7ace07dad6a31d4b18ab5aa1e5335c0727cff596
[deliverable/linux.git] / drivers / net / ethernet / marvell / pxa168_eth.c
1 /*
2 * PXA168 ethernet driver.
3 * Most of the code is derived from mv643xx ethernet driver.
4 *
5 * Copyright (C) 2010 Marvell International Ltd.
6 * Sachin Sanap <ssanap@marvell.com>
7 * Zhangfei Gao <zgao6@marvell.com>
8 * Philip Rakity <prakity@marvell.com>
9 * Mark Brown <markb@marvell.com>
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version 2
14 * of the License, or (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 */
24
25 #include <linux/bitops.h>
26 #include <linux/clk.h>
27 #include <linux/delay.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/in.h>
32 #include <linux/interrupt.h>
33 #include <linux/io.h>
34 #include <linux/ip.h>
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/of_net.h>
39 #include <linux/phy.h>
40 #include <linux/platform_device.h>
41 #include <linux/pxa168_eth.h>
42 #include <linux/tcp.h>
43 #include <linux/types.h>
44 #include <linux/udp.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/pgtable.h>
48 #include <asm/cacheflush.h>
49
50 #define DRIVER_NAME "pxa168-eth"
51 #define DRIVER_VERSION "0.3"
52
53 /*
54 * Registers
55 */
56
57 #define PHY_ADDRESS 0x0000
58 #define SMI 0x0010
59 #define PORT_CONFIG 0x0400
60 #define PORT_CONFIG_EXT 0x0408
61 #define PORT_COMMAND 0x0410
62 #define PORT_STATUS 0x0418
63 #define HTPR 0x0428
64 #define MAC_ADDR_LOW 0x0430
65 #define MAC_ADDR_HIGH 0x0438
66 #define SDMA_CONFIG 0x0440
67 #define SDMA_CMD 0x0448
68 #define INT_CAUSE 0x0450
69 #define INT_W_CLEAR 0x0454
70 #define INT_MASK 0x0458
71 #define ETH_F_RX_DESC_0 0x0480
72 #define ETH_C_RX_DESC_0 0x04A0
73 #define ETH_C_TX_DESC_1 0x04E4
74
75 /* smi register */
76 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
77 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
78 #define SMI_OP_W (0 << 26) /* Write operation */
79 #define SMI_OP_R (1 << 26) /* Read operation */
80
81 #define PHY_WAIT_ITERATIONS 10
82
83 #define PXA168_ETH_PHY_ADDR_DEFAULT 0
84 /* RX & TX descriptor command */
85 #define BUF_OWNED_BY_DMA (1 << 31)
86
87 /* RX descriptor status */
88 #define RX_EN_INT (1 << 23)
89 #define RX_FIRST_DESC (1 << 17)
90 #define RX_LAST_DESC (1 << 16)
91 #define RX_ERROR (1 << 15)
92
93 /* TX descriptor command */
94 #define TX_EN_INT (1 << 23)
95 #define TX_GEN_CRC (1 << 22)
96 #define TX_ZERO_PADDING (1 << 18)
97 #define TX_FIRST_DESC (1 << 17)
98 #define TX_LAST_DESC (1 << 16)
99 #define TX_ERROR (1 << 15)
100
101 /* SDMA_CMD */
102 #define SDMA_CMD_AT (1 << 31)
103 #define SDMA_CMD_TXDL (1 << 24)
104 #define SDMA_CMD_TXDH (1 << 23)
105 #define SDMA_CMD_AR (1 << 15)
106 #define SDMA_CMD_ERD (1 << 7)
107
108 /* Bit definitions of the Port Config Reg */
109 #define PCR_DUPLEX_FULL (1 << 15)
110 #define PCR_HS (1 << 12)
111 #define PCR_EN (1 << 7)
112 #define PCR_PM (1 << 0)
113
114 /* Bit definitions of the Port Config Extend Reg */
115 #define PCXR_2BSM (1 << 28)
116 #define PCXR_DSCP_EN (1 << 21)
117 #define PCXR_RMII_EN (1 << 20)
118 #define PCXR_AN_SPEED_DIS (1 << 19)
119 #define PCXR_SPEED_100 (1 << 18)
120 #define PCXR_MFL_1518 (0 << 14)
121 #define PCXR_MFL_1536 (1 << 14)
122 #define PCXR_MFL_2048 (2 << 14)
123 #define PCXR_MFL_64K (3 << 14)
124 #define PCXR_FLOWCTL_DIS (1 << 12)
125 #define PCXR_FLP (1 << 11)
126 #define PCXR_AN_FLOWCTL_DIS (1 << 10)
127 #define PCXR_AN_DUPLEX_DIS (1 << 9)
128 #define PCXR_PRIO_TX_OFF 3
129 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
130
131 /* Bit definitions of the SDMA Config Reg */
132 #define SDCR_BSZ_OFF 12
133 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
134 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
135 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
136 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
137 #define SDCR_BLMR (1 << 6)
138 #define SDCR_BLMT (1 << 7)
139 #define SDCR_RIFB (1 << 9)
140 #define SDCR_RC_OFF 2
141 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
142
143 /*
144 * Bit definitions of the Interrupt Cause Reg
145 * and Interrupt MASK Reg is the same
146 */
147 #define ICR_RXBUF (1 << 0)
148 #define ICR_TXBUF_H (1 << 2)
149 #define ICR_TXBUF_L (1 << 3)
150 #define ICR_TXEND_H (1 << 6)
151 #define ICR_TXEND_L (1 << 7)
152 #define ICR_RXERR (1 << 8)
153 #define ICR_TXERR_H (1 << 10)
154 #define ICR_TXERR_L (1 << 11)
155 #define ICR_TX_UDR (1 << 13)
156 #define ICR_MII_CH (1 << 28)
157
158 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
159 ICR_TXERR_H | ICR_TXERR_L |\
160 ICR_TXEND_H | ICR_TXEND_L |\
161 ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
162
163 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
164
165 #define NUM_RX_DESCS 64
166 #define NUM_TX_DESCS 64
167
168 #define HASH_ADD 0
169 #define HASH_DELETE 1
170 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
171 #define HOP_NUMBER 12
172
173 /* Bit definitions for Port status */
174 #define PORT_SPEED_100 (1 << 0)
175 #define FULL_DUPLEX (1 << 1)
176 #define FLOW_CONTROL_DISABLED (1 << 2)
177 #define LINK_UP (1 << 3)
178
179 /* Bit definitions for work to be done */
180 #define WORK_TX_DONE (1 << 1)
181
182 /*
183 * Misc definitions.
184 */
185 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
186
187 struct rx_desc {
188 u32 cmd_sts; /* Descriptor command status */
189 u16 byte_cnt; /* Descriptor buffer byte count */
190 u16 buf_size; /* Buffer size */
191 u32 buf_ptr; /* Descriptor buffer pointer */
192 u32 next_desc_ptr; /* Next descriptor pointer */
193 };
194
195 struct tx_desc {
196 u32 cmd_sts; /* Command/status field */
197 u16 reserved;
198 u16 byte_cnt; /* buffer byte count */
199 u32 buf_ptr; /* pointer to buffer for this descriptor */
200 u32 next_desc_ptr; /* Pointer to next descriptor */
201 };
202
203 struct pxa168_eth_private {
204 int port_num; /* User Ethernet port number */
205 int phy_addr;
206 int phy_speed;
207 int phy_duplex;
208 phy_interface_t phy_intf;
209
210 int rx_resource_err; /* Rx ring resource error flag */
211
212 /* Next available and first returning Rx resource */
213 int rx_curr_desc_q, rx_used_desc_q;
214
215 /* Next available and first returning Tx resource */
216 int tx_curr_desc_q, tx_used_desc_q;
217
218 struct rx_desc *p_rx_desc_area;
219 dma_addr_t rx_desc_dma;
220 int rx_desc_area_size;
221 struct sk_buff **rx_skb;
222
223 struct tx_desc *p_tx_desc_area;
224 dma_addr_t tx_desc_dma;
225 int tx_desc_area_size;
226 struct sk_buff **tx_skb;
227
228 struct work_struct tx_timeout_task;
229
230 struct net_device *dev;
231 struct napi_struct napi;
232 u8 work_todo;
233 int skb_size;
234
235 /* Size of Tx Ring per queue */
236 int tx_ring_size;
237 /* Number of tx descriptors in use */
238 int tx_desc_count;
239 /* Size of Rx Ring per queue */
240 int rx_ring_size;
241 /* Number of rx descriptors in use */
242 int rx_desc_count;
243
244 /*
245 * Used in case RX Ring is empty, which can occur when
246 * system does not have resources (skb's)
247 */
248 struct timer_list timeout;
249 struct mii_bus *smi_bus;
250 struct phy_device *phy;
251
252 /* clock */
253 struct clk *clk;
254 struct pxa168_eth_platform_data *pd;
255 /*
256 * Ethernet controller base address.
257 */
258 void __iomem *base;
259
260 /* Pointer to the hardware address filter table */
261 void *htpr;
262 dma_addr_t htpr_dma;
263 };
264
265 struct addr_table_entry {
266 __le32 lo;
267 __le32 hi;
268 };
269
270 /* Bit fields of a Hash Table Entry */
271 enum hash_table_entry {
272 HASH_ENTRY_VALID = 1,
273 SKIP = 2,
274 HASH_ENTRY_RECEIVE_DISCARD = 4,
275 HASH_ENTRY_RECEIVE_DISCARD_BIT = 2
276 };
277
278 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
279 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
280 static int pxa168_init_hw(struct pxa168_eth_private *pep);
281 static int pxa168_init_phy(struct net_device *dev);
282 static void eth_port_reset(struct net_device *dev);
283 static void eth_port_start(struct net_device *dev);
284 static int pxa168_eth_open(struct net_device *dev);
285 static int pxa168_eth_stop(struct net_device *dev);
286
287 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
288 {
289 return readl(pep->base + offset);
290 }
291
292 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
293 {
294 writel(data, pep->base + offset);
295 }
296
297 static void abort_dma(struct pxa168_eth_private *pep)
298 {
299 int delay;
300 int max_retries = 40;
301
302 do {
303 wrl(pep, SDMA_CMD, SDMA_CMD_AR | SDMA_CMD_AT);
304 udelay(100);
305
306 delay = 10;
307 while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
308 && delay-- > 0) {
309 udelay(10);
310 }
311 } while (max_retries-- > 0 && delay <= 0);
312
313 if (max_retries <= 0)
314 netdev_err(pep->dev, "%s : DMA Stuck\n", __func__);
315 }
316
317 static void rxq_refill(struct net_device *dev)
318 {
319 struct pxa168_eth_private *pep = netdev_priv(dev);
320 struct sk_buff *skb;
321 struct rx_desc *p_used_rx_desc;
322 int used_rx_desc;
323
324 while (pep->rx_desc_count < pep->rx_ring_size) {
325 int size;
326
327 skb = netdev_alloc_skb(dev, pep->skb_size);
328 if (!skb)
329 break;
330 if (SKB_DMA_REALIGN)
331 skb_reserve(skb, SKB_DMA_REALIGN);
332 pep->rx_desc_count++;
333 /* Get 'used' Rx descriptor */
334 used_rx_desc = pep->rx_used_desc_q;
335 p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
336 size = skb_end_pointer(skb) - skb->data;
337 p_used_rx_desc->buf_ptr = dma_map_single(NULL,
338 skb->data,
339 size,
340 DMA_FROM_DEVICE);
341 p_used_rx_desc->buf_size = size;
342 pep->rx_skb[used_rx_desc] = skb;
343
344 /* Return the descriptor to DMA ownership */
345 wmb();
346 p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
347 wmb();
348
349 /* Move the used descriptor pointer to the next descriptor */
350 pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
351
352 /* Any Rx return cancels the Rx resource error status */
353 pep->rx_resource_err = 0;
354
355 skb_reserve(skb, ETH_HW_IP_ALIGN);
356 }
357
358 /*
359 * If RX ring is empty of SKB, set a timer to try allocating
360 * again at a later time.
361 */
362 if (pep->rx_desc_count == 0) {
363 pep->timeout.expires = jiffies + (HZ / 10);
364 add_timer(&pep->timeout);
365 }
366 }
367
368 static inline void rxq_refill_timer_wrapper(unsigned long data)
369 {
370 struct pxa168_eth_private *pep = (void *)data;
371 napi_schedule(&pep->napi);
372 }
373
374 static inline u8 flip_8_bits(u8 x)
375 {
376 return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
377 | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
378 | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
379 | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
380 }
381
382 static void nibble_swap_every_byte(unsigned char *mac_addr)
383 {
384 int i;
385 for (i = 0; i < ETH_ALEN; i++) {
386 mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
387 ((mac_addr[i] & 0xf0) >> 4);
388 }
389 }
390
391 static void inverse_every_nibble(unsigned char *mac_addr)
392 {
393 int i;
394 for (i = 0; i < ETH_ALEN; i++)
395 mac_addr[i] = flip_8_bits(mac_addr[i]);
396 }
397
398 /*
399 * ----------------------------------------------------------------------------
400 * This function will calculate the hash function of the address.
401 * Inputs
402 * mac_addr_orig - MAC address.
403 * Outputs
404 * return the calculated entry.
405 */
406 static u32 hash_function(unsigned char *mac_addr_orig)
407 {
408 u32 hash_result;
409 u32 addr0;
410 u32 addr1;
411 u32 addr2;
412 u32 addr3;
413 unsigned char mac_addr[ETH_ALEN];
414
415 /* Make a copy of MAC address since we are going to performe bit
416 * operations on it
417 */
418 memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
419
420 nibble_swap_every_byte(mac_addr);
421 inverse_every_nibble(mac_addr);
422
423 addr0 = (mac_addr[5] >> 2) & 0x3f;
424 addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
425 addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
426 addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
427
428 hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
429 hash_result = hash_result & 0x07ff;
430 return hash_result;
431 }
432
433 /*
434 * ----------------------------------------------------------------------------
435 * This function will add/del an entry to the address table.
436 * Inputs
437 * pep - ETHERNET .
438 * mac_addr - MAC address.
439 * skip - if 1, skip this address.Used in case of deleting an entry which is a
440 * part of chain in the hash table.We can't just delete the entry since
441 * that will break the chain.We need to defragment the tables time to
442 * time.
443 * rd - 0 Discard packet upon match.
444 * - 1 Receive packet upon match.
445 * Outputs
446 * address table entry is added/deleted.
447 * 0 if success.
448 * -ENOSPC if table full
449 */
450 static int add_del_hash_entry(struct pxa168_eth_private *pep,
451 unsigned char *mac_addr,
452 u32 rd, u32 skip, int del)
453 {
454 struct addr_table_entry *entry, *start;
455 u32 new_high;
456 u32 new_low;
457 u32 i;
458
459 new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
460 | (((mac_addr[1] >> 0) & 0xf) << 11)
461 | (((mac_addr[0] >> 4) & 0xf) << 7)
462 | (((mac_addr[0] >> 0) & 0xf) << 3)
463 | (((mac_addr[3] >> 4) & 0x1) << 31)
464 | (((mac_addr[3] >> 0) & 0xf) << 27)
465 | (((mac_addr[2] >> 4) & 0xf) << 23)
466 | (((mac_addr[2] >> 0) & 0xf) << 19)
467 | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
468 | HASH_ENTRY_VALID;
469
470 new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
471 | (((mac_addr[5] >> 0) & 0xf) << 11)
472 | (((mac_addr[4] >> 4) & 0xf) << 7)
473 | (((mac_addr[4] >> 0) & 0xf) << 3)
474 | (((mac_addr[3] >> 5) & 0x7) << 0);
475
476 /*
477 * Pick the appropriate table, start scanning for free/reusable
478 * entries at the index obtained by hashing the specified MAC address
479 */
480 start = pep->htpr;
481 entry = start + hash_function(mac_addr);
482 for (i = 0; i < HOP_NUMBER; i++) {
483 if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
484 break;
485 } else {
486 /* if same address put in same position */
487 if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
488 (new_low & 0xfffffff8)) &&
489 (le32_to_cpu(entry->hi) == new_high)) {
490 break;
491 }
492 }
493 if (entry == start + 0x7ff)
494 entry = start;
495 else
496 entry++;
497 }
498
499 if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
500 (le32_to_cpu(entry->hi) != new_high) && del)
501 return 0;
502
503 if (i == HOP_NUMBER) {
504 if (!del) {
505 netdev_info(pep->dev,
506 "%s: table section is full, need to "
507 "move to 16kB implementation?\n",
508 __FILE__);
509 return -ENOSPC;
510 } else
511 return 0;
512 }
513
514 /*
515 * Update the selected entry
516 */
517 if (del) {
518 entry->hi = 0;
519 entry->lo = 0;
520 } else {
521 entry->hi = cpu_to_le32(new_high);
522 entry->lo = cpu_to_le32(new_low);
523 }
524
525 return 0;
526 }
527
528 /*
529 * ----------------------------------------------------------------------------
530 * Create an addressTable entry from MAC address info
531 * found in the specifed net_device struct
532 *
533 * Input : pointer to ethernet interface network device structure
534 * Output : N/A
535 */
536 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
537 unsigned char *oaddr,
538 unsigned char *addr)
539 {
540 /* Delete old entry */
541 if (oaddr)
542 add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
543 /* Add new entry */
544 add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
545 }
546
547 static int init_hash_table(struct pxa168_eth_private *pep)
548 {
549 /*
550 * Hardware expects CPU to build a hash table based on a predefined
551 * hash function and populate it based on hardware address. The
552 * location of the hash table is identified by 32-bit pointer stored
553 * in HTPR internal register. Two possible sizes exists for the hash
554 * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
555 * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
556 * 1/2kB.
557 */
558 /* TODO: Add support for 8kB hash table and alternative hash
559 * function.Driver can dynamically switch to them if the 1/2kB hash
560 * table is full.
561 */
562 if (pep->htpr == NULL) {
563 pep->htpr = dma_zalloc_coherent(pep->dev->dev.parent,
564 HASH_ADDR_TABLE_SIZE,
565 &pep->htpr_dma, GFP_KERNEL);
566 if (pep->htpr == NULL)
567 return -ENOMEM;
568 } else {
569 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
570 }
571 wrl(pep, HTPR, pep->htpr_dma);
572 return 0;
573 }
574
575 static void pxa168_eth_set_rx_mode(struct net_device *dev)
576 {
577 struct pxa168_eth_private *pep = netdev_priv(dev);
578 struct netdev_hw_addr *ha;
579 u32 val;
580
581 val = rdl(pep, PORT_CONFIG);
582 if (dev->flags & IFF_PROMISC)
583 val |= PCR_PM;
584 else
585 val &= ~PCR_PM;
586 wrl(pep, PORT_CONFIG, val);
587
588 /*
589 * Remove the old list of MAC address and add dev->addr
590 * and multicast address.
591 */
592 memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
593 update_hash_table_mac_address(pep, NULL, dev->dev_addr);
594
595 netdev_for_each_mc_addr(ha, dev)
596 update_hash_table_mac_address(pep, NULL, ha->addr);
597 }
598
599 static void pxa168_eth_get_mac_address(struct net_device *dev,
600 unsigned char *addr)
601 {
602 struct pxa168_eth_private *pep = netdev_priv(dev);
603 unsigned int mac_h = rdl(pep, MAC_ADDR_HIGH);
604 unsigned int mac_l = rdl(pep, MAC_ADDR_LOW);
605
606 addr[0] = (mac_h >> 24) & 0xff;
607 addr[1] = (mac_h >> 16) & 0xff;
608 addr[2] = (mac_h >> 8) & 0xff;
609 addr[3] = mac_h & 0xff;
610 addr[4] = (mac_l >> 8) & 0xff;
611 addr[5] = mac_l & 0xff;
612 }
613
614 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
615 {
616 struct sockaddr *sa = addr;
617 struct pxa168_eth_private *pep = netdev_priv(dev);
618 unsigned char oldMac[ETH_ALEN];
619 u32 mac_h, mac_l;
620
621 if (!is_valid_ether_addr(sa->sa_data))
622 return -EADDRNOTAVAIL;
623 memcpy(oldMac, dev->dev_addr, ETH_ALEN);
624 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
625
626 mac_h = dev->dev_addr[0] << 24;
627 mac_h |= dev->dev_addr[1] << 16;
628 mac_h |= dev->dev_addr[2] << 8;
629 mac_h |= dev->dev_addr[3];
630 mac_l = dev->dev_addr[4] << 8;
631 mac_l |= dev->dev_addr[5];
632 wrl(pep, MAC_ADDR_HIGH, mac_h);
633 wrl(pep, MAC_ADDR_LOW, mac_l);
634
635 netif_addr_lock_bh(dev);
636 update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
637 netif_addr_unlock_bh(dev);
638 return 0;
639 }
640
641 static void eth_port_start(struct net_device *dev)
642 {
643 unsigned int val = 0;
644 struct pxa168_eth_private *pep = netdev_priv(dev);
645 int tx_curr_desc, rx_curr_desc;
646
647 phy_start(pep->phy);
648
649 /* Assignment of Tx CTRP of given queue */
650 tx_curr_desc = pep->tx_curr_desc_q;
651 wrl(pep, ETH_C_TX_DESC_1,
652 (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
653
654 /* Assignment of Rx CRDP of given queue */
655 rx_curr_desc = pep->rx_curr_desc_q;
656 wrl(pep, ETH_C_RX_DESC_0,
657 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
658
659 wrl(pep, ETH_F_RX_DESC_0,
660 (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
661
662 /* Clear all interrupts */
663 wrl(pep, INT_CAUSE, 0);
664
665 /* Enable all interrupts for receive, transmit and error. */
666 wrl(pep, INT_MASK, ALL_INTS);
667
668 val = rdl(pep, PORT_CONFIG);
669 val |= PCR_EN;
670 wrl(pep, PORT_CONFIG, val);
671
672 /* Start RX DMA engine */
673 val = rdl(pep, SDMA_CMD);
674 val |= SDMA_CMD_ERD;
675 wrl(pep, SDMA_CMD, val);
676 }
677
678 static void eth_port_reset(struct net_device *dev)
679 {
680 struct pxa168_eth_private *pep = netdev_priv(dev);
681 unsigned int val = 0;
682
683 /* Stop all interrupts for receive, transmit and error. */
684 wrl(pep, INT_MASK, 0);
685
686 /* Clear all interrupts */
687 wrl(pep, INT_CAUSE, 0);
688
689 /* Stop RX DMA */
690 val = rdl(pep, SDMA_CMD);
691 val &= ~SDMA_CMD_ERD; /* abort dma command */
692
693 /* Abort any transmit and receive operations and put DMA
694 * in idle state.
695 */
696 abort_dma(pep);
697
698 /* Disable port */
699 val = rdl(pep, PORT_CONFIG);
700 val &= ~PCR_EN;
701 wrl(pep, PORT_CONFIG, val);
702
703 phy_stop(pep->phy);
704 }
705
706 /*
707 * txq_reclaim - Free the tx desc data for completed descriptors
708 * If force is non-zero, frees uncompleted descriptors as well
709 */
710 static int txq_reclaim(struct net_device *dev, int force)
711 {
712 struct pxa168_eth_private *pep = netdev_priv(dev);
713 struct tx_desc *desc;
714 u32 cmd_sts;
715 struct sk_buff *skb;
716 int tx_index;
717 dma_addr_t addr;
718 int count;
719 int released = 0;
720
721 netif_tx_lock(dev);
722
723 pep->work_todo &= ~WORK_TX_DONE;
724 while (pep->tx_desc_count > 0) {
725 tx_index = pep->tx_used_desc_q;
726 desc = &pep->p_tx_desc_area[tx_index];
727 cmd_sts = desc->cmd_sts;
728 if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
729 if (released > 0) {
730 goto txq_reclaim_end;
731 } else {
732 released = -1;
733 goto txq_reclaim_end;
734 }
735 }
736 pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
737 pep->tx_desc_count--;
738 addr = desc->buf_ptr;
739 count = desc->byte_cnt;
740 skb = pep->tx_skb[tx_index];
741 if (skb)
742 pep->tx_skb[tx_index] = NULL;
743
744 if (cmd_sts & TX_ERROR) {
745 if (net_ratelimit())
746 netdev_err(dev, "Error in TX\n");
747 dev->stats.tx_errors++;
748 }
749 dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
750 if (skb)
751 dev_kfree_skb_irq(skb);
752 released++;
753 }
754 txq_reclaim_end:
755 netif_tx_unlock(dev);
756 return released;
757 }
758
759 static void pxa168_eth_tx_timeout(struct net_device *dev)
760 {
761 struct pxa168_eth_private *pep = netdev_priv(dev);
762
763 netdev_info(dev, "TX timeout desc_count %d\n", pep->tx_desc_count);
764
765 schedule_work(&pep->tx_timeout_task);
766 }
767
768 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
769 {
770 struct pxa168_eth_private *pep = container_of(work,
771 struct pxa168_eth_private,
772 tx_timeout_task);
773 struct net_device *dev = pep->dev;
774 pxa168_eth_stop(dev);
775 pxa168_eth_open(dev);
776 }
777
778 static int rxq_process(struct net_device *dev, int budget)
779 {
780 struct pxa168_eth_private *pep = netdev_priv(dev);
781 struct net_device_stats *stats = &dev->stats;
782 unsigned int received_packets = 0;
783 struct sk_buff *skb;
784
785 while (budget-- > 0) {
786 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
787 struct rx_desc *rx_desc;
788 unsigned int cmd_sts;
789
790 /* Do not process Rx ring in case of Rx ring resource error */
791 if (pep->rx_resource_err)
792 break;
793 rx_curr_desc = pep->rx_curr_desc_q;
794 rx_used_desc = pep->rx_used_desc_q;
795 rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
796 cmd_sts = rx_desc->cmd_sts;
797 rmb();
798 if (cmd_sts & (BUF_OWNED_BY_DMA))
799 break;
800 skb = pep->rx_skb[rx_curr_desc];
801 pep->rx_skb[rx_curr_desc] = NULL;
802
803 rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
804 pep->rx_curr_desc_q = rx_next_curr_desc;
805
806 /* Rx descriptors exhausted. */
807 /* Set the Rx ring resource error flag */
808 if (rx_next_curr_desc == rx_used_desc)
809 pep->rx_resource_err = 1;
810 pep->rx_desc_count--;
811 dma_unmap_single(NULL, rx_desc->buf_ptr,
812 rx_desc->buf_size,
813 DMA_FROM_DEVICE);
814 received_packets++;
815 /*
816 * Update statistics.
817 * Note byte count includes 4 byte CRC count
818 */
819 stats->rx_packets++;
820 stats->rx_bytes += rx_desc->byte_cnt;
821 /*
822 * In case received a packet without first / last bits on OR
823 * the error summary bit is on, the packets needs to be droped.
824 */
825 if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
826 (RX_FIRST_DESC | RX_LAST_DESC))
827 || (cmd_sts & RX_ERROR)) {
828
829 stats->rx_dropped++;
830 if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
831 (RX_FIRST_DESC | RX_LAST_DESC)) {
832 if (net_ratelimit())
833 netdev_err(dev,
834 "Rx pkt on multiple desc\n");
835 }
836 if (cmd_sts & RX_ERROR)
837 stats->rx_errors++;
838 dev_kfree_skb_irq(skb);
839 } else {
840 /*
841 * The -4 is for the CRC in the trailer of the
842 * received packet
843 */
844 skb_put(skb, rx_desc->byte_cnt - 4);
845 skb->protocol = eth_type_trans(skb, dev);
846 netif_receive_skb(skb);
847 }
848 }
849 /* Fill RX ring with skb's */
850 rxq_refill(dev);
851 return received_packets;
852 }
853
854 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
855 struct net_device *dev)
856 {
857 u32 icr;
858 int ret = 0;
859
860 icr = rdl(pep, INT_CAUSE);
861 if (icr == 0)
862 return IRQ_NONE;
863
864 wrl(pep, INT_CAUSE, ~icr);
865 if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
866 pep->work_todo |= WORK_TX_DONE;
867 ret = 1;
868 }
869 if (icr & ICR_RXBUF)
870 ret = 1;
871 return ret;
872 }
873
874 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
875 {
876 struct net_device *dev = (struct net_device *)dev_id;
877 struct pxa168_eth_private *pep = netdev_priv(dev);
878
879 if (unlikely(!pxa168_eth_collect_events(pep, dev)))
880 return IRQ_NONE;
881 /* Disable interrupts */
882 wrl(pep, INT_MASK, 0);
883 napi_schedule(&pep->napi);
884 return IRQ_HANDLED;
885 }
886
887 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
888 {
889 int skb_size;
890
891 /*
892 * Reserve 2+14 bytes for an ethernet header (the hardware
893 * automatically prepends 2 bytes of dummy data to each
894 * received packet), 16 bytes for up to four VLAN tags, and
895 * 4 bytes for the trailing FCS -- 36 bytes total.
896 */
897 skb_size = pep->dev->mtu + 36;
898
899 /*
900 * Make sure that the skb size is a multiple of 8 bytes, as
901 * the lower three bits of the receive descriptor's buffer
902 * size field are ignored by the hardware.
903 */
904 pep->skb_size = (skb_size + 7) & ~7;
905
906 /*
907 * If NET_SKB_PAD is smaller than a cache line,
908 * netdev_alloc_skb() will cause skb->data to be misaligned
909 * to a cache line boundary. If this is the case, include
910 * some extra space to allow re-aligning the data area.
911 */
912 pep->skb_size += SKB_DMA_REALIGN;
913
914 }
915
916 static int set_port_config_ext(struct pxa168_eth_private *pep)
917 {
918 int skb_size;
919
920 pxa168_eth_recalc_skb_size(pep);
921 if (pep->skb_size <= 1518)
922 skb_size = PCXR_MFL_1518;
923 else if (pep->skb_size <= 1536)
924 skb_size = PCXR_MFL_1536;
925 else if (pep->skb_size <= 2048)
926 skb_size = PCXR_MFL_2048;
927 else
928 skb_size = PCXR_MFL_64K;
929
930 /* Extended Port Configuration */
931 wrl(pep, PORT_CONFIG_EXT,
932 PCXR_AN_SPEED_DIS | /* Disable HW AN */
933 PCXR_AN_DUPLEX_DIS |
934 PCXR_AN_FLOWCTL_DIS |
935 PCXR_2BSM | /* Two byte prefix aligns IP hdr */
936 PCXR_DSCP_EN | /* Enable DSCP in IP */
937 skb_size | PCXR_FLP | /* do not force link pass */
938 PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
939
940 return 0;
941 }
942
943 static void pxa168_eth_adjust_link(struct net_device *dev)
944 {
945 struct pxa168_eth_private *pep = netdev_priv(dev);
946 struct phy_device *phy = pep->phy;
947 u32 cfg, cfg_o = rdl(pep, PORT_CONFIG);
948 u32 cfgext, cfgext_o = rdl(pep, PORT_CONFIG_EXT);
949
950 cfg = cfg_o & ~PCR_DUPLEX_FULL;
951 cfgext = cfgext_o & ~(PCXR_SPEED_100 | PCXR_FLOWCTL_DIS | PCXR_RMII_EN);
952
953 if (phy->interface == PHY_INTERFACE_MODE_RMII)
954 cfgext |= PCXR_RMII_EN;
955 if (phy->speed == SPEED_100)
956 cfgext |= PCXR_SPEED_100;
957 if (phy->duplex)
958 cfg |= PCR_DUPLEX_FULL;
959 if (!phy->pause)
960 cfgext |= PCXR_FLOWCTL_DIS;
961
962 /* Bail out if there has nothing changed */
963 if (cfg == cfg_o && cfgext == cfgext_o)
964 return;
965
966 wrl(pep, PORT_CONFIG, cfg);
967 wrl(pep, PORT_CONFIG_EXT, cfgext);
968
969 phy_print_status(phy);
970 }
971
972 static int pxa168_init_phy(struct net_device *dev)
973 {
974 struct pxa168_eth_private *pep = netdev_priv(dev);
975 struct ethtool_cmd cmd;
976 int err;
977
978 if (pep->phy)
979 return 0;
980
981 pep->phy = mdiobus_scan(pep->smi_bus, pep->phy_addr);
982 if (!pep->phy)
983 return -ENODEV;
984
985 err = phy_connect_direct(dev, pep->phy, pxa168_eth_adjust_link,
986 pep->phy_intf);
987 if (err)
988 return err;
989
990 err = pxa168_get_settings(dev, &cmd);
991 if (err)
992 return err;
993
994 cmd.phy_address = pep->phy_addr;
995 cmd.speed = pep->phy_speed;
996 cmd.duplex = pep->phy_duplex;
997 cmd.advertising = PHY_BASIC_FEATURES;
998 cmd.autoneg = AUTONEG_ENABLE;
999
1000 if (cmd.speed != 0)
1001 cmd.autoneg = AUTONEG_DISABLE;
1002
1003 return pxa168_set_settings(dev, &cmd);
1004 }
1005
1006 static int pxa168_init_hw(struct pxa168_eth_private *pep)
1007 {
1008 int err = 0;
1009
1010 /* Disable interrupts */
1011 wrl(pep, INT_MASK, 0);
1012 wrl(pep, INT_CAUSE, 0);
1013 /* Write to ICR to clear interrupts. */
1014 wrl(pep, INT_W_CLEAR, 0);
1015 /* Abort any transmit and receive operations and put DMA
1016 * in idle state.
1017 */
1018 abort_dma(pep);
1019 /* Initialize address hash table */
1020 err = init_hash_table(pep);
1021 if (err)
1022 return err;
1023 /* SDMA configuration */
1024 wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
1025 SDCR_RIFB | /* Rx interrupt on frame */
1026 SDCR_BLMT | /* Little endian transmit */
1027 SDCR_BLMR | /* Little endian receive */
1028 SDCR_RC_MAX_RETRANS); /* Max retransmit count */
1029 /* Port Configuration */
1030 wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
1031 set_port_config_ext(pep);
1032
1033 return err;
1034 }
1035
1036 static int rxq_init(struct net_device *dev)
1037 {
1038 struct pxa168_eth_private *pep = netdev_priv(dev);
1039 struct rx_desc *p_rx_desc;
1040 int size = 0, i = 0;
1041 int rx_desc_num = pep->rx_ring_size;
1042
1043 /* Allocate RX skb rings */
1044 pep->rx_skb = kzalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1045 GFP_KERNEL);
1046 if (!pep->rx_skb)
1047 return -ENOMEM;
1048
1049 /* Allocate RX ring */
1050 pep->rx_desc_count = 0;
1051 size = pep->rx_ring_size * sizeof(struct rx_desc);
1052 pep->rx_desc_area_size = size;
1053 pep->p_rx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1054 &pep->rx_desc_dma,
1055 GFP_KERNEL);
1056 if (!pep->p_rx_desc_area)
1057 goto out;
1058
1059 /* initialize the next_desc_ptr links in the Rx descriptors ring */
1060 p_rx_desc = pep->p_rx_desc_area;
1061 for (i = 0; i < rx_desc_num; i++) {
1062 p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1063 ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1064 }
1065 /* Save Rx desc pointer to driver struct. */
1066 pep->rx_curr_desc_q = 0;
1067 pep->rx_used_desc_q = 0;
1068 pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1069 return 0;
1070 out:
1071 kfree(pep->rx_skb);
1072 return -ENOMEM;
1073 }
1074
1075 static void rxq_deinit(struct net_device *dev)
1076 {
1077 struct pxa168_eth_private *pep = netdev_priv(dev);
1078 int curr;
1079
1080 /* Free preallocated skb's on RX rings */
1081 for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1082 if (pep->rx_skb[curr]) {
1083 dev_kfree_skb(pep->rx_skb[curr]);
1084 pep->rx_desc_count--;
1085 }
1086 }
1087 if (pep->rx_desc_count)
1088 netdev_err(dev, "Error in freeing Rx Ring. %d skb's still\n",
1089 pep->rx_desc_count);
1090 /* Free RX ring */
1091 if (pep->p_rx_desc_area)
1092 dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1093 pep->p_rx_desc_area, pep->rx_desc_dma);
1094 kfree(pep->rx_skb);
1095 }
1096
1097 static int txq_init(struct net_device *dev)
1098 {
1099 struct pxa168_eth_private *pep = netdev_priv(dev);
1100 struct tx_desc *p_tx_desc;
1101 int size = 0, i = 0;
1102 int tx_desc_num = pep->tx_ring_size;
1103
1104 pep->tx_skb = kzalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1105 GFP_KERNEL);
1106 if (!pep->tx_skb)
1107 return -ENOMEM;
1108
1109 /* Allocate TX ring */
1110 pep->tx_desc_count = 0;
1111 size = pep->tx_ring_size * sizeof(struct tx_desc);
1112 pep->tx_desc_area_size = size;
1113 pep->p_tx_desc_area = dma_zalloc_coherent(pep->dev->dev.parent, size,
1114 &pep->tx_desc_dma,
1115 GFP_KERNEL);
1116 if (!pep->p_tx_desc_area)
1117 goto out;
1118 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1119 p_tx_desc = pep->p_tx_desc_area;
1120 for (i = 0; i < tx_desc_num; i++) {
1121 p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1122 ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1123 }
1124 pep->tx_curr_desc_q = 0;
1125 pep->tx_used_desc_q = 0;
1126 pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1127 return 0;
1128 out:
1129 kfree(pep->tx_skb);
1130 return -ENOMEM;
1131 }
1132
1133 static void txq_deinit(struct net_device *dev)
1134 {
1135 struct pxa168_eth_private *pep = netdev_priv(dev);
1136
1137 /* Free outstanding skb's on TX ring */
1138 txq_reclaim(dev, 1);
1139 BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1140 /* Free TX ring */
1141 if (pep->p_tx_desc_area)
1142 dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1143 pep->p_tx_desc_area, pep->tx_desc_dma);
1144 kfree(pep->tx_skb);
1145 }
1146
1147 static int pxa168_eth_open(struct net_device *dev)
1148 {
1149 struct pxa168_eth_private *pep = netdev_priv(dev);
1150 int err;
1151
1152 err = pxa168_init_phy(dev);
1153 if (err)
1154 return err;
1155
1156 err = request_irq(dev->irq, pxa168_eth_int_handler, 0, dev->name, dev);
1157 if (err) {
1158 dev_err(&dev->dev, "can't assign irq\n");
1159 return -EAGAIN;
1160 }
1161 pep->rx_resource_err = 0;
1162 err = rxq_init(dev);
1163 if (err != 0)
1164 goto out_free_irq;
1165 err = txq_init(dev);
1166 if (err != 0)
1167 goto out_free_rx_skb;
1168 pep->rx_used_desc_q = 0;
1169 pep->rx_curr_desc_q = 0;
1170
1171 /* Fill RX ring with skb's */
1172 rxq_refill(dev);
1173 pep->rx_used_desc_q = 0;
1174 pep->rx_curr_desc_q = 0;
1175 netif_carrier_off(dev);
1176 napi_enable(&pep->napi);
1177 eth_port_start(dev);
1178 return 0;
1179 out_free_rx_skb:
1180 rxq_deinit(dev);
1181 out_free_irq:
1182 free_irq(dev->irq, dev);
1183 return err;
1184 }
1185
1186 static int pxa168_eth_stop(struct net_device *dev)
1187 {
1188 struct pxa168_eth_private *pep = netdev_priv(dev);
1189 eth_port_reset(dev);
1190
1191 /* Disable interrupts */
1192 wrl(pep, INT_MASK, 0);
1193 wrl(pep, INT_CAUSE, 0);
1194 /* Write to ICR to clear interrupts. */
1195 wrl(pep, INT_W_CLEAR, 0);
1196 napi_disable(&pep->napi);
1197 del_timer_sync(&pep->timeout);
1198 netif_carrier_off(dev);
1199 free_irq(dev->irq, dev);
1200 rxq_deinit(dev);
1201 txq_deinit(dev);
1202
1203 return 0;
1204 }
1205
1206 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1207 {
1208 int retval;
1209 struct pxa168_eth_private *pep = netdev_priv(dev);
1210
1211 if ((mtu > 9500) || (mtu < 68))
1212 return -EINVAL;
1213
1214 dev->mtu = mtu;
1215 retval = set_port_config_ext(pep);
1216
1217 if (!netif_running(dev))
1218 return 0;
1219
1220 /*
1221 * Stop and then re-open the interface. This will allocate RX
1222 * skbs of the new MTU.
1223 * There is a possible danger that the open will not succeed,
1224 * due to memory being full.
1225 */
1226 pxa168_eth_stop(dev);
1227 if (pxa168_eth_open(dev)) {
1228 dev_err(&dev->dev,
1229 "fatal error on re-opening device after MTU change\n");
1230 }
1231
1232 return 0;
1233 }
1234
1235 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1236 {
1237 int tx_desc_curr;
1238
1239 tx_desc_curr = pep->tx_curr_desc_q;
1240 pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1241 BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1242 pep->tx_desc_count++;
1243
1244 return tx_desc_curr;
1245 }
1246
1247 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1248 {
1249 struct pxa168_eth_private *pep =
1250 container_of(napi, struct pxa168_eth_private, napi);
1251 struct net_device *dev = pep->dev;
1252 int work_done = 0;
1253
1254 /*
1255 * We call txq_reclaim every time since in NAPI interupts are disabled
1256 * and due to this we miss the TX_DONE interrupt,which is not updated in
1257 * interrupt status register.
1258 */
1259 txq_reclaim(dev, 0);
1260 if (netif_queue_stopped(dev)
1261 && pep->tx_ring_size - pep->tx_desc_count > 1) {
1262 netif_wake_queue(dev);
1263 }
1264 work_done = rxq_process(dev, budget);
1265 if (work_done < budget) {
1266 napi_complete(napi);
1267 wrl(pep, INT_MASK, ALL_INTS);
1268 }
1269
1270 return work_done;
1271 }
1272
1273 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1274 {
1275 struct pxa168_eth_private *pep = netdev_priv(dev);
1276 struct net_device_stats *stats = &dev->stats;
1277 struct tx_desc *desc;
1278 int tx_index;
1279 int length;
1280
1281 tx_index = eth_alloc_tx_desc_index(pep);
1282 desc = &pep->p_tx_desc_area[tx_index];
1283 length = skb->len;
1284 pep->tx_skb[tx_index] = skb;
1285 desc->byte_cnt = length;
1286 desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1287
1288 skb_tx_timestamp(skb);
1289
1290 wmb();
1291 desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1292 TX_ZERO_PADDING | TX_LAST_DESC | TX_EN_INT;
1293 wmb();
1294 wrl(pep, SDMA_CMD, SDMA_CMD_TXDH | SDMA_CMD_ERD);
1295
1296 stats->tx_bytes += length;
1297 stats->tx_packets++;
1298 dev->trans_start = jiffies;
1299 if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1300 /* We handled the current skb, but now we are out of space.*/
1301 netif_stop_queue(dev);
1302 }
1303
1304 return NETDEV_TX_OK;
1305 }
1306
1307 static int smi_wait_ready(struct pxa168_eth_private *pep)
1308 {
1309 int i = 0;
1310
1311 /* wait for the SMI register to become available */
1312 for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1313 if (i == PHY_WAIT_ITERATIONS)
1314 return -ETIMEDOUT;
1315 msleep(10);
1316 }
1317
1318 return 0;
1319 }
1320
1321 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1322 {
1323 struct pxa168_eth_private *pep = bus->priv;
1324 int i = 0;
1325 int val;
1326
1327 if (smi_wait_ready(pep)) {
1328 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1329 return -ETIMEDOUT;
1330 }
1331 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1332 /* now wait for the data to be valid */
1333 for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1334 if (i == PHY_WAIT_ITERATIONS) {
1335 netdev_warn(pep->dev,
1336 "pxa168_eth: SMI bus read not valid\n");
1337 return -ENODEV;
1338 }
1339 msleep(10);
1340 }
1341
1342 return val & 0xffff;
1343 }
1344
1345 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1346 u16 value)
1347 {
1348 struct pxa168_eth_private *pep = bus->priv;
1349
1350 if (smi_wait_ready(pep)) {
1351 netdev_warn(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1352 return -ETIMEDOUT;
1353 }
1354
1355 wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1356 SMI_OP_W | (value & 0xffff));
1357
1358 if (smi_wait_ready(pep)) {
1359 netdev_err(pep->dev, "pxa168_eth: SMI bus busy timeout\n");
1360 return -ETIMEDOUT;
1361 }
1362
1363 return 0;
1364 }
1365
1366 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1367 int cmd)
1368 {
1369 struct pxa168_eth_private *pep = netdev_priv(dev);
1370 if (pep->phy != NULL)
1371 return phy_mii_ioctl(pep->phy, ifr, cmd);
1372
1373 return -EOPNOTSUPP;
1374 }
1375
1376 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1377 {
1378 struct pxa168_eth_private *pep = netdev_priv(dev);
1379 int err;
1380
1381 err = phy_read_status(pep->phy);
1382 if (err == 0)
1383 err = phy_ethtool_gset(pep->phy, cmd);
1384
1385 return err;
1386 }
1387
1388 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1389 {
1390 struct pxa168_eth_private *pep = netdev_priv(dev);
1391
1392 return phy_ethtool_sset(pep->phy, cmd);
1393 }
1394
1395 static void pxa168_get_drvinfo(struct net_device *dev,
1396 struct ethtool_drvinfo *info)
1397 {
1398 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1399 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1400 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1401 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1402 }
1403
1404 static const struct ethtool_ops pxa168_ethtool_ops = {
1405 .get_settings = pxa168_get_settings,
1406 .set_settings = pxa168_set_settings,
1407 .get_drvinfo = pxa168_get_drvinfo,
1408 .get_link = ethtool_op_get_link,
1409 .get_ts_info = ethtool_op_get_ts_info,
1410 };
1411
1412 static const struct net_device_ops pxa168_eth_netdev_ops = {
1413 .ndo_open = pxa168_eth_open,
1414 .ndo_stop = pxa168_eth_stop,
1415 .ndo_start_xmit = pxa168_eth_start_xmit,
1416 .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1417 .ndo_set_mac_address = pxa168_eth_set_mac_address,
1418 .ndo_validate_addr = eth_validate_addr,
1419 .ndo_do_ioctl = pxa168_eth_do_ioctl,
1420 .ndo_change_mtu = pxa168_eth_change_mtu,
1421 .ndo_tx_timeout = pxa168_eth_tx_timeout,
1422 };
1423
1424 static int pxa168_eth_probe(struct platform_device *pdev)
1425 {
1426 struct pxa168_eth_private *pep = NULL;
1427 struct net_device *dev = NULL;
1428 struct resource *res;
1429 struct clk *clk;
1430 struct device_node *np;
1431 const unsigned char *mac_addr = NULL;
1432 int err;
1433
1434 printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1435
1436 clk = devm_clk_get(&pdev->dev, NULL);
1437 if (IS_ERR(clk)) {
1438 dev_err(&pdev->dev, "Fast Ethernet failed to get clock\n");
1439 return -ENODEV;
1440 }
1441 clk_prepare_enable(clk);
1442
1443 dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1444 if (!dev) {
1445 err = -ENOMEM;
1446 goto err_clk;
1447 }
1448
1449 platform_set_drvdata(pdev, dev);
1450 pep = netdev_priv(dev);
1451 pep->dev = dev;
1452 pep->clk = clk;
1453
1454 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1455 pep->base = devm_ioremap_resource(&pdev->dev, res);
1456 if (IS_ERR(pep->base)) {
1457 err = -ENOMEM;
1458 goto err_netdev;
1459 }
1460
1461 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1462 BUG_ON(!res);
1463 dev->irq = res->start;
1464 dev->netdev_ops = &pxa168_eth_netdev_ops;
1465 dev->watchdog_timeo = 2 * HZ;
1466 dev->base_addr = 0;
1467 dev->ethtool_ops = &pxa168_ethtool_ops;
1468
1469 INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1470
1471 if (pdev->dev.of_node)
1472 mac_addr = of_get_mac_address(pdev->dev.of_node);
1473
1474 if (mac_addr && is_valid_ether_addr(mac_addr)) {
1475 ether_addr_copy(dev->dev_addr, mac_addr);
1476 } else {
1477 /* try reading the mac address, if set by the bootloader */
1478 pxa168_eth_get_mac_address(dev, dev->dev_addr);
1479 if (!is_valid_ether_addr(dev->dev_addr)) {
1480 dev_info(&pdev->dev, "Using random mac address\n");
1481 eth_hw_addr_random(dev);
1482 }
1483 }
1484
1485 pep->rx_ring_size = NUM_RX_DESCS;
1486 pep->tx_ring_size = NUM_TX_DESCS;
1487
1488 pep->pd = dev_get_platdata(&pdev->dev);
1489 if (pep->pd) {
1490 if (pep->pd->rx_queue_size)
1491 pep->rx_ring_size = pep->pd->rx_queue_size;
1492
1493 if (pep->pd->tx_queue_size)
1494 pep->tx_ring_size = pep->pd->tx_queue_size;
1495
1496 pep->port_num = pep->pd->port_number;
1497 pep->phy_addr = pep->pd->phy_addr;
1498 pep->phy_speed = pep->pd->speed;
1499 pep->phy_duplex = pep->pd->duplex;
1500 pep->phy_intf = pep->pd->intf;
1501
1502 if (pep->pd->init)
1503 pep->pd->init();
1504 } else if (pdev->dev.of_node) {
1505 of_property_read_u32(pdev->dev.of_node, "port-id",
1506 &pep->port_num);
1507
1508 np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0);
1509 if (!np) {
1510 dev_err(&pdev->dev, "missing phy-handle\n");
1511 err = -EINVAL;
1512 goto err_netdev;
1513 }
1514 of_property_read_u32(np, "reg", &pep->phy_addr);
1515 pep->phy_intf = of_get_phy_mode(pdev->dev.of_node);
1516 }
1517
1518 /* Hardware supports only 3 ports */
1519 BUG_ON(pep->port_num > 2);
1520 netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1521
1522 memset(&pep->timeout, 0, sizeof(struct timer_list));
1523 init_timer(&pep->timeout);
1524 pep->timeout.function = rxq_refill_timer_wrapper;
1525 pep->timeout.data = (unsigned long)pep;
1526
1527 pep->smi_bus = mdiobus_alloc();
1528 if (pep->smi_bus == NULL) {
1529 err = -ENOMEM;
1530 goto err_netdev;
1531 }
1532 pep->smi_bus->priv = pep;
1533 pep->smi_bus->name = "pxa168_eth smi";
1534 pep->smi_bus->read = pxa168_smi_read;
1535 pep->smi_bus->write = pxa168_smi_write;
1536 snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1537 pdev->name, pdev->id);
1538 pep->smi_bus->parent = &pdev->dev;
1539 pep->smi_bus->phy_mask = 0xffffffff;
1540 err = mdiobus_register(pep->smi_bus);
1541 if (err)
1542 goto err_free_mdio;
1543
1544 SET_NETDEV_DEV(dev, &pdev->dev);
1545 pxa168_init_hw(pep);
1546 err = register_netdev(dev);
1547 if (err)
1548 goto err_mdiobus;
1549 return 0;
1550
1551 err_mdiobus:
1552 mdiobus_unregister(pep->smi_bus);
1553 err_free_mdio:
1554 mdiobus_free(pep->smi_bus);
1555 err_netdev:
1556 free_netdev(dev);
1557 err_clk:
1558 clk_disable_unprepare(clk);
1559 return err;
1560 }
1561
1562 static int pxa168_eth_remove(struct platform_device *pdev)
1563 {
1564 struct net_device *dev = platform_get_drvdata(pdev);
1565 struct pxa168_eth_private *pep = netdev_priv(dev);
1566
1567 if (pep->htpr) {
1568 dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1569 pep->htpr, pep->htpr_dma);
1570 pep->htpr = NULL;
1571 }
1572 if (pep->phy)
1573 phy_disconnect(pep->phy);
1574 if (pep->clk) {
1575 clk_disable_unprepare(pep->clk);
1576 }
1577
1578 mdiobus_unregister(pep->smi_bus);
1579 mdiobus_free(pep->smi_bus);
1580 unregister_netdev(dev);
1581 cancel_work_sync(&pep->tx_timeout_task);
1582 free_netdev(dev);
1583 return 0;
1584 }
1585
1586 static void pxa168_eth_shutdown(struct platform_device *pdev)
1587 {
1588 struct net_device *dev = platform_get_drvdata(pdev);
1589 eth_port_reset(dev);
1590 }
1591
1592 #ifdef CONFIG_PM
1593 static int pxa168_eth_resume(struct platform_device *pdev)
1594 {
1595 return -ENOSYS;
1596 }
1597
1598 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1599 {
1600 return -ENOSYS;
1601 }
1602
1603 #else
1604 #define pxa168_eth_resume NULL
1605 #define pxa168_eth_suspend NULL
1606 #endif
1607
1608 static const struct of_device_id pxa168_eth_of_match[] = {
1609 { .compatible = "marvell,pxa168-eth" },
1610 { },
1611 };
1612 MODULE_DEVICE_TABLE(of, pxa168_eth_of_match);
1613
1614 static struct platform_driver pxa168_eth_driver = {
1615 .probe = pxa168_eth_probe,
1616 .remove = pxa168_eth_remove,
1617 .shutdown = pxa168_eth_shutdown,
1618 .resume = pxa168_eth_resume,
1619 .suspend = pxa168_eth_suspend,
1620 .driver = {
1621 .name = DRIVER_NAME,
1622 .of_match_table = of_match_ptr(pxa168_eth_of_match),
1623 },
1624 };
1625
1626 module_platform_driver(pxa168_eth_driver);
1627
1628 MODULE_LICENSE("GPL");
1629 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1630 MODULE_ALIAS("platform:pxa168_eth");
This page took 0.064103 seconds and 5 git commands to generate.