_intr_handler(adapter);
4341 if (cause & XGMAC0_F)
4342 xgmac_intr_handler(adapter, 0);
4343 if (cause & XGMAC1_F)
4344 xgmac_intr_handler(adapter, 1);
4345 if (cause & XGMAC_KR0_F)
4346 xgmac_intr_handler(adapter, 2);
4347 if (cause & XGMAC_KR1_F)
4348 xgmac_intr_handler(adapter, 3);
4349 if (cause & PCIE_F)
4350 pcie_intr_handler(adapter);
4351 if (cause & MC_F)
4352 mem_intr_handler(adapter, MEM_MC);
4353 if (is_t5(adapter->params.chip) && (cause & MC1_F))
4354 mem_intr_handler(adapter, MEM_MC1);
4355 if (cause & EDC0_F)
4356 mem_intr_handler(adapter, MEM_EDC0);
4357 if (cause & EDC1_F)
4358 mem_intr_handler(adapter, MEM_EDC1);
4359 if (cause & LE_F)
4360 le_intr_handler(adapter);
4361 if (cause & TP_F)
4362 tp_intr_handler(adapter);
4363 if (cause & MA_F)
4364 ma_intr_handler(adapter);
4365 if (cause & PM_TX_F)
4366 pmtx_intr_handler(adapter);
4367 if (cause & PM_RX_F)
4368 pmrx_intr_handler(adapter);
4369 if (cause & ULP_RX_F)
4370 ulprx_intr_handler(adapter);
4371 if (cause & CPL_SWITCH_F)
4372 cplsw_intr_handler(adapter);
4373 if (cause & SGE_F)
4374 sge_intr_handler(adapter);
4375 if (cause & ULP_TX_F)
4376 ulptx_intr_handler(adapter);
4377
4378 /* Clear the interrupts just processed for which we are the master. */
4379 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4380 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
4381 return 1;
4382 }
4383
4384 /**
4385 * t4_intr_enable - enable interrupts
4386 * @adapter: the adapter whose interrupts should be enabled
4387 *
4388 * Enable PF-specific interrupts for the calling function and the top-level
4389 * interrupt concentrator for global interrupts. Interrupts are already
4390 * enabled at each module, here we just enable the roots of the interrupt
4391 * hierarchies.
4392 *
4393 * Note: this function should be called only when the driver manages
4394 * non PF-specific interrupts from the various HW modules. Only one PCI
4395 * function at a time should be doing this.
4396 */
4397 void t4_intr_enable(struct adapter *adapter)
4398 {
4399 u32 val = 0;
4400 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4401 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4402 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4403
4404 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4405 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
4406 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4407 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
4408 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
4409 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4410 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4411 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
4412 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
4413 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4414 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
4415 }
4416
4417 /**
4418 * t4_intr_disable - disable interrupts
4419 * @adapter: the adapter whose interrupts should be disabled
4420 *
4421 * Disable interrupts. We only disable the top-level interrupt
4422 * concentrators. The caller must be a PCI function managing global
4423 * interrupts.
4424 */
4425 void t4_intr_disable(struct adapter *adapter)
4426 {
4427 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4428 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4429 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4430
4431 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4432 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
4433 }
4434
4435 /**
4436 * t4_config_rss_range - configure a portion of the RSS mapping table
4437 * @adapter: the adapter
4438 * @mbox: mbox to use for the FW command
4439 * @viid: virtual interface whose RSS subtable is to be written
4440 * @start: start entry in the table to write
4441 * @n: how many table entries to write
4442 * @rspq: values for the response queue lookup table
4443 * @nrspq: number of values in @rspq
4444 *
4445 * Programs the selected part of the VI's RSS mapping table with the
4446 * provided values. If @nrspq < @n the supplied values are used repeatedly
4447 * until the full table range is populated.
4448 *
4449 * The caller must ensure the values in @rspq are in the range allowed for
4450 * @viid.
4451 */
4452 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4453 int start, int n, const u16 *rspq, unsigned int nrspq)
4454 {
4455 int ret;
4456 const u16 *rsp = rspq;
4457 const u16 *rsp_end = rspq + nrspq;
4458 struct fw_rss_ind_tbl_cmd cmd;
4459
4460 memset(&cmd, 0, sizeof(cmd));
4461 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
4462 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4463 FW_RSS_IND_TBL_CMD_VIID_V(viid));
4464 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4465
4466 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4467 while (n > 0) {
4468 int nq = min(n, 32);
4469 __be32 *qp = &cmd.iq0_to_iq2;
4470
4471 cmd.niqid = cpu_to_be16(nq);
4472 cmd.startidx = cpu_to_be16(start);
4473
4474 start += nq;
4475 n -= nq;
4476
4477 while (nq > 0) {
4478 unsigned int v;
4479
4480 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
4481 if (++rsp >= rsp_end)
4482 rsp = rspq;
4483 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
4484 if (++rsp >= rsp_end)
4485 rsp = rspq;
4486 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
4487 if (++rsp >= rsp_end)
4488 rsp = rspq;
4489
4490 *qp++ = cpu_to_be32(v);
4491 nq -= 3;
4492 }
4493
4494 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4495 if (ret)
4496 return ret;
4497 }
4498 return 0;
4499 }
4500
4501 /**
4502 * t4_config_glbl_rss - configure the global RSS mode
4503 * @adapter: the adapter
4504 * @mbox: mbox to use for the FW command
4505 * @mode: global RSS mode
4506 * @flags: mode-specific flags
4507 *
4508 * Sets the global RSS mode.
4509 */
4510 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4511 unsigned int flags)
4512 {
4513 struct fw_rss_glb_config_cmd c;
4514
4515 memset(&c, 0, sizeof(c));
4516 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4517 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4518 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4519 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4520 c.u.manual.mode_pkd =
4521 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4522 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4523 c.u.basicvirtual.mode_pkd =
4524 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4525 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4526 } else
4527 return -EINVAL;
4528 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4529 }
4530
4531 /**
4532 * t4_config_vi_rss - configure per VI RSS settings
4533 * @adapter: the adapter
4534 * @mbox: mbox to use for the FW command
4535 * @viid: the VI id
4536 * @flags: RSS flags
4537 * @defq: id of the default RSS queue for the VI.
4538 *
4539 * Configures VI-specific RSS properties.
4540 */
4541 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4542 unsigned int flags, unsigned int defq)
4543 {
4544 struct fw_rss_vi_config_cmd c;
4545
4546 memset(&c, 0, sizeof(c));
4547 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4548 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4549 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4550 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4551 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4552 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4553 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4554 }
4555
4556 /* Read an RSS table row */
4557 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4558 {
4559 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4560 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4561 5, 0, val);
4562 }
4563
4564 /**
4565 * t4_read_rss - read the contents of the RSS mapping table
4566 * @adapter: the adapter
4567 * @map: holds the contents of the RSS mapping table
4568 *
4569 * Reads the contents of the RSS hash->queue mapping table.
4570 */
4571 int t4_read_rss(struct adapter *adapter, u16 *map)
4572 {
4573 u32 val;
4574 int i, ret;
4575
4576 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4577 ret = rd_rss_row(adapter, i, &val);
4578 if (ret)
4579 return ret;
4580 *map++ = LKPTBLQUEUE0_G(val);
4581 *map++ = LKPTBLQUEUE1_G(val);
4582 }
4583 return 0;
4584 }
4585
4586 static unsigned int t4_use_ldst(struct adapter *adap)
4587 {
4588 return (adap->flags & FW_OK) || !adap->use_bd;
4589 }
4590
4591 /**
4592 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4593 * @adap: the adapter
4594 * @vals: where the indirect register values are stored/written
4595 * @nregs: how many indirect registers to read/write
4596 * @start_idx: index of first indirect register to read/write
4597 * @rw: Read (1) or Write (0)
4598 *
4599 * Access TP PIO registers through LDST
4600 */
4601 static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4602 unsigned int start_index, unsigned int rw)
4603 {
4604 int ret, i;
4605 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4606 struct fw_ldst_cmd c;
4607
4608 for (i = 0 ; i < nregs; i++) {
4609 memset(&c, 0, sizeof(c));
4610 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4611 FW_CMD_REQUEST_F |
4612 (rw ? FW_CMD_READ_F :
4613 FW_CMD_WRITE_F) |
4614 FW_LDST_CMD_ADDRSPACE_V(cmd));
4615 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4616
4617 c.u.addrval.addr = cpu_to_be32(start_index + i);
4618 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4619 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4620 if (!ret && rw)
4621 vals[i] = be32_to_cpu(c.u.addrval.val);
4622 }
4623 }
4624
4625 /**
4626 * t4_read_rss_key - read the global RSS key
4627 * @adap: the adapter
4628 * @key: 10-entry array holding the 320-bit RSS key
4629 *
4630 * Reads the global 320-bit RSS key.
4631 */
4632 void t4_read_rss_key(struct adapter *adap, u32 *key)
4633 {
4634 if (t4_use_ldst(adap))
4635 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4636 else
4637 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4638 TP_RSS_SECRET_KEY0_A);
4639 }
4640
4641 /**
4642 * t4_write_rss_key - program one of the RSS keys
4643 * @adap: the adapter
4644 * @key: 10-entry array holding the 320-bit RSS key
4645 * @idx: which RSS key to write
4646 *
4647 * Writes one of the RSS keys with the given 320-bit value. If @idx is
4648 * 0..15 the corresponding entry in the RSS key table is written,
4649 * otherwise the global RSS key is written.
4650 */
4651 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4652 {
4653 u8 rss_key_addr_cnt = 16;
4654 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4655
4656 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4657 * allows access to key addresses 16-63 by using KeyWrAddrX
4658 * as index[5:4](upper 2) into key table
4659 */
4660 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4661 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4662 rss_key_addr_cnt = 32;
4663
4664 if (t4_use_ldst(adap))
4665 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4666 else
4667 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4668 TP_RSS_SECRET_KEY0_A);
4669
4670 if (idx >= 0 && idx < rss_key_addr_cnt) {
4671 if (rss_key_addr_cnt > 16)
4672 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4673 KEYWRADDRX_V(idx >> 4) |
4674 T6_VFWRADDR_V(idx) | KEYWREN_F);
4675 else
4676 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4677 KEYWRADDR_V(idx) | KEYWREN_F);
4678 }
4679 }
4680
4681 /**
4682 * t4_read_rss_pf_config - read PF RSS Configuration Table
4683 * @adapter: the adapter
4684 * @index: the entry in the PF RSS table to read
4685 * @valp: where to store the returned value
4686 *
4687 * Reads the PF RSS Configuration Table at the specified index and returns
4688 * the value found there.
4689 */
4690 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4691 u32 *valp)
4692 {
4693 if (t4_use_ldst(adapter))
4694 t4_fw_tp_pio_rw(adapter, valp, 1,
4695 TP_RSS_PF0_CONFIG_A + index, 1);
4696 else
4697 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4698 valp, 1, TP_RSS_PF0_CONFIG_A + index);
4699 }
4700
4701 /**
4702 * t4_read_rss_vf_config - read VF RSS Configuration Table
4703 * @adapter: the adapter
4704 * @index: the entry in the VF RSS table to read
4705 * @vfl: where to store the returned VFL
4706 * @vfh: where to store the returned VFH
4707 *
4708 * Reads the VF RSS Configuration Table at the specified index and returns
4709 * the (VFL, VFH) values found there.
4710 */
4711 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4712 u32 *vfl, u32 *vfh)
4713 {
4714 u32 vrt, mask, data;
4715
4716 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4717 mask = VFWRADDR_V(VFWRADDR_M);
4718 data = VFWRADDR_V(index);
4719 } else {
4720 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
4721 data = T6_VFWRADDR_V(index);
4722 }
4723
4724 /* Request that the index'th VF Table values be read into VFL/VFH.
4725 */
4726 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4727 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4728 vrt |= data | VFRDEN_F;
4729 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4730
4731 /* Grab the VFL/VFH values ...
4732 */
4733 if (t4_use_ldst(adapter)) {
4734 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4735 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4736 } else {
4737 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4738 vfl, 1, TP_RSS_VFL_CONFIG_A);
4739 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4740 vfh, 1, TP_RSS_VFH_CONFIG_A);
4741 }
4742 }
4743
4744 /**
4745 * t4_read_rss_pf_map - read PF RSS Map
4746 * @adapter: the adapter
4747 *
4748 * Reads the PF RSS Map register and returns its value.
4749 */
4750 u32 t4_read_rss_pf_map(struct adapter *adapter)
4751 {
4752 u32 pfmap;
4753
4754 if (t4_use_ldst(adapter))
4755 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4756 else
4757 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4758 &pfmap, 1, TP_RSS_PF_MAP_A);
4759 return pfmap;
4760 }
4761
4762 /**
4763 * t4_read_rss_pf_mask - read PF RSS Mask
4764 * @adapter: the adapter
4765 *
4766 * Reads the PF RSS Mask register and returns its value.
4767 */
4768 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4769 {
4770 u32 pfmask;
4771
4772 if (t4_use_ldst(adapter))
4773 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4774 else
4775 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4776 &pfmask, 1, TP_RSS_PF_MSK_A);
4777 return pfmask;
4778 }
4779
4780 /**
4781 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
4782 * @adap: the adapter
4783 * @v4: holds the TCP/IP counter values
4784 * @v6: holds the TCP/IPv6 counter values
4785 *
4786 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4787 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4788 */
4789 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4790 struct tp_tcp_stats *v6)
4791 {
4792 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
4793
4794 #define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
4795 #define STAT(x) val[STAT_IDX(x)]
4796 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4797
4798 if (v4) {
4799 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4800 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
4801 v4->tcp_out_rsts = STAT(OUT_RST);
4802 v4->tcp_in_segs = STAT64(IN_SEG);
4803 v4->tcp_out_segs = STAT64(OUT_SEG);
4804 v4->tcp_retrans_segs = STAT64(RXT_SEG);
4805 }
4806 if (v6) {
4807 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4808 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
4809 v6->tcp_out_rsts = STAT(OUT_RST);
4810 v6->tcp_in_segs = STAT64(IN_SEG);
4811 v6->tcp_out_segs = STAT64(OUT_SEG);
4812 v6->tcp_retrans_segs = STAT64(RXT_SEG);
4813 }
4814 #undef STAT64
4815 #undef STAT
4816 #undef STAT_IDX
4817 }
4818
4819 /**
4820 * t4_tp_get_err_stats - read TP's error MIB counters
4821 * @adap: the adapter
4822 * @st: holds the counter values
4823 *
4824 * Returns the values of TP's error counters.
4825 */
4826 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4827 {
4828 int nchan = adap->params.arch.nchan;
4829
4830 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4831 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4832 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4833 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4834 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4835 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4836 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4837 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4838 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4839 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4840 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4841 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4842 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4843 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4844 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4845 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4846
4847 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4848 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4849 }
4850
4851 /**
4852 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4853 * @adap: the adapter
4854 * @st: holds the counter values
4855 *
4856 * Returns the values of TP's CPL counters.
4857 */
4858 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4859 {
4860 int nchan = adap->params.arch.nchan;
4861
4862 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4863 nchan, TP_MIB_CPL_IN_REQ_0_A);
4864 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4865 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4866
4867 }
4868
4869 /**
4870 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4871 * @adap: the adapter
4872 * @st: holds the counter values
4873 *
4874 * Returns the values of TP's RDMA counters.
4875 */
4876 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4877 {
4878 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4879 2, TP_MIB_RQE_DFR_PKT_A);
4880 }
4881
4882 /**
4883 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4884 * @adap: the adapter
4885 * @idx: the port index
4886 * @st: holds the counter values
4887 *
4888 * Returns the values of TP's FCoE counters for the selected port.
4889 */
4890 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4891 struct tp_fcoe_stats *st)
4892 {
4893 u32 val[2];
4894
4895 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4896 1, TP_MIB_FCOE_DDP_0_A + idx);
4897 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4898 1, TP_MIB_FCOE_DROP_0_A + idx);
4899 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4900 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4901 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4902 }
4903
4904 /**
4905 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4906 * @adap: the adapter
4907 * @st: holds the counter values
4908 *
4909 * Returns the values of TP's counters for non-TCP directly-placed packets.
4910 */
4911 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4912 {
4913 u32 val[4];
4914
4915 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4916 TP_MIB_USM_PKTS_A);
4917 st->frames = val[0];
4918 st->drops = val[1];
4919 st->octets = ((u64)val[2] << 32) | val[3];
4920 }
4921
4922 /**
4923 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4924 * @adap: the adapter
4925 * @mtus: where to store the MTU values
4926 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4927 *
4928 * Reads the HW path MTU table.
4929 */
4930 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4931 {
4932 u32 v;
4933 int i;
4934
4935 for (i = 0; i < NMTUS; ++i) {
4936 t4_write_reg(adap, TP_MTU_TABLE_A,
4937 MTUINDEX_V(0xff) | MTUVALUE_V(i));
4938 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4939 mtus[i] = MTUVALUE_G(v);
4940 if (mtu_log)
4941 mtu_log[i] = MTUWIDTH_G(v);
4942 }
4943 }
4944
4945 /**
4946 * t4_read_cong_tbl - reads the congestion control table
4947 * @adap: the adapter
4948 * @incr: where to store the alpha values
4949 *
4950 * Reads the additive increments programmed into the HW congestion
4951 * control table.
4952 */
4953 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4954 {
4955 unsigned int mtu, w;
4956
4957 for (mtu = 0; mtu < NMTUS; ++mtu)
4958 for (w = 0; w < NCCTRL_WIN; ++w) {
4959 t4_write_reg(adap, TP_CCTRL_TABLE_A,
4960 ROWINDEX_V(0xffff) | (mtu << 5) | w);
4961 incr[mtu][w] = (u16)t4_read_reg(adap,
4962 TP_CCTRL_TABLE_A) & 0x1fff;
4963 }
4964 }
4965
4966 /**
4967 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4968 * @adap: the adapter
4969 * @addr: the indirect TP register address
4970 * @mask: specifies the field within the register to modify
4971 * @val: new value for the field
4972 *
4973 * Sets a field of an indirect TP register to the given value.
4974 */
4975 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4976 unsigned int mask, unsigned int val)
4977 {
4978 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4979 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4980 t4_write_reg(adap, TP_PIO_DATA_A, val);
4981 }
4982
4983 /**
4984 * init_cong_ctrl - initialize congestion control parameters
4985 * @a: the alpha values for congestion control
4986 * @b: the beta values for congestion control
4987 *
4988 * Initialize the congestion control parameters.
4989 */
4990 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
4991 {
4992 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
4993 a[9] = 2;
4994 a[10] = 3;
4995 a[11] = 4;
4996 a[12] = 5;
4997 a[13] = 6;
4998 a[14] = 7;
4999 a[15] = 8;
5000 a[16] = 9;
5001 a[17] = 10;
5002 a[18] = 14;
5003 a[19] = 17;
5004 a[20] = 21;
5005 a[21] = 25;
5006 a[22] = 30;
5007 a[23] = 35;
5008 a[24] = 45;
5009 a[25] = 60;
5010 a[26] = 80;
5011 a[27] = 100;
5012 a[28] = 200;
5013 a[29] = 300;
5014 a[30] = 400;
5015 a[31] = 500;
5016
5017 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5018 b[9] = b[10] = 1;
5019 b[11] = b[12] = 2;
5020 b[13] = b[14] = b[15] = b[16] = 3;
5021 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5022 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5023 b[28] = b[29] = 6;
5024 b[30] = b[31] = 7;
5025 }
5026
5027 /* The minimum additive increment value for the congestion control table */
5028 #define CC_MIN_INCR 2U
5029
5030 /**
5031 * t4_load_mtus - write the MTU and congestion control HW tables
5032 * @adap: the adapter
5033 * @mtus: the values for the MTU table
5034 * @alpha: the values for the congestion control alpha parameter
5035 * @beta: the values for the congestion control beta parameter
5036 *
5037 * Write the HW MTU table with the supplied MTUs and the high-speed
5038 * congestion control table with the supplied alpha, beta, and MTUs.
5039 * We write the two tables together because the additive increments
5040 * depend on the MTUs.
5041 */
5042 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5043 const unsigned short *alpha, const unsigned short *beta)
5044 {
5045 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5046 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5047 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5048 28672, 40960, 57344, 81920, 114688, 163840, 229376
5049 };
5050
5051 unsigned int i, w;
5052
5053 for (i = 0; i < NMTUS; ++i) {
5054 unsigned int mtu = mtus[i];
5055 unsigned int log2 = fls(mtu);
5056
5057 if (!(mtu & ((1 << log2) >> 2))) /* round */
5058 log2--;
5059 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5060 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
5061
5062 for (w = 0; w < NCCTRL_WIN; ++w) {
5063 unsigned int inc;
5064
5065 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5066 CC_MIN_INCR);
5067
5068 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
5069 (w << 16) | (beta[w] << 13) | inc);
5070 }
5071 }
5072 }
5073
5074 /* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5075 * clocks. The formula is
5076 *
5077 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5078 *
5079 * which is equivalent to
5080 *
5081 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5082 */
5083 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5084 {
5085 u64 v = bytes256 * adap->params.vpd.cclk;
5086
5087 return v * 62 + v / 2;
5088 }
5089
5090 /**
5091 * t4_get_chan_txrate - get the current per channel Tx rates
5092 * @adap: the adapter
5093 * @nic_rate: rates for NIC traffic
5094 * @ofld_rate: rates for offloaded traffic
5095 *
5096 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5097 * for each channel.
5098 */
5099 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5100 {
5101 u32 v;
5102
5103 v = t4_read_reg(adap, TP_TX_TRATE_A);
5104 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5105 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5106 if (adap->params.arch.nchan == NCHAN) {
5107 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5108 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5109 }
5110
5111 v = t4_read_reg(adap, TP_TX_ORATE_A);
5112 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5113 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5114 if (adap->params.arch.nchan == NCHAN) {
5115 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5116 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5117 }
5118 }
5119
5120 /**
5121 * t4_set_trace_filter - configure one of the tracing filters
5122 * @adap: the adapter
5123 * @tp: the desired trace filter parameters
5124 * @idx: which filter to configure
5125 * @enable: whether to enable or disable the filter
5126 *
5127 * Configures one of the tracing filters available in HW. If @enable is
5128 * %0 @tp is not examined and may be %NULL. The user is responsible to
5129 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5130 */
5131 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5132 int idx, int enable)
5133 {
5134 int i, ofst = idx * 4;
5135 u32 data_reg, mask_reg, cfg;
5136 u32 multitrc = TRCMULTIFILTER_F;
5137
5138 if (!enable) {
5139 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5140 return 0;
5141 }
5142
5143 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5144 if (cfg & TRCMULTIFILTER_F) {
5145 /* If multiple tracers are enabled, then maximum
5146 * capture size is 2.5KB (FIFO size of a single channel)
5147 * minus 2 flits for CPL_TRACE_PKT header.
5148 */
5149 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5150 return -EINVAL;
5151 } else {
5152 /* If multiple tracers are disabled, to avoid deadlocks
5153 * maximum packet capture size of 9600 bytes is recommended.
5154 * Also in this mode, only trace0 can be enabled and running.
5155 */
5156 multitrc = 0;
5157 if (tp->snap_len > 9600 || idx)
5158 return -EINVAL;
5159 }
5160
5161 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5162 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5163 tp->min_len > TFMINPKTSIZE_M)
5164 return -EINVAL;
5165
5166 /* stop the tracer we'll be changing */
5167 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5168
5169 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5170 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5171 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5172
5173 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5174 t4_write_reg(adap, data_reg, tp->data[i]);
5175 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5176 }
5177 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5178 TFCAPTUREMAX_V(tp->snap_len) |
5179 TFMINPKTSIZE_V(tp->min_len));
5180 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5181 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5182 (is_t4(adap->params.chip) ?
5183 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5184 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5185 T5_TFINVERTMATCH_V(tp->invert)));
5186
5187 return 0;
5188 }
5189
5190 /**
5191 * t4_get_trace_filter - query one of the tracing filters
5192 * @adap: the adapter
5193 * @tp: the current trace filter parameters
5194 * @idx: which trace filter to query
5195 * @enabled: non-zero if the filter is enabled
5196 *
5197 * Returns the current settings of one of the HW tracing filters.
5198 */
5199 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5200 int *enabled)
5201 {
5202 u32 ctla, ctlb;
5203 int i, ofst = idx * 4;
5204 u32 data_reg, mask_reg;
5205
5206 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5207 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5208
5209 if (is_t4(adap->params.chip)) {
5210 *enabled = !!(ctla & TFEN_F);
5211 tp->port = TFPORT_G(ctla);
5212 tp->invert = !!(ctla & TFINVERTMATCH_F);
5213 } else {
5214 *enabled = !!(ctla & T5_TFEN_F);
5215 tp->port = T5_TFPORT_G(ctla);
5216 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5217 }
5218 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5219 tp->min_len = TFMINPKTSIZE_G(ctlb);
5220 tp->skip_ofst = TFOFFSET_G(ctla);
5221 tp->skip_len = TFLENGTH_G(ctla);
5222
5223 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5224 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5225 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5226
5227 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5228 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5229 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5230 }
5231 }
5232
5233 /**
5234 * t4_pmtx_get_stats - returns the HW stats from PMTX
5235 * @adap: the adapter
5236 * @cnt: where to store the count statistics
5237 * @cycles: where to store the cycle statistics
5238 *
5239 * Returns performance statistics from PMTX.
5240 */
5241 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5242 {
5243 int i;
5244 u32 data[2];
5245
5246 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5247 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5248 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5249 if (is_t4(adap->params.chip)) {
5250 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5251 } else {
5252 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5253 PM_TX_DBG_DATA_A, data, 2,
5254 PM_TX_DBG_STAT_MSB_A);
5255 cycles[i] = (((u64)data[0] << 32) | data[1]);
5256 }
5257 }
5258 }
5259
5260 /**
5261 * t4_pmrx_get_stats - returns the HW stats from PMRX
5262 * @adap: the adapter
5263 * @cnt: where to store the count statistics
5264 * @cycles: where to store the cycle statistics
5265 *
5266 * Returns performance statistics from PMRX.
5267 */
5268 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5269 {
5270 int i;
5271 u32 data[2];
5272
5273 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
5274 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5275 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5276 if (is_t4(adap->params.chip)) {
5277 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5278 } else {
5279 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5280 PM_RX_DBG_DATA_A, data, 2,
5281 PM_RX_DBG_STAT_MSB_A);
5282 cycles[i] = (((u64)data[0] << 32) | data[1]);
5283 }
5284 }
5285 }
5286
5287 /**
5288 * t4_get_mps_bg_map - return the buffer groups associated with a port
5289 * @adap: the adapter
5290 * @idx: the port index
5291 *
5292 * Returns a bitmap indicating which MPS buffer groups are associated
5293 * with the given port. Bit i is set if buffer group i is used by the
5294 * port.
5295 */
5296 unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5297 {
5298 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
5299
5300 if (n == 0)
5301 return idx == 0 ? 0xf : 0;
5302 /* In T6 (which is a 2 port card),
5303 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5304 * For 2 port T4/T5 adapter,
5305 * port 0 is mapped to channel 0 and 1,
5306 * port 1 is mapped to channel 2 and 3.
5307 */
5308 if ((n == 1) &&
5309 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
5310 return idx < 2 ? (3 << (2 * idx)) : 0;
5311 return 1 << idx;
5312 }
5313
5314 /**
5315 * t4_get_port_type_description - return Port Type string description
5316 * @port_type: firmware Port Type enumeration
5317 */
5318 const char *t4_get_port_type_description(enum fw_port_type port_type)
5319 {
5320 static const char *const port_type_description[] = {
5321 "R XFI",
5322 "R XAUI",
5323 "T SGMII",
5324 "T XFI",
5325 "T XAUI",
5326 "KX4",
5327 "CX4",
5328 "KX",
5329 "KR",
5330 "R SFP+",
5331 "KR/KX",
5332 "KR/KX/KX4",
5333 "R QSFP_10G",
5334 "R QSA",
5335 "R QSFP",
5336 "R BP40_BA",
5337 };
5338
5339 if (port_type < ARRAY_SIZE(port_type_description))
5340 return port_type_description[port_type];
5341 return "UNKNOWN";
5342 }
5343
5344 /**
5345 * t4_get_port_stats_offset - collect port stats relative to a previous
5346 * snapshot
5347 * @adap: The adapter
5348 * @idx: The port
5349 * @stats: Current stats to fill
5350 * @offset: Previous stats snapshot
5351 */
5352 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5353 struct port_stats *stats,
5354 struct port_stats *offset)
5355 {
5356 u64 *s, *o;
5357 int i;
5358
5359 t4_get_port_stats(adap, idx, stats);
5360 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5361 i < (sizeof(struct port_stats) / sizeof(u64));
5362 i++, s++, o++)
5363 *s -= *o;
5364 }
5365
5366 /**
5367 * t4_get_port_stats - collect port statistics
5368 * @adap: the adapter
5369 * @idx: the port index
5370 * @p: the stats structure to fill
5371 *
5372 * Collect statistics related to the given port from HW.
5373 */
5374 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5375 {
5376 u32 bgmap = t4_get_mps_bg_map(adap, idx);
5377
5378 #define GET_STAT(name) \
5379 t4_read_reg64(adap, \
5380 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
5381 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
5382 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5383
5384 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5385 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5386 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5387 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5388 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5389 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5390 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5391 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5392 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5393 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5394 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5395 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5396 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5397 p->tx_drop = GET_STAT(TX_PORT_DROP);
5398 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5399 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5400 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5401 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5402 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5403 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5404 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5405 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5406 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5407
5408 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5409 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5410 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5411 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5412 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5413 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5414 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5415 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5416 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5417 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5418 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5419 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5420 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5421 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5422 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5423 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5424 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5425 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5426 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5427 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5428 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5429 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5430 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5431 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5432 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5433 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5434 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5435
5436 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5437 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5438 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5439 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5440 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5441 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5442 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5443 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5444
5445 #undef GET_STAT
5446 #undef GET_STAT_COM
5447 }
5448
5449 /**
5450 * t4_get_lb_stats - collect loopback port statistics
5451 * @adap: the adapter
5452 * @idx: the loopback port index
5453 * @p: the stats structure to fill
5454 *
5455 * Return HW statistics for the given loopback port.
5456 */
5457 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5458 {
5459 u32 bgmap = t4_get_mps_bg_map(adap, idx);
5460
5461 #define GET_STAT(name) \
5462 t4_read_reg64(adap, \
5463 (is_t4(adap->params.chip) ? \
5464 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5465 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5466 #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5467
5468 p->octets = GET_STAT(BYTES);
5469 p->frames = GET_STAT(FRAMES);
5470 p->bcast_frames = GET_STAT(BCAST);
5471 p->mcast_frames = GET_STAT(MCAST);
5472 p->ucast_frames = GET_STAT(UCAST);
5473 p->error_frames = GET_STAT(ERROR);
5474
5475 p->frames_64 = GET_STAT(64B);
5476 p->frames_65_127 = GET_STAT(65B_127B);
5477 p->frames_128_255 = GET_STAT(128B_255B);
5478 p->frames_256_511 = GET_STAT(256B_511B);
5479 p->frames_512_1023 = GET_STAT(512B_1023B);
5480 p->frames_1024_1518 = GET_STAT(1024B_1518B);
5481 p->frames_1519_max = GET_STAT(1519B_MAX);
5482 p->drop = GET_STAT(DROP_FRAMES);
5483
5484 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5485 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5486 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5487 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5488 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5489 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5490 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5491 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5492
5493 #undef GET_STAT
5494 #undef GET_STAT_COM
5495 }
5496
5497 /* t4_mk_filtdelwr - create a delete filter WR
5498 * @ftid: the filter ID
5499 * @wr: the filter work request to populate
5500 * @qid: ingress queue to receive the delete notification
5501 *
5502 * Creates a filter work request to delete the supplied filter. If @qid is
5503 * negative the delete notification is suppressed.
5504 */
5505 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5506 {
5507 memset(wr, 0, sizeof(*wr));
5508 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5509 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5510 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5511 FW_FILTER_WR_NOREPLY_V(qid < 0));
5512 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
5513 if (qid >= 0)
5514 wr->rx_chan_rx_rpl_iq =
5515 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
5516 }
5517
5518 #define INIT_CMD(var, cmd, rd_wr) do { \
5519 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5520 FW_CMD_REQUEST_F | \
5521 FW_CMD_##rd_wr##_F); \
5522 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5523 } while (0)
5524
5525 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5526 u32 addr, u32 val)
5527 {
5528 u32 ldst_addrspace;
5529 struct fw_ldst_cmd c;
5530
5531 memset(&c, 0, sizeof(c));
5532 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5533 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5534 FW_CMD_REQUEST_F |
5535 FW_CMD_WRITE_F |
5536 ldst_addrspace);
5537 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5538 c.u.addrval.addr = cpu_to_be32(addr);
5539 c.u.addrval.val = cpu_to_be32(val);
5540
5541 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5542 }
5543
5544 /**
5545 * t4_mdio_rd - read a PHY register through MDIO
5546 * @adap: the adapter
5547 * @mbox: mailbox to use for the FW command
5548 * @phy_addr: the PHY address
5549 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5550 * @reg: the register to read
5551 * @valp: where to store the value
5552 *
5553 * Issues a FW command through the given mailbox to read a PHY register.
5554 */
5555 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5556 unsigned int mmd, unsigned int reg, u16 *valp)
5557 {
5558 int ret;
5559 u32 ldst_addrspace;
5560 struct fw_ldst_cmd c;
5561
5562 memset(&c, 0, sizeof(c));
5563 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5564 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5565 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5566 ldst_addrspace);
5567 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5568 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5569 FW_LDST_CMD_MMD_V(mmd));
5570 c.u.mdio.raddr = cpu_to_be16(reg);
5571
5572 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5573 if (ret == 0)
5574 *valp = be16_to_cpu(c.u.mdio.rval);
5575 return ret;
5576 }
5577
5578 /**
5579 * t4_mdio_wr - write a PHY register through MDIO
5580 * @adap: the adapter
5581 * @mbox: mailbox to use for the FW command
5582 * @phy_addr: the PHY address
5583 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5584 * @reg: the register to write
5585 * @valp: value to write
5586 *
5587 * Issues a FW command through the given mailbox to write a PHY register.
5588 */
5589 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5590 unsigned int mmd, unsigned int reg, u16 val)
5591 {
5592 u32 ldst_addrspace;
5593 struct fw_ldst_cmd c;
5594
5595 memset(&c, 0, sizeof(c));
5596 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5597 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5598 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5599 ldst_addrspace);
5600 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5601 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5602 FW_LDST_CMD_MMD_V(mmd));
5603 c.u.mdio.raddr = cpu_to_be16(reg);
5604 c.u.mdio.rval = cpu_to_be16(val);
5605
5606 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5607 }
5608
5609 /**
5610 * t4_sge_decode_idma_state - decode the idma state
5611 * @adap: the adapter
5612 * @state: the state idma is stuck in
5613 */
5614 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5615 {
5616 static const char * const t4_decode[] = {
5617 "IDMA_IDLE",
5618 "IDMA_PUSH_MORE_CPL_FIFO",
5619 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5620 "Not used",
5621 "IDMA_PHYSADDR_SEND_PCIEHDR",
5622 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5623 "IDMA_PHYSADDR_SEND_PAYLOAD",
5624 "IDMA_SEND_FIFO_TO_IMSG",
5625 "IDMA_FL_REQ_DATA_FL_PREP",
5626 "IDMA_FL_REQ_DATA_FL",
5627 "IDMA_FL_DROP",
5628 "IDMA_FL_H_REQ_HEADER_FL",
5629 "IDMA_FL_H_SEND_PCIEHDR",
5630 "IDMA_FL_H_PUSH_CPL_FIFO",
5631 "IDMA_FL_H_SEND_CPL",
5632 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5633 "IDMA_FL_H_SEND_IP_HDR",
5634 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5635 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5636 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5637 "IDMA_FL_D_SEND_PCIEHDR",
5638 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5639 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5640 "IDMA_FL_SEND_PCIEHDR",
5641 "IDMA_FL_PUSH_CPL_FIFO",
5642 "IDMA_FL_SEND_CPL",
5643 "IDMA_FL_SEND_PAYLOAD_FIRST",
5644 "IDMA_FL_SEND_PAYLOAD",
5645 "IDMA_FL_REQ_NEXT_DATA_FL",
5646 "IDMA_FL_SEND_NEXT_PCIEHDR",
5647 "IDMA_FL_SEND_PADDING",
5648 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5649 "IDMA_FL_SEND_FIFO_TO_IMSG",
5650 "IDMA_FL_REQ_DATAFL_DONE",
5651 "IDMA_FL_REQ_HEADERFL_DONE",
5652 };
5653 static const char * const t5_decode[] = {
5654 "IDMA_IDLE",
5655 "IDMA_ALMOST_IDLE",
5656 "IDMA_PUSH_MORE_CPL_FIFO",
5657 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5658 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5659 "IDMA_PHYSADDR_SEND_PCIEHDR",
5660 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5661 "IDMA_PHYSADDR_SEND_PAYLOAD",
5662 "IDMA_SEND_FIFO_TO_IMSG",
5663 "IDMA_FL_REQ_DATA_FL",
5664 "IDMA_FL_DROP",
5665 "IDMA_FL_DROP_SEND_INC",
5666 "IDMA_FL_H_REQ_HEADER_FL",
5667 "IDMA_FL_H_SEND_PCIEHDR",
5668 "IDMA_FL_H_PUSH_CPL_FIFO",
5669 "IDMA_FL_H_SEND_CPL",
5670 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5671 "IDMA_FL_H_SEND_IP_HDR",
5672 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5673 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5674 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5675 "IDMA_FL_D_SEND_PCIEHDR",
5676 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5677 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5678 "IDMA_FL_SEND_PCIEHDR",
5679 "IDMA_FL_PUSH_CPL_FIFO",
5680 "IDMA_FL_SEND_CPL",
5681 "IDMA_FL_SEND_PAYLOAD_FIRST",
5682 "IDMA_FL_SEND_PAYLOAD",
5683 "IDMA_FL_REQ_NEXT_DATA_FL",
5684 "IDMA_FL_SEND_NEXT_PCIEHDR",
5685 "IDMA_FL_SEND_PADDING",
5686 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5687 };
5688 static const char * const t6_decode[] = {
5689 "IDMA_IDLE",
5690 "IDMA_PUSH_MORE_CPL_FIFO",
5691 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5692 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5693 "IDMA_PHYSADDR_SEND_PCIEHDR",
5694 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5695 "IDMA_PHYSADDR_SEND_PAYLOAD",
5696 "IDMA_FL_REQ_DATA_FL",
5697 "IDMA_FL_DROP",
5698 "IDMA_FL_DROP_SEND_INC",
5699 "IDMA_FL_H_REQ_HEADER_FL",
5700 "IDMA_FL_H_SEND_PCIEHDR",
5701 "IDMA_FL_H_PUSH_CPL_FIFO",
5702 "IDMA_FL_H_SEND_CPL",
5703 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5704 "IDMA_FL_H_SEND_IP_HDR",
5705 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5706 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5707 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5708 "IDMA_FL_D_SEND_PCIEHDR",
5709 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5710 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5711 "IDMA_FL_SEND_PCIEHDR",
5712 "IDMA_FL_PUSH_CPL_FIFO",
5713 "IDMA_FL_SEND_CPL",
5714 "IDMA_FL_SEND_PAYLOAD_FIRST",
5715 "IDMA_FL_SEND_PAYLOAD",
5716 "IDMA_FL_REQ_NEXT_DATA_FL",
5717 "IDMA_FL_SEND_NEXT_PCIEHDR",
5718 "IDMA_FL_SEND_PADDING",
5719 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5720 };
5721 static const u32 sge_regs[] = {
5722 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5723 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5724 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
5725 };
5726 const char **sge_idma_decode;
5727 int sge_idma_decode_nstates;
5728 int i;
5729 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5730
5731 /* Select the right set of decode strings to dump depending on the
5732 * adapter chip type.
5733 */
5734 switch (chip_version) {
5735 case CHELSIO_T4:
5736 sge_idma_decode = (const char **)t4_decode;
5737 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5738 break;
5739
5740 case CHELSIO_T5:
5741 sge_idma_decode = (const char **)t5_decode;
5742 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5743 break;
5744
5745 case CHELSIO_T6:
5746 sge_idma_decode = (const char **)t6_decode;
5747 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5748 break;
5749
5750 default:
5751 dev_err(adapter->pdev_dev,
5752 "Unsupported chip version %d\n", chip_version);
5753 return;
5754 }
5755
5756 if (is_t4(adapter->params.chip)) {
5757 sge_idma_decode = (const char **)t4_decode;
5758 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5759 } else {
5760 sge_idma_decode = (const char **)t5_decode;
5761 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5762 }
5763
5764 if (state < sge_idma_decode_nstates)
5765 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5766 else
5767 CH_WARN(adapter, "idma state %d unknown\n", state);
5768
5769 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5770 CH_WARN(adapter, "SGE register %#x value %#x\n",
5771 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5772 }
5773
5774 /**
5775 * t4_sge_ctxt_flush - flush the SGE context cache
5776 * @adap: the adapter
5777 * @mbox: mailbox to use for the FW command
5778 *
5779 * Issues a FW command through the given mailbox to flush the
5780 * SGE context cache.
5781 */
5782 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5783 {
5784 int ret;
5785 u32 ldst_addrspace;
5786 struct fw_ldst_cmd c;
5787
5788 memset(&c, 0, sizeof(c));
5789 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5790 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5791 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5792 ldst_addrspace);
5793 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5794 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5795
5796 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5797 return ret;
5798 }
5799
5800 /**
5801 * t4_fw_hello - establish communication with FW
5802 * @adap: the adapter
5803 * @mbox: mailbox to use for the FW command
5804 * @evt_mbox: mailbox to receive async FW events
5805 * @master: specifies the caller's willingness to be the device master
5806 * @state: returns the current device state (if non-NULL)
5807 *
5808 * Issues a command to establish communication with FW. Returns either
5809 * an error (negative integer) or the mailbox of the Master PF.
5810 */
5811 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5812 enum dev_master master, enum dev_state *state)
5813 {
5814 int ret;
5815 struct fw_hello_cmd c;
5816 u32 v;
5817 unsigned int master_mbox;
5818 int retries = FW_CMD_HELLO_RETRIES;
5819
5820 retry:
5821 memset(&c, 0, sizeof(c));
5822 INIT_CMD(c, HELLO, WRITE);
5823 c.err_to_clearinit = cpu_to_be32(
5824 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5825 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
5826 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5827 mbox : FW_HELLO_CMD_MBMASTER_M) |
5828 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5829 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5830 FW_HELLO_CMD_CLEARINIT_F);
5831
5832 /*
5833 * Issue the HELLO command to the firmware. If it's not successful
5834 * but indicates that we got a "busy" or "timeout" condition, retry
5835 * the HELLO until we exhaust our retry limit. If we do exceed our
5836 * retry limit, check to see if the firmware left us any error
5837 * information and report that if so.
5838 */
5839 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5840 if (ret < 0) {
5841 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5842 goto retry;
5843 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
5844 t4_report_fw_error(adap);
5845 return ret;
5846 }
5847
5848 v = be32_to_cpu(c.err_to_clearinit);
5849 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
5850 if (state) {
5851 if (v & FW_HELLO_CMD_ERR_F)
5852 *state = DEV_STATE_ERR;
5853 else if (v & FW_HELLO_CMD_INIT_F)
5854 *state = DEV_STATE_INIT;
5855 else
5856 *state = DEV_STATE_UNINIT;
5857 }
5858
5859 /*
5860 * If we're not the Master PF then we need to wait around for the
5861 * Master PF Driver to finish setting up the adapter.
5862 *
5863 * Note that we also do this wait if we're a non-Master-capable PF and
5864 * there is no current Master PF; a Master PF may show up momentarily
5865 * and we wouldn't want to fail pointlessly. (This can happen when an
5866 * OS loads lots of different drivers rapidly at the same time). In
5867 * this case, the Master PF returned by the firmware will be
5868 * PCIE_FW_MASTER_M so the test below will work ...
5869 */
5870 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
5871 master_mbox != mbox) {
5872 int waiting = FW_CMD_HELLO_TIMEOUT;
5873
5874 /*
5875 * Wait for the firmware to either indicate an error or
5876 * initialized state. If we see either of these we bail out
5877 * and report the issue to the caller. If we exhaust the
5878 * "hello timeout" and we haven't exhausted our retries, try
5879 * again. Otherwise bail with a timeout error.
5880 */
5881 for (;;) {
5882 u32 pcie_fw;
5883
5884 msleep(50);
5885 waiting -= 50;
5886
5887 /*
5888 * If neither Error nor Initialialized are indicated
5889 * by the firmware keep waiting till we exaust our
5890 * timeout ... and then retry if we haven't exhausted
5891 * our retries ...
5892 */
5893 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5894 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
5895 if (waiting <= 0) {
5896 if (retries-- > 0)
5897 goto retry;
5898
5899 return -ETIMEDOUT;
5900 }
5901 continue;
5902 }
5903
5904 /*
5905 * We either have an Error or Initialized condition
5906 * report errors preferentially.
5907 */
5908 if (state) {
5909 if (pcie_fw & PCIE_FW_ERR_F)
5910 *state = DEV_STATE_ERR;
5911 else if (pcie_fw & PCIE_FW_INIT_F)
5912 *state = DEV_STATE_INIT;
5913 }
5914
5915 /*
5916 * If we arrived before a Master PF was selected and
5917 * there's not a valid Master PF, grab its identity
5918 * for our caller.
5919 */
5920 if (master_mbox == PCIE_FW_MASTER_M &&
5921 (pcie_fw & PCIE_FW_MASTER_VLD_F))
5922 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
5923 break;
5924 }
5925 }
5926
5927 return master_mbox;
5928 }
5929
5930 /**
5931 * t4_fw_bye - end communication with FW
5932 * @adap: the adapter
5933 * @mbox: mailbox to use for the FW command
5934 *
5935 * Issues a command to terminate communication with FW.
5936 */
5937 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5938 {
5939 struct fw_bye_cmd c;
5940
5941 memset(&c, 0, sizeof(c));
5942 INIT_CMD(c, BYE, WRITE);
5943 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5944 }
5945
5946 /**
5947 * t4_init_cmd - ask FW to initialize the device
5948 * @adap: the adapter
5949 * @mbox: mailbox to use for the FW command
5950 *
5951 * Issues a command to FW to partially initialize the device. This
5952 * performs initialization that generally doesn't depend on user input.
5953 */
5954 int t4_early_init(struct adapter *adap, unsigned int mbox)
5955 {
5956 struct fw_initialize_cmd c;
5957
5958 memset(&c, 0, sizeof(c));
5959 INIT_CMD(c, INITIALIZE, WRITE);
5960 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5961 }
5962
5963 /**
5964 * t4_fw_reset - issue a reset to FW
5965 * @adap: the adapter
5966 * @mbox: mailbox to use for the FW command
5967 * @reset: specifies the type of reset to perform
5968 *
5969 * Issues a reset command of the specified type to FW.
5970 */
5971 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5972 {
5973 struct fw_reset_cmd c;
5974
5975 memset(&c, 0, sizeof(c));
5976 INIT_CMD(c, RESET, WRITE);
5977 c.val = cpu_to_be32(reset);
5978 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5979 }
5980
5981 /**
5982 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5983 * @adap: the adapter
5984 * @mbox: mailbox to use for the FW RESET command (if desired)
5985 * @force: force uP into RESET even if FW RESET command fails
5986 *
5987 * Issues a RESET command to firmware (if desired) with a HALT indication
5988 * and then puts the microprocessor into RESET state. The RESET command
5989 * will only be issued if a legitimate mailbox is provided (mbox <=
5990 * PCIE_FW_MASTER_M).
5991 *
5992 * This is generally used in order for the host to safely manipulate the
5993 * adapter without fear of conflicting with whatever the firmware might
5994 * be doing. The only way out of this state is to RESTART the firmware
5995 * ...
5996 */
5997 static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
5998 {
5999 int ret = 0;
6000
6001 /*
6002 * If a legitimate mailbox is provided, issue a RESET command
6003 * with a HALT indication.
6004 */
6005 if (mbox <= PCIE_FW_MASTER_M) {
6006 struct fw_reset_cmd c;
6007
6008 memset(&c, 0, sizeof(c));
6009 INIT_CMD(c, RESET, WRITE);
6010 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6011 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
6012 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6013 }
6014
6015 /*
6016 * Normally we won't complete the operation if the firmware RESET
6017 * command fails but if our caller insists we'll go ahead and put the
6018 * uP into RESET. This can be useful if the firmware is hung or even
6019 * missing ... We'll have to take the risk of putting the uP into
6020 * RESET without the cooperation of firmware in that case.
6021 *
6022 * We also force the firmware's HALT flag to be on in case we bypassed
6023 * the firmware RESET command above or we're dealing with old firmware
6024 * which doesn't have the HALT capability. This will serve as a flag
6025 * for the incoming firmware to know that it's coming out of a HALT
6026 * rather than a RESET ... if it's new enough to understand that ...
6027 */
6028 if (ret == 0 || force) {
6029 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
6030 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
6031 PCIE_FW_HALT_F);
6032 }
6033
6034 /*
6035 * And we always return the result of the firmware RESET command
6036 * even when we force the uP into RESET ...
6037 */
6038 return ret;
6039 }
6040
6041 /**
6042 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6043 * @adap: the adapter
6044 * @reset: if we want to do a RESET to restart things
6045 *
6046 * Restart firmware previously halted by t4_fw_halt(). On successful
6047 * return the previous PF Master remains as the new PF Master and there
6048 * is no need to issue a new HELLO command, etc.
6049 *
6050 * We do this in two ways:
6051 *
6052 * 1. If we're dealing with newer firmware we'll simply want to take
6053 * the chip's microprocessor out of RESET. This will cause the
6054 * firmware to start up from its start vector. And then we'll loop
6055 * until the firmware indicates it's started again (PCIE_FW.HALT
6056 * reset to 0) or we timeout.
6057 *
6058 * 2. If we're dealing with older firmware then we'll need to RESET
6059 * the chip since older firmware won't recognize the PCIE_FW.HALT
6060 * flag and automatically RESET itself on startup.
6061 */
6062 static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6063 {
6064 if (reset) {
6065 /*
6066 * Since we're directing the RESET instead of the firmware
6067 * doing it automatically, we need to clear the PCIE_FW.HALT
6068 * bit.
6069 */
6070 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
6071
6072 /*
6073 * If we've been given a valid mailbox, first try to get the
6074 * firmware to do the RESET. If that works, great and we can
6075 * return success. Otherwise, if we haven't been given a
6076 * valid mailbox or the RESET command failed, fall back to
6077 * hitting the chip with a hammer.
6078 */
6079 if (mbox <= PCIE_FW_MASTER_M) {
6080 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6081 msleep(100);
6082 if (t4_fw_reset(adap, mbox,
6083 PIORST_F | PIORSTMODE_F) == 0)
6084 return 0;
6085 }
6086
6087 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
6088 msleep(2000);
6089 } else {
6090 int ms;
6091
6092 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
6093 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6094 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
6095 return 0;
6096 msleep(100);
6097 ms += 100;
6098 }
6099 return -ETIMEDOUT;
6100 }
6101 return 0;
6102 }
6103
6104 /**
6105 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6106 * @adap: the adapter
6107 * @mbox: mailbox to use for the FW RESET command (if desired)
6108 * @fw_data: the firmware image to write
6109 * @size: image size
6110 * @force: force upgrade even if firmware doesn't cooperate
6111 *
6112 * Perform all of the steps necessary for upgrading an adapter's
6113 * firmware image. Normally this requires the cooperation of the
6114 * existing firmware in order to halt all existing activities
6115 * but if an invalid mailbox token is passed in we skip that step
6116 * (though we'll still put the adapter microprocessor into RESET in
6117 * that case).
6118 *
6119 * On successful return the new firmware will have been loaded and
6120 * the adapter will have been fully RESET losing all previous setup
6121 * state. On unsuccessful return the adapter may be completely hosed ...
6122 * positive errno indicates that the adapter is ~probably~ intact, a
6123 * negative errno indicates that things are looking bad ...
6124 */
6125 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6126 const u8 *fw_data, unsigned int size, int force)
6127 {
6128 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6129 int reset, ret;
6130
6131 if (!t4_fw_matches_chip(adap, fw_hdr))
6132 return -EINVAL;
6133
6134 ret = t4_fw_halt(adap, mbox, force);
6135 if (ret < 0 && !force)
6136 return ret;
6137
6138 ret = t4_load_fw(adap, fw_data, size);
6139 if (ret < 0)
6140 return ret;
6141
6142 /*
6143 * Older versions of the firmware don't understand the new
6144 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6145 * restart. So for newly loaded older firmware we'll have to do the
6146 * RESET for it so it starts up on a clean slate. We can tell if
6147 * the newly loaded firmware will handle this right by checking
6148 * its header flags to see if it advertises the capability.
6149 */
6150 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6151 return t4_fw_restart(adap, mbox, reset);
6152 }
6153
6154 /**
6155 * t4_fl_pkt_align - return the fl packet alignment
6156 * @adap: the adapter
6157 *
6158 * T4 has a single field to specify the packing and padding boundary.
6159 * T5 onwards has separate fields for this and hence the alignment for
6160 * next packet offset is maximum of these two.
6161 *
6162 */
6163 int t4_fl_pkt_align(struct adapter *adap)
6164 {
6165 u32 sge_control, sge_control2;
6166 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6167
6168 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6169
6170 /* T4 uses a single control field to specify both the PCIe Padding and
6171 * Packing Boundary. T5 introduced the ability to specify these
6172 * separately. The actual Ingress Packet Data alignment boundary
6173 * within Packed Buffer Mode is the maximum of these two
6174 * specifications. (Note that it makes no real practical sense to
6175 * have the Pading Boudary be larger than the Packing Boundary but you
6176 * could set the chip up that way and, in fact, legacy T4 code would
6177 * end doing this because it would initialize the Padding Boundary and
6178 * leave the Packing Boundary initialized to 0 (16 bytes).)
6179 * Padding Boundary values in T6 starts from 8B,
6180 * where as it is 32B for T4 and T5.
6181 */
6182 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6183 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6184 else
6185 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6186
6187 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6188
6189 fl_align = ingpadboundary;
6190 if (!is_t4(adap->params.chip)) {
6191 /* T5 has a weird interpretation of one of the PCIe Packing
6192 * Boundary values. No idea why ...
6193 */
6194 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6195 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6196 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6197 ingpackboundary = 16;
6198 else
6199 ingpackboundary = 1 << (ingpackboundary +
6200 INGPACKBOUNDARY_SHIFT_X);
6201
6202 fl_align = max(ingpadboundary, ingpackboundary);
6203 }
6204 return fl_align;
6205 }
6206
6207 /**
6208 * t4_fixup_host_params - fix up host-dependent parameters
6209 * @adap: the adapter
6210 * @page_size: the host's Base Page Size
6211 * @cache_line_size: the host's Cache Line Size
6212 *
6213 * Various registers in T4 contain values which are dependent on the
6214 * host's Base Page and Cache Line Sizes. This function will fix all of
6215 * those registers with the appropriate values as passed in ...
6216 */
6217 int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6218 unsigned int cache_line_size)
6219 {
6220 unsigned int page_shift = fls(page_size) - 1;
6221 unsigned int sge_hps = page_shift - 10;
6222 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6223 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6224 unsigned int fl_align_log = fls(fl_align) - 1;
6225 unsigned int ingpad;
6226
6227 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6228 HOSTPAGESIZEPF0_V(sge_hps) |
6229 HOSTPAGESIZEPF1_V(sge_hps) |
6230 HOSTPAGESIZEPF2_V(sge_hps) |
6231 HOSTPAGESIZEPF3_V(sge_hps) |
6232 HOSTPAGESIZEPF4_V(sge_hps) |
6233 HOSTPAGESIZEPF5_V(sge_hps) |
6234 HOSTPAGESIZEPF6_V(sge_hps) |
6235 HOSTPAGESIZEPF7_V(sge_hps));
6236
6237 if (is_t4(adap->params.chip)) {
6238 t4_set_reg_field(adap, SGE_CONTROL_A,
6239 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6240 EGRSTATUSPAGESIZE_F,
6241 INGPADBOUNDARY_V(fl_align_log -
6242 INGPADBOUNDARY_SHIFT_X) |
6243 EGRSTATUSPAGESIZE_V(stat_len != 64));
6244 } else {
6245 /* T5 introduced the separation of the Free List Padding and
6246 * Packing Boundaries. Thus, we can select a smaller Padding
6247 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6248 * Bandwidth, and use a Packing Boundary which is large enough
6249 * to avoid false sharing between CPUs, etc.
6250 *
6251 * For the PCI Link, the smaller the Padding Boundary the
6252 * better. For the Memory Controller, a smaller Padding
6253 * Boundary is better until we cross under the Memory Line
6254 * Size (the minimum unit of transfer to/from Memory). If we
6255 * have a Padding Boundary which is smaller than the Memory
6256 * Line Size, that'll involve a Read-Modify-Write cycle on the
6257 * Memory Controller which is never good. For T5 the smallest
6258 * Padding Boundary which we can select is 32 bytes which is
6259 * larger than any known Memory Controller Line Size so we'll
6260 * use that.
6261 *
6262 * T5 has a different interpretation of the "0" value for the
6263 * Packing Boundary. This corresponds to 16 bytes instead of
6264 * the expected 32 bytes. We never have a Packing Boundary
6265 * less than 32 bytes so we can't use that special value but
6266 * on the other hand, if we wanted 32 bytes, the best we can
6267 * really do is 64 bytes.
6268 */
6269 if (fl_align <= 32) {
6270 fl_align = 64;
6271 fl_align_log = 6;
6272 }
6273
6274 if (is_t5(adap->params.chip))
6275 ingpad = INGPCIEBOUNDARY_32B_X;
6276 else
6277 ingpad = T6_INGPADBOUNDARY_32B_X;
6278
6279 t4_set_reg_field(adap, SGE_CONTROL_A,
6280 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6281 EGRSTATUSPAGESIZE_F,
6282 INGPADBOUNDARY_V(ingpad) |
6283 EGRSTATUSPAGESIZE_V(stat_len != 64));
6284 t4_set_reg_field(adap, SGE_CONTROL2_A,
6285 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6286 INGPACKBOUNDARY_V(fl_align_log -
6287 INGPACKBOUNDARY_SHIFT_X));
6288 }
6289 /*
6290 * Adjust various SGE Free List Host Buffer Sizes.
6291 *
6292 * This is something of a crock since we're using fixed indices into
6293 * the array which are also known by the sge.c code and the T4
6294 * Firmware Configuration File. We need to come up with a much better
6295 * approach to managing this array. For now, the first four entries
6296 * are:
6297 *
6298 * 0: Host Page Size
6299 * 1: 64KB
6300 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6301 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6302 *
6303 * For the single-MTU buffers in unpacked mode we need to include
6304 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6305 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
6306 * Padding boundary. All of these are accommodated in the Factory
6307 * Default Firmware Configuration File but we need to adjust it for
6308 * this host's cache line size.
6309 */
6310 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6311 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6312 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
6313 & ~(fl_align-1));
6314 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6315 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
6316 & ~(fl_align-1));
6317
6318 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
6319
6320 return 0;
6321 }
6322
6323 /**
6324 * t4_fw_initialize - ask FW to initialize the device
6325 * @adap: the adapter
6326 * @mbox: mailbox to use for the FW command
6327 *
6328 * Issues a command to FW to partially initialize the device. This
6329 * performs initialization that generally doesn't depend on user input.
6330 */
6331 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6332 {
6333 struct fw_initialize_cmd c;
6334
6335 memset(&c, 0, sizeof(c));
6336 INIT_CMD(c, INITIALIZE, WRITE);
6337 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6338 }
6339
6340 /**
6341 * t4_query_params_rw - query FW or device parameters
6342 * @adap: the adapter
6343 * @mbox: mailbox to use for the FW command
6344 * @pf: the PF
6345 * @vf: the VF
6346 * @nparams: the number of parameters
6347 * @params: the parameter names
6348 * @val: the parameter values
6349 * @rw: Write and read flag
6350 *
6351 * Reads the value of FW or device parameters. Up to 7 parameters can be
6352 * queried at once.
6353 */
6354 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6355 unsigned int vf, unsigned int nparams, const u32 *params,
6356 u32 *val, int rw)
6357 {
6358 int i, ret;
6359 struct fw_params_cmd c;
6360 __be32 *p = &c.param[0].mnem;
6361
6362 if (nparams > 7)
6363 return -EINVAL;
6364
6365 memset(&c, 0, sizeof(c));
6366 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6367 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6368 FW_PARAMS_CMD_PFN_V(pf) |
6369 FW_PARAMS_CMD_VFN_V(vf));
6370 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6371
6372 for (i = 0; i < nparams; i++) {
6373 *p++ = cpu_to_be32(*params++);
6374 if (rw)
6375 *p = cpu_to_be32(*(val + i));
6376 p++;
6377 }
6378
6379 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6380 if (ret == 0)
6381 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6382 *val++ = be32_to_cpu(*p);
6383 return ret;
6384 }
6385
6386 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6387 unsigned int vf, unsigned int nparams, const u32 *params,
6388 u32 *val)
6389 {
6390 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6391 }
6392
6393 /**
6394 * t4_set_params_timeout - sets FW or device parameters
6395 * @adap: the adapter
6396 * @mbox: mailbox to use for the FW command
6397 * @pf: the PF
6398 * @vf: the VF
6399 * @nparams: the number of parameters
6400 * @params: the parameter names
6401 * @val: the parameter values
6402 * @timeout: the timeout time
6403 *
6404 * Sets the value of FW or device parameters. Up to 7 parameters can be
6405 * specified at once.
6406 */
6407 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6408 unsigned int pf, unsigned int vf,
6409 unsigned int nparams, const u32 *params,
6410 const u32 *val, int timeout)
6411 {
6412 struct fw_params_cmd c;
6413 __be32 *p = &c.param[0].mnem;
6414
6415 if (nparams > 7)
6416 return -EINVAL;
6417
6418 memset(&c, 0, sizeof(c));
6419 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6420 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6421 FW_PARAMS_CMD_PFN_V(pf) |
6422 FW_PARAMS_CMD_VFN_V(vf));
6423 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6424
6425 while (nparams--) {
6426 *p++ = cpu_to_be32(*params++);
6427 *p++ = cpu_to_be32(*val++);
6428 }
6429
6430 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6431 }
6432
6433 /**
6434 * t4_set_params - sets FW or device parameters
6435 * @adap: the adapter
6436 * @mbox: mailbox to use for the FW command
6437 * @pf: the PF
6438 * @vf: the VF
6439 * @nparams: the number of parameters
6440 * @params: the parameter names
6441 * @val: the parameter values
6442 *
6443 * Sets the value of FW or device parameters. Up to 7 parameters can be
6444 * specified at once.
6445 */
6446 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6447 unsigned int vf, unsigned int nparams, const u32 *params,
6448 const u32 *val)
6449 {
6450 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6451 FW_CMD_MAX_TIMEOUT);
6452 }
6453
6454 /**
6455 * t4_cfg_pfvf - configure PF/VF resource limits
6456 * @adap: the adapter
6457 * @mbox: mailbox to use for the FW command
6458 * @pf: the PF being configured
6459 * @vf: the VF being configured
6460 * @txq: the max number of egress queues
6461 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
6462 * @rxqi: the max number of interrupt-capable ingress queues
6463 * @rxq: the max number of interruptless ingress queues
6464 * @tc: the PCI traffic class
6465 * @vi: the max number of virtual interfaces
6466 * @cmask: the channel access rights mask for the PF/VF
6467 * @pmask: the port access rights mask for the PF/VF
6468 * @nexact: the maximum number of exact MPS filters
6469 * @rcaps: read capabilities
6470 * @wxcaps: write/execute capabilities
6471 *
6472 * Configures resource limits and capabilities for a physical or virtual
6473 * function.
6474 */
6475 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6476 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6477 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6478 unsigned int vi, unsigned int cmask, unsigned int pmask,
6479 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6480 {
6481 struct fw_pfvf_cmd c;
6482
6483 memset(&c, 0, sizeof(c));
6484 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6485 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6486 FW_PFVF_CMD_VFN_V(vf));
6487 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6488 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6489 FW_PFVF_CMD_NIQ_V(rxq));
6490 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6491 FW_PFVF_CMD_PMASK_V(pmask) |
6492 FW_PFVF_CMD_NEQ_V(txq));
6493 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6494 FW_PFVF_CMD_NVI_V(vi) |
6495 FW_PFVF_CMD_NEXACTF_V(nexact));
6496 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6497 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6498 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
6499 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6500 }
6501
6502 /**
6503 * t4_alloc_vi - allocate a virtual interface
6504 * @adap: the adapter
6505 * @mbox: mailbox to use for the FW command
6506 * @port: physical port associated with the VI
6507 * @pf: the PF owning the VI
6508 * @vf: the VF owning the VI
6509 * @nmac: number of MAC addresses needed (1 to 5)
6510 * @mac: the MAC addresses of the VI
6511 * @rss_size: size of RSS table slice associated with this VI
6512 *
6513 * Allocates a virtual interface for the given physical port. If @mac is
6514 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
6515 * @mac should be large enough to hold @nmac Ethernet addresses, they are
6516 * stored consecutively so the space needed is @nmac * 6 bytes.
6517 * Returns a negative error number or the non-negative VI id.
6518 */
6519 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6520 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6521 unsigned int *rss_size)
6522 {
6523 int ret;
6524 struct fw_vi_cmd c;
6525
6526 memset(&c, 0, sizeof(c));
6527 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6528 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6529 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6530 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
6531 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
6532 c.nmac = nmac - 1;
6533
6534 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6535 if (ret)
6536 return ret;
6537
6538 if (mac) {
6539 memcpy(mac, c.mac, sizeof(c.mac));
6540 switch (nmac) {
6541 case 5:
6542 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6543 case 4:
6544 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6545 case 3:
6546 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6547 case 2:
6548 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
6549 }
6550 }
6551 if (rss_size)
6552 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6553 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
6554 }
6555
6556 /**
6557 * t4_free_vi - free a virtual interface
6558 * @adap: the adapter
6559 * @mbox: mailbox to use for the FW command
6560 * @pf: the PF owning the VI
6561 * @vf: the VF owning the VI
6562 * @viid: virtual interface identifiler
6563 *
6564 * Free a previously allocated virtual interface.
6565 */
6566 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6567 unsigned int vf, unsigned int viid)
6568 {
6569 struct fw_vi_cmd c;
6570
6571 memset(&c, 0, sizeof(c));
6572 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6573 FW_CMD_REQUEST_F |
6574 FW_CMD_EXEC_F |
6575 FW_VI_CMD_PFN_V(pf) |
6576 FW_VI_CMD_VFN_V(vf));
6577 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6578 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6579
6580 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6581 }
6582
6583 /**
6584 * t4_set_rxmode - set Rx properties of a virtual interface
6585 * @adap: the adapter
6586 * @mbox: mailbox to use for the FW command
6587 * @viid: the VI id
6588 * @mtu: the new MTU or -1
6589 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6590 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6591 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6592 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6593 * @sleep_ok: if true we may sleep while awaiting command completion
6594 *
6595 * Sets Rx properties of a virtual interface.
6596 */
6597 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6598 int mtu, int promisc, int all_multi, int bcast, int vlanex,
6599 bool sleep_ok)
6600 {
6601 struct fw_vi_rxmode_cmd c;
6602
6603 /* convert to FW values */
6604 if (mtu < 0)
6605 mtu = FW_RXMODE_MTU_NO_CHG;
6606 if (promisc < 0)
6607 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
6608 if (all_multi < 0)
6609 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
6610 if (bcast < 0)
6611 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
6612 if (vlanex < 0)
6613 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
6614
6615 memset(&c, 0, sizeof(c));
6616 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6617 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6618 FW_VI_RXMODE_CMD_VIID_V(viid));
6619 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6620 c.mtu_to_vlanexen =
6621 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6622 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6623 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6624 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6625 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
6626 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6627 }
6628
6629 /**
6630 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6631 * @adap: the adapter
6632 * @mbox: mailbox to use for the FW command
6633 * @viid: the VI id
6634 * @free: if true any existing filters for this VI id are first removed
6635 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6636 * @addr: the MAC address(es)
6637 * @idx: where to store the index of each allocated filter
6638 * @hash: pointer to hash address filter bitmap
6639 * @sleep_ok: call is allowed to sleep
6640 *
6641 * Allocates an exact-match filter for each of the supplied addresses and
6642 * sets it to the corresponding address. If @idx is not %NULL it should
6643 * have at least @naddr entries, each of which will be set to the index of
6644 * the filter allocated for the corresponding MAC address. If a filter
6645 * could not be allocated for an address its index is set to 0xffff.
6646 * If @hash is not %NULL addresses that fail to allocate an exact filter
6647 * are hashed and update the hash filter bitmap pointed at by @hash.
6648 *
6649 * Returns a negative error number or the number of filters allocated.
6650 */
6651 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6652 unsigned int viid, bool free, unsigned int naddr,
6653 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6654 {
6655 int offset, ret = 0;
6656 struct fw_vi_mac_cmd c;
6657 unsigned int nfilters = 0;
6658 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6659 unsigned int rem = naddr;
6660
6661 if (naddr > max_naddr)
6662 return -EINVAL;
6663
6664 for (offset = 0; offset < naddr ; /**/) {
6665 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6666 rem : ARRAY_SIZE(c.u.exact));
6667 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6668 u.exact[fw_naddr]), 16);
6669 struct fw_vi_mac_exact *p;
6670 int i;
6671
6672 memset(&c, 0, sizeof(c));
6673 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6674 FW_CMD_REQUEST_F |
6675 FW_CMD_WRITE_F |
6676 FW_CMD_EXEC_V(free) |
6677 FW_VI_MAC_CMD_VIID_V(viid));
6678 c.freemacs_to_len16 =
6679 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6680 FW_CMD_LEN16_V(len16));
6681
6682 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6683 p->valid_to_idx =
6684 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6685 FW_VI_MAC_CMD_IDX_V(
6686 FW_VI_MAC_ADD_MAC));
6687 memcpy(p->macaddr, addr[offset + i],
6688 sizeof(p->macaddr));
6689 }
6690
6691 /* It's okay if we run out of space in our MAC address arena.
6692 * Some of the addresses we submit may get stored so we need
6693 * to run through the reply to see what the results were ...
6694 */
6695 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6696 if (ret && ret != -FW_ENOMEM)
6697 break;
6698
6699 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6700 u16 index = FW_VI_MAC_CMD_IDX_G(
6701 be16_to_cpu(p->valid_to_idx));
6702
6703 if (idx)
6704 idx[offset + i] = (index >= max_naddr ?
6705 0xffff : index);
6706 if (index < max_naddr)
6707 nfilters++;
6708 else if (hash)
6709 *hash |= (1ULL <<
6710 hash_mac_addr(addr[offset + i]));
6711 }
6712
6713 free = false;
6714 offset += fw_naddr;
6715 rem -= fw_naddr;
6716 }
6717
6718 if (ret == 0 || ret == -FW_ENOMEM)
6719 ret = nfilters;
6720 return ret;
6721 }
6722
6723 /**
6724 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
6725 * @adap: the adapter
6726 * @mbox: mailbox to use for the FW command
6727 * @viid: the VI id
6728 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6729 * @addr: the MAC address(es)
6730 * @sleep_ok: call is allowed to sleep
6731 *
6732 * Frees the exact-match filter for each of the supplied addresses
6733 *
6734 * Returns a negative error number or the number of filters freed.
6735 */
6736 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6737 unsigned int viid, unsigned int naddr,
6738 const u8 **addr, bool sleep_ok)
6739 {
6740 int offset, ret = 0;
6741 struct fw_vi_mac_cmd c;
6742 unsigned int nfilters = 0;
6743 unsigned int max_naddr = is_t4(adap->params.chip) ?
6744 NUM_MPS_CLS_SRAM_L_INSTANCES :
6745 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6746 unsigned int rem = naddr;
6747
6748 if (naddr > max_naddr)
6749 return -EINVAL;
6750
6751 for (offset = 0; offset < (int)naddr ; /**/) {
6752 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6753 ? rem
6754 : ARRAY_SIZE(c.u.exact));
6755 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6756 u.exact[fw_naddr]), 16);
6757 struct fw_vi_mac_exact *p;
6758 int i;
6759
6760 memset(&c, 0, sizeof(c));
6761 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6762 FW_CMD_REQUEST_F |
6763 FW_CMD_WRITE_F |
6764 FW_CMD_EXEC_V(0) |
6765 FW_VI_MAC_CMD_VIID_V(viid));
6766 c.freemacs_to_len16 =
6767 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6768 FW_CMD_LEN16_V(len16));
6769
6770 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6771 p->valid_to_idx = cpu_to_be16(
6772 FW_VI_MAC_CMD_VALID_F |
6773 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6774 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6775 }
6776
6777 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6778 if (ret)
6779 break;
6780
6781 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6782 u16 index = FW_VI_MAC_CMD_IDX_G(
6783 be16_to_cpu(p->valid_to_idx));
6784
6785 if (index < max_naddr)
6786 nfilters++;
6787 }
6788
6789 offset += fw_naddr;
6790 rem -= fw_naddr;
6791 }
6792
6793 if (ret == 0)
6794 ret = nfilters;
6795 return ret;
6796 }
6797
6798 /**
6799 * t4_change_mac - modifies the exact-match filter for a MAC address
6800 * @adap: the adapter
6801 * @mbox: mailbox to use for the FW command
6802 * @viid: the VI id
6803 * @idx: index of existing filter for old value of MAC address, or -1
6804 * @addr: the new MAC address value
6805 * @persist: whether a new MAC allocation should be persistent
6806 * @add_smt: if true also add the address to the HW SMT
6807 *
6808 * Modifies an exact-match filter and sets it to the new MAC address.
6809 * Note that in general it is not possible to modify the value of a given
6810 * filter so the generic way to modify an address filter is to free the one
6811 * being used by the old address value and allocate a new filter for the
6812 * new address value. @idx can be -1 if the address is a new addition.
6813 *
6814 * Returns a negative error number or the index of the filter with the new
6815 * MAC value.
6816 */
6817 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6818 int idx, const u8 *addr, bool persist, bool add_smt)
6819 {
6820 int ret, mode;
6821 struct fw_vi_mac_cmd c;
6822 struct fw_vi_mac_exact *p = c.u.exact;
6823 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
6824
6825 if (idx < 0) /* new allocation */
6826 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6827 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6828
6829 memset(&c, 0, sizeof(c));
6830 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6831 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6832 FW_VI_MAC_CMD_VIID_V(viid));
6833 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6834 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6835 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6836 FW_VI_MAC_CMD_IDX_V(idx));
6837 memcpy(p->macaddr, addr, sizeof(p->macaddr));
6838
6839 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6840 if (ret == 0) {
6841 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
6842 if (ret >= max_mac_addr)
6843 ret = -ENOMEM;
6844 }
6845 return ret;
6846 }
6847
6848 /**
6849 * t4_set_addr_hash - program the MAC inexact-match hash filter
6850 * @adap: the adapter
6851 * @mbox: mailbox to use for the FW command
6852 * @viid: the VI id
6853 * @ucast: whether the hash filter should also match unicast addresses
6854 * @vec: the value to be written to the hash filter
6855 * @sleep_ok: call is allowed to sleep
6856 *
6857 * Sets the 64-bit inexact-match hash filter for a virtual interface.
6858 */
6859 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6860 bool ucast, u64 vec, bool sleep_ok)
6861 {
6862 struct fw_vi_mac_cmd c;
6863
6864 memset(&c, 0, sizeof(c));
6865 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6866 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6867 FW_VI_ENABLE_CMD_VIID_V(viid));
6868 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6869 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6870 FW_CMD_LEN16_V(1));
6871 c.u.hash.hashvec = cpu_to_be64(vec);
6872 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6873 }
6874
6875 /**
6876 * t4_enable_vi_params - enable/disable a virtual interface
6877 * @adap: the adapter
6878 * @mbox: mailbox to use for the FW command
6879 * @viid: the VI id
6880 * @rx_en: 1=enable Rx, 0=disable Rx
6881 * @tx_en: 1=enable Tx, 0=disable Tx
6882 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
6883 *
6884 * Enables/disables a virtual interface. Note that setting DCB Enable
6885 * only makes sense when enabling a Virtual Interface ...
6886 */
6887 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6888 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6889 {
6890 struct fw_vi_enable_cmd c;
6891
6892 memset(&c, 0, sizeof(c));
6893 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6894 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6895 FW_VI_ENABLE_CMD_VIID_V(viid));
6896 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6897 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6898 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6899 FW_LEN16(c));
6900 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
6901 }
6902
6903 /**
6904 * t4_enable_vi - enable/disable a virtual interface
6905 * @adap: the adapter
6906 * @mbox: mailbox to use for the FW command
6907 * @viid: the VI id
6908 * @rx_en: 1=enable Rx, 0=disable Rx
6909 * @tx_en: 1=enable Tx, 0=disable Tx
6910 *
6911 * Enables/disables a virtual interface.
6912 */
6913 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6914 bool rx_en, bool tx_en)
6915 {
6916 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
6917 }
6918
6919 /**
6920 * t4_identify_port - identify a VI's port by blinking its LED
6921 * @adap: the adapter
6922 * @mbox: mailbox to use for the FW command
6923 * @viid: the VI id
6924 * @nblinks: how many times to blink LED at 2.5 Hz
6925 *
6926 * Identifies a VI's port by blinking its LED.
6927 */
6928 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6929 unsigned int nblinks)
6930 {
6931 struct fw_vi_enable_cmd c;
6932
6933 memset(&c, 0, sizeof(c));
6934 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6935 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6936 FW_VI_ENABLE_CMD_VIID_V(viid));
6937 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6938 c.blinkdur = cpu_to_be16(nblinks);
6939 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6940 }
6941
6942 /**
6943 * t4_iq_free - free an ingress queue and its FLs
6944 * @adap: the adapter
6945 * @mbox: mailbox to use for the FW command
6946 * @pf: the PF owning the queues
6947 * @vf: the VF owning the queues
6948 * @iqtype: the ingress queue type
6949 * @iqid: ingress queue id
6950 * @fl0id: FL0 queue id or 0xffff if no attached FL0
6951 * @fl1id: FL1 queue id or 0xffff if no attached FL1
6952 *
6953 * Frees an ingress queue and its associated FLs, if any.
6954 */
6955 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6956 unsigned int vf, unsigned int iqtype, unsigned int iqid,
6957 unsigned int fl0id, unsigned int fl1id)
6958 {
6959 struct fw_iq_cmd c;
6960
6961 memset(&c, 0, sizeof(c));
6962 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6963 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6964 FW_IQ_CMD_VFN_V(vf));
6965 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
6966 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6967 c.iqid = cpu_to_be16(iqid);
6968 c.fl0id = cpu_to_be16(fl0id);
6969 c.fl1id = cpu_to_be16(fl1id);
6970 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6971 }
6972
6973 /**
6974 * t4_eth_eq_free - free an Ethernet egress queue
6975 * @adap: the adapter
6976 * @mbox: mailbox to use for the FW command
6977 * @pf: the PF owning the queue
6978 * @vf: the VF owning the queue
6979 * @eqid: egress queue id
6980 *
6981 * Frees an Ethernet egress queue.
6982 */
6983 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6984 unsigned int vf, unsigned int eqid)
6985 {
6986 struct fw_eq_eth_cmd c;
6987
6988 memset(&c, 0, sizeof(c));
6989 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
6990 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6991 FW_EQ_ETH_CMD_PFN_V(pf) |
6992 FW_EQ_ETH_CMD_VFN_V(vf));
6993 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
6994 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
6995 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6996 }
6997
6998 /**
6999 * t4_ctrl_eq_free - free a control egress queue
7000 * @adap: the adapter
7001 * @mbox: mailbox to use for the FW command
7002 * @pf: the PF owning the queue
7003 * @vf: the VF owning the queue
7004 * @eqid: egress queue id
7005 *
7006 * Frees a control egress queue.
7007 */
7008 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7009 unsigned int vf, unsigned int eqid)
7010 {
7011 struct fw_eq_ctrl_cmd c;
7012
7013 memset(&c, 0, sizeof(c));
7014 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7015 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7016 FW_EQ_CTRL_CMD_PFN_V(pf) |
7017 FW_EQ_CTRL_CMD_VFN_V(vf));
7018 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7019 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
7020 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7021 }
7022
7023 /**
7024 * t4_ofld_eq_free - free an offload egress queue
7025 * @adap: the adapter
7026 * @mbox: mailbox to use for the FW command
7027 * @pf: the PF owning the queue
7028 * @vf: the VF owning the queue
7029 * @eqid: egress queue id
7030 *
7031 * Frees a control egress queue.
7032 */
7033 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7034 unsigned int vf, unsigned int eqid)
7035 {
7036 struct fw_eq_ofld_cmd c;
7037
7038 memset(&c, 0, sizeof(c));
7039 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7040 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7041 FW_EQ_OFLD_CMD_PFN_V(pf) |
7042 FW_EQ_OFLD_CMD_VFN_V(vf));
7043 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7044 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
7045 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7046 }
7047
7048 /**
7049 * t4_handle_fw_rpl - process a FW reply message
7050 * @adap: the adapter
7051 * @rpl: start of the FW message
7052 *
7053 * Processes a FW message, such as link state change messages.
7054 */
7055 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7056 {
7057 u8 opcode = *(const u8 *)rpl;
7058
7059 if (opcode == FW_PORT_CMD) { /* link/module state change message */
7060 int speed = 0, fc = 0;
7061 const struct fw_port_cmd *p = (void *)rpl;
7062 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
7063 int port = adap->chan_map[chan];
7064 struct port_info *pi = adap2pinfo(adap, port);
7065 struct link_config *lc = &pi->link_cfg;
7066 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7067 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7068 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
7069
7070 if (stat & FW_PORT_CMD_RXPAUSE_F)
7071 fc |= PAUSE_RX;
7072 if (stat & FW_PORT_CMD_TXPAUSE_F)
7073 fc |= PAUSE_TX;
7074 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
7075 speed = 100;
7076 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
7077 speed = 1000;
7078 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
7079 speed = 10000;
7080 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
7081 speed = 40000;
7082
7083 if (link_ok != lc->link_ok || speed != lc->speed ||
7084 fc != lc->fc) { /* something changed */
7085 lc->link_ok = link_ok;
7086 lc->speed = speed;
7087 lc->fc = fc;
7088 lc->supported = be16_to_cpu(p->u.info.pcap);
7089 t4_os_link_changed(adap, port, link_ok);
7090 }
7091 if (mod != pi->mod_type) {
7092 pi->mod_type = mod;
7093 t4_os_portmod_changed(adap, port);
7094 }
7095 }
7096 return 0;
7097 }
7098
7099 static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
7100 {
7101 u16 val;
7102
7103 if (pci_is_pcie(adapter->pdev)) {
7104 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
7105 p->speed = val & PCI_EXP_LNKSTA_CLS;
7106 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7107 }
7108 }
7109
7110 /**
7111 * init_link_config - initialize a link's SW state
7112 * @lc: structure holding the link state
7113 * @caps: link capabilities
7114 *
7115 * Initializes the SW state maintained for each link, including the link's
7116 * capabilities and default speed/flow-control/autonegotiation settings.
7117 */
7118 static void init_link_config(struct link_config *lc, unsigned int caps)
7119 {
7120 lc->supported = caps;
7121 lc->requested_speed = 0;
7122 lc->speed = 0;
7123 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7124 if (lc->supported & FW_PORT_CAP_ANEG) {
7125 lc->advertising = lc->supported & ADVERT_MASK;
7126 lc->autoneg = AUTONEG_ENABLE;
7127 lc->requested_fc |= PAUSE_AUTONEG;
7128 } else {
7129 lc->advertising = 0;
7130 lc->autoneg = AUTONEG_DISABLE;
7131 }
7132 }
7133
7134 #define CIM_PF_NOACCESS 0xeeeeeeee
7135
7136 int t4_wait_dev_ready(void __iomem *regs)
7137 {
7138 u32 whoami;
7139
7140 whoami = readl(regs + PL_WHOAMI_A);
7141 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
7142 return 0;
7143
7144 msleep(500);
7145 whoami = readl(regs + PL_WHOAMI_A);
7146 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
7147 }
7148
7149 struct flash_desc {
7150 u32 vendor_and_model_id;
7151 u32 size_mb;
7152 };
7153
7154 static int get_flash_params(struct adapter *adap)
7155 {
7156 /* Table for non-Numonix supported flash parts. Numonix parts are left
7157 * to the preexisting code. All flash parts have 64KB sectors.
7158 */
7159 static struct flash_desc supported_flash[] = {
7160 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
7161 };
7162
7163 int ret;
7164 u32 info;
7165
7166 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7167 if (!ret)
7168 ret = sf1_read(adap, 3, 0, 1, &info);
7169 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
7170 if (ret)
7171 return ret;
7172
7173 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7174 if (supported_flash[ret].vendor_and_model_id == info) {
7175 adap->params.sf_size = supported_flash[ret].size_mb;
7176 adap->params.sf_nsec =
7177 adap->params.sf_size / SF_SEC_SIZE;
7178 return 0;
7179 }
7180
7181 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7182 return -EINVAL;
7183 info >>= 16; /* log2 of size */
7184 if (info >= 0x14 && info < 0x18)
7185 adap->params.sf_nsec = 1 << (info - 16);
7186 else if (info == 0x18)
7187 adap->params.sf_nsec = 64;
7188 else
7189 return -EINVAL;
7190 adap->params.sf_size = 1 << info;
7191 adap->params.sf_fw_start =
7192 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
7193
7194 if (adap->params.sf_size < FLASH_MIN_SIZE)
7195 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7196 adap->params.sf_size, FLASH_MIN_SIZE);
7197 return 0;
7198 }
7199
7200 static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7201 {
7202 u16 val;
7203 u32 pcie_cap;
7204
7205 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7206 if (pcie_cap) {
7207 pci_read_config_word(adapter->pdev,
7208 pcie_cap + PCI_EXP_DEVCTL2, &val);
7209 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7210 val |= range;
7211 pci_write_config_word(adapter->pdev,
7212 pcie_cap + PCI_EXP_DEVCTL2, val);
7213 }
7214 }
7215
7216 /**
7217 * t4_prep_adapter - prepare SW and HW for operation
7218 * @adapter: the adapter
7219 * @reset: if true perform a HW reset
7220 *
7221 * Initialize adapter SW state for the various HW modules, set initial
7222 * values for some adapter tunables, take PHYs out of reset, and
7223 * initialize the MDIO interface.
7224 */
7225 int t4_prep_adapter(struct adapter *adapter)
7226 {
7227 int ret, ver;
7228 uint16_t device_id;
7229 u32 pl_rev;
7230
7231 get_pci_mode(adapter, &adapter->params.pci);
7232 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
7233
7234 ret = get_flash_params(adapter);
7235 if (ret < 0) {
7236 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7237 return ret;
7238 }
7239
7240 /* Retrieve adapter's device ID
7241 */
7242 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7243 ver = device_id >> 12;
7244 adapter->params.chip = 0;
7245 switch (ver) {
7246 case CHELSIO_T4:
7247 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
7248 adapter->params.arch.sge_fl_db = DBPRIO_F;
7249 adapter->params.arch.mps_tcam_size =
7250 NUM_MPS_CLS_SRAM_L_INSTANCES;
7251 adapter->params.arch.mps_rplc_size = 128;
7252 adapter->params.arch.nchan = NCHAN;
7253 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7254 adapter->params.arch.vfcount = 128;
7255 /* Congestion map is for 4 channels so that
7256 * MPS can have 4 priority per port.
7257 */
7258 adapter->params.arch.cng_ch_bits_log = 2;
7259 break;
7260 case CHELSIO_T5:
7261 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
7262 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7263 adapter->params.arch.mps_tcam_size =
7264 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7265 adapter->params.arch.mps_rplc_size = 128;
7266 adapter->params.arch.nchan = NCHAN;
7267 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
7268 adapter->params.arch.vfcount = 128;
7269 adapter->params.arch.cng_ch_bits_log = 2;
7270 break;
7271 case CHELSIO_T6:
7272 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7273 adapter->params.arch.sge_fl_db = 0;
7274 adapter->params.arch.mps_tcam_size =
7275 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7276 adapter->params.arch.mps_rplc_size = 256;
7277 adapter->params.arch.nchan = 2;
7278 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
7279 adapter->params.arch.vfcount = 256;
7280 /* Congestion map will be for 2 channels so that
7281 * MPS can have 8 priority per port.
7282 */
7283 adapter->params.arch.cng_ch_bits_log = 3;
7284 break;
7285 default:
7286 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7287 device_id);
7288 return -EINVAL;
7289 }
7290
7291 adapter->params.cim_la_size = CIMLA_SIZE;
7292 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7293
7294 /*
7295 * Default port for debugging in case we can't reach FW.
7296 */
7297 adapter->params.nports = 1;
7298 adapter->params.portvec = 1;
7299 adapter->params.vpd.cclk = 50000;
7300
7301 /* Set pci completion timeout value to 4 seconds. */
7302 set_pcie_completion_timeout(adapter, 0xd);
7303 return 0;
7304 }
7305
7306 /**
7307 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
7308 * @adapter: the adapter
7309 * @qid: the Queue ID
7310 * @qtype: the Ingress or Egress type for @qid
7311 * @user: true if this request is for a user mode queue
7312 * @pbar2_qoffset: BAR2 Queue Offset
7313 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7314 *
7315 * Returns the BAR2 SGE Queue Registers information associated with the
7316 * indicated Absolute Queue ID. These are passed back in return value
7317 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7318 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7319 *
7320 * This may return an error which indicates that BAR2 SGE Queue
7321 * registers aren't available. If an error is not returned, then the
7322 * following values are returned:
7323 *
7324 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7325 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7326 *
7327 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7328 * require the "Inferred Queue ID" ability may be used. E.g. the
7329 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7330 * then these "Inferred Queue ID" register may not be used.
7331 */
7332 int t4_bar2_sge_qregs(struct adapter *adapter,
7333 unsigned int qid,
7334 enum t4_bar2_qtype qtype,
7335 int user,
7336 u64 *pbar2_qoffset,
7337 unsigned int *pbar2_qid)
7338 {
7339 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7340 u64 bar2_page_offset, bar2_qoffset;
7341 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7342
7343 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7344 if (!user && is_t4(adapter->params.chip))
7345 return -EINVAL;
7346
7347 /* Get our SGE Page Size parameters.
7348 */
7349 page_shift = adapter->params.sge.hps + 10;
7350 page_size = 1 << page_shift;
7351
7352 /* Get the right Queues per Page parameters for our Queue.
7353 */
7354 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7355 ? adapter->params.sge.eq_qpp
7356 : adapter->params.sge.iq_qpp);
7357 qpp_mask = (1 << qpp_shift) - 1;
7358
7359 /* Calculate the basics of the BAR2 SGE Queue register area:
7360 * o The BAR2 page the Queue registers will be in.
7361 * o The BAR2 Queue ID.
7362 * o The BAR2 Queue ID Offset into the BAR2 page.
7363 */
7364 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
7365 bar2_qid = qid & qpp_mask;
7366 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7367
7368 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7369 * hardware will infer the Absolute Queue ID simply from the writes to
7370 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7371 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
7372 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7373 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7374 * from the BAR2 Page and BAR2 Queue ID.
7375 *
7376 * One important censequence of this is that some BAR2 SGE registers
7377 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7378 * there. But other registers synthesize the SGE Queue ID purely
7379 * from the writes to the registers -- the Write Combined Doorbell
7380 * Buffer is a good example. These BAR2 SGE Registers are only
7381 * available for those BAR2 SGE Register areas where the SGE Absolute
7382 * Queue ID can be inferred from simple writes.
7383 */
7384 bar2_qoffset = bar2_page_offset;
7385 bar2_qinferred = (bar2_qid_offset < page_size);
7386 if (bar2_qinferred) {
7387 bar2_qoffset += bar2_qid_offset;
7388 bar2_qid = 0;
7389 }
7390
7391 *pbar2_qoffset = bar2_qoffset;
7392 *pbar2_qid = bar2_qid;
7393 return 0;
7394 }
7395
7396 /**
7397 * t4_init_devlog_params - initialize adapter->params.devlog
7398 * @adap: the adapter
7399 *
7400 * Initialize various fields of the adapter's Firmware Device Log
7401 * Parameters structure.
7402 */
7403 int t4_init_devlog_params(struct adapter *adap)
7404 {
7405 struct devlog_params *dparams = &adap->params.devlog;
7406 u32 pf_dparams;
7407 unsigned int devlog_meminfo;
7408 struct fw_devlog_cmd devlog_cmd;
7409 int ret;
7410
7411 /* If we're dealing with newer firmware, the Device Log Paramerters
7412 * are stored in a designated register which allows us to access the
7413 * Device Log even if we can't talk to the firmware.
7414 */
7415 pf_dparams =
7416 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7417 if (pf_dparams) {
7418 unsigned int nentries, nentries128;
7419
7420 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7421 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7422
7423 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7424 nentries = (nentries128 + 1) * 128;
7425 dparams->size = nentries * sizeof(struct fw_devlog_e);
7426
7427 return 0;
7428 }
7429
7430 /* Otherwise, ask the firmware for it's Device Log Parameters.
7431 */
7432 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
7433 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7434 FW_CMD_REQUEST_F | FW_CMD_READ_F);
7435 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7436 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7437 &devlog_cmd);
7438 if (ret)
7439 return ret;
7440
7441 devlog_meminfo =
7442 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7443 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7444 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
7445 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7446
7447 return 0;
7448 }
7449
7450 /**
7451 * t4_init_sge_params - initialize adap->params.sge
7452 * @adapter: the adapter
7453 *
7454 * Initialize various fields of the adapter's SGE Parameters structure.
7455 */
7456 int t4_init_sge_params(struct adapter *adapter)
7457 {
7458 struct sge_params *sge_params = &adapter->params.sge;
7459 u32 hps, qpp;
7460 unsigned int s_hps, s_qpp;
7461
7462 /* Extract the SGE Page Size for our PF.
7463 */
7464 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
7465 s_hps = (HOSTPAGESIZEPF0_S +
7466 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
7467 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7468
7469 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7470 */
7471 s_qpp = (QUEUESPERPAGEPF0_S +
7472 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
7473 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7474 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7475 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
7476 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
7477
7478 return 0;
7479 }
7480
7481 /**
7482 * t4_init_tp_params - initialize adap->params.tp
7483 * @adap: the adapter
7484 *
7485 * Initialize various fields of the adapter's TP Parameters structure.
7486 */
7487 int t4_init_tp_params(struct adapter *adap)
7488 {
7489 int chan;
7490 u32 v;
7491
7492 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7493 adap->params.tp.tre = TIMERRESOLUTION_G(v);
7494 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
7495
7496 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7497 for (chan = 0; chan < NCHAN; chan++)
7498 adap->params.tp.tx_modq[chan] = chan;
7499
7500 /* Cache the adapter's Compressed Filter Mode and global Incress
7501 * Configuration.
7502 */
7503 if (t4_use_ldst(adap)) {
7504 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7505 TP_VLAN_PRI_MAP_A, 1);
7506 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7507 TP_INGRESS_CONFIG_A, 1);
7508 } else {
7509 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7510 &adap->params.tp.vlan_pri_map, 1,
7511 TP_VLAN_PRI_MAP_A);
7512 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7513 &adap->params.tp.ingress_config, 1,
7514 TP_INGRESS_CONFIG_A);
7515 }
7516
7517 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7518 * shift positions of several elements of the Compressed Filter Tuple
7519 * for this adapter which we need frequently ...
7520 */
7521 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7522 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7523 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
7524 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
7525 PROTOCOL_F);
7526
7527 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7528 * represents the presence of an Outer VLAN instead of a VNIC ID.
7529 */
7530 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
7531 adap->params.tp.vnic_shift = -1;
7532
7533 return 0;
7534 }
7535
7536 /**
7537 * t4_filter_field_shift - calculate filter field shift
7538 * @adap: the adapter
7539 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7540 *
7541 * Return the shift position of a filter field within the Compressed
7542 * Filter Tuple. The filter field is specified via its selection bit
7543 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
7544 */
7545 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7546 {
7547 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7548 unsigned int sel;
7549 int field_shift;
7550
7551 if ((filter_mode & filter_sel) == 0)
7552 return -1;
7553
7554 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7555 switch (filter_mode & sel) {
7556 case FCOE_F:
7557 field_shift += FT_FCOE_W;
7558 break;
7559 case PORT_F:
7560 field_shift += FT_PORT_W;
7561 break;
7562 case VNIC_ID_F:
7563 field_shift += FT_VNIC_ID_W;
7564 break;
7565 case VLAN_F:
7566 field_shift += FT_VLAN_W;
7567 break;
7568 case TOS_F:
7569 field_shift += FT_TOS_W;
7570 break;
7571 case PROTOCOL_F:
7572 field_shift += FT_PROTOCOL_W;
7573 break;
7574 case ETHERTYPE_F:
7575 field_shift += FT_ETHERTYPE_W;
7576 break;
7577 case MACMATCH_F:
7578 field_shift += FT_MACMATCH_W;
7579 break;
7580 case MPSHITTYPE_F:
7581 field_shift += FT_MPSHITTYPE_W;
7582 break;
7583 case FRAGMENTATION_F:
7584 field_shift += FT_FRAGMENTATION_W;
7585 break;
7586 }
7587 }
7588 return field_shift;
7589 }
7590
7591 int t4_init_rss_mode(struct adapter *adap, int mbox)
7592 {
7593 int i, ret;
7594 struct fw_rss_vi_config_cmd rvc;
7595
7596 memset(&rvc, 0, sizeof(rvc));
7597
7598 for_each_port(adap, i) {
7599 struct port_info *p = adap2pinfo(adap, i);
7600
7601 rvc.op_to_viid =
7602 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7603 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7604 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7605 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7606 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7607 if (ret)
7608 return ret;
7609 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7610 }
7611 return 0;
7612 }
7613
7614 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
7615 {
7616 u8 addr[6];
7617 int ret, i, j = 0;
7618 struct fw_port_cmd c;
7619 struct fw_rss_vi_config_cmd rvc;
7620
7621 memset(&c, 0, sizeof(c));
7622 memset(&rvc, 0, sizeof(rvc));
7623
7624 for_each_port(adap, i) {
7625 unsigned int rss_size;
7626 struct port_info *p = adap2pinfo(adap, i);
7627
7628 while ((adap->params.portvec & (1 << j)) == 0)
7629 j++;
7630
7631 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7632 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7633 FW_PORT_CMD_PORTID_V(j));
7634 c.action_to_len16 = cpu_to_be32(
7635 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
7636 FW_LEN16(c));
7637 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7638 if (ret)
7639 return ret;
7640
7641 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7642 if (ret < 0)
7643 return ret;
7644
7645 p->viid = ret;
7646 p->tx_chan = j;
7647 p->lport = j;
7648 p->rss_size = rss_size;
7649 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
7650 adap->port[i]->dev_port = j;
7651
7652 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7653 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7654 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7655 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
7656 p->mod_type = FW_PORT_MOD_TYPE_NA;
7657
7658 rvc.op_to_viid =
7659 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7660 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7661 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7662 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
7663 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7664 if (ret)
7665 return ret;
7666 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
7667
7668 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7669 j++;
7670 }
7671 return 0;
7672 }
7673
7674 /**
7675 * t4_read_cimq_cfg - read CIM queue configuration
7676 * @adap: the adapter
7677 * @base: holds the queue base addresses in bytes
7678 * @size: holds the queue sizes in bytes
7679 * @thres: holds the queue full thresholds in bytes
7680 *
7681 * Returns the current configuration of the CIM queues, starting with
7682 * the IBQs, then the OBQs.
7683 */
7684 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7685 {
7686 unsigned int i, v;
7687 int cim_num_obq = is_t4(adap->params.chip) ?
7688 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7689
7690 for (i = 0; i < CIM_NUM_IBQ; i++) {
7691 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7692 QUENUMSELECT_V(i));
7693 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7694 /* value is in 256-byte units */
7695 *base++ = CIMQBASE_G(v) * 256;
7696 *size++ = CIMQSIZE_G(v) * 256;
7697 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7698 }
7699 for (i = 0; i < cim_num_obq; i++) {
7700 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7701 QUENUMSELECT_V(i));
7702 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7703 /* value is in 256-byte units */
7704 *base++ = CIMQBASE_G(v) * 256;
7705 *size++ = CIMQSIZE_G(v) * 256;
7706 }
7707 }
7708
7709 /**
7710 * t4_read_cim_ibq - read the contents of a CIM inbound queue
7711 * @adap: the adapter
7712 * @qid: the queue index
7713 * @data: where to store the queue contents
7714 * @n: capacity of @data in 32-bit words
7715 *
7716 * Reads the contents of the selected CIM queue starting at address 0 up
7717 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7718 * error and the number of 32-bit words actually read on success.
7719 */
7720 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7721 {
7722 int i, err, attempts;
7723 unsigned int addr;
7724 const unsigned int nwords = CIM_IBQ_SIZE * 4;
7725
7726 if (qid > 5 || (n & 3))
7727 return -EINVAL;
7728
7729 addr = qid * nwords;
7730 if (n > nwords)
7731 n = nwords;
7732
7733 /* It might take 3-10ms before the IBQ debug read access is allowed.
7734 * Wait for 1 Sec with a delay of 1 usec.
7735 */
7736 attempts = 1000000;
7737
7738 for (i = 0; i < n; i++, addr++) {
7739 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7740 IBQDBGEN_F);
7741 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7742 attempts, 1);
7743 if (err)
7744 return err;
7745 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7746 }
7747 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
7748 return i;
7749 }
7750
7751 /**
7752 * t4_read_cim_obq - read the contents of a CIM outbound queue
7753 * @adap: the adapter
7754 * @qid: the queue index
7755 * @data: where to store the queue contents
7756 * @n: capacity of @data in 32-bit words
7757 *
7758 * Reads the contents of the selected CIM queue starting at address 0 up
7759 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7760 * error and the number of 32-bit words actually read on success.
7761 */
7762 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7763 {
7764 int i, err;
7765 unsigned int addr, v, nwords;
7766 int cim_num_obq = is_t4(adap->params.chip) ?
7767 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7768
7769 if ((qid > (cim_num_obq - 1)) || (n & 3))
7770 return -EINVAL;
7771
7772 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7773 QUENUMSELECT_V(qid));
7774 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7775
7776 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
7777 nwords = CIMQSIZE_G(v) * 64; /* same */
7778 if (n > nwords)
7779 n = nwords;
7780
7781 for (i = 0; i < n; i++, addr++) {
7782 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7783 OBQDBGEN_F);
7784 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7785 2, 1);
7786 if (err)
7787 return err;
7788 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7789 }
7790 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
7791 return i;
7792 }
7793
7794 /**
7795 * t4_cim_read - read a block from CIM internal address space
7796 * @adap: the adapter
7797 * @addr: the start address within the CIM address space
7798 * @n: number of words to read
7799 * @valp: where to store the result
7800 *
7801 * Reads a block of 4-byte words from the CIM intenal address space.
7802 */
7803 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7804 unsigned int *valp)
7805 {
7806 int ret = 0;
7807
7808 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7809 return -EBUSY;
7810
7811 for ( ; !ret && n--; addr += 4) {
7812 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7813 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7814 0, 5, 2);
7815 if (!ret)
7816 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7817 }
7818 return ret;
7819 }
7820
7821 /**
7822 * t4_cim_write - write a block into CIM internal address space
7823 * @adap: the adapter
7824 * @addr: the start address within the CIM address space
7825 * @n: number of words to write
7826 * @valp: set of values to write
7827 *
7828 * Writes a block of 4-byte words into the CIM intenal address space.
7829 */
7830 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7831 const unsigned int *valp)
7832 {
7833 int ret = 0;
7834
7835 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7836 return -EBUSY;
7837
7838 for ( ; !ret && n--; addr += 4) {
7839 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7840 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7841 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7842 0, 5, 2);
7843 }
7844 return ret;
7845 }
7846
7847 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7848 unsigned int val)
7849 {
7850 return t4_cim_write(adap, addr, 1, &val);
7851 }
7852
7853 /**
7854 * t4_cim_read_la - read CIM LA capture buffer
7855 * @adap: the adapter
7856 * @la_buf: where to store the LA data
7857 * @wrptr: the HW write pointer within the capture buffer
7858 *
7859 * Reads the contents of the CIM LA buffer with the most recent entry at
7860 * the end of the returned data and with the entry at @wrptr first.
7861 * We try to leave the LA in the running state we find it in.
7862 */
7863 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7864 {
7865 int i, ret;
7866 unsigned int cfg, val, idx;
7867
7868 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7869 if (ret)
7870 return ret;
7871
7872 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
7873 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7874 if (ret)
7875 return ret;
7876 }
7877
7878 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7879 if (ret)
7880 goto restart;
7881
7882 idx = UPDBGLAWRPTR_G(val);
7883 if (wrptr)
7884 *wrptr = idx;
7885
7886 for (i = 0; i < adap->params.cim_la_size; i++) {
7887 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7888 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7889 if (ret)
7890 break;
7891 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7892 if (ret)
7893 break;
7894 if (val & UPDBGLARDEN_F) {
7895 ret = -ETIMEDOUT;
7896 break;
7897 }
7898 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7899 if (ret)
7900 break;
7901 idx = (idx + 1) & UPDBGLARDPTR_M;
7902 }
7903 restart:
7904 if (cfg & UPDBGLAEN_F) {
7905 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7906 cfg & ~UPDBGLARDEN_F);
7907 if (!ret)
7908 ret = r;
7909 }
7910 return ret;
7911 }
7912
7913 /**
7914 * t4_tp_read_la - read TP LA capture buffer
7915 * @adap: the adapter
7916 * @la_buf: where to store the LA data
7917 * @wrptr: the HW write pointer within the capture buffer
7918 *
7919 * Reads the contents of the TP LA buffer with the most recent entry at
7920 * the end of the returned data and with the entry at @wrptr first.
7921 * We leave the LA in the running state we find it in.
7922 */
7923 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7924 {
7925 bool last_incomplete;
7926 unsigned int i, cfg, val, idx;
7927
7928 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7929 if (cfg & DBGLAENABLE_F) /* freeze LA */
7930 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7931 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7932
7933 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7934 idx = DBGLAWPTR_G(val);
7935 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7936 if (last_incomplete)
7937 idx = (idx + 1) & DBGLARPTR_M;
7938 if (wrptr)
7939 *wrptr = idx;
7940
7941 val &= 0xffff;
7942 val &= ~DBGLARPTR_V(DBGLARPTR_M);
7943 val |= adap->params.tp.la_mask;
7944
7945 for (i = 0; i < TPLA_SIZE; i++) {
7946 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7947 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7948 idx = (idx + 1) & DBGLARPTR_M;
7949 }
7950
7951 /* Wipe out last entry if it isn't valid */
7952 if (last_incomplete)
7953 la_buf[TPLA_SIZE - 1] = ~0ULL;
7954
7955 if (cfg & DBGLAENABLE_F) /* restore running state */
7956 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7957 cfg | adap->params.tp.la_mask);
7958 }
7959
7960 /* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
7961 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
7962 * state for more than the Warning Threshold then we'll issue a warning about
7963 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
7964 * appears to be hung every Warning Repeat second till the situation clears.
7965 * If the situation clears, we'll note that as well.
7966 */
7967 #define SGE_IDMA_WARN_THRESH 1
7968 #define SGE_IDMA_WARN_REPEAT 300
7969
7970 /**
7971 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
7972 * @adapter: the adapter
7973 * @idma: the adapter IDMA Monitor state
7974 *
7975 * Initialize the state of an SGE Ingress DMA Monitor.
7976 */
7977 void t4_idma_monitor_init(struct adapter *adapter,
7978 struct sge_idma_monitor_state *idma)
7979 {
7980 /* Initialize the state variables for detecting an SGE Ingress DMA
7981 * hang. The SGE has internal counters which count up on each clock
7982 * tick whenever the SGE finds its Ingress DMA State Engines in the
7983 * same state they were on the previous clock tick. The clock used is
7984 * the Core Clock so we have a limit on the maximum "time" they can
7985 * record; typically a very small number of seconds. For instance,
7986 * with a 600MHz Core Clock, we can only count up to a bit more than
7987 * 7s. So we'll synthesize a larger counter in order to not run the
7988 * risk of having the "timers" overflow and give us the flexibility to
7989 * maintain a Hung SGE State Machine of our own which operates across
7990 * a longer time frame.
7991 */
7992 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
7993 idma->idma_stalled[0] = 0;
7994 idma->idma_stalled[1] = 0;
7995 }
7996
7997 /**
7998 * t4_idma_monitor - monitor SGE Ingress DMA state
7999 * @adapter: the adapter
8000 * @idma: the adapter IDMA Monitor state
8001 * @hz: number of ticks/second
8002 * @ticks: number of ticks since the last IDMA Monitor call
8003 */
8004 void t4_idma_monitor(struct adapter *adapter,
8005 struct sge_idma_monitor_state *idma,
8006 int hz, int ticks)
8007 {
8008 int i, idma_same_state_cnt[2];
8009
8010 /* Read the SGE Debug Ingress DMA Same State Count registers. These
8011 * are counters inside the SGE which count up on each clock when the
8012 * SGE finds its Ingress DMA State Engines in the same states they
8013 * were in the previous clock. The counters will peg out at
8014 * 0xffffffff without wrapping around so once they pass the 1s
8015 * threshold they'll stay above that till the IDMA state changes.
8016 */
8017 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8018 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8019 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8020
8021 for (i = 0; i < 2; i++) {
8022 u32 debug0, debug11;
8023
8024 /* If the Ingress DMA Same State Counter ("timer") is less
8025 * than 1s, then we can reset our synthesized Stall Timer and
8026 * continue. If we have previously emitted warnings about a
8027 * potential stalled Ingress Queue, issue a note indicating
8028 * that the Ingress Queue has resumed forward progress.
8029 */
8030 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8031 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8032 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8033 "resumed after %d seconds\n",
8034 i, idma->idma_qid[i],
8035 idma->idma_stalled[i] / hz);
8036 idma->idma_stalled[i] = 0;
8037 continue;
8038 }
8039
8040 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8041 * domain. The first time we get here it'll be because we
8042 * passed the 1s Threshold; each additional time it'll be
8043 * because the RX Timer Callback is being fired on its regular
8044 * schedule.
8045 *
8046 * If the stall is below our Potential Hung Ingress Queue
8047 * Warning Threshold, continue.
8048 */
8049 if (idma->idma_stalled[i] == 0) {
8050 idma->idma_stalled[i] = hz;
8051 idma->idma_warn[i] = 0;
8052 } else {
8053 idma->idma_stalled[i] += ticks;
8054 idma->idma_warn[i] -= ticks;
8055 }
8056
8057 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8058 continue;
8059
8060 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8061 */
8062 if (idma->idma_warn[i] > 0)
8063 continue;
8064 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8065
8066 /* Read and save the SGE IDMA State and Queue ID information.
8067 * We do this every time in case it changes across time ...
8068 * can't be too careful ...
8069 */
8070 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8071 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8072 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8073
8074 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8075 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8076 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8077
8078 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8079 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8080 i, idma->idma_qid[i], idma->idma_state[i],
8081 idma->idma_stalled[i] / hz,
8082 debug0, debug11);
8083 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8084 }
8085 }
This page took 0.204553 seconds and 5 git commands to generate.