net: mvneta: Remove superfluous SMP function call
[deliverable/linux.git] / drivers / net / ethernet / marvell / mvneta.c
1 /*
2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3 *
4 * Copyright (C) 2012 Marvell
5 *
6 * Rami Rosen <rosenr@marvell.com>
7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8 *
9 * This file is licensed under the terms of the GNU General Public
10 * License version 2. This program is licensed "as is" without any
11 * warranty of any kind, whether express or implied.
12 */
13
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/hwbm.h>
34 #include "mvneta_bm.h"
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/tso.h>
38
39 /* Registers */
40 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
41 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0)
42 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4
43 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30
44 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6
45 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0
46 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
47 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
49 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
52 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
53 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
55 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
57 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2))
60 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3
61 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8
62 #define MVNETA_PORT_RX_RESET 0x1cc0
63 #define MVNETA_PORT_RX_DMA_RESET BIT(0)
64 #define MVNETA_PHY_ADDR 0x2000
65 #define MVNETA_PHY_ADDR_MASK 0x1f
66 #define MVNETA_MBUS_RETRY 0x2010
67 #define MVNETA_UNIT_INTR_CAUSE 0x2080
68 #define MVNETA_UNIT_CONTROL 0x20B0
69 #define MVNETA_PHY_POLLING_ENABLE BIT(1)
70 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294
75 #define MVNETA_PORT_CONFIG 0x2400
76 #define MVNETA_UNI_PROMISC_MODE BIT(0)
77 #define MVNETA_DEF_RXQ(q) ((q) << 1)
78 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
79 #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
80 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
81 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
82 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
83 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
84 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
85 MVNETA_DEF_RXQ_ARP(q) | \
86 MVNETA_DEF_RXQ_TCP(q) | \
87 MVNETA_DEF_RXQ_UDP(q) | \
88 MVNETA_DEF_RXQ_BPDU(q) | \
89 MVNETA_TX_UNSET_ERR_SUM | \
90 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND 0x2404
92 #define MVNETA_MAC_ADDR_LOW 0x2414
93 #define MVNETA_MAC_ADDR_HIGH 0x2418
94 #define MVNETA_SDMA_CONFIG 0x241c
95 #define MVNETA_SDMA_BRST_SIZE_16 4
96 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
97 #define MVNETA_RX_NO_DATA_SWAP BIT(4)
98 #define MVNETA_TX_NO_DATA_SWAP BIT(5)
99 #define MVNETA_DESC_SWAP BIT(6)
100 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
101 #define MVNETA_PORT_STATUS 0x2444
102 #define MVNETA_TX_IN_PRGRS BIT(1)
103 #define MVNETA_TX_FIFO_EMPTY BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
105 #define MVNETA_SERDES_CFG 0x24A0
106 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
107 #define MVNETA_QSGMII_SERDES_PROTO 0x0667
108 #define MVNETA_TYPE_PRIO 0x24bc
109 #define MVNETA_FORCE_UNI BIT(21)
110 #define MVNETA_TXQ_CMD_1 0x24e4
111 #define MVNETA_TXQ_CMD 0x2448
112 #define MVNETA_TXQ_DISABLE_SHIFT 8
113 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4
117 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31)
118 #define MVNETA_ACC_MODE 0x2500
119 #define MVNETA_BM_ADDRESS 0x2504
120 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
121 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
122 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
123 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq)
124 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
126
127 /* Exception Interrupt Port/Queue Cause register
128 *
129 * Their behavior depend of the mapping done using the PCPX2Q
130 * registers. For a given CPU if the bit associated to a queue is not
131 * set, then for the register a read from this CPU will always return
132 * 0 and a write won't do anything
133 */
134
135 #define MVNETA_INTR_NEW_CAUSE 0x25a0
136 #define MVNETA_INTR_NEW_MASK 0x25a4
137
138 /* bits 0..7 = TXQ SENT, one bit per queue.
139 * bits 8..15 = RXQ OCCUP, one bit per queue.
140 * bits 16..23 = RXQ FREE, one bit per queue.
141 * bit 29 = OLD_REG_SUM, see old reg ?
142 * bit 30 = TX_ERR_SUM, one bit for 4 ports
143 * bit 31 = MISC_SUM, one bit for 4 ports
144 */
145 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
146 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
147 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
148 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
149 #define MVNETA_MISCINTR_INTR_MASK BIT(31)
150
151 #define MVNETA_INTR_OLD_CAUSE 0x25a8
152 #define MVNETA_INTR_OLD_MASK 0x25ac
153
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE 0x25b0
156 #define MVNETA_INTR_MISC_MASK 0x25b4
157
158 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
159 #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
160 #define MVNETA_CAUSE_PTP BIT(4)
161
162 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
163 #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
164 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
165 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
166 #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
167 #define MVNETA_CAUSE_PRBS_ERR BIT(12)
168 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
169 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
170
171 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174
175 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
176 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178
179 #define MVNETA_INTR_ENABLE 0x25b8
180 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
181 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff
182
183 #define MVNETA_RXQ_CMD 0x2680
184 #define MVNETA_RXQ_DISABLE_SHIFT 8
185 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0 0x2c00
189 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
190 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
191 #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
192 #define MVNETA_GMAC_CTRL_2 0x2c08
193 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0)
194 #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
195 #define MVNETA_GMAC2_PORT_RGMII BIT(4)
196 #define MVNETA_GMAC2_PORT_RESET BIT(6)
197 #define MVNETA_GMAC_STATUS 0x2c10
198 #define MVNETA_GMAC_LINK_UP BIT(0)
199 #define MVNETA_GMAC_SPEED_1000 BIT(1)
200 #define MVNETA_GMAC_SPEED_100 BIT(2)
201 #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
202 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
203 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
204 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
205 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
207 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
208 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
209 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2)
210 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
211 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
212 #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
213 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11)
214 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
215 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE 0x3000
217 #define MVNETA_MIB_LATE_COLLISION 0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE 0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
223 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
224 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
226 #define MVNETA_TXQ_DEC_SENT_SHIFT 16
227 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
228 #define MVNETA_TXQ_SENT_DESC_SHIFT 16
229 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
230 #define MVNETA_PORT_TX_RESET 0x3cf0
231 #define MVNETA_PORT_TX_DMA_RESET BIT(0)
232 #define MVNETA_TX_MTU 0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE 0x3e14
234 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
236 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
237
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
239
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index) \
242 (((index) < (q)->last_desc) ? ((index) + 1) : 0)
243
244 /* Various constants */
245
246 /* Coalescing */
247 #define MVNETA_TXDONE_COAL_PKTS 1
248 #define MVNETA_RX_COAL_PKTS 32
249 #define MVNETA_RX_COAL_USEC 100
250
251 /* The two bytes Marvell header. Either contains a special value used
252 * by Marvell switches when a specific hardware mode is enabled (not
253 * supported by this driver) or is filled automatically by zeroes on
254 * the RX side. Those two bytes being at the front of the Ethernet
255 * header, they allow to have the IP header aligned on a 4 bytes
256 * boundary automatically: the hardware skips those two bytes on its
257 * own.
258 */
259 #define MVNETA_MH_SIZE 2
260
261 #define MVNETA_VLAN_TAG_LEN 4
262
263 #define MVNETA_TX_CSUM_DEF_SIZE 1600
264 #define MVNETA_TX_CSUM_MAX_SIZE 9800
265 #define MVNETA_ACC_MODE_EXT1 1
266 #define MVNETA_ACC_MODE_EXT2 2
267
268 #define MVNETA_MAX_DECODE_WIN 6
269
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
274
275 #define MVNETA_TX_MTU_MAX 0x3ffff
276
277 /* The RSS lookup table actually has 256 entries but we do not use
278 * them yet
279 */
280 #define MVNETA_RSS_LU_TABLE_SIZE 1
281
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
284
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
287
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
290
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
293
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
295
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE 32
298
299 #define MVNETA_RX_PKT_SIZE(mtu) \
300 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 ETH_HLEN + ETH_FCS_LEN, \
302 cache_line_size())
303
304 #define IS_TSO_HEADER(txq, addr) \
305 ((addr >= txq->tso_hdrs_phys) && \
306 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
307
308 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
310
311 struct mvneta_statistic {
312 unsigned short offset;
313 unsigned short type;
314 const char name[ETH_GSTRING_LEN];
315 };
316
317 #define T_REG_32 32
318 #define T_REG_64 64
319
320 static const struct mvneta_statistic mvneta_statistics[] = {
321 { 0x3000, T_REG_64, "good_octets_received", },
322 { 0x3010, T_REG_32, "good_frames_received", },
323 { 0x3008, T_REG_32, "bad_octets_received", },
324 { 0x3014, T_REG_32, "bad_frames_received", },
325 { 0x3018, T_REG_32, "broadcast_frames_received", },
326 { 0x301c, T_REG_32, "multicast_frames_received", },
327 { 0x3050, T_REG_32, "unrec_mac_control_received", },
328 { 0x3058, T_REG_32, "good_fc_received", },
329 { 0x305c, T_REG_32, "bad_fc_received", },
330 { 0x3060, T_REG_32, "undersize_received", },
331 { 0x3064, T_REG_32, "fragments_received", },
332 { 0x3068, T_REG_32, "oversize_received", },
333 { 0x306c, T_REG_32, "jabber_received", },
334 { 0x3070, T_REG_32, "mac_receive_error", },
335 { 0x3074, T_REG_32, "bad_crc_event", },
336 { 0x3078, T_REG_32, "collision", },
337 { 0x307c, T_REG_32, "late_collision", },
338 { 0x2484, T_REG_32, "rx_discard", },
339 { 0x2488, T_REG_32, "rx_overrun", },
340 { 0x3020, T_REG_32, "frames_64_octets", },
341 { 0x3024, T_REG_32, "frames_65_to_127_octets", },
342 { 0x3028, T_REG_32, "frames_128_to_255_octets", },
343 { 0x302c, T_REG_32, "frames_256_to_511_octets", },
344 { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
345 { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
346 { 0x3038, T_REG_64, "good_octets_sent", },
347 { 0x3040, T_REG_32, "good_frames_sent", },
348 { 0x3044, T_REG_32, "excessive_collision", },
349 { 0x3048, T_REG_32, "multicast_frames_sent", },
350 { 0x304c, T_REG_32, "broadcast_frames_sent", },
351 { 0x3054, T_REG_32, "fc_sent", },
352 { 0x300c, T_REG_32, "internal_mac_transmit_err", },
353 };
354
355 struct mvneta_pcpu_stats {
356 struct u64_stats_sync syncp;
357 u64 rx_packets;
358 u64 rx_bytes;
359 u64 tx_packets;
360 u64 tx_bytes;
361 };
362
363 struct mvneta_pcpu_port {
364 /* Pointer to the shared port */
365 struct mvneta_port *pp;
366
367 /* Pointer to the CPU-local NAPI struct */
368 struct napi_struct napi;
369
370 /* Cause of the previous interrupt */
371 u32 cause_rx_tx;
372 };
373
374 struct mvneta_port {
375 u8 id;
376 struct mvneta_pcpu_port __percpu *ports;
377 struct mvneta_pcpu_stats __percpu *stats;
378
379 int pkt_size;
380 unsigned int frag_size;
381 void __iomem *base;
382 struct mvneta_rx_queue *rxqs;
383 struct mvneta_tx_queue *txqs;
384 struct net_device *dev;
385 struct notifier_block cpu_notifier;
386 int rxq_def;
387 /* Protect the access to the percpu interrupt registers,
388 * ensuring that the configuration remains coherent.
389 */
390 spinlock_t lock;
391 bool is_stopped;
392
393 /* Core clock */
394 struct clk *clk;
395 /* AXI clock */
396 struct clk *clk_bus;
397 u8 mcast_count[256];
398 u16 tx_ring_size;
399 u16 rx_ring_size;
400
401 struct mii_bus *mii_bus;
402 struct phy_device *phy_dev;
403 phy_interface_t phy_interface;
404 struct device_node *phy_node;
405 unsigned int link;
406 unsigned int duplex;
407 unsigned int speed;
408 unsigned int tx_csum_limit;
409 unsigned int use_inband_status:1;
410
411 struct mvneta_bm *bm_priv;
412 struct mvneta_bm_pool *pool_long;
413 struct mvneta_bm_pool *pool_short;
414 int bm_win_id;
415
416 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
417
418 u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
419 };
420
421 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
422 * layout of the transmit and reception DMA descriptors, and their
423 * layout is therefore defined by the hardware design
424 */
425
426 #define MVNETA_TX_L3_OFF_SHIFT 0
427 #define MVNETA_TX_IP_HLEN_SHIFT 8
428 #define MVNETA_TX_L4_UDP BIT(16)
429 #define MVNETA_TX_L3_IP6 BIT(17)
430 #define MVNETA_TXD_IP_CSUM BIT(18)
431 #define MVNETA_TXD_Z_PAD BIT(19)
432 #define MVNETA_TXD_L_DESC BIT(20)
433 #define MVNETA_TXD_F_DESC BIT(21)
434 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
435 MVNETA_TXD_L_DESC | \
436 MVNETA_TXD_F_DESC)
437 #define MVNETA_TX_L4_CSUM_FULL BIT(30)
438 #define MVNETA_TX_L4_CSUM_NOT BIT(31)
439
440 #define MVNETA_RXD_ERR_CRC 0x0
441 #define MVNETA_RXD_BM_POOL_SHIFT 13
442 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14))
443 #define MVNETA_RXD_ERR_SUMMARY BIT(16)
444 #define MVNETA_RXD_ERR_OVERRUN BIT(17)
445 #define MVNETA_RXD_ERR_LEN BIT(18)
446 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
447 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
448 #define MVNETA_RXD_L3_IP4 BIT(25)
449 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
450 #define MVNETA_RXD_L4_CSUM_OK BIT(30)
451
452 #if defined(__LITTLE_ENDIAN)
453 struct mvneta_tx_desc {
454 u32 command; /* Options used by HW for packet transmitting.*/
455 u16 reserverd1; /* csum_l4 (for future use) */
456 u16 data_size; /* Data size of transmitted packet in bytes */
457 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
458 u32 reserved2; /* hw_cmd - (for future use, PMT) */
459 u32 reserved3[4]; /* Reserved - (for future use) */
460 };
461
462 struct mvneta_rx_desc {
463 u32 status; /* Info about received packet */
464 u16 reserved1; /* pnc_info - (for future use, PnC) */
465 u16 data_size; /* Size of received packet in bytes */
466
467 u32 buf_phys_addr; /* Physical address of the buffer */
468 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
469
470 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
471 u16 reserved3; /* prefetch_cmd, for future use */
472 u16 reserved4; /* csum_l4 - (for future use, PnC) */
473
474 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
475 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
476 };
477 #else
478 struct mvneta_tx_desc {
479 u16 data_size; /* Data size of transmitted packet in bytes */
480 u16 reserverd1; /* csum_l4 (for future use) */
481 u32 command; /* Options used by HW for packet transmitting.*/
482 u32 reserved2; /* hw_cmd - (for future use, PMT) */
483 u32 buf_phys_addr; /* Physical addr of transmitted buffer */
484 u32 reserved3[4]; /* Reserved - (for future use) */
485 };
486
487 struct mvneta_rx_desc {
488 u16 data_size; /* Size of received packet in bytes */
489 u16 reserved1; /* pnc_info - (for future use, PnC) */
490 u32 status; /* Info about received packet */
491
492 u32 reserved2; /* pnc_flow_id (for future use, PnC) */
493 u32 buf_phys_addr; /* Physical address of the buffer */
494
495 u16 reserved4; /* csum_l4 - (for future use, PnC) */
496 u16 reserved3; /* prefetch_cmd, for future use */
497 u32 buf_cookie; /* cookie for access to RX buffer in rx path */
498
499 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
500 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
501 };
502 #endif
503
504 struct mvneta_tx_queue {
505 /* Number of this TX queue, in the range 0-7 */
506 u8 id;
507
508 /* Number of TX DMA descriptors in the descriptor ring */
509 int size;
510
511 /* Number of currently used TX DMA descriptor in the
512 * descriptor ring
513 */
514 int count;
515 int tx_stop_threshold;
516 int tx_wake_threshold;
517
518 /* Array of transmitted skb */
519 struct sk_buff **tx_skb;
520
521 /* Index of last TX DMA descriptor that was inserted */
522 int txq_put_index;
523
524 /* Index of the TX DMA descriptor to be cleaned up */
525 int txq_get_index;
526
527 u32 done_pkts_coal;
528
529 /* Virtual address of the TX DMA descriptors array */
530 struct mvneta_tx_desc *descs;
531
532 /* DMA address of the TX DMA descriptors array */
533 dma_addr_t descs_phys;
534
535 /* Index of the last TX DMA descriptor */
536 int last_desc;
537
538 /* Index of the next TX DMA descriptor to process */
539 int next_desc_to_proc;
540
541 /* DMA buffers for TSO headers */
542 char *tso_hdrs;
543
544 /* DMA address of TSO headers */
545 dma_addr_t tso_hdrs_phys;
546
547 /* Affinity mask for CPUs*/
548 cpumask_t affinity_mask;
549 };
550
551 struct mvneta_rx_queue {
552 /* rx queue number, in the range 0-7 */
553 u8 id;
554
555 /* num of rx descriptors in the rx descriptor ring */
556 int size;
557
558 /* counter of times when mvneta_refill() failed */
559 int missed;
560
561 u32 pkts_coal;
562 u32 time_coal;
563
564 /* Virtual address of the RX DMA descriptors array */
565 struct mvneta_rx_desc *descs;
566
567 /* DMA address of the RX DMA descriptors array */
568 dma_addr_t descs_phys;
569
570 /* Index of the last RX DMA descriptor */
571 int last_desc;
572
573 /* Index of the next RX DMA descriptor to process */
574 int next_desc_to_proc;
575 };
576
577 /* The hardware supports eight (8) rx queues, but we are only allowing
578 * the first one to be used. Therefore, let's just allocate one queue.
579 */
580 static int rxq_number = 8;
581 static int txq_number = 8;
582
583 static int rxq_def;
584
585 static int rx_copybreak __read_mostly = 256;
586
587 /* HW BM need that each port be identify by a unique ID */
588 static int global_port_id;
589
590 #define MVNETA_DRIVER_NAME "mvneta"
591 #define MVNETA_DRIVER_VERSION "1.0"
592
593 /* Utility/helper methods */
594
595 /* Write helper method */
596 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
597 {
598 writel(data, pp->base + offset);
599 }
600
601 /* Read helper method */
602 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
603 {
604 return readl(pp->base + offset);
605 }
606
607 /* Increment txq get counter */
608 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
609 {
610 txq->txq_get_index++;
611 if (txq->txq_get_index == txq->size)
612 txq->txq_get_index = 0;
613 }
614
615 /* Increment txq put counter */
616 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
617 {
618 txq->txq_put_index++;
619 if (txq->txq_put_index == txq->size)
620 txq->txq_put_index = 0;
621 }
622
623
624 /* Clear all MIB counters */
625 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
626 {
627 int i;
628 u32 dummy;
629
630 /* Perform dummy reads from MIB counters */
631 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
632 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
633 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
634 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
635 }
636
637 /* Get System Network Statistics */
638 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
639 struct rtnl_link_stats64 *stats)
640 {
641 struct mvneta_port *pp = netdev_priv(dev);
642 unsigned int start;
643 int cpu;
644
645 for_each_possible_cpu(cpu) {
646 struct mvneta_pcpu_stats *cpu_stats;
647 u64 rx_packets;
648 u64 rx_bytes;
649 u64 tx_packets;
650 u64 tx_bytes;
651
652 cpu_stats = per_cpu_ptr(pp->stats, cpu);
653 do {
654 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
655 rx_packets = cpu_stats->rx_packets;
656 rx_bytes = cpu_stats->rx_bytes;
657 tx_packets = cpu_stats->tx_packets;
658 tx_bytes = cpu_stats->tx_bytes;
659 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
660
661 stats->rx_packets += rx_packets;
662 stats->rx_bytes += rx_bytes;
663 stats->tx_packets += tx_packets;
664 stats->tx_bytes += tx_bytes;
665 }
666
667 stats->rx_errors = dev->stats.rx_errors;
668 stats->rx_dropped = dev->stats.rx_dropped;
669
670 stats->tx_dropped = dev->stats.tx_dropped;
671
672 return stats;
673 }
674
675 /* Rx descriptors helper methods */
676
677 /* Checks whether the RX descriptor having this status is both the first
678 * and the last descriptor for the RX packet. Each RX packet is currently
679 * received through a single RX descriptor, so not having each RX
680 * descriptor with its first and last bits set is an error
681 */
682 static int mvneta_rxq_desc_is_first_last(u32 status)
683 {
684 return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
685 MVNETA_RXD_FIRST_LAST_DESC;
686 }
687
688 /* Add number of descriptors ready to receive new packets */
689 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
690 struct mvneta_rx_queue *rxq,
691 int ndescs)
692 {
693 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
694 * be added at once
695 */
696 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
697 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
698 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
699 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
700 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
701 }
702
703 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
704 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
705 }
706
707 /* Get number of RX descriptors occupied by received packets */
708 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
709 struct mvneta_rx_queue *rxq)
710 {
711 u32 val;
712
713 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
714 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
715 }
716
717 /* Update num of rx desc called upon return from rx path or
718 * from mvneta_rxq_drop_pkts().
719 */
720 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
721 struct mvneta_rx_queue *rxq,
722 int rx_done, int rx_filled)
723 {
724 u32 val;
725
726 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
727 val = rx_done |
728 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
729 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
730 return;
731 }
732
733 /* Only 255 descriptors can be added at once */
734 while ((rx_done > 0) || (rx_filled > 0)) {
735 if (rx_done <= 0xff) {
736 val = rx_done;
737 rx_done = 0;
738 } else {
739 val = 0xff;
740 rx_done -= 0xff;
741 }
742 if (rx_filled <= 0xff) {
743 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
744 rx_filled = 0;
745 } else {
746 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
747 rx_filled -= 0xff;
748 }
749 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
750 }
751 }
752
753 /* Get pointer to next RX descriptor to be processed by SW */
754 static struct mvneta_rx_desc *
755 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
756 {
757 int rx_desc = rxq->next_desc_to_proc;
758
759 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
760 prefetch(rxq->descs + rxq->next_desc_to_proc);
761 return rxq->descs + rx_desc;
762 }
763
764 /* Change maximum receive size of the port. */
765 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
766 {
767 u32 val;
768
769 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
770 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
771 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
772 MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
773 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
774 }
775
776
777 /* Set rx queue offset */
778 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
779 struct mvneta_rx_queue *rxq,
780 int offset)
781 {
782 u32 val;
783
784 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
785 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
786
787 /* Offset is in */
788 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
789 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
790 }
791
792
793 /* Tx descriptors helper methods */
794
795 /* Update HW with number of TX descriptors to be sent */
796 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
797 struct mvneta_tx_queue *txq,
798 int pend_desc)
799 {
800 u32 val;
801
802 /* Only 255 descriptors can be added at once ; Assume caller
803 * process TX desriptors in quanta less than 256
804 */
805 val = pend_desc;
806 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
807 }
808
809 /* Get pointer to next TX descriptor to be processed (send) by HW */
810 static struct mvneta_tx_desc *
811 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
812 {
813 int tx_desc = txq->next_desc_to_proc;
814
815 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
816 return txq->descs + tx_desc;
817 }
818
819 /* Release the last allocated TX descriptor. Useful to handle DMA
820 * mapping failures in the TX path.
821 */
822 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
823 {
824 if (txq->next_desc_to_proc == 0)
825 txq->next_desc_to_proc = txq->last_desc - 1;
826 else
827 txq->next_desc_to_proc--;
828 }
829
830 /* Set rxq buf size */
831 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
832 struct mvneta_rx_queue *rxq,
833 int buf_size)
834 {
835 u32 val;
836
837 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
838
839 val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
840 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
841
842 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
843 }
844
845 /* Disable buffer management (BM) */
846 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
847 struct mvneta_rx_queue *rxq)
848 {
849 u32 val;
850
851 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
852 val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
853 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
854 }
855
856 /* Enable buffer management (BM) */
857 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
858 struct mvneta_rx_queue *rxq)
859 {
860 u32 val;
861
862 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
863 val |= MVNETA_RXQ_HW_BUF_ALLOC;
864 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
865 }
866
867 /* Notify HW about port's assignment of pool for bigger packets */
868 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
869 struct mvneta_rx_queue *rxq)
870 {
871 u32 val;
872
873 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
874 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
875 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
876
877 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
878 }
879
880 /* Notify HW about port's assignment of pool for smaller packets */
881 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
882 struct mvneta_rx_queue *rxq)
883 {
884 u32 val;
885
886 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
887 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
888 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
889
890 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
891 }
892
893 /* Set port's receive buffer size for assigned BM pool */
894 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
895 int buf_size,
896 u8 pool_id)
897 {
898 u32 val;
899
900 if (!IS_ALIGNED(buf_size, 8)) {
901 dev_warn(pp->dev->dev.parent,
902 "illegal buf_size value %d, round to %d\n",
903 buf_size, ALIGN(buf_size, 8));
904 buf_size = ALIGN(buf_size, 8);
905 }
906
907 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
908 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
909 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
910 }
911
912 /* Configure MBUS window in order to enable access BM internal SRAM */
913 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
914 u8 target, u8 attr)
915 {
916 u32 win_enable, win_protect;
917 int i;
918
919 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
920
921 if (pp->bm_win_id < 0) {
922 /* Find first not occupied window */
923 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
924 if (win_enable & (1 << i)) {
925 pp->bm_win_id = i;
926 break;
927 }
928 }
929 if (i == MVNETA_MAX_DECODE_WIN)
930 return -ENOMEM;
931 } else {
932 i = pp->bm_win_id;
933 }
934
935 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
936 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
937
938 if (i < 4)
939 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
940
941 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
942 (attr << 8) | target);
943
944 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
945
946 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
947 win_protect |= 3 << (2 * i);
948 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
949
950 win_enable &= ~(1 << i);
951 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
952
953 return 0;
954 }
955
956 /* Assign and initialize pools for port. In case of fail
957 * buffer manager will remain disabled for current port.
958 */
959 static int mvneta_bm_port_init(struct platform_device *pdev,
960 struct mvneta_port *pp)
961 {
962 struct device_node *dn = pdev->dev.of_node;
963 u32 long_pool_id, short_pool_id, wsize;
964 u8 target, attr;
965 int err;
966
967 /* Get BM window information */
968 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
969 &target, &attr);
970 if (err < 0)
971 return err;
972
973 pp->bm_win_id = -1;
974
975 /* Open NETA -> BM window */
976 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
977 target, attr);
978 if (err < 0) {
979 netdev_info(pp->dev, "fail to configure mbus window to BM\n");
980 return err;
981 }
982
983 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
984 netdev_info(pp->dev, "missing long pool id\n");
985 return -EINVAL;
986 }
987
988 /* Create port's long pool depending on mtu */
989 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
990 MVNETA_BM_LONG, pp->id,
991 MVNETA_RX_PKT_SIZE(pp->dev->mtu));
992 if (!pp->pool_long) {
993 netdev_info(pp->dev, "fail to obtain long pool for port\n");
994 return -ENOMEM;
995 }
996
997 pp->pool_long->port_map |= 1 << pp->id;
998
999 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1000 pp->pool_long->id);
1001
1002 /* If short pool id is not defined, assume using single pool */
1003 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1004 short_pool_id = long_pool_id;
1005
1006 /* Create port's short pool */
1007 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1008 MVNETA_BM_SHORT, pp->id,
1009 MVNETA_BM_SHORT_PKT_SIZE);
1010 if (!pp->pool_short) {
1011 netdev_info(pp->dev, "fail to obtain short pool for port\n");
1012 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1013 return -ENOMEM;
1014 }
1015
1016 if (short_pool_id != long_pool_id) {
1017 pp->pool_short->port_map |= 1 << pp->id;
1018 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1019 pp->pool_short->id);
1020 }
1021
1022 return 0;
1023 }
1024
1025 /* Update settings of a pool for bigger packets */
1026 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1027 {
1028 struct mvneta_bm_pool *bm_pool = pp->pool_long;
1029 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1030 int num;
1031
1032 /* Release all buffers from long pool */
1033 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1034 if (hwbm_pool->buf_num) {
1035 WARN(1, "cannot free all buffers in pool %d\n",
1036 bm_pool->id);
1037 goto bm_mtu_err;
1038 }
1039
1040 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1041 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1042 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1043 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1044
1045 /* Fill entire long pool */
1046 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1047 if (num != hwbm_pool->size) {
1048 WARN(1, "pool %d: %d of %d allocated\n",
1049 bm_pool->id, num, hwbm_pool->size);
1050 goto bm_mtu_err;
1051 }
1052 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1053
1054 return;
1055
1056 bm_mtu_err:
1057 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1058 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1059
1060 pp->bm_priv = NULL;
1061 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1062 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1063 }
1064
1065 /* Start the Ethernet port RX and TX activity */
1066 static void mvneta_port_up(struct mvneta_port *pp)
1067 {
1068 int queue;
1069 u32 q_map;
1070
1071 /* Enable all initialized TXs. */
1072 q_map = 0;
1073 for (queue = 0; queue < txq_number; queue++) {
1074 struct mvneta_tx_queue *txq = &pp->txqs[queue];
1075 if (txq->descs != NULL)
1076 q_map |= (1 << queue);
1077 }
1078 mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1079
1080 /* Enable all initialized RXQs. */
1081 for (queue = 0; queue < rxq_number; queue++) {
1082 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1083
1084 if (rxq->descs != NULL)
1085 q_map |= (1 << queue);
1086 }
1087 mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1088 }
1089
1090 /* Stop the Ethernet port activity */
1091 static void mvneta_port_down(struct mvneta_port *pp)
1092 {
1093 u32 val;
1094 int count;
1095
1096 /* Stop Rx port activity. Check port Rx activity. */
1097 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1098
1099 /* Issue stop command for active channels only */
1100 if (val != 0)
1101 mvreg_write(pp, MVNETA_RXQ_CMD,
1102 val << MVNETA_RXQ_DISABLE_SHIFT);
1103
1104 /* Wait for all Rx activity to terminate. */
1105 count = 0;
1106 do {
1107 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1108 netdev_warn(pp->dev,
1109 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1110 val);
1111 break;
1112 }
1113 mdelay(1);
1114
1115 val = mvreg_read(pp, MVNETA_RXQ_CMD);
1116 } while (val & MVNETA_RXQ_ENABLE_MASK);
1117
1118 /* Stop Tx port activity. Check port Tx activity. Issue stop
1119 * command for active channels only
1120 */
1121 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1122
1123 if (val != 0)
1124 mvreg_write(pp, MVNETA_TXQ_CMD,
1125 (val << MVNETA_TXQ_DISABLE_SHIFT));
1126
1127 /* Wait for all Tx activity to terminate. */
1128 count = 0;
1129 do {
1130 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1131 netdev_warn(pp->dev,
1132 "TIMEOUT for TX stopped status=0x%08x\n",
1133 val);
1134 break;
1135 }
1136 mdelay(1);
1137
1138 /* Check TX Command reg that all Txqs are stopped */
1139 val = mvreg_read(pp, MVNETA_TXQ_CMD);
1140
1141 } while (val & MVNETA_TXQ_ENABLE_MASK);
1142
1143 /* Double check to verify that TX FIFO is empty */
1144 count = 0;
1145 do {
1146 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1147 netdev_warn(pp->dev,
1148 "TX FIFO empty timeout status=0x%08x\n",
1149 val);
1150 break;
1151 }
1152 mdelay(1);
1153
1154 val = mvreg_read(pp, MVNETA_PORT_STATUS);
1155 } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1156 (val & MVNETA_TX_IN_PRGRS));
1157
1158 udelay(200);
1159 }
1160
1161 /* Enable the port by setting the port enable bit of the MAC control register */
1162 static void mvneta_port_enable(struct mvneta_port *pp)
1163 {
1164 u32 val;
1165
1166 /* Enable port */
1167 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1168 val |= MVNETA_GMAC0_PORT_ENABLE;
1169 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1170 }
1171
1172 /* Disable the port and wait for about 200 usec before retuning */
1173 static void mvneta_port_disable(struct mvneta_port *pp)
1174 {
1175 u32 val;
1176
1177 /* Reset the Enable bit in the Serial Control Register */
1178 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1179 val &= ~MVNETA_GMAC0_PORT_ENABLE;
1180 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1181
1182 udelay(200);
1183 }
1184
1185 /* Multicast tables methods */
1186
1187 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1188 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1189 {
1190 int offset;
1191 u32 val;
1192
1193 if (queue == -1) {
1194 val = 0;
1195 } else {
1196 val = 0x1 | (queue << 1);
1197 val |= (val << 24) | (val << 16) | (val << 8);
1198 }
1199
1200 for (offset = 0; offset <= 0xc; offset += 4)
1201 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1202 }
1203
1204 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1205 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1206 {
1207 int offset;
1208 u32 val;
1209
1210 if (queue == -1) {
1211 val = 0;
1212 } else {
1213 val = 0x1 | (queue << 1);
1214 val |= (val << 24) | (val << 16) | (val << 8);
1215 }
1216
1217 for (offset = 0; offset <= 0xfc; offset += 4)
1218 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1219
1220 }
1221
1222 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1223 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1224 {
1225 int offset;
1226 u32 val;
1227
1228 if (queue == -1) {
1229 memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1230 val = 0;
1231 } else {
1232 memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1233 val = 0x1 | (queue << 1);
1234 val |= (val << 24) | (val << 16) | (val << 8);
1235 }
1236
1237 for (offset = 0; offset <= 0xfc; offset += 4)
1238 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1239 }
1240
1241 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1242 {
1243 u32 val;
1244
1245 if (enable) {
1246 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1247 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1248 MVNETA_GMAC_FORCE_LINK_DOWN |
1249 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1250 val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1251 MVNETA_GMAC_AN_SPEED_EN |
1252 MVNETA_GMAC_AN_DUPLEX_EN;
1253 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1254
1255 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1256 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1257 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1258
1259 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1260 val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1261 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1262 } else {
1263 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1264 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1265 MVNETA_GMAC_AN_SPEED_EN |
1266 MVNETA_GMAC_AN_DUPLEX_EN);
1267 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1268
1269 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1270 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1271 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1272
1273 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1274 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1275 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1276 }
1277 }
1278
1279 static void mvneta_percpu_unmask_interrupt(void *arg)
1280 {
1281 struct mvneta_port *pp = arg;
1282
1283 /* All the queue are unmasked, but actually only the ones
1284 * mapped to this CPU will be unmasked
1285 */
1286 mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1287 MVNETA_RX_INTR_MASK_ALL |
1288 MVNETA_TX_INTR_MASK_ALL |
1289 MVNETA_MISCINTR_INTR_MASK);
1290 }
1291
1292 static void mvneta_percpu_mask_interrupt(void *arg)
1293 {
1294 struct mvneta_port *pp = arg;
1295
1296 /* All the queue are masked, but actually only the ones
1297 * mapped to this CPU will be masked
1298 */
1299 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1300 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1301 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1302 }
1303
1304 static void mvneta_percpu_clear_intr_cause(void *arg)
1305 {
1306 struct mvneta_port *pp = arg;
1307
1308 /* All the queue are cleared, but actually only the ones
1309 * mapped to this CPU will be cleared
1310 */
1311 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1312 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1313 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1314 }
1315
1316 /* This method sets defaults to the NETA port:
1317 * Clears interrupt Cause and Mask registers.
1318 * Clears all MAC tables.
1319 * Sets defaults to all registers.
1320 * Resets RX and TX descriptor rings.
1321 * Resets PHY.
1322 * This method can be called after mvneta_port_down() to return the port
1323 * settings to defaults.
1324 */
1325 static void mvneta_defaults_set(struct mvneta_port *pp)
1326 {
1327 int cpu;
1328 int queue;
1329 u32 val;
1330 int max_cpu = num_present_cpus();
1331
1332 /* Clear all Cause registers */
1333 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1334
1335 /* Mask all interrupts */
1336 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1337 mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1338
1339 /* Enable MBUS Retry bit16 */
1340 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1341
1342 /* Set CPU queue access map. CPUs are assigned to the RX and
1343 * TX queues modulo their number. If there is only one TX
1344 * queue then it is assigned to the CPU associated to the
1345 * default RX queue.
1346 */
1347 for_each_present_cpu(cpu) {
1348 int rxq_map = 0, txq_map = 0;
1349 int rxq, txq;
1350
1351 for (rxq = 0; rxq < rxq_number; rxq++)
1352 if ((rxq % max_cpu) == cpu)
1353 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1354
1355 for (txq = 0; txq < txq_number; txq++)
1356 if ((txq % max_cpu) == cpu)
1357 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1358
1359 /* With only one TX queue we configure a special case
1360 * which will allow to get all the irq on a single
1361 * CPU
1362 */
1363 if (txq_number == 1)
1364 txq_map = (cpu == pp->rxq_def) ?
1365 MVNETA_CPU_TXQ_ACCESS(1) : 0;
1366
1367 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1368 }
1369
1370 /* Reset RX and TX DMAs */
1371 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1372 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1373
1374 /* Disable Legacy WRR, Disable EJP, Release from reset */
1375 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1376 for (queue = 0; queue < txq_number; queue++) {
1377 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1378 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1379 }
1380
1381 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1382 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1383
1384 /* Set Port Acceleration Mode */
1385 if (pp->bm_priv)
1386 /* HW buffer management + legacy parser */
1387 val = MVNETA_ACC_MODE_EXT2;
1388 else
1389 /* SW buffer management + legacy parser */
1390 val = MVNETA_ACC_MODE_EXT1;
1391 mvreg_write(pp, MVNETA_ACC_MODE, val);
1392
1393 if (pp->bm_priv)
1394 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1395
1396 /* Update val of portCfg register accordingly with all RxQueue types */
1397 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1398 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1399
1400 val = 0;
1401 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1402 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1403
1404 /* Build PORT_SDMA_CONFIG_REG */
1405 val = 0;
1406
1407 /* Default burst size */
1408 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1409 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1410 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1411
1412 #if defined(__BIG_ENDIAN)
1413 val |= MVNETA_DESC_SWAP;
1414 #endif
1415
1416 /* Assign port SDMA configuration */
1417 mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1418
1419 /* Disable PHY polling in hardware, since we're using the
1420 * kernel phylib to do this.
1421 */
1422 val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1423 val &= ~MVNETA_PHY_POLLING_ENABLE;
1424 mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1425
1426 mvneta_set_autoneg(pp, pp->use_inband_status);
1427 mvneta_set_ucast_table(pp, -1);
1428 mvneta_set_special_mcast_table(pp, -1);
1429 mvneta_set_other_mcast_table(pp, -1);
1430
1431 /* Set port interrupt enable register - default enable all */
1432 mvreg_write(pp, MVNETA_INTR_ENABLE,
1433 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1434 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1435
1436 mvneta_mib_counters_clear(pp);
1437 }
1438
1439 /* Set max sizes for tx queues */
1440 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1441
1442 {
1443 u32 val, size, mtu;
1444 int queue;
1445
1446 mtu = max_tx_size * 8;
1447 if (mtu > MVNETA_TX_MTU_MAX)
1448 mtu = MVNETA_TX_MTU_MAX;
1449
1450 /* Set MTU */
1451 val = mvreg_read(pp, MVNETA_TX_MTU);
1452 val &= ~MVNETA_TX_MTU_MAX;
1453 val |= mtu;
1454 mvreg_write(pp, MVNETA_TX_MTU, val);
1455
1456 /* TX token size and all TXQs token size must be larger that MTU */
1457 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1458
1459 size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1460 if (size < mtu) {
1461 size = mtu;
1462 val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1463 val |= size;
1464 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1465 }
1466 for (queue = 0; queue < txq_number; queue++) {
1467 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1468
1469 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1470 if (size < mtu) {
1471 size = mtu;
1472 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1473 val |= size;
1474 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1475 }
1476 }
1477 }
1478
1479 /* Set unicast address */
1480 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1481 int queue)
1482 {
1483 unsigned int unicast_reg;
1484 unsigned int tbl_offset;
1485 unsigned int reg_offset;
1486
1487 /* Locate the Unicast table entry */
1488 last_nibble = (0xf & last_nibble);
1489
1490 /* offset from unicast tbl base */
1491 tbl_offset = (last_nibble / 4) * 4;
1492
1493 /* offset within the above reg */
1494 reg_offset = last_nibble % 4;
1495
1496 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1497
1498 if (queue == -1) {
1499 /* Clear accepts frame bit at specified unicast DA tbl entry */
1500 unicast_reg &= ~(0xff << (8 * reg_offset));
1501 } else {
1502 unicast_reg &= ~(0xff << (8 * reg_offset));
1503 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1504 }
1505
1506 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1507 }
1508
1509 /* Set mac address */
1510 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1511 int queue)
1512 {
1513 unsigned int mac_h;
1514 unsigned int mac_l;
1515
1516 if (queue != -1) {
1517 mac_l = (addr[4] << 8) | (addr[5]);
1518 mac_h = (addr[0] << 24) | (addr[1] << 16) |
1519 (addr[2] << 8) | (addr[3] << 0);
1520
1521 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1522 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1523 }
1524
1525 /* Accept frames of this address */
1526 mvneta_set_ucast_addr(pp, addr[5], queue);
1527 }
1528
1529 /* Set the number of packets that will be received before RX interrupt
1530 * will be generated by HW.
1531 */
1532 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1533 struct mvneta_rx_queue *rxq, u32 value)
1534 {
1535 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1536 value | MVNETA_RXQ_NON_OCCUPIED(0));
1537 rxq->pkts_coal = value;
1538 }
1539
1540 /* Set the time delay in usec before RX interrupt will be generated by
1541 * HW.
1542 */
1543 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1544 struct mvneta_rx_queue *rxq, u32 value)
1545 {
1546 u32 val;
1547 unsigned long clk_rate;
1548
1549 clk_rate = clk_get_rate(pp->clk);
1550 val = (clk_rate / 1000000) * value;
1551
1552 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1553 rxq->time_coal = value;
1554 }
1555
1556 /* Set threshold for TX_DONE pkts coalescing */
1557 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1558 struct mvneta_tx_queue *txq, u32 value)
1559 {
1560 u32 val;
1561
1562 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1563
1564 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1565 val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1566
1567 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1568
1569 txq->done_pkts_coal = value;
1570 }
1571
1572 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1573 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1574 u32 phys_addr, u32 cookie)
1575 {
1576 rx_desc->buf_cookie = cookie;
1577 rx_desc->buf_phys_addr = phys_addr;
1578 }
1579
1580 /* Decrement sent descriptors counter */
1581 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1582 struct mvneta_tx_queue *txq,
1583 int sent_desc)
1584 {
1585 u32 val;
1586
1587 /* Only 255 TX descriptors can be updated at once */
1588 while (sent_desc > 0xff) {
1589 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1590 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1591 sent_desc = sent_desc - 0xff;
1592 }
1593
1594 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1595 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1596 }
1597
1598 /* Get number of TX descriptors already sent by HW */
1599 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1600 struct mvneta_tx_queue *txq)
1601 {
1602 u32 val;
1603 int sent_desc;
1604
1605 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1606 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1607 MVNETA_TXQ_SENT_DESC_SHIFT;
1608
1609 return sent_desc;
1610 }
1611
1612 /* Get number of sent descriptors and decrement counter.
1613 * The number of sent descriptors is returned.
1614 */
1615 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1616 struct mvneta_tx_queue *txq)
1617 {
1618 int sent_desc;
1619
1620 /* Get number of sent descriptors */
1621 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1622
1623 /* Decrement sent descriptors counter */
1624 if (sent_desc)
1625 mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1626
1627 return sent_desc;
1628 }
1629
1630 /* Set TXQ descriptors fields relevant for CSUM calculation */
1631 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1632 int ip_hdr_len, int l4_proto)
1633 {
1634 u32 command;
1635
1636 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1637 * G_L4_chk, L4_type; required only for checksum
1638 * calculation
1639 */
1640 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
1641 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1642
1643 if (l3_proto == htons(ETH_P_IP))
1644 command |= MVNETA_TXD_IP_CSUM;
1645 else
1646 command |= MVNETA_TX_L3_IP6;
1647
1648 if (l4_proto == IPPROTO_TCP)
1649 command |= MVNETA_TX_L4_CSUM_FULL;
1650 else if (l4_proto == IPPROTO_UDP)
1651 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1652 else
1653 command |= MVNETA_TX_L4_CSUM_NOT;
1654
1655 return command;
1656 }
1657
1658
1659 /* Display more error info */
1660 static void mvneta_rx_error(struct mvneta_port *pp,
1661 struct mvneta_rx_desc *rx_desc)
1662 {
1663 u32 status = rx_desc->status;
1664
1665 if (!mvneta_rxq_desc_is_first_last(status)) {
1666 netdev_err(pp->dev,
1667 "bad rx status %08x (buffer oversize), size=%d\n",
1668 status, rx_desc->data_size);
1669 return;
1670 }
1671
1672 switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1673 case MVNETA_RXD_ERR_CRC:
1674 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1675 status, rx_desc->data_size);
1676 break;
1677 case MVNETA_RXD_ERR_OVERRUN:
1678 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1679 status, rx_desc->data_size);
1680 break;
1681 case MVNETA_RXD_ERR_LEN:
1682 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1683 status, rx_desc->data_size);
1684 break;
1685 case MVNETA_RXD_ERR_RESOURCE:
1686 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1687 status, rx_desc->data_size);
1688 break;
1689 }
1690 }
1691
1692 /* Handle RX checksum offload based on the descriptor's status */
1693 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1694 struct sk_buff *skb)
1695 {
1696 if ((status & MVNETA_RXD_L3_IP4) &&
1697 (status & MVNETA_RXD_L4_CSUM_OK)) {
1698 skb->csum = 0;
1699 skb->ip_summed = CHECKSUM_UNNECESSARY;
1700 return;
1701 }
1702
1703 skb->ip_summed = CHECKSUM_NONE;
1704 }
1705
1706 /* Return tx queue pointer (find last set bit) according to <cause> returned
1707 * form tx_done reg. <cause> must not be null. The return value is always a
1708 * valid queue for matching the first one found in <cause>.
1709 */
1710 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1711 u32 cause)
1712 {
1713 int queue = fls(cause) - 1;
1714
1715 return &pp->txqs[queue];
1716 }
1717
1718 /* Free tx queue skbuffs */
1719 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1720 struct mvneta_tx_queue *txq, int num)
1721 {
1722 int i;
1723
1724 for (i = 0; i < num; i++) {
1725 struct mvneta_tx_desc *tx_desc = txq->descs +
1726 txq->txq_get_index;
1727 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1728
1729 mvneta_txq_inc_get(txq);
1730
1731 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1732 dma_unmap_single(pp->dev->dev.parent,
1733 tx_desc->buf_phys_addr,
1734 tx_desc->data_size, DMA_TO_DEVICE);
1735 if (!skb)
1736 continue;
1737 dev_kfree_skb_any(skb);
1738 }
1739 }
1740
1741 /* Handle end of transmission */
1742 static void mvneta_txq_done(struct mvneta_port *pp,
1743 struct mvneta_tx_queue *txq)
1744 {
1745 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1746 int tx_done;
1747
1748 tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1749 if (!tx_done)
1750 return;
1751
1752 mvneta_txq_bufs_free(pp, txq, tx_done);
1753
1754 txq->count -= tx_done;
1755
1756 if (netif_tx_queue_stopped(nq)) {
1757 if (txq->count <= txq->tx_wake_threshold)
1758 netif_tx_wake_queue(nq);
1759 }
1760 }
1761
1762 void *mvneta_frag_alloc(unsigned int frag_size)
1763 {
1764 if (likely(frag_size <= PAGE_SIZE))
1765 return netdev_alloc_frag(frag_size);
1766 else
1767 return kmalloc(frag_size, GFP_ATOMIC);
1768 }
1769 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1770
1771 void mvneta_frag_free(unsigned int frag_size, void *data)
1772 {
1773 if (likely(frag_size <= PAGE_SIZE))
1774 skb_free_frag(data);
1775 else
1776 kfree(data);
1777 }
1778 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1779
1780 /* Refill processing for SW buffer management */
1781 static int mvneta_rx_refill(struct mvneta_port *pp,
1782 struct mvneta_rx_desc *rx_desc)
1783
1784 {
1785 dma_addr_t phys_addr;
1786 void *data;
1787
1788 data = mvneta_frag_alloc(pp->frag_size);
1789 if (!data)
1790 return -ENOMEM;
1791
1792 phys_addr = dma_map_single(pp->dev->dev.parent, data,
1793 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1794 DMA_FROM_DEVICE);
1795 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1796 mvneta_frag_free(pp->frag_size, data);
1797 return -ENOMEM;
1798 }
1799
1800 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1801 return 0;
1802 }
1803
1804 /* Handle tx checksum */
1805 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1806 {
1807 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1808 int ip_hdr_len = 0;
1809 __be16 l3_proto = vlan_get_protocol(skb);
1810 u8 l4_proto;
1811
1812 if (l3_proto == htons(ETH_P_IP)) {
1813 struct iphdr *ip4h = ip_hdr(skb);
1814
1815 /* Calculate IPv4 checksum and L4 checksum */
1816 ip_hdr_len = ip4h->ihl;
1817 l4_proto = ip4h->protocol;
1818 } else if (l3_proto == htons(ETH_P_IPV6)) {
1819 struct ipv6hdr *ip6h = ipv6_hdr(skb);
1820
1821 /* Read l4_protocol from one of IPv6 extra headers */
1822 if (skb_network_header_len(skb) > 0)
1823 ip_hdr_len = (skb_network_header_len(skb) >> 2);
1824 l4_proto = ip6h->nexthdr;
1825 } else
1826 return MVNETA_TX_L4_CSUM_NOT;
1827
1828 return mvneta_txq_desc_csum(skb_network_offset(skb),
1829 l3_proto, ip_hdr_len, l4_proto);
1830 }
1831
1832 return MVNETA_TX_L4_CSUM_NOT;
1833 }
1834
1835 /* Drop packets received by the RXQ and free buffers */
1836 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1837 struct mvneta_rx_queue *rxq)
1838 {
1839 int rx_done, i;
1840
1841 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1842 if (rx_done)
1843 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1844
1845 if (pp->bm_priv) {
1846 for (i = 0; i < rx_done; i++) {
1847 struct mvneta_rx_desc *rx_desc =
1848 mvneta_rxq_next_desc_get(rxq);
1849 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1850 struct mvneta_bm_pool *bm_pool;
1851
1852 bm_pool = &pp->bm_priv->bm_pools[pool_id];
1853 /* Return dropped buffer to the pool */
1854 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1855 rx_desc->buf_phys_addr);
1856 }
1857 return;
1858 }
1859
1860 for (i = 0; i < rxq->size; i++) {
1861 struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1862 void *data = (void *)rx_desc->buf_cookie;
1863
1864 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1865 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1866 mvneta_frag_free(pp->frag_size, data);
1867 }
1868 }
1869
1870 /* Main rx processing when using software buffer management */
1871 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1872 struct mvneta_rx_queue *rxq)
1873 {
1874 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1875 struct net_device *dev = pp->dev;
1876 int rx_done;
1877 u32 rcvd_pkts = 0;
1878 u32 rcvd_bytes = 0;
1879
1880 /* Get number of received packets */
1881 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1882
1883 if (rx_todo > rx_done)
1884 rx_todo = rx_done;
1885
1886 rx_done = 0;
1887
1888 /* Fairness NAPI loop */
1889 while (rx_done < rx_todo) {
1890 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1891 struct sk_buff *skb;
1892 unsigned char *data;
1893 dma_addr_t phys_addr;
1894 u32 rx_status, frag_size;
1895 int rx_bytes, err;
1896
1897 rx_done++;
1898 rx_status = rx_desc->status;
1899 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1900 data = (unsigned char *)rx_desc->buf_cookie;
1901 phys_addr = rx_desc->buf_phys_addr;
1902
1903 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1904 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1905 err_drop_frame:
1906 dev->stats.rx_errors++;
1907 mvneta_rx_error(pp, rx_desc);
1908 /* leave the descriptor untouched */
1909 continue;
1910 }
1911
1912 if (rx_bytes <= rx_copybreak) {
1913 /* better copy a small frame and not unmap the DMA region */
1914 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1915 if (unlikely(!skb))
1916 goto err_drop_frame;
1917
1918 dma_sync_single_range_for_cpu(dev->dev.parent,
1919 rx_desc->buf_phys_addr,
1920 MVNETA_MH_SIZE + NET_SKB_PAD,
1921 rx_bytes,
1922 DMA_FROM_DEVICE);
1923 memcpy(skb_put(skb, rx_bytes),
1924 data + MVNETA_MH_SIZE + NET_SKB_PAD,
1925 rx_bytes);
1926
1927 skb->protocol = eth_type_trans(skb, dev);
1928 mvneta_rx_csum(pp, rx_status, skb);
1929 napi_gro_receive(&port->napi, skb);
1930
1931 rcvd_pkts++;
1932 rcvd_bytes += rx_bytes;
1933
1934 /* leave the descriptor and buffer untouched */
1935 continue;
1936 }
1937
1938 /* Refill processing */
1939 err = mvneta_rx_refill(pp, rx_desc);
1940 if (err) {
1941 netdev_err(dev, "Linux processing - Can't refill\n");
1942 rxq->missed++;
1943 goto err_drop_frame;
1944 }
1945
1946 frag_size = pp->frag_size;
1947
1948 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1949
1950 /* After refill old buffer has to be unmapped regardless
1951 * the skb is successfully built or not.
1952 */
1953 dma_unmap_single(dev->dev.parent, phys_addr,
1954 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1955 DMA_FROM_DEVICE);
1956
1957 if (!skb)
1958 goto err_drop_frame;
1959
1960 rcvd_pkts++;
1961 rcvd_bytes += rx_bytes;
1962
1963 /* Linux processing */
1964 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1965 skb_put(skb, rx_bytes);
1966
1967 skb->protocol = eth_type_trans(skb, dev);
1968
1969 mvneta_rx_csum(pp, rx_status, skb);
1970
1971 napi_gro_receive(&port->napi, skb);
1972 }
1973
1974 if (rcvd_pkts) {
1975 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1976
1977 u64_stats_update_begin(&stats->syncp);
1978 stats->rx_packets += rcvd_pkts;
1979 stats->rx_bytes += rcvd_bytes;
1980 u64_stats_update_end(&stats->syncp);
1981 }
1982
1983 /* Update rxq management counters */
1984 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1985
1986 return rx_done;
1987 }
1988
1989 /* Main rx processing when using hardware buffer management */
1990 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1991 struct mvneta_rx_queue *rxq)
1992 {
1993 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1994 struct net_device *dev = pp->dev;
1995 int rx_done;
1996 u32 rcvd_pkts = 0;
1997 u32 rcvd_bytes = 0;
1998
1999 /* Get number of received packets */
2000 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2001
2002 if (rx_todo > rx_done)
2003 rx_todo = rx_done;
2004
2005 rx_done = 0;
2006
2007 /* Fairness NAPI loop */
2008 while (rx_done < rx_todo) {
2009 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2010 struct mvneta_bm_pool *bm_pool = NULL;
2011 struct sk_buff *skb;
2012 unsigned char *data;
2013 dma_addr_t phys_addr;
2014 u32 rx_status, frag_size;
2015 int rx_bytes, err;
2016 u8 pool_id;
2017
2018 rx_done++;
2019 rx_status = rx_desc->status;
2020 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2021 data = (unsigned char *)rx_desc->buf_cookie;
2022 phys_addr = rx_desc->buf_phys_addr;
2023 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2024 bm_pool = &pp->bm_priv->bm_pools[pool_id];
2025
2026 if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2027 (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2028 err_drop_frame_ret_pool:
2029 /* Return the buffer to the pool */
2030 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2031 rx_desc->buf_phys_addr);
2032 err_drop_frame:
2033 dev->stats.rx_errors++;
2034 mvneta_rx_error(pp, rx_desc);
2035 /* leave the descriptor untouched */
2036 continue;
2037 }
2038
2039 if (rx_bytes <= rx_copybreak) {
2040 /* better copy a small frame and not unmap the DMA region */
2041 skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2042 if (unlikely(!skb))
2043 goto err_drop_frame_ret_pool;
2044
2045 dma_sync_single_range_for_cpu(dev->dev.parent,
2046 rx_desc->buf_phys_addr,
2047 MVNETA_MH_SIZE + NET_SKB_PAD,
2048 rx_bytes,
2049 DMA_FROM_DEVICE);
2050 memcpy(skb_put(skb, rx_bytes),
2051 data + MVNETA_MH_SIZE + NET_SKB_PAD,
2052 rx_bytes);
2053
2054 skb->protocol = eth_type_trans(skb, dev);
2055 mvneta_rx_csum(pp, rx_status, skb);
2056 napi_gro_receive(&port->napi, skb);
2057
2058 rcvd_pkts++;
2059 rcvd_bytes += rx_bytes;
2060
2061 /* Return the buffer to the pool */
2062 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2063 rx_desc->buf_phys_addr);
2064
2065 /* leave the descriptor and buffer untouched */
2066 continue;
2067 }
2068
2069 /* Refill processing */
2070 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2071 if (err) {
2072 netdev_err(dev, "Linux processing - Can't refill\n");
2073 rxq->missed++;
2074 goto err_drop_frame_ret_pool;
2075 }
2076
2077 frag_size = bm_pool->hwbm_pool.frag_size;
2078
2079 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2080
2081 /* After refill old buffer has to be unmapped regardless
2082 * the skb is successfully built or not.
2083 */
2084 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2085 bm_pool->buf_size, DMA_FROM_DEVICE);
2086 if (!skb)
2087 goto err_drop_frame;
2088
2089 rcvd_pkts++;
2090 rcvd_bytes += rx_bytes;
2091
2092 /* Linux processing */
2093 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2094 skb_put(skb, rx_bytes);
2095
2096 skb->protocol = eth_type_trans(skb, dev);
2097
2098 mvneta_rx_csum(pp, rx_status, skb);
2099
2100 napi_gro_receive(&port->napi, skb);
2101 }
2102
2103 if (rcvd_pkts) {
2104 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2105
2106 u64_stats_update_begin(&stats->syncp);
2107 stats->rx_packets += rcvd_pkts;
2108 stats->rx_bytes += rcvd_bytes;
2109 u64_stats_update_end(&stats->syncp);
2110 }
2111
2112 /* Update rxq management counters */
2113 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2114
2115 return rx_done;
2116 }
2117
2118 static inline void
2119 mvneta_tso_put_hdr(struct sk_buff *skb,
2120 struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2121 {
2122 struct mvneta_tx_desc *tx_desc;
2123 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2124
2125 txq->tx_skb[txq->txq_put_index] = NULL;
2126 tx_desc = mvneta_txq_next_desc_get(txq);
2127 tx_desc->data_size = hdr_len;
2128 tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2129 tx_desc->command |= MVNETA_TXD_F_DESC;
2130 tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2131 txq->txq_put_index * TSO_HEADER_SIZE;
2132 mvneta_txq_inc_put(txq);
2133 }
2134
2135 static inline int
2136 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2137 struct sk_buff *skb, char *data, int size,
2138 bool last_tcp, bool is_last)
2139 {
2140 struct mvneta_tx_desc *tx_desc;
2141
2142 tx_desc = mvneta_txq_next_desc_get(txq);
2143 tx_desc->data_size = size;
2144 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2145 size, DMA_TO_DEVICE);
2146 if (unlikely(dma_mapping_error(dev->dev.parent,
2147 tx_desc->buf_phys_addr))) {
2148 mvneta_txq_desc_put(txq);
2149 return -ENOMEM;
2150 }
2151
2152 tx_desc->command = 0;
2153 txq->tx_skb[txq->txq_put_index] = NULL;
2154
2155 if (last_tcp) {
2156 /* last descriptor in the TCP packet */
2157 tx_desc->command = MVNETA_TXD_L_DESC;
2158
2159 /* last descriptor in SKB */
2160 if (is_last)
2161 txq->tx_skb[txq->txq_put_index] = skb;
2162 }
2163 mvneta_txq_inc_put(txq);
2164 return 0;
2165 }
2166
2167 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2168 struct mvneta_tx_queue *txq)
2169 {
2170 int total_len, data_left;
2171 int desc_count = 0;
2172 struct mvneta_port *pp = netdev_priv(dev);
2173 struct tso_t tso;
2174 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2175 int i;
2176
2177 /* Count needed descriptors */
2178 if ((txq->count + tso_count_descs(skb)) >= txq->size)
2179 return 0;
2180
2181 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2182 pr_info("*** Is this even possible???!?!?\n");
2183 return 0;
2184 }
2185
2186 /* Initialize the TSO handler, and prepare the first payload */
2187 tso_start(skb, &tso);
2188
2189 total_len = skb->len - hdr_len;
2190 while (total_len > 0) {
2191 char *hdr;
2192
2193 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2194 total_len -= data_left;
2195 desc_count++;
2196
2197 /* prepare packet headers: MAC + IP + TCP */
2198 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2199 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2200
2201 mvneta_tso_put_hdr(skb, pp, txq);
2202
2203 while (data_left > 0) {
2204 int size;
2205 desc_count++;
2206
2207 size = min_t(int, tso.size, data_left);
2208
2209 if (mvneta_tso_put_data(dev, txq, skb,
2210 tso.data, size,
2211 size == data_left,
2212 total_len == 0))
2213 goto err_release;
2214 data_left -= size;
2215
2216 tso_build_data(skb, &tso, size);
2217 }
2218 }
2219
2220 return desc_count;
2221
2222 err_release:
2223 /* Release all used data descriptors; header descriptors must not
2224 * be DMA-unmapped.
2225 */
2226 for (i = desc_count - 1; i >= 0; i--) {
2227 struct mvneta_tx_desc *tx_desc = txq->descs + i;
2228 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2229 dma_unmap_single(pp->dev->dev.parent,
2230 tx_desc->buf_phys_addr,
2231 tx_desc->data_size,
2232 DMA_TO_DEVICE);
2233 mvneta_txq_desc_put(txq);
2234 }
2235 return 0;
2236 }
2237
2238 /* Handle tx fragmentation processing */
2239 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2240 struct mvneta_tx_queue *txq)
2241 {
2242 struct mvneta_tx_desc *tx_desc;
2243 int i, nr_frags = skb_shinfo(skb)->nr_frags;
2244
2245 for (i = 0; i < nr_frags; i++) {
2246 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2247 void *addr = page_address(frag->page.p) + frag->page_offset;
2248
2249 tx_desc = mvneta_txq_next_desc_get(txq);
2250 tx_desc->data_size = frag->size;
2251
2252 tx_desc->buf_phys_addr =
2253 dma_map_single(pp->dev->dev.parent, addr,
2254 tx_desc->data_size, DMA_TO_DEVICE);
2255
2256 if (dma_mapping_error(pp->dev->dev.parent,
2257 tx_desc->buf_phys_addr)) {
2258 mvneta_txq_desc_put(txq);
2259 goto error;
2260 }
2261
2262 if (i == nr_frags - 1) {
2263 /* Last descriptor */
2264 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2265 txq->tx_skb[txq->txq_put_index] = skb;
2266 } else {
2267 /* Descriptor in the middle: Not First, Not Last */
2268 tx_desc->command = 0;
2269 txq->tx_skb[txq->txq_put_index] = NULL;
2270 }
2271 mvneta_txq_inc_put(txq);
2272 }
2273
2274 return 0;
2275
2276 error:
2277 /* Release all descriptors that were used to map fragments of
2278 * this packet, as well as the corresponding DMA mappings
2279 */
2280 for (i = i - 1; i >= 0; i--) {
2281 tx_desc = txq->descs + i;
2282 dma_unmap_single(pp->dev->dev.parent,
2283 tx_desc->buf_phys_addr,
2284 tx_desc->data_size,
2285 DMA_TO_DEVICE);
2286 mvneta_txq_desc_put(txq);
2287 }
2288
2289 return -ENOMEM;
2290 }
2291
2292 /* Main tx processing */
2293 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2294 {
2295 struct mvneta_port *pp = netdev_priv(dev);
2296 u16 txq_id = skb_get_queue_mapping(skb);
2297 struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2298 struct mvneta_tx_desc *tx_desc;
2299 int len = skb->len;
2300 int frags = 0;
2301 u32 tx_cmd;
2302
2303 if (!netif_running(dev))
2304 goto out;
2305
2306 if (skb_is_gso(skb)) {
2307 frags = mvneta_tx_tso(skb, dev, txq);
2308 goto out;
2309 }
2310
2311 frags = skb_shinfo(skb)->nr_frags + 1;
2312
2313 /* Get a descriptor for the first part of the packet */
2314 tx_desc = mvneta_txq_next_desc_get(txq);
2315
2316 tx_cmd = mvneta_skb_tx_csum(pp, skb);
2317
2318 tx_desc->data_size = skb_headlen(skb);
2319
2320 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2321 tx_desc->data_size,
2322 DMA_TO_DEVICE);
2323 if (unlikely(dma_mapping_error(dev->dev.parent,
2324 tx_desc->buf_phys_addr))) {
2325 mvneta_txq_desc_put(txq);
2326 frags = 0;
2327 goto out;
2328 }
2329
2330 if (frags == 1) {
2331 /* First and Last descriptor */
2332 tx_cmd |= MVNETA_TXD_FLZ_DESC;
2333 tx_desc->command = tx_cmd;
2334 txq->tx_skb[txq->txq_put_index] = skb;
2335 mvneta_txq_inc_put(txq);
2336 } else {
2337 /* First but not Last */
2338 tx_cmd |= MVNETA_TXD_F_DESC;
2339 txq->tx_skb[txq->txq_put_index] = NULL;
2340 mvneta_txq_inc_put(txq);
2341 tx_desc->command = tx_cmd;
2342 /* Continue with other skb fragments */
2343 if (mvneta_tx_frag_process(pp, skb, txq)) {
2344 dma_unmap_single(dev->dev.parent,
2345 tx_desc->buf_phys_addr,
2346 tx_desc->data_size,
2347 DMA_TO_DEVICE);
2348 mvneta_txq_desc_put(txq);
2349 frags = 0;
2350 goto out;
2351 }
2352 }
2353
2354 out:
2355 if (frags > 0) {
2356 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2357 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2358
2359 txq->count += frags;
2360 mvneta_txq_pend_desc_add(pp, txq, frags);
2361
2362 if (txq->count >= txq->tx_stop_threshold)
2363 netif_tx_stop_queue(nq);
2364
2365 u64_stats_update_begin(&stats->syncp);
2366 stats->tx_packets++;
2367 stats->tx_bytes += len;
2368 u64_stats_update_end(&stats->syncp);
2369 } else {
2370 dev->stats.tx_dropped++;
2371 dev_kfree_skb_any(skb);
2372 }
2373
2374 return NETDEV_TX_OK;
2375 }
2376
2377
2378 /* Free tx resources, when resetting a port */
2379 static void mvneta_txq_done_force(struct mvneta_port *pp,
2380 struct mvneta_tx_queue *txq)
2381
2382 {
2383 int tx_done = txq->count;
2384
2385 mvneta_txq_bufs_free(pp, txq, tx_done);
2386
2387 /* reset txq */
2388 txq->count = 0;
2389 txq->txq_put_index = 0;
2390 txq->txq_get_index = 0;
2391 }
2392
2393 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2394 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2395 */
2396 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2397 {
2398 struct mvneta_tx_queue *txq;
2399 struct netdev_queue *nq;
2400
2401 while (cause_tx_done) {
2402 txq = mvneta_tx_done_policy(pp, cause_tx_done);
2403
2404 nq = netdev_get_tx_queue(pp->dev, txq->id);
2405 __netif_tx_lock(nq, smp_processor_id());
2406
2407 if (txq->count)
2408 mvneta_txq_done(pp, txq);
2409
2410 __netif_tx_unlock(nq);
2411 cause_tx_done &= ~((1 << txq->id));
2412 }
2413 }
2414
2415 /* Compute crc8 of the specified address, using a unique algorithm ,
2416 * according to hw spec, different than generic crc8 algorithm
2417 */
2418 static int mvneta_addr_crc(unsigned char *addr)
2419 {
2420 int crc = 0;
2421 int i;
2422
2423 for (i = 0; i < ETH_ALEN; i++) {
2424 int j;
2425
2426 crc = (crc ^ addr[i]) << 8;
2427 for (j = 7; j >= 0; j--) {
2428 if (crc & (0x100 << j))
2429 crc ^= 0x107 << j;
2430 }
2431 }
2432
2433 return crc;
2434 }
2435
2436 /* This method controls the net device special MAC multicast support.
2437 * The Special Multicast Table for MAC addresses supports MAC of the form
2438 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2439 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2440 * Table entries in the DA-Filter table. This method set the Special
2441 * Multicast Table appropriate entry.
2442 */
2443 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2444 unsigned char last_byte,
2445 int queue)
2446 {
2447 unsigned int smc_table_reg;
2448 unsigned int tbl_offset;
2449 unsigned int reg_offset;
2450
2451 /* Register offset from SMC table base */
2452 tbl_offset = (last_byte / 4);
2453 /* Entry offset within the above reg */
2454 reg_offset = last_byte % 4;
2455
2456 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2457 + tbl_offset * 4));
2458
2459 if (queue == -1)
2460 smc_table_reg &= ~(0xff << (8 * reg_offset));
2461 else {
2462 smc_table_reg &= ~(0xff << (8 * reg_offset));
2463 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2464 }
2465
2466 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2467 smc_table_reg);
2468 }
2469
2470 /* This method controls the network device Other MAC multicast support.
2471 * The Other Multicast Table is used for multicast of another type.
2472 * A CRC-8 is used as an index to the Other Multicast Table entries
2473 * in the DA-Filter table.
2474 * The method gets the CRC-8 value from the calling routine and
2475 * sets the Other Multicast Table appropriate entry according to the
2476 * specified CRC-8 .
2477 */
2478 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2479 unsigned char crc8,
2480 int queue)
2481 {
2482 unsigned int omc_table_reg;
2483 unsigned int tbl_offset;
2484 unsigned int reg_offset;
2485
2486 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2487 reg_offset = crc8 % 4; /* Entry offset within the above reg */
2488
2489 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2490
2491 if (queue == -1) {
2492 /* Clear accepts frame bit at specified Other DA table entry */
2493 omc_table_reg &= ~(0xff << (8 * reg_offset));
2494 } else {
2495 omc_table_reg &= ~(0xff << (8 * reg_offset));
2496 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2497 }
2498
2499 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2500 }
2501
2502 /* The network device supports multicast using two tables:
2503 * 1) Special Multicast Table for MAC addresses of the form
2504 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2505 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2506 * Table entries in the DA-Filter table.
2507 * 2) Other Multicast Table for multicast of another type. A CRC-8 value
2508 * is used as an index to the Other Multicast Table entries in the
2509 * DA-Filter table.
2510 */
2511 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2512 int queue)
2513 {
2514 unsigned char crc_result = 0;
2515
2516 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2517 mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2518 return 0;
2519 }
2520
2521 crc_result = mvneta_addr_crc(p_addr);
2522 if (queue == -1) {
2523 if (pp->mcast_count[crc_result] == 0) {
2524 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2525 crc_result);
2526 return -EINVAL;
2527 }
2528
2529 pp->mcast_count[crc_result]--;
2530 if (pp->mcast_count[crc_result] != 0) {
2531 netdev_info(pp->dev,
2532 "After delete there are %d valid Mcast for crc8=0x%02x\n",
2533 pp->mcast_count[crc_result], crc_result);
2534 return -EINVAL;
2535 }
2536 } else
2537 pp->mcast_count[crc_result]++;
2538
2539 mvneta_set_other_mcast_addr(pp, crc_result, queue);
2540
2541 return 0;
2542 }
2543
2544 /* Configure Fitering mode of Ethernet port */
2545 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2546 int is_promisc)
2547 {
2548 u32 port_cfg_reg, val;
2549
2550 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2551
2552 val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2553
2554 /* Set / Clear UPM bit in port configuration register */
2555 if (is_promisc) {
2556 /* Accept all Unicast addresses */
2557 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2558 val |= MVNETA_FORCE_UNI;
2559 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2560 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2561 } else {
2562 /* Reject all Unicast addresses */
2563 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2564 val &= ~MVNETA_FORCE_UNI;
2565 }
2566
2567 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2568 mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2569 }
2570
2571 /* register unicast and multicast addresses */
2572 static void mvneta_set_rx_mode(struct net_device *dev)
2573 {
2574 struct mvneta_port *pp = netdev_priv(dev);
2575 struct netdev_hw_addr *ha;
2576
2577 if (dev->flags & IFF_PROMISC) {
2578 /* Accept all: Multicast + Unicast */
2579 mvneta_rx_unicast_promisc_set(pp, 1);
2580 mvneta_set_ucast_table(pp, pp->rxq_def);
2581 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2582 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2583 } else {
2584 /* Accept single Unicast */
2585 mvneta_rx_unicast_promisc_set(pp, 0);
2586 mvneta_set_ucast_table(pp, -1);
2587 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2588
2589 if (dev->flags & IFF_ALLMULTI) {
2590 /* Accept all multicast */
2591 mvneta_set_special_mcast_table(pp, pp->rxq_def);
2592 mvneta_set_other_mcast_table(pp, pp->rxq_def);
2593 } else {
2594 /* Accept only initialized multicast */
2595 mvneta_set_special_mcast_table(pp, -1);
2596 mvneta_set_other_mcast_table(pp, -1);
2597
2598 if (!netdev_mc_empty(dev)) {
2599 netdev_for_each_mc_addr(ha, dev) {
2600 mvneta_mcast_addr_set(pp, ha->addr,
2601 pp->rxq_def);
2602 }
2603 }
2604 }
2605 }
2606 }
2607
2608 /* Interrupt handling - the callback for request_irq() */
2609 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2610 {
2611 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2612
2613 disable_percpu_irq(port->pp->dev->irq);
2614 napi_schedule(&port->napi);
2615
2616 return IRQ_HANDLED;
2617 }
2618
2619 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2620 struct phy_device *phy)
2621 {
2622 struct fixed_phy_status status;
2623 struct fixed_phy_status changed = {};
2624 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2625
2626 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2627 if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2628 status.speed = SPEED_1000;
2629 else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2630 status.speed = SPEED_100;
2631 else
2632 status.speed = SPEED_10;
2633 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2634 changed.link = 1;
2635 changed.speed = 1;
2636 changed.duplex = 1;
2637 fixed_phy_update_state(phy, &status, &changed);
2638 return 0;
2639 }
2640
2641 /* NAPI handler
2642 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2643 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2644 * Bits 8 -15 of the cause Rx Tx register indicate that are received
2645 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2646 * Each CPU has its own causeRxTx register
2647 */
2648 static int mvneta_poll(struct napi_struct *napi, int budget)
2649 {
2650 int rx_done = 0;
2651 u32 cause_rx_tx;
2652 int rx_queue;
2653 struct mvneta_port *pp = netdev_priv(napi->dev);
2654 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2655
2656 if (!netif_running(pp->dev)) {
2657 napi_complete(&port->napi);
2658 return rx_done;
2659 }
2660
2661 /* Read cause register */
2662 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2663 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2664 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2665
2666 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2667 if (pp->use_inband_status && (cause_misc &
2668 (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2669 MVNETA_CAUSE_LINK_CHANGE |
2670 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2671 mvneta_fixed_link_update(pp, pp->phy_dev);
2672 }
2673 }
2674
2675 /* Release Tx descriptors */
2676 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2677 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2678 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2679 }
2680
2681 /* For the case where the last mvneta_poll did not process all
2682 * RX packets
2683 */
2684 rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2685
2686 cause_rx_tx |= port->cause_rx_tx;
2687
2688 if (rx_queue) {
2689 rx_queue = rx_queue - 1;
2690 if (pp->bm_priv)
2691 rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2692 else
2693 rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2694 }
2695
2696 budget -= rx_done;
2697
2698 if (budget > 0) {
2699 cause_rx_tx = 0;
2700 napi_complete(&port->napi);
2701 enable_percpu_irq(pp->dev->irq, 0);
2702 }
2703
2704 port->cause_rx_tx = cause_rx_tx;
2705 return rx_done;
2706 }
2707
2708 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2709 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2710 int num)
2711 {
2712 int i;
2713
2714 for (i = 0; i < num; i++) {
2715 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2716 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2717 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
2718 __func__, rxq->id, i, num);
2719 break;
2720 }
2721 }
2722
2723 /* Add this number of RX descriptors as non occupied (ready to
2724 * get packets)
2725 */
2726 mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2727
2728 return i;
2729 }
2730
2731 /* Free all packets pending transmit from all TXQs and reset TX port */
2732 static void mvneta_tx_reset(struct mvneta_port *pp)
2733 {
2734 int queue;
2735
2736 /* free the skb's in the tx ring */
2737 for (queue = 0; queue < txq_number; queue++)
2738 mvneta_txq_done_force(pp, &pp->txqs[queue]);
2739
2740 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2741 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2742 }
2743
2744 static void mvneta_rx_reset(struct mvneta_port *pp)
2745 {
2746 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2747 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2748 }
2749
2750 /* Rx/Tx queue initialization/cleanup methods */
2751
2752 /* Create a specified RX queue */
2753 static int mvneta_rxq_init(struct mvneta_port *pp,
2754 struct mvneta_rx_queue *rxq)
2755
2756 {
2757 rxq->size = pp->rx_ring_size;
2758
2759 /* Allocate memory for RX descriptors */
2760 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2761 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2762 &rxq->descs_phys, GFP_KERNEL);
2763 if (rxq->descs == NULL)
2764 return -ENOMEM;
2765
2766 rxq->last_desc = rxq->size - 1;
2767
2768 /* Set Rx descriptors queue starting address */
2769 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2770 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2771
2772 /* Set Offset */
2773 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2774
2775 /* Set coalescing pkts and time */
2776 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2777 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2778
2779 if (!pp->bm_priv) {
2780 /* Fill RXQ with buffers from RX pool */
2781 mvneta_rxq_buf_size_set(pp, rxq,
2782 MVNETA_RX_BUF_SIZE(pp->pkt_size));
2783 mvneta_rxq_bm_disable(pp, rxq);
2784 } else {
2785 mvneta_rxq_bm_enable(pp, rxq);
2786 mvneta_rxq_long_pool_set(pp, rxq);
2787 mvneta_rxq_short_pool_set(pp, rxq);
2788 }
2789
2790 mvneta_rxq_fill(pp, rxq, rxq->size);
2791
2792 return 0;
2793 }
2794
2795 /* Cleanup Rx queue */
2796 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2797 struct mvneta_rx_queue *rxq)
2798 {
2799 mvneta_rxq_drop_pkts(pp, rxq);
2800
2801 if (rxq->descs)
2802 dma_free_coherent(pp->dev->dev.parent,
2803 rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2804 rxq->descs,
2805 rxq->descs_phys);
2806
2807 rxq->descs = NULL;
2808 rxq->last_desc = 0;
2809 rxq->next_desc_to_proc = 0;
2810 rxq->descs_phys = 0;
2811 }
2812
2813 /* Create and initialize a tx queue */
2814 static int mvneta_txq_init(struct mvneta_port *pp,
2815 struct mvneta_tx_queue *txq)
2816 {
2817 int cpu;
2818
2819 txq->size = pp->tx_ring_size;
2820
2821 /* A queue must always have room for at least one skb.
2822 * Therefore, stop the queue when the free entries reaches
2823 * the maximum number of descriptors per skb.
2824 */
2825 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2826 txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2827
2828
2829 /* Allocate memory for TX descriptors */
2830 txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2831 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2832 &txq->descs_phys, GFP_KERNEL);
2833 if (txq->descs == NULL)
2834 return -ENOMEM;
2835
2836 txq->last_desc = txq->size - 1;
2837
2838 /* Set maximum bandwidth for enabled TXQs */
2839 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2840 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2841
2842 /* Set Tx descriptors queue starting address */
2843 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2844 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2845
2846 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2847 if (txq->tx_skb == NULL) {
2848 dma_free_coherent(pp->dev->dev.parent,
2849 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2850 txq->descs, txq->descs_phys);
2851 return -ENOMEM;
2852 }
2853
2854 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2855 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2856 txq->size * TSO_HEADER_SIZE,
2857 &txq->tso_hdrs_phys, GFP_KERNEL);
2858 if (txq->tso_hdrs == NULL) {
2859 kfree(txq->tx_skb);
2860 dma_free_coherent(pp->dev->dev.parent,
2861 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2862 txq->descs, txq->descs_phys);
2863 return -ENOMEM;
2864 }
2865 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2866
2867 /* Setup XPS mapping */
2868 if (txq_number > 1)
2869 cpu = txq->id % num_present_cpus();
2870 else
2871 cpu = pp->rxq_def % num_present_cpus();
2872 cpumask_set_cpu(cpu, &txq->affinity_mask);
2873 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2874
2875 return 0;
2876 }
2877
2878 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2879 static void mvneta_txq_deinit(struct mvneta_port *pp,
2880 struct mvneta_tx_queue *txq)
2881 {
2882 kfree(txq->tx_skb);
2883
2884 if (txq->tso_hdrs)
2885 dma_free_coherent(pp->dev->dev.parent,
2886 txq->size * TSO_HEADER_SIZE,
2887 txq->tso_hdrs, txq->tso_hdrs_phys);
2888 if (txq->descs)
2889 dma_free_coherent(pp->dev->dev.parent,
2890 txq->size * MVNETA_DESC_ALIGNED_SIZE,
2891 txq->descs, txq->descs_phys);
2892
2893 txq->descs = NULL;
2894 txq->last_desc = 0;
2895 txq->next_desc_to_proc = 0;
2896 txq->descs_phys = 0;
2897
2898 /* Set minimum bandwidth for disabled TXQs */
2899 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2900 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2901
2902 /* Set Tx descriptors queue starting address and size */
2903 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2904 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2905 }
2906
2907 /* Cleanup all Tx queues */
2908 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2909 {
2910 int queue;
2911
2912 for (queue = 0; queue < txq_number; queue++)
2913 mvneta_txq_deinit(pp, &pp->txqs[queue]);
2914 }
2915
2916 /* Cleanup all Rx queues */
2917 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2918 {
2919 int queue;
2920
2921 for (queue = 0; queue < txq_number; queue++)
2922 mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2923 }
2924
2925
2926 /* Init all Rx queues */
2927 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2928 {
2929 int queue;
2930
2931 for (queue = 0; queue < rxq_number; queue++) {
2932 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2933
2934 if (err) {
2935 netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2936 __func__, queue);
2937 mvneta_cleanup_rxqs(pp);
2938 return err;
2939 }
2940 }
2941
2942 return 0;
2943 }
2944
2945 /* Init all tx queues */
2946 static int mvneta_setup_txqs(struct mvneta_port *pp)
2947 {
2948 int queue;
2949
2950 for (queue = 0; queue < txq_number; queue++) {
2951 int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2952 if (err) {
2953 netdev_err(pp->dev, "%s: can't create txq=%d\n",
2954 __func__, queue);
2955 mvneta_cleanup_txqs(pp);
2956 return err;
2957 }
2958 }
2959
2960 return 0;
2961 }
2962
2963 static void mvneta_start_dev(struct mvneta_port *pp)
2964 {
2965 int cpu;
2966
2967 mvneta_max_rx_size_set(pp, pp->pkt_size);
2968 mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2969
2970 /* start the Rx/Tx activity */
2971 mvneta_port_enable(pp);
2972
2973 /* Enable polling on the port */
2974 for_each_online_cpu(cpu) {
2975 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2976
2977 napi_enable(&port->napi);
2978 }
2979
2980 /* Unmask interrupts. It has to be done from each CPU */
2981 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2982
2983 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2984 MVNETA_CAUSE_PHY_STATUS_CHANGE |
2985 MVNETA_CAUSE_LINK_CHANGE |
2986 MVNETA_CAUSE_PSC_SYNC_CHANGE);
2987
2988 phy_start(pp->phy_dev);
2989 netif_tx_start_all_queues(pp->dev);
2990 }
2991
2992 static void mvneta_stop_dev(struct mvneta_port *pp)
2993 {
2994 unsigned int cpu;
2995
2996 phy_stop(pp->phy_dev);
2997
2998 for_each_online_cpu(cpu) {
2999 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3000
3001 napi_disable(&port->napi);
3002 }
3003
3004 netif_carrier_off(pp->dev);
3005
3006 mvneta_port_down(pp);
3007 netif_tx_stop_all_queues(pp->dev);
3008
3009 /* Stop the port activity */
3010 mvneta_port_disable(pp);
3011
3012 /* Clear all ethernet port interrupts */
3013 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3014
3015 /* Mask all ethernet port interrupts */
3016 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3017
3018 mvneta_tx_reset(pp);
3019 mvneta_rx_reset(pp);
3020 }
3021
3022 /* Return positive if MTU is valid */
3023 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3024 {
3025 if (mtu < 68) {
3026 netdev_err(dev, "cannot change mtu to less than 68\n");
3027 return -EINVAL;
3028 }
3029
3030 /* 9676 == 9700 - 20 and rounding to 8 */
3031 if (mtu > 9676) {
3032 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3033 mtu = 9676;
3034 }
3035
3036 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3037 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3038 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3039 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3040 }
3041
3042 return mtu;
3043 }
3044
3045 static void mvneta_percpu_enable(void *arg)
3046 {
3047 struct mvneta_port *pp = arg;
3048
3049 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3050 }
3051
3052 static void mvneta_percpu_disable(void *arg)
3053 {
3054 struct mvneta_port *pp = arg;
3055
3056 disable_percpu_irq(pp->dev->irq);
3057 }
3058
3059 /* Change the device mtu */
3060 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3061 {
3062 struct mvneta_port *pp = netdev_priv(dev);
3063 int ret;
3064
3065 mtu = mvneta_check_mtu_valid(dev, mtu);
3066 if (mtu < 0)
3067 return -EINVAL;
3068
3069 dev->mtu = mtu;
3070
3071 if (!netif_running(dev)) {
3072 if (pp->bm_priv)
3073 mvneta_bm_update_mtu(pp, mtu);
3074
3075 netdev_update_features(dev);
3076 return 0;
3077 }
3078
3079 /* The interface is running, so we have to force a
3080 * reallocation of the queues
3081 */
3082 mvneta_stop_dev(pp);
3083 on_each_cpu(mvneta_percpu_disable, pp, true);
3084
3085 mvneta_cleanup_txqs(pp);
3086 mvneta_cleanup_rxqs(pp);
3087
3088 if (pp->bm_priv)
3089 mvneta_bm_update_mtu(pp, mtu);
3090
3091 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3092 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3093 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3094
3095 ret = mvneta_setup_rxqs(pp);
3096 if (ret) {
3097 netdev_err(dev, "unable to setup rxqs after MTU change\n");
3098 return ret;
3099 }
3100
3101 ret = mvneta_setup_txqs(pp);
3102 if (ret) {
3103 netdev_err(dev, "unable to setup txqs after MTU change\n");
3104 return ret;
3105 }
3106
3107 on_each_cpu(mvneta_percpu_enable, pp, true);
3108 mvneta_start_dev(pp);
3109 mvneta_port_up(pp);
3110
3111 netdev_update_features(dev);
3112
3113 return 0;
3114 }
3115
3116 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3117 netdev_features_t features)
3118 {
3119 struct mvneta_port *pp = netdev_priv(dev);
3120
3121 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3122 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3123 netdev_info(dev,
3124 "Disable IP checksum for MTU greater than %dB\n",
3125 pp->tx_csum_limit);
3126 }
3127
3128 return features;
3129 }
3130
3131 /* Get mac address */
3132 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3133 {
3134 u32 mac_addr_l, mac_addr_h;
3135
3136 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3137 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3138 addr[0] = (mac_addr_h >> 24) & 0xFF;
3139 addr[1] = (mac_addr_h >> 16) & 0xFF;
3140 addr[2] = (mac_addr_h >> 8) & 0xFF;
3141 addr[3] = mac_addr_h & 0xFF;
3142 addr[4] = (mac_addr_l >> 8) & 0xFF;
3143 addr[5] = mac_addr_l & 0xFF;
3144 }
3145
3146 /* Handle setting mac address */
3147 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3148 {
3149 struct mvneta_port *pp = netdev_priv(dev);
3150 struct sockaddr *sockaddr = addr;
3151 int ret;
3152
3153 ret = eth_prepare_mac_addr_change(dev, addr);
3154 if (ret < 0)
3155 return ret;
3156 /* Remove previous address table entry */
3157 mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3158
3159 /* Set new addr in hw */
3160 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3161
3162 eth_commit_mac_addr_change(dev, addr);
3163 return 0;
3164 }
3165
3166 static void mvneta_adjust_link(struct net_device *ndev)
3167 {
3168 struct mvneta_port *pp = netdev_priv(ndev);
3169 struct phy_device *phydev = pp->phy_dev;
3170 int status_change = 0;
3171
3172 if (phydev->link) {
3173 if ((pp->speed != phydev->speed) ||
3174 (pp->duplex != phydev->duplex)) {
3175 u32 val;
3176
3177 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3178 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3179 MVNETA_GMAC_CONFIG_GMII_SPEED |
3180 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3181
3182 if (phydev->duplex)
3183 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3184
3185 if (phydev->speed == SPEED_1000)
3186 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3187 else if (phydev->speed == SPEED_100)
3188 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3189
3190 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3191
3192 pp->duplex = phydev->duplex;
3193 pp->speed = phydev->speed;
3194 }
3195 }
3196
3197 if (phydev->link != pp->link) {
3198 if (!phydev->link) {
3199 pp->duplex = -1;
3200 pp->speed = 0;
3201 }
3202
3203 pp->link = phydev->link;
3204 status_change = 1;
3205 }
3206
3207 if (status_change) {
3208 if (phydev->link) {
3209 if (!pp->use_inband_status) {
3210 u32 val = mvreg_read(pp,
3211 MVNETA_GMAC_AUTONEG_CONFIG);
3212 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3213 val |= MVNETA_GMAC_FORCE_LINK_PASS;
3214 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3215 val);
3216 }
3217 mvneta_port_up(pp);
3218 } else {
3219 if (!pp->use_inband_status) {
3220 u32 val = mvreg_read(pp,
3221 MVNETA_GMAC_AUTONEG_CONFIG);
3222 val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3223 val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3224 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3225 val);
3226 }
3227 mvneta_port_down(pp);
3228 }
3229 phy_print_status(phydev);
3230 }
3231 }
3232
3233 static int mvneta_mdio_probe(struct mvneta_port *pp)
3234 {
3235 struct phy_device *phy_dev;
3236
3237 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3238 pp->phy_interface);
3239 if (!phy_dev) {
3240 netdev_err(pp->dev, "could not find the PHY\n");
3241 return -ENODEV;
3242 }
3243
3244 phy_dev->supported &= PHY_GBIT_FEATURES;
3245 phy_dev->advertising = phy_dev->supported;
3246
3247 pp->phy_dev = phy_dev;
3248 pp->link = 0;
3249 pp->duplex = 0;
3250 pp->speed = 0;
3251
3252 return 0;
3253 }
3254
3255 static void mvneta_mdio_remove(struct mvneta_port *pp)
3256 {
3257 phy_disconnect(pp->phy_dev);
3258 pp->phy_dev = NULL;
3259 }
3260
3261 /* Electing a CPU must be done in an atomic way: it should be done
3262 * after or before the removal/insertion of a CPU and this function is
3263 * not reentrant.
3264 */
3265 static void mvneta_percpu_elect(struct mvneta_port *pp)
3266 {
3267 int elected_cpu = 0, max_cpu, cpu, i = 0;
3268
3269 /* Use the cpu associated to the rxq when it is online, in all
3270 * the other cases, use the cpu 0 which can't be offline.
3271 */
3272 if (cpu_online(pp->rxq_def))
3273 elected_cpu = pp->rxq_def;
3274
3275 max_cpu = num_present_cpus();
3276
3277 for_each_online_cpu(cpu) {
3278 int rxq_map = 0, txq_map = 0;
3279 int rxq;
3280
3281 for (rxq = 0; rxq < rxq_number; rxq++)
3282 if ((rxq % max_cpu) == cpu)
3283 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3284
3285 if (cpu == elected_cpu)
3286 /* Map the default receive queue queue to the
3287 * elected CPU
3288 */
3289 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3290
3291 /* We update the TX queue map only if we have one
3292 * queue. In this case we associate the TX queue to
3293 * the CPU bound to the default RX queue
3294 */
3295 if (txq_number == 1)
3296 txq_map = (cpu == elected_cpu) ?
3297 MVNETA_CPU_TXQ_ACCESS(1) : 0;
3298 else
3299 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3300 MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3301
3302 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3303
3304 /* Update the interrupt mask on each CPU according the
3305 * new mapping
3306 */
3307 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3308 pp, true);
3309 i++;
3310
3311 }
3312 };
3313
3314 static int mvneta_percpu_notifier(struct notifier_block *nfb,
3315 unsigned long action, void *hcpu)
3316 {
3317 struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
3318 cpu_notifier);
3319 int cpu = (unsigned long)hcpu, other_cpu;
3320 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3321
3322 switch (action) {
3323 case CPU_ONLINE:
3324 case CPU_ONLINE_FROZEN:
3325 case CPU_DOWN_FAILED:
3326 case CPU_DOWN_FAILED_FROZEN:
3327 spin_lock(&pp->lock);
3328 /* Configuring the driver for a new CPU while the
3329 * driver is stopping is racy, so just avoid it.
3330 */
3331 if (pp->is_stopped) {
3332 spin_unlock(&pp->lock);
3333 break;
3334 }
3335 netif_tx_stop_all_queues(pp->dev);
3336
3337 /* We have to synchronise on tha napi of each CPU
3338 * except the one just being waked up
3339 */
3340 for_each_online_cpu(other_cpu) {
3341 if (other_cpu != cpu) {
3342 struct mvneta_pcpu_port *other_port =
3343 per_cpu_ptr(pp->ports, other_cpu);
3344
3345 napi_synchronize(&other_port->napi);
3346 }
3347 }
3348
3349 /* Mask all ethernet port interrupts */
3350 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3351 napi_enable(&port->napi);
3352
3353
3354 /* Enable per-CPU interrupts on the CPU that is
3355 * brought up.
3356 */
3357 mvneta_percpu_enable(pp);
3358
3359 /* Enable per-CPU interrupt on the one CPU we care
3360 * about.
3361 */
3362 mvneta_percpu_elect(pp);
3363
3364 /* Unmask all ethernet port interrupts */
3365 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3366 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3367 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3368 MVNETA_CAUSE_LINK_CHANGE |
3369 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3370 netif_tx_start_all_queues(pp->dev);
3371 spin_unlock(&pp->lock);
3372 break;
3373 case CPU_DOWN_PREPARE:
3374 case CPU_DOWN_PREPARE_FROZEN:
3375 netif_tx_stop_all_queues(pp->dev);
3376 /* Thanks to this lock we are sure that any pending
3377 * cpu election is done
3378 */
3379 spin_lock(&pp->lock);
3380 /* Mask all ethernet port interrupts */
3381 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3382 spin_unlock(&pp->lock);
3383
3384 napi_synchronize(&port->napi);
3385 napi_disable(&port->napi);
3386 /* Disable per-CPU interrupts on the CPU that is
3387 * brought down.
3388 */
3389 mvneta_percpu_disable(pp);
3390
3391 break;
3392 case CPU_DEAD:
3393 case CPU_DEAD_FROZEN:
3394 /* Check if a new CPU must be elected now this on is down */
3395 spin_lock(&pp->lock);
3396 mvneta_percpu_elect(pp);
3397 spin_unlock(&pp->lock);
3398 /* Unmask all ethernet port interrupts */
3399 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3400 mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3401 MVNETA_CAUSE_PHY_STATUS_CHANGE |
3402 MVNETA_CAUSE_LINK_CHANGE |
3403 MVNETA_CAUSE_PSC_SYNC_CHANGE);
3404 netif_tx_start_all_queues(pp->dev);
3405 break;
3406 }
3407
3408 return NOTIFY_OK;
3409 }
3410
3411 static int mvneta_open(struct net_device *dev)
3412 {
3413 struct mvneta_port *pp = netdev_priv(dev);
3414 int ret;
3415
3416 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3417 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3418 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3419
3420 ret = mvneta_setup_rxqs(pp);
3421 if (ret)
3422 return ret;
3423
3424 ret = mvneta_setup_txqs(pp);
3425 if (ret)
3426 goto err_cleanup_rxqs;
3427
3428 /* Connect to port interrupt line */
3429 ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3430 MVNETA_DRIVER_NAME, pp->ports);
3431 if (ret) {
3432 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3433 goto err_cleanup_txqs;
3434 }
3435
3436 /* Enable per-CPU interrupt on all the CPU to handle our RX
3437 * queue interrupts
3438 */
3439 on_each_cpu(mvneta_percpu_enable, pp, true);
3440
3441 pp->is_stopped = false;
3442 /* Register a CPU notifier to handle the case where our CPU
3443 * might be taken offline.
3444 */
3445 register_cpu_notifier(&pp->cpu_notifier);
3446
3447 /* In default link is down */
3448 netif_carrier_off(pp->dev);
3449
3450 ret = mvneta_mdio_probe(pp);
3451 if (ret < 0) {
3452 netdev_err(dev, "cannot probe MDIO bus\n");
3453 goto err_free_irq;
3454 }
3455
3456 mvneta_start_dev(pp);
3457
3458 return 0;
3459
3460 err_free_irq:
3461 free_percpu_irq(pp->dev->irq, pp->ports);
3462 err_cleanup_txqs:
3463 mvneta_cleanup_txqs(pp);
3464 err_cleanup_rxqs:
3465 mvneta_cleanup_rxqs(pp);
3466 return ret;
3467 }
3468
3469 /* Stop the port, free port interrupt line */
3470 static int mvneta_stop(struct net_device *dev)
3471 {
3472 struct mvneta_port *pp = netdev_priv(dev);
3473
3474 /* Inform that we are stopping so we don't want to setup the
3475 * driver for new CPUs in the notifiers. The code of the
3476 * notifier for CPU online is protected by the same spinlock,
3477 * so when we get the lock, the notifer work is done.
3478 */
3479 spin_lock(&pp->lock);
3480 pp->is_stopped = true;
3481 spin_unlock(&pp->lock);
3482
3483 mvneta_stop_dev(pp);
3484 mvneta_mdio_remove(pp);
3485 unregister_cpu_notifier(&pp->cpu_notifier);
3486 on_each_cpu(mvneta_percpu_disable, pp, true);
3487 free_percpu_irq(dev->irq, pp->ports);
3488 mvneta_cleanup_rxqs(pp);
3489 mvneta_cleanup_txqs(pp);
3490
3491 return 0;
3492 }
3493
3494 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3495 {
3496 struct mvneta_port *pp = netdev_priv(dev);
3497
3498 if (!pp->phy_dev)
3499 return -ENOTSUPP;
3500
3501 return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3502 }
3503
3504 /* Ethtool methods */
3505
3506 /* Get settings (phy address, speed) for ethtools */
3507 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3508 {
3509 struct mvneta_port *pp = netdev_priv(dev);
3510
3511 if (!pp->phy_dev)
3512 return -ENODEV;
3513
3514 return phy_ethtool_gset(pp->phy_dev, cmd);
3515 }
3516
3517 /* Set settings (phy address, speed) for ethtools */
3518 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3519 {
3520 struct mvneta_port *pp = netdev_priv(dev);
3521 struct phy_device *phydev = pp->phy_dev;
3522
3523 if (!phydev)
3524 return -ENODEV;
3525
3526 if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3527 u32 val;
3528
3529 mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);
3530
3531 if (cmd->autoneg == AUTONEG_DISABLE) {
3532 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3533 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3534 MVNETA_GMAC_CONFIG_GMII_SPEED |
3535 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3536
3537 if (phydev->duplex)
3538 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3539
3540 if (phydev->speed == SPEED_1000)
3541 val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3542 else if (phydev->speed == SPEED_100)
3543 val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3544
3545 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3546 }
3547
3548 pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
3549 netdev_info(pp->dev, "autoneg status set to %i\n",
3550 pp->use_inband_status);
3551
3552 if (netif_running(dev)) {
3553 mvneta_port_down(pp);
3554 mvneta_port_up(pp);
3555 }
3556 }
3557
3558 return phy_ethtool_sset(pp->phy_dev, cmd);
3559 }
3560
3561 /* Set interrupt coalescing for ethtools */
3562 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3563 struct ethtool_coalesce *c)
3564 {
3565 struct mvneta_port *pp = netdev_priv(dev);
3566 int queue;
3567
3568 for (queue = 0; queue < rxq_number; queue++) {
3569 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3570 rxq->time_coal = c->rx_coalesce_usecs;
3571 rxq->pkts_coal = c->rx_max_coalesced_frames;
3572 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3573 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3574 }
3575
3576 for (queue = 0; queue < txq_number; queue++) {
3577 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3578 txq->done_pkts_coal = c->tx_max_coalesced_frames;
3579 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3580 }
3581
3582 return 0;
3583 }
3584
3585 /* get coalescing for ethtools */
3586 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3587 struct ethtool_coalesce *c)
3588 {
3589 struct mvneta_port *pp = netdev_priv(dev);
3590
3591 c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
3592 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
3593
3594 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
3595 return 0;
3596 }
3597
3598
3599 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3600 struct ethtool_drvinfo *drvinfo)
3601 {
3602 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3603 sizeof(drvinfo->driver));
3604 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3605 sizeof(drvinfo->version));
3606 strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3607 sizeof(drvinfo->bus_info));
3608 }
3609
3610
3611 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3612 struct ethtool_ringparam *ring)
3613 {
3614 struct mvneta_port *pp = netdev_priv(netdev);
3615
3616 ring->rx_max_pending = MVNETA_MAX_RXD;
3617 ring->tx_max_pending = MVNETA_MAX_TXD;
3618 ring->rx_pending = pp->rx_ring_size;
3619 ring->tx_pending = pp->tx_ring_size;
3620 }
3621
3622 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3623 struct ethtool_ringparam *ring)
3624 {
3625 struct mvneta_port *pp = netdev_priv(dev);
3626
3627 if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3628 return -EINVAL;
3629 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3630 ring->rx_pending : MVNETA_MAX_RXD;
3631
3632 pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3633 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3634 if (pp->tx_ring_size != ring->tx_pending)
3635 netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3636 pp->tx_ring_size, ring->tx_pending);
3637
3638 if (netif_running(dev)) {
3639 mvneta_stop(dev);
3640 if (mvneta_open(dev)) {
3641 netdev_err(dev,
3642 "error on opening device after ring param change\n");
3643 return -ENOMEM;
3644 }
3645 }
3646
3647 return 0;
3648 }
3649
3650 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3651 u8 *data)
3652 {
3653 if (sset == ETH_SS_STATS) {
3654 int i;
3655
3656 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3657 memcpy(data + i * ETH_GSTRING_LEN,
3658 mvneta_statistics[i].name, ETH_GSTRING_LEN);
3659 }
3660 }
3661
3662 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3663 {
3664 const struct mvneta_statistic *s;
3665 void __iomem *base = pp->base;
3666 u32 high, low, val;
3667 u64 val64;
3668 int i;
3669
3670 for (i = 0, s = mvneta_statistics;
3671 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3672 s++, i++) {
3673 switch (s->type) {
3674 case T_REG_32:
3675 val = readl_relaxed(base + s->offset);
3676 pp->ethtool_stats[i] += val;
3677 break;
3678 case T_REG_64:
3679 /* Docs say to read low 32-bit then high */
3680 low = readl_relaxed(base + s->offset);
3681 high = readl_relaxed(base + s->offset + 4);
3682 val64 = (u64)high << 32 | low;
3683 pp->ethtool_stats[i] += val64;
3684 break;
3685 }
3686 }
3687 }
3688
3689 static void mvneta_ethtool_get_stats(struct net_device *dev,
3690 struct ethtool_stats *stats, u64 *data)
3691 {
3692 struct mvneta_port *pp = netdev_priv(dev);
3693 int i;
3694
3695 mvneta_ethtool_update_stats(pp);
3696
3697 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3698 *data++ = pp->ethtool_stats[i];
3699 }
3700
3701 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3702 {
3703 if (sset == ETH_SS_STATS)
3704 return ARRAY_SIZE(mvneta_statistics);
3705 return -EOPNOTSUPP;
3706 }
3707
3708 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3709 {
3710 return MVNETA_RSS_LU_TABLE_SIZE;
3711 }
3712
3713 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3714 struct ethtool_rxnfc *info,
3715 u32 *rules __always_unused)
3716 {
3717 switch (info->cmd) {
3718 case ETHTOOL_GRXRINGS:
3719 info->data = rxq_number;
3720 return 0;
3721 case ETHTOOL_GRXFH:
3722 return -EOPNOTSUPP;
3723 default:
3724 return -EOPNOTSUPP;
3725 }
3726 }
3727
3728 static int mvneta_config_rss(struct mvneta_port *pp)
3729 {
3730 int cpu;
3731 u32 val;
3732
3733 netif_tx_stop_all_queues(pp->dev);
3734
3735 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3736
3737 /* We have to synchronise on the napi of each CPU */
3738 for_each_online_cpu(cpu) {
3739 struct mvneta_pcpu_port *pcpu_port =
3740 per_cpu_ptr(pp->ports, cpu);
3741
3742 napi_synchronize(&pcpu_port->napi);
3743 napi_disable(&pcpu_port->napi);
3744 }
3745
3746 pp->rxq_def = pp->indir[0];
3747
3748 /* Update unicast mapping */
3749 mvneta_set_rx_mode(pp->dev);
3750
3751 /* Update val of portCfg register accordingly with all RxQueue types */
3752 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3753 mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3754
3755 /* Update the elected CPU matching the new rxq_def */
3756 spin_lock(&pp->lock);
3757 mvneta_percpu_elect(pp);
3758 spin_unlock(&pp->lock);
3759
3760 /* We have to synchronise on the napi of each CPU */
3761 for_each_online_cpu(cpu) {
3762 struct mvneta_pcpu_port *pcpu_port =
3763 per_cpu_ptr(pp->ports, cpu);
3764
3765 napi_enable(&pcpu_port->napi);
3766 }
3767
3768 netif_tx_start_all_queues(pp->dev);
3769
3770 return 0;
3771 }
3772
3773 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3774 const u8 *key, const u8 hfunc)
3775 {
3776 struct mvneta_port *pp = netdev_priv(dev);
3777 /* We require at least one supported parameter to be changed
3778 * and no change in any of the unsupported parameters
3779 */
3780 if (key ||
3781 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3782 return -EOPNOTSUPP;
3783
3784 if (!indir)
3785 return 0;
3786
3787 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3788
3789 return mvneta_config_rss(pp);
3790 }
3791
3792 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3793 u8 *hfunc)
3794 {
3795 struct mvneta_port *pp = netdev_priv(dev);
3796
3797 if (hfunc)
3798 *hfunc = ETH_RSS_HASH_TOP;
3799
3800 if (!indir)
3801 return 0;
3802
3803 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3804
3805 return 0;
3806 }
3807
3808 static const struct net_device_ops mvneta_netdev_ops = {
3809 .ndo_open = mvneta_open,
3810 .ndo_stop = mvneta_stop,
3811 .ndo_start_xmit = mvneta_tx,
3812 .ndo_set_rx_mode = mvneta_set_rx_mode,
3813 .ndo_set_mac_address = mvneta_set_mac_addr,
3814 .ndo_change_mtu = mvneta_change_mtu,
3815 .ndo_fix_features = mvneta_fix_features,
3816 .ndo_get_stats64 = mvneta_get_stats64,
3817 .ndo_do_ioctl = mvneta_ioctl,
3818 };
3819
3820 const struct ethtool_ops mvneta_eth_tool_ops = {
3821 .get_link = ethtool_op_get_link,
3822 .get_settings = mvneta_ethtool_get_settings,
3823 .set_settings = mvneta_ethtool_set_settings,
3824 .set_coalesce = mvneta_ethtool_set_coalesce,
3825 .get_coalesce = mvneta_ethtool_get_coalesce,
3826 .get_drvinfo = mvneta_ethtool_get_drvinfo,
3827 .get_ringparam = mvneta_ethtool_get_ringparam,
3828 .set_ringparam = mvneta_ethtool_set_ringparam,
3829 .get_strings = mvneta_ethtool_get_strings,
3830 .get_ethtool_stats = mvneta_ethtool_get_stats,
3831 .get_sset_count = mvneta_ethtool_get_sset_count,
3832 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3833 .get_rxnfc = mvneta_ethtool_get_rxnfc,
3834 .get_rxfh = mvneta_ethtool_get_rxfh,
3835 .set_rxfh = mvneta_ethtool_set_rxfh,
3836 };
3837
3838 /* Initialize hw */
3839 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3840 {
3841 int queue;
3842
3843 /* Disable port */
3844 mvneta_port_disable(pp);
3845
3846 /* Set port default values */
3847 mvneta_defaults_set(pp);
3848
3849 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3850 GFP_KERNEL);
3851 if (!pp->txqs)
3852 return -ENOMEM;
3853
3854 /* Initialize TX descriptor rings */
3855 for (queue = 0; queue < txq_number; queue++) {
3856 struct mvneta_tx_queue *txq = &pp->txqs[queue];
3857 txq->id = queue;
3858 txq->size = pp->tx_ring_size;
3859 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3860 }
3861
3862 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3863 GFP_KERNEL);
3864 if (!pp->rxqs)
3865 return -ENOMEM;
3866
3867 /* Create Rx descriptor rings */
3868 for (queue = 0; queue < rxq_number; queue++) {
3869 struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3870 rxq->id = queue;
3871 rxq->size = pp->rx_ring_size;
3872 rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3873 rxq->time_coal = MVNETA_RX_COAL_USEC;
3874 }
3875
3876 return 0;
3877 }
3878
3879 /* platform glue : initialize decoding windows */
3880 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3881 const struct mbus_dram_target_info *dram)
3882 {
3883 u32 win_enable;
3884 u32 win_protect;
3885 int i;
3886
3887 for (i = 0; i < 6; i++) {
3888 mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3889 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3890
3891 if (i < 4)
3892 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3893 }
3894
3895 win_enable = 0x3f;
3896 win_protect = 0;
3897
3898 for (i = 0; i < dram->num_cs; i++) {
3899 const struct mbus_dram_window *cs = dram->cs + i;
3900 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3901 (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3902
3903 mvreg_write(pp, MVNETA_WIN_SIZE(i),
3904 (cs->size - 1) & 0xffff0000);
3905
3906 win_enable &= ~(1 << i);
3907 win_protect |= 3 << (2 * i);
3908 }
3909
3910 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3911 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3912 }
3913
3914 /* Power up the port */
3915 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3916 {
3917 u32 ctrl;
3918
3919 /* MAC Cause register should be cleared */
3920 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3921
3922 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3923
3924 /* Even though it might look weird, when we're configured in
3925 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3926 */
3927 switch(phy_mode) {
3928 case PHY_INTERFACE_MODE_QSGMII:
3929 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3930 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3931 break;
3932 case PHY_INTERFACE_MODE_SGMII:
3933 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3934 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3935 break;
3936 case PHY_INTERFACE_MODE_RGMII:
3937 case PHY_INTERFACE_MODE_RGMII_ID:
3938 ctrl |= MVNETA_GMAC2_PORT_RGMII;
3939 break;
3940 default:
3941 return -EINVAL;
3942 }
3943
3944 /* Cancel Port Reset */
3945 ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3946 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3947
3948 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3949 MVNETA_GMAC2_PORT_RESET) != 0)
3950 continue;
3951
3952 return 0;
3953 }
3954
3955 /* Device initialization routine */
3956 static int mvneta_probe(struct platform_device *pdev)
3957 {
3958 const struct mbus_dram_target_info *dram_target_info;
3959 struct resource *res;
3960 struct device_node *dn = pdev->dev.of_node;
3961 struct device_node *phy_node;
3962 struct device_node *bm_node;
3963 struct mvneta_port *pp;
3964 struct net_device *dev;
3965 const char *dt_mac_addr;
3966 char hw_mac_addr[ETH_ALEN];
3967 const char *mac_from;
3968 const char *managed;
3969 int tx_csum_limit;
3970 int phy_mode;
3971 int err;
3972 int cpu;
3973
3974 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3975 if (!dev)
3976 return -ENOMEM;
3977
3978 dev->irq = irq_of_parse_and_map(dn, 0);
3979 if (dev->irq == 0) {
3980 err = -EINVAL;
3981 goto err_free_netdev;
3982 }
3983
3984 phy_node = of_parse_phandle(dn, "phy", 0);
3985 if (!phy_node) {
3986 if (!of_phy_is_fixed_link(dn)) {
3987 dev_err(&pdev->dev, "no PHY specified\n");
3988 err = -ENODEV;
3989 goto err_free_irq;
3990 }
3991
3992 err = of_phy_register_fixed_link(dn);
3993 if (err < 0) {
3994 dev_err(&pdev->dev, "cannot register fixed PHY\n");
3995 goto err_free_irq;
3996 }
3997
3998 /* In the case of a fixed PHY, the DT node associated
3999 * to the PHY is the Ethernet MAC DT node.
4000 */
4001 phy_node = of_node_get(dn);
4002 }
4003
4004 phy_mode = of_get_phy_mode(dn);
4005 if (phy_mode < 0) {
4006 dev_err(&pdev->dev, "incorrect phy-mode\n");
4007 err = -EINVAL;
4008 goto err_put_phy_node;
4009 }
4010
4011 dev->tx_queue_len = MVNETA_MAX_TXD;
4012 dev->watchdog_timeo = 5 * HZ;
4013 dev->netdev_ops = &mvneta_netdev_ops;
4014
4015 dev->ethtool_ops = &mvneta_eth_tool_ops;
4016
4017 pp = netdev_priv(dev);
4018 spin_lock_init(&pp->lock);
4019 pp->phy_node = phy_node;
4020 pp->phy_interface = phy_mode;
4021
4022 err = of_property_read_string(dn, "managed", &managed);
4023 pp->use_inband_status = (err == 0 &&
4024 strcmp(managed, "in-band-status") == 0);
4025 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
4026
4027 pp->rxq_def = rxq_def;
4028
4029 pp->indir[0] = rxq_def;
4030
4031 pp->clk = devm_clk_get(&pdev->dev, "core");
4032 if (IS_ERR(pp->clk))
4033 pp->clk = devm_clk_get(&pdev->dev, NULL);
4034 if (IS_ERR(pp->clk)) {
4035 err = PTR_ERR(pp->clk);
4036 goto err_put_phy_node;
4037 }
4038
4039 clk_prepare_enable(pp->clk);
4040
4041 pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4042 if (!IS_ERR(pp->clk_bus))
4043 clk_prepare_enable(pp->clk_bus);
4044
4045 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4046 pp->base = devm_ioremap_resource(&pdev->dev, res);
4047 if (IS_ERR(pp->base)) {
4048 err = PTR_ERR(pp->base);
4049 goto err_clk;
4050 }
4051
4052 /* Alloc per-cpu port structure */
4053 pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4054 if (!pp->ports) {
4055 err = -ENOMEM;
4056 goto err_clk;
4057 }
4058
4059 /* Alloc per-cpu stats */
4060 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4061 if (!pp->stats) {
4062 err = -ENOMEM;
4063 goto err_free_ports;
4064 }
4065
4066 dt_mac_addr = of_get_mac_address(dn);
4067 if (dt_mac_addr) {
4068 mac_from = "device tree";
4069 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4070 } else {
4071 mvneta_get_mac_addr(pp, hw_mac_addr);
4072 if (is_valid_ether_addr(hw_mac_addr)) {
4073 mac_from = "hardware";
4074 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4075 } else {
4076 mac_from = "random";
4077 eth_hw_addr_random(dev);
4078 }
4079 }
4080
4081 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4082 if (tx_csum_limit < 0 ||
4083 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4084 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4085 dev_info(&pdev->dev,
4086 "Wrong TX csum limit in DT, set to %dB\n",
4087 MVNETA_TX_CSUM_DEF_SIZE);
4088 }
4089 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4090 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4091 } else {
4092 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4093 }
4094
4095 pp->tx_csum_limit = tx_csum_limit;
4096
4097 dram_target_info = mv_mbus_dram_info();
4098 if (dram_target_info)
4099 mvneta_conf_mbus_windows(pp, dram_target_info);
4100
4101 pp->tx_ring_size = MVNETA_MAX_TXD;
4102 pp->rx_ring_size = MVNETA_MAX_RXD;
4103
4104 pp->dev = dev;
4105 SET_NETDEV_DEV(dev, &pdev->dev);
4106
4107 pp->id = global_port_id++;
4108
4109 /* Obtain access to BM resources if enabled and already initialized */
4110 bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4111 if (bm_node && bm_node->data) {
4112 pp->bm_priv = bm_node->data;
4113 err = mvneta_bm_port_init(pdev, pp);
4114 if (err < 0) {
4115 dev_info(&pdev->dev, "use SW buffer management\n");
4116 pp->bm_priv = NULL;
4117 }
4118 }
4119
4120 err = mvneta_init(&pdev->dev, pp);
4121 if (err < 0)
4122 goto err_netdev;
4123
4124 err = mvneta_port_power_up(pp, phy_mode);
4125 if (err < 0) {
4126 dev_err(&pdev->dev, "can't power up port\n");
4127 goto err_netdev;
4128 }
4129
4130 for_each_present_cpu(cpu) {
4131 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4132
4133 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4134 port->pp = pp;
4135 }
4136
4137 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4138 dev->hw_features |= dev->features;
4139 dev->vlan_features |= dev->features;
4140 dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
4141 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4142
4143 err = register_netdev(dev);
4144 if (err < 0) {
4145 dev_err(&pdev->dev, "failed to register\n");
4146 goto err_free_stats;
4147 }
4148
4149 netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4150 dev->dev_addr);
4151
4152 platform_set_drvdata(pdev, pp->dev);
4153
4154 if (pp->use_inband_status) {
4155 struct phy_device *phy = of_phy_find_device(dn);
4156
4157 mvneta_fixed_link_update(pp, phy);
4158
4159 put_device(&phy->mdio.dev);
4160 }
4161
4162 return 0;
4163
4164 err_netdev:
4165 unregister_netdev(dev);
4166 if (pp->bm_priv) {
4167 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4168 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4169 1 << pp->id);
4170 }
4171 err_free_stats:
4172 free_percpu(pp->stats);
4173 err_free_ports:
4174 free_percpu(pp->ports);
4175 err_clk:
4176 clk_disable_unprepare(pp->clk_bus);
4177 clk_disable_unprepare(pp->clk);
4178 err_put_phy_node:
4179 of_node_put(phy_node);
4180 err_free_irq:
4181 irq_dispose_mapping(dev->irq);
4182 err_free_netdev:
4183 free_netdev(dev);
4184 return err;
4185 }
4186
4187 /* Device removal routine */
4188 static int mvneta_remove(struct platform_device *pdev)
4189 {
4190 struct net_device *dev = platform_get_drvdata(pdev);
4191 struct mvneta_port *pp = netdev_priv(dev);
4192
4193 unregister_netdev(dev);
4194 clk_disable_unprepare(pp->clk_bus);
4195 clk_disable_unprepare(pp->clk);
4196 free_percpu(pp->ports);
4197 free_percpu(pp->stats);
4198 irq_dispose_mapping(dev->irq);
4199 of_node_put(pp->phy_node);
4200 free_netdev(dev);
4201
4202 if (pp->bm_priv) {
4203 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4204 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4205 1 << pp->id);
4206 }
4207
4208 return 0;
4209 }
4210
4211 static const struct of_device_id mvneta_match[] = {
4212 { .compatible = "marvell,armada-370-neta" },
4213 { .compatible = "marvell,armada-xp-neta" },
4214 { }
4215 };
4216 MODULE_DEVICE_TABLE(of, mvneta_match);
4217
4218 static struct platform_driver mvneta_driver = {
4219 .probe = mvneta_probe,
4220 .remove = mvneta_remove,
4221 .driver = {
4222 .name = MVNETA_DRIVER_NAME,
4223 .of_match_table = mvneta_match,
4224 },
4225 };
4226
4227 module_platform_driver(mvneta_driver);
4228
4229 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4230 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4231 MODULE_LICENSE("GPL");
4232
4233 module_param(rxq_number, int, S_IRUGO);
4234 module_param(txq_number, int, S_IRUGO);
4235
4236 module_param(rxq_def, int, S_IRUGO);
4237 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
This page took 0.167366 seconds and 5 git commands to generate.