x86/cpu: Rename Merrifield2 to Moorefield
[deliverable/linux.git] / drivers / powercap / intel_rapl.c
1 /*
2 * Intel Running Average Power Limit (RAPL) Driver
3 * Copyright (c) 2013, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.
16 *
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list.h>
23 #include <linux/types.h>
24 #include <linux/device.h>
25 #include <linux/slab.h>
26 #include <linux/log2.h>
27 #include <linux/bitmap.h>
28 #include <linux/delay.h>
29 #include <linux/sysfs.h>
30 #include <linux/cpu.h>
31 #include <linux/powercap.h>
32 #include <asm/iosf_mbi.h>
33
34 #include <asm/processor.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/intel-family.h>
37
38 /* Local defines */
39 #define MSR_PLATFORM_POWER_LIMIT 0x0000065C
40
41 /* bitmasks for RAPL MSRs, used by primitive access functions */
42 #define ENERGY_STATUS_MASK 0xffffffff
43
44 #define POWER_LIMIT1_MASK 0x7FFF
45 #define POWER_LIMIT1_ENABLE BIT(15)
46 #define POWER_LIMIT1_CLAMP BIT(16)
47
48 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
49 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
50 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
51 #define POWER_PACKAGE_LOCK BIT_ULL(63)
52 #define POWER_PP_LOCK BIT(31)
53
54 #define TIME_WINDOW1_MASK (0x7FULL<<17)
55 #define TIME_WINDOW2_MASK (0x7FULL<<49)
56
57 #define POWER_UNIT_OFFSET 0
58 #define POWER_UNIT_MASK 0x0F
59
60 #define ENERGY_UNIT_OFFSET 0x08
61 #define ENERGY_UNIT_MASK 0x1F00
62
63 #define TIME_UNIT_OFFSET 0x10
64 #define TIME_UNIT_MASK 0xF0000
65
66 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
67 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
68 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
69 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
70
71 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
72 #define PP_POLICY_MASK 0x1F
73
74 /* Non HW constants */
75 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
76 #define RAPL_PRIMITIVE_DUMMY BIT(2)
77
78 #define TIME_WINDOW_MAX_MSEC 40000
79 #define TIME_WINDOW_MIN_MSEC 250
80 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
81 enum unit_type {
82 ARBITRARY_UNIT, /* no translation */
83 POWER_UNIT,
84 ENERGY_UNIT,
85 TIME_UNIT,
86 };
87
88 enum rapl_domain_type {
89 RAPL_DOMAIN_PACKAGE, /* entire package/socket */
90 RAPL_DOMAIN_PP0, /* core power plane */
91 RAPL_DOMAIN_PP1, /* graphics uncore */
92 RAPL_DOMAIN_DRAM,/* DRAM control_type */
93 RAPL_DOMAIN_PLATFORM, /* PSys control_type */
94 RAPL_DOMAIN_MAX,
95 };
96
97 enum rapl_domain_msr_id {
98 RAPL_DOMAIN_MSR_LIMIT,
99 RAPL_DOMAIN_MSR_STATUS,
100 RAPL_DOMAIN_MSR_PERF,
101 RAPL_DOMAIN_MSR_POLICY,
102 RAPL_DOMAIN_MSR_INFO,
103 RAPL_DOMAIN_MSR_MAX,
104 };
105
106 /* per domain data, some are optional */
107 enum rapl_primitives {
108 ENERGY_COUNTER,
109 POWER_LIMIT1,
110 POWER_LIMIT2,
111 FW_LOCK,
112
113 PL1_ENABLE, /* power limit 1, aka long term */
114 PL1_CLAMP, /* allow frequency to go below OS request */
115 PL2_ENABLE, /* power limit 2, aka short term, instantaneous */
116 PL2_CLAMP,
117
118 TIME_WINDOW1, /* long term */
119 TIME_WINDOW2, /* short term */
120 THERMAL_SPEC_POWER,
121 MAX_POWER,
122
123 MIN_POWER,
124 MAX_TIME_WINDOW,
125 THROTTLED_TIME,
126 PRIORITY_LEVEL,
127
128 /* below are not raw primitive data */
129 AVERAGE_POWER,
130 NR_RAPL_PRIMITIVES,
131 };
132
133 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
134
135 /* Can be expanded to include events, etc.*/
136 struct rapl_domain_data {
137 u64 primitives[NR_RAPL_PRIMITIVES];
138 unsigned long timestamp;
139 };
140
141 struct msrl_action {
142 u32 msr_no;
143 u64 clear_mask;
144 u64 set_mask;
145 int err;
146 };
147
148 #define DOMAIN_STATE_INACTIVE BIT(0)
149 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
150 #define DOMAIN_STATE_BIOS_LOCKED BIT(2)
151
152 #define NR_POWER_LIMITS (2)
153 struct rapl_power_limit {
154 struct powercap_zone_constraint *constraint;
155 int prim_id; /* primitive ID used to enable */
156 struct rapl_domain *domain;
157 const char *name;
158 };
159
160 static const char pl1_name[] = "long_term";
161 static const char pl2_name[] = "short_term";
162
163 struct rapl_package;
164 struct rapl_domain {
165 const char *name;
166 enum rapl_domain_type id;
167 int msrs[RAPL_DOMAIN_MSR_MAX];
168 struct powercap_zone power_zone;
169 struct rapl_domain_data rdd;
170 struct rapl_power_limit rpl[NR_POWER_LIMITS];
171 u64 attr_map; /* track capabilities */
172 unsigned int state;
173 unsigned int domain_energy_unit;
174 struct rapl_package *rp;
175 };
176 #define power_zone_to_rapl_domain(_zone) \
177 container_of(_zone, struct rapl_domain, power_zone)
178
179
180 /* Each physical package contains multiple domains, these are the common
181 * data across RAPL domains within a package.
182 */
183 struct rapl_package {
184 unsigned int id; /* physical package/socket id */
185 unsigned int nr_domains;
186 unsigned long domain_map; /* bit map of active domains */
187 unsigned int power_unit;
188 unsigned int energy_unit;
189 unsigned int time_unit;
190 struct rapl_domain *domains; /* array of domains, sized at runtime */
191 struct powercap_zone *power_zone; /* keep track of parent zone */
192 int nr_cpus; /* active cpus on the package, topology info is lost during
193 * cpu hotplug. so we have to track ourselves.
194 */
195 unsigned long power_limit_irq; /* keep track of package power limit
196 * notify interrupt enable status.
197 */
198 struct list_head plist;
199 int lead_cpu; /* one active cpu per package for access */
200 };
201
202 struct rapl_defaults {
203 u8 floor_freq_reg_addr;
204 int (*check_unit)(struct rapl_package *rp, int cpu);
205 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
206 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
207 bool to_raw);
208 unsigned int dram_domain_energy_unit;
209 };
210 static struct rapl_defaults *rapl_defaults;
211
212 /* Sideband MBI registers */
213 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
214 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
215
216 #define PACKAGE_PLN_INT_SAVED BIT(0)
217 #define MAX_PRIM_NAME (32)
218
219 /* per domain data. used to describe individual knobs such that access function
220 * can be consolidated into one instead of many inline functions.
221 */
222 struct rapl_primitive_info {
223 const char *name;
224 u64 mask;
225 int shift;
226 enum rapl_domain_msr_id id;
227 enum unit_type unit;
228 u32 flag;
229 };
230
231 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
232 .name = #p, \
233 .mask = m, \
234 .shift = s, \
235 .id = i, \
236 .unit = u, \
237 .flag = f \
238 }
239
240 static void rapl_init_domains(struct rapl_package *rp);
241 static int rapl_read_data_raw(struct rapl_domain *rd,
242 enum rapl_primitives prim,
243 bool xlate, u64 *data);
244 static int rapl_write_data_raw(struct rapl_domain *rd,
245 enum rapl_primitives prim,
246 unsigned long long value);
247 static u64 rapl_unit_xlate(struct rapl_domain *rd,
248 enum unit_type type, u64 value,
249 int to_raw);
250 static void package_power_limit_irq_save(struct rapl_package *rp);
251
252 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
253
254 static const char * const rapl_domain_names[] = {
255 "package",
256 "core",
257 "uncore",
258 "dram",
259 "psys",
260 };
261
262 static struct powercap_control_type *control_type; /* PowerCap Controller */
263 static struct rapl_domain *platform_rapl_domain; /* Platform (PSys) domain */
264
265 /* caller to ensure CPU hotplug lock is held */
266 static struct rapl_package *find_package_by_id(int id)
267 {
268 struct rapl_package *rp;
269
270 list_for_each_entry(rp, &rapl_packages, plist) {
271 if (rp->id == id)
272 return rp;
273 }
274
275 return NULL;
276 }
277
278 /* caller must hold cpu hotplug lock */
279 static void rapl_cleanup_data(void)
280 {
281 struct rapl_package *p, *tmp;
282
283 list_for_each_entry_safe(p, tmp, &rapl_packages, plist) {
284 kfree(p->domains);
285 list_del(&p->plist);
286 kfree(p);
287 }
288 }
289
290 static int get_energy_counter(struct powercap_zone *power_zone, u64 *energy_raw)
291 {
292 struct rapl_domain *rd;
293 u64 energy_now;
294
295 /* prevent CPU hotplug, make sure the RAPL domain does not go
296 * away while reading the counter.
297 */
298 get_online_cpus();
299 rd = power_zone_to_rapl_domain(power_zone);
300
301 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
302 *energy_raw = energy_now;
303 put_online_cpus();
304
305 return 0;
306 }
307 put_online_cpus();
308
309 return -EIO;
310 }
311
312 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
313 {
314 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
315
316 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
317 return 0;
318 }
319
320 static int release_zone(struct powercap_zone *power_zone)
321 {
322 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
323 struct rapl_package *rp = rd->rp;
324
325 /* package zone is the last zone of a package, we can free
326 * memory here since all children has been unregistered.
327 */
328 if (rd->id == RAPL_DOMAIN_PACKAGE) {
329 kfree(rd);
330 rp->domains = NULL;
331 }
332
333 return 0;
334
335 }
336
337 static int find_nr_power_limit(struct rapl_domain *rd)
338 {
339 int i, nr_pl = 0;
340
341 for (i = 0; i < NR_POWER_LIMITS; i++) {
342 if (rd->rpl[i].name)
343 nr_pl++;
344 }
345
346 return nr_pl;
347 }
348
349 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
350 {
351 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
352
353 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
354 return -EACCES;
355
356 get_online_cpus();
357 rapl_write_data_raw(rd, PL1_ENABLE, mode);
358 if (rapl_defaults->set_floor_freq)
359 rapl_defaults->set_floor_freq(rd, mode);
360 put_online_cpus();
361
362 return 0;
363 }
364
365 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
366 {
367 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
368 u64 val;
369
370 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
371 *mode = false;
372 return 0;
373 }
374 get_online_cpus();
375 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
376 put_online_cpus();
377 return -EIO;
378 }
379 *mode = val;
380 put_online_cpus();
381
382 return 0;
383 }
384
385 /* per RAPL domain ops, in the order of rapl_domain_type */
386 static const struct powercap_zone_ops zone_ops[] = {
387 /* RAPL_DOMAIN_PACKAGE */
388 {
389 .get_energy_uj = get_energy_counter,
390 .get_max_energy_range_uj = get_max_energy_counter,
391 .release = release_zone,
392 .set_enable = set_domain_enable,
393 .get_enable = get_domain_enable,
394 },
395 /* RAPL_DOMAIN_PP0 */
396 {
397 .get_energy_uj = get_energy_counter,
398 .get_max_energy_range_uj = get_max_energy_counter,
399 .release = release_zone,
400 .set_enable = set_domain_enable,
401 .get_enable = get_domain_enable,
402 },
403 /* RAPL_DOMAIN_PP1 */
404 {
405 .get_energy_uj = get_energy_counter,
406 .get_max_energy_range_uj = get_max_energy_counter,
407 .release = release_zone,
408 .set_enable = set_domain_enable,
409 .get_enable = get_domain_enable,
410 },
411 /* RAPL_DOMAIN_DRAM */
412 {
413 .get_energy_uj = get_energy_counter,
414 .get_max_energy_range_uj = get_max_energy_counter,
415 .release = release_zone,
416 .set_enable = set_domain_enable,
417 .get_enable = get_domain_enable,
418 },
419 /* RAPL_DOMAIN_PLATFORM */
420 {
421 .get_energy_uj = get_energy_counter,
422 .get_max_energy_range_uj = get_max_energy_counter,
423 .release = release_zone,
424 .set_enable = set_domain_enable,
425 .get_enable = get_domain_enable,
426 },
427 };
428
429
430 /*
431 * Constraint index used by powercap can be different than power limit (PL)
432 * index in that some PLs maybe missing due to non-existant MSRs. So we
433 * need to convert here by finding the valid PLs only (name populated).
434 */
435 static int contraint_to_pl(struct rapl_domain *rd, int cid)
436 {
437 int i, j;
438
439 for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
440 if ((rd->rpl[i].name) && j++ == cid) {
441 pr_debug("%s: index %d\n", __func__, i);
442 return i;
443 }
444 }
445
446 return -EINVAL;
447 }
448
449 static int set_power_limit(struct powercap_zone *power_zone, int cid,
450 u64 power_limit)
451 {
452 struct rapl_domain *rd;
453 struct rapl_package *rp;
454 int ret = 0;
455 int id;
456
457 get_online_cpus();
458 rd = power_zone_to_rapl_domain(power_zone);
459 id = contraint_to_pl(rd, cid);
460
461 rp = rd->rp;
462
463 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
464 dev_warn(&power_zone->dev, "%s locked by BIOS, monitoring only\n",
465 rd->name);
466 ret = -EACCES;
467 goto set_exit;
468 }
469
470 switch (rd->rpl[id].prim_id) {
471 case PL1_ENABLE:
472 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
473 break;
474 case PL2_ENABLE:
475 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
476 break;
477 default:
478 ret = -EINVAL;
479 }
480 if (!ret)
481 package_power_limit_irq_save(rp);
482 set_exit:
483 put_online_cpus();
484 return ret;
485 }
486
487 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
488 u64 *data)
489 {
490 struct rapl_domain *rd;
491 u64 val;
492 int prim;
493 int ret = 0;
494 int id;
495
496 get_online_cpus();
497 rd = power_zone_to_rapl_domain(power_zone);
498 id = contraint_to_pl(rd, cid);
499 switch (rd->rpl[id].prim_id) {
500 case PL1_ENABLE:
501 prim = POWER_LIMIT1;
502 break;
503 case PL2_ENABLE:
504 prim = POWER_LIMIT2;
505 break;
506 default:
507 put_online_cpus();
508 return -EINVAL;
509 }
510 if (rapl_read_data_raw(rd, prim, true, &val))
511 ret = -EIO;
512 else
513 *data = val;
514
515 put_online_cpus();
516
517 return ret;
518 }
519
520 static int set_time_window(struct powercap_zone *power_zone, int cid,
521 u64 window)
522 {
523 struct rapl_domain *rd;
524 int ret = 0;
525 int id;
526
527 get_online_cpus();
528 rd = power_zone_to_rapl_domain(power_zone);
529 id = contraint_to_pl(rd, cid);
530
531 switch (rd->rpl[id].prim_id) {
532 case PL1_ENABLE:
533 rapl_write_data_raw(rd, TIME_WINDOW1, window);
534 break;
535 case PL2_ENABLE:
536 rapl_write_data_raw(rd, TIME_WINDOW2, window);
537 break;
538 default:
539 ret = -EINVAL;
540 }
541 put_online_cpus();
542 return ret;
543 }
544
545 static int get_time_window(struct powercap_zone *power_zone, int cid, u64 *data)
546 {
547 struct rapl_domain *rd;
548 u64 val;
549 int ret = 0;
550 int id;
551
552 get_online_cpus();
553 rd = power_zone_to_rapl_domain(power_zone);
554 id = contraint_to_pl(rd, cid);
555
556 switch (rd->rpl[id].prim_id) {
557 case PL1_ENABLE:
558 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
559 break;
560 case PL2_ENABLE:
561 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
562 break;
563 default:
564 put_online_cpus();
565 return -EINVAL;
566 }
567 if (!ret)
568 *data = val;
569 put_online_cpus();
570
571 return ret;
572 }
573
574 static const char *get_constraint_name(struct powercap_zone *power_zone, int cid)
575 {
576 struct rapl_domain *rd;
577 int id;
578
579 rd = power_zone_to_rapl_domain(power_zone);
580 id = contraint_to_pl(rd, cid);
581 if (id >= 0)
582 return rd->rpl[id].name;
583
584 return NULL;
585 }
586
587
588 static int get_max_power(struct powercap_zone *power_zone, int id,
589 u64 *data)
590 {
591 struct rapl_domain *rd;
592 u64 val;
593 int prim;
594 int ret = 0;
595
596 get_online_cpus();
597 rd = power_zone_to_rapl_domain(power_zone);
598 switch (rd->rpl[id].prim_id) {
599 case PL1_ENABLE:
600 prim = THERMAL_SPEC_POWER;
601 break;
602 case PL2_ENABLE:
603 prim = MAX_POWER;
604 break;
605 default:
606 put_online_cpus();
607 return -EINVAL;
608 }
609 if (rapl_read_data_raw(rd, prim, true, &val))
610 ret = -EIO;
611 else
612 *data = val;
613
614 put_online_cpus();
615
616 return ret;
617 }
618
619 static const struct powercap_zone_constraint_ops constraint_ops = {
620 .set_power_limit_uw = set_power_limit,
621 .get_power_limit_uw = get_current_power_limit,
622 .set_time_window_us = set_time_window,
623 .get_time_window_us = get_time_window,
624 .get_max_power_uw = get_max_power,
625 .get_name = get_constraint_name,
626 };
627
628 /* called after domain detection and package level data are set */
629 static void rapl_init_domains(struct rapl_package *rp)
630 {
631 int i;
632 struct rapl_domain *rd = rp->domains;
633
634 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
635 unsigned int mask = rp->domain_map & (1 << i);
636 switch (mask) {
637 case BIT(RAPL_DOMAIN_PACKAGE):
638 rd->name = rapl_domain_names[RAPL_DOMAIN_PACKAGE];
639 rd->id = RAPL_DOMAIN_PACKAGE;
640 rd->msrs[0] = MSR_PKG_POWER_LIMIT;
641 rd->msrs[1] = MSR_PKG_ENERGY_STATUS;
642 rd->msrs[2] = MSR_PKG_PERF_STATUS;
643 rd->msrs[3] = 0;
644 rd->msrs[4] = MSR_PKG_POWER_INFO;
645 rd->rpl[0].prim_id = PL1_ENABLE;
646 rd->rpl[0].name = pl1_name;
647 rd->rpl[1].prim_id = PL2_ENABLE;
648 rd->rpl[1].name = pl2_name;
649 break;
650 case BIT(RAPL_DOMAIN_PP0):
651 rd->name = rapl_domain_names[RAPL_DOMAIN_PP0];
652 rd->id = RAPL_DOMAIN_PP0;
653 rd->msrs[0] = MSR_PP0_POWER_LIMIT;
654 rd->msrs[1] = MSR_PP0_ENERGY_STATUS;
655 rd->msrs[2] = 0;
656 rd->msrs[3] = MSR_PP0_POLICY;
657 rd->msrs[4] = 0;
658 rd->rpl[0].prim_id = PL1_ENABLE;
659 rd->rpl[0].name = pl1_name;
660 break;
661 case BIT(RAPL_DOMAIN_PP1):
662 rd->name = rapl_domain_names[RAPL_DOMAIN_PP1];
663 rd->id = RAPL_DOMAIN_PP1;
664 rd->msrs[0] = MSR_PP1_POWER_LIMIT;
665 rd->msrs[1] = MSR_PP1_ENERGY_STATUS;
666 rd->msrs[2] = 0;
667 rd->msrs[3] = MSR_PP1_POLICY;
668 rd->msrs[4] = 0;
669 rd->rpl[0].prim_id = PL1_ENABLE;
670 rd->rpl[0].name = pl1_name;
671 break;
672 case BIT(RAPL_DOMAIN_DRAM):
673 rd->name = rapl_domain_names[RAPL_DOMAIN_DRAM];
674 rd->id = RAPL_DOMAIN_DRAM;
675 rd->msrs[0] = MSR_DRAM_POWER_LIMIT;
676 rd->msrs[1] = MSR_DRAM_ENERGY_STATUS;
677 rd->msrs[2] = MSR_DRAM_PERF_STATUS;
678 rd->msrs[3] = 0;
679 rd->msrs[4] = MSR_DRAM_POWER_INFO;
680 rd->rpl[0].prim_id = PL1_ENABLE;
681 rd->rpl[0].name = pl1_name;
682 rd->domain_energy_unit =
683 rapl_defaults->dram_domain_energy_unit;
684 if (rd->domain_energy_unit)
685 pr_info("DRAM domain energy unit %dpj\n",
686 rd->domain_energy_unit);
687 break;
688 }
689 if (mask) {
690 rd->rp = rp;
691 rd++;
692 }
693 }
694 }
695
696 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
697 u64 value, int to_raw)
698 {
699 u64 units = 1;
700 struct rapl_package *rp = rd->rp;
701 u64 scale = 1;
702
703 switch (type) {
704 case POWER_UNIT:
705 units = rp->power_unit;
706 break;
707 case ENERGY_UNIT:
708 scale = ENERGY_UNIT_SCALE;
709 /* per domain unit takes precedence */
710 if (rd && rd->domain_energy_unit)
711 units = rd->domain_energy_unit;
712 else
713 units = rp->energy_unit;
714 break;
715 case TIME_UNIT:
716 return rapl_defaults->compute_time_window(rp, value, to_raw);
717 case ARBITRARY_UNIT:
718 default:
719 return value;
720 };
721
722 if (to_raw)
723 return div64_u64(value, units) * scale;
724
725 value *= units;
726
727 return div64_u64(value, scale);
728 }
729
730 /* in the order of enum rapl_primitives */
731 static struct rapl_primitive_info rpi[] = {
732 /* name, mask, shift, msr index, unit divisor */
733 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
734 RAPL_DOMAIN_MSR_STATUS, ENERGY_UNIT, 0),
735 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
736 RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
737 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
738 RAPL_DOMAIN_MSR_LIMIT, POWER_UNIT, 0),
739 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_PP_LOCK, 31,
740 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
741 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
742 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
743 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
744 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
745 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
746 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
747 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
748 RAPL_DOMAIN_MSR_LIMIT, ARBITRARY_UNIT, 0),
749 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
750 RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
751 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
752 RAPL_DOMAIN_MSR_LIMIT, TIME_UNIT, 0),
753 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
754 0, RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
755 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
756 RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
757 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
758 RAPL_DOMAIN_MSR_INFO, POWER_UNIT, 0),
759 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
760 RAPL_DOMAIN_MSR_INFO, TIME_UNIT, 0),
761 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
762 RAPL_DOMAIN_MSR_PERF, TIME_UNIT, 0),
763 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
764 RAPL_DOMAIN_MSR_POLICY, ARBITRARY_UNIT, 0),
765 /* non-hardware */
766 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
767 RAPL_PRIMITIVE_DERIVED),
768 {NULL, 0, 0, 0},
769 };
770
771 /* Read primitive data based on its related struct rapl_primitive_info.
772 * if xlate flag is set, return translated data based on data units, i.e.
773 * time, energy, and power.
774 * RAPL MSRs are non-architectual and are laid out not consistently across
775 * domains. Here we use primitive info to allow writing consolidated access
776 * functions.
777 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
778 * is pre-assigned based on RAPL unit MSRs read at init time.
779 * 63-------------------------- 31--------------------------- 0
780 * | xxxxx (mask) |
781 * | |<- shift ----------------|
782 * 63-------------------------- 31--------------------------- 0
783 */
784 static int rapl_read_data_raw(struct rapl_domain *rd,
785 enum rapl_primitives prim,
786 bool xlate, u64 *data)
787 {
788 u64 value, final;
789 u32 msr;
790 struct rapl_primitive_info *rp = &rpi[prim];
791 int cpu;
792
793 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
794 return -EINVAL;
795
796 msr = rd->msrs[rp->id];
797 if (!msr)
798 return -EINVAL;
799
800 cpu = rd->rp->lead_cpu;
801
802 /* special-case package domain, which uses a different bit*/
803 if (prim == FW_LOCK && rd->id == RAPL_DOMAIN_PACKAGE) {
804 rp->mask = POWER_PACKAGE_LOCK;
805 rp->shift = 63;
806 }
807 /* non-hardware data are collected by the polling thread */
808 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
809 *data = rd->rdd.primitives[prim];
810 return 0;
811 }
812
813 if (rdmsrl_safe_on_cpu(cpu, msr, &value)) {
814 pr_debug("failed to read msr 0x%x on cpu %d\n", msr, cpu);
815 return -EIO;
816 }
817
818 final = value & rp->mask;
819 final = final >> rp->shift;
820 if (xlate)
821 *data = rapl_unit_xlate(rd, rp->unit, final, 0);
822 else
823 *data = final;
824
825 return 0;
826 }
827
828
829 static int msrl_update_safe(u32 msr_no, u64 clear_mask, u64 set_mask)
830 {
831 int err;
832 u64 val;
833
834 err = rdmsrl_safe(msr_no, &val);
835 if (err)
836 goto out;
837
838 val &= ~clear_mask;
839 val |= set_mask;
840
841 err = wrmsrl_safe(msr_no, val);
842
843 out:
844 return err;
845 }
846
847 static void msrl_update_func(void *info)
848 {
849 struct msrl_action *ma = info;
850
851 ma->err = msrl_update_safe(ma->msr_no, ma->clear_mask, ma->set_mask);
852 }
853
854 /* Similar use of primitive info in the read counterpart */
855 static int rapl_write_data_raw(struct rapl_domain *rd,
856 enum rapl_primitives prim,
857 unsigned long long value)
858 {
859 struct rapl_primitive_info *rp = &rpi[prim];
860 int cpu;
861 u64 bits;
862 struct msrl_action ma;
863 int ret;
864
865 cpu = rd->rp->lead_cpu;
866 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
867 bits |= bits << rp->shift;
868 memset(&ma, 0, sizeof(ma));
869
870 ma.msr_no = rd->msrs[rp->id];
871 ma.clear_mask = rp->mask;
872 ma.set_mask = bits;
873
874 ret = smp_call_function_single(cpu, msrl_update_func, &ma, 1);
875 if (ret)
876 WARN_ON_ONCE(ret);
877 else
878 ret = ma.err;
879
880 return ret;
881 }
882
883 /*
884 * Raw RAPL data stored in MSRs are in certain scales. We need to
885 * convert them into standard units based on the units reported in
886 * the RAPL unit MSRs. This is specific to CPUs as the method to
887 * calculate units differ on different CPUs.
888 * We convert the units to below format based on CPUs.
889 * i.e.
890 * energy unit: picoJoules : Represented in picoJoules by default
891 * power unit : microWatts : Represented in milliWatts by default
892 * time unit : microseconds: Represented in seconds by default
893 */
894 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
895 {
896 u64 msr_val;
897 u32 value;
898
899 if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
900 pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
901 MSR_RAPL_POWER_UNIT, cpu);
902 return -ENODEV;
903 }
904
905 value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
906 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
907
908 value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
909 rp->power_unit = 1000000 / (1 << value);
910
911 value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
912 rp->time_unit = 1000000 / (1 << value);
913
914 pr_debug("Core CPU package %d energy=%dpJ, time=%dus, power=%duW\n",
915 rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
916
917 return 0;
918 }
919
920 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
921 {
922 u64 msr_val;
923 u32 value;
924
925 if (rdmsrl_safe_on_cpu(cpu, MSR_RAPL_POWER_UNIT, &msr_val)) {
926 pr_err("Failed to read power unit MSR 0x%x on CPU %d, exit.\n",
927 MSR_RAPL_POWER_UNIT, cpu);
928 return -ENODEV;
929 }
930 value = (msr_val & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
931 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
932
933 value = (msr_val & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
934 rp->power_unit = (1 << value) * 1000;
935
936 value = (msr_val & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
937 rp->time_unit = 1000000 / (1 << value);
938
939 pr_debug("Atom package %d energy=%dpJ, time=%dus, power=%duW\n",
940 rp->id, rp->energy_unit, rp->time_unit, rp->power_unit);
941
942 return 0;
943 }
944
945 static void power_limit_irq_save_cpu(void *info)
946 {
947 u32 l, h = 0;
948 struct rapl_package *rp = (struct rapl_package *)info;
949
950 /* save the state of PLN irq mask bit before disabling it */
951 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
952 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
953 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
954 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
955 }
956 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
957 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
958 }
959
960
961 /* REVISIT:
962 * When package power limit is set artificially low by RAPL, LVT
963 * thermal interrupt for package power limit should be ignored
964 * since we are not really exceeding the real limit. The intention
965 * is to avoid excessive interrupts while we are trying to save power.
966 * A useful feature might be routing the package_power_limit interrupt
967 * to userspace via eventfd. once we have a usecase, this is simple
968 * to do by adding an atomic notifier.
969 */
970
971 static void package_power_limit_irq_save(struct rapl_package *rp)
972 {
973 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
974 return;
975
976 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
977 }
978
979 static void power_limit_irq_restore_cpu(void *info)
980 {
981 u32 l, h = 0;
982 struct rapl_package *rp = (struct rapl_package *)info;
983
984 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
985
986 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
987 l |= PACKAGE_THERM_INT_PLN_ENABLE;
988 else
989 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
990
991 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
992 }
993
994 /* restore per package power limit interrupt enable state */
995 static void package_power_limit_irq_restore(struct rapl_package *rp)
996 {
997 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
998 return;
999
1000 /* irq enable state not saved, nothing to restore */
1001 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1002 return;
1003
1004 smp_call_function_single(rp->lead_cpu, power_limit_irq_restore_cpu, rp, 1);
1005 }
1006
1007 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1008 {
1009 int nr_powerlimit = find_nr_power_limit(rd);
1010
1011 /* always enable clamp such that p-state can go below OS requested
1012 * range. power capping priority over guranteed frequency.
1013 */
1014 rapl_write_data_raw(rd, PL1_CLAMP, mode);
1015
1016 /* some domains have pl2 */
1017 if (nr_powerlimit > 1) {
1018 rapl_write_data_raw(rd, PL2_ENABLE, mode);
1019 rapl_write_data_raw(rd, PL2_CLAMP, mode);
1020 }
1021 }
1022
1023 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1024 {
1025 static u32 power_ctrl_orig_val;
1026 u32 mdata;
1027
1028 if (!rapl_defaults->floor_freq_reg_addr) {
1029 pr_err("Invalid floor frequency config register\n");
1030 return;
1031 }
1032
1033 if (!power_ctrl_orig_val)
1034 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1035 rapl_defaults->floor_freq_reg_addr,
1036 &power_ctrl_orig_val);
1037 mdata = power_ctrl_orig_val;
1038 if (enable) {
1039 mdata &= ~(0x7f << 8);
1040 mdata |= 1 << 8;
1041 }
1042 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1043 rapl_defaults->floor_freq_reg_addr, mdata);
1044 }
1045
1046 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
1047 bool to_raw)
1048 {
1049 u64 f, y; /* fraction and exp. used for time unit */
1050
1051 /*
1052 * Special processing based on 2^Y*(1+F/4), refer
1053 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1054 */
1055 if (!to_raw) {
1056 f = (value & 0x60) >> 5;
1057 y = value & 0x1f;
1058 value = (1 << y) * (4 + f) * rp->time_unit / 4;
1059 } else {
1060 do_div(value, rp->time_unit);
1061 y = ilog2(value);
1062 f = div64_u64(4 * (value - (1 << y)), 1 << y);
1063 value = (y & 0x1f) | ((f & 0x3) << 5);
1064 }
1065 return value;
1066 }
1067
1068 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
1069 bool to_raw)
1070 {
1071 /*
1072 * Atom time unit encoding is straight forward val * time_unit,
1073 * where time_unit is default to 1 sec. Never 0.
1074 */
1075 if (!to_raw)
1076 return (value) ? value *= rp->time_unit : rp->time_unit;
1077 else
1078 value = div64_u64(value, rp->time_unit);
1079
1080 return value;
1081 }
1082
1083 static const struct rapl_defaults rapl_defaults_core = {
1084 .floor_freq_reg_addr = 0,
1085 .check_unit = rapl_check_unit_core,
1086 .set_floor_freq = set_floor_freq_default,
1087 .compute_time_window = rapl_compute_time_window_core,
1088 };
1089
1090 static const struct rapl_defaults rapl_defaults_hsw_server = {
1091 .check_unit = rapl_check_unit_core,
1092 .set_floor_freq = set_floor_freq_default,
1093 .compute_time_window = rapl_compute_time_window_core,
1094 .dram_domain_energy_unit = 15300,
1095 };
1096
1097 static const struct rapl_defaults rapl_defaults_byt = {
1098 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1099 .check_unit = rapl_check_unit_atom,
1100 .set_floor_freq = set_floor_freq_atom,
1101 .compute_time_window = rapl_compute_time_window_atom,
1102 };
1103
1104 static const struct rapl_defaults rapl_defaults_tng = {
1105 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1106 .check_unit = rapl_check_unit_atom,
1107 .set_floor_freq = set_floor_freq_atom,
1108 .compute_time_window = rapl_compute_time_window_atom,
1109 };
1110
1111 static const struct rapl_defaults rapl_defaults_ann = {
1112 .floor_freq_reg_addr = 0,
1113 .check_unit = rapl_check_unit_atom,
1114 .set_floor_freq = NULL,
1115 .compute_time_window = rapl_compute_time_window_atom,
1116 };
1117
1118 static const struct rapl_defaults rapl_defaults_cht = {
1119 .floor_freq_reg_addr = 0,
1120 .check_unit = rapl_check_unit_atom,
1121 .set_floor_freq = NULL,
1122 .compute_time_window = rapl_compute_time_window_atom,
1123 };
1124
1125 #define RAPL_CPU(_model, _ops) { \
1126 .vendor = X86_VENDOR_INTEL, \
1127 .family = 6, \
1128 .model = _model, \
1129 .driver_data = (kernel_ulong_t)&_ops, \
1130 }
1131
1132 static const struct x86_cpu_id rapl_ids[] __initconst = {
1133 RAPL_CPU(INTEL_FAM6_SANDYBRIDGE, rapl_defaults_core),
1134 RAPL_CPU(INTEL_FAM6_SANDYBRIDGE_X, rapl_defaults_core),
1135
1136 RAPL_CPU(INTEL_FAM6_IVYBRIDGE, rapl_defaults_core),
1137 RAPL_CPU(INTEL_FAM6_IVYBRIDGE_X, rapl_defaults_core),
1138
1139 RAPL_CPU(INTEL_FAM6_HASWELL_CORE, rapl_defaults_core),
1140 RAPL_CPU(INTEL_FAM6_HASWELL_ULT, rapl_defaults_core),
1141 RAPL_CPU(INTEL_FAM6_HASWELL_GT3E, rapl_defaults_core),
1142 RAPL_CPU(INTEL_FAM6_HASWELL_X, rapl_defaults_hsw_server),
1143
1144 RAPL_CPU(INTEL_FAM6_BROADWELL_CORE, rapl_defaults_core),
1145 RAPL_CPU(INTEL_FAM6_BROADWELL_GT3E, rapl_defaults_core),
1146 RAPL_CPU(INTEL_FAM6_BROADWELL_XEON_D, rapl_defaults_core),
1147 RAPL_CPU(INTEL_FAM6_BROADWELL_X, rapl_defaults_hsw_server),
1148
1149 RAPL_CPU(INTEL_FAM6_SKYLAKE_DESKTOP, rapl_defaults_core),
1150 RAPL_CPU(INTEL_FAM6_SKYLAKE_MOBILE, rapl_defaults_core),
1151 RAPL_CPU(INTEL_FAM6_SKYLAKE_X, rapl_defaults_hsw_server),
1152 RAPL_CPU(INTEL_FAM6_KABYLAKE_MOBILE, rapl_defaults_core),
1153 RAPL_CPU(INTEL_FAM6_KABYLAKE_DESKTOP, rapl_defaults_core),
1154
1155 RAPL_CPU(INTEL_FAM6_ATOM_SILVERMONT1, rapl_defaults_byt),
1156 RAPL_CPU(INTEL_FAM6_ATOM_AIRMONT, rapl_defaults_cht),
1157 RAPL_CPU(INTEL_FAM6_ATOM_MERRIFIELD, rapl_defaults_tng),
1158 RAPL_CPU(INTEL_FAM6_ATOM_MOOREFIELD, rapl_defaults_ann),
1159 RAPL_CPU(INTEL_FAM6_ATOM_GOLDMONT, rapl_defaults_core),
1160 RAPL_CPU(INTEL_FAM6_ATOM_DENVERTON, rapl_defaults_core),
1161
1162 RAPL_CPU(INTEL_FAM6_XEON_PHI_KNL, rapl_defaults_hsw_server),
1163 {}
1164 };
1165 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1166
1167 /* read once for all raw primitive data for all packages, domains */
1168 static void rapl_update_domain_data(void)
1169 {
1170 int dmn, prim;
1171 u64 val;
1172 struct rapl_package *rp;
1173
1174 list_for_each_entry(rp, &rapl_packages, plist) {
1175 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1176 pr_debug("update package %d domain %s data\n", rp->id,
1177 rp->domains[dmn].name);
1178 /* exclude non-raw primitives */
1179 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++)
1180 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1181 rpi[prim].unit,
1182 &val))
1183 rp->domains[dmn].rdd.primitives[prim] =
1184 val;
1185 }
1186 }
1187
1188 }
1189
1190 static int rapl_unregister_powercap(void)
1191 {
1192 struct rapl_package *rp;
1193 struct rapl_domain *rd, *rd_package = NULL;
1194
1195 /* unregister all active rapl packages from the powercap layer,
1196 * hotplug lock held
1197 */
1198 list_for_each_entry(rp, &rapl_packages, plist) {
1199 package_power_limit_irq_restore(rp);
1200
1201 for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
1202 rd++) {
1203 pr_debug("remove package, undo power limit on %d: %s\n",
1204 rp->id, rd->name);
1205 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1206 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1207 if (find_nr_power_limit(rd) > 1) {
1208 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1209 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1210 }
1211 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1212 rd_package = rd;
1213 continue;
1214 }
1215 powercap_unregister_zone(control_type, &rd->power_zone);
1216 }
1217 /* do the package zone last */
1218 if (rd_package)
1219 powercap_unregister_zone(control_type,
1220 &rd_package->power_zone);
1221 }
1222
1223 if (platform_rapl_domain) {
1224 powercap_unregister_zone(control_type,
1225 &platform_rapl_domain->power_zone);
1226 kfree(platform_rapl_domain);
1227 }
1228
1229 powercap_unregister_control_type(control_type);
1230
1231 return 0;
1232 }
1233
1234 static int rapl_package_register_powercap(struct rapl_package *rp)
1235 {
1236 struct rapl_domain *rd;
1237 int ret = 0;
1238 char dev_name[17]; /* max domain name = 7 + 1 + 8 for int + 1 for null*/
1239 struct powercap_zone *power_zone = NULL;
1240 int nr_pl;
1241
1242 /* first we register package domain as the parent zone*/
1243 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1244 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1245 nr_pl = find_nr_power_limit(rd);
1246 pr_debug("register socket %d package domain %s\n",
1247 rp->id, rd->name);
1248 memset(dev_name, 0, sizeof(dev_name));
1249 snprintf(dev_name, sizeof(dev_name), "%s-%d",
1250 rd->name, rp->id);
1251 power_zone = powercap_register_zone(&rd->power_zone,
1252 control_type,
1253 dev_name, NULL,
1254 &zone_ops[rd->id],
1255 nr_pl,
1256 &constraint_ops);
1257 if (IS_ERR(power_zone)) {
1258 pr_debug("failed to register package, %d\n",
1259 rp->id);
1260 ret = PTR_ERR(power_zone);
1261 goto exit_package;
1262 }
1263 /* track parent zone in per package/socket data */
1264 rp->power_zone = power_zone;
1265 /* done, only one package domain per socket */
1266 break;
1267 }
1268 }
1269 if (!power_zone) {
1270 pr_err("no package domain found, unknown topology!\n");
1271 ret = -ENODEV;
1272 goto exit_package;
1273 }
1274 /* now register domains as children of the socket/package*/
1275 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1276 if (rd->id == RAPL_DOMAIN_PACKAGE)
1277 continue;
1278 /* number of power limits per domain varies */
1279 nr_pl = find_nr_power_limit(rd);
1280 power_zone = powercap_register_zone(&rd->power_zone,
1281 control_type, rd->name,
1282 rp->power_zone,
1283 &zone_ops[rd->id], nr_pl,
1284 &constraint_ops);
1285
1286 if (IS_ERR(power_zone)) {
1287 pr_debug("failed to register power_zone, %d:%s:%s\n",
1288 rp->id, rd->name, dev_name);
1289 ret = PTR_ERR(power_zone);
1290 goto err_cleanup;
1291 }
1292 }
1293
1294 exit_package:
1295 return ret;
1296 err_cleanup:
1297 /* clean up previously initialized domains within the package if we
1298 * failed after the first domain setup.
1299 */
1300 while (--rd >= rp->domains) {
1301 pr_debug("unregister package %d domain %s\n", rp->id, rd->name);
1302 powercap_unregister_zone(control_type, &rd->power_zone);
1303 }
1304
1305 return ret;
1306 }
1307
1308 static int rapl_register_psys(void)
1309 {
1310 struct rapl_domain *rd;
1311 struct powercap_zone *power_zone;
1312 u64 val;
1313
1314 if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_ENERGY_STATUS, &val) || !val)
1315 return -ENODEV;
1316
1317 if (rdmsrl_safe_on_cpu(0, MSR_PLATFORM_POWER_LIMIT, &val) || !val)
1318 return -ENODEV;
1319
1320 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1321 if (!rd)
1322 return -ENOMEM;
1323
1324 rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1325 rd->id = RAPL_DOMAIN_PLATFORM;
1326 rd->msrs[0] = MSR_PLATFORM_POWER_LIMIT;
1327 rd->msrs[1] = MSR_PLATFORM_ENERGY_STATUS;
1328 rd->rpl[0].prim_id = PL1_ENABLE;
1329 rd->rpl[0].name = pl1_name;
1330 rd->rpl[1].prim_id = PL2_ENABLE;
1331 rd->rpl[1].name = pl2_name;
1332 rd->rp = find_package_by_id(0);
1333
1334 power_zone = powercap_register_zone(&rd->power_zone, control_type,
1335 "psys", NULL,
1336 &zone_ops[RAPL_DOMAIN_PLATFORM],
1337 2, &constraint_ops);
1338
1339 if (IS_ERR(power_zone)) {
1340 kfree(rd);
1341 return PTR_ERR(power_zone);
1342 }
1343
1344 platform_rapl_domain = rd;
1345
1346 return 0;
1347 }
1348
1349 static int rapl_register_powercap(void)
1350 {
1351 struct rapl_domain *rd;
1352 struct rapl_package *rp;
1353 int ret = 0;
1354
1355 control_type = powercap_register_control_type(NULL, "intel-rapl", NULL);
1356 if (IS_ERR(control_type)) {
1357 pr_debug("failed to register powercap control_type.\n");
1358 return PTR_ERR(control_type);
1359 }
1360 /* read the initial data */
1361 rapl_update_domain_data();
1362 list_for_each_entry(rp, &rapl_packages, plist)
1363 if (rapl_package_register_powercap(rp))
1364 goto err_cleanup_package;
1365
1366 /* Don't bail out if PSys is not supported */
1367 rapl_register_psys();
1368
1369 return ret;
1370
1371 err_cleanup_package:
1372 /* clean up previously initialized packages */
1373 list_for_each_entry_continue_reverse(rp, &rapl_packages, plist) {
1374 for (rd = rp->domains; rd < rp->domains + rp->nr_domains;
1375 rd++) {
1376 pr_debug("unregister zone/package %d, %s domain\n",
1377 rp->id, rd->name);
1378 powercap_unregister_zone(control_type, &rd->power_zone);
1379 }
1380 }
1381
1382 return ret;
1383 }
1384
1385 static int rapl_check_domain(int cpu, int domain)
1386 {
1387 unsigned msr;
1388 u64 val = 0;
1389
1390 switch (domain) {
1391 case RAPL_DOMAIN_PACKAGE:
1392 msr = MSR_PKG_ENERGY_STATUS;
1393 break;
1394 case RAPL_DOMAIN_PP0:
1395 msr = MSR_PP0_ENERGY_STATUS;
1396 break;
1397 case RAPL_DOMAIN_PP1:
1398 msr = MSR_PP1_ENERGY_STATUS;
1399 break;
1400 case RAPL_DOMAIN_DRAM:
1401 msr = MSR_DRAM_ENERGY_STATUS;
1402 break;
1403 case RAPL_DOMAIN_PLATFORM:
1404 /* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1405 return -EINVAL;
1406 default:
1407 pr_err("invalid domain id %d\n", domain);
1408 return -EINVAL;
1409 }
1410 /* make sure domain counters are available and contains non-zero
1411 * values, otherwise skip it.
1412 */
1413 if (rdmsrl_safe_on_cpu(cpu, msr, &val) || !val)
1414 return -ENODEV;
1415
1416 return 0;
1417 }
1418
1419
1420 /*
1421 * Check if power limits are available. Two cases when they are not available:
1422 * 1. Locked by BIOS, in this case we still provide read-only access so that
1423 * users can see what limit is set by the BIOS.
1424 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1425 * exist at all. In this case, we do not show the contraints in powercap.
1426 *
1427 * Called after domains are detected and initialized.
1428 */
1429 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1430 {
1431 u64 val64;
1432 int i;
1433
1434 /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1435 if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1436 if (val64) {
1437 pr_info("RAPL package %d domain %s locked by BIOS\n",
1438 rd->rp->id, rd->name);
1439 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1440 }
1441 }
1442 /* check if power limit MSRs exists, otherwise domain is monitoring only */
1443 for (i = 0; i < NR_POWER_LIMITS; i++) {
1444 int prim = rd->rpl[i].prim_id;
1445 if (rapl_read_data_raw(rd, prim, false, &val64))
1446 rd->rpl[i].name = NULL;
1447 }
1448 }
1449
1450 /* Detect active and valid domains for the given CPU, caller must
1451 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1452 */
1453 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1454 {
1455 int i;
1456 int ret = 0;
1457 struct rapl_domain *rd;
1458
1459 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1460 /* use physical package id to read counters */
1461 if (!rapl_check_domain(cpu, i)) {
1462 rp->domain_map |= 1 << i;
1463 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1464 }
1465 }
1466 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1467 if (!rp->nr_domains) {
1468 pr_debug("no valid rapl domains found in package %d\n", rp->id);
1469 ret = -ENODEV;
1470 goto done;
1471 }
1472 pr_debug("found %d domains on package %d\n", rp->nr_domains, rp->id);
1473
1474 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1475 GFP_KERNEL);
1476 if (!rp->domains) {
1477 ret = -ENOMEM;
1478 goto done;
1479 }
1480 rapl_init_domains(rp);
1481
1482 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1483 rapl_detect_powerlimit(rd);
1484
1485
1486
1487 done:
1488 return ret;
1489 }
1490
1491 static bool is_package_new(int package)
1492 {
1493 struct rapl_package *rp;
1494
1495 /* caller prevents cpu hotplug, there will be no new packages added
1496 * or deleted while traversing the package list, no need for locking.
1497 */
1498 list_for_each_entry(rp, &rapl_packages, plist)
1499 if (package == rp->id)
1500 return false;
1501
1502 return true;
1503 }
1504
1505 /* RAPL interface can be made of a two-level hierarchy: package level and domain
1506 * level. We first detect the number of packages then domains of each package.
1507 * We have to consider the possiblity of CPU online/offline due to hotplug and
1508 * other scenarios.
1509 */
1510 static int rapl_detect_topology(void)
1511 {
1512 int i;
1513 int phy_package_id;
1514 struct rapl_package *new_package, *rp;
1515
1516 for_each_online_cpu(i) {
1517 phy_package_id = topology_physical_package_id(i);
1518 if (is_package_new(phy_package_id)) {
1519 new_package = kzalloc(sizeof(*rp), GFP_KERNEL);
1520 if (!new_package) {
1521 rapl_cleanup_data();
1522 return -ENOMEM;
1523 }
1524 /* add the new package to the list */
1525 new_package->id = phy_package_id;
1526 new_package->nr_cpus = 1;
1527 /* use the first active cpu of the package to access */
1528 new_package->lead_cpu = i;
1529 /* check if the package contains valid domains */
1530 if (rapl_detect_domains(new_package, i) ||
1531 rapl_defaults->check_unit(new_package, i)) {
1532 kfree(new_package->domains);
1533 kfree(new_package);
1534 /* free up the packages already initialized */
1535 rapl_cleanup_data();
1536 return -ENODEV;
1537 }
1538 INIT_LIST_HEAD(&new_package->plist);
1539 list_add(&new_package->plist, &rapl_packages);
1540 } else {
1541 rp = find_package_by_id(phy_package_id);
1542 if (rp)
1543 ++rp->nr_cpus;
1544 }
1545 }
1546
1547 return 0;
1548 }
1549
1550 /* called from CPU hotplug notifier, hotplug lock held */
1551 static void rapl_remove_package(struct rapl_package *rp)
1552 {
1553 struct rapl_domain *rd, *rd_package = NULL;
1554
1555 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1556 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1557 rd_package = rd;
1558 continue;
1559 }
1560 pr_debug("remove package %d, %s domain\n", rp->id, rd->name);
1561 powercap_unregister_zone(control_type, &rd->power_zone);
1562 }
1563 /* do parent zone last */
1564 powercap_unregister_zone(control_type, &rd_package->power_zone);
1565 list_del(&rp->plist);
1566 kfree(rp);
1567 }
1568
1569 /* called from CPU hotplug notifier, hotplug lock held */
1570 static int rapl_add_package(int cpu)
1571 {
1572 int ret = 0;
1573 int phy_package_id;
1574 struct rapl_package *rp;
1575
1576 phy_package_id = topology_physical_package_id(cpu);
1577 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1578 if (!rp)
1579 return -ENOMEM;
1580
1581 /* add the new package to the list */
1582 rp->id = phy_package_id;
1583 rp->nr_cpus = 1;
1584 rp->lead_cpu = cpu;
1585
1586 /* check if the package contains valid domains */
1587 if (rapl_detect_domains(rp, cpu) ||
1588 rapl_defaults->check_unit(rp, cpu)) {
1589 ret = -ENODEV;
1590 goto err_free_package;
1591 }
1592 if (!rapl_package_register_powercap(rp)) {
1593 INIT_LIST_HEAD(&rp->plist);
1594 list_add(&rp->plist, &rapl_packages);
1595 return ret;
1596 }
1597
1598 err_free_package:
1599 kfree(rp->domains);
1600 kfree(rp);
1601
1602 return ret;
1603 }
1604
1605 /* Handles CPU hotplug on multi-socket systems.
1606 * If a CPU goes online as the first CPU of the physical package
1607 * we add the RAPL package to the system. Similarly, when the last
1608 * CPU of the package is removed, we remove the RAPL package and its
1609 * associated domains. Cooling devices are handled accordingly at
1610 * per-domain level.
1611 */
1612 static int rapl_cpu_callback(struct notifier_block *nfb,
1613 unsigned long action, void *hcpu)
1614 {
1615 unsigned long cpu = (unsigned long)hcpu;
1616 int phy_package_id;
1617 struct rapl_package *rp;
1618 int lead_cpu;
1619
1620 phy_package_id = topology_physical_package_id(cpu);
1621 switch (action) {
1622 case CPU_ONLINE:
1623 case CPU_ONLINE_FROZEN:
1624 case CPU_DOWN_FAILED:
1625 case CPU_DOWN_FAILED_FROZEN:
1626 rp = find_package_by_id(phy_package_id);
1627 if (rp)
1628 ++rp->nr_cpus;
1629 else
1630 rapl_add_package(cpu);
1631 break;
1632 case CPU_DOWN_PREPARE:
1633 case CPU_DOWN_PREPARE_FROZEN:
1634 rp = find_package_by_id(phy_package_id);
1635 if (!rp)
1636 break;
1637 if (--rp->nr_cpus == 0)
1638 rapl_remove_package(rp);
1639 else if (cpu == rp->lead_cpu) {
1640 /* choose another active cpu in the package */
1641 lead_cpu = cpumask_any_but(topology_core_cpumask(cpu), cpu);
1642 if (lead_cpu < nr_cpu_ids)
1643 rp->lead_cpu = lead_cpu;
1644 else /* should never go here */
1645 pr_err("no active cpu available for package %d\n",
1646 phy_package_id);
1647 }
1648 }
1649
1650 return NOTIFY_OK;
1651 }
1652
1653 static struct notifier_block rapl_cpu_notifier = {
1654 .notifier_call = rapl_cpu_callback,
1655 };
1656
1657 static int __init rapl_init(void)
1658 {
1659 int ret = 0;
1660 const struct x86_cpu_id *id;
1661
1662 id = x86_match_cpu(rapl_ids);
1663 if (!id) {
1664 pr_err("driver does not support CPU family %d model %d\n",
1665 boot_cpu_data.x86, boot_cpu_data.x86_model);
1666
1667 return -ENODEV;
1668 }
1669
1670 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1671
1672 cpu_notifier_register_begin();
1673
1674 /* prevent CPU hotplug during detection */
1675 get_online_cpus();
1676 ret = rapl_detect_topology();
1677 if (ret)
1678 goto done;
1679
1680 if (rapl_register_powercap()) {
1681 rapl_cleanup_data();
1682 ret = -ENODEV;
1683 goto done;
1684 }
1685 __register_hotcpu_notifier(&rapl_cpu_notifier);
1686 done:
1687 put_online_cpus();
1688 cpu_notifier_register_done();
1689
1690 return ret;
1691 }
1692
1693 static void __exit rapl_exit(void)
1694 {
1695 cpu_notifier_register_begin();
1696 get_online_cpus();
1697 __unregister_hotcpu_notifier(&rapl_cpu_notifier);
1698 rapl_unregister_powercap();
1699 rapl_cleanup_data();
1700 put_online_cpus();
1701 cpu_notifier_register_done();
1702 }
1703
1704 module_init(rapl_init);
1705 module_exit(rapl_exit);
1706
1707 MODULE_DESCRIPTION("Driver for Intel RAPL (Running Average Power Limit)");
1708 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1709 MODULE_LICENSE("GPL v2");
This page took 0.068872 seconds and 5 git commands to generate.