nvme: replace the kthread with a per-device watchdog timer
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/aer.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/timer.h>
42 #include <linux/types.h>
43 #include <linux/io-64-nonatomic-lo-hi.h>
44 #include <asm/unaligned.h>
45
46 #include "nvme.h"
47
48 #define NVME_Q_DEPTH 1024
49 #define NVME_AQ_DEPTH 256
50 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
52
53 /*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57 #define NVME_NR_AEN_COMMANDS 1
58 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
59
60 static int use_threaded_interrupts;
61 module_param(use_threaded_interrupts, int, 0);
62
63 static bool use_cmb_sqes = true;
64 module_param(use_cmb_sqes, bool, 0644);
65 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
67 static struct workqueue_struct *nvme_workq;
68
69 struct nvme_dev;
70 struct nvme_queue;
71
72 static int nvme_reset(struct nvme_dev *dev);
73 static void nvme_process_cq(struct nvme_queue *nvmeq);
74 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
75 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
76
77 /*
78 * Represents an NVM Express device. Each nvme_dev is a PCI function.
79 */
80 struct nvme_dev {
81 struct nvme_queue **queues;
82 struct blk_mq_tag_set tagset;
83 struct blk_mq_tag_set admin_tagset;
84 u32 __iomem *dbs;
85 struct device *dev;
86 struct dma_pool *prp_page_pool;
87 struct dma_pool *prp_small_pool;
88 unsigned queue_count;
89 unsigned online_queues;
90 unsigned max_qid;
91 int q_depth;
92 u32 db_stride;
93 struct msix_entry *entry;
94 void __iomem *bar;
95 struct work_struct reset_work;
96 struct work_struct scan_work;
97 struct work_struct remove_work;
98 struct work_struct async_work;
99 struct timer_list watchdog_timer;
100 struct mutex shutdown_lock;
101 bool subsystem;
102 void __iomem *cmb;
103 dma_addr_t cmb_dma_addr;
104 u64 cmb_size;
105 u32 cmbsz;
106 unsigned long flags;
107
108 #define NVME_CTRL_RESETTING 0
109
110 struct nvme_ctrl ctrl;
111 struct completion ioq_wait;
112 };
113
114 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115 {
116 return container_of(ctrl, struct nvme_dev, ctrl);
117 }
118
119 /*
120 * An NVM Express queue. Each device has at least two (one for admin
121 * commands and one for I/O commands).
122 */
123 struct nvme_queue {
124 struct device *q_dmadev;
125 struct nvme_dev *dev;
126 char irqname[24]; /* nvme4294967295-65535\0 */
127 spinlock_t q_lock;
128 struct nvme_command *sq_cmds;
129 struct nvme_command __iomem *sq_cmds_io;
130 volatile struct nvme_completion *cqes;
131 struct blk_mq_tags **tags;
132 dma_addr_t sq_dma_addr;
133 dma_addr_t cq_dma_addr;
134 u32 __iomem *q_db;
135 u16 q_depth;
136 s16 cq_vector;
137 u16 sq_head;
138 u16 sq_tail;
139 u16 cq_head;
140 u16 qid;
141 u8 cq_phase;
142 u8 cqe_seen;
143 };
144
145 /*
146 * The nvme_iod describes the data in an I/O, including the list of PRP
147 * entries. You can't see it in this data structure because C doesn't let
148 * me express that. Use nvme_init_iod to ensure there's enough space
149 * allocated to store the PRP list.
150 */
151 struct nvme_iod {
152 struct nvme_queue *nvmeq;
153 int aborted;
154 int npages; /* In the PRP list. 0 means small pool in use */
155 int nents; /* Used in scatterlist */
156 int length; /* Of data, in bytes */
157 dma_addr_t first_dma;
158 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
159 struct scatterlist *sg;
160 struct scatterlist inline_sg[0];
161 };
162
163 /*
164 * Check we didin't inadvertently grow the command struct
165 */
166 static inline void _nvme_check_size(void)
167 {
168 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
172 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
173 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
174 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
176 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
177 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
178 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
179 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
180 }
181
182 /*
183 * Max size of iod being embedded in the request payload
184 */
185 #define NVME_INT_PAGES 2
186 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
187
188 /*
189 * Will slightly overestimate the number of pages needed. This is OK
190 * as it only leads to a small amount of wasted memory for the lifetime of
191 * the I/O.
192 */
193 static int nvme_npages(unsigned size, struct nvme_dev *dev)
194 {
195 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
196 dev->ctrl.page_size);
197 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
198 }
199
200 static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
201 unsigned int size, unsigned int nseg)
202 {
203 return sizeof(__le64 *) * nvme_npages(size, dev) +
204 sizeof(struct scatterlist) * nseg;
205 }
206
207 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
208 {
209 return sizeof(struct nvme_iod) +
210 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
211 }
212
213 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
214 unsigned int hctx_idx)
215 {
216 struct nvme_dev *dev = data;
217 struct nvme_queue *nvmeq = dev->queues[0];
218
219 WARN_ON(hctx_idx != 0);
220 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
221 WARN_ON(nvmeq->tags);
222
223 hctx->driver_data = nvmeq;
224 nvmeq->tags = &dev->admin_tagset.tags[0];
225 return 0;
226 }
227
228 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
229 {
230 struct nvme_queue *nvmeq = hctx->driver_data;
231
232 nvmeq->tags = NULL;
233 }
234
235 static int nvme_admin_init_request(void *data, struct request *req,
236 unsigned int hctx_idx, unsigned int rq_idx,
237 unsigned int numa_node)
238 {
239 struct nvme_dev *dev = data;
240 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
241 struct nvme_queue *nvmeq = dev->queues[0];
242
243 BUG_ON(!nvmeq);
244 iod->nvmeq = nvmeq;
245 return 0;
246 }
247
248 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
249 unsigned int hctx_idx)
250 {
251 struct nvme_dev *dev = data;
252 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
253
254 if (!nvmeq->tags)
255 nvmeq->tags = &dev->tagset.tags[hctx_idx];
256
257 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
258 hctx->driver_data = nvmeq;
259 return 0;
260 }
261
262 static int nvme_init_request(void *data, struct request *req,
263 unsigned int hctx_idx, unsigned int rq_idx,
264 unsigned int numa_node)
265 {
266 struct nvme_dev *dev = data;
267 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
268 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
269
270 BUG_ON(!nvmeq);
271 iod->nvmeq = nvmeq;
272 return 0;
273 }
274
275 static void nvme_complete_async_event(struct nvme_dev *dev,
276 struct nvme_completion *cqe)
277 {
278 u16 status = le16_to_cpu(cqe->status) >> 1;
279 u32 result = le32_to_cpu(cqe->result);
280
281 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
282 ++dev->ctrl.event_limit;
283 queue_work(nvme_workq, &dev->async_work);
284 }
285
286 if (status != NVME_SC_SUCCESS)
287 return;
288
289 switch (result & 0xff07) {
290 case NVME_AER_NOTICE_NS_CHANGED:
291 dev_info(dev->ctrl.device, "rescanning\n");
292 queue_work(nvme_workq, &dev->scan_work);
293 default:
294 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
295 }
296 }
297
298 /**
299 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
300 * @nvmeq: The queue to use
301 * @cmd: The command to send
302 *
303 * Safe to use from interrupt context
304 */
305 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
306 struct nvme_command *cmd)
307 {
308 u16 tail = nvmeq->sq_tail;
309
310 if (nvmeq->sq_cmds_io)
311 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
312 else
313 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
314
315 if (++tail == nvmeq->q_depth)
316 tail = 0;
317 writel(tail, nvmeq->q_db);
318 nvmeq->sq_tail = tail;
319 }
320
321 static __le64 **iod_list(struct request *req)
322 {
323 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
324 return (__le64 **)(iod->sg + req->nr_phys_segments);
325 }
326
327 static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
328 {
329 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
330 int nseg = rq->nr_phys_segments;
331 unsigned size;
332
333 if (rq->cmd_flags & REQ_DISCARD)
334 size = sizeof(struct nvme_dsm_range);
335 else
336 size = blk_rq_bytes(rq);
337
338 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
339 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
340 if (!iod->sg)
341 return BLK_MQ_RQ_QUEUE_BUSY;
342 } else {
343 iod->sg = iod->inline_sg;
344 }
345
346 iod->aborted = 0;
347 iod->npages = -1;
348 iod->nents = 0;
349 iod->length = size;
350 return 0;
351 }
352
353 static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
354 {
355 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
356 const int last_prp = dev->ctrl.page_size / 8 - 1;
357 int i;
358 __le64 **list = iod_list(req);
359 dma_addr_t prp_dma = iod->first_dma;
360
361 if (iod->npages == 0)
362 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
363 for (i = 0; i < iod->npages; i++) {
364 __le64 *prp_list = list[i];
365 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
366 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
367 prp_dma = next_prp_dma;
368 }
369
370 if (iod->sg != iod->inline_sg)
371 kfree(iod->sg);
372 }
373
374 #ifdef CONFIG_BLK_DEV_INTEGRITY
375 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
376 {
377 if (be32_to_cpu(pi->ref_tag) == v)
378 pi->ref_tag = cpu_to_be32(p);
379 }
380
381 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
382 {
383 if (be32_to_cpu(pi->ref_tag) == p)
384 pi->ref_tag = cpu_to_be32(v);
385 }
386
387 /**
388 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
389 *
390 * The virtual start sector is the one that was originally submitted by the
391 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
392 * start sector may be different. Remap protection information to match the
393 * physical LBA on writes, and back to the original seed on reads.
394 *
395 * Type 0 and 3 do not have a ref tag, so no remapping required.
396 */
397 static void nvme_dif_remap(struct request *req,
398 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
399 {
400 struct nvme_ns *ns = req->rq_disk->private_data;
401 struct bio_integrity_payload *bip;
402 struct t10_pi_tuple *pi;
403 void *p, *pmap;
404 u32 i, nlb, ts, phys, virt;
405
406 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
407 return;
408
409 bip = bio_integrity(req->bio);
410 if (!bip)
411 return;
412
413 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
414
415 p = pmap;
416 virt = bip_get_seed(bip);
417 phys = nvme_block_nr(ns, blk_rq_pos(req));
418 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
419 ts = ns->disk->queue->integrity.tuple_size;
420
421 for (i = 0; i < nlb; i++, virt++, phys++) {
422 pi = (struct t10_pi_tuple *)p;
423 dif_swap(phys, virt, pi);
424 p += ts;
425 }
426 kunmap_atomic(pmap);
427 }
428 #else /* CONFIG_BLK_DEV_INTEGRITY */
429 static void nvme_dif_remap(struct request *req,
430 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
431 {
432 }
433 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
434 {
435 }
436 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
437 {
438 }
439 #endif
440
441 static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
442 int total_len)
443 {
444 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
445 struct dma_pool *pool;
446 int length = total_len;
447 struct scatterlist *sg = iod->sg;
448 int dma_len = sg_dma_len(sg);
449 u64 dma_addr = sg_dma_address(sg);
450 u32 page_size = dev->ctrl.page_size;
451 int offset = dma_addr & (page_size - 1);
452 __le64 *prp_list;
453 __le64 **list = iod_list(req);
454 dma_addr_t prp_dma;
455 int nprps, i;
456
457 length -= (page_size - offset);
458 if (length <= 0)
459 return true;
460
461 dma_len -= (page_size - offset);
462 if (dma_len) {
463 dma_addr += (page_size - offset);
464 } else {
465 sg = sg_next(sg);
466 dma_addr = sg_dma_address(sg);
467 dma_len = sg_dma_len(sg);
468 }
469
470 if (length <= page_size) {
471 iod->first_dma = dma_addr;
472 return true;
473 }
474
475 nprps = DIV_ROUND_UP(length, page_size);
476 if (nprps <= (256 / 8)) {
477 pool = dev->prp_small_pool;
478 iod->npages = 0;
479 } else {
480 pool = dev->prp_page_pool;
481 iod->npages = 1;
482 }
483
484 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
485 if (!prp_list) {
486 iod->first_dma = dma_addr;
487 iod->npages = -1;
488 return false;
489 }
490 list[0] = prp_list;
491 iod->first_dma = prp_dma;
492 i = 0;
493 for (;;) {
494 if (i == page_size >> 3) {
495 __le64 *old_prp_list = prp_list;
496 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
497 if (!prp_list)
498 return false;
499 list[iod->npages++] = prp_list;
500 prp_list[0] = old_prp_list[i - 1];
501 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
502 i = 1;
503 }
504 prp_list[i++] = cpu_to_le64(dma_addr);
505 dma_len -= page_size;
506 dma_addr += page_size;
507 length -= page_size;
508 if (length <= 0)
509 break;
510 if (dma_len > 0)
511 continue;
512 BUG_ON(dma_len < 0);
513 sg = sg_next(sg);
514 dma_addr = sg_dma_address(sg);
515 dma_len = sg_dma_len(sg);
516 }
517
518 return true;
519 }
520
521 static int nvme_map_data(struct nvme_dev *dev, struct request *req,
522 struct nvme_command *cmnd)
523 {
524 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
525 struct request_queue *q = req->q;
526 enum dma_data_direction dma_dir = rq_data_dir(req) ?
527 DMA_TO_DEVICE : DMA_FROM_DEVICE;
528 int ret = BLK_MQ_RQ_QUEUE_ERROR;
529
530 sg_init_table(iod->sg, req->nr_phys_segments);
531 iod->nents = blk_rq_map_sg(q, req, iod->sg);
532 if (!iod->nents)
533 goto out;
534
535 ret = BLK_MQ_RQ_QUEUE_BUSY;
536 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
537 goto out;
538
539 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
540 goto out_unmap;
541
542 ret = BLK_MQ_RQ_QUEUE_ERROR;
543 if (blk_integrity_rq(req)) {
544 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
545 goto out_unmap;
546
547 sg_init_table(&iod->meta_sg, 1);
548 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
549 goto out_unmap;
550
551 if (rq_data_dir(req))
552 nvme_dif_remap(req, nvme_dif_prep);
553
554 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
555 goto out_unmap;
556 }
557
558 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
559 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
560 if (blk_integrity_rq(req))
561 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
562 return BLK_MQ_RQ_QUEUE_OK;
563
564 out_unmap:
565 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
566 out:
567 return ret;
568 }
569
570 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
571 {
572 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
573 enum dma_data_direction dma_dir = rq_data_dir(req) ?
574 DMA_TO_DEVICE : DMA_FROM_DEVICE;
575
576 if (iod->nents) {
577 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
578 if (blk_integrity_rq(req)) {
579 if (!rq_data_dir(req))
580 nvme_dif_remap(req, nvme_dif_complete);
581 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
582 }
583 }
584
585 nvme_free_iod(dev, req);
586 }
587
588 /*
589 * We reuse the small pool to allocate the 16-byte range here as it is not
590 * worth having a special pool for these or additional cases to handle freeing
591 * the iod.
592 */
593 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
594 struct request *req, struct nvme_command *cmnd)
595 {
596 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
597 struct nvme_dsm_range *range;
598
599 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
600 &iod->first_dma);
601 if (!range)
602 return BLK_MQ_RQ_QUEUE_BUSY;
603 iod_list(req)[0] = (__le64 *)range;
604 iod->npages = 0;
605
606 range->cattr = cpu_to_le32(0);
607 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
608 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
609
610 memset(cmnd, 0, sizeof(*cmnd));
611 cmnd->dsm.opcode = nvme_cmd_dsm;
612 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
613 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
614 cmnd->dsm.nr = 0;
615 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
616 return BLK_MQ_RQ_QUEUE_OK;
617 }
618
619 /*
620 * NOTE: ns is NULL when called on the admin queue.
621 */
622 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
623 const struct blk_mq_queue_data *bd)
624 {
625 struct nvme_ns *ns = hctx->queue->queuedata;
626 struct nvme_queue *nvmeq = hctx->driver_data;
627 struct nvme_dev *dev = nvmeq->dev;
628 struct request *req = bd->rq;
629 struct nvme_command cmnd;
630 int ret = BLK_MQ_RQ_QUEUE_OK;
631
632 /*
633 * If formated with metadata, require the block layer provide a buffer
634 * unless this namespace is formated such that the metadata can be
635 * stripped/generated by the controller with PRACT=1.
636 */
637 if (ns && ns->ms && !blk_integrity_rq(req)) {
638 if (!(ns->pi_type && ns->ms == 8) &&
639 req->cmd_type != REQ_TYPE_DRV_PRIV) {
640 blk_mq_end_request(req, -EFAULT);
641 return BLK_MQ_RQ_QUEUE_OK;
642 }
643 }
644
645 ret = nvme_init_iod(req, dev);
646 if (ret)
647 return ret;
648
649 if (req->cmd_flags & REQ_DISCARD) {
650 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
651 } else {
652 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
653 memcpy(&cmnd, req->cmd, sizeof(cmnd));
654 else if (req->cmd_flags & REQ_FLUSH)
655 nvme_setup_flush(ns, &cmnd);
656 else
657 nvme_setup_rw(ns, req, &cmnd);
658
659 if (req->nr_phys_segments)
660 ret = nvme_map_data(dev, req, &cmnd);
661 }
662
663 if (ret)
664 goto out;
665
666 cmnd.common.command_id = req->tag;
667 blk_mq_start_request(req);
668
669 spin_lock_irq(&nvmeq->q_lock);
670 __nvme_submit_cmd(nvmeq, &cmnd);
671 nvme_process_cq(nvmeq);
672 spin_unlock_irq(&nvmeq->q_lock);
673 return BLK_MQ_RQ_QUEUE_OK;
674 out:
675 nvme_free_iod(dev, req);
676 return ret;
677 }
678
679 static void nvme_complete_rq(struct request *req)
680 {
681 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
682 struct nvme_dev *dev = iod->nvmeq->dev;
683 int error = 0;
684
685 nvme_unmap_data(dev, req);
686
687 if (unlikely(req->errors)) {
688 if (nvme_req_needs_retry(req, req->errors)) {
689 nvme_requeue_req(req);
690 return;
691 }
692
693 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
694 error = req->errors;
695 else
696 error = nvme_error_status(req->errors);
697 }
698
699 if (unlikely(iod->aborted)) {
700 dev_warn(dev->ctrl.device,
701 "completing aborted command with status: %04x\n",
702 req->errors);
703 }
704
705 blk_mq_end_request(req, error);
706 }
707
708 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
709 {
710 u16 head, phase;
711
712 head = nvmeq->cq_head;
713 phase = nvmeq->cq_phase;
714
715 for (;;) {
716 struct nvme_completion cqe = nvmeq->cqes[head];
717 u16 status = le16_to_cpu(cqe.status);
718 struct request *req;
719
720 if ((status & 1) != phase)
721 break;
722 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
723 if (++head == nvmeq->q_depth) {
724 head = 0;
725 phase = !phase;
726 }
727
728 if (tag && *tag == cqe.command_id)
729 *tag = -1;
730
731 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
732 dev_warn(nvmeq->dev->ctrl.device,
733 "invalid id %d completed on queue %d\n",
734 cqe.command_id, le16_to_cpu(cqe.sq_id));
735 continue;
736 }
737
738 /*
739 * AEN requests are special as they don't time out and can
740 * survive any kind of queue freeze and often don't respond to
741 * aborts. We don't even bother to allocate a struct request
742 * for them but rather special case them here.
743 */
744 if (unlikely(nvmeq->qid == 0 &&
745 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
746 nvme_complete_async_event(nvmeq->dev, &cqe);
747 continue;
748 }
749
750 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
751 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
752 u32 result = le32_to_cpu(cqe.result);
753 req->special = (void *)(uintptr_t)result;
754 }
755 blk_mq_complete_request(req, status >> 1);
756
757 }
758
759 /* If the controller ignores the cq head doorbell and continuously
760 * writes to the queue, it is theoretically possible to wrap around
761 * the queue twice and mistakenly return IRQ_NONE. Linux only
762 * requires that 0.1% of your interrupts are handled, so this isn't
763 * a big problem.
764 */
765 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
766 return;
767
768 if (likely(nvmeq->cq_vector >= 0))
769 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
770 nvmeq->cq_head = head;
771 nvmeq->cq_phase = phase;
772
773 nvmeq->cqe_seen = 1;
774 }
775
776 static void nvme_process_cq(struct nvme_queue *nvmeq)
777 {
778 __nvme_process_cq(nvmeq, NULL);
779 }
780
781 static irqreturn_t nvme_irq(int irq, void *data)
782 {
783 irqreturn_t result;
784 struct nvme_queue *nvmeq = data;
785 spin_lock(&nvmeq->q_lock);
786 nvme_process_cq(nvmeq);
787 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
788 nvmeq->cqe_seen = 0;
789 spin_unlock(&nvmeq->q_lock);
790 return result;
791 }
792
793 static irqreturn_t nvme_irq_check(int irq, void *data)
794 {
795 struct nvme_queue *nvmeq = data;
796 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
797 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
798 return IRQ_NONE;
799 return IRQ_WAKE_THREAD;
800 }
801
802 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
803 {
804 struct nvme_queue *nvmeq = hctx->driver_data;
805
806 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
807 nvmeq->cq_phase) {
808 spin_lock_irq(&nvmeq->q_lock);
809 __nvme_process_cq(nvmeq, &tag);
810 spin_unlock_irq(&nvmeq->q_lock);
811
812 if (tag == -1)
813 return 1;
814 }
815
816 return 0;
817 }
818
819 static void nvme_async_event_work(struct work_struct *work)
820 {
821 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
822 struct nvme_queue *nvmeq = dev->queues[0];
823 struct nvme_command c;
824
825 memset(&c, 0, sizeof(c));
826 c.common.opcode = nvme_admin_async_event;
827
828 spin_lock_irq(&nvmeq->q_lock);
829 while (dev->ctrl.event_limit > 0) {
830 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
831 --dev->ctrl.event_limit;
832 __nvme_submit_cmd(nvmeq, &c);
833 }
834 spin_unlock_irq(&nvmeq->q_lock);
835 }
836
837 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
838 {
839 struct nvme_command c;
840
841 memset(&c, 0, sizeof(c));
842 c.delete_queue.opcode = opcode;
843 c.delete_queue.qid = cpu_to_le16(id);
844
845 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
846 }
847
848 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
849 struct nvme_queue *nvmeq)
850 {
851 struct nvme_command c;
852 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
853
854 /*
855 * Note: we (ab)use the fact the the prp fields survive if no data
856 * is attached to the request.
857 */
858 memset(&c, 0, sizeof(c));
859 c.create_cq.opcode = nvme_admin_create_cq;
860 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
861 c.create_cq.cqid = cpu_to_le16(qid);
862 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
863 c.create_cq.cq_flags = cpu_to_le16(flags);
864 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
865
866 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
867 }
868
869 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
870 struct nvme_queue *nvmeq)
871 {
872 struct nvme_command c;
873 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
874
875 /*
876 * Note: we (ab)use the fact the the prp fields survive if no data
877 * is attached to the request.
878 */
879 memset(&c, 0, sizeof(c));
880 c.create_sq.opcode = nvme_admin_create_sq;
881 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
882 c.create_sq.sqid = cpu_to_le16(qid);
883 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
884 c.create_sq.sq_flags = cpu_to_le16(flags);
885 c.create_sq.cqid = cpu_to_le16(qid);
886
887 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
888 }
889
890 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
891 {
892 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
893 }
894
895 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
896 {
897 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
898 }
899
900 static void abort_endio(struct request *req, int error)
901 {
902 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
903 struct nvme_queue *nvmeq = iod->nvmeq;
904 u32 result = (u32)(uintptr_t)req->special;
905 u16 status = req->errors;
906
907 dev_warn(nvmeq->dev->ctrl.device,
908 "Abort status:%x result:%x", status, result);
909 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
910
911 blk_mq_free_request(req);
912 }
913
914 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
915 {
916 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
917 struct nvme_queue *nvmeq = iod->nvmeq;
918 struct nvme_dev *dev = nvmeq->dev;
919 struct request *abort_req;
920 struct nvme_command cmd;
921
922 /*
923 * Shutdown immediately if controller times out while starting. The
924 * reset work will see the pci device disabled when it gets the forced
925 * cancellation error. All outstanding requests are completed on
926 * shutdown, so we return BLK_EH_HANDLED.
927 */
928 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
929 dev_warn(dev->ctrl.device,
930 "I/O %d QID %d timeout, disable controller\n",
931 req->tag, nvmeq->qid);
932 nvme_dev_disable(dev, false);
933 req->errors = NVME_SC_CANCELLED;
934 return BLK_EH_HANDLED;
935 }
936
937 /*
938 * Shutdown the controller immediately and schedule a reset if the
939 * command was already aborted once before and still hasn't been
940 * returned to the driver, or if this is the admin queue.
941 */
942 if (!nvmeq->qid || iod->aborted) {
943 dev_warn(dev->ctrl.device,
944 "I/O %d QID %d timeout, reset controller\n",
945 req->tag, nvmeq->qid);
946 nvme_dev_disable(dev, false);
947 queue_work(nvme_workq, &dev->reset_work);
948
949 /*
950 * Mark the request as handled, since the inline shutdown
951 * forces all outstanding requests to complete.
952 */
953 req->errors = NVME_SC_CANCELLED;
954 return BLK_EH_HANDLED;
955 }
956
957 iod->aborted = 1;
958
959 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
960 atomic_inc(&dev->ctrl.abort_limit);
961 return BLK_EH_RESET_TIMER;
962 }
963
964 memset(&cmd, 0, sizeof(cmd));
965 cmd.abort.opcode = nvme_admin_abort_cmd;
966 cmd.abort.cid = req->tag;
967 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
968
969 dev_warn(nvmeq->dev->ctrl.device,
970 "I/O %d QID %d timeout, aborting\n",
971 req->tag, nvmeq->qid);
972
973 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
974 BLK_MQ_REQ_NOWAIT);
975 if (IS_ERR(abort_req)) {
976 atomic_inc(&dev->ctrl.abort_limit);
977 return BLK_EH_RESET_TIMER;
978 }
979
980 abort_req->timeout = ADMIN_TIMEOUT;
981 abort_req->end_io_data = NULL;
982 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
983
984 /*
985 * The aborted req will be completed on receiving the abort req.
986 * We enable the timer again. If hit twice, it'll cause a device reset,
987 * as the device then is in a faulty state.
988 */
989 return BLK_EH_RESET_TIMER;
990 }
991
992 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
993 {
994 struct nvme_queue *nvmeq = data;
995 int status;
996
997 if (!blk_mq_request_started(req))
998 return;
999
1000 dev_warn(nvmeq->dev->ctrl.device,
1001 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1002
1003 status = NVME_SC_ABORT_REQ;
1004 if (blk_queue_dying(req->q))
1005 status |= NVME_SC_DNR;
1006 blk_mq_complete_request(req, status);
1007 }
1008
1009 static void nvme_free_queue(struct nvme_queue *nvmeq)
1010 {
1011 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1012 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1013 if (nvmeq->sq_cmds)
1014 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1015 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1016 kfree(nvmeq);
1017 }
1018
1019 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1020 {
1021 int i;
1022
1023 for (i = dev->queue_count - 1; i >= lowest; i--) {
1024 struct nvme_queue *nvmeq = dev->queues[i];
1025 dev->queue_count--;
1026 dev->queues[i] = NULL;
1027 nvme_free_queue(nvmeq);
1028 }
1029 }
1030
1031 /**
1032 * nvme_suspend_queue - put queue into suspended state
1033 * @nvmeq - queue to suspend
1034 */
1035 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1036 {
1037 int vector;
1038
1039 spin_lock_irq(&nvmeq->q_lock);
1040 if (nvmeq->cq_vector == -1) {
1041 spin_unlock_irq(&nvmeq->q_lock);
1042 return 1;
1043 }
1044 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1045 nvmeq->dev->online_queues--;
1046 nvmeq->cq_vector = -1;
1047 spin_unlock_irq(&nvmeq->q_lock);
1048
1049 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1050 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
1051
1052 irq_set_affinity_hint(vector, NULL);
1053 free_irq(vector, nvmeq);
1054
1055 return 0;
1056 }
1057
1058 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1059 {
1060 spin_lock_irq(&nvmeq->q_lock);
1061 if (nvmeq->tags && *nvmeq->tags)
1062 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1063 spin_unlock_irq(&nvmeq->q_lock);
1064 }
1065
1066 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1067 {
1068 struct nvme_queue *nvmeq = dev->queues[0];
1069
1070 if (!nvmeq)
1071 return;
1072 if (nvme_suspend_queue(nvmeq))
1073 return;
1074
1075 if (shutdown)
1076 nvme_shutdown_ctrl(&dev->ctrl);
1077 else
1078 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1079 dev->bar + NVME_REG_CAP));
1080
1081 spin_lock_irq(&nvmeq->q_lock);
1082 nvme_process_cq(nvmeq);
1083 spin_unlock_irq(&nvmeq->q_lock);
1084 }
1085
1086 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1087 int entry_size)
1088 {
1089 int q_depth = dev->q_depth;
1090 unsigned q_size_aligned = roundup(q_depth * entry_size,
1091 dev->ctrl.page_size);
1092
1093 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1094 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1095 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1096 q_depth = div_u64(mem_per_q, entry_size);
1097
1098 /*
1099 * Ensure the reduced q_depth is above some threshold where it
1100 * would be better to map queues in system memory with the
1101 * original depth
1102 */
1103 if (q_depth < 64)
1104 return -ENOMEM;
1105 }
1106
1107 return q_depth;
1108 }
1109
1110 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1111 int qid, int depth)
1112 {
1113 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1114 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1115 dev->ctrl.page_size);
1116 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1117 nvmeq->sq_cmds_io = dev->cmb + offset;
1118 } else {
1119 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1120 &nvmeq->sq_dma_addr, GFP_KERNEL);
1121 if (!nvmeq->sq_cmds)
1122 return -ENOMEM;
1123 }
1124
1125 return 0;
1126 }
1127
1128 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1129 int depth)
1130 {
1131 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1132 if (!nvmeq)
1133 return NULL;
1134
1135 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1136 &nvmeq->cq_dma_addr, GFP_KERNEL);
1137 if (!nvmeq->cqes)
1138 goto free_nvmeq;
1139
1140 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1141 goto free_cqdma;
1142
1143 nvmeq->q_dmadev = dev->dev;
1144 nvmeq->dev = dev;
1145 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1146 dev->ctrl.instance, qid);
1147 spin_lock_init(&nvmeq->q_lock);
1148 nvmeq->cq_head = 0;
1149 nvmeq->cq_phase = 1;
1150 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1151 nvmeq->q_depth = depth;
1152 nvmeq->qid = qid;
1153 nvmeq->cq_vector = -1;
1154 dev->queues[qid] = nvmeq;
1155 dev->queue_count++;
1156
1157 return nvmeq;
1158
1159 free_cqdma:
1160 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1161 nvmeq->cq_dma_addr);
1162 free_nvmeq:
1163 kfree(nvmeq);
1164 return NULL;
1165 }
1166
1167 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1168 const char *name)
1169 {
1170 if (use_threaded_interrupts)
1171 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1172 nvme_irq_check, nvme_irq, IRQF_SHARED,
1173 name, nvmeq);
1174 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1175 IRQF_SHARED, name, nvmeq);
1176 }
1177
1178 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1179 {
1180 struct nvme_dev *dev = nvmeq->dev;
1181
1182 spin_lock_irq(&nvmeq->q_lock);
1183 nvmeq->sq_tail = 0;
1184 nvmeq->cq_head = 0;
1185 nvmeq->cq_phase = 1;
1186 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1187 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1188 dev->online_queues++;
1189 spin_unlock_irq(&nvmeq->q_lock);
1190 }
1191
1192 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1193 {
1194 struct nvme_dev *dev = nvmeq->dev;
1195 int result;
1196
1197 nvmeq->cq_vector = qid - 1;
1198 result = adapter_alloc_cq(dev, qid, nvmeq);
1199 if (result < 0)
1200 return result;
1201
1202 result = adapter_alloc_sq(dev, qid, nvmeq);
1203 if (result < 0)
1204 goto release_cq;
1205
1206 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1207 if (result < 0)
1208 goto release_sq;
1209
1210 nvme_init_queue(nvmeq, qid);
1211 return result;
1212
1213 release_sq:
1214 adapter_delete_sq(dev, qid);
1215 release_cq:
1216 adapter_delete_cq(dev, qid);
1217 return result;
1218 }
1219
1220 static struct blk_mq_ops nvme_mq_admin_ops = {
1221 .queue_rq = nvme_queue_rq,
1222 .complete = nvme_complete_rq,
1223 .map_queue = blk_mq_map_queue,
1224 .init_hctx = nvme_admin_init_hctx,
1225 .exit_hctx = nvme_admin_exit_hctx,
1226 .init_request = nvme_admin_init_request,
1227 .timeout = nvme_timeout,
1228 };
1229
1230 static struct blk_mq_ops nvme_mq_ops = {
1231 .queue_rq = nvme_queue_rq,
1232 .complete = nvme_complete_rq,
1233 .map_queue = blk_mq_map_queue,
1234 .init_hctx = nvme_init_hctx,
1235 .init_request = nvme_init_request,
1236 .timeout = nvme_timeout,
1237 .poll = nvme_poll,
1238 };
1239
1240 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1241 {
1242 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1243 blk_cleanup_queue(dev->ctrl.admin_q);
1244 blk_mq_free_tag_set(&dev->admin_tagset);
1245 }
1246 }
1247
1248 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1249 {
1250 if (!dev->ctrl.admin_q) {
1251 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1252 dev->admin_tagset.nr_hw_queues = 1;
1253
1254 /*
1255 * Subtract one to leave an empty queue entry for 'Full Queue'
1256 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1257 */
1258 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
1259 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1260 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1261 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1262 dev->admin_tagset.driver_data = dev;
1263
1264 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1265 return -ENOMEM;
1266
1267 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1268 if (IS_ERR(dev->ctrl.admin_q)) {
1269 blk_mq_free_tag_set(&dev->admin_tagset);
1270 return -ENOMEM;
1271 }
1272 if (!blk_get_queue(dev->ctrl.admin_q)) {
1273 nvme_dev_remove_admin(dev);
1274 dev->ctrl.admin_q = NULL;
1275 return -ENODEV;
1276 }
1277 } else
1278 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1279
1280 return 0;
1281 }
1282
1283 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1284 {
1285 int result;
1286 u32 aqa;
1287 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1288 struct nvme_queue *nvmeq;
1289
1290 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1291 NVME_CAP_NSSRC(cap) : 0;
1292
1293 if (dev->subsystem &&
1294 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1295 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1296
1297 result = nvme_disable_ctrl(&dev->ctrl, cap);
1298 if (result < 0)
1299 return result;
1300
1301 nvmeq = dev->queues[0];
1302 if (!nvmeq) {
1303 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1304 if (!nvmeq)
1305 return -ENOMEM;
1306 }
1307
1308 aqa = nvmeq->q_depth - 1;
1309 aqa |= aqa << 16;
1310
1311 writel(aqa, dev->bar + NVME_REG_AQA);
1312 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1313 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1314
1315 result = nvme_enable_ctrl(&dev->ctrl, cap);
1316 if (result)
1317 goto free_nvmeq;
1318
1319 nvmeq->cq_vector = 0;
1320 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1321 if (result) {
1322 nvmeq->cq_vector = -1;
1323 goto free_nvmeq;
1324 }
1325
1326 return result;
1327
1328 free_nvmeq:
1329 nvme_free_queues(dev, 0);
1330 return result;
1331 }
1332
1333 static void nvme_watchdog_timer(unsigned long data)
1334 {
1335 struct nvme_dev *dev = (struct nvme_dev *)data;
1336 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1337
1338 /*
1339 * Skip controllers currently under reset.
1340 */
1341 if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1342 ((csts & NVME_CSTS_CFS) ||
1343 (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1344 if (queue_work(nvme_workq, &dev->reset_work)) {
1345 dev_warn(dev->dev,
1346 "Failed status: 0x%x, reset controller.\n",
1347 csts);
1348 }
1349 return;
1350 }
1351
1352 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1353 }
1354
1355 static int nvme_create_io_queues(struct nvme_dev *dev)
1356 {
1357 unsigned i, max;
1358 int ret = 0;
1359
1360 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1361 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1362 ret = -ENOMEM;
1363 break;
1364 }
1365 }
1366
1367 max = min(dev->max_qid, dev->queue_count - 1);
1368 for (i = dev->online_queues; i <= max; i++) {
1369 ret = nvme_create_queue(dev->queues[i], i);
1370 if (ret) {
1371 nvme_free_queues(dev, i);
1372 break;
1373 }
1374 }
1375
1376 /*
1377 * Ignore failing Create SQ/CQ commands, we can continue with less
1378 * than the desired aount of queues, and even a controller without
1379 * I/O queues an still be used to issue admin commands. This might
1380 * be useful to upgrade a buggy firmware for example.
1381 */
1382 return ret >= 0 ? 0 : ret;
1383 }
1384
1385 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1386 {
1387 u64 szu, size, offset;
1388 u32 cmbloc;
1389 resource_size_t bar_size;
1390 struct pci_dev *pdev = to_pci_dev(dev->dev);
1391 void __iomem *cmb;
1392 dma_addr_t dma_addr;
1393
1394 if (!use_cmb_sqes)
1395 return NULL;
1396
1397 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1398 if (!(NVME_CMB_SZ(dev->cmbsz)))
1399 return NULL;
1400
1401 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1402
1403 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1404 size = szu * NVME_CMB_SZ(dev->cmbsz);
1405 offset = szu * NVME_CMB_OFST(cmbloc);
1406 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1407
1408 if (offset > bar_size)
1409 return NULL;
1410
1411 /*
1412 * Controllers may support a CMB size larger than their BAR,
1413 * for example, due to being behind a bridge. Reduce the CMB to
1414 * the reported size of the BAR
1415 */
1416 if (size > bar_size - offset)
1417 size = bar_size - offset;
1418
1419 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1420 cmb = ioremap_wc(dma_addr, size);
1421 if (!cmb)
1422 return NULL;
1423
1424 dev->cmb_dma_addr = dma_addr;
1425 dev->cmb_size = size;
1426 return cmb;
1427 }
1428
1429 static inline void nvme_release_cmb(struct nvme_dev *dev)
1430 {
1431 if (dev->cmb) {
1432 iounmap(dev->cmb);
1433 dev->cmb = NULL;
1434 }
1435 }
1436
1437 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1438 {
1439 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1440 }
1441
1442 static int nvme_setup_io_queues(struct nvme_dev *dev)
1443 {
1444 struct nvme_queue *adminq = dev->queues[0];
1445 struct pci_dev *pdev = to_pci_dev(dev->dev);
1446 int result, i, vecs, nr_io_queues, size;
1447
1448 nr_io_queues = num_possible_cpus();
1449 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1450 if (result < 0)
1451 return result;
1452
1453 /*
1454 * Degraded controllers might return an error when setting the queue
1455 * count. We still want to be able to bring them online and offer
1456 * access to the admin queue, as that might be only way to fix them up.
1457 */
1458 if (result > 0) {
1459 dev_err(dev->ctrl.device,
1460 "Could not set queue count (%d)\n", result);
1461 nr_io_queues = 0;
1462 result = 0;
1463 }
1464
1465 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1466 result = nvme_cmb_qdepth(dev, nr_io_queues,
1467 sizeof(struct nvme_command));
1468 if (result > 0)
1469 dev->q_depth = result;
1470 else
1471 nvme_release_cmb(dev);
1472 }
1473
1474 size = db_bar_size(dev, nr_io_queues);
1475 if (size > 8192) {
1476 iounmap(dev->bar);
1477 do {
1478 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1479 if (dev->bar)
1480 break;
1481 if (!--nr_io_queues)
1482 return -ENOMEM;
1483 size = db_bar_size(dev, nr_io_queues);
1484 } while (1);
1485 dev->dbs = dev->bar + 4096;
1486 adminq->q_db = dev->dbs;
1487 }
1488
1489 /* Deregister the admin queue's interrupt */
1490 free_irq(dev->entry[0].vector, adminq);
1491
1492 /*
1493 * If we enable msix early due to not intx, disable it again before
1494 * setting up the full range we need.
1495 */
1496 if (!pdev->irq)
1497 pci_disable_msix(pdev);
1498
1499 for (i = 0; i < nr_io_queues; i++)
1500 dev->entry[i].entry = i;
1501 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1502 if (vecs < 0) {
1503 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1504 if (vecs < 0) {
1505 vecs = 1;
1506 } else {
1507 for (i = 0; i < vecs; i++)
1508 dev->entry[i].vector = i + pdev->irq;
1509 }
1510 }
1511
1512 /*
1513 * Should investigate if there's a performance win from allocating
1514 * more queues than interrupt vectors; it might allow the submission
1515 * path to scale better, even if the receive path is limited by the
1516 * number of interrupts.
1517 */
1518 nr_io_queues = vecs;
1519 dev->max_qid = nr_io_queues;
1520
1521 result = queue_request_irq(dev, adminq, adminq->irqname);
1522 if (result) {
1523 adminq->cq_vector = -1;
1524 goto free_queues;
1525 }
1526 return nvme_create_io_queues(dev);
1527
1528 free_queues:
1529 nvme_free_queues(dev, 1);
1530 return result;
1531 }
1532
1533 static void nvme_set_irq_hints(struct nvme_dev *dev)
1534 {
1535 struct nvme_queue *nvmeq;
1536 int i;
1537
1538 for (i = 0; i < dev->online_queues; i++) {
1539 nvmeq = dev->queues[i];
1540
1541 if (!nvmeq->tags || !(*nvmeq->tags))
1542 continue;
1543
1544 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1545 blk_mq_tags_cpumask(*nvmeq->tags));
1546 }
1547 }
1548
1549 static void nvme_dev_scan(struct work_struct *work)
1550 {
1551 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1552
1553 if (!dev->tagset.tags)
1554 return;
1555 nvme_scan_namespaces(&dev->ctrl);
1556 nvme_set_irq_hints(dev);
1557 }
1558
1559 static void nvme_del_queue_end(struct request *req, int error)
1560 {
1561 struct nvme_queue *nvmeq = req->end_io_data;
1562
1563 blk_mq_free_request(req);
1564 complete(&nvmeq->dev->ioq_wait);
1565 }
1566
1567 static void nvme_del_cq_end(struct request *req, int error)
1568 {
1569 struct nvme_queue *nvmeq = req->end_io_data;
1570
1571 if (!error) {
1572 unsigned long flags;
1573
1574 spin_lock_irqsave(&nvmeq->q_lock, flags);
1575 nvme_process_cq(nvmeq);
1576 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
1577 }
1578
1579 nvme_del_queue_end(req, error);
1580 }
1581
1582 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
1583 {
1584 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1585 struct request *req;
1586 struct nvme_command cmd;
1587
1588 memset(&cmd, 0, sizeof(cmd));
1589 cmd.delete_queue.opcode = opcode;
1590 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1591
1592 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1593 if (IS_ERR(req))
1594 return PTR_ERR(req);
1595
1596 req->timeout = ADMIN_TIMEOUT;
1597 req->end_io_data = nvmeq;
1598
1599 blk_execute_rq_nowait(q, NULL, req, false,
1600 opcode == nvme_admin_delete_cq ?
1601 nvme_del_cq_end : nvme_del_queue_end);
1602 return 0;
1603 }
1604
1605 static void nvme_disable_io_queues(struct nvme_dev *dev)
1606 {
1607 int pass;
1608 unsigned long timeout;
1609 u8 opcode = nvme_admin_delete_sq;
1610
1611 for (pass = 0; pass < 2; pass++) {
1612 int sent = 0, i = dev->queue_count - 1;
1613
1614 reinit_completion(&dev->ioq_wait);
1615 retry:
1616 timeout = ADMIN_TIMEOUT;
1617 for (; i > 0; i--) {
1618 struct nvme_queue *nvmeq = dev->queues[i];
1619
1620 if (!pass)
1621 nvme_suspend_queue(nvmeq);
1622 if (nvme_delete_queue(nvmeq, opcode))
1623 break;
1624 ++sent;
1625 }
1626 while (sent--) {
1627 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1628 if (timeout == 0)
1629 return;
1630 if (i)
1631 goto retry;
1632 }
1633 opcode = nvme_admin_delete_cq;
1634 }
1635 }
1636
1637 /*
1638 * Return: error value if an error occurred setting up the queues or calling
1639 * Identify Device. 0 if these succeeded, even if adding some of the
1640 * namespaces failed. At the moment, these failures are silent. TBD which
1641 * failures should be reported.
1642 */
1643 static int nvme_dev_add(struct nvme_dev *dev)
1644 {
1645 if (!dev->ctrl.tagset) {
1646 dev->tagset.ops = &nvme_mq_ops;
1647 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1648 dev->tagset.timeout = NVME_IO_TIMEOUT;
1649 dev->tagset.numa_node = dev_to_node(dev->dev);
1650 dev->tagset.queue_depth =
1651 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1652 dev->tagset.cmd_size = nvme_cmd_size(dev);
1653 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1654 dev->tagset.driver_data = dev;
1655
1656 if (blk_mq_alloc_tag_set(&dev->tagset))
1657 return 0;
1658 dev->ctrl.tagset = &dev->tagset;
1659 } else {
1660 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1661
1662 /* Free previously allocated queues that are no longer usable */
1663 nvme_free_queues(dev, dev->online_queues);
1664 }
1665
1666 queue_work(nvme_workq, &dev->scan_work);
1667 return 0;
1668 }
1669
1670 static int nvme_dev_map(struct nvme_dev *dev)
1671 {
1672 u64 cap;
1673 int bars, result = -ENOMEM;
1674 struct pci_dev *pdev = to_pci_dev(dev->dev);
1675
1676 if (pci_enable_device_mem(pdev))
1677 return result;
1678
1679 dev->entry[0].vector = pdev->irq;
1680 pci_set_master(pdev);
1681 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1682 if (!bars)
1683 goto disable_pci;
1684
1685 if (pci_request_selected_regions(pdev, bars, "nvme"))
1686 goto disable_pci;
1687
1688 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1689 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1690 goto disable;
1691
1692 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1693 if (!dev->bar)
1694 goto disable;
1695
1696 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1697 result = -ENODEV;
1698 goto unmap;
1699 }
1700
1701 /*
1702 * Some devices don't advertse INTx interrupts, pre-enable a single
1703 * MSIX vec for setup. We'll adjust this later.
1704 */
1705 if (!pdev->irq) {
1706 result = pci_enable_msix(pdev, dev->entry, 1);
1707 if (result < 0)
1708 goto unmap;
1709 }
1710
1711 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1712
1713 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1714 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1715 dev->dbs = dev->bar + 4096;
1716
1717 /*
1718 * Temporary fix for the Apple controller found in the MacBook8,1 and
1719 * some MacBook7,1 to avoid controller resets and data loss.
1720 */
1721 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1722 dev->q_depth = 2;
1723 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1724 "queue depth=%u to work around controller resets\n",
1725 dev->q_depth);
1726 }
1727
1728 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1729 dev->cmb = nvme_map_cmb(dev);
1730
1731 pci_enable_pcie_error_reporting(pdev);
1732 pci_save_state(pdev);
1733 return 0;
1734
1735 unmap:
1736 iounmap(dev->bar);
1737 dev->bar = NULL;
1738 disable:
1739 pci_release_regions(pdev);
1740 disable_pci:
1741 pci_disable_device(pdev);
1742 return result;
1743 }
1744
1745 static void nvme_dev_unmap(struct nvme_dev *dev)
1746 {
1747 struct pci_dev *pdev = to_pci_dev(dev->dev);
1748
1749 if (pdev->msi_enabled)
1750 pci_disable_msi(pdev);
1751 else if (pdev->msix_enabled)
1752 pci_disable_msix(pdev);
1753
1754 if (dev->bar) {
1755 iounmap(dev->bar);
1756 dev->bar = NULL;
1757 pci_release_regions(pdev);
1758 }
1759
1760 if (pci_is_enabled(pdev)) {
1761 pci_disable_pcie_error_reporting(pdev);
1762 pci_disable_device(pdev);
1763 }
1764 }
1765
1766 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
1767 {
1768 int i;
1769 u32 csts = -1;
1770
1771 del_timer_sync(&dev->watchdog_timer);
1772
1773 mutex_lock(&dev->shutdown_lock);
1774 if (dev->bar) {
1775 nvme_stop_queues(&dev->ctrl);
1776 csts = readl(dev->bar + NVME_REG_CSTS);
1777 }
1778 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1779 for (i = dev->queue_count - 1; i >= 0; i--) {
1780 struct nvme_queue *nvmeq = dev->queues[i];
1781 nvme_suspend_queue(nvmeq);
1782 }
1783 } else {
1784 nvme_disable_io_queues(dev);
1785 nvme_disable_admin_queue(dev, shutdown);
1786 }
1787 nvme_dev_unmap(dev);
1788
1789 for (i = dev->queue_count - 1; i >= 0; i--)
1790 nvme_clear_queue(dev->queues[i]);
1791 mutex_unlock(&dev->shutdown_lock);
1792 }
1793
1794 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1795 {
1796 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1797 PAGE_SIZE, PAGE_SIZE, 0);
1798 if (!dev->prp_page_pool)
1799 return -ENOMEM;
1800
1801 /* Optimisation for I/Os between 4k and 128k */
1802 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
1803 256, 256, 0);
1804 if (!dev->prp_small_pool) {
1805 dma_pool_destroy(dev->prp_page_pool);
1806 return -ENOMEM;
1807 }
1808 return 0;
1809 }
1810
1811 static void nvme_release_prp_pools(struct nvme_dev *dev)
1812 {
1813 dma_pool_destroy(dev->prp_page_pool);
1814 dma_pool_destroy(dev->prp_small_pool);
1815 }
1816
1817 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
1818 {
1819 struct nvme_dev *dev = to_nvme_dev(ctrl);
1820
1821 put_device(dev->dev);
1822 if (dev->tagset.tags)
1823 blk_mq_free_tag_set(&dev->tagset);
1824 if (dev->ctrl.admin_q)
1825 blk_put_queue(dev->ctrl.admin_q);
1826 kfree(dev->queues);
1827 kfree(dev->entry);
1828 kfree(dev);
1829 }
1830
1831 static void nvme_reset_work(struct work_struct *work)
1832 {
1833 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
1834 int result;
1835
1836 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1837 goto out;
1838
1839 /*
1840 * If we're called to reset a live controller first shut it down before
1841 * moving on.
1842 */
1843 if (dev->bar)
1844 nvme_dev_disable(dev, false);
1845
1846 set_bit(NVME_CTRL_RESETTING, &dev->flags);
1847
1848 result = nvme_dev_map(dev);
1849 if (result)
1850 goto out;
1851
1852 result = nvme_configure_admin_queue(dev);
1853 if (result)
1854 goto unmap;
1855
1856 nvme_init_queue(dev->queues[0], 0);
1857 result = nvme_alloc_admin_tags(dev);
1858 if (result)
1859 goto disable;
1860
1861 result = nvme_init_identify(&dev->ctrl);
1862 if (result)
1863 goto free_tags;
1864
1865 result = nvme_setup_io_queues(dev);
1866 if (result)
1867 goto free_tags;
1868
1869 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
1870 queue_work(nvme_workq, &dev->async_work);
1871
1872 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1873
1874 /*
1875 * Keep the controller around but remove all namespaces if we don't have
1876 * any working I/O queue.
1877 */
1878 if (dev->online_queues < 2) {
1879 dev_warn(dev->ctrl.device, "IO queues not created\n");
1880 nvme_remove_namespaces(&dev->ctrl);
1881 } else {
1882 nvme_start_queues(&dev->ctrl);
1883 nvme_dev_add(dev);
1884 }
1885
1886 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
1887 return;
1888
1889 free_tags:
1890 nvme_dev_remove_admin(dev);
1891 blk_put_queue(dev->ctrl.admin_q);
1892 dev->ctrl.admin_q = NULL;
1893 dev->queues[0]->tags = NULL;
1894 disable:
1895 nvme_disable_admin_queue(dev, false);
1896 unmap:
1897 nvme_dev_unmap(dev);
1898 out:
1899 nvme_remove_dead_ctrl(dev);
1900 }
1901
1902 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
1903 {
1904 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
1905 struct pci_dev *pdev = to_pci_dev(dev->dev);
1906
1907 if (pci_get_drvdata(pdev))
1908 pci_stop_and_remove_bus_device_locked(pdev);
1909 nvme_put_ctrl(&dev->ctrl);
1910 }
1911
1912 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
1913 {
1914 dev_warn(dev->ctrl.device, "Removing after probe failure\n");
1915 kref_get(&dev->ctrl.kref);
1916 if (!schedule_work(&dev->remove_work))
1917 nvme_put_ctrl(&dev->ctrl);
1918 }
1919
1920 static int nvme_reset(struct nvme_dev *dev)
1921 {
1922 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
1923 return -ENODEV;
1924
1925 if (!queue_work(nvme_workq, &dev->reset_work))
1926 return -EBUSY;
1927
1928 flush_work(&dev->reset_work);
1929 return 0;
1930 }
1931
1932 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
1933 {
1934 *val = readl(to_nvme_dev(ctrl)->bar + off);
1935 return 0;
1936 }
1937
1938 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
1939 {
1940 writel(val, to_nvme_dev(ctrl)->bar + off);
1941 return 0;
1942 }
1943
1944 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1945 {
1946 *val = readq(to_nvme_dev(ctrl)->bar + off);
1947 return 0;
1948 }
1949
1950 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
1951 {
1952 struct nvme_dev *dev = to_nvme_dev(ctrl);
1953
1954 return !dev->bar || dev->online_queues < 2;
1955 }
1956
1957 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1958 {
1959 return nvme_reset(to_nvme_dev(ctrl));
1960 }
1961
1962 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
1963 .module = THIS_MODULE,
1964 .reg_read32 = nvme_pci_reg_read32,
1965 .reg_write32 = nvme_pci_reg_write32,
1966 .reg_read64 = nvme_pci_reg_read64,
1967 .io_incapable = nvme_pci_io_incapable,
1968 .reset_ctrl = nvme_pci_reset_ctrl,
1969 .free_ctrl = nvme_pci_free_ctrl,
1970 };
1971
1972 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1973 {
1974 int node, result = -ENOMEM;
1975 struct nvme_dev *dev;
1976
1977 node = dev_to_node(&pdev->dev);
1978 if (node == NUMA_NO_NODE)
1979 set_dev_node(&pdev->dev, 0);
1980
1981 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
1982 if (!dev)
1983 return -ENOMEM;
1984 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
1985 GFP_KERNEL, node);
1986 if (!dev->entry)
1987 goto free;
1988 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
1989 GFP_KERNEL, node);
1990 if (!dev->queues)
1991 goto free;
1992
1993 dev->dev = get_device(&pdev->dev);
1994 pci_set_drvdata(pdev, dev);
1995
1996 INIT_WORK(&dev->scan_work, nvme_dev_scan);
1997 INIT_WORK(&dev->reset_work, nvme_reset_work);
1998 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
1999 INIT_WORK(&dev->async_work, nvme_async_event_work);
2000 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2001 (unsigned long)dev);
2002 mutex_init(&dev->shutdown_lock);
2003 init_completion(&dev->ioq_wait);
2004
2005 result = nvme_setup_prp_pools(dev);
2006 if (result)
2007 goto put_pci;
2008
2009 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2010 id->driver_data);
2011 if (result)
2012 goto release_pools;
2013
2014 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2015
2016 queue_work(nvme_workq, &dev->reset_work);
2017 return 0;
2018
2019 release_pools:
2020 nvme_release_prp_pools(dev);
2021 put_pci:
2022 put_device(dev->dev);
2023 free:
2024 kfree(dev->queues);
2025 kfree(dev->entry);
2026 kfree(dev);
2027 return result;
2028 }
2029
2030 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2031 {
2032 struct nvme_dev *dev = pci_get_drvdata(pdev);
2033
2034 if (prepare)
2035 nvme_dev_disable(dev, false);
2036 else
2037 queue_work(nvme_workq, &dev->reset_work);
2038 }
2039
2040 static void nvme_shutdown(struct pci_dev *pdev)
2041 {
2042 struct nvme_dev *dev = pci_get_drvdata(pdev);
2043 nvme_dev_disable(dev, true);
2044 }
2045
2046 static void nvme_remove(struct pci_dev *pdev)
2047 {
2048 struct nvme_dev *dev = pci_get_drvdata(pdev);
2049
2050 del_timer_sync(&dev->watchdog_timer);
2051
2052 pci_set_drvdata(pdev, NULL);
2053 flush_work(&dev->async_work);
2054 flush_work(&dev->reset_work);
2055 flush_work(&dev->scan_work);
2056 nvme_remove_namespaces(&dev->ctrl);
2057 nvme_uninit_ctrl(&dev->ctrl);
2058 nvme_dev_disable(dev, true);
2059 nvme_dev_remove_admin(dev);
2060 nvme_free_queues(dev, 0);
2061 nvme_release_cmb(dev);
2062 nvme_release_prp_pools(dev);
2063 nvme_put_ctrl(&dev->ctrl);
2064 }
2065
2066 #ifdef CONFIG_PM_SLEEP
2067 static int nvme_suspend(struct device *dev)
2068 {
2069 struct pci_dev *pdev = to_pci_dev(dev);
2070 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2071
2072 nvme_dev_disable(ndev, true);
2073 return 0;
2074 }
2075
2076 static int nvme_resume(struct device *dev)
2077 {
2078 struct pci_dev *pdev = to_pci_dev(dev);
2079 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2080
2081 queue_work(nvme_workq, &ndev->reset_work);
2082 return 0;
2083 }
2084 #endif
2085
2086 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2087
2088 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2089 pci_channel_state_t state)
2090 {
2091 struct nvme_dev *dev = pci_get_drvdata(pdev);
2092
2093 /*
2094 * A frozen channel requires a reset. When detected, this method will
2095 * shutdown the controller to quiesce. The controller will be restarted
2096 * after the slot reset through driver's slot_reset callback.
2097 */
2098 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
2099 switch (state) {
2100 case pci_channel_io_normal:
2101 return PCI_ERS_RESULT_CAN_RECOVER;
2102 case pci_channel_io_frozen:
2103 nvme_dev_disable(dev, false);
2104 return PCI_ERS_RESULT_NEED_RESET;
2105 case pci_channel_io_perm_failure:
2106 return PCI_ERS_RESULT_DISCONNECT;
2107 }
2108 return PCI_ERS_RESULT_NEED_RESET;
2109 }
2110
2111 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2112 {
2113 struct nvme_dev *dev = pci_get_drvdata(pdev);
2114
2115 dev_info(dev->ctrl.device, "restart after slot reset\n");
2116 pci_restore_state(pdev);
2117 queue_work(nvme_workq, &dev->reset_work);
2118 return PCI_ERS_RESULT_RECOVERED;
2119 }
2120
2121 static void nvme_error_resume(struct pci_dev *pdev)
2122 {
2123 pci_cleanup_aer_uncorrect_error_status(pdev);
2124 }
2125
2126 static const struct pci_error_handlers nvme_err_handler = {
2127 .error_detected = nvme_error_detected,
2128 .slot_reset = nvme_slot_reset,
2129 .resume = nvme_error_resume,
2130 .reset_notify = nvme_reset_notify,
2131 };
2132
2133 /* Move to pci_ids.h later */
2134 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2135
2136 static const struct pci_device_id nvme_id_table[] = {
2137 { PCI_VDEVICE(INTEL, 0x0953),
2138 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2139 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2140 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2141 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2142 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2143 { 0, }
2144 };
2145 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2146
2147 static struct pci_driver nvme_driver = {
2148 .name = "nvme",
2149 .id_table = nvme_id_table,
2150 .probe = nvme_probe,
2151 .remove = nvme_remove,
2152 .shutdown = nvme_shutdown,
2153 .driver = {
2154 .pm = &nvme_dev_pm_ops,
2155 },
2156 .err_handler = &nvme_err_handler,
2157 };
2158
2159 static int __init nvme_init(void)
2160 {
2161 int result;
2162
2163 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2164 if (!nvme_workq)
2165 return -ENOMEM;
2166
2167 result = pci_register_driver(&nvme_driver);
2168 if (result)
2169 destroy_workqueue(nvme_workq);
2170 return result;
2171 }
2172
2173 static void __exit nvme_exit(void)
2174 {
2175 pci_unregister_driver(&nvme_driver);
2176 destroy_workqueue(nvme_workq);
2177 _nvme_check_size();
2178 }
2179
2180 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2181 MODULE_LICENSE("GPL");
2182 MODULE_VERSION("1.0");
2183 module_init(nvme_init);
2184 module_exit(nvme_exit);
This page took 0.07386 seconds and 5 git commands to generate.