powerpc: Fix bad inline asm constraint in create_zero_mask()
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_NR_AEN_COMMANDS 1
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
75
76 /*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79 struct nvme_dev {
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
92 struct msix_entry *entry;
93 void __iomem *bar;
94 struct work_struct reset_work;
95 struct work_struct scan_work;
96 struct work_struct remove_work;
97 struct work_struct async_work;
98 struct timer_list watchdog_timer;
99 struct mutex shutdown_lock;
100 bool subsystem;
101 void __iomem *cmb;
102 dma_addr_t cmb_dma_addr;
103 u64 cmb_size;
104 u32 cmbsz;
105 unsigned long flags;
106
107 #define NVME_CTRL_RESETTING 0
108 #define NVME_CTRL_REMOVING 1
109
110 struct nvme_ctrl ctrl;
111 struct completion ioq_wait;
112 };
113
114 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115 {
116 return container_of(ctrl, struct nvme_dev, ctrl);
117 }
118
119 /*
120 * An NVM Express queue. Each device has at least two (one for admin
121 * commands and one for I/O commands).
122 */
123 struct nvme_queue {
124 struct device *q_dmadev;
125 struct nvme_dev *dev;
126 char irqname[24]; /* nvme4294967295-65535\0 */
127 spinlock_t q_lock;
128 struct nvme_command *sq_cmds;
129 struct nvme_command __iomem *sq_cmds_io;
130 volatile struct nvme_completion *cqes;
131 struct blk_mq_tags **tags;
132 dma_addr_t sq_dma_addr;
133 dma_addr_t cq_dma_addr;
134 u32 __iomem *q_db;
135 u16 q_depth;
136 s16 cq_vector;
137 u16 sq_tail;
138 u16 cq_head;
139 u16 qid;
140 u8 cq_phase;
141 u8 cqe_seen;
142 };
143
144 /*
145 * The nvme_iod describes the data in an I/O, including the list of PRP
146 * entries. You can't see it in this data structure because C doesn't let
147 * me express that. Use nvme_init_iod to ensure there's enough space
148 * allocated to store the PRP list.
149 */
150 struct nvme_iod {
151 struct nvme_queue *nvmeq;
152 int aborted;
153 int npages; /* In the PRP list. 0 means small pool in use */
154 int nents; /* Used in scatterlist */
155 int length; /* Of data, in bytes */
156 dma_addr_t first_dma;
157 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
158 struct scatterlist *sg;
159 struct scatterlist inline_sg[0];
160 };
161
162 /*
163 * Check we didin't inadvertently grow the command struct
164 */
165 static inline void _nvme_check_size(void)
166 {
167 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
172 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
173 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
174 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
178 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
179 }
180
181 /*
182 * Max size of iod being embedded in the request payload
183 */
184 #define NVME_INT_PAGES 2
185 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
186
187 /*
188 * Will slightly overestimate the number of pages needed. This is OK
189 * as it only leads to a small amount of wasted memory for the lifetime of
190 * the I/O.
191 */
192 static int nvme_npages(unsigned size, struct nvme_dev *dev)
193 {
194 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195 dev->ctrl.page_size);
196 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197 }
198
199 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200 unsigned int size, unsigned int nseg)
201 {
202 return sizeof(__le64 *) * nvme_npages(size, dev) +
203 sizeof(struct scatterlist) * nseg;
204 }
205
206 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207 {
208 return sizeof(struct nvme_iod) +
209 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
210 }
211
212 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
214 {
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
222 hctx->driver_data = nvmeq;
223 nvmeq->tags = &dev->admin_tagset.tags[0];
224 return 0;
225 }
226
227 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228 {
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232 }
233
234 static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
237 {
238 struct nvme_dev *dev = data;
239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
243 iod->nvmeq = nvmeq;
244 return 0;
245 }
246
247 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
249 {
250 struct nvme_dev *dev = data;
251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
252
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
255
256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
257 hctx->driver_data = nvmeq;
258 return 0;
259 }
260
261 static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
264 {
265 struct nvme_dev *dev = data;
266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
270 iod->nvmeq = nvmeq;
271 return 0;
272 }
273
274 static void nvme_queue_scan(struct nvme_dev *dev)
275 {
276 /*
277 * Do not queue new scan work when a controller is reset during
278 * removal.
279 */
280 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
281 return;
282 queue_work(nvme_workq, &dev->scan_work);
283 }
284
285 static void nvme_complete_async_event(struct nvme_dev *dev,
286 struct nvme_completion *cqe)
287 {
288 u16 status = le16_to_cpu(cqe->status) >> 1;
289 u32 result = le32_to_cpu(cqe->result);
290
291 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
292 ++dev->ctrl.event_limit;
293 queue_work(nvme_workq, &dev->async_work);
294 }
295
296 if (status != NVME_SC_SUCCESS)
297 return;
298
299 switch (result & 0xff07) {
300 case NVME_AER_NOTICE_NS_CHANGED:
301 dev_info(dev->ctrl.device, "rescanning\n");
302 nvme_queue_scan(dev);
303 default:
304 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
305 }
306 }
307
308 /**
309 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
310 * @nvmeq: The queue to use
311 * @cmd: The command to send
312 *
313 * Safe to use from interrupt context
314 */
315 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
316 struct nvme_command *cmd)
317 {
318 u16 tail = nvmeq->sq_tail;
319
320 if (nvmeq->sq_cmds_io)
321 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
322 else
323 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
324
325 if (++tail == nvmeq->q_depth)
326 tail = 0;
327 writel(tail, nvmeq->q_db);
328 nvmeq->sq_tail = tail;
329 }
330
331 static __le64 **iod_list(struct request *req)
332 {
333 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
334 return (__le64 **)(iod->sg + req->nr_phys_segments);
335 }
336
337 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
338 {
339 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
340 int nseg = rq->nr_phys_segments;
341 unsigned size;
342
343 if (rq->cmd_flags & REQ_DISCARD)
344 size = sizeof(struct nvme_dsm_range);
345 else
346 size = blk_rq_bytes(rq);
347
348 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
349 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
350 if (!iod->sg)
351 return BLK_MQ_RQ_QUEUE_BUSY;
352 } else {
353 iod->sg = iod->inline_sg;
354 }
355
356 iod->aborted = 0;
357 iod->npages = -1;
358 iod->nents = 0;
359 iod->length = size;
360 return 0;
361 }
362
363 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
364 {
365 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
366 const int last_prp = dev->ctrl.page_size / 8 - 1;
367 int i;
368 __le64 **list = iod_list(req);
369 dma_addr_t prp_dma = iod->first_dma;
370
371 if (iod->npages == 0)
372 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
373 for (i = 0; i < iod->npages; i++) {
374 __le64 *prp_list = list[i];
375 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
376 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
377 prp_dma = next_prp_dma;
378 }
379
380 if (iod->sg != iod->inline_sg)
381 kfree(iod->sg);
382 }
383
384 #ifdef CONFIG_BLK_DEV_INTEGRITY
385 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
386 {
387 if (be32_to_cpu(pi->ref_tag) == v)
388 pi->ref_tag = cpu_to_be32(p);
389 }
390
391 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
392 {
393 if (be32_to_cpu(pi->ref_tag) == p)
394 pi->ref_tag = cpu_to_be32(v);
395 }
396
397 /**
398 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
399 *
400 * The virtual start sector is the one that was originally submitted by the
401 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
402 * start sector may be different. Remap protection information to match the
403 * physical LBA on writes, and back to the original seed on reads.
404 *
405 * Type 0 and 3 do not have a ref tag, so no remapping required.
406 */
407 static void nvme_dif_remap(struct request *req,
408 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
409 {
410 struct nvme_ns *ns = req->rq_disk->private_data;
411 struct bio_integrity_payload *bip;
412 struct t10_pi_tuple *pi;
413 void *p, *pmap;
414 u32 i, nlb, ts, phys, virt;
415
416 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
417 return;
418
419 bip = bio_integrity(req->bio);
420 if (!bip)
421 return;
422
423 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
424
425 p = pmap;
426 virt = bip_get_seed(bip);
427 phys = nvme_block_nr(ns, blk_rq_pos(req));
428 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
429 ts = ns->disk->queue->integrity.tuple_size;
430
431 for (i = 0; i < nlb; i++, virt++, phys++) {
432 pi = (struct t10_pi_tuple *)p;
433 dif_swap(phys, virt, pi);
434 p += ts;
435 }
436 kunmap_atomic(pmap);
437 }
438 #else /* CONFIG_BLK_DEV_INTEGRITY */
439 static void nvme_dif_remap(struct request *req,
440 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
441 {
442 }
443 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
444 {
445 }
446 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
447 {
448 }
449 #endif
450
451 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
452 int total_len)
453 {
454 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
455 struct dma_pool *pool;
456 int length = total_len;
457 struct scatterlist *sg = iod->sg;
458 int dma_len = sg_dma_len(sg);
459 u64 dma_addr = sg_dma_address(sg);
460 u32 page_size = dev->ctrl.page_size;
461 int offset = dma_addr & (page_size - 1);
462 __le64 *prp_list;
463 __le64 **list = iod_list(req);
464 dma_addr_t prp_dma;
465 int nprps, i;
466
467 length -= (page_size - offset);
468 if (length <= 0)
469 return true;
470
471 dma_len -= (page_size - offset);
472 if (dma_len) {
473 dma_addr += (page_size - offset);
474 } else {
475 sg = sg_next(sg);
476 dma_addr = sg_dma_address(sg);
477 dma_len = sg_dma_len(sg);
478 }
479
480 if (length <= page_size) {
481 iod->first_dma = dma_addr;
482 return true;
483 }
484
485 nprps = DIV_ROUND_UP(length, page_size);
486 if (nprps <= (256 / 8)) {
487 pool = dev->prp_small_pool;
488 iod->npages = 0;
489 } else {
490 pool = dev->prp_page_pool;
491 iod->npages = 1;
492 }
493
494 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
495 if (!prp_list) {
496 iod->first_dma = dma_addr;
497 iod->npages = -1;
498 return false;
499 }
500 list[0] = prp_list;
501 iod->first_dma = prp_dma;
502 i = 0;
503 for (;;) {
504 if (i == page_size >> 3) {
505 __le64 *old_prp_list = prp_list;
506 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
507 if (!prp_list)
508 return false;
509 list[iod->npages++] = prp_list;
510 prp_list[0] = old_prp_list[i - 1];
511 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
512 i = 1;
513 }
514 prp_list[i++] = cpu_to_le64(dma_addr);
515 dma_len -= page_size;
516 dma_addr += page_size;
517 length -= page_size;
518 if (length <= 0)
519 break;
520 if (dma_len > 0)
521 continue;
522 BUG_ON(dma_len < 0);
523 sg = sg_next(sg);
524 dma_addr = sg_dma_address(sg);
525 dma_len = sg_dma_len(sg);
526 }
527
528 return true;
529 }
530
531 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
532 struct nvme_command *cmnd)
533 {
534 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
535 struct request_queue *q = req->q;
536 enum dma_data_direction dma_dir = rq_data_dir(req) ?
537 DMA_TO_DEVICE : DMA_FROM_DEVICE;
538 int ret = BLK_MQ_RQ_QUEUE_ERROR;
539
540 sg_init_table(iod->sg, req->nr_phys_segments);
541 iod->nents = blk_rq_map_sg(q, req, iod->sg);
542 if (!iod->nents)
543 goto out;
544
545 ret = BLK_MQ_RQ_QUEUE_BUSY;
546 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
547 goto out;
548
549 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
550 goto out_unmap;
551
552 ret = BLK_MQ_RQ_QUEUE_ERROR;
553 if (blk_integrity_rq(req)) {
554 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
555 goto out_unmap;
556
557 sg_init_table(&iod->meta_sg, 1);
558 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
559 goto out_unmap;
560
561 if (rq_data_dir(req))
562 nvme_dif_remap(req, nvme_dif_prep);
563
564 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
565 goto out_unmap;
566 }
567
568 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
569 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
570 if (blk_integrity_rq(req))
571 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
572 return BLK_MQ_RQ_QUEUE_OK;
573
574 out_unmap:
575 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
576 out:
577 return ret;
578 }
579
580 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
581 {
582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
583 enum dma_data_direction dma_dir = rq_data_dir(req) ?
584 DMA_TO_DEVICE : DMA_FROM_DEVICE;
585
586 if (iod->nents) {
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588 if (blk_integrity_rq(req)) {
589 if (!rq_data_dir(req))
590 nvme_dif_remap(req, nvme_dif_complete);
591 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
592 }
593 }
594
595 nvme_free_iod(dev, req);
596 }
597
598 /*
599 * We reuse the small pool to allocate the 16-byte range here as it is not
600 * worth having a special pool for these or additional cases to handle freeing
601 * the iod.
602 */
603 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
604 struct request *req, struct nvme_command *cmnd)
605 {
606 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
607 struct nvme_dsm_range *range;
608
609 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
610 &iod->first_dma);
611 if (!range)
612 return BLK_MQ_RQ_QUEUE_BUSY;
613 iod_list(req)[0] = (__le64 *)range;
614 iod->npages = 0;
615
616 range->cattr = cpu_to_le32(0);
617 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
618 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
619
620 memset(cmnd, 0, sizeof(*cmnd));
621 cmnd->dsm.opcode = nvme_cmd_dsm;
622 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
623 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
624 cmnd->dsm.nr = 0;
625 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
626 return BLK_MQ_RQ_QUEUE_OK;
627 }
628
629 /*
630 * NOTE: ns is NULL when called on the admin queue.
631 */
632 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
633 const struct blk_mq_queue_data *bd)
634 {
635 struct nvme_ns *ns = hctx->queue->queuedata;
636 struct nvme_queue *nvmeq = hctx->driver_data;
637 struct nvme_dev *dev = nvmeq->dev;
638 struct request *req = bd->rq;
639 struct nvme_command cmnd;
640 int ret = BLK_MQ_RQ_QUEUE_OK;
641
642 /*
643 * If formated with metadata, require the block layer provide a buffer
644 * unless this namespace is formated such that the metadata can be
645 * stripped/generated by the controller with PRACT=1.
646 */
647 if (ns && ns->ms && !blk_integrity_rq(req)) {
648 if (!(ns->pi_type && ns->ms == 8) &&
649 req->cmd_type != REQ_TYPE_DRV_PRIV) {
650 blk_mq_end_request(req, -EFAULT);
651 return BLK_MQ_RQ_QUEUE_OK;
652 }
653 }
654
655 ret = nvme_init_iod(req, dev);
656 if (ret)
657 return ret;
658
659 if (req->cmd_flags & REQ_DISCARD) {
660 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
661 } else {
662 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
663 memcpy(&cmnd, req->cmd, sizeof(cmnd));
664 else if (req->cmd_flags & REQ_FLUSH)
665 nvme_setup_flush(ns, &cmnd);
666 else
667 nvme_setup_rw(ns, req, &cmnd);
668
669 if (req->nr_phys_segments)
670 ret = nvme_map_data(dev, req, &cmnd);
671 }
672
673 if (ret)
674 goto out;
675
676 cmnd.common.command_id = req->tag;
677 blk_mq_start_request(req);
678
679 spin_lock_irq(&nvmeq->q_lock);
680 if (unlikely(nvmeq->cq_vector < 0)) {
681 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
682 ret = BLK_MQ_RQ_QUEUE_BUSY;
683 else
684 ret = BLK_MQ_RQ_QUEUE_ERROR;
685 spin_unlock_irq(&nvmeq->q_lock);
686 goto out;
687 }
688 __nvme_submit_cmd(nvmeq, &cmnd);
689 nvme_process_cq(nvmeq);
690 spin_unlock_irq(&nvmeq->q_lock);
691 return BLK_MQ_RQ_QUEUE_OK;
692 out:
693 nvme_free_iod(dev, req);
694 return ret;
695 }
696
697 static void nvme_complete_rq(struct request *req)
698 {
699 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700 struct nvme_dev *dev = iod->nvmeq->dev;
701 int error = 0;
702
703 nvme_unmap_data(dev, req);
704
705 if (unlikely(req->errors)) {
706 if (nvme_req_needs_retry(req, req->errors)) {
707 nvme_requeue_req(req);
708 return;
709 }
710
711 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
712 error = req->errors;
713 else
714 error = nvme_error_status(req->errors);
715 }
716
717 if (unlikely(iod->aborted)) {
718 dev_warn(dev->ctrl.device,
719 "completing aborted command with status: %04x\n",
720 req->errors);
721 }
722
723 blk_mq_end_request(req, error);
724 }
725
726 /* We read the CQE phase first to check if the rest of the entry is valid */
727 static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head,
728 u16 phase)
729 {
730 return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase;
731 }
732
733 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
734 {
735 u16 head, phase;
736
737 head = nvmeq->cq_head;
738 phase = nvmeq->cq_phase;
739
740 while (nvme_cqe_valid(nvmeq, head, phase)) {
741 struct nvme_completion cqe = nvmeq->cqes[head];
742 struct request *req;
743
744 if (++head == nvmeq->q_depth) {
745 head = 0;
746 phase = !phase;
747 }
748
749 if (tag && *tag == cqe.command_id)
750 *tag = -1;
751
752 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
753 dev_warn(nvmeq->dev->ctrl.device,
754 "invalid id %d completed on queue %d\n",
755 cqe.command_id, le16_to_cpu(cqe.sq_id));
756 continue;
757 }
758
759 /*
760 * AEN requests are special as they don't time out and can
761 * survive any kind of queue freeze and often don't respond to
762 * aborts. We don't even bother to allocate a struct request
763 * for them but rather special case them here.
764 */
765 if (unlikely(nvmeq->qid == 0 &&
766 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
767 nvme_complete_async_event(nvmeq->dev, &cqe);
768 continue;
769 }
770
771 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
772 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
773 memcpy(req->special, &cqe, sizeof(cqe));
774 blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1);
775
776 }
777
778 /* If the controller ignores the cq head doorbell and continuously
779 * writes to the queue, it is theoretically possible to wrap around
780 * the queue twice and mistakenly return IRQ_NONE. Linux only
781 * requires that 0.1% of your interrupts are handled, so this isn't
782 * a big problem.
783 */
784 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
785 return;
786
787 if (likely(nvmeq->cq_vector >= 0))
788 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
789 nvmeq->cq_head = head;
790 nvmeq->cq_phase = phase;
791
792 nvmeq->cqe_seen = 1;
793 }
794
795 static void nvme_process_cq(struct nvme_queue *nvmeq)
796 {
797 __nvme_process_cq(nvmeq, NULL);
798 }
799
800 static irqreturn_t nvme_irq(int irq, void *data)
801 {
802 irqreturn_t result;
803 struct nvme_queue *nvmeq = data;
804 spin_lock(&nvmeq->q_lock);
805 nvme_process_cq(nvmeq);
806 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
807 nvmeq->cqe_seen = 0;
808 spin_unlock(&nvmeq->q_lock);
809 return result;
810 }
811
812 static irqreturn_t nvme_irq_check(int irq, void *data)
813 {
814 struct nvme_queue *nvmeq = data;
815 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase))
816 return IRQ_WAKE_THREAD;
817 return IRQ_NONE;
818 }
819
820 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
821 {
822 struct nvme_queue *nvmeq = hctx->driver_data;
823
824 if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) {
825 spin_lock_irq(&nvmeq->q_lock);
826 __nvme_process_cq(nvmeq, &tag);
827 spin_unlock_irq(&nvmeq->q_lock);
828
829 if (tag == -1)
830 return 1;
831 }
832
833 return 0;
834 }
835
836 static void nvme_async_event_work(struct work_struct *work)
837 {
838 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
839 struct nvme_queue *nvmeq = dev->queues[0];
840 struct nvme_command c;
841
842 memset(&c, 0, sizeof(c));
843 c.common.opcode = nvme_admin_async_event;
844
845 spin_lock_irq(&nvmeq->q_lock);
846 while (dev->ctrl.event_limit > 0) {
847 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
848 --dev->ctrl.event_limit;
849 __nvme_submit_cmd(nvmeq, &c);
850 }
851 spin_unlock_irq(&nvmeq->q_lock);
852 }
853
854 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
855 {
856 struct nvme_command c;
857
858 memset(&c, 0, sizeof(c));
859 c.delete_queue.opcode = opcode;
860 c.delete_queue.qid = cpu_to_le16(id);
861
862 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
863 }
864
865 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
866 struct nvme_queue *nvmeq)
867 {
868 struct nvme_command c;
869 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
870
871 /*
872 * Note: we (ab)use the fact the the prp fields survive if no data
873 * is attached to the request.
874 */
875 memset(&c, 0, sizeof(c));
876 c.create_cq.opcode = nvme_admin_create_cq;
877 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
878 c.create_cq.cqid = cpu_to_le16(qid);
879 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
880 c.create_cq.cq_flags = cpu_to_le16(flags);
881 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
882
883 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
884 }
885
886 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
887 struct nvme_queue *nvmeq)
888 {
889 struct nvme_command c;
890 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
891
892 /*
893 * Note: we (ab)use the fact the the prp fields survive if no data
894 * is attached to the request.
895 */
896 memset(&c, 0, sizeof(c));
897 c.create_sq.opcode = nvme_admin_create_sq;
898 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
899 c.create_sq.sqid = cpu_to_le16(qid);
900 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
901 c.create_sq.sq_flags = cpu_to_le16(flags);
902 c.create_sq.cqid = cpu_to_le16(qid);
903
904 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
905 }
906
907 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
908 {
909 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
910 }
911
912 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
913 {
914 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
915 }
916
917 static void abort_endio(struct request *req, int error)
918 {
919 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
920 struct nvme_queue *nvmeq = iod->nvmeq;
921 u16 status = req->errors;
922
923 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
924 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
925 blk_mq_free_request(req);
926 }
927
928 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
929 {
930 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
931 struct nvme_queue *nvmeq = iod->nvmeq;
932 struct nvme_dev *dev = nvmeq->dev;
933 struct request *abort_req;
934 struct nvme_command cmd;
935
936 /*
937 * Shutdown immediately if controller times out while starting. The
938 * reset work will see the pci device disabled when it gets the forced
939 * cancellation error. All outstanding requests are completed on
940 * shutdown, so we return BLK_EH_HANDLED.
941 */
942 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
943 dev_warn(dev->ctrl.device,
944 "I/O %d QID %d timeout, disable controller\n",
945 req->tag, nvmeq->qid);
946 nvme_dev_disable(dev, false);
947 req->errors = NVME_SC_CANCELLED;
948 return BLK_EH_HANDLED;
949 }
950
951 /*
952 * Shutdown the controller immediately and schedule a reset if the
953 * command was already aborted once before and still hasn't been
954 * returned to the driver, or if this is the admin queue.
955 */
956 if (!nvmeq->qid || iod->aborted) {
957 dev_warn(dev->ctrl.device,
958 "I/O %d QID %d timeout, reset controller\n",
959 req->tag, nvmeq->qid);
960 nvme_dev_disable(dev, false);
961 queue_work(nvme_workq, &dev->reset_work);
962
963 /*
964 * Mark the request as handled, since the inline shutdown
965 * forces all outstanding requests to complete.
966 */
967 req->errors = NVME_SC_CANCELLED;
968 return BLK_EH_HANDLED;
969 }
970
971 iod->aborted = 1;
972
973 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
974 atomic_inc(&dev->ctrl.abort_limit);
975 return BLK_EH_RESET_TIMER;
976 }
977
978 memset(&cmd, 0, sizeof(cmd));
979 cmd.abort.opcode = nvme_admin_abort_cmd;
980 cmd.abort.cid = req->tag;
981 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
982
983 dev_warn(nvmeq->dev->ctrl.device,
984 "I/O %d QID %d timeout, aborting\n",
985 req->tag, nvmeq->qid);
986
987 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
988 BLK_MQ_REQ_NOWAIT);
989 if (IS_ERR(abort_req)) {
990 atomic_inc(&dev->ctrl.abort_limit);
991 return BLK_EH_RESET_TIMER;
992 }
993
994 abort_req->timeout = ADMIN_TIMEOUT;
995 abort_req->end_io_data = NULL;
996 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
997
998 /*
999 * The aborted req will be completed on receiving the abort req.
1000 * We enable the timer again. If hit twice, it'll cause a device reset,
1001 * as the device then is in a faulty state.
1002 */
1003 return BLK_EH_RESET_TIMER;
1004 }
1005
1006 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1007 {
1008 struct nvme_queue *nvmeq = data;
1009 int status;
1010
1011 if (!blk_mq_request_started(req))
1012 return;
1013
1014 dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
1015 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1016
1017 status = NVME_SC_ABORT_REQ;
1018 if (blk_queue_dying(req->q))
1019 status |= NVME_SC_DNR;
1020 blk_mq_complete_request(req, status);
1021 }
1022
1023 static void nvme_free_queue(struct nvme_queue *nvmeq)
1024 {
1025 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1026 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1027 if (nvmeq->sq_cmds)
1028 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1029 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1030 kfree(nvmeq);
1031 }
1032
1033 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1034 {
1035 int i;
1036
1037 for (i = dev->queue_count - 1; i >= lowest; i--) {
1038 struct nvme_queue *nvmeq = dev->queues[i];
1039 dev->queue_count--;
1040 dev->queues[i] = NULL;
1041 nvme_free_queue(nvmeq);
1042 }
1043 }
1044
1045 /**
1046 * nvme_suspend_queue - put queue into suspended state
1047 * @nvmeq - queue to suspend
1048 */
1049 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1050 {
1051 int vector;
1052
1053 spin_lock_irq(&nvmeq->q_lock);
1054 if (nvmeq->cq_vector == -1) {
1055 spin_unlock_irq(&nvmeq->q_lock);
1056 return 1;
1057 }
1058 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1059 nvmeq->dev->online_queues--;
1060 nvmeq->cq_vector = -1;
1061 spin_unlock_irq(&nvmeq->q_lock);
1062
1063 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1064 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1065
1066 irq_set_affinity_hint(vector, NULL);
1067 free_irq(vector, nvmeq);
1068
1069 return 0;
1070 }
1071
1072 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1073 {
1074 spin_lock_irq(&nvmeq->q_lock);
1075 if (nvmeq->tags && *nvmeq->tags)
1076 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1077 spin_unlock_irq(&nvmeq->q_lock);
1078 }
1079
1080 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1081 {
1082 struct nvme_queue *nvmeq = dev->queues[0];
1083
1084 if (!nvmeq)
1085 return;
1086 if (nvme_suspend_queue(nvmeq))
1087 return;
1088
1089 if (shutdown)
1090 nvme_shutdown_ctrl(&dev->ctrl);
1091 else
1092 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1093 dev->bar + NVME_REG_CAP));
1094
1095 spin_lock_irq(&nvmeq->q_lock);
1096 nvme_process_cq(nvmeq);
1097 spin_unlock_irq(&nvmeq->q_lock);
1098 }
1099
1100 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1101 int entry_size)
1102 {
1103 int q_depth = dev->q_depth;
1104 unsigned q_size_aligned = roundup(q_depth * entry_size,
1105 dev->ctrl.page_size);
1106
1107 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1108 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1109 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1110 q_depth = div_u64(mem_per_q, entry_size);
1111
1112 /*
1113 * Ensure the reduced q_depth is above some threshold where it
1114 * would be better to map queues in system memory with the
1115 * original depth
1116 */
1117 if (q_depth < 64)
1118 return -ENOMEM;
1119 }
1120
1121 return q_depth;
1122 }
1123
1124 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1125 int qid, int depth)
1126 {
1127 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1128 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1129 dev->ctrl.page_size);
1130 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1131 nvmeq->sq_cmds_io = dev->cmb + offset;
1132 } else {
1133 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1134 &nvmeq->sq_dma_addr, GFP_KERNEL);
1135 if (!nvmeq->sq_cmds)
1136 return -ENOMEM;
1137 }
1138
1139 return 0;
1140 }
1141
1142 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1143 int depth)
1144 {
1145 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1146 if (!nvmeq)
1147 return NULL;
1148
1149 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1150 &nvmeq->cq_dma_addr, GFP_KERNEL);
1151 if (!nvmeq->cqes)
1152 goto free_nvmeq;
1153
1154 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1155 goto free_cqdma;
1156
1157 nvmeq->q_dmadev = dev->dev;
1158 nvmeq->dev = dev;
1159 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1160 dev->ctrl.instance, qid);
1161 spin_lock_init(&nvmeq->q_lock);
1162 nvmeq->cq_head = 0;
1163 nvmeq->cq_phase = 1;
1164 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1165 nvmeq->q_depth = depth;
1166 nvmeq->qid = qid;
1167 nvmeq->cq_vector = -1;
1168 dev->queues[qid] = nvmeq;
1169 dev->queue_count++;
1170
1171 return nvmeq;
1172
1173 free_cqdma:
1174 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1175 nvmeq->cq_dma_addr);
1176 free_nvmeq:
1177 kfree(nvmeq);
1178 return NULL;
1179 }
1180
1181 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1182 const char *name)
1183 {
1184 if (use_threaded_interrupts)
1185 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1186 nvme_irq_check, nvme_irq, IRQF_SHARED,
1187 name, nvmeq);
1188 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1189 IRQF_SHARED, name, nvmeq);
1190 }
1191
1192 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1193 {
1194 struct nvme_dev *dev = nvmeq->dev;
1195
1196 spin_lock_irq(&nvmeq->q_lock);
1197 nvmeq->sq_tail = 0;
1198 nvmeq->cq_head = 0;
1199 nvmeq->cq_phase = 1;
1200 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1201 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1202 dev->online_queues++;
1203 spin_unlock_irq(&nvmeq->q_lock);
1204 }
1205
1206 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1207 {
1208 struct nvme_dev *dev = nvmeq->dev;
1209 int result;
1210
1211 nvmeq->cq_vector = qid - 1;
1212 result = adapter_alloc_cq(dev, qid, nvmeq);
1213 if (result < 0)
1214 return result;
1215
1216 result = adapter_alloc_sq(dev, qid, nvmeq);
1217 if (result < 0)
1218 goto release_cq;
1219
1220 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1221 if (result < 0)
1222 goto release_sq;
1223
1224 nvme_init_queue(nvmeq, qid);
1225 return result;
1226
1227 release_sq:
1228 adapter_delete_sq(dev, qid);
1229 release_cq:
1230 adapter_delete_cq(dev, qid);
1231 return result;
1232 }
1233
1234 static struct blk_mq_ops nvme_mq_admin_ops = {
1235 .queue_rq = nvme_queue_rq,
1236 .complete = nvme_complete_rq,
1237 .map_queue = blk_mq_map_queue,
1238 .init_hctx = nvme_admin_init_hctx,
1239 .exit_hctx = nvme_admin_exit_hctx,
1240 .init_request = nvme_admin_init_request,
1241 .timeout = nvme_timeout,
1242 };
1243
1244 static struct blk_mq_ops nvme_mq_ops = {
1245 .queue_rq = nvme_queue_rq,
1246 .complete = nvme_complete_rq,
1247 .map_queue = blk_mq_map_queue,
1248 .init_hctx = nvme_init_hctx,
1249 .init_request = nvme_init_request,
1250 .timeout = nvme_timeout,
1251 .poll = nvme_poll,
1252 };
1253
1254 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1255 {
1256 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1257 /*
1258 * If the controller was reset during removal, it's possible
1259 * user requests may be waiting on a stopped queue. Start the
1260 * queue to flush these to completion.
1261 */
1262 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1263 blk_cleanup_queue(dev->ctrl.admin_q);
1264 blk_mq_free_tag_set(&dev->admin_tagset);
1265 }
1266 }
1267
1268 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1269 {
1270 if (!dev->ctrl.admin_q) {
1271 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1272 dev->admin_tagset.nr_hw_queues = 1;
1273
1274 /*
1275 * Subtract one to leave an empty queue entry for 'Full Queue'
1276 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1277 */
1278 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1279 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1280 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1281 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1282 dev->admin_tagset.driver_data = dev;
1283
1284 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1285 return -ENOMEM;
1286
1287 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1288 if (IS_ERR(dev->ctrl.admin_q)) {
1289 blk_mq_free_tag_set(&dev->admin_tagset);
1290 return -ENOMEM;
1291 }
1292 if (!blk_get_queue(dev->ctrl.admin_q)) {
1293 nvme_dev_remove_admin(dev);
1294 dev->ctrl.admin_q = NULL;
1295 return -ENODEV;
1296 }
1297 } else
1298 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1299
1300 return 0;
1301 }
1302
1303 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1304 {
1305 int result;
1306 u32 aqa;
1307 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1308 struct nvme_queue *nvmeq;
1309
1310 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1311 NVME_CAP_NSSRC(cap) : 0;
1312
1313 if (dev->subsystem &&
1314 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1315 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1316
1317 result = nvme_disable_ctrl(&dev->ctrl, cap);
1318 if (result < 0)
1319 return result;
1320
1321 nvmeq = dev->queues[0];
1322 if (!nvmeq) {
1323 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1324 if (!nvmeq)
1325 return -ENOMEM;
1326 }
1327
1328 aqa = nvmeq->q_depth - 1;
1329 aqa |= aqa << 16;
1330
1331 writel(aqa, dev->bar + NVME_REG_AQA);
1332 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1333 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1334
1335 result = nvme_enable_ctrl(&dev->ctrl, cap);
1336 if (result)
1337 goto free_nvmeq;
1338
1339 nvmeq->cq_vector = 0;
1340 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1341 if (result) {
1342 nvmeq->cq_vector = -1;
1343 goto free_nvmeq;
1344 }
1345
1346 return result;
1347
1348 free_nvmeq:
1349 nvme_free_queues(dev, 0);
1350 return result;
1351 }
1352
1353 static void nvme_watchdog_timer(unsigned long data)
1354 {
1355 struct nvme_dev *dev = (struct nvme_dev *)data;
1356 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1357
1358 /*
1359 * Skip controllers currently under reset.
1360 */
1361 if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1362 ((csts & NVME_CSTS_CFS) ||
1363 (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1364 if (queue_work(nvme_workq, &dev->reset_work)) {
1365 dev_warn(dev->dev,
1366 "Failed status: 0x%x, reset controller.\n",
1367 csts);
1368 }
1369 return;
1370 }
1371
1372 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1373 }
1374
1375 static int nvme_create_io_queues(struct nvme_dev *dev)
1376 {
1377 unsigned i, max;
1378 int ret = 0;
1379
1380 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1381 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1382 ret = -ENOMEM;
1383 break;
1384 }
1385 }
1386
1387 max = min(dev->max_qid, dev->queue_count - 1);
1388 for (i = dev->online_queues; i <= max; i++) {
1389 ret = nvme_create_queue(dev->queues[i], i);
1390 if (ret) {
1391 nvme_free_queues(dev, i);
1392 break;
1393 }
1394 }
1395
1396 /*
1397 * Ignore failing Create SQ/CQ commands, we can continue with less
1398 * than the desired aount of queues, and even a controller without
1399 * I/O queues an still be used to issue admin commands. This might
1400 * be useful to upgrade a buggy firmware for example.
1401 */
1402 return ret >= 0 ? 0 : ret;
1403 }
1404
1405 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1406 {
1407 u64 szu, size, offset;
1408 u32 cmbloc;
1409 resource_size_t bar_size;
1410 struct pci_dev *pdev = to_pci_dev(dev->dev);
1411 void __iomem *cmb;
1412 dma_addr_t dma_addr;
1413
1414 if (!use_cmb_sqes)
1415 return NULL;
1416
1417 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1418 if (!(NVME_CMB_SZ(dev->cmbsz)))
1419 return NULL;
1420
1421 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1422
1423 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1424 size = szu * NVME_CMB_SZ(dev->cmbsz);
1425 offset = szu * NVME_CMB_OFST(cmbloc);
1426 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1427
1428 if (offset > bar_size)
1429 return NULL;
1430
1431 /*
1432 * Controllers may support a CMB size larger than their BAR,
1433 * for example, due to being behind a bridge. Reduce the CMB to
1434 * the reported size of the BAR
1435 */
1436 if (size > bar_size - offset)
1437 size = bar_size - offset;
1438
1439 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1440 cmb = ioremap_wc(dma_addr, size);
1441 if (!cmb)
1442 return NULL;
1443
1444 dev->cmb_dma_addr = dma_addr;
1445 dev->cmb_size = size;
1446 return cmb;
1447 }
1448
1449 static inline void nvme_release_cmb(struct nvme_dev *dev)
1450 {
1451 if (dev->cmb) {
1452 iounmap(dev->cmb);
1453 dev->cmb = NULL;
1454 }
1455 }
1456
1457 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1458 {
1459 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1460 }
1461
1462 static int nvme_setup_io_queues(struct nvme_dev *dev)
1463 {
1464 struct nvme_queue *adminq = dev->queues[0];
1465 struct pci_dev *pdev = to_pci_dev(dev->dev);
1466 int result, i, vecs, nr_io_queues, size;
1467
1468 nr_io_queues = num_possible_cpus();
1469 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1470 if (result < 0)
1471 return result;
1472
1473 /*
1474 * Degraded controllers might return an error when setting the queue
1475 * count. We still want to be able to bring them online and offer
1476 * access to the admin queue, as that might be only way to fix them up.
1477 */
1478 if (result > 0) {
1479 dev_err(dev->ctrl.device,
1480 "Could not set queue count (%d)\n", result);
1481 nr_io_queues = 0;
1482 result = 0;
1483 }
1484
1485 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1486 result = nvme_cmb_qdepth(dev, nr_io_queues,
1487 sizeof(struct nvme_command));
1488 if (result > 0)
1489 dev->q_depth = result;
1490 else
1491 nvme_release_cmb(dev);
1492 }
1493
1494 size = db_bar_size(dev, nr_io_queues);
1495 if (size > 8192) {
1496 iounmap(dev->bar);
1497 do {
1498 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1499 if (dev->bar)
1500 break;
1501 if (!--nr_io_queues)
1502 return -ENOMEM;
1503 size = db_bar_size(dev, nr_io_queues);
1504 } while (1);
1505 dev->dbs = dev->bar + 4096;
1506 adminq->q_db = dev->dbs;
1507 }
1508
1509 /* Deregister the admin queue's interrupt */
1510 free_irq(dev->entry[0].vector, adminq);
1511
1512 /*
1513 * If we enable msix early due to not intx, disable it again before
1514 * setting up the full range we need.
1515 */
1516 if (!pdev->irq)
1517 pci_disable_msix(pdev);
1518
1519 for (i = 0; i < nr_io_queues; i++)
1520 dev->entry[i].entry = i;
1521 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1522 if (vecs < 0) {
1523 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1524 if (vecs < 0) {
1525 vecs = 1;
1526 } else {
1527 for (i = 0; i < vecs; i++)
1528 dev->entry[i].vector = i + pdev->irq;
1529 }
1530 }
1531
1532 /*
1533 * Should investigate if there's a performance win from allocating
1534 * more queues than interrupt vectors; it might allow the submission
1535 * path to scale better, even if the receive path is limited by the
1536 * number of interrupts.
1537 */
1538 nr_io_queues = vecs;
1539 dev->max_qid = nr_io_queues;
1540
1541 result = queue_request_irq(dev, adminq, adminq->irqname);
1542 if (result) {
1543 adminq->cq_vector = -1;
1544 goto free_queues;
1545 }
1546 return nvme_create_io_queues(dev);
1547
1548 free_queues:
1549 nvme_free_queues(dev, 1);
1550 return result;
1551 }
1552
1553 static void nvme_set_irq_hints(struct nvme_dev *dev)
1554 {
1555 struct nvme_queue *nvmeq;
1556 int i;
1557
1558 for (i = 0; i < dev->online_queues; i++) {
1559 nvmeq = dev->queues[i];
1560
1561 if (!nvmeq->tags || !(*nvmeq->tags))
1562 continue;
1563
1564 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1565 blk_mq_tags_cpumask(*nvmeq->tags));
1566 }
1567 }
1568
1569 static void nvme_dev_scan(struct work_struct *work)
1570 {
1571 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1572
1573 if (!dev->tagset.tags)
1574 return;
1575 nvme_scan_namespaces(&dev->ctrl);
1576 nvme_set_irq_hints(dev);
1577 }
1578
1579 static void nvme_del_queue_end(struct request *req, int error)
1580 {
1581 struct nvme_queue *nvmeq = req->end_io_data;
1582
1583 blk_mq_free_request(req);
1584 complete(&nvmeq->dev->ioq_wait);
1585 }
1586
1587 static void nvme_del_cq_end(struct request *req, int error)
1588 {
1589 struct nvme_queue *nvmeq = req->end_io_data;
1590
1591 if (!error) {
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&nvmeq->q_lock, flags);
1595 nvme_process_cq(nvmeq);
1596 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1597 }
1598
1599 nvme_del_queue_end(req, error);
1600 }
1601
1602 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1603 {
1604 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1605 struct request *req;
1606 struct nvme_command cmd;
1607
1608 memset(&cmd, 0, sizeof(cmd));
1609 cmd.delete_queue.opcode = opcode;
1610 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1611
1612 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1613 if (IS_ERR(req))
1614 return PTR_ERR(req);
1615
1616 req->timeout = ADMIN_TIMEOUT;
1617 req->end_io_data = nvmeq;
1618
1619 blk_execute_rq_nowait(q, NULL, req, false,
1620 opcode == nvme_admin_delete_cq ?
1621 nvme_del_cq_end : nvme_del_queue_end);
1622 return 0;
1623 }
1624
1625 static void nvme_disable_io_queues(struct nvme_dev *dev)
1626 {
1627 int pass;
1628 unsigned long timeout;
1629 u8 opcode = nvme_admin_delete_sq;
1630
1631 for (pass = 0; pass < 2; pass++) {
1632 int sent = 0, i = dev->queue_count - 1;
1633
1634 reinit_completion(&dev->ioq_wait);
1635 retry:
1636 timeout = ADMIN_TIMEOUT;
1637 for (; i > 0; i--) {
1638 struct nvme_queue *nvmeq = dev->queues[i];
1639
1640 if (!pass)
1641 nvme_suspend_queue(nvmeq);
1642 if (nvme_delete_queue(nvmeq, opcode))
1643 break;
1644 ++sent;
1645 }
1646 while (sent--) {
1647 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1648 if (timeout == 0)
1649 return;
1650 if (i)
1651 goto retry;
1652 }
1653 opcode = nvme_admin_delete_cq;
1654 }
1655 }
1656
1657 /*
1658 * Return: error value if an error occurred setting up the queues or calling
1659 * Identify Device. 0 if these succeeded, even if adding some of the
1660 * namespaces failed. At the moment, these failures are silent. TBD which
1661 * failures should be reported.
1662 */
1663 static int nvme_dev_add(struct nvme_dev *dev)
1664 {
1665 if (!dev->ctrl.tagset) {
1666 dev->tagset.ops = &nvme_mq_ops;
1667 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1668 dev->tagset.timeout = NVME_IO_TIMEOUT;
1669 dev->tagset.numa_node = dev_to_node(dev->dev);
1670 dev->tagset.queue_depth =
1671 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1672 dev->tagset.cmd_size = nvme_cmd_size(dev);
1673 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1674 dev->tagset.driver_data = dev;
1675
1676 if (blk_mq_alloc_tag_set(&dev->tagset))
1677 return 0;
1678 dev->ctrl.tagset = &dev->tagset;
1679 } else {
1680 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1681
1682 /* Free previously allocated queues that are no longer usable */
1683 nvme_free_queues(dev, dev->online_queues);
1684 }
1685
1686 nvme_queue_scan(dev);
1687 return 0;
1688 }
1689
1690 static int nvme_pci_enable(struct nvme_dev *dev)
1691 {
1692 u64 cap;
1693 int result = -ENOMEM;
1694 struct pci_dev *pdev = to_pci_dev(dev->dev);
1695
1696 if (pci_enable_device_mem(pdev))
1697 return result;
1698
1699 dev->entry[0].vector = pdev->irq;
1700 pci_set_master(pdev);
1701
1702 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1703 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1704 goto disable;
1705
1706 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1707 result = -ENODEV;
1708 goto disable;
1709 }
1710
1711 /*
1712 * Some devices don't advertse INTx interrupts, pre-enable a single
1713 * MSIX vec for setup. We'll adjust this later.
1714 */
1715 if (!pdev->irq) {
1716 result = pci_enable_msix(pdev, dev->entry, 1);
1717 if (result < 0)
1718 goto disable;
1719 }
1720
1721 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1722
1723 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1724 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1725 dev->dbs = dev->bar + 4096;
1726
1727 /*
1728 * Temporary fix for the Apple controller found in the MacBook8,1 and
1729 * some MacBook7,1 to avoid controller resets and data loss.
1730 */
1731 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1732 dev->q_depth = 2;
1733 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1734 "queue depth=%u to work around controller resets\n",
1735 dev->q_depth);
1736 }
1737
1738 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1739 dev->cmb = nvme_map_cmb(dev);
1740
1741 pci_enable_pcie_error_reporting(pdev);
1742 pci_save_state(pdev);
1743 return 0;
1744
1745 disable:
1746 pci_disable_device(pdev);
1747 return result;
1748 }
1749
1750 static void nvme_dev_unmap(struct nvme_dev *dev)
1751 {
1752 if (dev->bar)
1753 iounmap(dev->bar);
1754 pci_release_regions(to_pci_dev(dev->dev));
1755 }
1756
1757 static void nvme_pci_disable(struct nvme_dev *dev)
1758 {
1759 struct pci_dev *pdev = to_pci_dev(dev->dev);
1760
1761 if (pdev->msi_enabled)
1762 pci_disable_msi(pdev);
1763 else if (pdev->msix_enabled)
1764 pci_disable_msix(pdev);
1765
1766 if (pci_is_enabled(pdev)) {
1767 pci_disable_pcie_error_reporting(pdev);
1768 pci_disable_device(pdev);
1769 }
1770 }
1771
1772 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1773 {
1774 int i;
1775 u32 csts = -1;
1776
1777 del_timer_sync(&dev->watchdog_timer);
1778
1779 mutex_lock(&dev->shutdown_lock);
1780 if (pci_is_enabled(to_pci_dev(dev->dev))) {
1781 nvme_stop_queues(&dev->ctrl);
1782 csts = readl(dev->bar + NVME_REG_CSTS);
1783 }
1784 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1785 for (i = dev->queue_count - 1; i >= 0; i--) {
1786 struct nvme_queue *nvmeq = dev->queues[i];
1787 nvme_suspend_queue(nvmeq);
1788 }
1789 } else {
1790 nvme_disable_io_queues(dev);
1791 nvme_disable_admin_queue(dev, shutdown);
1792 }
1793 nvme_pci_disable(dev);
1794
1795 for (i = dev->queue_count - 1; i >= 0; i--)
1796 nvme_clear_queue(dev->queues[i]);
1797 mutex_unlock(&dev->shutdown_lock);
1798 }
1799
1800 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1801 {
1802 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1803 PAGE_SIZE, PAGE_SIZE, 0);
1804 if (!dev->prp_page_pool)
1805 return -ENOMEM;
1806
1807 /* Optimisation for I/Os between 4k and 128k */
1808 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1809 256, 256, 0);
1810 if (!dev->prp_small_pool) {
1811 dma_pool_destroy(dev->prp_page_pool);
1812 return -ENOMEM;
1813 }
1814 return 0;
1815 }
1816
1817 static void nvme_release_prp_pools(struct nvme_dev *dev)
1818 {
1819 dma_pool_destroy(dev->prp_page_pool);
1820 dma_pool_destroy(dev->prp_small_pool);
1821 }
1822
1823 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1824 {
1825 struct nvme_dev *dev = to_nvme_dev(ctrl);
1826
1827 put_device(dev->dev);
1828 if (dev->tagset.tags)
1829 blk_mq_free_tag_set(&dev->tagset);
1830 if (dev->ctrl.admin_q)
1831 blk_put_queue(dev->ctrl.admin_q);
1832 kfree(dev->queues);
1833 kfree(dev->entry);
1834 kfree(dev);
1835 }
1836
1837 static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1838 {
1839 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
1840
1841 kref_get(&dev->ctrl.kref);
1842 nvme_dev_disable(dev, false);
1843 if (!schedule_work(&dev->remove_work))
1844 nvme_put_ctrl(&dev->ctrl);
1845 }
1846
1847 static void nvme_reset_work(struct work_struct *work)
1848 {
1849 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1850 int result = -ENODEV;
1851
1852 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1853 goto out;
1854
1855 /*
1856 * If we're called to reset a live controller first shut it down before
1857 * moving on.
1858 */
1859 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
1860 nvme_dev_disable(dev, false);
1861
1862 set_bit(NVME_CTRL_RESETTING, &dev->flags);
1863
1864 result = nvme_pci_enable(dev);
1865 if (result)
1866 goto out;
1867
1868 result = nvme_configure_admin_queue(dev);
1869 if (result)
1870 goto out;
1871
1872 nvme_init_queue(dev->queues[0], 0);
1873 result = nvme_alloc_admin_tags(dev);
1874 if (result)
1875 goto out;
1876
1877 result = nvme_init_identify(&dev->ctrl);
1878 if (result)
1879 goto out;
1880
1881 result = nvme_setup_io_queues(dev);
1882 if (result)
1883 goto out;
1884
1885 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1886 queue_work(nvme_workq, &dev->async_work);
1887
1888 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1889
1890 /*
1891 * Keep the controller around but remove all namespaces if we don't have
1892 * any working I/O queue.
1893 */
1894 if (dev->online_queues < 2) {
1895 dev_warn(dev->ctrl.device, "IO queues not created\n");
1896 nvme_remove_namespaces(&dev->ctrl);
1897 } else {
1898 nvme_start_queues(&dev->ctrl);
1899 nvme_dev_add(dev);
1900 }
1901
1902 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1903 return;
1904
1905 out:
1906 nvme_remove_dead_ctrl(dev, result);
1907 }
1908
1909 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1910 {
1911 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1912 struct pci_dev *pdev = to_pci_dev(dev->dev);
1913
1914 nvme_kill_queues(&dev->ctrl);
1915 if (pci_get_drvdata(pdev))
1916 pci_stop_and_remove_bus_device_locked(pdev);
1917 nvme_put_ctrl(&dev->ctrl);
1918 }
1919
1920 static int nvme_reset(struct nvme_dev *dev)
1921 {
1922 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1923 return -ENODEV;
1924
1925 if (!queue_work(nvme_workq, &dev->reset_work))
1926 return -EBUSY;
1927
1928 flush_work(&dev->reset_work);
1929 return 0;
1930 }
1931
1932 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1933 {
1934 *val = readl(to_nvme_dev(ctrl)->bar + off);
1935 return 0;
1936 }
1937
1938 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1939 {
1940 writel(val, to_nvme_dev(ctrl)->bar + off);
1941 return 0;
1942 }
1943
1944 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1945 {
1946 *val = readq(to_nvme_dev(ctrl)->bar + off);
1947 return 0;
1948 }
1949
1950 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
1951 {
1952 struct nvme_dev *dev = to_nvme_dev(ctrl);
1953
1954 return !dev->bar || dev->online_queues < 2;
1955 }
1956
1957 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1958 {
1959 return nvme_reset(to_nvme_dev(ctrl));
1960 }
1961
1962 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1963 .module = THIS_MODULE,
1964 .reg_read32 = nvme_pci_reg_read32,
1965 .reg_write32 = nvme_pci_reg_write32,
1966 .reg_read64 = nvme_pci_reg_read64,
1967 .io_incapable = nvme_pci_io_incapable,
1968 .reset_ctrl = nvme_pci_reset_ctrl,
1969 .free_ctrl = nvme_pci_free_ctrl,
1970 };
1971
1972 static int nvme_dev_map(struct nvme_dev *dev)
1973 {
1974 int bars;
1975 struct pci_dev *pdev = to_pci_dev(dev->dev);
1976
1977 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1978 if (!bars)
1979 return -ENODEV;
1980 if (pci_request_selected_regions(pdev, bars, "nvme"))
1981 return -ENODEV;
1982
1983 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1984 if (!dev->bar)
1985 goto release;
1986
1987 return 0;
1988 release:
1989 pci_release_regions(pdev);
1990 return -ENODEV;
1991 }
1992
1993 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1994 {
1995 int node, result = -ENOMEM;
1996 struct nvme_dev *dev;
1997
1998 node = dev_to_node(&pdev->dev);
1999 if (node == NUMA_NO_NODE)
2000 set_dev_node(&pdev->dev, 0);
2001
2002 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2003 if (!dev)
2004 return -ENOMEM;
2005 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2006 GFP_KERNEL, node);
2007 if (!dev->entry)
2008 goto free;
2009 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2010 GFP_KERNEL, node);
2011 if (!dev->queues)
2012 goto free;
2013
2014 dev->dev = get_device(&pdev->dev);
2015 pci_set_drvdata(pdev, dev);
2016
2017 result = nvme_dev_map(dev);
2018 if (result)
2019 goto free;
2020
2021 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2022 INIT_WORK(&dev->reset_work, nvme_reset_work);
2023 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2024 INIT_WORK(&dev->async_work, nvme_async_event_work);
2025 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2026 (unsigned long)dev);
2027 mutex_init(&dev->shutdown_lock);
2028 init_completion(&dev->ioq_wait);
2029
2030 result = nvme_setup_prp_pools(dev);
2031 if (result)
2032 goto put_pci;
2033
2034 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2035 id->driver_data);
2036 if (result)
2037 goto release_pools;
2038
2039 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2040
2041 queue_work(nvme_workq, &dev->reset_work);
2042 return 0;
2043
2044 release_pools:
2045 nvme_release_prp_pools(dev);
2046 put_pci:
2047 put_device(dev->dev);
2048 nvme_dev_unmap(dev);
2049 free:
2050 kfree(dev->queues);
2051 kfree(dev->entry);
2052 kfree(dev);
2053 return result;
2054 }
2055
2056 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2057 {
2058 struct nvme_dev *dev = pci_get_drvdata(pdev);
2059
2060 if (prepare)
2061 nvme_dev_disable(dev, false);
2062 else
2063 queue_work(nvme_workq, &dev->reset_work);
2064 }
2065
2066 static void nvme_shutdown(struct pci_dev *pdev)
2067 {
2068 struct nvme_dev *dev = pci_get_drvdata(pdev);
2069 nvme_dev_disable(dev, true);
2070 }
2071
2072 /*
2073 * The driver's remove may be called on a device in a partially initialized
2074 * state. This function must not have any dependencies on the device state in
2075 * order to proceed.
2076 */
2077 static void nvme_remove(struct pci_dev *pdev)
2078 {
2079 struct nvme_dev *dev = pci_get_drvdata(pdev);
2080
2081 del_timer_sync(&dev->watchdog_timer);
2082
2083 set_bit(NVME_CTRL_REMOVING, &dev->flags);
2084 pci_set_drvdata(pdev, NULL);
2085 flush_work(&dev->async_work);
2086 flush_work(&dev->scan_work);
2087 nvme_remove_namespaces(&dev->ctrl);
2088 nvme_uninit_ctrl(&dev->ctrl);
2089 nvme_dev_disable(dev, true);
2090 flush_work(&dev->reset_work);
2091 nvme_dev_remove_admin(dev);
2092 nvme_free_queues(dev, 0);
2093 nvme_release_cmb(dev);
2094 nvme_release_prp_pools(dev);
2095 nvme_dev_unmap(dev);
2096 nvme_put_ctrl(&dev->ctrl);
2097 }
2098
2099 #ifdef CONFIG_PM_SLEEP
2100 static int nvme_suspend(struct device *dev)
2101 {
2102 struct pci_dev *pdev = to_pci_dev(dev);
2103 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2104
2105 nvme_dev_disable(ndev, true);
2106 return 0;
2107 }
2108
2109 static int nvme_resume(struct device *dev)
2110 {
2111 struct pci_dev *pdev = to_pci_dev(dev);
2112 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2113
2114 queue_work(nvme_workq, &ndev->reset_work);
2115 return 0;
2116 }
2117 #endif
2118
2119 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2120
2121 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2122 pci_channel_state_t state)
2123 {
2124 struct nvme_dev *dev = pci_get_drvdata(pdev);
2125
2126 /*
2127 * A frozen channel requires a reset. When detected, this method will
2128 * shutdown the controller to quiesce. The controller will be restarted
2129 * after the slot reset through driver's slot_reset callback.
2130 */
2131 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2132 switch (state) {
2133 case pci_channel_io_normal:
2134 return PCI_ERS_RESULT_CAN_RECOVER;
2135 case pci_channel_io_frozen:
2136 nvme_dev_disable(dev, false);
2137 return PCI_ERS_RESULT_NEED_RESET;
2138 case pci_channel_io_perm_failure:
2139 return PCI_ERS_RESULT_DISCONNECT;
2140 }
2141 return PCI_ERS_RESULT_NEED_RESET;
2142 }
2143
2144 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2145 {
2146 struct nvme_dev *dev = pci_get_drvdata(pdev);
2147
2148 dev_info(dev->ctrl.device, "restart after slot reset\n");
2149 pci_restore_state(pdev);
2150 queue_work(nvme_workq, &dev->reset_work);
2151 return PCI_ERS_RESULT_RECOVERED;
2152 }
2153
2154 static void nvme_error_resume(struct pci_dev *pdev)
2155 {
2156 pci_cleanup_aer_uncorrect_error_status(pdev);
2157 }
2158
2159 static const struct pci_error_handlers nvme_err_handler = {
2160 .error_detected = nvme_error_detected,
2161 .slot_reset = nvme_slot_reset,
2162 .resume = nvme_error_resume,
2163 .reset_notify = nvme_reset_notify,
2164 };
2165
2166 /* Move to pci_ids.h later */
2167 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2168
2169 static const struct pci_device_id nvme_id_table[] = {
2170 { PCI_VDEVICE(INTEL, 0x0953),
2171 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2172 NVME_QUIRK_DISCARD_ZEROES, },
2173 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2174 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2175 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2176 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2177 { 0, }
2178 };
2179 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2180
2181 static struct pci_driver nvme_driver = {
2182 .name = "nvme",
2183 .id_table = nvme_id_table,
2184 .probe = nvme_probe,
2185 .remove = nvme_remove,
2186 .shutdown = nvme_shutdown,
2187 .driver = {
2188 .pm = &nvme_dev_pm_ops,
2189 },
2190 .err_handler = &nvme_err_handler,
2191 };
2192
2193 static int __init nvme_init(void)
2194 {
2195 int result;
2196
2197 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2198 if (!nvme_workq)
2199 return -ENOMEM;
2200
2201 result = pci_register_driver(&nvme_driver);
2202 if (result)
2203 destroy_workqueue(nvme_workq);
2204 return result;
2205 }
2206
2207 static void __exit nvme_exit(void)
2208 {
2209 pci_unregister_driver(&nvme_driver);
2210 destroy_workqueue(nvme_workq);
2211 _nvme_check_size();
2212 }
2213
2214 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2215 MODULE_LICENSE("GPL");
2216 MODULE_VERSION("1.0");
2217 module_init(nvme_init);
2218 module_exit(nvme_exit);
This page took 0.079401 seconds and 5 git commands to generate.