nvme: properly free resources for cancelled command
[deliverable/linux.git] / drivers / nvme / host / pci.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/bitops.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/cpu.h>
19 #include <linux/delay.h>
20 #include <linux/errno.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/hdreg.h>
24 #include <linux/idr.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kthread.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/mutex.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/t10-pi.h>
41 #include <linux/types.h>
42 #include <linux/io-64-nonatomic-lo-hi.h>
43 #include <asm/unaligned.h>
44
45 #include "nvme.h"
46
47 #define NVME_Q_DEPTH 1024
48 #define NVME_AQ_DEPTH 256
49 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
51
52 /*
53 * We handle AEN commands ourselves and don't even let the
54 * block layer know about them.
55 */
56 #define NVME_NR_AEN_COMMANDS 1
57 #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
58
59 unsigned char admin_timeout = 60;
60 module_param(admin_timeout, byte, 0644);
61 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
62
63 unsigned char nvme_io_timeout = 30;
64 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
65 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
66
67 unsigned char shutdown_timeout = 5;
68 module_param(shutdown_timeout, byte, 0644);
69 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static bool use_cmb_sqes = true;
75 module_param(use_cmb_sqes, bool, 0644);
76 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
77
78 static LIST_HEAD(dev_list);
79 static struct task_struct *nvme_thread;
80 static struct workqueue_struct *nvme_workq;
81 static wait_queue_head_t nvme_kthread_wait;
82
83 struct nvme_dev;
84 struct nvme_queue;
85
86 static int nvme_reset(struct nvme_dev *dev);
87 static void nvme_process_cq(struct nvme_queue *nvmeq);
88 static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
89 static void nvme_dev_shutdown(struct nvme_dev *dev);
90
91 struct async_cmd_info {
92 struct kthread_work work;
93 struct kthread_worker *worker;
94 int status;
95 void *ctx;
96 };
97
98 /*
99 * Represents an NVM Express device. Each nvme_dev is a PCI function.
100 */
101 struct nvme_dev {
102 struct list_head node;
103 struct nvme_queue **queues;
104 struct blk_mq_tag_set tagset;
105 struct blk_mq_tag_set admin_tagset;
106 u32 __iomem *dbs;
107 struct device *dev;
108 struct dma_pool *prp_page_pool;
109 struct dma_pool *prp_small_pool;
110 unsigned queue_count;
111 unsigned online_queues;
112 unsigned max_qid;
113 int q_depth;
114 u32 db_stride;
115 struct msix_entry *entry;
116 void __iomem *bar;
117 struct work_struct reset_work;
118 struct work_struct scan_work;
119 struct work_struct remove_work;
120 struct mutex shutdown_lock;
121 bool subsystem;
122 void __iomem *cmb;
123 dma_addr_t cmb_dma_addr;
124 u64 cmb_size;
125 u32 cmbsz;
126 unsigned long flags;
127 #define NVME_CTRL_RESETTING 0
128
129 struct nvme_ctrl ctrl;
130 };
131
132 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
133 {
134 return container_of(ctrl, struct nvme_dev, ctrl);
135 }
136
137 /*
138 * An NVM Express queue. Each device has at least two (one for admin
139 * commands and one for I/O commands).
140 */
141 struct nvme_queue {
142 struct device *q_dmadev;
143 struct nvme_dev *dev;
144 char irqname[24]; /* nvme4294967295-65535\0 */
145 spinlock_t q_lock;
146 struct nvme_command *sq_cmds;
147 struct nvme_command __iomem *sq_cmds_io;
148 volatile struct nvme_completion *cqes;
149 struct blk_mq_tags **tags;
150 dma_addr_t sq_dma_addr;
151 dma_addr_t cq_dma_addr;
152 u32 __iomem *q_db;
153 u16 q_depth;
154 s16 cq_vector;
155 u16 sq_head;
156 u16 sq_tail;
157 u16 cq_head;
158 u16 qid;
159 u8 cq_phase;
160 u8 cqe_seen;
161 struct async_cmd_info cmdinfo;
162 };
163
164 /*
165 * The nvme_iod describes the data in an I/O, including the list of PRP
166 * entries. You can't see it in this data structure because C doesn't let
167 * me express that. Use nvme_alloc_iod to ensure there's enough space
168 * allocated to store the PRP list.
169 */
170 struct nvme_iod {
171 unsigned long private; /* For the use of the submitter of the I/O */
172 int npages; /* In the PRP list. 0 means small pool in use */
173 int offset; /* Of PRP list */
174 int nents; /* Used in scatterlist */
175 int length; /* Of data, in bytes */
176 dma_addr_t first_dma;
177 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
178 struct scatterlist sg[0];
179 };
180
181 /*
182 * Check we didin't inadvertently grow the command struct
183 */
184 static inline void _nvme_check_size(void)
185 {
186 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
192 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
193 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
194 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
195 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
196 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
197 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
198 }
199
200 struct nvme_cmd_info {
201 int aborted;
202 struct nvme_queue *nvmeq;
203 struct nvme_iod *iod;
204 struct nvme_iod __iod;
205 };
206
207 /*
208 * Max size of iod being embedded in the request payload
209 */
210 #define NVME_INT_PAGES 2
211 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
212 #define NVME_INT_MASK 0x01
213
214 /*
215 * Will slightly overestimate the number of pages needed. This is OK
216 * as it only leads to a small amount of wasted memory for the lifetime of
217 * the I/O.
218 */
219 static int nvme_npages(unsigned size, struct nvme_dev *dev)
220 {
221 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
222 dev->ctrl.page_size);
223 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
224 }
225
226 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
227 {
228 unsigned int ret = sizeof(struct nvme_cmd_info);
229
230 ret += sizeof(struct nvme_iod);
231 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
232 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
233
234 return ret;
235 }
236
237 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
238 unsigned int hctx_idx)
239 {
240 struct nvme_dev *dev = data;
241 struct nvme_queue *nvmeq = dev->queues[0];
242
243 WARN_ON(hctx_idx != 0);
244 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
245 WARN_ON(nvmeq->tags);
246
247 hctx->driver_data = nvmeq;
248 nvmeq->tags = &dev->admin_tagset.tags[0];
249 return 0;
250 }
251
252 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
253 {
254 struct nvme_queue *nvmeq = hctx->driver_data;
255
256 nvmeq->tags = NULL;
257 }
258
259 static int nvme_admin_init_request(void *data, struct request *req,
260 unsigned int hctx_idx, unsigned int rq_idx,
261 unsigned int numa_node)
262 {
263 struct nvme_dev *dev = data;
264 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
265 struct nvme_queue *nvmeq = dev->queues[0];
266
267 BUG_ON(!nvmeq);
268 cmd->nvmeq = nvmeq;
269 return 0;
270 }
271
272 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
273 unsigned int hctx_idx)
274 {
275 struct nvme_dev *dev = data;
276 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
277
278 if (!nvmeq->tags)
279 nvmeq->tags = &dev->tagset.tags[hctx_idx];
280
281 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
282 hctx->driver_data = nvmeq;
283 return 0;
284 }
285
286 static int nvme_init_request(void *data, struct request *req,
287 unsigned int hctx_idx, unsigned int rq_idx,
288 unsigned int numa_node)
289 {
290 struct nvme_dev *dev = data;
291 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
292 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
293
294 BUG_ON(!nvmeq);
295 cmd->nvmeq = nvmeq;
296 return 0;
297 }
298
299 static void *iod_get_private(struct nvme_iod *iod)
300 {
301 return (void *) (iod->private & ~0x1UL);
302 }
303
304 /*
305 * If bit 0 is set, the iod is embedded in the request payload.
306 */
307 static bool iod_should_kfree(struct nvme_iod *iod)
308 {
309 return (iod->private & NVME_INT_MASK) == 0;
310 }
311
312 static void nvme_complete_async_event(struct nvme_dev *dev,
313 struct nvme_completion *cqe)
314 {
315 u16 status = le16_to_cpu(cqe->status) >> 1;
316 u32 result = le32_to_cpu(cqe->result);
317
318 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
319 ++dev->ctrl.event_limit;
320 if (status != NVME_SC_SUCCESS)
321 return;
322
323 switch (result & 0xff07) {
324 case NVME_AER_NOTICE_NS_CHANGED:
325 dev_info(dev->dev, "rescanning\n");
326 queue_work(nvme_workq, &dev->scan_work);
327 default:
328 dev_warn(dev->dev, "async event result %08x\n", result);
329 }
330 }
331
332 /**
333 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
334 * @nvmeq: The queue to use
335 * @cmd: The command to send
336 *
337 * Safe to use from interrupt context
338 */
339 static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
340 struct nvme_command *cmd)
341 {
342 u16 tail = nvmeq->sq_tail;
343
344 if (nvmeq->sq_cmds_io)
345 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
346 else
347 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
348
349 if (++tail == nvmeq->q_depth)
350 tail = 0;
351 writel(tail, nvmeq->q_db);
352 nvmeq->sq_tail = tail;
353 }
354
355 static __le64 **iod_list(struct nvme_iod *iod)
356 {
357 return ((void *)iod) + iod->offset;
358 }
359
360 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
361 unsigned nseg, unsigned long private)
362 {
363 iod->private = private;
364 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
365 iod->npages = -1;
366 iod->length = nbytes;
367 iod->nents = 0;
368 }
369
370 static struct nvme_iod *
371 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
372 unsigned long priv, gfp_t gfp)
373 {
374 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
375 sizeof(__le64 *) * nvme_npages(bytes, dev) +
376 sizeof(struct scatterlist) * nseg, gfp);
377
378 if (iod)
379 iod_init(iod, bytes, nseg, priv);
380
381 return iod;
382 }
383
384 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
385 gfp_t gfp)
386 {
387 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
388 sizeof(struct nvme_dsm_range);
389 struct nvme_iod *iod;
390
391 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
392 size <= NVME_INT_BYTES(dev)) {
393 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
394
395 iod = &cmd->__iod;
396 iod_init(iod, size, rq->nr_phys_segments,
397 (unsigned long) rq | NVME_INT_MASK);
398 return iod;
399 }
400
401 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
402 (unsigned long) rq, gfp);
403 }
404
405 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
406 {
407 const int last_prp = dev->ctrl.page_size / 8 - 1;
408 int i;
409 __le64 **list = iod_list(iod);
410 dma_addr_t prp_dma = iod->first_dma;
411
412 if (iod->npages == 0)
413 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
414 for (i = 0; i < iod->npages; i++) {
415 __le64 *prp_list = list[i];
416 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
417 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
418 prp_dma = next_prp_dma;
419 }
420
421 if (iod_should_kfree(iod))
422 kfree(iod);
423 }
424
425 #ifdef CONFIG_BLK_DEV_INTEGRITY
426 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
427 {
428 if (be32_to_cpu(pi->ref_tag) == v)
429 pi->ref_tag = cpu_to_be32(p);
430 }
431
432 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
433 {
434 if (be32_to_cpu(pi->ref_tag) == p)
435 pi->ref_tag = cpu_to_be32(v);
436 }
437
438 /**
439 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
440 *
441 * The virtual start sector is the one that was originally submitted by the
442 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
443 * start sector may be different. Remap protection information to match the
444 * physical LBA on writes, and back to the original seed on reads.
445 *
446 * Type 0 and 3 do not have a ref tag, so no remapping required.
447 */
448 static void nvme_dif_remap(struct request *req,
449 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
450 {
451 struct nvme_ns *ns = req->rq_disk->private_data;
452 struct bio_integrity_payload *bip;
453 struct t10_pi_tuple *pi;
454 void *p, *pmap;
455 u32 i, nlb, ts, phys, virt;
456
457 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
458 return;
459
460 bip = bio_integrity(req->bio);
461 if (!bip)
462 return;
463
464 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
465
466 p = pmap;
467 virt = bip_get_seed(bip);
468 phys = nvme_block_nr(ns, blk_rq_pos(req));
469 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
470 ts = ns->disk->queue->integrity.tuple_size;
471
472 for (i = 0; i < nlb; i++, virt++, phys++) {
473 pi = (struct t10_pi_tuple *)p;
474 dif_swap(phys, virt, pi);
475 p += ts;
476 }
477 kunmap_atomic(pmap);
478 }
479 #else /* CONFIG_BLK_DEV_INTEGRITY */
480 static void nvme_dif_remap(struct request *req,
481 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
482 {
483 }
484 static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
485 {
486 }
487 static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488 {
489 }
490 #endif
491
492 static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
493 int total_len)
494 {
495 struct dma_pool *pool;
496 int length = total_len;
497 struct scatterlist *sg = iod->sg;
498 int dma_len = sg_dma_len(sg);
499 u64 dma_addr = sg_dma_address(sg);
500 u32 page_size = dev->ctrl.page_size;
501 int offset = dma_addr & (page_size - 1);
502 __le64 *prp_list;
503 __le64 **list = iod_list(iod);
504 dma_addr_t prp_dma;
505 int nprps, i;
506
507 length -= (page_size - offset);
508 if (length <= 0)
509 return true;
510
511 dma_len -= (page_size - offset);
512 if (dma_len) {
513 dma_addr += (page_size - offset);
514 } else {
515 sg = sg_next(sg);
516 dma_addr = sg_dma_address(sg);
517 dma_len = sg_dma_len(sg);
518 }
519
520 if (length <= page_size) {
521 iod->first_dma = dma_addr;
522 return true;
523 }
524
525 nprps = DIV_ROUND_UP(length, page_size);
526 if (nprps <= (256 / 8)) {
527 pool = dev->prp_small_pool;
528 iod->npages = 0;
529 } else {
530 pool = dev->prp_page_pool;
531 iod->npages = 1;
532 }
533
534 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
535 if (!prp_list) {
536 iod->first_dma = dma_addr;
537 iod->npages = -1;
538 return false;
539 }
540 list[0] = prp_list;
541 iod->first_dma = prp_dma;
542 i = 0;
543 for (;;) {
544 if (i == page_size >> 3) {
545 __le64 *old_prp_list = prp_list;
546 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
547 if (!prp_list)
548 return false;
549 list[iod->npages++] = prp_list;
550 prp_list[0] = old_prp_list[i - 1];
551 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
552 i = 1;
553 }
554 prp_list[i++] = cpu_to_le64(dma_addr);
555 dma_len -= page_size;
556 dma_addr += page_size;
557 length -= page_size;
558 if (length <= 0)
559 break;
560 if (dma_len > 0)
561 continue;
562 BUG_ON(dma_len < 0);
563 sg = sg_next(sg);
564 dma_addr = sg_dma_address(sg);
565 dma_len = sg_dma_len(sg);
566 }
567
568 return true;
569 }
570
571 static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
572 struct nvme_command *cmnd)
573 {
574 struct request *req = iod_get_private(iod);
575 struct request_queue *q = req->q;
576 enum dma_data_direction dma_dir = rq_data_dir(req) ?
577 DMA_TO_DEVICE : DMA_FROM_DEVICE;
578 int ret = BLK_MQ_RQ_QUEUE_ERROR;
579
580 sg_init_table(iod->sg, req->nr_phys_segments);
581 iod->nents = blk_rq_map_sg(q, req, iod->sg);
582 if (!iod->nents)
583 goto out;
584
585 ret = BLK_MQ_RQ_QUEUE_BUSY;
586 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
587 goto out;
588
589 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
590 goto out_unmap;
591
592 ret = BLK_MQ_RQ_QUEUE_ERROR;
593 if (blk_integrity_rq(req)) {
594 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
595 goto out_unmap;
596
597 sg_init_table(iod->meta_sg, 1);
598 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
599 goto out_unmap;
600
601 if (rq_data_dir(req))
602 nvme_dif_remap(req, nvme_dif_prep);
603
604 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
605 goto out_unmap;
606 }
607
608 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
609 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
610 if (blk_integrity_rq(req))
611 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
612 return BLK_MQ_RQ_QUEUE_OK;
613
614 out_unmap:
615 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
616 out:
617 return ret;
618 }
619
620 static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
621 {
622 struct request *req = iod_get_private(iod);
623 enum dma_data_direction dma_dir = rq_data_dir(req) ?
624 DMA_TO_DEVICE : DMA_FROM_DEVICE;
625
626 if (iod->nents) {
627 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
628 if (blk_integrity_rq(req)) {
629 if (!rq_data_dir(req))
630 nvme_dif_remap(req, nvme_dif_complete);
631 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
632 }
633 }
634
635 nvme_free_iod(dev, iod);
636 }
637
638 /*
639 * We reuse the small pool to allocate the 16-byte range here as it is not
640 * worth having a special pool for these or additional cases to handle freeing
641 * the iod.
642 */
643 static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
644 struct nvme_iod *iod, struct nvme_command *cmnd)
645 {
646 struct request *req = iod_get_private(iod);
647 struct nvme_dsm_range *range;
648
649 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
650 &iod->first_dma);
651 if (!range)
652 return BLK_MQ_RQ_QUEUE_BUSY;
653 iod_list(iod)[0] = (__le64 *)range;
654 iod->npages = 0;
655
656 range->cattr = cpu_to_le32(0);
657 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
658 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
659
660 memset(cmnd, 0, sizeof(*cmnd));
661 cmnd->dsm.opcode = nvme_cmd_dsm;
662 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
663 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
664 cmnd->dsm.nr = 0;
665 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
666 return BLK_MQ_RQ_QUEUE_OK;
667 }
668
669 /*
670 * NOTE: ns is NULL when called on the admin queue.
671 */
672 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
673 const struct blk_mq_queue_data *bd)
674 {
675 struct nvme_ns *ns = hctx->queue->queuedata;
676 struct nvme_queue *nvmeq = hctx->driver_data;
677 struct nvme_dev *dev = nvmeq->dev;
678 struct request *req = bd->rq;
679 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
680 struct nvme_iod *iod;
681 struct nvme_command cmnd;
682 int ret = BLK_MQ_RQ_QUEUE_OK;
683
684 /*
685 * If formated with metadata, require the block layer provide a buffer
686 * unless this namespace is formated such that the metadata can be
687 * stripped/generated by the controller with PRACT=1.
688 */
689 if (ns && ns->ms && !blk_integrity_rq(req)) {
690 if (!(ns->pi_type && ns->ms == 8) &&
691 req->cmd_type != REQ_TYPE_DRV_PRIV) {
692 blk_mq_end_request(req, -EFAULT);
693 return BLK_MQ_RQ_QUEUE_OK;
694 }
695 }
696
697 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
698 if (!iod)
699 return BLK_MQ_RQ_QUEUE_BUSY;
700
701 if (req->cmd_flags & REQ_DISCARD) {
702 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
703 } else {
704 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
705 memcpy(&cmnd, req->cmd, sizeof(cmnd));
706 else if (req->cmd_flags & REQ_FLUSH)
707 nvme_setup_flush(ns, &cmnd);
708 else
709 nvme_setup_rw(ns, req, &cmnd);
710
711 if (req->nr_phys_segments)
712 ret = nvme_map_data(dev, iod, &cmnd);
713 }
714
715 if (ret)
716 goto out;
717
718 cmd->iod = iod;
719 cmd->aborted = 0;
720 cmnd.common.command_id = req->tag;
721 blk_mq_start_request(req);
722
723 spin_lock_irq(&nvmeq->q_lock);
724 __nvme_submit_cmd(nvmeq, &cmnd);
725 nvme_process_cq(nvmeq);
726 spin_unlock_irq(&nvmeq->q_lock);
727 return BLK_MQ_RQ_QUEUE_OK;
728 out:
729 nvme_free_iod(dev, iod);
730 return ret;
731 }
732
733 static void nvme_complete_rq(struct request *req)
734 {
735 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
736 struct nvme_dev *dev = cmd->nvmeq->dev;
737 int error = 0;
738
739 nvme_unmap_data(dev, cmd->iod);
740
741 if (unlikely(req->errors)) {
742 if (nvme_req_needs_retry(req, req->errors)) {
743 nvme_requeue_req(req);
744 return;
745 }
746
747 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
748 error = req->errors;
749 else
750 error = nvme_error_status(req->errors);
751 }
752
753 if (unlikely(cmd->aborted)) {
754 dev_warn(dev->dev,
755 "completing aborted command with status: %04x\n",
756 req->errors);
757 }
758
759 blk_mq_end_request(req, error);
760 }
761
762 static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
763 {
764 u16 head, phase;
765
766 head = nvmeq->cq_head;
767 phase = nvmeq->cq_phase;
768
769 for (;;) {
770 struct nvme_completion cqe = nvmeq->cqes[head];
771 u16 status = le16_to_cpu(cqe.status);
772 struct request *req;
773
774 if ((status & 1) != phase)
775 break;
776 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
777 if (++head == nvmeq->q_depth) {
778 head = 0;
779 phase = !phase;
780 }
781
782 if (tag && *tag == cqe.command_id)
783 *tag = -1;
784
785 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
786 dev_warn(nvmeq->q_dmadev,
787 "invalid id %d completed on queue %d\n",
788 cqe.command_id, le16_to_cpu(cqe.sq_id));
789 continue;
790 }
791
792 /*
793 * AEN requests are special as they don't time out and can
794 * survive any kind of queue freeze and often don't respond to
795 * aborts. We don't even bother to allocate a struct request
796 * for them but rather special case them here.
797 */
798 if (unlikely(nvmeq->qid == 0 &&
799 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
800 nvme_complete_async_event(nvmeq->dev, &cqe);
801 continue;
802 }
803
804 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
805 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
806 u32 result = le32_to_cpu(cqe.result);
807 req->special = (void *)(uintptr_t)result;
808 }
809 blk_mq_complete_request(req, status >> 1);
810
811 }
812
813 /* If the controller ignores the cq head doorbell and continuously
814 * writes to the queue, it is theoretically possible to wrap around
815 * the queue twice and mistakenly return IRQ_NONE. Linux only
816 * requires that 0.1% of your interrupts are handled, so this isn't
817 * a big problem.
818 */
819 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
820 return;
821
822 if (likely(nvmeq->cq_vector >= 0))
823 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
824 nvmeq->cq_head = head;
825 nvmeq->cq_phase = phase;
826
827 nvmeq->cqe_seen = 1;
828 }
829
830 static void nvme_process_cq(struct nvme_queue *nvmeq)
831 {
832 __nvme_process_cq(nvmeq, NULL);
833 }
834
835 static irqreturn_t nvme_irq(int irq, void *data)
836 {
837 irqreturn_t result;
838 struct nvme_queue *nvmeq = data;
839 spin_lock(&nvmeq->q_lock);
840 nvme_process_cq(nvmeq);
841 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
842 nvmeq->cqe_seen = 0;
843 spin_unlock(&nvmeq->q_lock);
844 return result;
845 }
846
847 static irqreturn_t nvme_irq_check(int irq, void *data)
848 {
849 struct nvme_queue *nvmeq = data;
850 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
851 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
852 return IRQ_NONE;
853 return IRQ_WAKE_THREAD;
854 }
855
856 static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
857 {
858 struct nvme_queue *nvmeq = hctx->driver_data;
859
860 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
861 nvmeq->cq_phase) {
862 spin_lock_irq(&nvmeq->q_lock);
863 __nvme_process_cq(nvmeq, &tag);
864 spin_unlock_irq(&nvmeq->q_lock);
865
866 if (tag == -1)
867 return 1;
868 }
869
870 return 0;
871 }
872
873 static void nvme_submit_async_event(struct nvme_dev *dev)
874 {
875 struct nvme_command c;
876
877 memset(&c, 0, sizeof(c));
878 c.common.opcode = nvme_admin_async_event;
879 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
880
881 __nvme_submit_cmd(dev->queues[0], &c);
882 }
883
884 static void async_cmd_info_endio(struct request *req, int error)
885 {
886 struct async_cmd_info *cmdinfo = req->end_io_data;
887
888 cmdinfo->status = req->errors;
889 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
890 blk_mq_free_request(req);
891 }
892
893 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
894 {
895 struct nvme_command c;
896
897 memset(&c, 0, sizeof(c));
898 c.delete_queue.opcode = opcode;
899 c.delete_queue.qid = cpu_to_le16(id);
900
901 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
902 }
903
904 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
905 struct nvme_queue *nvmeq)
906 {
907 struct nvme_command c;
908 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
909
910 /*
911 * Note: we (ab)use the fact the the prp fields survive if no data
912 * is attached to the request.
913 */
914 memset(&c, 0, sizeof(c));
915 c.create_cq.opcode = nvme_admin_create_cq;
916 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
917 c.create_cq.cqid = cpu_to_le16(qid);
918 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
919 c.create_cq.cq_flags = cpu_to_le16(flags);
920 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
921
922 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
923 }
924
925 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
926 struct nvme_queue *nvmeq)
927 {
928 struct nvme_command c;
929 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
930
931 /*
932 * Note: we (ab)use the fact the the prp fields survive if no data
933 * is attached to the request.
934 */
935 memset(&c, 0, sizeof(c));
936 c.create_sq.opcode = nvme_admin_create_sq;
937 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
938 c.create_sq.sqid = cpu_to_le16(qid);
939 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
940 c.create_sq.sq_flags = cpu_to_le16(flags);
941 c.create_sq.cqid = cpu_to_le16(qid);
942
943 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
944 }
945
946 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
947 {
948 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
949 }
950
951 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
952 {
953 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
954 }
955
956 static void abort_endio(struct request *req, int error)
957 {
958 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
959 struct nvme_queue *nvmeq = cmd->nvmeq;
960 u32 result = (u32)(uintptr_t)req->special;
961 u16 status = req->errors;
962
963 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
964 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
965
966 blk_mq_free_request(req);
967 }
968
969 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
970 {
971 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
972 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
973 struct nvme_dev *dev = nvmeq->dev;
974 struct request *abort_req;
975 struct nvme_command cmd;
976
977 /*
978 * Shutdown immediately if controller times out while starting. The
979 * reset work will see the pci device disabled when it gets the forced
980 * cancellation error. All outstanding requests are completed on
981 * shutdown, so we return BLK_EH_HANDLED.
982 */
983 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
984 dev_warn(dev->dev,
985 "I/O %d QID %d timeout, disable controller\n",
986 req->tag, nvmeq->qid);
987 nvme_dev_shutdown(dev);
988 req->errors = NVME_SC_CANCELLED;
989 return BLK_EH_HANDLED;
990 }
991
992 /*
993 * Shutdown the controller immediately and schedule a reset if the
994 * command was already aborted once before and still hasn't been
995 * returned to the driver, or if this is the admin queue.
996 */
997 if (!nvmeq->qid || cmd_rq->aborted) {
998 dev_warn(dev->dev,
999 "I/O %d QID %d timeout, reset controller\n",
1000 req->tag, nvmeq->qid);
1001 nvme_dev_shutdown(dev);
1002 queue_work(nvme_workq, &dev->reset_work);
1003
1004 /*
1005 * Mark the request as handled, since the inline shutdown
1006 * forces all outstanding requests to complete.
1007 */
1008 req->errors = NVME_SC_CANCELLED;
1009 return BLK_EH_HANDLED;
1010 }
1011
1012 cmd_rq->aborted = 1;
1013
1014 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1015 atomic_inc(&dev->ctrl.abort_limit);
1016 return BLK_EH_RESET_TIMER;
1017 }
1018
1019 memset(&cmd, 0, sizeof(cmd));
1020 cmd.abort.opcode = nvme_admin_abort_cmd;
1021 cmd.abort.cid = req->tag;
1022 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1023
1024 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1025 req->tag, nvmeq->qid);
1026
1027 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1028 BLK_MQ_REQ_NOWAIT);
1029 if (IS_ERR(abort_req)) {
1030 atomic_inc(&dev->ctrl.abort_limit);
1031 return BLK_EH_RESET_TIMER;
1032 }
1033
1034 abort_req->timeout = ADMIN_TIMEOUT;
1035 abort_req->end_io_data = NULL;
1036 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1037
1038 /*
1039 * The aborted req will be completed on receiving the abort req.
1040 * We enable the timer again. If hit twice, it'll cause a device reset,
1041 * as the device then is in a faulty state.
1042 */
1043 return BLK_EH_RESET_TIMER;
1044 }
1045
1046 static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
1047 {
1048 struct nvme_queue *nvmeq = data;
1049 int status;
1050
1051 if (!blk_mq_request_started(req))
1052 return;
1053
1054 dev_warn(nvmeq->q_dmadev,
1055 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
1056
1057 status = NVME_SC_CANCELLED;
1058 if (blk_queue_dying(req->q))
1059 status |= NVME_SC_DNR;
1060 blk_mq_complete_request(req, status);
1061 }
1062
1063 static void nvme_free_queue(struct nvme_queue *nvmeq)
1064 {
1065 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1066 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1067 if (nvmeq->sq_cmds)
1068 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1069 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1070 kfree(nvmeq);
1071 }
1072
1073 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1074 {
1075 int i;
1076
1077 for (i = dev->queue_count - 1; i >= lowest; i--) {
1078 struct nvme_queue *nvmeq = dev->queues[i];
1079 dev->queue_count--;
1080 dev->queues[i] = NULL;
1081 nvme_free_queue(nvmeq);
1082 }
1083 }
1084
1085 /**
1086 * nvme_suspend_queue - put queue into suspended state
1087 * @nvmeq - queue to suspend
1088 */
1089 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1090 {
1091 int vector;
1092
1093 spin_lock_irq(&nvmeq->q_lock);
1094 if (nvmeq->cq_vector == -1) {
1095 spin_unlock_irq(&nvmeq->q_lock);
1096 return 1;
1097 }
1098 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1099 nvmeq->dev->online_queues--;
1100 nvmeq->cq_vector = -1;
1101 spin_unlock_irq(&nvmeq->q_lock);
1102
1103 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1104 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
1105
1106 irq_set_affinity_hint(vector, NULL);
1107 free_irq(vector, nvmeq);
1108
1109 return 0;
1110 }
1111
1112 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1113 {
1114 spin_lock_irq(&nvmeq->q_lock);
1115 if (nvmeq->tags && *nvmeq->tags)
1116 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
1117 spin_unlock_irq(&nvmeq->q_lock);
1118 }
1119
1120 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1121 {
1122 struct nvme_queue *nvmeq = dev->queues[qid];
1123
1124 if (!nvmeq)
1125 return;
1126 if (nvme_suspend_queue(nvmeq))
1127 return;
1128
1129 /* Don't tell the adapter to delete the admin queue.
1130 * Don't tell a removed adapter to delete IO queues. */
1131 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
1132 adapter_delete_sq(dev, qid);
1133 adapter_delete_cq(dev, qid);
1134 }
1135
1136 spin_lock_irq(&nvmeq->q_lock);
1137 nvme_process_cq(nvmeq);
1138 spin_unlock_irq(&nvmeq->q_lock);
1139 }
1140
1141 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1142 int entry_size)
1143 {
1144 int q_depth = dev->q_depth;
1145 unsigned q_size_aligned = roundup(q_depth * entry_size,
1146 dev->ctrl.page_size);
1147
1148 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1149 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1150 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1151 q_depth = div_u64(mem_per_q, entry_size);
1152
1153 /*
1154 * Ensure the reduced q_depth is above some threshold where it
1155 * would be better to map queues in system memory with the
1156 * original depth
1157 */
1158 if (q_depth < 64)
1159 return -ENOMEM;
1160 }
1161
1162 return q_depth;
1163 }
1164
1165 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1166 int qid, int depth)
1167 {
1168 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1169 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1170 dev->ctrl.page_size);
1171 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1172 nvmeq->sq_cmds_io = dev->cmb + offset;
1173 } else {
1174 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1175 &nvmeq->sq_dma_addr, GFP_KERNEL);
1176 if (!nvmeq->sq_cmds)
1177 return -ENOMEM;
1178 }
1179
1180 return 0;
1181 }
1182
1183 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1184 int depth)
1185 {
1186 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1187 if (!nvmeq)
1188 return NULL;
1189
1190 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
1191 &nvmeq->cq_dma_addr, GFP_KERNEL);
1192 if (!nvmeq->cqes)
1193 goto free_nvmeq;
1194
1195 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1196 goto free_cqdma;
1197
1198 nvmeq->q_dmadev = dev->dev;
1199 nvmeq->dev = dev;
1200 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1201 dev->ctrl.instance, qid);
1202 spin_lock_init(&nvmeq->q_lock);
1203 nvmeq->cq_head = 0;
1204 nvmeq->cq_phase = 1;
1205 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1206 nvmeq->q_depth = depth;
1207 nvmeq->qid = qid;
1208 nvmeq->cq_vector = -1;
1209 dev->queues[qid] = nvmeq;
1210
1211 /* make sure queue descriptor is set before queue count, for kthread */
1212 mb();
1213 dev->queue_count++;
1214
1215 return nvmeq;
1216
1217 free_cqdma:
1218 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1219 nvmeq->cq_dma_addr);
1220 free_nvmeq:
1221 kfree(nvmeq);
1222 return NULL;
1223 }
1224
1225 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1226 const char *name)
1227 {
1228 if (use_threaded_interrupts)
1229 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1230 nvme_irq_check, nvme_irq, IRQF_SHARED,
1231 name, nvmeq);
1232 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1233 IRQF_SHARED, name, nvmeq);
1234 }
1235
1236 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1237 {
1238 struct nvme_dev *dev = nvmeq->dev;
1239
1240 spin_lock_irq(&nvmeq->q_lock);
1241 nvmeq->sq_tail = 0;
1242 nvmeq->cq_head = 0;
1243 nvmeq->cq_phase = 1;
1244 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1245 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1246 dev->online_queues++;
1247 spin_unlock_irq(&nvmeq->q_lock);
1248 }
1249
1250 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1251 {
1252 struct nvme_dev *dev = nvmeq->dev;
1253 int result;
1254
1255 nvmeq->cq_vector = qid - 1;
1256 result = adapter_alloc_cq(dev, qid, nvmeq);
1257 if (result < 0)
1258 return result;
1259
1260 result = adapter_alloc_sq(dev, qid, nvmeq);
1261 if (result < 0)
1262 goto release_cq;
1263
1264 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1265 if (result < 0)
1266 goto release_sq;
1267
1268 nvme_init_queue(nvmeq, qid);
1269 return result;
1270
1271 release_sq:
1272 adapter_delete_sq(dev, qid);
1273 release_cq:
1274 adapter_delete_cq(dev, qid);
1275 return result;
1276 }
1277
1278 static struct blk_mq_ops nvme_mq_admin_ops = {
1279 .queue_rq = nvme_queue_rq,
1280 .complete = nvme_complete_rq,
1281 .map_queue = blk_mq_map_queue,
1282 .init_hctx = nvme_admin_init_hctx,
1283 .exit_hctx = nvme_admin_exit_hctx,
1284 .init_request = nvme_admin_init_request,
1285 .timeout = nvme_timeout,
1286 };
1287
1288 static struct blk_mq_ops nvme_mq_ops = {
1289 .queue_rq = nvme_queue_rq,
1290 .complete = nvme_complete_rq,
1291 .map_queue = blk_mq_map_queue,
1292 .init_hctx = nvme_init_hctx,
1293 .init_request = nvme_init_request,
1294 .timeout = nvme_timeout,
1295 .poll = nvme_poll,
1296 };
1297
1298 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1299 {
1300 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1301 blk_cleanup_queue(dev->ctrl.admin_q);
1302 blk_mq_free_tag_set(&dev->admin_tagset);
1303 }
1304 }
1305
1306 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1307 {
1308 if (!dev->ctrl.admin_q) {
1309 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1310 dev->admin_tagset.nr_hw_queues = 1;
1311 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH;
1312 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1313 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1314 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1315 dev->admin_tagset.driver_data = dev;
1316
1317 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1318 return -ENOMEM;
1319
1320 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1321 if (IS_ERR(dev->ctrl.admin_q)) {
1322 blk_mq_free_tag_set(&dev->admin_tagset);
1323 return -ENOMEM;
1324 }
1325 if (!blk_get_queue(dev->ctrl.admin_q)) {
1326 nvme_dev_remove_admin(dev);
1327 dev->ctrl.admin_q = NULL;
1328 return -ENODEV;
1329 }
1330 } else
1331 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
1332
1333 return 0;
1334 }
1335
1336 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1337 {
1338 int result;
1339 u32 aqa;
1340 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1341 struct nvme_queue *nvmeq;
1342
1343 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
1344 NVME_CAP_NSSRC(cap) : 0;
1345
1346 if (dev->subsystem &&
1347 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1348 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1349
1350 result = nvme_disable_ctrl(&dev->ctrl, cap);
1351 if (result < 0)
1352 return result;
1353
1354 nvmeq = dev->queues[0];
1355 if (!nvmeq) {
1356 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1357 if (!nvmeq)
1358 return -ENOMEM;
1359 }
1360
1361 aqa = nvmeq->q_depth - 1;
1362 aqa |= aqa << 16;
1363
1364 writel(aqa, dev->bar + NVME_REG_AQA);
1365 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1366 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1367
1368 result = nvme_enable_ctrl(&dev->ctrl, cap);
1369 if (result)
1370 goto free_nvmeq;
1371
1372 nvmeq->cq_vector = 0;
1373 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1374 if (result) {
1375 nvmeq->cq_vector = -1;
1376 goto free_nvmeq;
1377 }
1378
1379 return result;
1380
1381 free_nvmeq:
1382 nvme_free_queues(dev, 0);
1383 return result;
1384 }
1385
1386 static int nvme_kthread(void *data)
1387 {
1388 struct nvme_dev *dev, *next;
1389
1390 while (!kthread_should_stop()) {
1391 set_current_state(TASK_INTERRUPTIBLE);
1392 spin_lock(&dev_list_lock);
1393 list_for_each_entry_safe(dev, next, &dev_list, node) {
1394 int i;
1395 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1396
1397 /*
1398 * Skip controllers currently under reset.
1399 */
1400 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1401 continue;
1402
1403 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1404 csts & NVME_CSTS_CFS) {
1405 if (queue_work(nvme_workq, &dev->reset_work)) {
1406 dev_warn(dev->dev,
1407 "Failed status: %x, reset controller\n",
1408 readl(dev->bar + NVME_REG_CSTS));
1409 }
1410 continue;
1411 }
1412 for (i = 0; i < dev->queue_count; i++) {
1413 struct nvme_queue *nvmeq = dev->queues[i];
1414 if (!nvmeq)
1415 continue;
1416 spin_lock_irq(&nvmeq->q_lock);
1417 nvme_process_cq(nvmeq);
1418
1419 while (i == 0 && dev->ctrl.event_limit > 0)
1420 nvme_submit_async_event(dev);
1421 spin_unlock_irq(&nvmeq->q_lock);
1422 }
1423 }
1424 spin_unlock(&dev_list_lock);
1425 schedule_timeout(round_jiffies_relative(HZ));
1426 }
1427 return 0;
1428 }
1429
1430 static int nvme_create_io_queues(struct nvme_dev *dev)
1431 {
1432 unsigned i;
1433 int ret = 0;
1434
1435 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1436 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1437 ret = -ENOMEM;
1438 break;
1439 }
1440 }
1441
1442 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1443 ret = nvme_create_queue(dev->queues[i], i);
1444 if (ret) {
1445 nvme_free_queues(dev, i);
1446 break;
1447 }
1448 }
1449
1450 /*
1451 * Ignore failing Create SQ/CQ commands, we can continue with less
1452 * than the desired aount of queues, and even a controller without
1453 * I/O queues an still be used to issue admin commands. This might
1454 * be useful to upgrade a buggy firmware for example.
1455 */
1456 return ret >= 0 ? 0 : ret;
1457 }
1458
1459 static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1460 {
1461 u64 szu, size, offset;
1462 u32 cmbloc;
1463 resource_size_t bar_size;
1464 struct pci_dev *pdev = to_pci_dev(dev->dev);
1465 void __iomem *cmb;
1466 dma_addr_t dma_addr;
1467
1468 if (!use_cmb_sqes)
1469 return NULL;
1470
1471 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1472 if (!(NVME_CMB_SZ(dev->cmbsz)))
1473 return NULL;
1474
1475 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1476
1477 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1478 size = szu * NVME_CMB_SZ(dev->cmbsz);
1479 offset = szu * NVME_CMB_OFST(cmbloc);
1480 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1481
1482 if (offset > bar_size)
1483 return NULL;
1484
1485 /*
1486 * Controllers may support a CMB size larger than their BAR,
1487 * for example, due to being behind a bridge. Reduce the CMB to
1488 * the reported size of the BAR
1489 */
1490 if (size > bar_size - offset)
1491 size = bar_size - offset;
1492
1493 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1494 cmb = ioremap_wc(dma_addr, size);
1495 if (!cmb)
1496 return NULL;
1497
1498 dev->cmb_dma_addr = dma_addr;
1499 dev->cmb_size = size;
1500 return cmb;
1501 }
1502
1503 static inline void nvme_release_cmb(struct nvme_dev *dev)
1504 {
1505 if (dev->cmb) {
1506 iounmap(dev->cmb);
1507 dev->cmb = NULL;
1508 }
1509 }
1510
1511 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1512 {
1513 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
1514 }
1515
1516 static int nvme_setup_io_queues(struct nvme_dev *dev)
1517 {
1518 struct nvme_queue *adminq = dev->queues[0];
1519 struct pci_dev *pdev = to_pci_dev(dev->dev);
1520 int result, i, vecs, nr_io_queues, size;
1521
1522 nr_io_queues = num_possible_cpus();
1523 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1524 if (result < 0)
1525 return result;
1526
1527 /*
1528 * Degraded controllers might return an error when setting the queue
1529 * count. We still want to be able to bring them online and offer
1530 * access to the admin queue, as that might be only way to fix them up.
1531 */
1532 if (result > 0) {
1533 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1534 nr_io_queues = 0;
1535 result = 0;
1536 }
1537
1538 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1539 result = nvme_cmb_qdepth(dev, nr_io_queues,
1540 sizeof(struct nvme_command));
1541 if (result > 0)
1542 dev->q_depth = result;
1543 else
1544 nvme_release_cmb(dev);
1545 }
1546
1547 size = db_bar_size(dev, nr_io_queues);
1548 if (size > 8192) {
1549 iounmap(dev->bar);
1550 do {
1551 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1552 if (dev->bar)
1553 break;
1554 if (!--nr_io_queues)
1555 return -ENOMEM;
1556 size = db_bar_size(dev, nr_io_queues);
1557 } while (1);
1558 dev->dbs = dev->bar + 4096;
1559 adminq->q_db = dev->dbs;
1560 }
1561
1562 /* Deregister the admin queue's interrupt */
1563 free_irq(dev->entry[0].vector, adminq);
1564
1565 /*
1566 * If we enable msix early due to not intx, disable it again before
1567 * setting up the full range we need.
1568 */
1569 if (!pdev->irq)
1570 pci_disable_msix(pdev);
1571
1572 for (i = 0; i < nr_io_queues; i++)
1573 dev->entry[i].entry = i;
1574 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1575 if (vecs < 0) {
1576 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1577 if (vecs < 0) {
1578 vecs = 1;
1579 } else {
1580 for (i = 0; i < vecs; i++)
1581 dev->entry[i].vector = i + pdev->irq;
1582 }
1583 }
1584
1585 /*
1586 * Should investigate if there's a performance win from allocating
1587 * more queues than interrupt vectors; it might allow the submission
1588 * path to scale better, even if the receive path is limited by the
1589 * number of interrupts.
1590 */
1591 nr_io_queues = vecs;
1592 dev->max_qid = nr_io_queues;
1593
1594 result = queue_request_irq(dev, adminq, adminq->irqname);
1595 if (result) {
1596 adminq->cq_vector = -1;
1597 goto free_queues;
1598 }
1599
1600 /* Free previously allocated queues that are no longer usable */
1601 nvme_free_queues(dev, nr_io_queues + 1);
1602 return nvme_create_io_queues(dev);
1603
1604 free_queues:
1605 nvme_free_queues(dev, 1);
1606 return result;
1607 }
1608
1609 static void nvme_set_irq_hints(struct nvme_dev *dev)
1610 {
1611 struct nvme_queue *nvmeq;
1612 int i;
1613
1614 for (i = 0; i < dev->online_queues; i++) {
1615 nvmeq = dev->queues[i];
1616
1617 if (!nvmeq->tags || !(*nvmeq->tags))
1618 continue;
1619
1620 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1621 blk_mq_tags_cpumask(*nvmeq->tags));
1622 }
1623 }
1624
1625 static void nvme_dev_scan(struct work_struct *work)
1626 {
1627 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
1628
1629 if (!dev->tagset.tags)
1630 return;
1631 nvme_scan_namespaces(&dev->ctrl);
1632 nvme_set_irq_hints(dev);
1633 }
1634
1635 /*
1636 * Return: error value if an error occurred setting up the queues or calling
1637 * Identify Device. 0 if these succeeded, even if adding some of the
1638 * namespaces failed. At the moment, these failures are silent. TBD which
1639 * failures should be reported.
1640 */
1641 static int nvme_dev_add(struct nvme_dev *dev)
1642 {
1643 if (!dev->ctrl.tagset) {
1644 dev->tagset.ops = &nvme_mq_ops;
1645 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1646 dev->tagset.timeout = NVME_IO_TIMEOUT;
1647 dev->tagset.numa_node = dev_to_node(dev->dev);
1648 dev->tagset.queue_depth =
1649 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
1650 dev->tagset.cmd_size = nvme_cmd_size(dev);
1651 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1652 dev->tagset.driver_data = dev;
1653
1654 if (blk_mq_alloc_tag_set(&dev->tagset))
1655 return 0;
1656 dev->ctrl.tagset = &dev->tagset;
1657 }
1658 queue_work(nvme_workq, &dev->scan_work);
1659 return 0;
1660 }
1661
1662 static int nvme_dev_map(struct nvme_dev *dev)
1663 {
1664 u64 cap;
1665 int bars, result = -ENOMEM;
1666 struct pci_dev *pdev = to_pci_dev(dev->dev);
1667
1668 if (pci_enable_device_mem(pdev))
1669 return result;
1670
1671 dev->entry[0].vector = pdev->irq;
1672 pci_set_master(pdev);
1673 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1674 if (!bars)
1675 goto disable_pci;
1676
1677 if (pci_request_selected_regions(pdev, bars, "nvme"))
1678 goto disable_pci;
1679
1680 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1681 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
1682 goto disable;
1683
1684 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1685 if (!dev->bar)
1686 goto disable;
1687
1688 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
1689 result = -ENODEV;
1690 goto unmap;
1691 }
1692
1693 /*
1694 * Some devices don't advertse INTx interrupts, pre-enable a single
1695 * MSIX vec for setup. We'll adjust this later.
1696 */
1697 if (!pdev->irq) {
1698 result = pci_enable_msix(pdev, dev->entry, 1);
1699 if (result < 0)
1700 goto unmap;
1701 }
1702
1703 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1704
1705 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1706 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
1707 dev->dbs = dev->bar + 4096;
1708 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
1709 dev->cmb = nvme_map_cmb(dev);
1710
1711 return 0;
1712
1713 unmap:
1714 iounmap(dev->bar);
1715 dev->bar = NULL;
1716 disable:
1717 pci_release_regions(pdev);
1718 disable_pci:
1719 pci_disable_device(pdev);
1720 return result;
1721 }
1722
1723 static void nvme_dev_unmap(struct nvme_dev *dev)
1724 {
1725 struct pci_dev *pdev = to_pci_dev(dev->dev);
1726
1727 if (pdev->msi_enabled)
1728 pci_disable_msi(pdev);
1729 else if (pdev->msix_enabled)
1730 pci_disable_msix(pdev);
1731
1732 if (dev->bar) {
1733 iounmap(dev->bar);
1734 dev->bar = NULL;
1735 pci_release_regions(pdev);
1736 }
1737
1738 if (pci_is_enabled(pdev))
1739 pci_disable_device(pdev);
1740 }
1741
1742 struct nvme_delq_ctx {
1743 struct task_struct *waiter;
1744 struct kthread_worker *worker;
1745 atomic_t refcount;
1746 };
1747
1748 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1749 {
1750 dq->waiter = current;
1751 mb();
1752
1753 for (;;) {
1754 set_current_state(TASK_KILLABLE);
1755 if (!atomic_read(&dq->refcount))
1756 break;
1757 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1758 fatal_signal_pending(current)) {
1759 /*
1760 * Disable the controller first since we can't trust it
1761 * at this point, but leave the admin queue enabled
1762 * until all queue deletion requests are flushed.
1763 * FIXME: This may take a while if there are more h/w
1764 * queues than admin tags.
1765 */
1766 set_current_state(TASK_RUNNING);
1767 nvme_disable_ctrl(&dev->ctrl,
1768 lo_hi_readq(dev->bar + NVME_REG_CAP));
1769 nvme_clear_queue(dev->queues[0]);
1770 flush_kthread_worker(dq->worker);
1771 nvme_disable_queue(dev, 0);
1772 return;
1773 }
1774 }
1775 set_current_state(TASK_RUNNING);
1776 }
1777
1778 static void nvme_put_dq(struct nvme_delq_ctx *dq)
1779 {
1780 atomic_dec(&dq->refcount);
1781 if (dq->waiter)
1782 wake_up_process(dq->waiter);
1783 }
1784
1785 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1786 {
1787 atomic_inc(&dq->refcount);
1788 return dq;
1789 }
1790
1791 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1792 {
1793 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
1794 nvme_put_dq(dq);
1795
1796 spin_lock_irq(&nvmeq->q_lock);
1797 nvme_process_cq(nvmeq);
1798 spin_unlock_irq(&nvmeq->q_lock);
1799 }
1800
1801 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1802 kthread_work_func_t fn)
1803 {
1804 struct request *req;
1805 struct nvme_command c;
1806
1807 memset(&c, 0, sizeof(c));
1808 c.delete_queue.opcode = opcode;
1809 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1810
1811 init_kthread_work(&nvmeq->cmdinfo.work, fn);
1812
1813 req = nvme_alloc_request(nvmeq->dev->ctrl.admin_q, &c, 0);
1814 if (IS_ERR(req))
1815 return PTR_ERR(req);
1816
1817 req->timeout = ADMIN_TIMEOUT;
1818 req->end_io_data = &nvmeq->cmdinfo;
1819 blk_execute_rq_nowait(req->q, NULL, req, 0, async_cmd_info_endio);
1820 return 0;
1821 }
1822
1823 static void nvme_del_cq_work_handler(struct kthread_work *work)
1824 {
1825 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1826 cmdinfo.work);
1827 nvme_del_queue_end(nvmeq);
1828 }
1829
1830 static int nvme_delete_cq(struct nvme_queue *nvmeq)
1831 {
1832 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1833 nvme_del_cq_work_handler);
1834 }
1835
1836 static void nvme_del_sq_work_handler(struct kthread_work *work)
1837 {
1838 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1839 cmdinfo.work);
1840 int status = nvmeq->cmdinfo.status;
1841
1842 if (!status)
1843 status = nvme_delete_cq(nvmeq);
1844 if (status)
1845 nvme_del_queue_end(nvmeq);
1846 }
1847
1848 static int nvme_delete_sq(struct nvme_queue *nvmeq)
1849 {
1850 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1851 nvme_del_sq_work_handler);
1852 }
1853
1854 static void nvme_del_queue_start(struct kthread_work *work)
1855 {
1856 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1857 cmdinfo.work);
1858 if (nvme_delete_sq(nvmeq))
1859 nvme_del_queue_end(nvmeq);
1860 }
1861
1862 static void nvme_disable_io_queues(struct nvme_dev *dev)
1863 {
1864 int i;
1865 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1866 struct nvme_delq_ctx dq;
1867 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1868 &worker, "nvme%d", dev->ctrl.instance);
1869
1870 if (IS_ERR(kworker_task)) {
1871 dev_err(dev->dev,
1872 "Failed to create queue del task\n");
1873 for (i = dev->queue_count - 1; i > 0; i--)
1874 nvme_disable_queue(dev, i);
1875 return;
1876 }
1877
1878 dq.waiter = NULL;
1879 atomic_set(&dq.refcount, 0);
1880 dq.worker = &worker;
1881 for (i = dev->queue_count - 1; i > 0; i--) {
1882 struct nvme_queue *nvmeq = dev->queues[i];
1883
1884 if (nvme_suspend_queue(nvmeq))
1885 continue;
1886 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1887 nvmeq->cmdinfo.worker = dq.worker;
1888 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1889 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1890 }
1891 nvme_wait_dq(&dq, dev);
1892 kthread_stop(kworker_task);
1893 }
1894
1895 static int nvme_dev_list_add(struct nvme_dev *dev)
1896 {
1897 bool start_thread = false;
1898
1899 spin_lock(&dev_list_lock);
1900 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1901 start_thread = true;
1902 nvme_thread = NULL;
1903 }
1904 list_add(&dev->node, &dev_list);
1905 spin_unlock(&dev_list_lock);
1906
1907 if (start_thread) {
1908 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1909 wake_up_all(&nvme_kthread_wait);
1910 } else
1911 wait_event_killable(nvme_kthread_wait, nvme_thread);
1912
1913 if (IS_ERR_OR_NULL(nvme_thread))
1914 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1915
1916 return 0;
1917 }
1918
1919 /*
1920 * Remove the node from the device list and check
1921 * for whether or not we need to stop the nvme_thread.
1922 */
1923 static void nvme_dev_list_remove(struct nvme_dev *dev)
1924 {
1925 struct task_struct *tmp = NULL;
1926
1927 spin_lock(&dev_list_lock);
1928 list_del_init(&dev->node);
1929 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1930 tmp = nvme_thread;
1931 nvme_thread = NULL;
1932 }
1933 spin_unlock(&dev_list_lock);
1934
1935 if (tmp)
1936 kthread_stop(tmp);
1937 }
1938
1939 static void nvme_freeze_queues(struct nvme_dev *dev)
1940 {
1941 struct nvme_ns *ns;
1942
1943 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
1944 blk_mq_freeze_queue_start(ns->queue);
1945
1946 spin_lock_irq(ns->queue->queue_lock);
1947 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
1948 spin_unlock_irq(ns->queue->queue_lock);
1949
1950 blk_mq_cancel_requeue_work(ns->queue);
1951 blk_mq_stop_hw_queues(ns->queue);
1952 }
1953 }
1954
1955 static void nvme_unfreeze_queues(struct nvme_dev *dev)
1956 {
1957 struct nvme_ns *ns;
1958
1959 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
1960 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1961 blk_mq_unfreeze_queue(ns->queue);
1962 blk_mq_start_stopped_hw_queues(ns->queue, true);
1963 blk_mq_kick_requeue_list(ns->queue);
1964 }
1965 }
1966
1967 static void nvme_dev_shutdown(struct nvme_dev *dev)
1968 {
1969 int i;
1970 u32 csts = -1;
1971
1972 nvme_dev_list_remove(dev);
1973
1974 mutex_lock(&dev->shutdown_lock);
1975 if (dev->bar) {
1976 nvme_freeze_queues(dev);
1977 csts = readl(dev->bar + NVME_REG_CSTS);
1978 }
1979 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
1980 for (i = dev->queue_count - 1; i >= 0; i--) {
1981 struct nvme_queue *nvmeq = dev->queues[i];
1982 nvme_suspend_queue(nvmeq);
1983 }
1984 } else {
1985 nvme_disable_io_queues(dev);
1986 nvme_shutdown_ctrl(&dev->ctrl);
1987 nvme_disable_queue(dev, 0);
1988 }
1989 nvme_dev_unmap(dev);
1990
1991 for (i = dev->queue_count - 1; i >= 0; i--)
1992 nvme_clear_queue(dev->queues[i]);
1993 mutex_unlock(&dev->shutdown_lock);
1994 }
1995
1996 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1997 {
1998 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
1999 PAGE_SIZE, PAGE_SIZE, 0);
2000 if (!dev->prp_page_pool)
2001 return -ENOMEM;
2002
2003 /* Optimisation for I/Os between 4k and 128k */
2004 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2005 256, 256, 0);
2006 if (!dev->prp_small_pool) {
2007 dma_pool_destroy(dev->prp_page_pool);
2008 return -ENOMEM;
2009 }
2010 return 0;
2011 }
2012
2013 static void nvme_release_prp_pools(struct nvme_dev *dev)
2014 {
2015 dma_pool_destroy(dev->prp_page_pool);
2016 dma_pool_destroy(dev->prp_small_pool);
2017 }
2018
2019 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2020 {
2021 struct nvme_dev *dev = to_nvme_dev(ctrl);
2022
2023 put_device(dev->dev);
2024 if (dev->tagset.tags)
2025 blk_mq_free_tag_set(&dev->tagset);
2026 if (dev->ctrl.admin_q)
2027 blk_put_queue(dev->ctrl.admin_q);
2028 kfree(dev->queues);
2029 kfree(dev->entry);
2030 kfree(dev);
2031 }
2032
2033 static void nvme_reset_work(struct work_struct *work)
2034 {
2035 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2036 int result;
2037
2038 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2039 goto out;
2040
2041 /*
2042 * If we're called to reset a live controller first shut it down before
2043 * moving on.
2044 */
2045 if (dev->bar)
2046 nvme_dev_shutdown(dev);
2047
2048 set_bit(NVME_CTRL_RESETTING, &dev->flags);
2049
2050 result = nvme_dev_map(dev);
2051 if (result)
2052 goto out;
2053
2054 result = nvme_configure_admin_queue(dev);
2055 if (result)
2056 goto unmap;
2057
2058 nvme_init_queue(dev->queues[0], 0);
2059 result = nvme_alloc_admin_tags(dev);
2060 if (result)
2061 goto disable;
2062
2063 result = nvme_init_identify(&dev->ctrl);
2064 if (result)
2065 goto free_tags;
2066
2067 result = nvme_setup_io_queues(dev);
2068 if (result)
2069 goto free_tags;
2070
2071 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
2072
2073 result = nvme_dev_list_add(dev);
2074 if (result)
2075 goto remove;
2076
2077 /*
2078 * Keep the controller around but remove all namespaces if we don't have
2079 * any working I/O queue.
2080 */
2081 if (dev->online_queues < 2) {
2082 dev_warn(dev->dev, "IO queues not created\n");
2083 nvme_remove_namespaces(&dev->ctrl);
2084 } else {
2085 nvme_unfreeze_queues(dev);
2086 nvme_dev_add(dev);
2087 }
2088
2089 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
2090 return;
2091
2092 remove:
2093 nvme_dev_list_remove(dev);
2094 free_tags:
2095 nvme_dev_remove_admin(dev);
2096 blk_put_queue(dev->ctrl.admin_q);
2097 dev->ctrl.admin_q = NULL;
2098 dev->queues[0]->tags = NULL;
2099 disable:
2100 nvme_disable_queue(dev, 0);
2101 unmap:
2102 nvme_dev_unmap(dev);
2103 out:
2104 nvme_remove_dead_ctrl(dev);
2105 }
2106
2107 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2108 {
2109 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2110 struct pci_dev *pdev = to_pci_dev(dev->dev);
2111
2112 if (pci_get_drvdata(pdev))
2113 pci_stop_and_remove_bus_device_locked(pdev);
2114 nvme_put_ctrl(&dev->ctrl);
2115 }
2116
2117 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2118 {
2119 dev_warn(dev->dev, "Removing after probe failure\n");
2120 kref_get(&dev->ctrl.kref);
2121 if (!schedule_work(&dev->remove_work))
2122 nvme_put_ctrl(&dev->ctrl);
2123 }
2124
2125 static int nvme_reset(struct nvme_dev *dev)
2126 {
2127 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
2128 return -ENODEV;
2129
2130 if (!queue_work(nvme_workq, &dev->reset_work))
2131 return -EBUSY;
2132
2133 flush_work(&dev->reset_work);
2134 return 0;
2135 }
2136
2137 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2138 {
2139 *val = readl(to_nvme_dev(ctrl)->bar + off);
2140 return 0;
2141 }
2142
2143 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2144 {
2145 writel(val, to_nvme_dev(ctrl)->bar + off);
2146 return 0;
2147 }
2148
2149 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2150 {
2151 *val = readq(to_nvme_dev(ctrl)->bar + off);
2152 return 0;
2153 }
2154
2155 static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2156 {
2157 struct nvme_dev *dev = to_nvme_dev(ctrl);
2158
2159 return !dev->bar || dev->online_queues < 2;
2160 }
2161
2162 static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2163 {
2164 return nvme_reset(to_nvme_dev(ctrl));
2165 }
2166
2167 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2168 .reg_read32 = nvme_pci_reg_read32,
2169 .reg_write32 = nvme_pci_reg_write32,
2170 .reg_read64 = nvme_pci_reg_read64,
2171 .io_incapable = nvme_pci_io_incapable,
2172 .reset_ctrl = nvme_pci_reset_ctrl,
2173 .free_ctrl = nvme_pci_free_ctrl,
2174 };
2175
2176 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2177 {
2178 int node, result = -ENOMEM;
2179 struct nvme_dev *dev;
2180
2181 node = dev_to_node(&pdev->dev);
2182 if (node == NUMA_NO_NODE)
2183 set_dev_node(&pdev->dev, 0);
2184
2185 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2186 if (!dev)
2187 return -ENOMEM;
2188 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2189 GFP_KERNEL, node);
2190 if (!dev->entry)
2191 goto free;
2192 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2193 GFP_KERNEL, node);
2194 if (!dev->queues)
2195 goto free;
2196
2197 dev->dev = get_device(&pdev->dev);
2198 pci_set_drvdata(pdev, dev);
2199
2200 INIT_LIST_HEAD(&dev->node);
2201 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2202 INIT_WORK(&dev->reset_work, nvme_reset_work);
2203 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2204 mutex_init(&dev->shutdown_lock);
2205
2206 result = nvme_setup_prp_pools(dev);
2207 if (result)
2208 goto put_pci;
2209
2210 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2211 id->driver_data);
2212 if (result)
2213 goto release_pools;
2214
2215 queue_work(nvme_workq, &dev->reset_work);
2216 return 0;
2217
2218 release_pools:
2219 nvme_release_prp_pools(dev);
2220 put_pci:
2221 put_device(dev->dev);
2222 free:
2223 kfree(dev->queues);
2224 kfree(dev->entry);
2225 kfree(dev);
2226 return result;
2227 }
2228
2229 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2230 {
2231 struct nvme_dev *dev = pci_get_drvdata(pdev);
2232
2233 if (prepare)
2234 nvme_dev_shutdown(dev);
2235 else
2236 queue_work(nvme_workq, &dev->reset_work);
2237 }
2238
2239 static void nvme_shutdown(struct pci_dev *pdev)
2240 {
2241 struct nvme_dev *dev = pci_get_drvdata(pdev);
2242 nvme_dev_shutdown(dev);
2243 }
2244
2245 static void nvme_remove(struct pci_dev *pdev)
2246 {
2247 struct nvme_dev *dev = pci_get_drvdata(pdev);
2248
2249 spin_lock(&dev_list_lock);
2250 list_del_init(&dev->node);
2251 spin_unlock(&dev_list_lock);
2252
2253 pci_set_drvdata(pdev, NULL);
2254 flush_work(&dev->reset_work);
2255 flush_work(&dev->scan_work);
2256 nvme_remove_namespaces(&dev->ctrl);
2257 nvme_uninit_ctrl(&dev->ctrl);
2258 nvme_dev_shutdown(dev);
2259 nvme_dev_remove_admin(dev);
2260 nvme_free_queues(dev, 0);
2261 nvme_release_cmb(dev);
2262 nvme_release_prp_pools(dev);
2263 nvme_put_ctrl(&dev->ctrl);
2264 }
2265
2266 /* These functions are yet to be implemented */
2267 #define nvme_error_detected NULL
2268 #define nvme_dump_registers NULL
2269 #define nvme_link_reset NULL
2270 #define nvme_slot_reset NULL
2271 #define nvme_error_resume NULL
2272
2273 #ifdef CONFIG_PM_SLEEP
2274 static int nvme_suspend(struct device *dev)
2275 {
2276 struct pci_dev *pdev = to_pci_dev(dev);
2277 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2278
2279 nvme_dev_shutdown(ndev);
2280 return 0;
2281 }
2282
2283 static int nvme_resume(struct device *dev)
2284 {
2285 struct pci_dev *pdev = to_pci_dev(dev);
2286 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2287
2288 queue_work(nvme_workq, &ndev->reset_work);
2289 return 0;
2290 }
2291 #endif
2292
2293 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2294
2295 static const struct pci_error_handlers nvme_err_handler = {
2296 .error_detected = nvme_error_detected,
2297 .mmio_enabled = nvme_dump_registers,
2298 .link_reset = nvme_link_reset,
2299 .slot_reset = nvme_slot_reset,
2300 .resume = nvme_error_resume,
2301 .reset_notify = nvme_reset_notify,
2302 };
2303
2304 /* Move to pci_ids.h later */
2305 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2306
2307 static const struct pci_device_id nvme_id_table[] = {
2308 { PCI_VDEVICE(INTEL, 0x0953),
2309 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
2310 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2311 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
2312 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2313 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
2314 { 0, }
2315 };
2316 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2317
2318 static struct pci_driver nvme_driver = {
2319 .name = "nvme",
2320 .id_table = nvme_id_table,
2321 .probe = nvme_probe,
2322 .remove = nvme_remove,
2323 .shutdown = nvme_shutdown,
2324 .driver = {
2325 .pm = &nvme_dev_pm_ops,
2326 },
2327 .err_handler = &nvme_err_handler,
2328 };
2329
2330 static int __init nvme_init(void)
2331 {
2332 int result;
2333
2334 init_waitqueue_head(&nvme_kthread_wait);
2335
2336 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
2337 if (!nvme_workq)
2338 return -ENOMEM;
2339
2340 result = nvme_core_init();
2341 if (result < 0)
2342 goto kill_workq;
2343
2344 result = pci_register_driver(&nvme_driver);
2345 if (result)
2346 goto core_exit;
2347 return 0;
2348
2349 core_exit:
2350 nvme_core_exit();
2351 kill_workq:
2352 destroy_workqueue(nvme_workq);
2353 return result;
2354 }
2355
2356 static void __exit nvme_exit(void)
2357 {
2358 pci_unregister_driver(&nvme_driver);
2359 nvme_core_exit();
2360 destroy_workqueue(nvme_workq);
2361 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2362 _nvme_check_size();
2363 }
2364
2365 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2366 MODULE_LICENSE("GPL");
2367 MODULE_VERSION("1.0");
2368 module_init(nvme_init);
2369 module_exit(nvme_exit);
This page took 0.079262 seconds and 5 git commands to generate.