Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / net / ethernet / renesas / ravb_main.c
1 /* Renesas Ethernet AVB device driver
2 *
3 * Copyright (C) 2014-2015 Renesas Electronics Corporation
4 * Copyright (C) 2015 Renesas Solutions Corp.
5 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
6 *
7 * Based on the SuperH Ethernet driver
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License version 2,
11 * as published by the Free Software Foundation.
12 */
13
14 #include <linux/cache.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/etherdevice.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/net_tstamp.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_mdio.h>
30 #include <linux/of_net.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34
35 #include <asm/div64.h>
36
37 #include "ravb.h"
38
39 #define RAVB_DEF_MSG_ENABLE \
40 (NETIF_MSG_LINK | \
41 NETIF_MSG_TIMER | \
42 NETIF_MSG_RX_ERR | \
43 NETIF_MSG_TX_ERR)
44
45 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
46 u32 set)
47 {
48 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
49 }
50
51 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
52 {
53 int i;
54
55 for (i = 0; i < 10000; i++) {
56 if ((ravb_read(ndev, reg) & mask) == value)
57 return 0;
58 udelay(10);
59 }
60 return -ETIMEDOUT;
61 }
62
63 static int ravb_config(struct net_device *ndev)
64 {
65 int error;
66
67 /* Set config mode */
68 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
69 /* Check if the operating mode is changed to the config mode */
70 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
71 if (error)
72 netdev_err(ndev, "failed to switch device to config mode\n");
73
74 return error;
75 }
76
77 static void ravb_set_duplex(struct net_device *ndev)
78 {
79 struct ravb_private *priv = netdev_priv(ndev);
80
81 ravb_modify(ndev, ECMR, ECMR_DM, priv->duplex ? ECMR_DM : 0);
82 }
83
84 static void ravb_set_rate(struct net_device *ndev)
85 {
86 struct ravb_private *priv = netdev_priv(ndev);
87
88 switch (priv->speed) {
89 case 100: /* 100BASE */
90 ravb_write(ndev, GECMR_SPEED_100, GECMR);
91 break;
92 case 1000: /* 1000BASE */
93 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
94 break;
95 }
96 }
97
98 static void ravb_set_buffer_align(struct sk_buff *skb)
99 {
100 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
101
102 if (reserve)
103 skb_reserve(skb, RAVB_ALIGN - reserve);
104 }
105
106 /* Get MAC address from the MAC address registers
107 *
108 * Ethernet AVB device doesn't have ROM for MAC address.
109 * This function gets the MAC address that was used by a bootloader.
110 */
111 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
112 {
113 if (mac) {
114 ether_addr_copy(ndev->dev_addr, mac);
115 } else {
116 u32 mahr = ravb_read(ndev, MAHR);
117 u32 malr = ravb_read(ndev, MALR);
118
119 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
120 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
121 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
122 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
123 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
124 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
125 }
126 }
127
128 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
129 {
130 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
131 mdiobb);
132
133 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
134 }
135
136 /* MDC pin control */
137 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
138 {
139 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
140 }
141
142 /* Data I/O pin control */
143 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
144 {
145 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
146 }
147
148 /* Set data bit */
149 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
150 {
151 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
152 }
153
154 /* Get data bit */
155 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
156 {
157 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
158 mdiobb);
159
160 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
161 }
162
163 /* MDIO bus control struct */
164 static struct mdiobb_ops bb_ops = {
165 .owner = THIS_MODULE,
166 .set_mdc = ravb_set_mdc,
167 .set_mdio_dir = ravb_set_mdio_dir,
168 .set_mdio_data = ravb_set_mdio_data,
169 .get_mdio_data = ravb_get_mdio_data,
170 };
171
172 /* Free skb's and DMA buffers for Ethernet AVB */
173 static void ravb_ring_free(struct net_device *ndev, int q)
174 {
175 struct ravb_private *priv = netdev_priv(ndev);
176 int ring_size;
177 int i;
178
179 /* Free RX skb ringbuffer */
180 if (priv->rx_skb[q]) {
181 for (i = 0; i < priv->num_rx_ring[q]; i++)
182 dev_kfree_skb(priv->rx_skb[q][i]);
183 }
184 kfree(priv->rx_skb[q]);
185 priv->rx_skb[q] = NULL;
186
187 /* Free TX skb ringbuffer */
188 if (priv->tx_skb[q]) {
189 for (i = 0; i < priv->num_tx_ring[q]; i++)
190 dev_kfree_skb(priv->tx_skb[q][i]);
191 }
192 kfree(priv->tx_skb[q]);
193 priv->tx_skb[q] = NULL;
194
195 /* Free aligned TX buffers */
196 kfree(priv->tx_align[q]);
197 priv->tx_align[q] = NULL;
198
199 if (priv->rx_ring[q]) {
200 ring_size = sizeof(struct ravb_ex_rx_desc) *
201 (priv->num_rx_ring[q] + 1);
202 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
203 priv->rx_desc_dma[q]);
204 priv->rx_ring[q] = NULL;
205 }
206
207 if (priv->tx_ring[q]) {
208 ring_size = sizeof(struct ravb_tx_desc) *
209 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
210 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
211 priv->tx_desc_dma[q]);
212 priv->tx_ring[q] = NULL;
213 }
214 }
215
216 /* Format skb and descriptor buffer for Ethernet AVB */
217 static void ravb_ring_format(struct net_device *ndev, int q)
218 {
219 struct ravb_private *priv = netdev_priv(ndev);
220 struct ravb_ex_rx_desc *rx_desc;
221 struct ravb_tx_desc *tx_desc;
222 struct ravb_desc *desc;
223 int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
224 int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
225 NUM_TX_DESC;
226 dma_addr_t dma_addr;
227 int i;
228
229 priv->cur_rx[q] = 0;
230 priv->cur_tx[q] = 0;
231 priv->dirty_rx[q] = 0;
232 priv->dirty_tx[q] = 0;
233
234 memset(priv->rx_ring[q], 0, rx_ring_size);
235 /* Build RX ring buffer */
236 for (i = 0; i < priv->num_rx_ring[q]; i++) {
237 /* RX descriptor */
238 rx_desc = &priv->rx_ring[q][i];
239 /* The size of the buffer should be on 16-byte boundary. */
240 rx_desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
241 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
242 ALIGN(PKT_BUF_SZ, 16),
243 DMA_FROM_DEVICE);
244 /* We just set the data size to 0 for a failed mapping which
245 * should prevent DMA from happening...
246 */
247 if (dma_mapping_error(ndev->dev.parent, dma_addr))
248 rx_desc->ds_cc = cpu_to_le16(0);
249 rx_desc->dptr = cpu_to_le32(dma_addr);
250 rx_desc->die_dt = DT_FEMPTY;
251 }
252 rx_desc = &priv->rx_ring[q][i];
253 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
254 rx_desc->die_dt = DT_LINKFIX; /* type */
255
256 memset(priv->tx_ring[q], 0, tx_ring_size);
257 /* Build TX ring buffer */
258 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
259 i++, tx_desc++) {
260 tx_desc->die_dt = DT_EEMPTY;
261 tx_desc++;
262 tx_desc->die_dt = DT_EEMPTY;
263 }
264 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
265 tx_desc->die_dt = DT_LINKFIX; /* type */
266
267 /* RX descriptor base address for best effort */
268 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
269 desc->die_dt = DT_LINKFIX; /* type */
270 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
271
272 /* TX descriptor base address for best effort */
273 desc = &priv->desc_bat[q];
274 desc->die_dt = DT_LINKFIX; /* type */
275 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
276 }
277
278 /* Init skb and descriptor buffer for Ethernet AVB */
279 static int ravb_ring_init(struct net_device *ndev, int q)
280 {
281 struct ravb_private *priv = netdev_priv(ndev);
282 struct sk_buff *skb;
283 int ring_size;
284 int i;
285
286 /* Allocate RX and TX skb rings */
287 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
288 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
289 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
290 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
291 if (!priv->rx_skb[q] || !priv->tx_skb[q])
292 goto error;
293
294 for (i = 0; i < priv->num_rx_ring[q]; i++) {
295 skb = netdev_alloc_skb(ndev, PKT_BUF_SZ + RAVB_ALIGN - 1);
296 if (!skb)
297 goto error;
298 ravb_set_buffer_align(skb);
299 priv->rx_skb[q][i] = skb;
300 }
301
302 /* Allocate rings for the aligned buffers */
303 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
304 DPTR_ALIGN - 1, GFP_KERNEL);
305 if (!priv->tx_align[q])
306 goto error;
307
308 /* Allocate all RX descriptors. */
309 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
310 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
311 &priv->rx_desc_dma[q],
312 GFP_KERNEL);
313 if (!priv->rx_ring[q])
314 goto error;
315
316 priv->dirty_rx[q] = 0;
317
318 /* Allocate all TX descriptors. */
319 ring_size = sizeof(struct ravb_tx_desc) *
320 (priv->num_tx_ring[q] * NUM_TX_DESC + 1);
321 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
322 &priv->tx_desc_dma[q],
323 GFP_KERNEL);
324 if (!priv->tx_ring[q])
325 goto error;
326
327 return 0;
328
329 error:
330 ravb_ring_free(ndev, q);
331
332 return -ENOMEM;
333 }
334
335 /* E-MAC init function */
336 static void ravb_emac_init(struct net_device *ndev)
337 {
338 struct ravb_private *priv = netdev_priv(ndev);
339
340 /* Receive frame limit set register */
341 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
342
343 /* PAUSE prohibition */
344 ravb_write(ndev, ECMR_ZPF | (priv->duplex ? ECMR_DM : 0) |
345 ECMR_TE | ECMR_RE, ECMR);
346
347 ravb_set_rate(ndev);
348
349 /* Set MAC address */
350 ravb_write(ndev,
351 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
352 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
353 ravb_write(ndev,
354 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
355
356 ravb_write(ndev, 1, MPR);
357
358 /* E-MAC status register clear */
359 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
360
361 /* E-MAC interrupt enable register */
362 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
363 }
364
365 /* Device init function for Ethernet AVB */
366 static int ravb_dmac_init(struct net_device *ndev)
367 {
368 int error;
369
370 /* Set CONFIG mode */
371 error = ravb_config(ndev);
372 if (error)
373 return error;
374
375 error = ravb_ring_init(ndev, RAVB_BE);
376 if (error)
377 return error;
378 error = ravb_ring_init(ndev, RAVB_NC);
379 if (error) {
380 ravb_ring_free(ndev, RAVB_BE);
381 return error;
382 }
383
384 /* Descriptor format */
385 ravb_ring_format(ndev, RAVB_BE);
386 ravb_ring_format(ndev, RAVB_NC);
387
388 #if defined(__LITTLE_ENDIAN)
389 ravb_modify(ndev, CCC, CCC_BOC, 0);
390 #else
391 ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
392 #endif
393
394 /* Set AVB RX */
395 ravb_write(ndev, RCR_EFFS | RCR_ENCF | RCR_ETS0 | 0x18000000, RCR);
396
397 /* Set FIFO size */
398 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00222200, TGC);
399
400 /* Timestamp enable */
401 ravb_write(ndev, TCCR_TFEN, TCCR);
402
403 /* Interrupt init: */
404 /* Frame receive */
405 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
406 /* Disable FIFO full warning */
407 ravb_write(ndev, 0, RIC1);
408 /* Receive FIFO full error, descriptor empty */
409 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
410 /* Frame transmitted, timestamp FIFO updated */
411 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
412
413 /* Setting the control will start the AVB-DMAC process. */
414 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
415
416 return 0;
417 }
418
419 /* Free TX skb function for AVB-IP */
420 static int ravb_tx_free(struct net_device *ndev, int q)
421 {
422 struct ravb_private *priv = netdev_priv(ndev);
423 struct net_device_stats *stats = &priv->stats[q];
424 struct ravb_tx_desc *desc;
425 int free_num = 0;
426 int entry;
427 u32 size;
428
429 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
430 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
431 NUM_TX_DESC);
432 desc = &priv->tx_ring[q][entry];
433 if (desc->die_dt != DT_FEMPTY)
434 break;
435 /* Descriptor type must be checked before all other reads */
436 dma_rmb();
437 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
438 /* Free the original skb. */
439 if (priv->tx_skb[q][entry / NUM_TX_DESC]) {
440 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
441 size, DMA_TO_DEVICE);
442 /* Last packet descriptor? */
443 if (entry % NUM_TX_DESC == NUM_TX_DESC - 1) {
444 entry /= NUM_TX_DESC;
445 dev_kfree_skb_any(priv->tx_skb[q][entry]);
446 priv->tx_skb[q][entry] = NULL;
447 stats->tx_packets++;
448 }
449 free_num++;
450 }
451 stats->tx_bytes += size;
452 desc->die_dt = DT_EEMPTY;
453 }
454 return free_num;
455 }
456
457 static void ravb_get_tx_tstamp(struct net_device *ndev)
458 {
459 struct ravb_private *priv = netdev_priv(ndev);
460 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
461 struct skb_shared_hwtstamps shhwtstamps;
462 struct sk_buff *skb;
463 struct timespec64 ts;
464 u16 tag, tfa_tag;
465 int count;
466 u32 tfa2;
467
468 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
469 while (count--) {
470 tfa2 = ravb_read(ndev, TFA2);
471 tfa_tag = (tfa2 & TFA2_TST) >> 16;
472 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
473 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
474 ravb_read(ndev, TFA1);
475 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
476 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
477 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
478 list) {
479 skb = ts_skb->skb;
480 tag = ts_skb->tag;
481 list_del(&ts_skb->list);
482 kfree(ts_skb);
483 if (tag == tfa_tag) {
484 skb_tstamp_tx(skb, &shhwtstamps);
485 break;
486 }
487 }
488 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
489 }
490 }
491
492 /* Packet receive function for Ethernet AVB */
493 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
494 {
495 struct ravb_private *priv = netdev_priv(ndev);
496 int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
497 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
498 priv->cur_rx[q];
499 struct net_device_stats *stats = &priv->stats[q];
500 struct ravb_ex_rx_desc *desc;
501 struct sk_buff *skb;
502 dma_addr_t dma_addr;
503 struct timespec64 ts;
504 u8 desc_status;
505 u16 pkt_len;
506 int limit;
507
508 boguscnt = min(boguscnt, *quota);
509 limit = boguscnt;
510 desc = &priv->rx_ring[q][entry];
511 while (desc->die_dt != DT_FEMPTY) {
512 /* Descriptor type must be checked before all other reads */
513 dma_rmb();
514 desc_status = desc->msc;
515 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
516
517 if (--boguscnt < 0)
518 break;
519
520 /* We use 0-byte descriptors to mark the DMA mapping errors */
521 if (!pkt_len)
522 continue;
523
524 if (desc_status & MSC_MC)
525 stats->multicast++;
526
527 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
528 MSC_CEEF)) {
529 stats->rx_errors++;
530 if (desc_status & MSC_CRC)
531 stats->rx_crc_errors++;
532 if (desc_status & MSC_RFE)
533 stats->rx_frame_errors++;
534 if (desc_status & (MSC_RTLF | MSC_RTSF))
535 stats->rx_length_errors++;
536 if (desc_status & MSC_CEEF)
537 stats->rx_missed_errors++;
538 } else {
539 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
540
541 skb = priv->rx_skb[q][entry];
542 priv->rx_skb[q][entry] = NULL;
543 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
544 ALIGN(PKT_BUF_SZ, 16),
545 DMA_FROM_DEVICE);
546 get_ts &= (q == RAVB_NC) ?
547 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
548 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
549 if (get_ts) {
550 struct skb_shared_hwtstamps *shhwtstamps;
551
552 shhwtstamps = skb_hwtstamps(skb);
553 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
554 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
555 32) | le32_to_cpu(desc->ts_sl);
556 ts.tv_nsec = le32_to_cpu(desc->ts_n);
557 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
558 }
559 skb_put(skb, pkt_len);
560 skb->protocol = eth_type_trans(skb, ndev);
561 napi_gro_receive(&priv->napi[q], skb);
562 stats->rx_packets++;
563 stats->rx_bytes += pkt_len;
564 }
565
566 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
567 desc = &priv->rx_ring[q][entry];
568 }
569
570 /* Refill the RX ring buffers. */
571 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
572 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
573 desc = &priv->rx_ring[q][entry];
574 /* The size of the buffer should be on 16-byte boundary. */
575 desc->ds_cc = cpu_to_le16(ALIGN(PKT_BUF_SZ, 16));
576
577 if (!priv->rx_skb[q][entry]) {
578 skb = netdev_alloc_skb(ndev,
579 PKT_BUF_SZ + RAVB_ALIGN - 1);
580 if (!skb)
581 break; /* Better luck next round. */
582 ravb_set_buffer_align(skb);
583 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
584 le16_to_cpu(desc->ds_cc),
585 DMA_FROM_DEVICE);
586 skb_checksum_none_assert(skb);
587 /* We just set the data size to 0 for a failed mapping
588 * which should prevent DMA from happening...
589 */
590 if (dma_mapping_error(ndev->dev.parent, dma_addr))
591 desc->ds_cc = cpu_to_le16(0);
592 desc->dptr = cpu_to_le32(dma_addr);
593 priv->rx_skb[q][entry] = skb;
594 }
595 /* Descriptor type must be set after all the above writes */
596 dma_wmb();
597 desc->die_dt = DT_FEMPTY;
598 }
599
600 *quota -= limit - (++boguscnt);
601
602 return boguscnt <= 0;
603 }
604
605 static void ravb_rcv_snd_disable(struct net_device *ndev)
606 {
607 /* Disable TX and RX */
608 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
609 }
610
611 static void ravb_rcv_snd_enable(struct net_device *ndev)
612 {
613 /* Enable TX and RX */
614 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
615 }
616
617 /* function for waiting dma process finished */
618 static int ravb_stop_dma(struct net_device *ndev)
619 {
620 int error;
621
622 /* Wait for stopping the hardware TX process */
623 error = ravb_wait(ndev, TCCR,
624 TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
625 if (error)
626 return error;
627
628 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
629 0);
630 if (error)
631 return error;
632
633 /* Stop the E-MAC's RX/TX processes. */
634 ravb_rcv_snd_disable(ndev);
635
636 /* Wait for stopping the RX DMA process */
637 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
638 if (error)
639 return error;
640
641 /* Stop AVB-DMAC process */
642 return ravb_config(ndev);
643 }
644
645 /* E-MAC interrupt handler */
646 static void ravb_emac_interrupt(struct net_device *ndev)
647 {
648 struct ravb_private *priv = netdev_priv(ndev);
649 u32 ecsr, psr;
650
651 ecsr = ravb_read(ndev, ECSR);
652 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
653 if (ecsr & ECSR_ICD)
654 ndev->stats.tx_carrier_errors++;
655 if (ecsr & ECSR_LCHNG) {
656 /* Link changed */
657 if (priv->no_avb_link)
658 return;
659 psr = ravb_read(ndev, PSR);
660 if (priv->avb_link_active_low)
661 psr ^= PSR_LMON;
662 if (!(psr & PSR_LMON)) {
663 /* DIsable RX and TX */
664 ravb_rcv_snd_disable(ndev);
665 } else {
666 /* Enable RX and TX */
667 ravb_rcv_snd_enable(ndev);
668 }
669 }
670 }
671
672 /* Error interrupt handler */
673 static void ravb_error_interrupt(struct net_device *ndev)
674 {
675 struct ravb_private *priv = netdev_priv(ndev);
676 u32 eis, ris2;
677
678 eis = ravb_read(ndev, EIS);
679 ravb_write(ndev, ~EIS_QFS, EIS);
680 if (eis & EIS_QFS) {
681 ris2 = ravb_read(ndev, RIS2);
682 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF), RIS2);
683
684 /* Receive Descriptor Empty int */
685 if (ris2 & RIS2_QFF0)
686 priv->stats[RAVB_BE].rx_over_errors++;
687
688 /* Receive Descriptor Empty int */
689 if (ris2 & RIS2_QFF1)
690 priv->stats[RAVB_NC].rx_over_errors++;
691
692 /* Receive FIFO Overflow int */
693 if (ris2 & RIS2_RFFF)
694 priv->rx_fifo_errors++;
695 }
696 }
697
698 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
699 {
700 struct net_device *ndev = dev_id;
701 struct ravb_private *priv = netdev_priv(ndev);
702 irqreturn_t result = IRQ_NONE;
703 u32 iss;
704
705 spin_lock(&priv->lock);
706 /* Get interrupt status */
707 iss = ravb_read(ndev, ISS);
708
709 /* Received and transmitted interrupts */
710 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
711 u32 ris0 = ravb_read(ndev, RIS0);
712 u32 ric0 = ravb_read(ndev, RIC0);
713 u32 tis = ravb_read(ndev, TIS);
714 u32 tic = ravb_read(ndev, TIC);
715 int q;
716
717 /* Timestamp updated */
718 if (tis & TIS_TFUF) {
719 ravb_write(ndev, ~TIS_TFUF, TIS);
720 ravb_get_tx_tstamp(ndev);
721 result = IRQ_HANDLED;
722 }
723
724 /* Network control and best effort queue RX/TX */
725 for (q = RAVB_NC; q >= RAVB_BE; q--) {
726 if (((ris0 & ric0) & BIT(q)) ||
727 ((tis & tic) & BIT(q))) {
728 if (napi_schedule_prep(&priv->napi[q])) {
729 /* Mask RX and TX interrupts */
730 ric0 &= ~BIT(q);
731 tic &= ~BIT(q);
732 ravb_write(ndev, ric0, RIC0);
733 ravb_write(ndev, tic, TIC);
734 __napi_schedule(&priv->napi[q]);
735 } else {
736 netdev_warn(ndev,
737 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
738 ris0, ric0);
739 netdev_warn(ndev,
740 " tx status 0x%08x, tx mask 0x%08x.\n",
741 tis, tic);
742 }
743 result = IRQ_HANDLED;
744 }
745 }
746 }
747
748 /* E-MAC status summary */
749 if (iss & ISS_MS) {
750 ravb_emac_interrupt(ndev);
751 result = IRQ_HANDLED;
752 }
753
754 /* Error status summary */
755 if (iss & ISS_ES) {
756 ravb_error_interrupt(ndev);
757 result = IRQ_HANDLED;
758 }
759
760 if (iss & ISS_CGIS)
761 result = ravb_ptp_interrupt(ndev);
762
763 mmiowb();
764 spin_unlock(&priv->lock);
765 return result;
766 }
767
768 static int ravb_poll(struct napi_struct *napi, int budget)
769 {
770 struct net_device *ndev = napi->dev;
771 struct ravb_private *priv = netdev_priv(ndev);
772 unsigned long flags;
773 int q = napi - priv->napi;
774 int mask = BIT(q);
775 int quota = budget;
776 u32 ris0, tis;
777
778 for (;;) {
779 tis = ravb_read(ndev, TIS);
780 ris0 = ravb_read(ndev, RIS0);
781 if (!((ris0 & mask) || (tis & mask)))
782 break;
783
784 /* Processing RX Descriptor Ring */
785 if (ris0 & mask) {
786 /* Clear RX interrupt */
787 ravb_write(ndev, ~mask, RIS0);
788 if (ravb_rx(ndev, &quota, q))
789 goto out;
790 }
791 /* Processing TX Descriptor Ring */
792 if (tis & mask) {
793 spin_lock_irqsave(&priv->lock, flags);
794 /* Clear TX interrupt */
795 ravb_write(ndev, ~mask, TIS);
796 ravb_tx_free(ndev, q);
797 netif_wake_subqueue(ndev, q);
798 mmiowb();
799 spin_unlock_irqrestore(&priv->lock, flags);
800 }
801 }
802
803 napi_complete(napi);
804
805 /* Re-enable RX/TX interrupts */
806 spin_lock_irqsave(&priv->lock, flags);
807 ravb_modify(ndev, RIC0, mask, mask);
808 ravb_modify(ndev, TIC, mask, mask);
809 mmiowb();
810 spin_unlock_irqrestore(&priv->lock, flags);
811
812 /* Receive error message handling */
813 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
814 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
815 if (priv->rx_over_errors != ndev->stats.rx_over_errors) {
816 ndev->stats.rx_over_errors = priv->rx_over_errors;
817 netif_err(priv, rx_err, ndev, "Receive Descriptor Empty\n");
818 }
819 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors) {
820 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
821 netif_err(priv, rx_err, ndev, "Receive FIFO Overflow\n");
822 }
823 out:
824 return budget - quota;
825 }
826
827 /* PHY state control function */
828 static void ravb_adjust_link(struct net_device *ndev)
829 {
830 struct ravb_private *priv = netdev_priv(ndev);
831 struct phy_device *phydev = priv->phydev;
832 bool new_state = false;
833
834 if (phydev->link) {
835 if (phydev->duplex != priv->duplex) {
836 new_state = true;
837 priv->duplex = phydev->duplex;
838 ravb_set_duplex(ndev);
839 }
840
841 if (phydev->speed != priv->speed) {
842 new_state = true;
843 priv->speed = phydev->speed;
844 ravb_set_rate(ndev);
845 }
846 if (!priv->link) {
847 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
848 new_state = true;
849 priv->link = phydev->link;
850 if (priv->no_avb_link)
851 ravb_rcv_snd_enable(ndev);
852 }
853 } else if (priv->link) {
854 new_state = true;
855 priv->link = 0;
856 priv->speed = 0;
857 priv->duplex = -1;
858 if (priv->no_avb_link)
859 ravb_rcv_snd_disable(ndev);
860 }
861
862 if (new_state && netif_msg_link(priv))
863 phy_print_status(phydev);
864 }
865
866 /* PHY init function */
867 static int ravb_phy_init(struct net_device *ndev)
868 {
869 struct device_node *np = ndev->dev.parent->of_node;
870 struct ravb_private *priv = netdev_priv(ndev);
871 struct phy_device *phydev;
872 struct device_node *pn;
873 int err;
874
875 priv->link = 0;
876 priv->speed = 0;
877 priv->duplex = -1;
878
879 /* Try connecting to PHY */
880 pn = of_parse_phandle(np, "phy-handle", 0);
881 if (!pn) {
882 /* In the case of a fixed PHY, the DT node associated
883 * to the PHY is the Ethernet MAC DT node.
884 */
885 if (of_phy_is_fixed_link(np)) {
886 err = of_phy_register_fixed_link(np);
887 if (err)
888 return err;
889 }
890 pn = of_node_get(np);
891 }
892 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
893 priv->phy_interface);
894 if (!phydev) {
895 netdev_err(ndev, "failed to connect PHY\n");
896 return -ENOENT;
897 }
898
899 /* This driver only support 10/100Mbit speeds on Gen3
900 * at this time.
901 */
902 if (priv->chip_id == RCAR_GEN3) {
903 int err;
904
905 err = phy_set_max_speed(phydev, SPEED_100);
906 if (err) {
907 netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
908 phy_disconnect(phydev);
909 return err;
910 }
911
912 netdev_info(ndev, "limited PHY to 100Mbit/s\n");
913 }
914
915 /* 10BASE is not supported */
916 phydev->supported &= ~PHY_10BT_FEATURES;
917
918 phy_attached_info(phydev);
919
920 priv->phydev = phydev;
921
922 return 0;
923 }
924
925 /* PHY control start function */
926 static int ravb_phy_start(struct net_device *ndev)
927 {
928 struct ravb_private *priv = netdev_priv(ndev);
929 int error;
930
931 error = ravb_phy_init(ndev);
932 if (error)
933 return error;
934
935 phy_start(priv->phydev);
936
937 return 0;
938 }
939
940 static int ravb_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
941 {
942 struct ravb_private *priv = netdev_priv(ndev);
943 int error = -ENODEV;
944 unsigned long flags;
945
946 if (priv->phydev) {
947 spin_lock_irqsave(&priv->lock, flags);
948 error = phy_ethtool_gset(priv->phydev, ecmd);
949 spin_unlock_irqrestore(&priv->lock, flags);
950 }
951
952 return error;
953 }
954
955 static int ravb_set_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
956 {
957 struct ravb_private *priv = netdev_priv(ndev);
958 unsigned long flags;
959 int error;
960
961 if (!priv->phydev)
962 return -ENODEV;
963
964 spin_lock_irqsave(&priv->lock, flags);
965
966 /* Disable TX and RX */
967 ravb_rcv_snd_disable(ndev);
968
969 error = phy_ethtool_sset(priv->phydev, ecmd);
970 if (error)
971 goto error_exit;
972
973 if (ecmd->duplex == DUPLEX_FULL)
974 priv->duplex = 1;
975 else
976 priv->duplex = 0;
977
978 ravb_set_duplex(ndev);
979
980 error_exit:
981 mdelay(1);
982
983 /* Enable TX and RX */
984 ravb_rcv_snd_enable(ndev);
985
986 mmiowb();
987 spin_unlock_irqrestore(&priv->lock, flags);
988
989 return error;
990 }
991
992 static int ravb_nway_reset(struct net_device *ndev)
993 {
994 struct ravb_private *priv = netdev_priv(ndev);
995 int error = -ENODEV;
996 unsigned long flags;
997
998 if (priv->phydev) {
999 spin_lock_irqsave(&priv->lock, flags);
1000 error = phy_start_aneg(priv->phydev);
1001 spin_unlock_irqrestore(&priv->lock, flags);
1002 }
1003
1004 return error;
1005 }
1006
1007 static u32 ravb_get_msglevel(struct net_device *ndev)
1008 {
1009 struct ravb_private *priv = netdev_priv(ndev);
1010
1011 return priv->msg_enable;
1012 }
1013
1014 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1015 {
1016 struct ravb_private *priv = netdev_priv(ndev);
1017
1018 priv->msg_enable = value;
1019 }
1020
1021 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1022 "rx_queue_0_current",
1023 "tx_queue_0_current",
1024 "rx_queue_0_dirty",
1025 "tx_queue_0_dirty",
1026 "rx_queue_0_packets",
1027 "tx_queue_0_packets",
1028 "rx_queue_0_bytes",
1029 "tx_queue_0_bytes",
1030 "rx_queue_0_mcast_packets",
1031 "rx_queue_0_errors",
1032 "rx_queue_0_crc_errors",
1033 "rx_queue_0_frame_errors",
1034 "rx_queue_0_length_errors",
1035 "rx_queue_0_missed_errors",
1036 "rx_queue_0_over_errors",
1037
1038 "rx_queue_1_current",
1039 "tx_queue_1_current",
1040 "rx_queue_1_dirty",
1041 "tx_queue_1_dirty",
1042 "rx_queue_1_packets",
1043 "tx_queue_1_packets",
1044 "rx_queue_1_bytes",
1045 "tx_queue_1_bytes",
1046 "rx_queue_1_mcast_packets",
1047 "rx_queue_1_errors",
1048 "rx_queue_1_crc_errors",
1049 "rx_queue_1_frame_errors",
1050 "rx_queue_1_length_errors",
1051 "rx_queue_1_missed_errors",
1052 "rx_queue_1_over_errors",
1053 };
1054
1055 #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
1056
1057 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1058 {
1059 switch (sset) {
1060 case ETH_SS_STATS:
1061 return RAVB_STATS_LEN;
1062 default:
1063 return -EOPNOTSUPP;
1064 }
1065 }
1066
1067 static void ravb_get_ethtool_stats(struct net_device *ndev,
1068 struct ethtool_stats *stats, u64 *data)
1069 {
1070 struct ravb_private *priv = netdev_priv(ndev);
1071 int i = 0;
1072 int q;
1073
1074 /* Device-specific stats */
1075 for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1076 struct net_device_stats *stats = &priv->stats[q];
1077
1078 data[i++] = priv->cur_rx[q];
1079 data[i++] = priv->cur_tx[q];
1080 data[i++] = priv->dirty_rx[q];
1081 data[i++] = priv->dirty_tx[q];
1082 data[i++] = stats->rx_packets;
1083 data[i++] = stats->tx_packets;
1084 data[i++] = stats->rx_bytes;
1085 data[i++] = stats->tx_bytes;
1086 data[i++] = stats->multicast;
1087 data[i++] = stats->rx_errors;
1088 data[i++] = stats->rx_crc_errors;
1089 data[i++] = stats->rx_frame_errors;
1090 data[i++] = stats->rx_length_errors;
1091 data[i++] = stats->rx_missed_errors;
1092 data[i++] = stats->rx_over_errors;
1093 }
1094 }
1095
1096 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1097 {
1098 switch (stringset) {
1099 case ETH_SS_STATS:
1100 memcpy(data, *ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1101 break;
1102 }
1103 }
1104
1105 static void ravb_get_ringparam(struct net_device *ndev,
1106 struct ethtool_ringparam *ring)
1107 {
1108 struct ravb_private *priv = netdev_priv(ndev);
1109
1110 ring->rx_max_pending = BE_RX_RING_MAX;
1111 ring->tx_max_pending = BE_TX_RING_MAX;
1112 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1113 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1114 }
1115
1116 static int ravb_set_ringparam(struct net_device *ndev,
1117 struct ethtool_ringparam *ring)
1118 {
1119 struct ravb_private *priv = netdev_priv(ndev);
1120 int error;
1121
1122 if (ring->tx_pending > BE_TX_RING_MAX ||
1123 ring->rx_pending > BE_RX_RING_MAX ||
1124 ring->tx_pending < BE_TX_RING_MIN ||
1125 ring->rx_pending < BE_RX_RING_MIN)
1126 return -EINVAL;
1127 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1128 return -EINVAL;
1129
1130 if (netif_running(ndev)) {
1131 netif_device_detach(ndev);
1132 /* Stop PTP Clock driver */
1133 if (priv->chip_id == RCAR_GEN2)
1134 ravb_ptp_stop(ndev);
1135 /* Wait for DMA stopping */
1136 error = ravb_stop_dma(ndev);
1137 if (error) {
1138 netdev_err(ndev,
1139 "cannot set ringparam! Any AVB processes are still running?\n");
1140 return error;
1141 }
1142 synchronize_irq(ndev->irq);
1143
1144 /* Free all the skb's in the RX queue and the DMA buffers. */
1145 ravb_ring_free(ndev, RAVB_BE);
1146 ravb_ring_free(ndev, RAVB_NC);
1147 }
1148
1149 /* Set new parameters */
1150 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1151 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1152
1153 if (netif_running(ndev)) {
1154 error = ravb_dmac_init(ndev);
1155 if (error) {
1156 netdev_err(ndev,
1157 "%s: ravb_dmac_init() failed, error %d\n",
1158 __func__, error);
1159 return error;
1160 }
1161
1162 ravb_emac_init(ndev);
1163
1164 /* Initialise PTP Clock driver */
1165 if (priv->chip_id == RCAR_GEN2)
1166 ravb_ptp_init(ndev, priv->pdev);
1167
1168 netif_device_attach(ndev);
1169 }
1170
1171 return 0;
1172 }
1173
1174 static int ravb_get_ts_info(struct net_device *ndev,
1175 struct ethtool_ts_info *info)
1176 {
1177 struct ravb_private *priv = netdev_priv(ndev);
1178
1179 info->so_timestamping =
1180 SOF_TIMESTAMPING_TX_SOFTWARE |
1181 SOF_TIMESTAMPING_RX_SOFTWARE |
1182 SOF_TIMESTAMPING_SOFTWARE |
1183 SOF_TIMESTAMPING_TX_HARDWARE |
1184 SOF_TIMESTAMPING_RX_HARDWARE |
1185 SOF_TIMESTAMPING_RAW_HARDWARE;
1186 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1187 info->rx_filters =
1188 (1 << HWTSTAMP_FILTER_NONE) |
1189 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1190 (1 << HWTSTAMP_FILTER_ALL);
1191 info->phc_index = ptp_clock_index(priv->ptp.clock);
1192
1193 return 0;
1194 }
1195
1196 static const struct ethtool_ops ravb_ethtool_ops = {
1197 .get_settings = ravb_get_settings,
1198 .set_settings = ravb_set_settings,
1199 .nway_reset = ravb_nway_reset,
1200 .get_msglevel = ravb_get_msglevel,
1201 .set_msglevel = ravb_set_msglevel,
1202 .get_link = ethtool_op_get_link,
1203 .get_strings = ravb_get_strings,
1204 .get_ethtool_stats = ravb_get_ethtool_stats,
1205 .get_sset_count = ravb_get_sset_count,
1206 .get_ringparam = ravb_get_ringparam,
1207 .set_ringparam = ravb_set_ringparam,
1208 .get_ts_info = ravb_get_ts_info,
1209 };
1210
1211 /* Network device open function for Ethernet AVB */
1212 static int ravb_open(struct net_device *ndev)
1213 {
1214 struct ravb_private *priv = netdev_priv(ndev);
1215 int error;
1216
1217 napi_enable(&priv->napi[RAVB_BE]);
1218 napi_enable(&priv->napi[RAVB_NC]);
1219
1220 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED, ndev->name,
1221 ndev);
1222 if (error) {
1223 netdev_err(ndev, "cannot request IRQ\n");
1224 goto out_napi_off;
1225 }
1226
1227 if (priv->chip_id == RCAR_GEN3) {
1228 error = request_irq(priv->emac_irq, ravb_interrupt,
1229 IRQF_SHARED, ndev->name, ndev);
1230 if (error) {
1231 netdev_err(ndev, "cannot request IRQ\n");
1232 goto out_free_irq;
1233 }
1234 }
1235
1236 /* Device init */
1237 error = ravb_dmac_init(ndev);
1238 if (error)
1239 goto out_free_irq2;
1240 ravb_emac_init(ndev);
1241
1242 /* Initialise PTP Clock driver */
1243 if (priv->chip_id == RCAR_GEN2)
1244 ravb_ptp_init(ndev, priv->pdev);
1245
1246 netif_tx_start_all_queues(ndev);
1247
1248 /* PHY control start */
1249 error = ravb_phy_start(ndev);
1250 if (error)
1251 goto out_ptp_stop;
1252
1253 return 0;
1254
1255 out_ptp_stop:
1256 /* Stop PTP Clock driver */
1257 if (priv->chip_id == RCAR_GEN2)
1258 ravb_ptp_stop(ndev);
1259 out_free_irq2:
1260 if (priv->chip_id == RCAR_GEN3)
1261 free_irq(priv->emac_irq, ndev);
1262 out_free_irq:
1263 free_irq(ndev->irq, ndev);
1264 out_napi_off:
1265 napi_disable(&priv->napi[RAVB_NC]);
1266 napi_disable(&priv->napi[RAVB_BE]);
1267 return error;
1268 }
1269
1270 /* Timeout function for Ethernet AVB */
1271 static void ravb_tx_timeout(struct net_device *ndev)
1272 {
1273 struct ravb_private *priv = netdev_priv(ndev);
1274
1275 netif_err(priv, tx_err, ndev,
1276 "transmit timed out, status %08x, resetting...\n",
1277 ravb_read(ndev, ISS));
1278
1279 /* tx_errors count up */
1280 ndev->stats.tx_errors++;
1281
1282 schedule_work(&priv->work);
1283 }
1284
1285 static void ravb_tx_timeout_work(struct work_struct *work)
1286 {
1287 struct ravb_private *priv = container_of(work, struct ravb_private,
1288 work);
1289 struct net_device *ndev = priv->ndev;
1290
1291 netif_tx_stop_all_queues(ndev);
1292
1293 /* Stop PTP Clock driver */
1294 if (priv->chip_id == RCAR_GEN2)
1295 ravb_ptp_stop(ndev);
1296
1297 /* Wait for DMA stopping */
1298 ravb_stop_dma(ndev);
1299
1300 ravb_ring_free(ndev, RAVB_BE);
1301 ravb_ring_free(ndev, RAVB_NC);
1302
1303 /* Device init */
1304 ravb_dmac_init(ndev);
1305 ravb_emac_init(ndev);
1306
1307 /* Initialise PTP Clock driver */
1308 if (priv->chip_id == RCAR_GEN2)
1309 ravb_ptp_init(ndev, priv->pdev);
1310
1311 netif_tx_start_all_queues(ndev);
1312 }
1313
1314 /* Packet transmit function for Ethernet AVB */
1315 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1316 {
1317 struct ravb_private *priv = netdev_priv(ndev);
1318 u16 q = skb_get_queue_mapping(skb);
1319 struct ravb_tstamp_skb *ts_skb;
1320 struct ravb_tx_desc *desc;
1321 unsigned long flags;
1322 u32 dma_addr;
1323 void *buffer;
1324 u32 entry;
1325 u32 len;
1326
1327 spin_lock_irqsave(&priv->lock, flags);
1328 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1329 NUM_TX_DESC) {
1330 netif_err(priv, tx_queued, ndev,
1331 "still transmitting with the full ring!\n");
1332 netif_stop_subqueue(ndev, q);
1333 spin_unlock_irqrestore(&priv->lock, flags);
1334 return NETDEV_TX_BUSY;
1335 }
1336 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * NUM_TX_DESC);
1337 priv->tx_skb[q][entry / NUM_TX_DESC] = skb;
1338
1339 if (skb_put_padto(skb, ETH_ZLEN))
1340 goto drop;
1341
1342 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1343 entry / NUM_TX_DESC * DPTR_ALIGN;
1344 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1345 memcpy(buffer, skb->data, len);
1346 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1347 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1348 goto drop;
1349
1350 desc = &priv->tx_ring[q][entry];
1351 desc->ds_tagl = cpu_to_le16(len);
1352 desc->dptr = cpu_to_le32(dma_addr);
1353
1354 buffer = skb->data + len;
1355 len = skb->len - len;
1356 dma_addr = dma_map_single(ndev->dev.parent, buffer, len, DMA_TO_DEVICE);
1357 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1358 goto unmap;
1359
1360 desc++;
1361 desc->ds_tagl = cpu_to_le16(len);
1362 desc->dptr = cpu_to_le32(dma_addr);
1363
1364 /* TX timestamp required */
1365 if (q == RAVB_NC) {
1366 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1367 if (!ts_skb) {
1368 desc--;
1369 dma_unmap_single(ndev->dev.parent, dma_addr, len,
1370 DMA_TO_DEVICE);
1371 goto unmap;
1372 }
1373 ts_skb->skb = skb;
1374 ts_skb->tag = priv->ts_skb_tag++;
1375 priv->ts_skb_tag &= 0x3ff;
1376 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1377
1378 /* TAG and timestamp required flag */
1379 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1380 skb_tx_timestamp(skb);
1381 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1382 desc->ds_tagl |= le16_to_cpu(ts_skb->tag << 12);
1383 }
1384
1385 /* Descriptor type must be set after all the above writes */
1386 dma_wmb();
1387 desc->die_dt = DT_FEND;
1388 desc--;
1389 desc->die_dt = DT_FSTART;
1390
1391 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1392
1393 priv->cur_tx[q] += NUM_TX_DESC;
1394 if (priv->cur_tx[q] - priv->dirty_tx[q] >
1395 (priv->num_tx_ring[q] - 1) * NUM_TX_DESC && !ravb_tx_free(ndev, q))
1396 netif_stop_subqueue(ndev, q);
1397
1398 exit:
1399 mmiowb();
1400 spin_unlock_irqrestore(&priv->lock, flags);
1401 return NETDEV_TX_OK;
1402
1403 unmap:
1404 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1405 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1406 drop:
1407 dev_kfree_skb_any(skb);
1408 priv->tx_skb[q][entry / NUM_TX_DESC] = NULL;
1409 goto exit;
1410 }
1411
1412 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1413 void *accel_priv, select_queue_fallback_t fallback)
1414 {
1415 /* If skb needs TX timestamp, it is handled in network control queue */
1416 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1417 RAVB_BE;
1418
1419 }
1420
1421 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1422 {
1423 struct ravb_private *priv = netdev_priv(ndev);
1424 struct net_device_stats *nstats, *stats0, *stats1;
1425
1426 nstats = &ndev->stats;
1427 stats0 = &priv->stats[RAVB_BE];
1428 stats1 = &priv->stats[RAVB_NC];
1429
1430 nstats->tx_dropped += ravb_read(ndev, TROCR);
1431 ravb_write(ndev, 0, TROCR); /* (write clear) */
1432 nstats->collisions += ravb_read(ndev, CDCR);
1433 ravb_write(ndev, 0, CDCR); /* (write clear) */
1434 nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1435 ravb_write(ndev, 0, LCCR); /* (write clear) */
1436
1437 nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1438 ravb_write(ndev, 0, CERCR); /* (write clear) */
1439 nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1440 ravb_write(ndev, 0, CEECR); /* (write clear) */
1441
1442 nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1443 nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1444 nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1445 nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1446 nstats->multicast = stats0->multicast + stats1->multicast;
1447 nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1448 nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1449 nstats->rx_frame_errors =
1450 stats0->rx_frame_errors + stats1->rx_frame_errors;
1451 nstats->rx_length_errors =
1452 stats0->rx_length_errors + stats1->rx_length_errors;
1453 nstats->rx_missed_errors =
1454 stats0->rx_missed_errors + stats1->rx_missed_errors;
1455 nstats->rx_over_errors =
1456 stats0->rx_over_errors + stats1->rx_over_errors;
1457
1458 return nstats;
1459 }
1460
1461 /* Update promiscuous bit */
1462 static void ravb_set_rx_mode(struct net_device *ndev)
1463 {
1464 struct ravb_private *priv = netdev_priv(ndev);
1465 unsigned long flags;
1466
1467 spin_lock_irqsave(&priv->lock, flags);
1468 ravb_modify(ndev, ECMR, ECMR_PRM,
1469 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1470 mmiowb();
1471 spin_unlock_irqrestore(&priv->lock, flags);
1472 }
1473
1474 /* Device close function for Ethernet AVB */
1475 static int ravb_close(struct net_device *ndev)
1476 {
1477 struct ravb_private *priv = netdev_priv(ndev);
1478 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1479
1480 netif_tx_stop_all_queues(ndev);
1481
1482 /* Disable interrupts by clearing the interrupt masks. */
1483 ravb_write(ndev, 0, RIC0);
1484 ravb_write(ndev, 0, RIC2);
1485 ravb_write(ndev, 0, TIC);
1486
1487 /* Stop PTP Clock driver */
1488 if (priv->chip_id == RCAR_GEN2)
1489 ravb_ptp_stop(ndev);
1490
1491 /* Set the config mode to stop the AVB-DMAC's processes */
1492 if (ravb_stop_dma(ndev) < 0)
1493 netdev_err(ndev,
1494 "device will be stopped after h/w processes are done.\n");
1495
1496 /* Clear the timestamp list */
1497 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1498 list_del(&ts_skb->list);
1499 kfree(ts_skb);
1500 }
1501
1502 /* PHY disconnect */
1503 if (priv->phydev) {
1504 phy_stop(priv->phydev);
1505 phy_disconnect(priv->phydev);
1506 priv->phydev = NULL;
1507 }
1508
1509 free_irq(ndev->irq, ndev);
1510
1511 napi_disable(&priv->napi[RAVB_NC]);
1512 napi_disable(&priv->napi[RAVB_BE]);
1513
1514 /* Free all the skb's in the RX queue and the DMA buffers. */
1515 ravb_ring_free(ndev, RAVB_BE);
1516 ravb_ring_free(ndev, RAVB_NC);
1517
1518 return 0;
1519 }
1520
1521 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1522 {
1523 struct ravb_private *priv = netdev_priv(ndev);
1524 struct hwtstamp_config config;
1525
1526 config.flags = 0;
1527 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1528 HWTSTAMP_TX_OFF;
1529 if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1530 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1531 else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1532 config.rx_filter = HWTSTAMP_FILTER_ALL;
1533 else
1534 config.rx_filter = HWTSTAMP_FILTER_NONE;
1535
1536 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1537 -EFAULT : 0;
1538 }
1539
1540 /* Control hardware time stamping */
1541 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1542 {
1543 struct ravb_private *priv = netdev_priv(ndev);
1544 struct hwtstamp_config config;
1545 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1546 u32 tstamp_tx_ctrl;
1547
1548 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1549 return -EFAULT;
1550
1551 /* Reserved for future extensions */
1552 if (config.flags)
1553 return -EINVAL;
1554
1555 switch (config.tx_type) {
1556 case HWTSTAMP_TX_OFF:
1557 tstamp_tx_ctrl = 0;
1558 break;
1559 case HWTSTAMP_TX_ON:
1560 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1561 break;
1562 default:
1563 return -ERANGE;
1564 }
1565
1566 switch (config.rx_filter) {
1567 case HWTSTAMP_FILTER_NONE:
1568 tstamp_rx_ctrl = 0;
1569 break;
1570 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1571 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1572 break;
1573 default:
1574 config.rx_filter = HWTSTAMP_FILTER_ALL;
1575 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1576 }
1577
1578 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1579 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1580
1581 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1582 -EFAULT : 0;
1583 }
1584
1585 /* ioctl to device function */
1586 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1587 {
1588 struct ravb_private *priv = netdev_priv(ndev);
1589 struct phy_device *phydev = priv->phydev;
1590
1591 if (!netif_running(ndev))
1592 return -EINVAL;
1593
1594 if (!phydev)
1595 return -ENODEV;
1596
1597 switch (cmd) {
1598 case SIOCGHWTSTAMP:
1599 return ravb_hwtstamp_get(ndev, req);
1600 case SIOCSHWTSTAMP:
1601 return ravb_hwtstamp_set(ndev, req);
1602 }
1603
1604 return phy_mii_ioctl(phydev, req, cmd);
1605 }
1606
1607 static const struct net_device_ops ravb_netdev_ops = {
1608 .ndo_open = ravb_open,
1609 .ndo_stop = ravb_close,
1610 .ndo_start_xmit = ravb_start_xmit,
1611 .ndo_select_queue = ravb_select_queue,
1612 .ndo_get_stats = ravb_get_stats,
1613 .ndo_set_rx_mode = ravb_set_rx_mode,
1614 .ndo_tx_timeout = ravb_tx_timeout,
1615 .ndo_do_ioctl = ravb_do_ioctl,
1616 .ndo_validate_addr = eth_validate_addr,
1617 .ndo_set_mac_address = eth_mac_addr,
1618 .ndo_change_mtu = eth_change_mtu,
1619 };
1620
1621 /* MDIO bus init function */
1622 static int ravb_mdio_init(struct ravb_private *priv)
1623 {
1624 struct platform_device *pdev = priv->pdev;
1625 struct device *dev = &pdev->dev;
1626 int error;
1627
1628 /* Bitbang init */
1629 priv->mdiobb.ops = &bb_ops;
1630
1631 /* MII controller setting */
1632 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1633 if (!priv->mii_bus)
1634 return -ENOMEM;
1635
1636 /* Hook up MII support for ethtool */
1637 priv->mii_bus->name = "ravb_mii";
1638 priv->mii_bus->parent = dev;
1639 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1640 pdev->name, pdev->id);
1641
1642 /* Register MDIO bus */
1643 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1644 if (error)
1645 goto out_free_bus;
1646
1647 return 0;
1648
1649 out_free_bus:
1650 free_mdio_bitbang(priv->mii_bus);
1651 return error;
1652 }
1653
1654 /* MDIO bus release function */
1655 static int ravb_mdio_release(struct ravb_private *priv)
1656 {
1657 /* Unregister mdio bus */
1658 mdiobus_unregister(priv->mii_bus);
1659
1660 /* Free bitbang info */
1661 free_mdio_bitbang(priv->mii_bus);
1662
1663 return 0;
1664 }
1665
1666 static const struct of_device_id ravb_match_table[] = {
1667 { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1668 { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1669 { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1670 { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1671 { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1672 { }
1673 };
1674 MODULE_DEVICE_TABLE(of, ravb_match_table);
1675
1676 static int ravb_set_gti(struct net_device *ndev)
1677 {
1678
1679 struct device *dev = ndev->dev.parent;
1680 struct device_node *np = dev->of_node;
1681 unsigned long rate;
1682 struct clk *clk;
1683 uint64_t inc;
1684
1685 clk = of_clk_get(np, 0);
1686 if (IS_ERR(clk)) {
1687 dev_err(dev, "could not get clock\n");
1688 return PTR_ERR(clk);
1689 }
1690
1691 rate = clk_get_rate(clk);
1692 clk_put(clk);
1693
1694 inc = 1000000000ULL << 20;
1695 do_div(inc, rate);
1696
1697 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1698 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1699 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1700 return -EINVAL;
1701 }
1702
1703 ravb_write(ndev, inc, GTI);
1704
1705 return 0;
1706 }
1707
1708 static int ravb_probe(struct platform_device *pdev)
1709 {
1710 struct device_node *np = pdev->dev.of_node;
1711 struct ravb_private *priv;
1712 enum ravb_chip_id chip_id;
1713 struct net_device *ndev;
1714 int error, irq, q;
1715 struct resource *res;
1716
1717 if (!np) {
1718 dev_err(&pdev->dev,
1719 "this driver is required to be instantiated from device tree\n");
1720 return -EINVAL;
1721 }
1722
1723 /* Get base address */
1724 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1725 if (!res) {
1726 dev_err(&pdev->dev, "invalid resource\n");
1727 return -EINVAL;
1728 }
1729
1730 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
1731 NUM_TX_QUEUE, NUM_RX_QUEUE);
1732 if (!ndev)
1733 return -ENOMEM;
1734
1735 pm_runtime_enable(&pdev->dev);
1736 pm_runtime_get_sync(&pdev->dev);
1737
1738 /* The Ether-specific entries in the device structure. */
1739 ndev->base_addr = res->start;
1740 ndev->dma = -1;
1741
1742 chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
1743
1744 if (chip_id == RCAR_GEN3)
1745 irq = platform_get_irq_byname(pdev, "ch22");
1746 else
1747 irq = platform_get_irq(pdev, 0);
1748 if (irq < 0) {
1749 error = irq;
1750 goto out_release;
1751 }
1752 ndev->irq = irq;
1753
1754 SET_NETDEV_DEV(ndev, &pdev->dev);
1755
1756 priv = netdev_priv(ndev);
1757 priv->ndev = ndev;
1758 priv->pdev = pdev;
1759 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
1760 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
1761 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
1762 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
1763 priv->addr = devm_ioremap_resource(&pdev->dev, res);
1764 if (IS_ERR(priv->addr)) {
1765 error = PTR_ERR(priv->addr);
1766 goto out_release;
1767 }
1768
1769 spin_lock_init(&priv->lock);
1770 INIT_WORK(&priv->work, ravb_tx_timeout_work);
1771
1772 priv->phy_interface = of_get_phy_mode(np);
1773
1774 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
1775 priv->avb_link_active_low =
1776 of_property_read_bool(np, "renesas,ether-link-active-low");
1777
1778 if (chip_id == RCAR_GEN3) {
1779 irq = platform_get_irq_byname(pdev, "ch24");
1780 if (irq < 0) {
1781 error = irq;
1782 goto out_release;
1783 }
1784 priv->emac_irq = irq;
1785 }
1786
1787 priv->chip_id = chip_id;
1788
1789 /* Set function */
1790 ndev->netdev_ops = &ravb_netdev_ops;
1791 ndev->ethtool_ops = &ravb_ethtool_ops;
1792
1793 /* Set AVB config mode */
1794 if (chip_id == RCAR_GEN2) {
1795 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1796 /* Set CSEL value */
1797 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1798 } else {
1799 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1800 CCC_GAC | CCC_CSEL_HPB);
1801 }
1802
1803 /* Set GTI value */
1804 error = ravb_set_gti(ndev);
1805 if (error)
1806 goto out_release;
1807
1808 /* Request GTI loading */
1809 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
1810
1811 /* Allocate descriptor base address table */
1812 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
1813 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
1814 &priv->desc_bat_dma, GFP_KERNEL);
1815 if (!priv->desc_bat) {
1816 dev_err(&pdev->dev,
1817 "Cannot allocate desc base address table (size %d bytes)\n",
1818 priv->desc_bat_size);
1819 error = -ENOMEM;
1820 goto out_release;
1821 }
1822 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
1823 priv->desc_bat[q].die_dt = DT_EOS;
1824 ravb_write(ndev, priv->desc_bat_dma, DBAT);
1825
1826 /* Initialise HW timestamp list */
1827 INIT_LIST_HEAD(&priv->ts_skb_list);
1828
1829 /* Initialise PTP Clock driver */
1830 if (chip_id != RCAR_GEN2)
1831 ravb_ptp_init(ndev, pdev);
1832
1833 /* Debug message level */
1834 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
1835
1836 /* Read and set MAC address */
1837 ravb_read_mac_address(ndev, of_get_mac_address(np));
1838 if (!is_valid_ether_addr(ndev->dev_addr)) {
1839 dev_warn(&pdev->dev,
1840 "no valid MAC address supplied, using a random one\n");
1841 eth_hw_addr_random(ndev);
1842 }
1843
1844 /* MDIO bus init */
1845 error = ravb_mdio_init(priv);
1846 if (error) {
1847 dev_err(&pdev->dev, "failed to initialize MDIO\n");
1848 goto out_dma_free;
1849 }
1850
1851 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
1852 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
1853
1854 /* Network device register */
1855 error = register_netdev(ndev);
1856 if (error)
1857 goto out_napi_del;
1858
1859 /* Print device information */
1860 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
1861 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
1862
1863 platform_set_drvdata(pdev, ndev);
1864
1865 return 0;
1866
1867 out_napi_del:
1868 netif_napi_del(&priv->napi[RAVB_NC]);
1869 netif_napi_del(&priv->napi[RAVB_BE]);
1870 ravb_mdio_release(priv);
1871 out_dma_free:
1872 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1873 priv->desc_bat_dma);
1874
1875 /* Stop PTP Clock driver */
1876 if (chip_id != RCAR_GEN2)
1877 ravb_ptp_stop(ndev);
1878 out_release:
1879 if (ndev)
1880 free_netdev(ndev);
1881
1882 pm_runtime_put(&pdev->dev);
1883 pm_runtime_disable(&pdev->dev);
1884 return error;
1885 }
1886
1887 static int ravb_remove(struct platform_device *pdev)
1888 {
1889 struct net_device *ndev = platform_get_drvdata(pdev);
1890 struct ravb_private *priv = netdev_priv(ndev);
1891
1892 /* Stop PTP Clock driver */
1893 if (priv->chip_id != RCAR_GEN2)
1894 ravb_ptp_stop(ndev);
1895
1896 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
1897 priv->desc_bat_dma);
1898 /* Set reset mode */
1899 ravb_write(ndev, CCC_OPC_RESET, CCC);
1900 pm_runtime_put_sync(&pdev->dev);
1901 unregister_netdev(ndev);
1902 netif_napi_del(&priv->napi[RAVB_NC]);
1903 netif_napi_del(&priv->napi[RAVB_BE]);
1904 ravb_mdio_release(priv);
1905 pm_runtime_disable(&pdev->dev);
1906 free_netdev(ndev);
1907 platform_set_drvdata(pdev, NULL);
1908
1909 return 0;
1910 }
1911
1912 #ifdef CONFIG_PM
1913 static int ravb_runtime_nop(struct device *dev)
1914 {
1915 /* Runtime PM callback shared between ->runtime_suspend()
1916 * and ->runtime_resume(). Simply returns success.
1917 *
1918 * This driver re-initializes all registers after
1919 * pm_runtime_get_sync() anyway so there is no need
1920 * to save and restore registers here.
1921 */
1922 return 0;
1923 }
1924
1925 static const struct dev_pm_ops ravb_dev_pm_ops = {
1926 .runtime_suspend = ravb_runtime_nop,
1927 .runtime_resume = ravb_runtime_nop,
1928 };
1929
1930 #define RAVB_PM_OPS (&ravb_dev_pm_ops)
1931 #else
1932 #define RAVB_PM_OPS NULL
1933 #endif
1934
1935 static struct platform_driver ravb_driver = {
1936 .probe = ravb_probe,
1937 .remove = ravb_remove,
1938 .driver = {
1939 .name = "ravb",
1940 .pm = RAVB_PM_OPS,
1941 .of_match_table = ravb_match_table,
1942 },
1943 };
1944
1945 module_platform_driver(ravb_driver);
1946
1947 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
1948 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
1949 MODULE_LICENSE("GPL v2");
This page took 0.071942 seconds and 5 git commands to generate.