Merge tag 'imx-clk-fixes-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/shawng...
[deliverable/linux.git] / drivers / net / ethernet / qlogic / qede / qede_main.c
1 /* QLogic qede NIC Driver
2 * Copyright (c) 2015 QLogic Corporation
3 *
4 * This software is available under the terms of the GNU General Public License
5 * (GPL) Version 2, available from the file COPYING in the main directory of
6 * this source tree.
7 */
8
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/version.h>
12 #include <linux/device.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/skbuff.h>
16 #include <linux/errno.h>
17 #include <linux/list.h>
18 #include <linux/string.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/interrupt.h>
21 #include <asm/byteorder.h>
22 #include <asm/param.h>
23 #include <linux/io.h>
24 #include <linux/netdev_features.h>
25 #include <linux/udp.h>
26 #include <linux/tcp.h>
27 #include <net/vxlan.h>
28 #include <linux/ip.h>
29 #include <net/ipv6.h>
30 #include <net/tcp.h>
31 #include <linux/if_ether.h>
32 #include <linux/if_vlan.h>
33 #include <linux/pkt_sched.h>
34 #include <linux/ethtool.h>
35 #include <linux/in.h>
36 #include <linux/random.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/bitops.h>
39
40 #include "qede.h"
41
42 static char version[] =
43 "QLogic FastLinQ 4xxxx Ethernet Driver qede " DRV_MODULE_VERSION "\n";
44
45 MODULE_DESCRIPTION("QLogic FastLinQ 4xxxx Ethernet Driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION);
48
49 static uint debug;
50 module_param(debug, uint, 0);
51 MODULE_PARM_DESC(debug, " Default debug msglevel");
52
53 static const struct qed_eth_ops *qed_ops;
54
55 #define CHIP_NUM_57980S_40 0x1634
56 #define CHIP_NUM_57980S_10 0x1666
57 #define CHIP_NUM_57980S_MF 0x1636
58 #define CHIP_NUM_57980S_100 0x1644
59 #define CHIP_NUM_57980S_50 0x1654
60 #define CHIP_NUM_57980S_25 0x1656
61
62 #ifndef PCI_DEVICE_ID_NX2_57980E
63 #define PCI_DEVICE_ID_57980S_40 CHIP_NUM_57980S_40
64 #define PCI_DEVICE_ID_57980S_10 CHIP_NUM_57980S_10
65 #define PCI_DEVICE_ID_57980S_MF CHIP_NUM_57980S_MF
66 #define PCI_DEVICE_ID_57980S_100 CHIP_NUM_57980S_100
67 #define PCI_DEVICE_ID_57980S_50 CHIP_NUM_57980S_50
68 #define PCI_DEVICE_ID_57980S_25 CHIP_NUM_57980S_25
69 #endif
70
71 static const struct pci_device_id qede_pci_tbl[] = {
72 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_40), 0 },
73 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_10), 0 },
74 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_MF), 0 },
75 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_100), 0 },
76 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_50), 0 },
77 { PCI_VDEVICE(QLOGIC, PCI_DEVICE_ID_57980S_25), 0 },
78 { 0 }
79 };
80
81 MODULE_DEVICE_TABLE(pci, qede_pci_tbl);
82
83 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id);
84
85 #define TX_TIMEOUT (5 * HZ)
86
87 static void qede_remove(struct pci_dev *pdev);
88 static int qede_alloc_rx_buffer(struct qede_dev *edev,
89 struct qede_rx_queue *rxq);
90 static void qede_link_update(void *dev, struct qed_link_output *link);
91
92 static struct pci_driver qede_pci_driver = {
93 .name = "qede",
94 .id_table = qede_pci_tbl,
95 .probe = qede_probe,
96 .remove = qede_remove,
97 };
98
99 static struct qed_eth_cb_ops qede_ll_ops = {
100 {
101 .link_update = qede_link_update,
102 },
103 };
104
105 static int qede_netdev_event(struct notifier_block *this, unsigned long event,
106 void *ptr)
107 {
108 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
109 struct ethtool_drvinfo drvinfo;
110 struct qede_dev *edev;
111
112 /* Currently only support name change */
113 if (event != NETDEV_CHANGENAME)
114 goto done;
115
116 /* Check whether this is a qede device */
117 if (!ndev || !ndev->ethtool_ops || !ndev->ethtool_ops->get_drvinfo)
118 goto done;
119
120 memset(&drvinfo, 0, sizeof(drvinfo));
121 ndev->ethtool_ops->get_drvinfo(ndev, &drvinfo);
122 if (strcmp(drvinfo.driver, "qede"))
123 goto done;
124 edev = netdev_priv(ndev);
125
126 /* Notify qed of the name change */
127 if (!edev->ops || !edev->ops->common)
128 goto done;
129 edev->ops->common->set_id(edev->cdev, edev->ndev->name,
130 "qede");
131
132 done:
133 return NOTIFY_DONE;
134 }
135
136 static struct notifier_block qede_netdev_notifier = {
137 .notifier_call = qede_netdev_event,
138 };
139
140 static
141 int __init qede_init(void)
142 {
143 int ret;
144 u32 qed_ver;
145
146 pr_notice("qede_init: %s\n", version);
147
148 qed_ver = qed_get_protocol_version(QED_PROTOCOL_ETH);
149 if (qed_ver != QEDE_ETH_INTERFACE_VERSION) {
150 pr_notice("Version mismatch [%08x != %08x]\n",
151 qed_ver,
152 QEDE_ETH_INTERFACE_VERSION);
153 return -EINVAL;
154 }
155
156 qed_ops = qed_get_eth_ops(QEDE_ETH_INTERFACE_VERSION);
157 if (!qed_ops) {
158 pr_notice("Failed to get qed ethtool operations\n");
159 return -EINVAL;
160 }
161
162 /* Must register notifier before pci ops, since we might miss
163 * interface rename after pci probe and netdev registeration.
164 */
165 ret = register_netdevice_notifier(&qede_netdev_notifier);
166 if (ret) {
167 pr_notice("Failed to register netdevice_notifier\n");
168 qed_put_eth_ops();
169 return -EINVAL;
170 }
171
172 ret = pci_register_driver(&qede_pci_driver);
173 if (ret) {
174 pr_notice("Failed to register driver\n");
175 unregister_netdevice_notifier(&qede_netdev_notifier);
176 qed_put_eth_ops();
177 return -EINVAL;
178 }
179
180 return 0;
181 }
182
183 static void __exit qede_cleanup(void)
184 {
185 pr_notice("qede_cleanup called\n");
186
187 unregister_netdevice_notifier(&qede_netdev_notifier);
188 pci_unregister_driver(&qede_pci_driver);
189 qed_put_eth_ops();
190 }
191
192 module_init(qede_init);
193 module_exit(qede_cleanup);
194
195 /* -------------------------------------------------------------------------
196 * START OF FAST-PATH
197 * -------------------------------------------------------------------------
198 */
199
200 /* Unmap the data and free skb */
201 static int qede_free_tx_pkt(struct qede_dev *edev,
202 struct qede_tx_queue *txq,
203 int *len)
204 {
205 u16 idx = txq->sw_tx_cons & NUM_TX_BDS_MAX;
206 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
207 struct eth_tx_1st_bd *first_bd;
208 struct eth_tx_bd *tx_data_bd;
209 int bds_consumed = 0;
210 int nbds;
211 bool data_split = txq->sw_tx_ring[idx].flags & QEDE_TSO_SPLIT_BD;
212 int i, split_bd_len = 0;
213
214 if (unlikely(!skb)) {
215 DP_ERR(edev,
216 "skb is null for txq idx=%d txq->sw_tx_cons=%d txq->sw_tx_prod=%d\n",
217 idx, txq->sw_tx_cons, txq->sw_tx_prod);
218 return -1;
219 }
220
221 *len = skb->len;
222
223 first_bd = (struct eth_tx_1st_bd *)qed_chain_consume(&txq->tx_pbl);
224
225 bds_consumed++;
226
227 nbds = first_bd->data.nbds;
228
229 if (data_split) {
230 struct eth_tx_bd *split = (struct eth_tx_bd *)
231 qed_chain_consume(&txq->tx_pbl);
232 split_bd_len = BD_UNMAP_LEN(split);
233 bds_consumed++;
234 }
235 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
236 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
237
238 /* Unmap the data of the skb frags */
239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, bds_consumed++) {
240 tx_data_bd = (struct eth_tx_bd *)
241 qed_chain_consume(&txq->tx_pbl);
242 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
243 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
244 }
245
246 while (bds_consumed++ < nbds)
247 qed_chain_consume(&txq->tx_pbl);
248
249 /* Free skb */
250 dev_kfree_skb_any(skb);
251 txq->sw_tx_ring[idx].skb = NULL;
252 txq->sw_tx_ring[idx].flags = 0;
253
254 return 0;
255 }
256
257 /* Unmap the data and free skb when mapping failed during start_xmit */
258 static void qede_free_failed_tx_pkt(struct qede_dev *edev,
259 struct qede_tx_queue *txq,
260 struct eth_tx_1st_bd *first_bd,
261 int nbd,
262 bool data_split)
263 {
264 u16 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
265 struct sk_buff *skb = txq->sw_tx_ring[idx].skb;
266 struct eth_tx_bd *tx_data_bd;
267 int i, split_bd_len = 0;
268
269 /* Return prod to its position before this skb was handled */
270 qed_chain_set_prod(&txq->tx_pbl,
271 le16_to_cpu(txq->tx_db.data.bd_prod),
272 first_bd);
273
274 first_bd = (struct eth_tx_1st_bd *)qed_chain_produce(&txq->tx_pbl);
275
276 if (data_split) {
277 struct eth_tx_bd *split = (struct eth_tx_bd *)
278 qed_chain_produce(&txq->tx_pbl);
279 split_bd_len = BD_UNMAP_LEN(split);
280 nbd--;
281 }
282
283 dma_unmap_page(&edev->pdev->dev, BD_UNMAP_ADDR(first_bd),
284 BD_UNMAP_LEN(first_bd) + split_bd_len, DMA_TO_DEVICE);
285
286 /* Unmap the data of the skb frags */
287 for (i = 0; i < nbd; i++) {
288 tx_data_bd = (struct eth_tx_bd *)
289 qed_chain_produce(&txq->tx_pbl);
290 if (tx_data_bd->nbytes)
291 dma_unmap_page(&edev->pdev->dev,
292 BD_UNMAP_ADDR(tx_data_bd),
293 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
294 }
295
296 /* Return again prod to its position before this skb was handled */
297 qed_chain_set_prod(&txq->tx_pbl,
298 le16_to_cpu(txq->tx_db.data.bd_prod),
299 first_bd);
300
301 /* Free skb */
302 dev_kfree_skb_any(skb);
303 txq->sw_tx_ring[idx].skb = NULL;
304 txq->sw_tx_ring[idx].flags = 0;
305 }
306
307 static u32 qede_xmit_type(struct qede_dev *edev,
308 struct sk_buff *skb,
309 int *ipv6_ext)
310 {
311 u32 rc = XMIT_L4_CSUM;
312 __be16 l3_proto;
313
314 if (skb->ip_summed != CHECKSUM_PARTIAL)
315 return XMIT_PLAIN;
316
317 l3_proto = vlan_get_protocol(skb);
318 if (l3_proto == htons(ETH_P_IPV6) &&
319 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
320 *ipv6_ext = 1;
321
322 if (skb_is_gso(skb))
323 rc |= XMIT_LSO;
324
325 return rc;
326 }
327
328 static void qede_set_params_for_ipv6_ext(struct sk_buff *skb,
329 struct eth_tx_2nd_bd *second_bd,
330 struct eth_tx_3rd_bd *third_bd)
331 {
332 u8 l4_proto;
333 u16 bd2_bits1 = 0, bd2_bits2 = 0;
334
335 bd2_bits1 |= (1 << ETH_TX_DATA_2ND_BD_IPV6_EXT_SHIFT);
336
337 bd2_bits2 |= ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) &
338 ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_MASK)
339 << ETH_TX_DATA_2ND_BD_L4_HDR_START_OFFSET_W_SHIFT;
340
341 bd2_bits1 |= (ETH_L4_PSEUDO_CSUM_CORRECT_LENGTH <<
342 ETH_TX_DATA_2ND_BD_L4_PSEUDO_CSUM_MODE_SHIFT);
343
344 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6))
345 l4_proto = ipv6_hdr(skb)->nexthdr;
346 else
347 l4_proto = ip_hdr(skb)->protocol;
348
349 if (l4_proto == IPPROTO_UDP)
350 bd2_bits1 |= 1 << ETH_TX_DATA_2ND_BD_L4_UDP_SHIFT;
351
352 if (third_bd)
353 third_bd->data.bitfields |=
354 cpu_to_le16(((tcp_hdrlen(skb) / 4) &
355 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_MASK) <<
356 ETH_TX_DATA_3RD_BD_TCP_HDR_LEN_DW_SHIFT);
357
358 second_bd->data.bitfields1 = cpu_to_le16(bd2_bits1);
359 second_bd->data.bitfields2 = cpu_to_le16(bd2_bits2);
360 }
361
362 static int map_frag_to_bd(struct qede_dev *edev,
363 skb_frag_t *frag,
364 struct eth_tx_bd *bd)
365 {
366 dma_addr_t mapping;
367
368 /* Map skb non-linear frag data for DMA */
369 mapping = skb_frag_dma_map(&edev->pdev->dev, frag, 0,
370 skb_frag_size(frag),
371 DMA_TO_DEVICE);
372 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
373 DP_NOTICE(edev, "Unable to map frag - dropping packet\n");
374 return -ENOMEM;
375 }
376
377 /* Setup the data pointer of the frag data */
378 BD_SET_UNMAP_ADDR_LEN(bd, mapping, skb_frag_size(frag));
379
380 return 0;
381 }
382
383 /* +2 for 1st BD for headers and 2nd BD for headlen (if required) */
384 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
385 static bool qede_pkt_req_lin(struct qede_dev *edev, struct sk_buff *skb,
386 u8 xmit_type)
387 {
388 int allowed_frags = ETH_TX_MAX_BDS_PER_NON_LSO_PACKET - 1;
389
390 if (xmit_type & XMIT_LSO) {
391 int hlen;
392
393 hlen = skb_transport_header(skb) +
394 tcp_hdrlen(skb) - skb->data;
395
396 /* linear payload would require its own BD */
397 if (skb_headlen(skb) > hlen)
398 allowed_frags--;
399 }
400
401 return (skb_shinfo(skb)->nr_frags > allowed_frags);
402 }
403 #endif
404
405 /* Main transmit function */
406 static
407 netdev_tx_t qede_start_xmit(struct sk_buff *skb,
408 struct net_device *ndev)
409 {
410 struct qede_dev *edev = netdev_priv(ndev);
411 struct netdev_queue *netdev_txq;
412 struct qede_tx_queue *txq;
413 struct eth_tx_1st_bd *first_bd;
414 struct eth_tx_2nd_bd *second_bd = NULL;
415 struct eth_tx_3rd_bd *third_bd = NULL;
416 struct eth_tx_bd *tx_data_bd = NULL;
417 u16 txq_index;
418 u8 nbd = 0;
419 dma_addr_t mapping;
420 int rc, frag_idx = 0, ipv6_ext = 0;
421 u8 xmit_type;
422 u16 idx;
423 u16 hlen;
424 bool data_split;
425
426 /* Get tx-queue context and netdev index */
427 txq_index = skb_get_queue_mapping(skb);
428 WARN_ON(txq_index >= QEDE_TSS_CNT(edev));
429 txq = QEDE_TX_QUEUE(edev, txq_index);
430 netdev_txq = netdev_get_tx_queue(ndev, txq_index);
431
432 WARN_ON(qed_chain_get_elem_left(&txq->tx_pbl) <
433 (MAX_SKB_FRAGS + 1));
434
435 xmit_type = qede_xmit_type(edev, skb, &ipv6_ext);
436
437 #if ((MAX_SKB_FRAGS + 2) > ETH_TX_MAX_BDS_PER_NON_LSO_PACKET)
438 if (qede_pkt_req_lin(edev, skb, xmit_type)) {
439 if (skb_linearize(skb)) {
440 DP_NOTICE(edev,
441 "SKB linearization failed - silently dropping this SKB\n");
442 dev_kfree_skb_any(skb);
443 return NETDEV_TX_OK;
444 }
445 }
446 #endif
447
448 /* Fill the entry in the SW ring and the BDs in the FW ring */
449 idx = txq->sw_tx_prod & NUM_TX_BDS_MAX;
450 txq->sw_tx_ring[idx].skb = skb;
451 first_bd = (struct eth_tx_1st_bd *)
452 qed_chain_produce(&txq->tx_pbl);
453 memset(first_bd, 0, sizeof(*first_bd));
454 first_bd->data.bd_flags.bitfields =
455 1 << ETH_TX_1ST_BD_FLAGS_START_BD_SHIFT;
456
457 /* Map skb linear data for DMA and set in the first BD */
458 mapping = dma_map_single(&edev->pdev->dev, skb->data,
459 skb_headlen(skb), DMA_TO_DEVICE);
460 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
461 DP_NOTICE(edev, "SKB mapping failed\n");
462 qede_free_failed_tx_pkt(edev, txq, first_bd, 0, false);
463 return NETDEV_TX_OK;
464 }
465 nbd++;
466 BD_SET_UNMAP_ADDR_LEN(first_bd, mapping, skb_headlen(skb));
467
468 /* In case there is IPv6 with extension headers or LSO we need 2nd and
469 * 3rd BDs.
470 */
471 if (unlikely((xmit_type & XMIT_LSO) | ipv6_ext)) {
472 second_bd = (struct eth_tx_2nd_bd *)
473 qed_chain_produce(&txq->tx_pbl);
474 memset(second_bd, 0, sizeof(*second_bd));
475
476 nbd++;
477 third_bd = (struct eth_tx_3rd_bd *)
478 qed_chain_produce(&txq->tx_pbl);
479 memset(third_bd, 0, sizeof(*third_bd));
480
481 nbd++;
482 /* We need to fill in additional data in second_bd... */
483 tx_data_bd = (struct eth_tx_bd *)second_bd;
484 }
485
486 if (skb_vlan_tag_present(skb)) {
487 first_bd->data.vlan = cpu_to_le16(skb_vlan_tag_get(skb));
488 first_bd->data.bd_flags.bitfields |=
489 1 << ETH_TX_1ST_BD_FLAGS_VLAN_INSERTION_SHIFT;
490 }
491
492 /* Fill the parsing flags & params according to the requested offload */
493 if (xmit_type & XMIT_L4_CSUM) {
494 u16 temp = 1 << ETH_TX_DATA_1ST_BD_TUNN_CFG_OVERRIDE_SHIFT;
495
496 /* We don't re-calculate IP checksum as it is already done by
497 * the upper stack
498 */
499 first_bd->data.bd_flags.bitfields |=
500 1 << ETH_TX_1ST_BD_FLAGS_L4_CSUM_SHIFT;
501
502 first_bd->data.bitfields |= cpu_to_le16(temp);
503
504 /* If the packet is IPv6 with extension header, indicate that
505 * to FW and pass few params, since the device cracker doesn't
506 * support parsing IPv6 with extension header/s.
507 */
508 if (unlikely(ipv6_ext))
509 qede_set_params_for_ipv6_ext(skb, second_bd, third_bd);
510 }
511
512 if (xmit_type & XMIT_LSO) {
513 first_bd->data.bd_flags.bitfields |=
514 (1 << ETH_TX_1ST_BD_FLAGS_LSO_SHIFT);
515 third_bd->data.lso_mss =
516 cpu_to_le16(skb_shinfo(skb)->gso_size);
517
518 first_bd->data.bd_flags.bitfields |=
519 1 << ETH_TX_1ST_BD_FLAGS_IP_CSUM_SHIFT;
520 hlen = skb_transport_header(skb) +
521 tcp_hdrlen(skb) - skb->data;
522
523 /* @@@TBD - if will not be removed need to check */
524 third_bd->data.bitfields |=
525 cpu_to_le16((1 << ETH_TX_DATA_3RD_BD_HDR_NBD_SHIFT));
526
527 /* Make life easier for FW guys who can't deal with header and
528 * data on same BD. If we need to split, use the second bd...
529 */
530 if (unlikely(skb_headlen(skb) > hlen)) {
531 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
532 "TSO split header size is %d (%x:%x)\n",
533 first_bd->nbytes, first_bd->addr.hi,
534 first_bd->addr.lo);
535
536 mapping = HILO_U64(le32_to_cpu(first_bd->addr.hi),
537 le32_to_cpu(first_bd->addr.lo)) +
538 hlen;
539
540 BD_SET_UNMAP_ADDR_LEN(tx_data_bd, mapping,
541 le16_to_cpu(first_bd->nbytes) -
542 hlen);
543
544 /* this marks the BD as one that has no
545 * individual mapping
546 */
547 txq->sw_tx_ring[idx].flags |= QEDE_TSO_SPLIT_BD;
548
549 first_bd->nbytes = cpu_to_le16(hlen);
550
551 tx_data_bd = (struct eth_tx_bd *)third_bd;
552 data_split = true;
553 }
554 }
555
556 /* Handle fragmented skb */
557 /* special handle for frags inside 2nd and 3rd bds.. */
558 while (tx_data_bd && frag_idx < skb_shinfo(skb)->nr_frags) {
559 rc = map_frag_to_bd(edev,
560 &skb_shinfo(skb)->frags[frag_idx],
561 tx_data_bd);
562 if (rc) {
563 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
564 data_split);
565 return NETDEV_TX_OK;
566 }
567
568 if (tx_data_bd == (struct eth_tx_bd *)second_bd)
569 tx_data_bd = (struct eth_tx_bd *)third_bd;
570 else
571 tx_data_bd = NULL;
572
573 frag_idx++;
574 }
575
576 /* map last frags into 4th, 5th .... */
577 for (; frag_idx < skb_shinfo(skb)->nr_frags; frag_idx++, nbd++) {
578 tx_data_bd = (struct eth_tx_bd *)
579 qed_chain_produce(&txq->tx_pbl);
580
581 memset(tx_data_bd, 0, sizeof(*tx_data_bd));
582
583 rc = map_frag_to_bd(edev,
584 &skb_shinfo(skb)->frags[frag_idx],
585 tx_data_bd);
586 if (rc) {
587 qede_free_failed_tx_pkt(edev, txq, first_bd, nbd,
588 data_split);
589 return NETDEV_TX_OK;
590 }
591 }
592
593 /* update the first BD with the actual num BDs */
594 first_bd->data.nbds = nbd;
595
596 netdev_tx_sent_queue(netdev_txq, skb->len);
597
598 skb_tx_timestamp(skb);
599
600 /* Advance packet producer only before sending the packet since mapping
601 * of pages may fail.
602 */
603 txq->sw_tx_prod++;
604
605 /* 'next page' entries are counted in the producer value */
606 txq->tx_db.data.bd_prod =
607 cpu_to_le16(qed_chain_get_prod_idx(&txq->tx_pbl));
608
609 /* wmb makes sure that the BDs data is updated before updating the
610 * producer, otherwise FW may read old data from the BDs.
611 */
612 wmb();
613 barrier();
614 writel(txq->tx_db.raw, txq->doorbell_addr);
615
616 /* mmiowb is needed to synchronize doorbell writes from more than one
617 * processor. It guarantees that the write arrives to the device before
618 * the queue lock is released and another start_xmit is called (possibly
619 * on another CPU). Without this barrier, the next doorbell can bypass
620 * this doorbell. This is applicable to IA64/Altix systems.
621 */
622 mmiowb();
623
624 if (unlikely(qed_chain_get_elem_left(&txq->tx_pbl)
625 < (MAX_SKB_FRAGS + 1))) {
626 netif_tx_stop_queue(netdev_txq);
627 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
628 "Stop queue was called\n");
629 /* paired memory barrier is in qede_tx_int(), we have to keep
630 * ordering of set_bit() in netif_tx_stop_queue() and read of
631 * fp->bd_tx_cons
632 */
633 smp_mb();
634
635 if (qed_chain_get_elem_left(&txq->tx_pbl)
636 >= (MAX_SKB_FRAGS + 1) &&
637 (edev->state == QEDE_STATE_OPEN)) {
638 netif_tx_wake_queue(netdev_txq);
639 DP_VERBOSE(edev, NETIF_MSG_TX_QUEUED,
640 "Wake queue was called\n");
641 }
642 }
643
644 return NETDEV_TX_OK;
645 }
646
647 static int qede_txq_has_work(struct qede_tx_queue *txq)
648 {
649 u16 hw_bd_cons;
650
651 /* Tell compiler that consumer and producer can change */
652 barrier();
653 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
654 if (qed_chain_get_cons_idx(&txq->tx_pbl) == hw_bd_cons + 1)
655 return 0;
656
657 return hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl);
658 }
659
660 static int qede_tx_int(struct qede_dev *edev,
661 struct qede_tx_queue *txq)
662 {
663 struct netdev_queue *netdev_txq;
664 u16 hw_bd_cons;
665 unsigned int pkts_compl = 0, bytes_compl = 0;
666 int rc;
667
668 netdev_txq = netdev_get_tx_queue(edev->ndev, txq->index);
669
670 hw_bd_cons = le16_to_cpu(*txq->hw_cons_ptr);
671 barrier();
672
673 while (hw_bd_cons != qed_chain_get_cons_idx(&txq->tx_pbl)) {
674 int len = 0;
675
676 rc = qede_free_tx_pkt(edev, txq, &len);
677 if (rc) {
678 DP_NOTICE(edev, "hw_bd_cons = %d, chain_cons=%d\n",
679 hw_bd_cons,
680 qed_chain_get_cons_idx(&txq->tx_pbl));
681 break;
682 }
683
684 bytes_compl += len;
685 pkts_compl++;
686 txq->sw_tx_cons++;
687 }
688
689 netdev_tx_completed_queue(netdev_txq, pkts_compl, bytes_compl);
690
691 /* Need to make the tx_bd_cons update visible to start_xmit()
692 * before checking for netif_tx_queue_stopped(). Without the
693 * memory barrier, there is a small possibility that
694 * start_xmit() will miss it and cause the queue to be stopped
695 * forever.
696 * On the other hand we need an rmb() here to ensure the proper
697 * ordering of bit testing in the following
698 * netif_tx_queue_stopped(txq) call.
699 */
700 smp_mb();
701
702 if (unlikely(netif_tx_queue_stopped(netdev_txq))) {
703 /* Taking tx_lock is needed to prevent reenabling the queue
704 * while it's empty. This could have happen if rx_action() gets
705 * suspended in qede_tx_int() after the condition before
706 * netif_tx_wake_queue(), while tx_action (qede_start_xmit()):
707 *
708 * stops the queue->sees fresh tx_bd_cons->releases the queue->
709 * sends some packets consuming the whole queue again->
710 * stops the queue
711 */
712
713 __netif_tx_lock(netdev_txq, smp_processor_id());
714
715 if ((netif_tx_queue_stopped(netdev_txq)) &&
716 (edev->state == QEDE_STATE_OPEN) &&
717 (qed_chain_get_elem_left(&txq->tx_pbl)
718 >= (MAX_SKB_FRAGS + 1))) {
719 netif_tx_wake_queue(netdev_txq);
720 DP_VERBOSE(edev, NETIF_MSG_TX_DONE,
721 "Wake queue was called\n");
722 }
723
724 __netif_tx_unlock(netdev_txq);
725 }
726
727 return 0;
728 }
729
730 static bool qede_has_rx_work(struct qede_rx_queue *rxq)
731 {
732 u16 hw_comp_cons, sw_comp_cons;
733
734 /* Tell compiler that status block fields can change */
735 barrier();
736
737 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
738 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
739
740 return hw_comp_cons != sw_comp_cons;
741 }
742
743 static bool qede_has_tx_work(struct qede_fastpath *fp)
744 {
745 u8 tc;
746
747 for (tc = 0; tc < fp->edev->num_tc; tc++)
748 if (qede_txq_has_work(&fp->txqs[tc]))
749 return true;
750 return false;
751 }
752
753 /* This function reuses the buffer(from an offset) from
754 * consumer index to producer index in the bd ring
755 */
756 static inline void qede_reuse_page(struct qede_dev *edev,
757 struct qede_rx_queue *rxq,
758 struct sw_rx_data *curr_cons)
759 {
760 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
761 struct sw_rx_data *curr_prod;
762 dma_addr_t new_mapping;
763
764 curr_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
765 *curr_prod = *curr_cons;
766
767 new_mapping = curr_prod->mapping + curr_prod->page_offset;
768
769 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(new_mapping));
770 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(new_mapping));
771
772 rxq->sw_rx_prod++;
773 curr_cons->data = NULL;
774 }
775
776 static inline int qede_realloc_rx_buffer(struct qede_dev *edev,
777 struct qede_rx_queue *rxq,
778 struct sw_rx_data *curr_cons)
779 {
780 /* Move to the next segment in the page */
781 curr_cons->page_offset += rxq->rx_buf_seg_size;
782
783 if (curr_cons->page_offset == PAGE_SIZE) {
784 if (unlikely(qede_alloc_rx_buffer(edev, rxq)))
785 return -ENOMEM;
786
787 dma_unmap_page(&edev->pdev->dev, curr_cons->mapping,
788 PAGE_SIZE, DMA_FROM_DEVICE);
789 } else {
790 /* Increment refcount of the page as we don't want
791 * network stack to take the ownership of the page
792 * which can be recycled multiple times by the driver.
793 */
794 atomic_inc(&curr_cons->data->_count);
795 qede_reuse_page(edev, rxq, curr_cons);
796 }
797
798 return 0;
799 }
800
801 static inline void qede_update_rx_prod(struct qede_dev *edev,
802 struct qede_rx_queue *rxq)
803 {
804 u16 bd_prod = qed_chain_get_prod_idx(&rxq->rx_bd_ring);
805 u16 cqe_prod = qed_chain_get_prod_idx(&rxq->rx_comp_ring);
806 struct eth_rx_prod_data rx_prods = {0};
807
808 /* Update producers */
809 rx_prods.bd_prod = cpu_to_le16(bd_prod);
810 rx_prods.cqe_prod = cpu_to_le16(cqe_prod);
811
812 /* Make sure that the BD and SGE data is updated before updating the
813 * producers since FW might read the BD/SGE right after the producer
814 * is updated.
815 */
816 wmb();
817
818 internal_ram_wr(rxq->hw_rxq_prod_addr, sizeof(rx_prods),
819 (u32 *)&rx_prods);
820
821 /* mmiowb is needed to synchronize doorbell writes from more than one
822 * processor. It guarantees that the write arrives to the device before
823 * the napi lock is released and another qede_poll is called (possibly
824 * on another CPU). Without this barrier, the next doorbell can bypass
825 * this doorbell. This is applicable to IA64/Altix systems.
826 */
827 mmiowb();
828 }
829
830 static u32 qede_get_rxhash(struct qede_dev *edev,
831 u8 bitfields,
832 __le32 rss_hash,
833 enum pkt_hash_types *rxhash_type)
834 {
835 enum rss_hash_type htype;
836
837 htype = GET_FIELD(bitfields, ETH_FAST_PATH_RX_REG_CQE_RSS_HASH_TYPE);
838
839 if ((edev->ndev->features & NETIF_F_RXHASH) && htype) {
840 *rxhash_type = ((htype == RSS_HASH_TYPE_IPV4) ||
841 (htype == RSS_HASH_TYPE_IPV6)) ?
842 PKT_HASH_TYPE_L3 : PKT_HASH_TYPE_L4;
843 return le32_to_cpu(rss_hash);
844 }
845 *rxhash_type = PKT_HASH_TYPE_NONE;
846 return 0;
847 }
848
849 static void qede_set_skb_csum(struct sk_buff *skb, u8 csum_flag)
850 {
851 skb_checksum_none_assert(skb);
852
853 if (csum_flag & QEDE_CSUM_UNNECESSARY)
854 skb->ip_summed = CHECKSUM_UNNECESSARY;
855 }
856
857 static inline void qede_skb_receive(struct qede_dev *edev,
858 struct qede_fastpath *fp,
859 struct sk_buff *skb,
860 u16 vlan_tag)
861 {
862 if (vlan_tag)
863 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
864 vlan_tag);
865
866 napi_gro_receive(&fp->napi, skb);
867 }
868
869 static void qede_set_gro_params(struct qede_dev *edev,
870 struct sk_buff *skb,
871 struct eth_fast_path_rx_tpa_start_cqe *cqe)
872 {
873 u16 parsing_flags = le16_to_cpu(cqe->pars_flags.flags);
874
875 if (((parsing_flags >> PARSING_AND_ERR_FLAGS_L3TYPE_SHIFT) &
876 PARSING_AND_ERR_FLAGS_L3TYPE_MASK) == 2)
877 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
878 else
879 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
880
881 skb_shinfo(skb)->gso_size = __le16_to_cpu(cqe->len_on_first_bd) -
882 cqe->header_len;
883 }
884
885 static int qede_fill_frag_skb(struct qede_dev *edev,
886 struct qede_rx_queue *rxq,
887 u8 tpa_agg_index,
888 u16 len_on_bd)
889 {
890 struct sw_rx_data *current_bd = &rxq->sw_rx_ring[rxq->sw_rx_cons &
891 NUM_RX_BDS_MAX];
892 struct qede_agg_info *tpa_info = &rxq->tpa_info[tpa_agg_index];
893 struct sk_buff *skb = tpa_info->skb;
894
895 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
896 goto out;
897
898 /* Add one frag and update the appropriate fields in the skb */
899 skb_fill_page_desc(skb, tpa_info->frag_id++,
900 current_bd->data, current_bd->page_offset,
901 len_on_bd);
902
903 if (unlikely(qede_realloc_rx_buffer(edev, rxq, current_bd))) {
904 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
905 goto out;
906 }
907
908 qed_chain_consume(&rxq->rx_bd_ring);
909 rxq->sw_rx_cons++;
910
911 skb->data_len += len_on_bd;
912 skb->truesize += rxq->rx_buf_seg_size;
913 skb->len += len_on_bd;
914
915 return 0;
916
917 out:
918 return -ENOMEM;
919 }
920
921 static void qede_tpa_start(struct qede_dev *edev,
922 struct qede_rx_queue *rxq,
923 struct eth_fast_path_rx_tpa_start_cqe *cqe)
924 {
925 struct qede_agg_info *tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
926 struct eth_rx_bd *rx_bd_cons = qed_chain_consume(&rxq->rx_bd_ring);
927 struct eth_rx_bd *rx_bd_prod = qed_chain_produce(&rxq->rx_bd_ring);
928 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
929 dma_addr_t mapping = tpa_info->replace_buf_mapping;
930 struct sw_rx_data *sw_rx_data_cons;
931 struct sw_rx_data *sw_rx_data_prod;
932 enum pkt_hash_types rxhash_type;
933 u32 rxhash;
934
935 sw_rx_data_cons = &rxq->sw_rx_ring[rxq->sw_rx_cons & NUM_RX_BDS_MAX];
936 sw_rx_data_prod = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
937
938 /* Use pre-allocated replacement buffer - we can't release the agg.
939 * start until its over and we don't want to risk allocation failing
940 * here, so re-allocate when aggregation will be over.
941 */
942 dma_unmap_addr_set(sw_rx_data_prod, mapping,
943 dma_unmap_addr(replace_buf, mapping));
944
945 sw_rx_data_prod->data = replace_buf->data;
946 rx_bd_prod->addr.hi = cpu_to_le32(upper_32_bits(mapping));
947 rx_bd_prod->addr.lo = cpu_to_le32(lower_32_bits(mapping));
948 sw_rx_data_prod->page_offset = replace_buf->page_offset;
949
950 rxq->sw_rx_prod++;
951
952 /* move partial skb from cons to pool (don't unmap yet)
953 * save mapping, incase we drop the packet later on.
954 */
955 tpa_info->start_buf = *sw_rx_data_cons;
956 mapping = HILO_U64(le32_to_cpu(rx_bd_cons->addr.hi),
957 le32_to_cpu(rx_bd_cons->addr.lo));
958
959 tpa_info->start_buf_mapping = mapping;
960 rxq->sw_rx_cons++;
961
962 /* set tpa state to start only if we are able to allocate skb
963 * for this aggregation, otherwise mark as error and aggregation will
964 * be dropped
965 */
966 tpa_info->skb = netdev_alloc_skb(edev->ndev,
967 le16_to_cpu(cqe->len_on_first_bd));
968 if (unlikely(!tpa_info->skb)) {
969 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
970 return;
971 }
972
973 skb_put(tpa_info->skb, le16_to_cpu(cqe->len_on_first_bd));
974 memcpy(&tpa_info->start_cqe, cqe, sizeof(tpa_info->start_cqe));
975
976 /* Start filling in the aggregation info */
977 tpa_info->frag_id = 0;
978 tpa_info->agg_state = QEDE_AGG_STATE_START;
979
980 rxhash = qede_get_rxhash(edev, cqe->bitfields,
981 cqe->rss_hash, &rxhash_type);
982 skb_set_hash(tpa_info->skb, rxhash, rxhash_type);
983 if ((le16_to_cpu(cqe->pars_flags.flags) >>
984 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_SHIFT) &
985 PARSING_AND_ERR_FLAGS_TAG8021QEXIST_MASK)
986 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
987 else
988 tpa_info->vlan_tag = 0;
989
990 /* This is needed in order to enable forwarding support */
991 qede_set_gro_params(edev, tpa_info->skb, cqe);
992
993 if (likely(cqe->ext_bd_len_list[0]))
994 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
995 le16_to_cpu(cqe->ext_bd_len_list[0]));
996
997 if (unlikely(cqe->ext_bd_len_list[1])) {
998 DP_ERR(edev,
999 "Unlikely - got a TPA aggregation with more than one ext_bd_len_list entry in the TPA start\n");
1000 tpa_info->agg_state = QEDE_AGG_STATE_ERROR;
1001 }
1002 }
1003
1004 #ifdef CONFIG_INET
1005 static void qede_gro_ip_csum(struct sk_buff *skb)
1006 {
1007 const struct iphdr *iph = ip_hdr(skb);
1008 struct tcphdr *th;
1009
1010 skb_set_network_header(skb, 0);
1011 skb_set_transport_header(skb, sizeof(struct iphdr));
1012 th = tcp_hdr(skb);
1013
1014 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
1015 iph->saddr, iph->daddr, 0);
1016
1017 tcp_gro_complete(skb);
1018 }
1019
1020 static void qede_gro_ipv6_csum(struct sk_buff *skb)
1021 {
1022 struct ipv6hdr *iph = ipv6_hdr(skb);
1023 struct tcphdr *th;
1024
1025 skb_set_network_header(skb, 0);
1026 skb_set_transport_header(skb, sizeof(struct ipv6hdr));
1027 th = tcp_hdr(skb);
1028
1029 th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
1030 &iph->saddr, &iph->daddr, 0);
1031 tcp_gro_complete(skb);
1032 }
1033 #endif
1034
1035 static void qede_gro_receive(struct qede_dev *edev,
1036 struct qede_fastpath *fp,
1037 struct sk_buff *skb,
1038 u16 vlan_tag)
1039 {
1040 #ifdef CONFIG_INET
1041 if (skb_shinfo(skb)->gso_size) {
1042 switch (skb->protocol) {
1043 case htons(ETH_P_IP):
1044 qede_gro_ip_csum(skb);
1045 break;
1046 case htons(ETH_P_IPV6):
1047 qede_gro_ipv6_csum(skb);
1048 break;
1049 default:
1050 DP_ERR(edev,
1051 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
1052 ntohs(skb->protocol));
1053 }
1054 }
1055 #endif
1056 skb_record_rx_queue(skb, fp->rss_id);
1057 qede_skb_receive(edev, fp, skb, vlan_tag);
1058 }
1059
1060 static inline void qede_tpa_cont(struct qede_dev *edev,
1061 struct qede_rx_queue *rxq,
1062 struct eth_fast_path_rx_tpa_cont_cqe *cqe)
1063 {
1064 int i;
1065
1066 for (i = 0; cqe->len_list[i]; i++)
1067 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1068 le16_to_cpu(cqe->len_list[i]));
1069
1070 if (unlikely(i > 1))
1071 DP_ERR(edev,
1072 "Strange - TPA cont with more than a single len_list entry\n");
1073 }
1074
1075 static void qede_tpa_end(struct qede_dev *edev,
1076 struct qede_fastpath *fp,
1077 struct eth_fast_path_rx_tpa_end_cqe *cqe)
1078 {
1079 struct qede_rx_queue *rxq = fp->rxq;
1080 struct qede_agg_info *tpa_info;
1081 struct sk_buff *skb;
1082 int i;
1083
1084 tpa_info = &rxq->tpa_info[cqe->tpa_agg_index];
1085 skb = tpa_info->skb;
1086
1087 for (i = 0; cqe->len_list[i]; i++)
1088 qede_fill_frag_skb(edev, rxq, cqe->tpa_agg_index,
1089 le16_to_cpu(cqe->len_list[i]));
1090 if (unlikely(i > 1))
1091 DP_ERR(edev,
1092 "Strange - TPA emd with more than a single len_list entry\n");
1093
1094 if (unlikely(tpa_info->agg_state != QEDE_AGG_STATE_START))
1095 goto err;
1096
1097 /* Sanity */
1098 if (unlikely(cqe->num_of_bds != tpa_info->frag_id + 1))
1099 DP_ERR(edev,
1100 "Strange - TPA had %02x BDs, but SKB has only %d frags\n",
1101 cqe->num_of_bds, tpa_info->frag_id);
1102 if (unlikely(skb->len != le16_to_cpu(cqe->total_packet_len)))
1103 DP_ERR(edev,
1104 "Strange - total packet len [cqe] is %4x but SKB has len %04x\n",
1105 le16_to_cpu(cqe->total_packet_len), skb->len);
1106
1107 memcpy(skb->data,
1108 page_address(tpa_info->start_buf.data) +
1109 tpa_info->start_cqe.placement_offset +
1110 tpa_info->start_buf.page_offset,
1111 le16_to_cpu(tpa_info->start_cqe.len_on_first_bd));
1112
1113 /* Recycle [mapped] start buffer for the next replacement */
1114 tpa_info->replace_buf = tpa_info->start_buf;
1115 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1116
1117 /* Finalize the SKB */
1118 skb->protocol = eth_type_trans(skb, edev->ndev);
1119 skb->ip_summed = CHECKSUM_UNNECESSARY;
1120
1121 /* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
1122 * to skb_shinfo(skb)->gso_segs
1123 */
1124 NAPI_GRO_CB(skb)->count = le16_to_cpu(cqe->num_of_coalesced_segs);
1125
1126 qede_gro_receive(edev, fp, skb, tpa_info->vlan_tag);
1127
1128 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1129
1130 return;
1131 err:
1132 /* The BD starting the aggregation is still mapped; Re-use it for
1133 * future aggregations [as replacement buffer]
1134 */
1135 memcpy(&tpa_info->replace_buf, &tpa_info->start_buf,
1136 sizeof(struct sw_rx_data));
1137 tpa_info->replace_buf_mapping = tpa_info->start_buf_mapping;
1138 tpa_info->start_buf.data = NULL;
1139 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
1140 dev_kfree_skb_any(tpa_info->skb);
1141 tpa_info->skb = NULL;
1142 }
1143
1144 static u8 qede_check_csum(u16 flag)
1145 {
1146 u16 csum_flag = 0;
1147 u8 csum = 0;
1148
1149 if ((PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_MASK <<
1150 PARSING_AND_ERR_FLAGS_L4CHKSMWASCALCULATED_SHIFT) & flag) {
1151 csum_flag |= PARSING_AND_ERR_FLAGS_L4CHKSMERROR_MASK <<
1152 PARSING_AND_ERR_FLAGS_L4CHKSMERROR_SHIFT;
1153 csum = QEDE_CSUM_UNNECESSARY;
1154 }
1155
1156 csum_flag |= PARSING_AND_ERR_FLAGS_IPHDRERROR_MASK <<
1157 PARSING_AND_ERR_FLAGS_IPHDRERROR_SHIFT;
1158
1159 if (csum_flag & flag)
1160 return QEDE_CSUM_ERROR;
1161
1162 return csum;
1163 }
1164
1165 static int qede_rx_int(struct qede_fastpath *fp, int budget)
1166 {
1167 struct qede_dev *edev = fp->edev;
1168 struct qede_rx_queue *rxq = fp->rxq;
1169
1170 u16 hw_comp_cons, sw_comp_cons, sw_rx_index, parse_flag;
1171 int rx_pkt = 0;
1172 u8 csum_flag;
1173
1174 hw_comp_cons = le16_to_cpu(*rxq->hw_cons_ptr);
1175 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1176
1177 /* Memory barrier to prevent the CPU from doing speculative reads of CQE
1178 * / BD in the while-loop before reading hw_comp_cons. If the CQE is
1179 * read before it is written by FW, then FW writes CQE and SB, and then
1180 * the CPU reads the hw_comp_cons, it will use an old CQE.
1181 */
1182 rmb();
1183
1184 /* Loop to complete all indicated BDs */
1185 while (sw_comp_cons != hw_comp_cons) {
1186 struct eth_fast_path_rx_reg_cqe *fp_cqe;
1187 enum pkt_hash_types rxhash_type;
1188 enum eth_rx_cqe_type cqe_type;
1189 struct sw_rx_data *sw_rx_data;
1190 union eth_rx_cqe *cqe;
1191 struct sk_buff *skb;
1192 struct page *data;
1193 __le16 flags;
1194 u16 len, pad;
1195 u32 rx_hash;
1196
1197 /* Get the CQE from the completion ring */
1198 cqe = (union eth_rx_cqe *)
1199 qed_chain_consume(&rxq->rx_comp_ring);
1200 cqe_type = cqe->fast_path_regular.type;
1201
1202 if (unlikely(cqe_type == ETH_RX_CQE_TYPE_SLOW_PATH)) {
1203 edev->ops->eth_cqe_completion(
1204 edev->cdev, fp->rss_id,
1205 (struct eth_slow_path_rx_cqe *)cqe);
1206 goto next_cqe;
1207 }
1208
1209 if (cqe_type != ETH_RX_CQE_TYPE_REGULAR) {
1210 switch (cqe_type) {
1211 case ETH_RX_CQE_TYPE_TPA_START:
1212 qede_tpa_start(edev, rxq,
1213 &cqe->fast_path_tpa_start);
1214 goto next_cqe;
1215 case ETH_RX_CQE_TYPE_TPA_CONT:
1216 qede_tpa_cont(edev, rxq,
1217 &cqe->fast_path_tpa_cont);
1218 goto next_cqe;
1219 case ETH_RX_CQE_TYPE_TPA_END:
1220 qede_tpa_end(edev, fp,
1221 &cqe->fast_path_tpa_end);
1222 goto next_rx_only;
1223 default:
1224 break;
1225 }
1226 }
1227
1228 /* Get the data from the SW ring */
1229 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1230 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1231 data = sw_rx_data->data;
1232
1233 fp_cqe = &cqe->fast_path_regular;
1234 len = le16_to_cpu(fp_cqe->len_on_first_bd);
1235 pad = fp_cqe->placement_offset;
1236 flags = cqe->fast_path_regular.pars_flags.flags;
1237
1238 /* If this is an error packet then drop it */
1239 parse_flag = le16_to_cpu(flags);
1240
1241 csum_flag = qede_check_csum(parse_flag);
1242 if (unlikely(csum_flag == QEDE_CSUM_ERROR)) {
1243 DP_NOTICE(edev,
1244 "CQE in CONS = %u has error, flags = %x, dropping incoming packet\n",
1245 sw_comp_cons, parse_flag);
1246 rxq->rx_hw_errors++;
1247 qede_reuse_page(edev, rxq, sw_rx_data);
1248 goto next_rx;
1249 }
1250
1251 skb = netdev_alloc_skb(edev->ndev, QEDE_RX_HDR_SIZE);
1252 if (unlikely(!skb)) {
1253 DP_NOTICE(edev,
1254 "Build_skb failed, dropping incoming packet\n");
1255 qede_reuse_page(edev, rxq, sw_rx_data);
1256 rxq->rx_alloc_errors++;
1257 goto next_rx;
1258 }
1259
1260 /* Copy data into SKB */
1261 if (len + pad <= QEDE_RX_HDR_SIZE) {
1262 memcpy(skb_put(skb, len),
1263 page_address(data) + pad +
1264 sw_rx_data->page_offset, len);
1265 qede_reuse_page(edev, rxq, sw_rx_data);
1266 } else {
1267 struct skb_frag_struct *frag;
1268 unsigned int pull_len;
1269 unsigned char *va;
1270
1271 frag = &skb_shinfo(skb)->frags[0];
1272
1273 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, data,
1274 pad + sw_rx_data->page_offset,
1275 len, rxq->rx_buf_seg_size);
1276
1277 va = skb_frag_address(frag);
1278 pull_len = eth_get_headlen(va, QEDE_RX_HDR_SIZE);
1279
1280 /* Align the pull_len to optimize memcpy */
1281 memcpy(skb->data, va, ALIGN(pull_len, sizeof(long)));
1282
1283 skb_frag_size_sub(frag, pull_len);
1284 frag->page_offset += pull_len;
1285 skb->data_len -= pull_len;
1286 skb->tail += pull_len;
1287
1288 if (unlikely(qede_realloc_rx_buffer(edev, rxq,
1289 sw_rx_data))) {
1290 DP_ERR(edev, "Failed to allocate rx buffer\n");
1291 rxq->rx_alloc_errors++;
1292 goto next_cqe;
1293 }
1294 }
1295
1296 if (fp_cqe->bd_num != 1) {
1297 u16 pkt_len = le16_to_cpu(fp_cqe->pkt_len);
1298 u8 num_frags;
1299
1300 pkt_len -= len;
1301
1302 for (num_frags = fp_cqe->bd_num - 1; num_frags > 0;
1303 num_frags--) {
1304 u16 cur_size = pkt_len > rxq->rx_buf_size ?
1305 rxq->rx_buf_size : pkt_len;
1306
1307 WARN_ONCE(!cur_size,
1308 "Still got %d BDs for mapping jumbo, but length became 0\n",
1309 num_frags);
1310
1311 if (unlikely(qede_alloc_rx_buffer(edev, rxq)))
1312 goto next_cqe;
1313
1314 rxq->sw_rx_cons++;
1315 sw_rx_index = rxq->sw_rx_cons & NUM_RX_BDS_MAX;
1316 sw_rx_data = &rxq->sw_rx_ring[sw_rx_index];
1317 qed_chain_consume(&rxq->rx_bd_ring);
1318 dma_unmap_page(&edev->pdev->dev,
1319 sw_rx_data->mapping,
1320 PAGE_SIZE, DMA_FROM_DEVICE);
1321
1322 skb_fill_page_desc(skb,
1323 skb_shinfo(skb)->nr_frags++,
1324 sw_rx_data->data, 0,
1325 cur_size);
1326
1327 skb->truesize += PAGE_SIZE;
1328 skb->data_len += cur_size;
1329 skb->len += cur_size;
1330 pkt_len -= cur_size;
1331 }
1332
1333 if (pkt_len)
1334 DP_ERR(edev,
1335 "Mapped all BDs of jumbo, but still have %d bytes\n",
1336 pkt_len);
1337 }
1338
1339 skb->protocol = eth_type_trans(skb, edev->ndev);
1340
1341 rx_hash = qede_get_rxhash(edev, fp_cqe->bitfields,
1342 fp_cqe->rss_hash,
1343 &rxhash_type);
1344
1345 skb_set_hash(skb, rx_hash, rxhash_type);
1346
1347 qede_set_skb_csum(skb, csum_flag);
1348
1349 skb_record_rx_queue(skb, fp->rss_id);
1350
1351 qede_skb_receive(edev, fp, skb, le16_to_cpu(fp_cqe->vlan_tag));
1352
1353 qed_chain_consume(&rxq->rx_bd_ring);
1354 next_rx:
1355 rxq->sw_rx_cons++;
1356 next_rx_only:
1357 rx_pkt++;
1358
1359 next_cqe: /* don't consume bd rx buffer */
1360 qed_chain_recycle_consumed(&rxq->rx_comp_ring);
1361 sw_comp_cons = qed_chain_get_cons_idx(&rxq->rx_comp_ring);
1362 /* CR TPA - revisit how to handle budget in TPA perhaps
1363 * increase on "end"
1364 */
1365 if (rx_pkt == budget)
1366 break;
1367 } /* repeat while sw_comp_cons != hw_comp_cons... */
1368
1369 /* Update producers */
1370 qede_update_rx_prod(edev, rxq);
1371
1372 return rx_pkt;
1373 }
1374
1375 static int qede_poll(struct napi_struct *napi, int budget)
1376 {
1377 int work_done = 0;
1378 struct qede_fastpath *fp = container_of(napi, struct qede_fastpath,
1379 napi);
1380 struct qede_dev *edev = fp->edev;
1381
1382 while (1) {
1383 u8 tc;
1384
1385 for (tc = 0; tc < edev->num_tc; tc++)
1386 if (qede_txq_has_work(&fp->txqs[tc]))
1387 qede_tx_int(edev, &fp->txqs[tc]);
1388
1389 if (qede_has_rx_work(fp->rxq)) {
1390 work_done += qede_rx_int(fp, budget - work_done);
1391
1392 /* must not complete if we consumed full budget */
1393 if (work_done >= budget)
1394 break;
1395 }
1396
1397 /* Fall out from the NAPI loop if needed */
1398 if (!(qede_has_rx_work(fp->rxq) || qede_has_tx_work(fp))) {
1399 qed_sb_update_sb_idx(fp->sb_info);
1400 /* *_has_*_work() reads the status block,
1401 * thus we need to ensure that status block indices
1402 * have been actually read (qed_sb_update_sb_idx)
1403 * prior to this check (*_has_*_work) so that
1404 * we won't write the "newer" value of the status block
1405 * to HW (if there was a DMA right after
1406 * qede_has_rx_work and if there is no rmb, the memory
1407 * reading (qed_sb_update_sb_idx) may be postponed
1408 * to right before *_ack_sb). In this case there
1409 * will never be another interrupt until there is
1410 * another update of the status block, while there
1411 * is still unhandled work.
1412 */
1413 rmb();
1414
1415 if (!(qede_has_rx_work(fp->rxq) ||
1416 qede_has_tx_work(fp))) {
1417 napi_complete(napi);
1418 /* Update and reenable interrupts */
1419 qed_sb_ack(fp->sb_info, IGU_INT_ENABLE,
1420 1 /*update*/);
1421 break;
1422 }
1423 }
1424 }
1425
1426 return work_done;
1427 }
1428
1429 static irqreturn_t qede_msix_fp_int(int irq, void *fp_cookie)
1430 {
1431 struct qede_fastpath *fp = fp_cookie;
1432
1433 qed_sb_ack(fp->sb_info, IGU_INT_DISABLE, 0 /*do not update*/);
1434
1435 napi_schedule_irqoff(&fp->napi);
1436 return IRQ_HANDLED;
1437 }
1438
1439 /* -------------------------------------------------------------------------
1440 * END OF FAST-PATH
1441 * -------------------------------------------------------------------------
1442 */
1443
1444 static int qede_open(struct net_device *ndev);
1445 static int qede_close(struct net_device *ndev);
1446 static int qede_set_mac_addr(struct net_device *ndev, void *p);
1447 static void qede_set_rx_mode(struct net_device *ndev);
1448 static void qede_config_rx_mode(struct net_device *ndev);
1449
1450 static int qede_set_ucast_rx_mac(struct qede_dev *edev,
1451 enum qed_filter_xcast_params_type opcode,
1452 unsigned char mac[ETH_ALEN])
1453 {
1454 struct qed_filter_params filter_cmd;
1455
1456 memset(&filter_cmd, 0, sizeof(filter_cmd));
1457 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1458 filter_cmd.filter.ucast.type = opcode;
1459 filter_cmd.filter.ucast.mac_valid = 1;
1460 ether_addr_copy(filter_cmd.filter.ucast.mac, mac);
1461
1462 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1463 }
1464
1465 static int qede_set_ucast_rx_vlan(struct qede_dev *edev,
1466 enum qed_filter_xcast_params_type opcode,
1467 u16 vid)
1468 {
1469 struct qed_filter_params filter_cmd;
1470
1471 memset(&filter_cmd, 0, sizeof(filter_cmd));
1472 filter_cmd.type = QED_FILTER_TYPE_UCAST;
1473 filter_cmd.filter.ucast.type = opcode;
1474 filter_cmd.filter.ucast.vlan_valid = 1;
1475 filter_cmd.filter.ucast.vlan = vid;
1476
1477 return edev->ops->filter_config(edev->cdev, &filter_cmd);
1478 }
1479
1480 void qede_fill_by_demand_stats(struct qede_dev *edev)
1481 {
1482 struct qed_eth_stats stats;
1483
1484 edev->ops->get_vport_stats(edev->cdev, &stats);
1485 edev->stats.no_buff_discards = stats.no_buff_discards;
1486 edev->stats.rx_ucast_bytes = stats.rx_ucast_bytes;
1487 edev->stats.rx_mcast_bytes = stats.rx_mcast_bytes;
1488 edev->stats.rx_bcast_bytes = stats.rx_bcast_bytes;
1489 edev->stats.rx_ucast_pkts = stats.rx_ucast_pkts;
1490 edev->stats.rx_mcast_pkts = stats.rx_mcast_pkts;
1491 edev->stats.rx_bcast_pkts = stats.rx_bcast_pkts;
1492 edev->stats.mftag_filter_discards = stats.mftag_filter_discards;
1493 edev->stats.mac_filter_discards = stats.mac_filter_discards;
1494
1495 edev->stats.tx_ucast_bytes = stats.tx_ucast_bytes;
1496 edev->stats.tx_mcast_bytes = stats.tx_mcast_bytes;
1497 edev->stats.tx_bcast_bytes = stats.tx_bcast_bytes;
1498 edev->stats.tx_ucast_pkts = stats.tx_ucast_pkts;
1499 edev->stats.tx_mcast_pkts = stats.tx_mcast_pkts;
1500 edev->stats.tx_bcast_pkts = stats.tx_bcast_pkts;
1501 edev->stats.tx_err_drop_pkts = stats.tx_err_drop_pkts;
1502 edev->stats.coalesced_pkts = stats.tpa_coalesced_pkts;
1503 edev->stats.coalesced_events = stats.tpa_coalesced_events;
1504 edev->stats.coalesced_aborts_num = stats.tpa_aborts_num;
1505 edev->stats.non_coalesced_pkts = stats.tpa_not_coalesced_pkts;
1506 edev->stats.coalesced_bytes = stats.tpa_coalesced_bytes;
1507
1508 edev->stats.rx_64_byte_packets = stats.rx_64_byte_packets;
1509 edev->stats.rx_127_byte_packets = stats.rx_127_byte_packets;
1510 edev->stats.rx_255_byte_packets = stats.rx_255_byte_packets;
1511 edev->stats.rx_511_byte_packets = stats.rx_511_byte_packets;
1512 edev->stats.rx_1023_byte_packets = stats.rx_1023_byte_packets;
1513 edev->stats.rx_1518_byte_packets = stats.rx_1518_byte_packets;
1514 edev->stats.rx_1522_byte_packets = stats.rx_1522_byte_packets;
1515 edev->stats.rx_2047_byte_packets = stats.rx_2047_byte_packets;
1516 edev->stats.rx_4095_byte_packets = stats.rx_4095_byte_packets;
1517 edev->stats.rx_9216_byte_packets = stats.rx_9216_byte_packets;
1518 edev->stats.rx_16383_byte_packets = stats.rx_16383_byte_packets;
1519 edev->stats.rx_crc_errors = stats.rx_crc_errors;
1520 edev->stats.rx_mac_crtl_frames = stats.rx_mac_crtl_frames;
1521 edev->stats.rx_pause_frames = stats.rx_pause_frames;
1522 edev->stats.rx_pfc_frames = stats.rx_pfc_frames;
1523 edev->stats.rx_align_errors = stats.rx_align_errors;
1524 edev->stats.rx_carrier_errors = stats.rx_carrier_errors;
1525 edev->stats.rx_oversize_packets = stats.rx_oversize_packets;
1526 edev->stats.rx_jabbers = stats.rx_jabbers;
1527 edev->stats.rx_undersize_packets = stats.rx_undersize_packets;
1528 edev->stats.rx_fragments = stats.rx_fragments;
1529 edev->stats.tx_64_byte_packets = stats.tx_64_byte_packets;
1530 edev->stats.tx_65_to_127_byte_packets = stats.tx_65_to_127_byte_packets;
1531 edev->stats.tx_128_to_255_byte_packets =
1532 stats.tx_128_to_255_byte_packets;
1533 edev->stats.tx_256_to_511_byte_packets =
1534 stats.tx_256_to_511_byte_packets;
1535 edev->stats.tx_512_to_1023_byte_packets =
1536 stats.tx_512_to_1023_byte_packets;
1537 edev->stats.tx_1024_to_1518_byte_packets =
1538 stats.tx_1024_to_1518_byte_packets;
1539 edev->stats.tx_1519_to_2047_byte_packets =
1540 stats.tx_1519_to_2047_byte_packets;
1541 edev->stats.tx_2048_to_4095_byte_packets =
1542 stats.tx_2048_to_4095_byte_packets;
1543 edev->stats.tx_4096_to_9216_byte_packets =
1544 stats.tx_4096_to_9216_byte_packets;
1545 edev->stats.tx_9217_to_16383_byte_packets =
1546 stats.tx_9217_to_16383_byte_packets;
1547 edev->stats.tx_pause_frames = stats.tx_pause_frames;
1548 edev->stats.tx_pfc_frames = stats.tx_pfc_frames;
1549 edev->stats.tx_lpi_entry_count = stats.tx_lpi_entry_count;
1550 edev->stats.tx_total_collisions = stats.tx_total_collisions;
1551 edev->stats.brb_truncates = stats.brb_truncates;
1552 edev->stats.brb_discards = stats.brb_discards;
1553 edev->stats.tx_mac_ctrl_frames = stats.tx_mac_ctrl_frames;
1554 }
1555
1556 static struct rtnl_link_stats64 *qede_get_stats64(
1557 struct net_device *dev,
1558 struct rtnl_link_stats64 *stats)
1559 {
1560 struct qede_dev *edev = netdev_priv(dev);
1561
1562 qede_fill_by_demand_stats(edev);
1563
1564 stats->rx_packets = edev->stats.rx_ucast_pkts +
1565 edev->stats.rx_mcast_pkts +
1566 edev->stats.rx_bcast_pkts;
1567 stats->tx_packets = edev->stats.tx_ucast_pkts +
1568 edev->stats.tx_mcast_pkts +
1569 edev->stats.tx_bcast_pkts;
1570
1571 stats->rx_bytes = edev->stats.rx_ucast_bytes +
1572 edev->stats.rx_mcast_bytes +
1573 edev->stats.rx_bcast_bytes;
1574
1575 stats->tx_bytes = edev->stats.tx_ucast_bytes +
1576 edev->stats.tx_mcast_bytes +
1577 edev->stats.tx_bcast_bytes;
1578
1579 stats->tx_errors = edev->stats.tx_err_drop_pkts;
1580 stats->multicast = edev->stats.rx_mcast_pkts +
1581 edev->stats.rx_bcast_pkts;
1582
1583 stats->rx_fifo_errors = edev->stats.no_buff_discards;
1584
1585 stats->collisions = edev->stats.tx_total_collisions;
1586 stats->rx_crc_errors = edev->stats.rx_crc_errors;
1587 stats->rx_frame_errors = edev->stats.rx_align_errors;
1588
1589 return stats;
1590 }
1591
1592 static void qede_config_accept_any_vlan(struct qede_dev *edev, bool action)
1593 {
1594 struct qed_update_vport_params params;
1595 int rc;
1596
1597 /* Proceed only if action actually needs to be performed */
1598 if (edev->accept_any_vlan == action)
1599 return;
1600
1601 memset(&params, 0, sizeof(params));
1602
1603 params.vport_id = 0;
1604 params.accept_any_vlan = action;
1605 params.update_accept_any_vlan_flg = 1;
1606
1607 rc = edev->ops->vport_update(edev->cdev, &params);
1608 if (rc) {
1609 DP_ERR(edev, "Failed to %s accept-any-vlan\n",
1610 action ? "enable" : "disable");
1611 } else {
1612 DP_INFO(edev, "%s accept-any-vlan\n",
1613 action ? "enabled" : "disabled");
1614 edev->accept_any_vlan = action;
1615 }
1616 }
1617
1618 static int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
1619 {
1620 struct qede_dev *edev = netdev_priv(dev);
1621 struct qede_vlan *vlan, *tmp;
1622 int rc;
1623
1624 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid);
1625
1626 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
1627 if (!vlan) {
1628 DP_INFO(edev, "Failed to allocate struct for vlan\n");
1629 return -ENOMEM;
1630 }
1631 INIT_LIST_HEAD(&vlan->list);
1632 vlan->vid = vid;
1633 vlan->configured = false;
1634
1635 /* Verify vlan isn't already configured */
1636 list_for_each_entry(tmp, &edev->vlan_list, list) {
1637 if (tmp->vid == vlan->vid) {
1638 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1639 "vlan already configured\n");
1640 kfree(vlan);
1641 return -EEXIST;
1642 }
1643 }
1644
1645 /* If interface is down, cache this VLAN ID and return */
1646 if (edev->state != QEDE_STATE_OPEN) {
1647 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1648 "Interface is down, VLAN %d will be configured when interface is up\n",
1649 vid);
1650 if (vid != 0)
1651 edev->non_configured_vlans++;
1652 list_add(&vlan->list, &edev->vlan_list);
1653
1654 return 0;
1655 }
1656
1657 /* Check for the filter limit.
1658 * Note - vlan0 has a reserved filter and can be added without
1659 * worrying about quota
1660 */
1661 if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) ||
1662 (vlan->vid == 0)) {
1663 rc = qede_set_ucast_rx_vlan(edev,
1664 QED_FILTER_XCAST_TYPE_ADD,
1665 vlan->vid);
1666 if (rc) {
1667 DP_ERR(edev, "Failed to configure VLAN %d\n",
1668 vlan->vid);
1669 kfree(vlan);
1670 return -EINVAL;
1671 }
1672 vlan->configured = true;
1673
1674 /* vlan0 filter isn't consuming out of our quota */
1675 if (vlan->vid != 0)
1676 edev->configured_vlans++;
1677 } else {
1678 /* Out of quota; Activate accept-any-VLAN mode */
1679 if (!edev->non_configured_vlans)
1680 qede_config_accept_any_vlan(edev, true);
1681
1682 edev->non_configured_vlans++;
1683 }
1684
1685 list_add(&vlan->list, &edev->vlan_list);
1686
1687 return 0;
1688 }
1689
1690 static void qede_del_vlan_from_list(struct qede_dev *edev,
1691 struct qede_vlan *vlan)
1692 {
1693 /* vlan0 filter isn't consuming out of our quota */
1694 if (vlan->vid != 0) {
1695 if (vlan->configured)
1696 edev->configured_vlans--;
1697 else
1698 edev->non_configured_vlans--;
1699 }
1700
1701 list_del(&vlan->list);
1702 kfree(vlan);
1703 }
1704
1705 static int qede_configure_vlan_filters(struct qede_dev *edev)
1706 {
1707 int rc = 0, real_rc = 0, accept_any_vlan = 0;
1708 struct qed_dev_eth_info *dev_info;
1709 struct qede_vlan *vlan = NULL;
1710
1711 if (list_empty(&edev->vlan_list))
1712 return 0;
1713
1714 dev_info = &edev->dev_info;
1715
1716 /* Configure non-configured vlans */
1717 list_for_each_entry(vlan, &edev->vlan_list, list) {
1718 if (vlan->configured)
1719 continue;
1720
1721 /* We have used all our credits, now enable accept_any_vlan */
1722 if ((vlan->vid != 0) &&
1723 (edev->configured_vlans == dev_info->num_vlan_filters)) {
1724 accept_any_vlan = 1;
1725 continue;
1726 }
1727
1728 DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid);
1729
1730 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD,
1731 vlan->vid);
1732 if (rc) {
1733 DP_ERR(edev, "Failed to configure VLAN %u\n",
1734 vlan->vid);
1735 real_rc = rc;
1736 continue;
1737 }
1738
1739 vlan->configured = true;
1740 /* vlan0 filter doesn't consume our VLAN filter's quota */
1741 if (vlan->vid != 0) {
1742 edev->non_configured_vlans--;
1743 edev->configured_vlans++;
1744 }
1745 }
1746
1747 /* enable accept_any_vlan mode if we have more VLANs than credits,
1748 * or remove accept_any_vlan mode if we've actually removed
1749 * a non-configured vlan, and all remaining vlans are truly configured.
1750 */
1751
1752 if (accept_any_vlan)
1753 qede_config_accept_any_vlan(edev, true);
1754 else if (!edev->non_configured_vlans)
1755 qede_config_accept_any_vlan(edev, false);
1756
1757 return real_rc;
1758 }
1759
1760 static int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
1761 {
1762 struct qede_dev *edev = netdev_priv(dev);
1763 struct qede_vlan *vlan = NULL;
1764 int rc;
1765
1766 DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid);
1767
1768 /* Find whether entry exists */
1769 list_for_each_entry(vlan, &edev->vlan_list, list)
1770 if (vlan->vid == vid)
1771 break;
1772
1773 if (!vlan || (vlan->vid != vid)) {
1774 DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN),
1775 "Vlan isn't configured\n");
1776 return 0;
1777 }
1778
1779 if (edev->state != QEDE_STATE_OPEN) {
1780 /* As interface is already down, we don't have a VPORT
1781 * instance to remove vlan filter. So just update vlan list
1782 */
1783 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1784 "Interface is down, removing VLAN from list only\n");
1785 qede_del_vlan_from_list(edev, vlan);
1786 return 0;
1787 }
1788
1789 /* Remove vlan */
1790 rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid);
1791 if (rc) {
1792 DP_ERR(edev, "Failed to remove VLAN %d\n", vid);
1793 return -EINVAL;
1794 }
1795
1796 qede_del_vlan_from_list(edev, vlan);
1797
1798 /* We have removed a VLAN - try to see if we can
1799 * configure non-configured VLAN from the list.
1800 */
1801 rc = qede_configure_vlan_filters(edev);
1802
1803 return rc;
1804 }
1805
1806 static void qede_vlan_mark_nonconfigured(struct qede_dev *edev)
1807 {
1808 struct qede_vlan *vlan = NULL;
1809
1810 if (list_empty(&edev->vlan_list))
1811 return;
1812
1813 list_for_each_entry(vlan, &edev->vlan_list, list) {
1814 if (!vlan->configured)
1815 continue;
1816
1817 vlan->configured = false;
1818
1819 /* vlan0 filter isn't consuming out of our quota */
1820 if (vlan->vid != 0) {
1821 edev->non_configured_vlans++;
1822 edev->configured_vlans--;
1823 }
1824
1825 DP_VERBOSE(edev, NETIF_MSG_IFDOWN,
1826 "marked vlan %d as non-configured\n",
1827 vlan->vid);
1828 }
1829
1830 edev->accept_any_vlan = false;
1831 }
1832
1833 static const struct net_device_ops qede_netdev_ops = {
1834 .ndo_open = qede_open,
1835 .ndo_stop = qede_close,
1836 .ndo_start_xmit = qede_start_xmit,
1837 .ndo_set_rx_mode = qede_set_rx_mode,
1838 .ndo_set_mac_address = qede_set_mac_addr,
1839 .ndo_validate_addr = eth_validate_addr,
1840 .ndo_change_mtu = qede_change_mtu,
1841 .ndo_vlan_rx_add_vid = qede_vlan_rx_add_vid,
1842 .ndo_vlan_rx_kill_vid = qede_vlan_rx_kill_vid,
1843 .ndo_get_stats64 = qede_get_stats64,
1844 };
1845
1846 /* -------------------------------------------------------------------------
1847 * START OF PROBE / REMOVE
1848 * -------------------------------------------------------------------------
1849 */
1850
1851 static struct qede_dev *qede_alloc_etherdev(struct qed_dev *cdev,
1852 struct pci_dev *pdev,
1853 struct qed_dev_eth_info *info,
1854 u32 dp_module,
1855 u8 dp_level)
1856 {
1857 struct net_device *ndev;
1858 struct qede_dev *edev;
1859
1860 ndev = alloc_etherdev_mqs(sizeof(*edev),
1861 info->num_queues,
1862 info->num_queues);
1863 if (!ndev) {
1864 pr_err("etherdev allocation failed\n");
1865 return NULL;
1866 }
1867
1868 edev = netdev_priv(ndev);
1869 edev->ndev = ndev;
1870 edev->cdev = cdev;
1871 edev->pdev = pdev;
1872 edev->dp_module = dp_module;
1873 edev->dp_level = dp_level;
1874 edev->ops = qed_ops;
1875 edev->q_num_rx_buffers = NUM_RX_BDS_DEF;
1876 edev->q_num_tx_buffers = NUM_TX_BDS_DEF;
1877
1878 DP_INFO(edev, "Allocated netdev with 64 tx queues and 64 rx queues\n");
1879
1880 SET_NETDEV_DEV(ndev, &pdev->dev);
1881
1882 memset(&edev->stats, 0, sizeof(edev->stats));
1883 memcpy(&edev->dev_info, info, sizeof(*info));
1884
1885 edev->num_tc = edev->dev_info.num_tc;
1886
1887 INIT_LIST_HEAD(&edev->vlan_list);
1888
1889 return edev;
1890 }
1891
1892 static void qede_init_ndev(struct qede_dev *edev)
1893 {
1894 struct net_device *ndev = edev->ndev;
1895 struct pci_dev *pdev = edev->pdev;
1896 u32 hw_features;
1897
1898 pci_set_drvdata(pdev, ndev);
1899
1900 ndev->mem_start = edev->dev_info.common.pci_mem_start;
1901 ndev->base_addr = ndev->mem_start;
1902 ndev->mem_end = edev->dev_info.common.pci_mem_end;
1903 ndev->irq = edev->dev_info.common.pci_irq;
1904
1905 ndev->watchdog_timeo = TX_TIMEOUT;
1906
1907 ndev->netdev_ops = &qede_netdev_ops;
1908
1909 qede_set_ethtool_ops(ndev);
1910
1911 /* user-changeble features */
1912 hw_features = NETIF_F_GRO | NETIF_F_SG |
1913 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1914 NETIF_F_TSO | NETIF_F_TSO6;
1915
1916 ndev->vlan_features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1917 NETIF_F_HIGHDMA;
1918 ndev->features = hw_features | NETIF_F_RXHASH | NETIF_F_RXCSUM |
1919 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HIGHDMA |
1920 NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX;
1921
1922 ndev->hw_features = hw_features;
1923
1924 /* Set network device HW mac */
1925 ether_addr_copy(edev->ndev->dev_addr, edev->dev_info.common.hw_mac);
1926 }
1927
1928 /* This function converts from 32b param to two params of level and module
1929 * Input 32b decoding:
1930 * b31 - enable all NOTICE prints. NOTICE prints are for deviation from the
1931 * 'happy' flow, e.g. memory allocation failed.
1932 * b30 - enable all INFO prints. INFO prints are for major steps in the flow
1933 * and provide important parameters.
1934 * b29-b0 - per-module bitmap, where each bit enables VERBOSE prints of that
1935 * module. VERBOSE prints are for tracking the specific flow in low level.
1936 *
1937 * Notice that the level should be that of the lowest required logs.
1938 */
1939 void qede_config_debug(uint debug, u32 *p_dp_module, u8 *p_dp_level)
1940 {
1941 *p_dp_level = QED_LEVEL_NOTICE;
1942 *p_dp_module = 0;
1943
1944 if (debug & QED_LOG_VERBOSE_MASK) {
1945 *p_dp_level = QED_LEVEL_VERBOSE;
1946 *p_dp_module = (debug & 0x3FFFFFFF);
1947 } else if (debug & QED_LOG_INFO_MASK) {
1948 *p_dp_level = QED_LEVEL_INFO;
1949 } else if (debug & QED_LOG_NOTICE_MASK) {
1950 *p_dp_level = QED_LEVEL_NOTICE;
1951 }
1952 }
1953
1954 static void qede_free_fp_array(struct qede_dev *edev)
1955 {
1956 if (edev->fp_array) {
1957 struct qede_fastpath *fp;
1958 int i;
1959
1960 for_each_rss(i) {
1961 fp = &edev->fp_array[i];
1962
1963 kfree(fp->sb_info);
1964 kfree(fp->rxq);
1965 kfree(fp->txqs);
1966 }
1967 kfree(edev->fp_array);
1968 }
1969 edev->num_rss = 0;
1970 }
1971
1972 static int qede_alloc_fp_array(struct qede_dev *edev)
1973 {
1974 struct qede_fastpath *fp;
1975 int i;
1976
1977 edev->fp_array = kcalloc(QEDE_RSS_CNT(edev),
1978 sizeof(*edev->fp_array), GFP_KERNEL);
1979 if (!edev->fp_array) {
1980 DP_NOTICE(edev, "fp array allocation failed\n");
1981 goto err;
1982 }
1983
1984 for_each_rss(i) {
1985 fp = &edev->fp_array[i];
1986
1987 fp->sb_info = kcalloc(1, sizeof(*fp->sb_info), GFP_KERNEL);
1988 if (!fp->sb_info) {
1989 DP_NOTICE(edev, "sb info struct allocation failed\n");
1990 goto err;
1991 }
1992
1993 fp->rxq = kcalloc(1, sizeof(*fp->rxq), GFP_KERNEL);
1994 if (!fp->rxq) {
1995 DP_NOTICE(edev, "RXQ struct allocation failed\n");
1996 goto err;
1997 }
1998
1999 fp->txqs = kcalloc(edev->num_tc, sizeof(*fp->txqs), GFP_KERNEL);
2000 if (!fp->txqs) {
2001 DP_NOTICE(edev, "TXQ array allocation failed\n");
2002 goto err;
2003 }
2004 }
2005
2006 return 0;
2007 err:
2008 qede_free_fp_array(edev);
2009 return -ENOMEM;
2010 }
2011
2012 static void qede_sp_task(struct work_struct *work)
2013 {
2014 struct qede_dev *edev = container_of(work, struct qede_dev,
2015 sp_task.work);
2016 mutex_lock(&edev->qede_lock);
2017
2018 if (edev->state == QEDE_STATE_OPEN) {
2019 if (test_and_clear_bit(QEDE_SP_RX_MODE, &edev->sp_flags))
2020 qede_config_rx_mode(edev->ndev);
2021 }
2022
2023 mutex_unlock(&edev->qede_lock);
2024 }
2025
2026 static void qede_update_pf_params(struct qed_dev *cdev)
2027 {
2028 struct qed_pf_params pf_params;
2029
2030 /* 16 rx + 16 tx */
2031 memset(&pf_params, 0, sizeof(struct qed_pf_params));
2032 pf_params.eth_pf_params.num_cons = 32;
2033 qed_ops->common->update_pf_params(cdev, &pf_params);
2034 }
2035
2036 enum qede_probe_mode {
2037 QEDE_PROBE_NORMAL,
2038 };
2039
2040 static int __qede_probe(struct pci_dev *pdev, u32 dp_module, u8 dp_level,
2041 enum qede_probe_mode mode)
2042 {
2043 struct qed_slowpath_params params;
2044 struct qed_dev_eth_info dev_info;
2045 struct qede_dev *edev;
2046 struct qed_dev *cdev;
2047 int rc;
2048
2049 if (unlikely(dp_level & QED_LEVEL_INFO))
2050 pr_notice("Starting qede probe\n");
2051
2052 cdev = qed_ops->common->probe(pdev, QED_PROTOCOL_ETH,
2053 dp_module, dp_level);
2054 if (!cdev) {
2055 rc = -ENODEV;
2056 goto err0;
2057 }
2058
2059 qede_update_pf_params(cdev);
2060
2061 /* Start the Slowpath-process */
2062 memset(&params, 0, sizeof(struct qed_slowpath_params));
2063 params.int_mode = QED_INT_MODE_MSIX;
2064 params.drv_major = QEDE_MAJOR_VERSION;
2065 params.drv_minor = QEDE_MINOR_VERSION;
2066 params.drv_rev = QEDE_REVISION_VERSION;
2067 params.drv_eng = QEDE_ENGINEERING_VERSION;
2068 strlcpy(params.name, "qede LAN", QED_DRV_VER_STR_SIZE);
2069 rc = qed_ops->common->slowpath_start(cdev, &params);
2070 if (rc) {
2071 pr_notice("Cannot start slowpath\n");
2072 goto err1;
2073 }
2074
2075 /* Learn information crucial for qede to progress */
2076 rc = qed_ops->fill_dev_info(cdev, &dev_info);
2077 if (rc)
2078 goto err2;
2079
2080 edev = qede_alloc_etherdev(cdev, pdev, &dev_info, dp_module,
2081 dp_level);
2082 if (!edev) {
2083 rc = -ENOMEM;
2084 goto err2;
2085 }
2086
2087 qede_init_ndev(edev);
2088
2089 rc = register_netdev(edev->ndev);
2090 if (rc) {
2091 DP_NOTICE(edev, "Cannot register net-device\n");
2092 goto err3;
2093 }
2094
2095 edev->ops->common->set_id(cdev, edev->ndev->name, DRV_MODULE_VERSION);
2096
2097 edev->ops->register_ops(cdev, &qede_ll_ops, edev);
2098
2099 INIT_DELAYED_WORK(&edev->sp_task, qede_sp_task);
2100 mutex_init(&edev->qede_lock);
2101
2102 DP_INFO(edev, "Ending successfully qede probe\n");
2103
2104 return 0;
2105
2106 err3:
2107 free_netdev(edev->ndev);
2108 err2:
2109 qed_ops->common->slowpath_stop(cdev);
2110 err1:
2111 qed_ops->common->remove(cdev);
2112 err0:
2113 return rc;
2114 }
2115
2116 static int qede_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2117 {
2118 u32 dp_module = 0;
2119 u8 dp_level = 0;
2120
2121 qede_config_debug(debug, &dp_module, &dp_level);
2122
2123 return __qede_probe(pdev, dp_module, dp_level,
2124 QEDE_PROBE_NORMAL);
2125 }
2126
2127 enum qede_remove_mode {
2128 QEDE_REMOVE_NORMAL,
2129 };
2130
2131 static void __qede_remove(struct pci_dev *pdev, enum qede_remove_mode mode)
2132 {
2133 struct net_device *ndev = pci_get_drvdata(pdev);
2134 struct qede_dev *edev = netdev_priv(ndev);
2135 struct qed_dev *cdev = edev->cdev;
2136
2137 DP_INFO(edev, "Starting qede_remove\n");
2138
2139 cancel_delayed_work_sync(&edev->sp_task);
2140 unregister_netdev(ndev);
2141
2142 edev->ops->common->set_power_state(cdev, PCI_D0);
2143
2144 pci_set_drvdata(pdev, NULL);
2145
2146 free_netdev(ndev);
2147
2148 /* Use global ops since we've freed edev */
2149 qed_ops->common->slowpath_stop(cdev);
2150 qed_ops->common->remove(cdev);
2151
2152 pr_notice("Ending successfully qede_remove\n");
2153 }
2154
2155 static void qede_remove(struct pci_dev *pdev)
2156 {
2157 __qede_remove(pdev, QEDE_REMOVE_NORMAL);
2158 }
2159
2160 /* -------------------------------------------------------------------------
2161 * START OF LOAD / UNLOAD
2162 * -------------------------------------------------------------------------
2163 */
2164
2165 static int qede_set_num_queues(struct qede_dev *edev)
2166 {
2167 int rc;
2168 u16 rss_num;
2169
2170 /* Setup queues according to possible resources*/
2171 if (edev->req_rss)
2172 rss_num = edev->req_rss;
2173 else
2174 rss_num = netif_get_num_default_rss_queues() *
2175 edev->dev_info.common.num_hwfns;
2176
2177 rss_num = min_t(u16, QEDE_MAX_RSS_CNT(edev), rss_num);
2178
2179 rc = edev->ops->common->set_fp_int(edev->cdev, rss_num);
2180 if (rc > 0) {
2181 /* Managed to request interrupts for our queues */
2182 edev->num_rss = rc;
2183 DP_INFO(edev, "Managed %d [of %d] RSS queues\n",
2184 QEDE_RSS_CNT(edev), rss_num);
2185 rc = 0;
2186 }
2187 return rc;
2188 }
2189
2190 static void qede_free_mem_sb(struct qede_dev *edev,
2191 struct qed_sb_info *sb_info)
2192 {
2193 if (sb_info->sb_virt)
2194 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_info->sb_virt),
2195 (void *)sb_info->sb_virt, sb_info->sb_phys);
2196 }
2197
2198 /* This function allocates fast-path status block memory */
2199 static int qede_alloc_mem_sb(struct qede_dev *edev,
2200 struct qed_sb_info *sb_info,
2201 u16 sb_id)
2202 {
2203 struct status_block *sb_virt;
2204 dma_addr_t sb_phys;
2205 int rc;
2206
2207 sb_virt = dma_alloc_coherent(&edev->pdev->dev,
2208 sizeof(*sb_virt),
2209 &sb_phys, GFP_KERNEL);
2210 if (!sb_virt) {
2211 DP_ERR(edev, "Status block allocation failed\n");
2212 return -ENOMEM;
2213 }
2214
2215 rc = edev->ops->common->sb_init(edev->cdev, sb_info,
2216 sb_virt, sb_phys, sb_id,
2217 QED_SB_TYPE_L2_QUEUE);
2218 if (rc) {
2219 DP_ERR(edev, "Status block initialization failed\n");
2220 dma_free_coherent(&edev->pdev->dev, sizeof(*sb_virt),
2221 sb_virt, sb_phys);
2222 return rc;
2223 }
2224
2225 return 0;
2226 }
2227
2228 static void qede_free_rx_buffers(struct qede_dev *edev,
2229 struct qede_rx_queue *rxq)
2230 {
2231 u16 i;
2232
2233 for (i = rxq->sw_rx_cons; i != rxq->sw_rx_prod; i++) {
2234 struct sw_rx_data *rx_buf;
2235 struct page *data;
2236
2237 rx_buf = &rxq->sw_rx_ring[i & NUM_RX_BDS_MAX];
2238 data = rx_buf->data;
2239
2240 dma_unmap_page(&edev->pdev->dev,
2241 rx_buf->mapping,
2242 PAGE_SIZE, DMA_FROM_DEVICE);
2243
2244 rx_buf->data = NULL;
2245 __free_page(data);
2246 }
2247 }
2248
2249 static void qede_free_sge_mem(struct qede_dev *edev,
2250 struct qede_rx_queue *rxq) {
2251 int i;
2252
2253 if (edev->gro_disable)
2254 return;
2255
2256 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2257 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2258 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2259
2260 if (replace_buf) {
2261 dma_unmap_page(&edev->pdev->dev,
2262 dma_unmap_addr(replace_buf, mapping),
2263 PAGE_SIZE, DMA_FROM_DEVICE);
2264 __free_page(replace_buf->data);
2265 }
2266 }
2267 }
2268
2269 static void qede_free_mem_rxq(struct qede_dev *edev,
2270 struct qede_rx_queue *rxq)
2271 {
2272 qede_free_sge_mem(edev, rxq);
2273
2274 /* Free rx buffers */
2275 qede_free_rx_buffers(edev, rxq);
2276
2277 /* Free the parallel SW ring */
2278 kfree(rxq->sw_rx_ring);
2279
2280 /* Free the real RQ ring used by FW */
2281 edev->ops->common->chain_free(edev->cdev, &rxq->rx_bd_ring);
2282 edev->ops->common->chain_free(edev->cdev, &rxq->rx_comp_ring);
2283 }
2284
2285 static int qede_alloc_rx_buffer(struct qede_dev *edev,
2286 struct qede_rx_queue *rxq)
2287 {
2288 struct sw_rx_data *sw_rx_data;
2289 struct eth_rx_bd *rx_bd;
2290 dma_addr_t mapping;
2291 struct page *data;
2292 u16 rx_buf_size;
2293
2294 rx_buf_size = rxq->rx_buf_size;
2295
2296 data = alloc_pages(GFP_ATOMIC, 0);
2297 if (unlikely(!data)) {
2298 DP_NOTICE(edev, "Failed to allocate Rx data [page]\n");
2299 return -ENOMEM;
2300 }
2301
2302 /* Map the entire page as it would be used
2303 * for multiple RX buffer segment size mapping.
2304 */
2305 mapping = dma_map_page(&edev->pdev->dev, data, 0,
2306 PAGE_SIZE, DMA_FROM_DEVICE);
2307 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2308 __free_page(data);
2309 DP_NOTICE(edev, "Failed to map Rx buffer\n");
2310 return -ENOMEM;
2311 }
2312
2313 sw_rx_data = &rxq->sw_rx_ring[rxq->sw_rx_prod & NUM_RX_BDS_MAX];
2314 sw_rx_data->page_offset = 0;
2315 sw_rx_data->data = data;
2316 sw_rx_data->mapping = mapping;
2317
2318 /* Advance PROD and get BD pointer */
2319 rx_bd = (struct eth_rx_bd *)qed_chain_produce(&rxq->rx_bd_ring);
2320 WARN_ON(!rx_bd);
2321 rx_bd->addr.hi = cpu_to_le32(upper_32_bits(mapping));
2322 rx_bd->addr.lo = cpu_to_le32(lower_32_bits(mapping));
2323
2324 rxq->sw_rx_prod++;
2325
2326 return 0;
2327 }
2328
2329 static int qede_alloc_sge_mem(struct qede_dev *edev,
2330 struct qede_rx_queue *rxq)
2331 {
2332 dma_addr_t mapping;
2333 int i;
2334
2335 if (edev->gro_disable)
2336 return 0;
2337
2338 if (edev->ndev->mtu > PAGE_SIZE) {
2339 edev->gro_disable = 1;
2340 return 0;
2341 }
2342
2343 for (i = 0; i < ETH_TPA_MAX_AGGS_NUM; i++) {
2344 struct qede_agg_info *tpa_info = &rxq->tpa_info[i];
2345 struct sw_rx_data *replace_buf = &tpa_info->replace_buf;
2346
2347 replace_buf->data = alloc_pages(GFP_ATOMIC, 0);
2348 if (unlikely(!replace_buf->data)) {
2349 DP_NOTICE(edev,
2350 "Failed to allocate TPA skb pool [replacement buffer]\n");
2351 goto err;
2352 }
2353
2354 mapping = dma_map_page(&edev->pdev->dev, replace_buf->data, 0,
2355 rxq->rx_buf_size, DMA_FROM_DEVICE);
2356 if (unlikely(dma_mapping_error(&edev->pdev->dev, mapping))) {
2357 DP_NOTICE(edev,
2358 "Failed to map TPA replacement buffer\n");
2359 goto err;
2360 }
2361
2362 dma_unmap_addr_set(replace_buf, mapping, mapping);
2363 tpa_info->replace_buf.page_offset = 0;
2364
2365 tpa_info->replace_buf_mapping = mapping;
2366 tpa_info->agg_state = QEDE_AGG_STATE_NONE;
2367 }
2368
2369 return 0;
2370 err:
2371 qede_free_sge_mem(edev, rxq);
2372 edev->gro_disable = 1;
2373 return -ENOMEM;
2374 }
2375
2376 /* This function allocates all memory needed per Rx queue */
2377 static int qede_alloc_mem_rxq(struct qede_dev *edev,
2378 struct qede_rx_queue *rxq)
2379 {
2380 int i, rc, size, num_allocated;
2381
2382 rxq->num_rx_buffers = edev->q_num_rx_buffers;
2383
2384 rxq->rx_buf_size = NET_IP_ALIGN + ETH_OVERHEAD +
2385 edev->ndev->mtu;
2386 if (rxq->rx_buf_size > PAGE_SIZE)
2387 rxq->rx_buf_size = PAGE_SIZE;
2388
2389 /* Segment size to spilt a page in multiple equal parts */
2390 rxq->rx_buf_seg_size = roundup_pow_of_two(rxq->rx_buf_size);
2391
2392 /* Allocate the parallel driver ring for Rx buffers */
2393 size = sizeof(*rxq->sw_rx_ring) * RX_RING_SIZE;
2394 rxq->sw_rx_ring = kzalloc(size, GFP_KERNEL);
2395 if (!rxq->sw_rx_ring) {
2396 DP_ERR(edev, "Rx buffers ring allocation failed\n");
2397 goto err;
2398 }
2399
2400 /* Allocate FW Rx ring */
2401 rc = edev->ops->common->chain_alloc(edev->cdev,
2402 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2403 QED_CHAIN_MODE_NEXT_PTR,
2404 RX_RING_SIZE,
2405 sizeof(struct eth_rx_bd),
2406 &rxq->rx_bd_ring);
2407
2408 if (rc)
2409 goto err;
2410
2411 /* Allocate FW completion ring */
2412 rc = edev->ops->common->chain_alloc(edev->cdev,
2413 QED_CHAIN_USE_TO_CONSUME,
2414 QED_CHAIN_MODE_PBL,
2415 RX_RING_SIZE,
2416 sizeof(union eth_rx_cqe),
2417 &rxq->rx_comp_ring);
2418 if (rc)
2419 goto err;
2420
2421 /* Allocate buffers for the Rx ring */
2422 for (i = 0; i < rxq->num_rx_buffers; i++) {
2423 rc = qede_alloc_rx_buffer(edev, rxq);
2424 if (rc)
2425 break;
2426 }
2427 num_allocated = i;
2428 if (!num_allocated) {
2429 DP_ERR(edev, "Rx buffers allocation failed\n");
2430 goto err;
2431 } else if (num_allocated < rxq->num_rx_buffers) {
2432 DP_NOTICE(edev,
2433 "Allocated less buffers than desired (%d allocated)\n",
2434 num_allocated);
2435 }
2436
2437 qede_alloc_sge_mem(edev, rxq);
2438
2439 return 0;
2440
2441 err:
2442 qede_free_mem_rxq(edev, rxq);
2443 return -ENOMEM;
2444 }
2445
2446 static void qede_free_mem_txq(struct qede_dev *edev,
2447 struct qede_tx_queue *txq)
2448 {
2449 /* Free the parallel SW ring */
2450 kfree(txq->sw_tx_ring);
2451
2452 /* Free the real RQ ring used by FW */
2453 edev->ops->common->chain_free(edev->cdev, &txq->tx_pbl);
2454 }
2455
2456 /* This function allocates all memory needed per Tx queue */
2457 static int qede_alloc_mem_txq(struct qede_dev *edev,
2458 struct qede_tx_queue *txq)
2459 {
2460 int size, rc;
2461 union eth_tx_bd_types *p_virt;
2462
2463 txq->num_tx_buffers = edev->q_num_tx_buffers;
2464
2465 /* Allocate the parallel driver ring for Tx buffers */
2466 size = sizeof(*txq->sw_tx_ring) * NUM_TX_BDS_MAX;
2467 txq->sw_tx_ring = kzalloc(size, GFP_KERNEL);
2468 if (!txq->sw_tx_ring) {
2469 DP_NOTICE(edev, "Tx buffers ring allocation failed\n");
2470 goto err;
2471 }
2472
2473 rc = edev->ops->common->chain_alloc(edev->cdev,
2474 QED_CHAIN_USE_TO_CONSUME_PRODUCE,
2475 QED_CHAIN_MODE_PBL,
2476 NUM_TX_BDS_MAX,
2477 sizeof(*p_virt),
2478 &txq->tx_pbl);
2479 if (rc)
2480 goto err;
2481
2482 return 0;
2483
2484 err:
2485 qede_free_mem_txq(edev, txq);
2486 return -ENOMEM;
2487 }
2488
2489 /* This function frees all memory of a single fp */
2490 static void qede_free_mem_fp(struct qede_dev *edev,
2491 struct qede_fastpath *fp)
2492 {
2493 int tc;
2494
2495 qede_free_mem_sb(edev, fp->sb_info);
2496
2497 qede_free_mem_rxq(edev, fp->rxq);
2498
2499 for (tc = 0; tc < edev->num_tc; tc++)
2500 qede_free_mem_txq(edev, &fp->txqs[tc]);
2501 }
2502
2503 /* This function allocates all memory needed for a single fp (i.e. an entity
2504 * which contains status block, one rx queue and multiple per-TC tx queues.
2505 */
2506 static int qede_alloc_mem_fp(struct qede_dev *edev,
2507 struct qede_fastpath *fp)
2508 {
2509 int rc, tc;
2510
2511 rc = qede_alloc_mem_sb(edev, fp->sb_info, fp->rss_id);
2512 if (rc)
2513 goto err;
2514
2515 rc = qede_alloc_mem_rxq(edev, fp->rxq);
2516 if (rc)
2517 goto err;
2518
2519 for (tc = 0; tc < edev->num_tc; tc++) {
2520 rc = qede_alloc_mem_txq(edev, &fp->txqs[tc]);
2521 if (rc)
2522 goto err;
2523 }
2524
2525 return 0;
2526
2527 err:
2528 qede_free_mem_fp(edev, fp);
2529 return -ENOMEM;
2530 }
2531
2532 static void qede_free_mem_load(struct qede_dev *edev)
2533 {
2534 int i;
2535
2536 for_each_rss(i) {
2537 struct qede_fastpath *fp = &edev->fp_array[i];
2538
2539 qede_free_mem_fp(edev, fp);
2540 }
2541 }
2542
2543 /* This function allocates all qede memory at NIC load. */
2544 static int qede_alloc_mem_load(struct qede_dev *edev)
2545 {
2546 int rc = 0, rss_id;
2547
2548 for (rss_id = 0; rss_id < QEDE_RSS_CNT(edev); rss_id++) {
2549 struct qede_fastpath *fp = &edev->fp_array[rss_id];
2550
2551 rc = qede_alloc_mem_fp(edev, fp);
2552 if (rc)
2553 break;
2554 }
2555
2556 if (rss_id != QEDE_RSS_CNT(edev)) {
2557 /* Failed allocating memory for all the queues */
2558 if (!rss_id) {
2559 DP_ERR(edev,
2560 "Failed to allocate memory for the leading queue\n");
2561 rc = -ENOMEM;
2562 } else {
2563 DP_NOTICE(edev,
2564 "Failed to allocate memory for all of RSS queues\n Desired: %d queues, allocated: %d queues\n",
2565 QEDE_RSS_CNT(edev), rss_id);
2566 }
2567 edev->num_rss = rss_id;
2568 }
2569
2570 return 0;
2571 }
2572
2573 /* This function inits fp content and resets the SB, RXQ and TXQ structures */
2574 static void qede_init_fp(struct qede_dev *edev)
2575 {
2576 int rss_id, txq_index, tc;
2577 struct qede_fastpath *fp;
2578
2579 for_each_rss(rss_id) {
2580 fp = &edev->fp_array[rss_id];
2581
2582 fp->edev = edev;
2583 fp->rss_id = rss_id;
2584
2585 memset((void *)&fp->napi, 0, sizeof(fp->napi));
2586
2587 memset((void *)fp->sb_info, 0, sizeof(*fp->sb_info));
2588
2589 memset((void *)fp->rxq, 0, sizeof(*fp->rxq));
2590 fp->rxq->rxq_id = rss_id;
2591
2592 memset((void *)fp->txqs, 0, (edev->num_tc * sizeof(*fp->txqs)));
2593 for (tc = 0; tc < edev->num_tc; tc++) {
2594 txq_index = tc * QEDE_RSS_CNT(edev) + rss_id;
2595 fp->txqs[tc].index = txq_index;
2596 }
2597
2598 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
2599 edev->ndev->name, rss_id);
2600 }
2601
2602 edev->gro_disable = !(edev->ndev->features & NETIF_F_GRO);
2603 }
2604
2605 static int qede_set_real_num_queues(struct qede_dev *edev)
2606 {
2607 int rc = 0;
2608
2609 rc = netif_set_real_num_tx_queues(edev->ndev, QEDE_TSS_CNT(edev));
2610 if (rc) {
2611 DP_NOTICE(edev, "Failed to set real number of Tx queues\n");
2612 return rc;
2613 }
2614 rc = netif_set_real_num_rx_queues(edev->ndev, QEDE_RSS_CNT(edev));
2615 if (rc) {
2616 DP_NOTICE(edev, "Failed to set real number of Rx queues\n");
2617 return rc;
2618 }
2619
2620 return 0;
2621 }
2622
2623 static void qede_napi_disable_remove(struct qede_dev *edev)
2624 {
2625 int i;
2626
2627 for_each_rss(i) {
2628 napi_disable(&edev->fp_array[i].napi);
2629
2630 netif_napi_del(&edev->fp_array[i].napi);
2631 }
2632 }
2633
2634 static void qede_napi_add_enable(struct qede_dev *edev)
2635 {
2636 int i;
2637
2638 /* Add NAPI objects */
2639 for_each_rss(i) {
2640 netif_napi_add(edev->ndev, &edev->fp_array[i].napi,
2641 qede_poll, NAPI_POLL_WEIGHT);
2642 napi_enable(&edev->fp_array[i].napi);
2643 }
2644 }
2645
2646 static void qede_sync_free_irqs(struct qede_dev *edev)
2647 {
2648 int i;
2649
2650 for (i = 0; i < edev->int_info.used_cnt; i++) {
2651 if (edev->int_info.msix_cnt) {
2652 synchronize_irq(edev->int_info.msix[i].vector);
2653 free_irq(edev->int_info.msix[i].vector,
2654 &edev->fp_array[i]);
2655 } else {
2656 edev->ops->common->simd_handler_clean(edev->cdev, i);
2657 }
2658 }
2659
2660 edev->int_info.used_cnt = 0;
2661 }
2662
2663 static int qede_req_msix_irqs(struct qede_dev *edev)
2664 {
2665 int i, rc;
2666
2667 /* Sanitize number of interrupts == number of prepared RSS queues */
2668 if (QEDE_RSS_CNT(edev) > edev->int_info.msix_cnt) {
2669 DP_ERR(edev,
2670 "Interrupt mismatch: %d RSS queues > %d MSI-x vectors\n",
2671 QEDE_RSS_CNT(edev), edev->int_info.msix_cnt);
2672 return -EINVAL;
2673 }
2674
2675 for (i = 0; i < QEDE_RSS_CNT(edev); i++) {
2676 rc = request_irq(edev->int_info.msix[i].vector,
2677 qede_msix_fp_int, 0, edev->fp_array[i].name,
2678 &edev->fp_array[i]);
2679 if (rc) {
2680 DP_ERR(edev, "Request fp %d irq failed\n", i);
2681 qede_sync_free_irqs(edev);
2682 return rc;
2683 }
2684 DP_VERBOSE(edev, NETIF_MSG_INTR,
2685 "Requested fp irq for %s [entry %d]. Cookie is at %p\n",
2686 edev->fp_array[i].name, i,
2687 &edev->fp_array[i]);
2688 edev->int_info.used_cnt++;
2689 }
2690
2691 return 0;
2692 }
2693
2694 static void qede_simd_fp_handler(void *cookie)
2695 {
2696 struct qede_fastpath *fp = (struct qede_fastpath *)cookie;
2697
2698 napi_schedule_irqoff(&fp->napi);
2699 }
2700
2701 static int qede_setup_irqs(struct qede_dev *edev)
2702 {
2703 int i, rc = 0;
2704
2705 /* Learn Interrupt configuration */
2706 rc = edev->ops->common->get_fp_int(edev->cdev, &edev->int_info);
2707 if (rc)
2708 return rc;
2709
2710 if (edev->int_info.msix_cnt) {
2711 rc = qede_req_msix_irqs(edev);
2712 if (rc)
2713 return rc;
2714 edev->ndev->irq = edev->int_info.msix[0].vector;
2715 } else {
2716 const struct qed_common_ops *ops;
2717
2718 /* qed should learn receive the RSS ids and callbacks */
2719 ops = edev->ops->common;
2720 for (i = 0; i < QEDE_RSS_CNT(edev); i++)
2721 ops->simd_handler_config(edev->cdev,
2722 &edev->fp_array[i], i,
2723 qede_simd_fp_handler);
2724 edev->int_info.used_cnt = QEDE_RSS_CNT(edev);
2725 }
2726 return 0;
2727 }
2728
2729 static int qede_drain_txq(struct qede_dev *edev,
2730 struct qede_tx_queue *txq,
2731 bool allow_drain)
2732 {
2733 int rc, cnt = 1000;
2734
2735 while (txq->sw_tx_cons != txq->sw_tx_prod) {
2736 if (!cnt) {
2737 if (allow_drain) {
2738 DP_NOTICE(edev,
2739 "Tx queue[%d] is stuck, requesting MCP to drain\n",
2740 txq->index);
2741 rc = edev->ops->common->drain(edev->cdev);
2742 if (rc)
2743 return rc;
2744 return qede_drain_txq(edev, txq, false);
2745 }
2746 DP_NOTICE(edev,
2747 "Timeout waiting for tx queue[%d]: PROD=%d, CONS=%d\n",
2748 txq->index, txq->sw_tx_prod,
2749 txq->sw_tx_cons);
2750 return -ENODEV;
2751 }
2752 cnt--;
2753 usleep_range(1000, 2000);
2754 barrier();
2755 }
2756
2757 /* FW finished processing, wait for HW to transmit all tx packets */
2758 usleep_range(1000, 2000);
2759
2760 return 0;
2761 }
2762
2763 static int qede_stop_queues(struct qede_dev *edev)
2764 {
2765 struct qed_update_vport_params vport_update_params;
2766 struct qed_dev *cdev = edev->cdev;
2767 int rc, tc, i;
2768
2769 /* Disable the vport */
2770 memset(&vport_update_params, 0, sizeof(vport_update_params));
2771 vport_update_params.vport_id = 0;
2772 vport_update_params.update_vport_active_flg = 1;
2773 vport_update_params.vport_active_flg = 0;
2774 vport_update_params.update_rss_flg = 0;
2775
2776 rc = edev->ops->vport_update(cdev, &vport_update_params);
2777 if (rc) {
2778 DP_ERR(edev, "Failed to update vport\n");
2779 return rc;
2780 }
2781
2782 /* Flush Tx queues. If needed, request drain from MCP */
2783 for_each_rss(i) {
2784 struct qede_fastpath *fp = &edev->fp_array[i];
2785
2786 for (tc = 0; tc < edev->num_tc; tc++) {
2787 struct qede_tx_queue *txq = &fp->txqs[tc];
2788
2789 rc = qede_drain_txq(edev, txq, true);
2790 if (rc)
2791 return rc;
2792 }
2793 }
2794
2795 /* Stop all Queues in reverse order*/
2796 for (i = QEDE_RSS_CNT(edev) - 1; i >= 0; i--) {
2797 struct qed_stop_rxq_params rx_params;
2798
2799 /* Stop the Tx Queue(s)*/
2800 for (tc = 0; tc < edev->num_tc; tc++) {
2801 struct qed_stop_txq_params tx_params;
2802
2803 tx_params.rss_id = i;
2804 tx_params.tx_queue_id = tc * QEDE_RSS_CNT(edev) + i;
2805 rc = edev->ops->q_tx_stop(cdev, &tx_params);
2806 if (rc) {
2807 DP_ERR(edev, "Failed to stop TXQ #%d\n",
2808 tx_params.tx_queue_id);
2809 return rc;
2810 }
2811 }
2812
2813 /* Stop the Rx Queue*/
2814 memset(&rx_params, 0, sizeof(rx_params));
2815 rx_params.rss_id = i;
2816 rx_params.rx_queue_id = i;
2817
2818 rc = edev->ops->q_rx_stop(cdev, &rx_params);
2819 if (rc) {
2820 DP_ERR(edev, "Failed to stop RXQ #%d\n", i);
2821 return rc;
2822 }
2823 }
2824
2825 /* Stop the vport */
2826 rc = edev->ops->vport_stop(cdev, 0);
2827 if (rc)
2828 DP_ERR(edev, "Failed to stop VPORT\n");
2829
2830 return rc;
2831 }
2832
2833 static int qede_start_queues(struct qede_dev *edev)
2834 {
2835 int rc, tc, i;
2836 int vlan_removal_en = 1;
2837 struct qed_dev *cdev = edev->cdev;
2838 struct qed_update_vport_rss_params *rss_params = &edev->rss_params;
2839 struct qed_update_vport_params vport_update_params;
2840 struct qed_queue_start_common_params q_params;
2841 struct qed_start_vport_params start = {0};
2842
2843 if (!edev->num_rss) {
2844 DP_ERR(edev,
2845 "Cannot update V-VPORT as active as there are no Rx queues\n");
2846 return -EINVAL;
2847 }
2848
2849 start.gro_enable = !edev->gro_disable;
2850 start.mtu = edev->ndev->mtu;
2851 start.vport_id = 0;
2852 start.drop_ttl0 = true;
2853 start.remove_inner_vlan = vlan_removal_en;
2854
2855 rc = edev->ops->vport_start(cdev, &start);
2856
2857 if (rc) {
2858 DP_ERR(edev, "Start V-PORT failed %d\n", rc);
2859 return rc;
2860 }
2861
2862 DP_VERBOSE(edev, NETIF_MSG_IFUP,
2863 "Start vport ramrod passed, vport_id = %d, MTU = %d, vlan_removal_en = %d\n",
2864 start.vport_id, edev->ndev->mtu + 0xe, vlan_removal_en);
2865
2866 for_each_rss(i) {
2867 struct qede_fastpath *fp = &edev->fp_array[i];
2868 dma_addr_t phys_table = fp->rxq->rx_comp_ring.pbl.p_phys_table;
2869
2870 memset(&q_params, 0, sizeof(q_params));
2871 q_params.rss_id = i;
2872 q_params.queue_id = i;
2873 q_params.vport_id = 0;
2874 q_params.sb = fp->sb_info->igu_sb_id;
2875 q_params.sb_idx = RX_PI;
2876
2877 rc = edev->ops->q_rx_start(cdev, &q_params,
2878 fp->rxq->rx_buf_size,
2879 fp->rxq->rx_bd_ring.p_phys_addr,
2880 phys_table,
2881 fp->rxq->rx_comp_ring.page_cnt,
2882 &fp->rxq->hw_rxq_prod_addr);
2883 if (rc) {
2884 DP_ERR(edev, "Start RXQ #%d failed %d\n", i, rc);
2885 return rc;
2886 }
2887
2888 fp->rxq->hw_cons_ptr = &fp->sb_info->sb_virt->pi_array[RX_PI];
2889
2890 qede_update_rx_prod(edev, fp->rxq);
2891
2892 for (tc = 0; tc < edev->num_tc; tc++) {
2893 struct qede_tx_queue *txq = &fp->txqs[tc];
2894 int txq_index = tc * QEDE_RSS_CNT(edev) + i;
2895
2896 memset(&q_params, 0, sizeof(q_params));
2897 q_params.rss_id = i;
2898 q_params.queue_id = txq_index;
2899 q_params.vport_id = 0;
2900 q_params.sb = fp->sb_info->igu_sb_id;
2901 q_params.sb_idx = TX_PI(tc);
2902
2903 rc = edev->ops->q_tx_start(cdev, &q_params,
2904 txq->tx_pbl.pbl.p_phys_table,
2905 txq->tx_pbl.page_cnt,
2906 &txq->doorbell_addr);
2907 if (rc) {
2908 DP_ERR(edev, "Start TXQ #%d failed %d\n",
2909 txq_index, rc);
2910 return rc;
2911 }
2912
2913 txq->hw_cons_ptr =
2914 &fp->sb_info->sb_virt->pi_array[TX_PI(tc)];
2915 SET_FIELD(txq->tx_db.data.params,
2916 ETH_DB_DATA_DEST, DB_DEST_XCM);
2917 SET_FIELD(txq->tx_db.data.params, ETH_DB_DATA_AGG_CMD,
2918 DB_AGG_CMD_SET);
2919 SET_FIELD(txq->tx_db.data.params,
2920 ETH_DB_DATA_AGG_VAL_SEL,
2921 DQ_XCM_ETH_TX_BD_PROD_CMD);
2922
2923 txq->tx_db.data.agg_flags = DQ_XCM_ETH_DQ_CF_CMD;
2924 }
2925 }
2926
2927 /* Prepare and send the vport enable */
2928 memset(&vport_update_params, 0, sizeof(vport_update_params));
2929 vport_update_params.vport_id = start.vport_id;
2930 vport_update_params.update_vport_active_flg = 1;
2931 vport_update_params.vport_active_flg = 1;
2932
2933 /* Fill struct with RSS params */
2934 if (QEDE_RSS_CNT(edev) > 1) {
2935 vport_update_params.update_rss_flg = 1;
2936 for (i = 0; i < 128; i++)
2937 rss_params->rss_ind_table[i] =
2938 ethtool_rxfh_indir_default(i, QEDE_RSS_CNT(edev));
2939 netdev_rss_key_fill(rss_params->rss_key,
2940 sizeof(rss_params->rss_key));
2941 } else {
2942 memset(rss_params, 0, sizeof(*rss_params));
2943 }
2944 memcpy(&vport_update_params.rss_params, rss_params,
2945 sizeof(*rss_params));
2946
2947 rc = edev->ops->vport_update(cdev, &vport_update_params);
2948 if (rc) {
2949 DP_ERR(edev, "Update V-PORT failed %d\n", rc);
2950 return rc;
2951 }
2952
2953 return 0;
2954 }
2955
2956 static int qede_set_mcast_rx_mac(struct qede_dev *edev,
2957 enum qed_filter_xcast_params_type opcode,
2958 unsigned char *mac, int num_macs)
2959 {
2960 struct qed_filter_params filter_cmd;
2961 int i;
2962
2963 memset(&filter_cmd, 0, sizeof(filter_cmd));
2964 filter_cmd.type = QED_FILTER_TYPE_MCAST;
2965 filter_cmd.filter.mcast.type = opcode;
2966 filter_cmd.filter.mcast.num = num_macs;
2967
2968 for (i = 0; i < num_macs; i++, mac += ETH_ALEN)
2969 ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac);
2970
2971 return edev->ops->filter_config(edev->cdev, &filter_cmd);
2972 }
2973
2974 enum qede_unload_mode {
2975 QEDE_UNLOAD_NORMAL,
2976 };
2977
2978 static void qede_unload(struct qede_dev *edev, enum qede_unload_mode mode)
2979 {
2980 struct qed_link_params link_params;
2981 int rc;
2982
2983 DP_INFO(edev, "Starting qede unload\n");
2984
2985 mutex_lock(&edev->qede_lock);
2986 edev->state = QEDE_STATE_CLOSED;
2987
2988 /* Close OS Tx */
2989 netif_tx_disable(edev->ndev);
2990 netif_carrier_off(edev->ndev);
2991
2992 /* Reset the link */
2993 memset(&link_params, 0, sizeof(link_params));
2994 link_params.link_up = false;
2995 edev->ops->common->set_link(edev->cdev, &link_params);
2996 rc = qede_stop_queues(edev);
2997 if (rc) {
2998 qede_sync_free_irqs(edev);
2999 goto out;
3000 }
3001
3002 DP_INFO(edev, "Stopped Queues\n");
3003
3004 qede_vlan_mark_nonconfigured(edev);
3005 edev->ops->fastpath_stop(edev->cdev);
3006
3007 /* Release the interrupts */
3008 qede_sync_free_irqs(edev);
3009 edev->ops->common->set_fp_int(edev->cdev, 0);
3010
3011 qede_napi_disable_remove(edev);
3012
3013 qede_free_mem_load(edev);
3014 qede_free_fp_array(edev);
3015
3016 out:
3017 mutex_unlock(&edev->qede_lock);
3018 DP_INFO(edev, "Ending qede unload\n");
3019 }
3020
3021 enum qede_load_mode {
3022 QEDE_LOAD_NORMAL,
3023 };
3024
3025 static int qede_load(struct qede_dev *edev, enum qede_load_mode mode)
3026 {
3027 struct qed_link_params link_params;
3028 struct qed_link_output link_output;
3029 int rc;
3030
3031 DP_INFO(edev, "Starting qede load\n");
3032
3033 rc = qede_set_num_queues(edev);
3034 if (rc)
3035 goto err0;
3036
3037 rc = qede_alloc_fp_array(edev);
3038 if (rc)
3039 goto err0;
3040
3041 qede_init_fp(edev);
3042
3043 rc = qede_alloc_mem_load(edev);
3044 if (rc)
3045 goto err1;
3046 DP_INFO(edev, "Allocated %d RSS queues on %d TC/s\n",
3047 QEDE_RSS_CNT(edev), edev->num_tc);
3048
3049 rc = qede_set_real_num_queues(edev);
3050 if (rc)
3051 goto err2;
3052
3053 qede_napi_add_enable(edev);
3054 DP_INFO(edev, "Napi added and enabled\n");
3055
3056 rc = qede_setup_irqs(edev);
3057 if (rc)
3058 goto err3;
3059 DP_INFO(edev, "Setup IRQs succeeded\n");
3060
3061 rc = qede_start_queues(edev);
3062 if (rc)
3063 goto err4;
3064 DP_INFO(edev, "Start VPORT, RXQ and TXQ succeeded\n");
3065
3066 /* Add primary mac and set Rx filters */
3067 ether_addr_copy(edev->primary_mac, edev->ndev->dev_addr);
3068
3069 mutex_lock(&edev->qede_lock);
3070 edev->state = QEDE_STATE_OPEN;
3071 mutex_unlock(&edev->qede_lock);
3072
3073 /* Program un-configured VLANs */
3074 qede_configure_vlan_filters(edev);
3075
3076 /* Ask for link-up using current configuration */
3077 memset(&link_params, 0, sizeof(link_params));
3078 link_params.link_up = true;
3079 edev->ops->common->set_link(edev->cdev, &link_params);
3080
3081 /* Query whether link is already-up */
3082 memset(&link_output, 0, sizeof(link_output));
3083 edev->ops->common->get_link(edev->cdev, &link_output);
3084 qede_link_update(edev, &link_output);
3085
3086 DP_INFO(edev, "Ending successfully qede load\n");
3087
3088 return 0;
3089
3090 err4:
3091 qede_sync_free_irqs(edev);
3092 memset(&edev->int_info.msix_cnt, 0, sizeof(struct qed_int_info));
3093 err3:
3094 qede_napi_disable_remove(edev);
3095 err2:
3096 qede_free_mem_load(edev);
3097 err1:
3098 edev->ops->common->set_fp_int(edev->cdev, 0);
3099 qede_free_fp_array(edev);
3100 edev->num_rss = 0;
3101 err0:
3102 return rc;
3103 }
3104
3105 void qede_reload(struct qede_dev *edev,
3106 void (*func)(struct qede_dev *, union qede_reload_args *),
3107 union qede_reload_args *args)
3108 {
3109 qede_unload(edev, QEDE_UNLOAD_NORMAL);
3110 /* Call function handler to update parameters
3111 * needed for function load.
3112 */
3113 if (func)
3114 func(edev, args);
3115
3116 qede_load(edev, QEDE_LOAD_NORMAL);
3117
3118 mutex_lock(&edev->qede_lock);
3119 qede_config_rx_mode(edev->ndev);
3120 mutex_unlock(&edev->qede_lock);
3121 }
3122
3123 /* called with rtnl_lock */
3124 static int qede_open(struct net_device *ndev)
3125 {
3126 struct qede_dev *edev = netdev_priv(ndev);
3127
3128 netif_carrier_off(ndev);
3129
3130 edev->ops->common->set_power_state(edev->cdev, PCI_D0);
3131
3132 return qede_load(edev, QEDE_LOAD_NORMAL);
3133 }
3134
3135 static int qede_close(struct net_device *ndev)
3136 {
3137 struct qede_dev *edev = netdev_priv(ndev);
3138
3139 qede_unload(edev, QEDE_UNLOAD_NORMAL);
3140
3141 return 0;
3142 }
3143
3144 static void qede_link_update(void *dev, struct qed_link_output *link)
3145 {
3146 struct qede_dev *edev = dev;
3147
3148 if (!netif_running(edev->ndev)) {
3149 DP_VERBOSE(edev, NETIF_MSG_LINK, "Interface is not running\n");
3150 return;
3151 }
3152
3153 if (link->link_up) {
3154 if (!netif_carrier_ok(edev->ndev)) {
3155 DP_NOTICE(edev, "Link is up\n");
3156 netif_tx_start_all_queues(edev->ndev);
3157 netif_carrier_on(edev->ndev);
3158 }
3159 } else {
3160 if (netif_carrier_ok(edev->ndev)) {
3161 DP_NOTICE(edev, "Link is down\n");
3162 netif_tx_disable(edev->ndev);
3163 netif_carrier_off(edev->ndev);
3164 }
3165 }
3166 }
3167
3168 static int qede_set_mac_addr(struct net_device *ndev, void *p)
3169 {
3170 struct qede_dev *edev = netdev_priv(ndev);
3171 struct sockaddr *addr = p;
3172 int rc;
3173
3174 ASSERT_RTNL(); /* @@@TBD To be removed */
3175
3176 DP_INFO(edev, "Set_mac_addr called\n");
3177
3178 if (!is_valid_ether_addr(addr->sa_data)) {
3179 DP_NOTICE(edev, "The MAC address is not valid\n");
3180 return -EFAULT;
3181 }
3182
3183 ether_addr_copy(ndev->dev_addr, addr->sa_data);
3184
3185 if (!netif_running(ndev)) {
3186 DP_NOTICE(edev, "The device is currently down\n");
3187 return 0;
3188 }
3189
3190 /* Remove the previous primary mac */
3191 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3192 edev->primary_mac);
3193 if (rc)
3194 return rc;
3195
3196 /* Add MAC filter according to the new unicast HW MAC address */
3197 ether_addr_copy(edev->primary_mac, ndev->dev_addr);
3198 return qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3199 edev->primary_mac);
3200 }
3201
3202 static int
3203 qede_configure_mcast_filtering(struct net_device *ndev,
3204 enum qed_filter_rx_mode_type *accept_flags)
3205 {
3206 struct qede_dev *edev = netdev_priv(ndev);
3207 unsigned char *mc_macs, *temp;
3208 struct netdev_hw_addr *ha;
3209 int rc = 0, mc_count;
3210 size_t size;
3211
3212 size = 64 * ETH_ALEN;
3213
3214 mc_macs = kzalloc(size, GFP_KERNEL);
3215 if (!mc_macs) {
3216 DP_NOTICE(edev,
3217 "Failed to allocate memory for multicast MACs\n");
3218 rc = -ENOMEM;
3219 goto exit;
3220 }
3221
3222 temp = mc_macs;
3223
3224 /* Remove all previously configured MAC filters */
3225 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL,
3226 mc_macs, 1);
3227 if (rc)
3228 goto exit;
3229
3230 netif_addr_lock_bh(ndev);
3231
3232 mc_count = netdev_mc_count(ndev);
3233 if (mc_count < 64) {
3234 netdev_for_each_mc_addr(ha, ndev) {
3235 ether_addr_copy(temp, ha->addr);
3236 temp += ETH_ALEN;
3237 }
3238 }
3239
3240 netif_addr_unlock_bh(ndev);
3241
3242 /* Check for all multicast @@@TBD resource allocation */
3243 if ((ndev->flags & IFF_ALLMULTI) ||
3244 (mc_count > 64)) {
3245 if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR)
3246 *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC;
3247 } else {
3248 /* Add all multicast MAC filters */
3249 rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD,
3250 mc_macs, mc_count);
3251 }
3252
3253 exit:
3254 kfree(mc_macs);
3255 return rc;
3256 }
3257
3258 static void qede_set_rx_mode(struct net_device *ndev)
3259 {
3260 struct qede_dev *edev = netdev_priv(ndev);
3261
3262 DP_INFO(edev, "qede_set_rx_mode called\n");
3263
3264 if (edev->state != QEDE_STATE_OPEN) {
3265 DP_INFO(edev,
3266 "qede_set_rx_mode called while interface is down\n");
3267 } else {
3268 set_bit(QEDE_SP_RX_MODE, &edev->sp_flags);
3269 schedule_delayed_work(&edev->sp_task, 0);
3270 }
3271 }
3272
3273 /* Must be called with qede_lock held */
3274 static void qede_config_rx_mode(struct net_device *ndev)
3275 {
3276 enum qed_filter_rx_mode_type accept_flags = QED_FILTER_TYPE_UCAST;
3277 struct qede_dev *edev = netdev_priv(ndev);
3278 struct qed_filter_params rx_mode;
3279 unsigned char *uc_macs, *temp;
3280 struct netdev_hw_addr *ha;
3281 int rc, uc_count;
3282 size_t size;
3283
3284 netif_addr_lock_bh(ndev);
3285
3286 uc_count = netdev_uc_count(ndev);
3287 size = uc_count * ETH_ALEN;
3288
3289 uc_macs = kzalloc(size, GFP_ATOMIC);
3290 if (!uc_macs) {
3291 DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n");
3292 netif_addr_unlock_bh(ndev);
3293 return;
3294 }
3295
3296 temp = uc_macs;
3297 netdev_for_each_uc_addr(ha, ndev) {
3298 ether_addr_copy(temp, ha->addr);
3299 temp += ETH_ALEN;
3300 }
3301
3302 netif_addr_unlock_bh(ndev);
3303
3304 /* Configure the struct for the Rx mode */
3305 memset(&rx_mode, 0, sizeof(struct qed_filter_params));
3306 rx_mode.type = QED_FILTER_TYPE_RX_MODE;
3307
3308 /* Remove all previous unicast secondary macs and multicast macs
3309 * (configrue / leave the primary mac)
3310 */
3311 rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE,
3312 edev->primary_mac);
3313 if (rc)
3314 goto out;
3315
3316 /* Check for promiscuous */
3317 if ((ndev->flags & IFF_PROMISC) ||
3318 (uc_count > 15)) { /* @@@TBD resource allocation - 1 */
3319 accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC;
3320 } else {
3321 /* Add MAC filters according to the unicast secondary macs */
3322 int i;
3323
3324 temp = uc_macs;
3325 for (i = 0; i < uc_count; i++) {
3326 rc = qede_set_ucast_rx_mac(edev,
3327 QED_FILTER_XCAST_TYPE_ADD,
3328 temp);
3329 if (rc)
3330 goto out;
3331
3332 temp += ETH_ALEN;
3333 }
3334
3335 rc = qede_configure_mcast_filtering(ndev, &accept_flags);
3336 if (rc)
3337 goto out;
3338 }
3339
3340 /* take care of VLAN mode */
3341 if (ndev->flags & IFF_PROMISC) {
3342 qede_config_accept_any_vlan(edev, true);
3343 } else if (!edev->non_configured_vlans) {
3344 /* It's possible that accept_any_vlan mode is set due to a
3345 * previous setting of IFF_PROMISC. If vlan credits are
3346 * sufficient, disable accept_any_vlan.
3347 */
3348 qede_config_accept_any_vlan(edev, false);
3349 }
3350
3351 rx_mode.filter.accept_flags = accept_flags;
3352 edev->ops->filter_config(edev->cdev, &rx_mode);
3353 out:
3354 kfree(uc_macs);
3355 }
This page took 0.103155 seconds and 5 git commands to generate.