powerpc: Fix bad inline asm constraint in create_zero_mask()
[deliverable/linux.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
44 */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
62
63
64 #include "mpt3sas_base.h"
65
66 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71 /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH 30000
73 #define MAX_CHAIN_DEPTH 100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
86 static int smp_affinity_enable = 1;
87 module_param(smp_affinity_enable, int, S_IRUGO);
88 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disbale Default: enable(1)");
89
90 static int max_msix_vectors = -1;
91 module_param(max_msix_vectors, int, 0);
92 MODULE_PARM_DESC(max_msix_vectors,
93 " max msix vectors");
94
95 static int mpt3sas_fwfault_debug;
96 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
97 " enable detection of firmware fault and halt firmware - (default=0)");
98
99 static int
100 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
101
102 /**
103 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
104 *
105 */
106 static int
107 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
108 {
109 int ret = param_set_int(val, kp);
110 struct MPT3SAS_ADAPTER *ioc;
111
112 if (ret)
113 return ret;
114
115 /* global ioc spinlock to protect controller list on list operations */
116 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
117 spin_lock(&gioc_lock);
118 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
119 ioc->fwfault_debug = mpt3sas_fwfault_debug;
120 spin_unlock(&gioc_lock);
121 return 0;
122 }
123 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
124 param_get_int, &mpt3sas_fwfault_debug, 0644);
125
126 /**
127 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
128 * @arg: input argument, used to derive ioc
129 *
130 * Return 0 if controller is removed from pci subsystem.
131 * Return -1 for other case.
132 */
133 static int mpt3sas_remove_dead_ioc_func(void *arg)
134 {
135 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
136 struct pci_dev *pdev;
137
138 if ((ioc == NULL))
139 return -1;
140
141 pdev = ioc->pdev;
142 if ((pdev == NULL))
143 return -1;
144 pci_stop_and_remove_bus_device_locked(pdev);
145 return 0;
146 }
147
148 /**
149 * _base_fault_reset_work - workq handling ioc fault conditions
150 * @work: input argument, used to derive ioc
151 * Context: sleep.
152 *
153 * Return nothing.
154 */
155 static void
156 _base_fault_reset_work(struct work_struct *work)
157 {
158 struct MPT3SAS_ADAPTER *ioc =
159 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
160 unsigned long flags;
161 u32 doorbell;
162 int rc;
163 struct task_struct *p;
164
165
166 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
167 if (ioc->shost_recovery || ioc->pci_error_recovery)
168 goto rearm_timer;
169 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
170
171 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
172 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
173 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
174 ioc->name);
175
176 /* It may be possible that EEH recovery can resolve some of
177 * pci bus failure issues rather removing the dead ioc function
178 * by considering controller is in a non-operational state. So
179 * here priority is given to the EEH recovery. If it doesn't
180 * not resolve this issue, mpt3sas driver will consider this
181 * controller to non-operational state and remove the dead ioc
182 * function.
183 */
184 if (ioc->non_operational_loop++ < 5) {
185 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
186 flags);
187 goto rearm_timer;
188 }
189
190 /*
191 * Call _scsih_flush_pending_cmds callback so that we flush all
192 * pending commands back to OS. This call is required to aovid
193 * deadlock at block layer. Dead IOC will fail to do diag reset,
194 * and this call is safe since dead ioc will never return any
195 * command back from HW.
196 */
197 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
198 /*
199 * Set remove_host flag early since kernel thread will
200 * take some time to execute.
201 */
202 ioc->remove_host = 1;
203 /*Remove the Dead Host */
204 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
205 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
206 if (IS_ERR(p))
207 pr_err(MPT3SAS_FMT
208 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
209 ioc->name, __func__);
210 else
211 pr_err(MPT3SAS_FMT
212 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
213 ioc->name, __func__);
214 return; /* don't rearm timer */
215 }
216
217 ioc->non_operational_loop = 0;
218
219 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
220 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
221 FORCE_BIG_HAMMER);
222 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
223 __func__, (rc == 0) ? "success" : "failed");
224 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
225 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
226 mpt3sas_base_fault_info(ioc, doorbell &
227 MPI2_DOORBELL_DATA_MASK);
228 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
229 MPI2_IOC_STATE_OPERATIONAL)
230 return; /* don't rearm timer */
231 }
232
233 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
234 rearm_timer:
235 if (ioc->fault_reset_work_q)
236 queue_delayed_work(ioc->fault_reset_work_q,
237 &ioc->fault_reset_work,
238 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
239 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
240 }
241
242 /**
243 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
244 * @ioc: per adapter object
245 * Context: sleep.
246 *
247 * Return nothing.
248 */
249 void
250 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
251 {
252 unsigned long flags;
253
254 if (ioc->fault_reset_work_q)
255 return;
256
257 /* initialize fault polling */
258
259 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
260 snprintf(ioc->fault_reset_work_q_name,
261 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
262 ioc->driver_name, ioc->id);
263 ioc->fault_reset_work_q =
264 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
265 if (!ioc->fault_reset_work_q) {
266 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
267 ioc->name, __func__, __LINE__);
268 return;
269 }
270 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
271 if (ioc->fault_reset_work_q)
272 queue_delayed_work(ioc->fault_reset_work_q,
273 &ioc->fault_reset_work,
274 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
275 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
276 }
277
278 /**
279 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
280 * @ioc: per adapter object
281 * Context: sleep.
282 *
283 * Return nothing.
284 */
285 void
286 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
287 {
288 unsigned long flags;
289 struct workqueue_struct *wq;
290
291 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
292 wq = ioc->fault_reset_work_q;
293 ioc->fault_reset_work_q = NULL;
294 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
295 if (wq) {
296 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
297 flush_workqueue(wq);
298 destroy_workqueue(wq);
299 }
300 }
301
302 /**
303 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
304 * @ioc: per adapter object
305 * @fault_code: fault code
306 *
307 * Return nothing.
308 */
309 void
310 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
311 {
312 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
313 ioc->name, fault_code);
314 }
315
316 /**
317 * mpt3sas_halt_firmware - halt's mpt controller firmware
318 * @ioc: per adapter object
319 *
320 * For debugging timeout related issues. Writing 0xCOFFEE00
321 * to the doorbell register will halt controller firmware. With
322 * the purpose to stop both driver and firmware, the enduser can
323 * obtain a ring buffer from controller UART.
324 */
325 void
326 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
327 {
328 u32 doorbell;
329
330 if (!ioc->fwfault_debug)
331 return;
332
333 dump_stack();
334
335 doorbell = readl(&ioc->chip->Doorbell);
336 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
337 mpt3sas_base_fault_info(ioc , doorbell);
338 else {
339 writel(0xC0FFEE00, &ioc->chip->Doorbell);
340 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
341 ioc->name);
342 }
343
344 if (ioc->fwfault_debug == 2)
345 for (;;)
346 ;
347 else
348 panic("panic in %s\n", __func__);
349 }
350
351 /**
352 * _base_sas_ioc_info - verbose translation of the ioc status
353 * @ioc: per adapter object
354 * @mpi_reply: reply mf payload returned from firmware
355 * @request_hdr: request mf
356 *
357 * Return nothing.
358 */
359 static void
360 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
361 MPI2RequestHeader_t *request_hdr)
362 {
363 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
364 MPI2_IOCSTATUS_MASK;
365 char *desc = NULL;
366 u16 frame_sz;
367 char *func_str = NULL;
368
369 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
370 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
371 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
372 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
373 return;
374
375 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
376 return;
377
378 switch (ioc_status) {
379
380 /****************************************************************************
381 * Common IOCStatus values for all replies
382 ****************************************************************************/
383
384 case MPI2_IOCSTATUS_INVALID_FUNCTION:
385 desc = "invalid function";
386 break;
387 case MPI2_IOCSTATUS_BUSY:
388 desc = "busy";
389 break;
390 case MPI2_IOCSTATUS_INVALID_SGL:
391 desc = "invalid sgl";
392 break;
393 case MPI2_IOCSTATUS_INTERNAL_ERROR:
394 desc = "internal error";
395 break;
396 case MPI2_IOCSTATUS_INVALID_VPID:
397 desc = "invalid vpid";
398 break;
399 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
400 desc = "insufficient resources";
401 break;
402 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
403 desc = "insufficient power";
404 break;
405 case MPI2_IOCSTATUS_INVALID_FIELD:
406 desc = "invalid field";
407 break;
408 case MPI2_IOCSTATUS_INVALID_STATE:
409 desc = "invalid state";
410 break;
411 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
412 desc = "op state not supported";
413 break;
414
415 /****************************************************************************
416 * Config IOCStatus values
417 ****************************************************************************/
418
419 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
420 desc = "config invalid action";
421 break;
422 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
423 desc = "config invalid type";
424 break;
425 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
426 desc = "config invalid page";
427 break;
428 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
429 desc = "config invalid data";
430 break;
431 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
432 desc = "config no defaults";
433 break;
434 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
435 desc = "config cant commit";
436 break;
437
438 /****************************************************************************
439 * SCSI IO Reply
440 ****************************************************************************/
441
442 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
443 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
444 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
445 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
446 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
447 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
448 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
449 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
450 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
451 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
452 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
453 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
454 break;
455
456 /****************************************************************************
457 * For use by SCSI Initiator and SCSI Target end-to-end data protection
458 ****************************************************************************/
459
460 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
461 desc = "eedp guard error";
462 break;
463 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
464 desc = "eedp ref tag error";
465 break;
466 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
467 desc = "eedp app tag error";
468 break;
469
470 /****************************************************************************
471 * SCSI Target values
472 ****************************************************************************/
473
474 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
475 desc = "target invalid io index";
476 break;
477 case MPI2_IOCSTATUS_TARGET_ABORTED:
478 desc = "target aborted";
479 break;
480 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
481 desc = "target no conn retryable";
482 break;
483 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
484 desc = "target no connection";
485 break;
486 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
487 desc = "target xfer count mismatch";
488 break;
489 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
490 desc = "target data offset error";
491 break;
492 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
493 desc = "target too much write data";
494 break;
495 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
496 desc = "target iu too short";
497 break;
498 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
499 desc = "target ack nak timeout";
500 break;
501 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
502 desc = "target nak received";
503 break;
504
505 /****************************************************************************
506 * Serial Attached SCSI values
507 ****************************************************************************/
508
509 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
510 desc = "smp request failed";
511 break;
512 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
513 desc = "smp data overrun";
514 break;
515
516 /****************************************************************************
517 * Diagnostic Buffer Post / Diagnostic Release values
518 ****************************************************************************/
519
520 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
521 desc = "diagnostic released";
522 break;
523 default:
524 break;
525 }
526
527 if (!desc)
528 return;
529
530 switch (request_hdr->Function) {
531 case MPI2_FUNCTION_CONFIG:
532 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
533 func_str = "config_page";
534 break;
535 case MPI2_FUNCTION_SCSI_TASK_MGMT:
536 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
537 func_str = "task_mgmt";
538 break;
539 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
540 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
541 func_str = "sas_iounit_ctl";
542 break;
543 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
544 frame_sz = sizeof(Mpi2SepRequest_t);
545 func_str = "enclosure";
546 break;
547 case MPI2_FUNCTION_IOC_INIT:
548 frame_sz = sizeof(Mpi2IOCInitRequest_t);
549 func_str = "ioc_init";
550 break;
551 case MPI2_FUNCTION_PORT_ENABLE:
552 frame_sz = sizeof(Mpi2PortEnableRequest_t);
553 func_str = "port_enable";
554 break;
555 case MPI2_FUNCTION_SMP_PASSTHROUGH:
556 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
557 func_str = "smp_passthru";
558 break;
559 default:
560 frame_sz = 32;
561 func_str = "unknown";
562 break;
563 }
564
565 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
566 ioc->name, desc, ioc_status, request_hdr, func_str);
567
568 _debug_dump_mf(request_hdr, frame_sz/4);
569 }
570
571 /**
572 * _base_display_event_data - verbose translation of firmware asyn events
573 * @ioc: per adapter object
574 * @mpi_reply: reply mf payload returned from firmware
575 *
576 * Return nothing.
577 */
578 static void
579 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
580 Mpi2EventNotificationReply_t *mpi_reply)
581 {
582 char *desc = NULL;
583 u16 event;
584
585 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
586 return;
587
588 event = le16_to_cpu(mpi_reply->Event);
589
590 switch (event) {
591 case MPI2_EVENT_LOG_DATA:
592 desc = "Log Data";
593 break;
594 case MPI2_EVENT_STATE_CHANGE:
595 desc = "Status Change";
596 break;
597 case MPI2_EVENT_HARD_RESET_RECEIVED:
598 desc = "Hard Reset Received";
599 break;
600 case MPI2_EVENT_EVENT_CHANGE:
601 desc = "Event Change";
602 break;
603 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
604 desc = "Device Status Change";
605 break;
606 case MPI2_EVENT_IR_OPERATION_STATUS:
607 if (!ioc->hide_ir_msg)
608 desc = "IR Operation Status";
609 break;
610 case MPI2_EVENT_SAS_DISCOVERY:
611 {
612 Mpi2EventDataSasDiscovery_t *event_data =
613 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
614 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
615 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
616 "start" : "stop");
617 if (event_data->DiscoveryStatus)
618 pr_info("discovery_status(0x%08x)",
619 le32_to_cpu(event_data->DiscoveryStatus));
620 pr_info("\n");
621 return;
622 }
623 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
624 desc = "SAS Broadcast Primitive";
625 break;
626 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
627 desc = "SAS Init Device Status Change";
628 break;
629 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
630 desc = "SAS Init Table Overflow";
631 break;
632 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
633 desc = "SAS Topology Change List";
634 break;
635 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
636 desc = "SAS Enclosure Device Status Change";
637 break;
638 case MPI2_EVENT_IR_VOLUME:
639 if (!ioc->hide_ir_msg)
640 desc = "IR Volume";
641 break;
642 case MPI2_EVENT_IR_PHYSICAL_DISK:
643 if (!ioc->hide_ir_msg)
644 desc = "IR Physical Disk";
645 break;
646 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
647 if (!ioc->hide_ir_msg)
648 desc = "IR Configuration Change List";
649 break;
650 case MPI2_EVENT_LOG_ENTRY_ADDED:
651 if (!ioc->hide_ir_msg)
652 desc = "Log Entry Added";
653 break;
654 case MPI2_EVENT_TEMP_THRESHOLD:
655 desc = "Temperature Threshold";
656 break;
657 }
658
659 if (!desc)
660 return;
661
662 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
663 }
664
665 /**
666 * _base_sas_log_info - verbose translation of firmware log info
667 * @ioc: per adapter object
668 * @log_info: log info
669 *
670 * Return nothing.
671 */
672 static void
673 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
674 {
675 union loginfo_type {
676 u32 loginfo;
677 struct {
678 u32 subcode:16;
679 u32 code:8;
680 u32 originator:4;
681 u32 bus_type:4;
682 } dw;
683 };
684 union loginfo_type sas_loginfo;
685 char *originator_str = NULL;
686
687 sas_loginfo.loginfo = log_info;
688 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
689 return;
690
691 /* each nexus loss loginfo */
692 if (log_info == 0x31170000)
693 return;
694
695 /* eat the loginfos associated with task aborts */
696 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
697 0x31140000 || log_info == 0x31130000))
698 return;
699
700 switch (sas_loginfo.dw.originator) {
701 case 0:
702 originator_str = "IOP";
703 break;
704 case 1:
705 originator_str = "PL";
706 break;
707 case 2:
708 if (!ioc->hide_ir_msg)
709 originator_str = "IR";
710 else
711 originator_str = "WarpDrive";
712 break;
713 }
714
715 pr_warn(MPT3SAS_FMT
716 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
717 ioc->name, log_info,
718 originator_str, sas_loginfo.dw.code,
719 sas_loginfo.dw.subcode);
720 }
721
722 /**
723 * _base_display_reply_info -
724 * @ioc: per adapter object
725 * @smid: system request message index
726 * @msix_index: MSIX table index supplied by the OS
727 * @reply: reply message frame(lower 32bit addr)
728 *
729 * Return nothing.
730 */
731 static void
732 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
733 u32 reply)
734 {
735 MPI2DefaultReply_t *mpi_reply;
736 u16 ioc_status;
737 u32 loginfo = 0;
738
739 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
740 if (unlikely(!mpi_reply)) {
741 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
742 ioc->name, __FILE__, __LINE__, __func__);
743 return;
744 }
745 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
746
747 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
748 (ioc->logging_level & MPT_DEBUG_REPLY)) {
749 _base_sas_ioc_info(ioc , mpi_reply,
750 mpt3sas_base_get_msg_frame(ioc, smid));
751 }
752
753 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
754 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
755 _base_sas_log_info(ioc, loginfo);
756 }
757
758 if (ioc_status || loginfo) {
759 ioc_status &= MPI2_IOCSTATUS_MASK;
760 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
761 }
762 }
763
764 /**
765 * mpt3sas_base_done - base internal command completion routine
766 * @ioc: per adapter object
767 * @smid: system request message index
768 * @msix_index: MSIX table index supplied by the OS
769 * @reply: reply message frame(lower 32bit addr)
770 *
771 * Return 1 meaning mf should be freed from _base_interrupt
772 * 0 means the mf is freed from this function.
773 */
774 u8
775 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
776 u32 reply)
777 {
778 MPI2DefaultReply_t *mpi_reply;
779
780 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
781 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
782 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
783
784 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
785 return 1;
786
787 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
788 if (mpi_reply) {
789 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
790 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
791 }
792 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
793
794 complete(&ioc->base_cmds.done);
795 return 1;
796 }
797
798 /**
799 * _base_async_event - main callback handler for firmware asyn events
800 * @ioc: per adapter object
801 * @msix_index: MSIX table index supplied by the OS
802 * @reply: reply message frame(lower 32bit addr)
803 *
804 * Return 1 meaning mf should be freed from _base_interrupt
805 * 0 means the mf is freed from this function.
806 */
807 static u8
808 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
809 {
810 Mpi2EventNotificationReply_t *mpi_reply;
811 Mpi2EventAckRequest_t *ack_request;
812 u16 smid;
813 struct _event_ack_list *delayed_event_ack;
814
815 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
816 if (!mpi_reply)
817 return 1;
818 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
819 return 1;
820
821 _base_display_event_data(ioc, mpi_reply);
822
823 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
824 goto out;
825 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
826 if (!smid) {
827 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
828 GFP_ATOMIC);
829 if (!delayed_event_ack)
830 goto out;
831 INIT_LIST_HEAD(&delayed_event_ack->list);
832 delayed_event_ack->Event = mpi_reply->Event;
833 delayed_event_ack->EventContext = mpi_reply->EventContext;
834 list_add_tail(&delayed_event_ack->list,
835 &ioc->delayed_event_ack_list);
836 dewtprintk(ioc, pr_info(MPT3SAS_FMT
837 "DELAYED: EVENT ACK: event (0x%04x)\n",
838 ioc->name, le16_to_cpu(mpi_reply->Event)));
839 goto out;
840 }
841
842 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
843 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
844 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
845 ack_request->Event = mpi_reply->Event;
846 ack_request->EventContext = mpi_reply->EventContext;
847 ack_request->VF_ID = 0; /* TODO */
848 ack_request->VP_ID = 0;
849 mpt3sas_base_put_smid_default(ioc, smid);
850
851 out:
852
853 /* scsih callback handler */
854 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
855
856 /* ctl callback handler */
857 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
858
859 return 1;
860 }
861
862 /**
863 * _base_get_cb_idx - obtain the callback index
864 * @ioc: per adapter object
865 * @smid: system request message index
866 *
867 * Return callback index.
868 */
869 static u8
870 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
871 {
872 int i;
873 u8 cb_idx;
874
875 if (smid < ioc->hi_priority_smid) {
876 i = smid - 1;
877 cb_idx = ioc->scsi_lookup[i].cb_idx;
878 } else if (smid < ioc->internal_smid) {
879 i = smid - ioc->hi_priority_smid;
880 cb_idx = ioc->hpr_lookup[i].cb_idx;
881 } else if (smid <= ioc->hba_queue_depth) {
882 i = smid - ioc->internal_smid;
883 cb_idx = ioc->internal_lookup[i].cb_idx;
884 } else
885 cb_idx = 0xFF;
886 return cb_idx;
887 }
888
889 /**
890 * _base_mask_interrupts - disable interrupts
891 * @ioc: per adapter object
892 *
893 * Disabling ResetIRQ, Reply and Doorbell Interrupts
894 *
895 * Return nothing.
896 */
897 static void
898 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
899 {
900 u32 him_register;
901
902 ioc->mask_interrupts = 1;
903 him_register = readl(&ioc->chip->HostInterruptMask);
904 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
905 writel(him_register, &ioc->chip->HostInterruptMask);
906 readl(&ioc->chip->HostInterruptMask);
907 }
908
909 /**
910 * _base_unmask_interrupts - enable interrupts
911 * @ioc: per adapter object
912 *
913 * Enabling only Reply Interrupts
914 *
915 * Return nothing.
916 */
917 static void
918 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
919 {
920 u32 him_register;
921
922 him_register = readl(&ioc->chip->HostInterruptMask);
923 him_register &= ~MPI2_HIM_RIM;
924 writel(him_register, &ioc->chip->HostInterruptMask);
925 ioc->mask_interrupts = 0;
926 }
927
928 union reply_descriptor {
929 u64 word;
930 struct {
931 u32 low;
932 u32 high;
933 } u;
934 };
935
936 /**
937 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
938 * @irq: irq number (not used)
939 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
940 * @r: pt_regs pointer (not used)
941 *
942 * Return IRQ_HANDLE if processed, else IRQ_NONE.
943 */
944 static irqreturn_t
945 _base_interrupt(int irq, void *bus_id)
946 {
947 struct adapter_reply_queue *reply_q = bus_id;
948 union reply_descriptor rd;
949 u32 completed_cmds;
950 u8 request_desript_type;
951 u16 smid;
952 u8 cb_idx;
953 u32 reply;
954 u8 msix_index = reply_q->msix_index;
955 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
956 Mpi2ReplyDescriptorsUnion_t *rpf;
957 u8 rc;
958
959 if (ioc->mask_interrupts)
960 return IRQ_NONE;
961
962 if (!atomic_add_unless(&reply_q->busy, 1, 1))
963 return IRQ_NONE;
964
965 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
966 request_desript_type = rpf->Default.ReplyFlags
967 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
968 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
969 atomic_dec(&reply_q->busy);
970 return IRQ_NONE;
971 }
972
973 completed_cmds = 0;
974 cb_idx = 0xFF;
975 do {
976 rd.word = le64_to_cpu(rpf->Words);
977 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
978 goto out;
979 reply = 0;
980 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
981 if (request_desript_type ==
982 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
983 request_desript_type ==
984 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
985 cb_idx = _base_get_cb_idx(ioc, smid);
986 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
987 (likely(mpt_callbacks[cb_idx] != NULL))) {
988 rc = mpt_callbacks[cb_idx](ioc, smid,
989 msix_index, 0);
990 if (rc)
991 mpt3sas_base_free_smid(ioc, smid);
992 }
993 } else if (request_desript_type ==
994 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
995 reply = le32_to_cpu(
996 rpf->AddressReply.ReplyFrameAddress);
997 if (reply > ioc->reply_dma_max_address ||
998 reply < ioc->reply_dma_min_address)
999 reply = 0;
1000 if (smid) {
1001 cb_idx = _base_get_cb_idx(ioc, smid);
1002 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1003 (likely(mpt_callbacks[cb_idx] != NULL))) {
1004 rc = mpt_callbacks[cb_idx](ioc, smid,
1005 msix_index, reply);
1006 if (reply)
1007 _base_display_reply_info(ioc,
1008 smid, msix_index, reply);
1009 if (rc)
1010 mpt3sas_base_free_smid(ioc,
1011 smid);
1012 }
1013 } else {
1014 _base_async_event(ioc, msix_index, reply);
1015 }
1016
1017 /* reply free queue handling */
1018 if (reply) {
1019 ioc->reply_free_host_index =
1020 (ioc->reply_free_host_index ==
1021 (ioc->reply_free_queue_depth - 1)) ?
1022 0 : ioc->reply_free_host_index + 1;
1023 ioc->reply_free[ioc->reply_free_host_index] =
1024 cpu_to_le32(reply);
1025 wmb();
1026 writel(ioc->reply_free_host_index,
1027 &ioc->chip->ReplyFreeHostIndex);
1028 }
1029 }
1030
1031 rpf->Words = cpu_to_le64(ULLONG_MAX);
1032 reply_q->reply_post_host_index =
1033 (reply_q->reply_post_host_index ==
1034 (ioc->reply_post_queue_depth - 1)) ? 0 :
1035 reply_q->reply_post_host_index + 1;
1036 request_desript_type =
1037 reply_q->reply_post_free[reply_q->reply_post_host_index].
1038 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1039 completed_cmds++;
1040 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1041 goto out;
1042 if (!reply_q->reply_post_host_index)
1043 rpf = reply_q->reply_post_free;
1044 else
1045 rpf++;
1046 } while (1);
1047
1048 out:
1049
1050 if (!completed_cmds) {
1051 atomic_dec(&reply_q->busy);
1052 return IRQ_NONE;
1053 }
1054
1055 wmb();
1056 if (ioc->is_warpdrive) {
1057 writel(reply_q->reply_post_host_index,
1058 ioc->reply_post_host_index[msix_index]);
1059 atomic_dec(&reply_q->busy);
1060 return IRQ_HANDLED;
1061 }
1062
1063 /* Update Reply Post Host Index.
1064 * For those HBA's which support combined reply queue feature
1065 * 1. Get the correct Supplemental Reply Post Host Index Register.
1066 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1067 * Index Register address bank i.e replyPostRegisterIndex[],
1068 * 2. Then update this register with new reply host index value
1069 * in ReplyPostIndex field and the MSIxIndex field with
1070 * msix_index value reduced to a value between 0 and 7,
1071 * using a modulo 8 operation. Since each Supplemental Reply Post
1072 * Host Index Register supports 8 MSI-X vectors.
1073 *
1074 * For other HBA's just update the Reply Post Host Index register with
1075 * new reply host index value in ReplyPostIndex Field and msix_index
1076 * value in MSIxIndex field.
1077 */
1078 if (ioc->msix96_vector)
1079 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1080 MPI2_RPHI_MSIX_INDEX_SHIFT),
1081 ioc->replyPostRegisterIndex[msix_index/8]);
1082 else
1083 writel(reply_q->reply_post_host_index | (msix_index <<
1084 MPI2_RPHI_MSIX_INDEX_SHIFT),
1085 &ioc->chip->ReplyPostHostIndex);
1086 atomic_dec(&reply_q->busy);
1087 return IRQ_HANDLED;
1088 }
1089
1090 /**
1091 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1092 * @ioc: per adapter object
1093 *
1094 */
1095 static inline int
1096 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1097 {
1098 return (ioc->facts.IOCCapabilities &
1099 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1100 }
1101
1102 /**
1103 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1104 * @ioc: per adapter object
1105 * Context: ISR conext
1106 *
1107 * Called when a Task Management request has completed. We want
1108 * to flush the other reply queues so all the outstanding IO has been
1109 * completed back to OS before we process the TM completetion.
1110 *
1111 * Return nothing.
1112 */
1113 void
1114 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1115 {
1116 struct adapter_reply_queue *reply_q;
1117
1118 /* If MSIX capability is turned off
1119 * then multi-queues are not enabled
1120 */
1121 if (!_base_is_controller_msix_enabled(ioc))
1122 return;
1123
1124 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1125 if (ioc->shost_recovery)
1126 return;
1127 /* TMs are on msix_index == 0 */
1128 if (reply_q->msix_index == 0)
1129 continue;
1130 _base_interrupt(reply_q->vector, (void *)reply_q);
1131 }
1132 }
1133
1134 /**
1135 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1136 * @cb_idx: callback index
1137 *
1138 * Return nothing.
1139 */
1140 void
1141 mpt3sas_base_release_callback_handler(u8 cb_idx)
1142 {
1143 mpt_callbacks[cb_idx] = NULL;
1144 }
1145
1146 /**
1147 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1148 * @cb_func: callback function
1149 *
1150 * Returns cb_func.
1151 */
1152 u8
1153 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1154 {
1155 u8 cb_idx;
1156
1157 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1158 if (mpt_callbacks[cb_idx] == NULL)
1159 break;
1160
1161 mpt_callbacks[cb_idx] = cb_func;
1162 return cb_idx;
1163 }
1164
1165 /**
1166 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1167 *
1168 * Return nothing.
1169 */
1170 void
1171 mpt3sas_base_initialize_callback_handler(void)
1172 {
1173 u8 cb_idx;
1174
1175 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1176 mpt3sas_base_release_callback_handler(cb_idx);
1177 }
1178
1179
1180 /**
1181 * _base_build_zero_len_sge - build zero length sg entry
1182 * @ioc: per adapter object
1183 * @paddr: virtual address for SGE
1184 *
1185 * Create a zero length scatter gather entry to insure the IOCs hardware has
1186 * something to use if the target device goes brain dead and tries
1187 * to send data even when none is asked for.
1188 *
1189 * Return nothing.
1190 */
1191 static void
1192 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1193 {
1194 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1195 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1196 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1197 MPI2_SGE_FLAGS_SHIFT);
1198 ioc->base_add_sg_single(paddr, flags_length, -1);
1199 }
1200
1201 /**
1202 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1203 * @paddr: virtual address for SGE
1204 * @flags_length: SGE flags and data transfer length
1205 * @dma_addr: Physical address
1206 *
1207 * Return nothing.
1208 */
1209 static void
1210 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1211 {
1212 Mpi2SGESimple32_t *sgel = paddr;
1213
1214 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1215 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1216 sgel->FlagsLength = cpu_to_le32(flags_length);
1217 sgel->Address = cpu_to_le32(dma_addr);
1218 }
1219
1220
1221 /**
1222 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1223 * @paddr: virtual address for SGE
1224 * @flags_length: SGE flags and data transfer length
1225 * @dma_addr: Physical address
1226 *
1227 * Return nothing.
1228 */
1229 static void
1230 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1231 {
1232 Mpi2SGESimple64_t *sgel = paddr;
1233
1234 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1235 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1236 sgel->FlagsLength = cpu_to_le32(flags_length);
1237 sgel->Address = cpu_to_le64(dma_addr);
1238 }
1239
1240 /**
1241 * _base_get_chain_buffer_tracker - obtain chain tracker
1242 * @ioc: per adapter object
1243 * @smid: smid associated to an IO request
1244 *
1245 * Returns chain tracker(from ioc->free_chain_list)
1246 */
1247 static struct chain_tracker *
1248 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1249 {
1250 struct chain_tracker *chain_req;
1251 unsigned long flags;
1252
1253 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1254 if (list_empty(&ioc->free_chain_list)) {
1255 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1256 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1257 "chain buffers not available\n", ioc->name));
1258 return NULL;
1259 }
1260 chain_req = list_entry(ioc->free_chain_list.next,
1261 struct chain_tracker, tracker_list);
1262 list_del_init(&chain_req->tracker_list);
1263 list_add_tail(&chain_req->tracker_list,
1264 &ioc->scsi_lookup[smid - 1].chain_list);
1265 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1266 return chain_req;
1267 }
1268
1269
1270 /**
1271 * _base_build_sg - build generic sg
1272 * @ioc: per adapter object
1273 * @psge: virtual address for SGE
1274 * @data_out_dma: physical address for WRITES
1275 * @data_out_sz: data xfer size for WRITES
1276 * @data_in_dma: physical address for READS
1277 * @data_in_sz: data xfer size for READS
1278 *
1279 * Return nothing.
1280 */
1281 static void
1282 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1283 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1284 size_t data_in_sz)
1285 {
1286 u32 sgl_flags;
1287
1288 if (!data_out_sz && !data_in_sz) {
1289 _base_build_zero_len_sge(ioc, psge);
1290 return;
1291 }
1292
1293 if (data_out_sz && data_in_sz) {
1294 /* WRITE sgel first */
1295 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1296 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1297 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1298 ioc->base_add_sg_single(psge, sgl_flags |
1299 data_out_sz, data_out_dma);
1300
1301 /* incr sgel */
1302 psge += ioc->sge_size;
1303
1304 /* READ sgel last */
1305 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1306 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1307 MPI2_SGE_FLAGS_END_OF_LIST);
1308 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1309 ioc->base_add_sg_single(psge, sgl_flags |
1310 data_in_sz, data_in_dma);
1311 } else if (data_out_sz) /* WRITE */ {
1312 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1313 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1314 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1315 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1316 ioc->base_add_sg_single(psge, sgl_flags |
1317 data_out_sz, data_out_dma);
1318 } else if (data_in_sz) /* READ */ {
1319 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1320 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1321 MPI2_SGE_FLAGS_END_OF_LIST);
1322 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1323 ioc->base_add_sg_single(psge, sgl_flags |
1324 data_in_sz, data_in_dma);
1325 }
1326 }
1327
1328 /* IEEE format sgls */
1329
1330 /**
1331 * _base_add_sg_single_ieee - add sg element for IEEE format
1332 * @paddr: virtual address for SGE
1333 * @flags: SGE flags
1334 * @chain_offset: number of 128 byte elements from start of segment
1335 * @length: data transfer length
1336 * @dma_addr: Physical address
1337 *
1338 * Return nothing.
1339 */
1340 static void
1341 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1342 dma_addr_t dma_addr)
1343 {
1344 Mpi25IeeeSgeChain64_t *sgel = paddr;
1345
1346 sgel->Flags = flags;
1347 sgel->NextChainOffset = chain_offset;
1348 sgel->Length = cpu_to_le32(length);
1349 sgel->Address = cpu_to_le64(dma_addr);
1350 }
1351
1352 /**
1353 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1354 * @ioc: per adapter object
1355 * @paddr: virtual address for SGE
1356 *
1357 * Create a zero length scatter gather entry to insure the IOCs hardware has
1358 * something to use if the target device goes brain dead and tries
1359 * to send data even when none is asked for.
1360 *
1361 * Return nothing.
1362 */
1363 static void
1364 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1365 {
1366 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1367 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1368 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1369
1370 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1371 }
1372
1373 /**
1374 * _base_build_sg_scmd - main sg creation routine
1375 * @ioc: per adapter object
1376 * @scmd: scsi command
1377 * @smid: system request message index
1378 * Context: none.
1379 *
1380 * The main routine that builds scatter gather table from a given
1381 * scsi request sent via the .queuecommand main handler.
1382 *
1383 * Returns 0 success, anything else error
1384 */
1385 static int
1386 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1387 struct scsi_cmnd *scmd, u16 smid)
1388 {
1389 Mpi2SCSIIORequest_t *mpi_request;
1390 dma_addr_t chain_dma;
1391 struct scatterlist *sg_scmd;
1392 void *sg_local, *chain;
1393 u32 chain_offset;
1394 u32 chain_length;
1395 u32 chain_flags;
1396 int sges_left;
1397 u32 sges_in_segment;
1398 u32 sgl_flags;
1399 u32 sgl_flags_last_element;
1400 u32 sgl_flags_end_buffer;
1401 struct chain_tracker *chain_req;
1402
1403 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1404
1405 /* init scatter gather flags */
1406 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1407 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1408 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1409 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1410 << MPI2_SGE_FLAGS_SHIFT;
1411 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1412 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1413 << MPI2_SGE_FLAGS_SHIFT;
1414 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1415
1416 sg_scmd = scsi_sglist(scmd);
1417 sges_left = scsi_dma_map(scmd);
1418 if (sges_left < 0) {
1419 sdev_printk(KERN_ERR, scmd->device,
1420 "pci_map_sg failed: request for %d bytes!\n",
1421 scsi_bufflen(scmd));
1422 return -ENOMEM;
1423 }
1424
1425 sg_local = &mpi_request->SGL;
1426 sges_in_segment = ioc->max_sges_in_main_message;
1427 if (sges_left <= sges_in_segment)
1428 goto fill_in_last_segment;
1429
1430 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1431 (sges_in_segment * ioc->sge_size))/4;
1432
1433 /* fill in main message segment when there is a chain following */
1434 while (sges_in_segment) {
1435 if (sges_in_segment == 1)
1436 ioc->base_add_sg_single(sg_local,
1437 sgl_flags_last_element | sg_dma_len(sg_scmd),
1438 sg_dma_address(sg_scmd));
1439 else
1440 ioc->base_add_sg_single(sg_local, sgl_flags |
1441 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1442 sg_scmd = sg_next(sg_scmd);
1443 sg_local += ioc->sge_size;
1444 sges_left--;
1445 sges_in_segment--;
1446 }
1447
1448 /* initializing the chain flags and pointers */
1449 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1450 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1451 if (!chain_req)
1452 return -1;
1453 chain = chain_req->chain_buffer;
1454 chain_dma = chain_req->chain_buffer_dma;
1455 do {
1456 sges_in_segment = (sges_left <=
1457 ioc->max_sges_in_chain_message) ? sges_left :
1458 ioc->max_sges_in_chain_message;
1459 chain_offset = (sges_left == sges_in_segment) ?
1460 0 : (sges_in_segment * ioc->sge_size)/4;
1461 chain_length = sges_in_segment * ioc->sge_size;
1462 if (chain_offset) {
1463 chain_offset = chain_offset <<
1464 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1465 chain_length += ioc->sge_size;
1466 }
1467 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1468 chain_length, chain_dma);
1469 sg_local = chain;
1470 if (!chain_offset)
1471 goto fill_in_last_segment;
1472
1473 /* fill in chain segments */
1474 while (sges_in_segment) {
1475 if (sges_in_segment == 1)
1476 ioc->base_add_sg_single(sg_local,
1477 sgl_flags_last_element |
1478 sg_dma_len(sg_scmd),
1479 sg_dma_address(sg_scmd));
1480 else
1481 ioc->base_add_sg_single(sg_local, sgl_flags |
1482 sg_dma_len(sg_scmd),
1483 sg_dma_address(sg_scmd));
1484 sg_scmd = sg_next(sg_scmd);
1485 sg_local += ioc->sge_size;
1486 sges_left--;
1487 sges_in_segment--;
1488 }
1489
1490 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1491 if (!chain_req)
1492 return -1;
1493 chain = chain_req->chain_buffer;
1494 chain_dma = chain_req->chain_buffer_dma;
1495 } while (1);
1496
1497
1498 fill_in_last_segment:
1499
1500 /* fill the last segment */
1501 while (sges_left) {
1502 if (sges_left == 1)
1503 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1504 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1505 else
1506 ioc->base_add_sg_single(sg_local, sgl_flags |
1507 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1508 sg_scmd = sg_next(sg_scmd);
1509 sg_local += ioc->sge_size;
1510 sges_left--;
1511 }
1512
1513 return 0;
1514 }
1515
1516 /**
1517 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1518 * @ioc: per adapter object
1519 * @scmd: scsi command
1520 * @smid: system request message index
1521 * Context: none.
1522 *
1523 * The main routine that builds scatter gather table from a given
1524 * scsi request sent via the .queuecommand main handler.
1525 *
1526 * Returns 0 success, anything else error
1527 */
1528 static int
1529 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1530 struct scsi_cmnd *scmd, u16 smid)
1531 {
1532 Mpi2SCSIIORequest_t *mpi_request;
1533 dma_addr_t chain_dma;
1534 struct scatterlist *sg_scmd;
1535 void *sg_local, *chain;
1536 u32 chain_offset;
1537 u32 chain_length;
1538 int sges_left;
1539 u32 sges_in_segment;
1540 u8 simple_sgl_flags;
1541 u8 simple_sgl_flags_last;
1542 u8 chain_sgl_flags;
1543 struct chain_tracker *chain_req;
1544
1545 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1546
1547 /* init scatter gather flags */
1548 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1549 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1550 simple_sgl_flags_last = simple_sgl_flags |
1551 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1552 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1553 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1554
1555 sg_scmd = scsi_sglist(scmd);
1556 sges_left = scsi_dma_map(scmd);
1557 if (sges_left < 0) {
1558 sdev_printk(KERN_ERR, scmd->device,
1559 "pci_map_sg failed: request for %d bytes!\n",
1560 scsi_bufflen(scmd));
1561 return -ENOMEM;
1562 }
1563
1564 sg_local = &mpi_request->SGL;
1565 sges_in_segment = (ioc->request_sz -
1566 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1567 if (sges_left <= sges_in_segment)
1568 goto fill_in_last_segment;
1569
1570 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1571 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1572
1573 /* fill in main message segment when there is a chain following */
1574 while (sges_in_segment > 1) {
1575 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1576 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1577 sg_scmd = sg_next(sg_scmd);
1578 sg_local += ioc->sge_size_ieee;
1579 sges_left--;
1580 sges_in_segment--;
1581 }
1582
1583 /* initializing the pointers */
1584 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1585 if (!chain_req)
1586 return -1;
1587 chain = chain_req->chain_buffer;
1588 chain_dma = chain_req->chain_buffer_dma;
1589 do {
1590 sges_in_segment = (sges_left <=
1591 ioc->max_sges_in_chain_message) ? sges_left :
1592 ioc->max_sges_in_chain_message;
1593 chain_offset = (sges_left == sges_in_segment) ?
1594 0 : sges_in_segment;
1595 chain_length = sges_in_segment * ioc->sge_size_ieee;
1596 if (chain_offset)
1597 chain_length += ioc->sge_size_ieee;
1598 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1599 chain_offset, chain_length, chain_dma);
1600
1601 sg_local = chain;
1602 if (!chain_offset)
1603 goto fill_in_last_segment;
1604
1605 /* fill in chain segments */
1606 while (sges_in_segment) {
1607 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1608 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1609 sg_scmd = sg_next(sg_scmd);
1610 sg_local += ioc->sge_size_ieee;
1611 sges_left--;
1612 sges_in_segment--;
1613 }
1614
1615 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1616 if (!chain_req)
1617 return -1;
1618 chain = chain_req->chain_buffer;
1619 chain_dma = chain_req->chain_buffer_dma;
1620 } while (1);
1621
1622
1623 fill_in_last_segment:
1624
1625 /* fill the last segment */
1626 while (sges_left > 0) {
1627 if (sges_left == 1)
1628 _base_add_sg_single_ieee(sg_local,
1629 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1630 sg_dma_address(sg_scmd));
1631 else
1632 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1633 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1634 sg_scmd = sg_next(sg_scmd);
1635 sg_local += ioc->sge_size_ieee;
1636 sges_left--;
1637 }
1638
1639 return 0;
1640 }
1641
1642 /**
1643 * _base_build_sg_ieee - build generic sg for IEEE format
1644 * @ioc: per adapter object
1645 * @psge: virtual address for SGE
1646 * @data_out_dma: physical address for WRITES
1647 * @data_out_sz: data xfer size for WRITES
1648 * @data_in_dma: physical address for READS
1649 * @data_in_sz: data xfer size for READS
1650 *
1651 * Return nothing.
1652 */
1653 static void
1654 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1655 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1656 size_t data_in_sz)
1657 {
1658 u8 sgl_flags;
1659
1660 if (!data_out_sz && !data_in_sz) {
1661 _base_build_zero_len_sge_ieee(ioc, psge);
1662 return;
1663 }
1664
1665 if (data_out_sz && data_in_sz) {
1666 /* WRITE sgel first */
1667 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1668 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1669 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1670 data_out_dma);
1671
1672 /* incr sgel */
1673 psge += ioc->sge_size_ieee;
1674
1675 /* READ sgel last */
1676 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1677 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1678 data_in_dma);
1679 } else if (data_out_sz) /* WRITE */ {
1680 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1681 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1682 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1683 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1684 data_out_dma);
1685 } else if (data_in_sz) /* READ */ {
1686 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1687 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1688 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1689 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1690 data_in_dma);
1691 }
1692 }
1693
1694 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1695
1696 /**
1697 * _base_config_dma_addressing - set dma addressing
1698 * @ioc: per adapter object
1699 * @pdev: PCI device struct
1700 *
1701 * Returns 0 for success, non-zero for failure.
1702 */
1703 static int
1704 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1705 {
1706 struct sysinfo s;
1707 u64 consistent_dma_mask;
1708
1709 if (ioc->dma_mask)
1710 consistent_dma_mask = DMA_BIT_MASK(64);
1711 else
1712 consistent_dma_mask = DMA_BIT_MASK(32);
1713
1714 if (sizeof(dma_addr_t) > 4) {
1715 const uint64_t required_mask =
1716 dma_get_required_mask(&pdev->dev);
1717 if ((required_mask > DMA_BIT_MASK(32)) &&
1718 !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1719 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1720 ioc->base_add_sg_single = &_base_add_sg_single_64;
1721 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1722 ioc->dma_mask = 64;
1723 goto out;
1724 }
1725 }
1726
1727 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1728 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1729 ioc->base_add_sg_single = &_base_add_sg_single_32;
1730 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1731 ioc->dma_mask = 32;
1732 } else
1733 return -ENODEV;
1734
1735 out:
1736 si_meminfo(&s);
1737 pr_info(MPT3SAS_FMT
1738 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1739 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1740
1741 return 0;
1742 }
1743
1744 static int
1745 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1746 struct pci_dev *pdev)
1747 {
1748 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1749 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1750 return -ENODEV;
1751 }
1752 return 0;
1753 }
1754
1755 /**
1756 * _base_check_enable_msix - checks MSIX capabable.
1757 * @ioc: per adapter object
1758 *
1759 * Check to see if card is capable of MSIX, and set number
1760 * of available msix vectors
1761 */
1762 static int
1763 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1764 {
1765 int base;
1766 u16 message_control;
1767
1768 /* Check whether controller SAS2008 B0 controller,
1769 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1770 */
1771 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1772 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1773 return -EINVAL;
1774 }
1775
1776 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1777 if (!base) {
1778 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1779 ioc->name));
1780 return -EINVAL;
1781 }
1782
1783 /* get msix vector count */
1784 /* NUMA_IO not supported for older controllers */
1785 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1786 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1787 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1788 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1789 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1790 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1791 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1792 ioc->msix_vector_count = 1;
1793 else {
1794 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1795 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1796 }
1797 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1798 "msix is supported, vector_count(%d)\n",
1799 ioc->name, ioc->msix_vector_count));
1800 return 0;
1801 }
1802
1803 /**
1804 * _base_free_irq - free irq
1805 * @ioc: per adapter object
1806 *
1807 * Freeing respective reply_queue from the list.
1808 */
1809 static void
1810 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1811 {
1812 struct adapter_reply_queue *reply_q, *next;
1813
1814 if (list_empty(&ioc->reply_queue_list))
1815 return;
1816
1817 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1818 list_del(&reply_q->list);
1819 if (smp_affinity_enable) {
1820 irq_set_affinity_hint(reply_q->vector, NULL);
1821 free_cpumask_var(reply_q->affinity_hint);
1822 }
1823 free_irq(reply_q->vector, reply_q);
1824 kfree(reply_q);
1825 }
1826 }
1827
1828 /**
1829 * _base_request_irq - request irq
1830 * @ioc: per adapter object
1831 * @index: msix index into vector table
1832 * @vector: irq vector
1833 *
1834 * Inserting respective reply_queue into the list.
1835 */
1836 static int
1837 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1838 {
1839 struct adapter_reply_queue *reply_q;
1840 int r;
1841
1842 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1843 if (!reply_q) {
1844 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1845 ioc->name, (int)sizeof(struct adapter_reply_queue));
1846 return -ENOMEM;
1847 }
1848 reply_q->ioc = ioc;
1849 reply_q->msix_index = index;
1850 reply_q->vector = vector;
1851
1852 if (smp_affinity_enable) {
1853 if (!zalloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL)) {
1854 kfree(reply_q);
1855 return -ENOMEM;
1856 }
1857 }
1858
1859 atomic_set(&reply_q->busy, 0);
1860 if (ioc->msix_enable)
1861 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1862 ioc->driver_name, ioc->id, index);
1863 else
1864 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1865 ioc->driver_name, ioc->id);
1866 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1867 reply_q);
1868 if (r) {
1869 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1870 reply_q->name, vector);
1871 free_cpumask_var(reply_q->affinity_hint);
1872 kfree(reply_q);
1873 return -EBUSY;
1874 }
1875
1876 INIT_LIST_HEAD(&reply_q->list);
1877 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1878 return 0;
1879 }
1880
1881 /**
1882 * _base_assign_reply_queues - assigning msix index for each cpu
1883 * @ioc: per adapter object
1884 *
1885 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1886 *
1887 * It would nice if we could call irq_set_affinity, however it is not
1888 * an exported symbol
1889 */
1890 static void
1891 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1892 {
1893 unsigned int cpu, nr_cpus, nr_msix, index = 0;
1894 struct adapter_reply_queue *reply_q;
1895
1896 if (!_base_is_controller_msix_enabled(ioc))
1897 return;
1898
1899 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1900
1901 nr_cpus = num_online_cpus();
1902 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1903 ioc->facts.MaxMSIxVectors);
1904 if (!nr_msix)
1905 return;
1906
1907 cpu = cpumask_first(cpu_online_mask);
1908
1909 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1910
1911 unsigned int i, group = nr_cpus / nr_msix;
1912
1913 if (cpu >= nr_cpus)
1914 break;
1915
1916 if (index < nr_cpus % nr_msix)
1917 group++;
1918
1919 for (i = 0 ; i < group ; i++) {
1920 ioc->cpu_msix_table[cpu] = index;
1921 if (smp_affinity_enable)
1922 cpumask_or(reply_q->affinity_hint,
1923 reply_q->affinity_hint, get_cpu_mask(cpu));
1924 cpu = cpumask_next(cpu, cpu_online_mask);
1925 }
1926 if (smp_affinity_enable)
1927 if (irq_set_affinity_hint(reply_q->vector,
1928 reply_q->affinity_hint))
1929 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1930 "Err setting affinity hint to irq vector %d\n",
1931 ioc->name, reply_q->vector));
1932 index++;
1933 }
1934 }
1935
1936 /**
1937 * _base_disable_msix - disables msix
1938 * @ioc: per adapter object
1939 *
1940 */
1941 static void
1942 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1943 {
1944 if (!ioc->msix_enable)
1945 return;
1946 pci_disable_msix(ioc->pdev);
1947 ioc->msix_enable = 0;
1948 }
1949
1950 /**
1951 * _base_enable_msix - enables msix, failback to io_apic
1952 * @ioc: per adapter object
1953 *
1954 */
1955 static int
1956 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1957 {
1958 struct msix_entry *entries, *a;
1959 int r;
1960 int i;
1961 u8 try_msix = 0;
1962
1963 if (msix_disable == -1 || msix_disable == 0)
1964 try_msix = 1;
1965
1966 if (!try_msix)
1967 goto try_ioapic;
1968
1969 if (_base_check_enable_msix(ioc) != 0)
1970 goto try_ioapic;
1971
1972 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1973 ioc->msix_vector_count);
1974
1975 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1976 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1977 ioc->cpu_count, max_msix_vectors);
1978
1979 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1980 max_msix_vectors = 8;
1981
1982 if (max_msix_vectors > 0) {
1983 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1984 ioc->reply_queue_count);
1985 ioc->msix_vector_count = ioc->reply_queue_count;
1986 } else if (max_msix_vectors == 0)
1987 goto try_ioapic;
1988
1989 if (ioc->msix_vector_count < ioc->cpu_count)
1990 smp_affinity_enable = 0;
1991
1992 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1993 GFP_KERNEL);
1994 if (!entries) {
1995 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1996 "kcalloc failed @ at %s:%d/%s() !!!\n",
1997 ioc->name, __FILE__, __LINE__, __func__));
1998 goto try_ioapic;
1999 }
2000
2001 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
2002 a->entry = i;
2003
2004 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
2005 if (r) {
2006 dfailprintk(ioc, pr_info(MPT3SAS_FMT
2007 "pci_enable_msix_exact failed (r=%d) !!!\n",
2008 ioc->name, r));
2009 kfree(entries);
2010 goto try_ioapic;
2011 }
2012
2013 ioc->msix_enable = 1;
2014 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
2015 r = _base_request_irq(ioc, i, a->vector);
2016 if (r) {
2017 _base_free_irq(ioc);
2018 _base_disable_msix(ioc);
2019 kfree(entries);
2020 goto try_ioapic;
2021 }
2022 }
2023
2024 kfree(entries);
2025 return 0;
2026
2027 /* failback to io_apic interrupt routing */
2028 try_ioapic:
2029
2030 ioc->reply_queue_count = 1;
2031 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2032
2033 return r;
2034 }
2035
2036 /**
2037 * mpt3sas_base_unmap_resources - free controller resources
2038 * @ioc: per adapter object
2039 */
2040 void
2041 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2042 {
2043 struct pci_dev *pdev = ioc->pdev;
2044
2045 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2046 ioc->name, __func__));
2047
2048 _base_free_irq(ioc);
2049 _base_disable_msix(ioc);
2050
2051 if (ioc->msix96_vector) {
2052 kfree(ioc->replyPostRegisterIndex);
2053 ioc->replyPostRegisterIndex = NULL;
2054 }
2055
2056 if (ioc->chip_phys) {
2057 iounmap(ioc->chip);
2058 ioc->chip_phys = 0;
2059 }
2060
2061 if (pci_is_enabled(pdev)) {
2062 pci_release_selected_regions(ioc->pdev, ioc->bars);
2063 pci_disable_pcie_error_reporting(pdev);
2064 pci_disable_device(pdev);
2065 }
2066 }
2067
2068 /**
2069 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2070 * @ioc: per adapter object
2071 *
2072 * Returns 0 for success, non-zero for failure.
2073 */
2074 int
2075 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2076 {
2077 struct pci_dev *pdev = ioc->pdev;
2078 u32 memap_sz;
2079 u32 pio_sz;
2080 int i, r = 0;
2081 u64 pio_chip = 0;
2082 u64 chip_phys = 0;
2083 struct adapter_reply_queue *reply_q;
2084
2085 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2086 ioc->name, __func__));
2087
2088 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2089 if (pci_enable_device_mem(pdev)) {
2090 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2091 ioc->name);
2092 ioc->bars = 0;
2093 return -ENODEV;
2094 }
2095
2096
2097 if (pci_request_selected_regions(pdev, ioc->bars,
2098 ioc->driver_name)) {
2099 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2100 ioc->name);
2101 ioc->bars = 0;
2102 r = -ENODEV;
2103 goto out_fail;
2104 }
2105
2106 /* AER (Advanced Error Reporting) hooks */
2107 pci_enable_pcie_error_reporting(pdev);
2108
2109 pci_set_master(pdev);
2110
2111
2112 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2113 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2114 ioc->name, pci_name(pdev));
2115 r = -ENODEV;
2116 goto out_fail;
2117 }
2118
2119 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2120 (!memap_sz || !pio_sz); i++) {
2121 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2122 if (pio_sz)
2123 continue;
2124 pio_chip = (u64)pci_resource_start(pdev, i);
2125 pio_sz = pci_resource_len(pdev, i);
2126 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2127 if (memap_sz)
2128 continue;
2129 ioc->chip_phys = pci_resource_start(pdev, i);
2130 chip_phys = (u64)ioc->chip_phys;
2131 memap_sz = pci_resource_len(pdev, i);
2132 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2133 }
2134 }
2135
2136 if (ioc->chip == NULL) {
2137 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2138 " or resource not found\n", ioc->name);
2139 r = -EINVAL;
2140 goto out_fail;
2141 }
2142
2143 _base_mask_interrupts(ioc);
2144
2145 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2146 if (r)
2147 goto out_fail;
2148
2149 if (!ioc->rdpq_array_enable_assigned) {
2150 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2151 ioc->rdpq_array_enable_assigned = 1;
2152 }
2153
2154 r = _base_enable_msix(ioc);
2155 if (r)
2156 goto out_fail;
2157
2158 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2159 * revision HBAs and also only when reply queue count is greater than 8
2160 */
2161 if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2162 /* Determine the Supplemental Reply Post Host Index Registers
2163 * Addresse. Supplemental Reply Post Host Index Registers
2164 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2165 * each register is at offset bytes of
2166 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2167 */
2168 ioc->replyPostRegisterIndex = kcalloc(
2169 MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2170 sizeof(resource_size_t *), GFP_KERNEL);
2171 if (!ioc->replyPostRegisterIndex) {
2172 dfailprintk(ioc, printk(MPT3SAS_FMT
2173 "allocation for reply Post Register Index failed!!!\n",
2174 ioc->name));
2175 r = -ENOMEM;
2176 goto out_fail;
2177 }
2178
2179 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2180 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2181 ((u8 *)&ioc->chip->Doorbell +
2182 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2183 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2184 }
2185 } else
2186 ioc->msix96_vector = 0;
2187
2188 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2189 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2190 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2191 "IO-APIC enabled"), reply_q->vector);
2192
2193 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2194 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2195 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2196 ioc->name, (unsigned long long)pio_chip, pio_sz);
2197
2198 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2199 pci_save_state(pdev);
2200 return 0;
2201
2202 out_fail:
2203 mpt3sas_base_unmap_resources(ioc);
2204 return r;
2205 }
2206
2207 /**
2208 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2209 * @ioc: per adapter object
2210 * @smid: system request message index(smid zero is invalid)
2211 *
2212 * Returns virt pointer to message frame.
2213 */
2214 void *
2215 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2216 {
2217 return (void *)(ioc->request + (smid * ioc->request_sz));
2218 }
2219
2220 /**
2221 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2222 * @ioc: per adapter object
2223 * @smid: system request message index
2224 *
2225 * Returns virt pointer to sense buffer.
2226 */
2227 void *
2228 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2229 {
2230 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2231 }
2232
2233 /**
2234 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2235 * @ioc: per adapter object
2236 * @smid: system request message index
2237 *
2238 * Returns phys pointer to the low 32bit address of the sense buffer.
2239 */
2240 __le32
2241 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2242 {
2243 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2244 SCSI_SENSE_BUFFERSIZE));
2245 }
2246
2247 /**
2248 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2249 * @ioc: per adapter object
2250 * @phys_addr: lower 32 physical addr of the reply
2251 *
2252 * Converts 32bit lower physical addr into a virt address.
2253 */
2254 void *
2255 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2256 {
2257 if (!phys_addr)
2258 return NULL;
2259 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2260 }
2261
2262 static inline u8
2263 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2264 {
2265 return ioc->cpu_msix_table[raw_smp_processor_id()];
2266 }
2267
2268 /**
2269 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2270 * @ioc: per adapter object
2271 * @cb_idx: callback index
2272 *
2273 * Returns smid (zero is invalid)
2274 */
2275 u16
2276 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2277 {
2278 unsigned long flags;
2279 struct request_tracker *request;
2280 u16 smid;
2281
2282 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2283 if (list_empty(&ioc->internal_free_list)) {
2284 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2285 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2286 ioc->name, __func__);
2287 return 0;
2288 }
2289
2290 request = list_entry(ioc->internal_free_list.next,
2291 struct request_tracker, tracker_list);
2292 request->cb_idx = cb_idx;
2293 smid = request->smid;
2294 list_del(&request->tracker_list);
2295 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2296 return smid;
2297 }
2298
2299 /**
2300 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2301 * @ioc: per adapter object
2302 * @cb_idx: callback index
2303 * @scmd: pointer to scsi command object
2304 *
2305 * Returns smid (zero is invalid)
2306 */
2307 u16
2308 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2309 struct scsi_cmnd *scmd)
2310 {
2311 unsigned long flags;
2312 struct scsiio_tracker *request;
2313 u16 smid;
2314
2315 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2316 if (list_empty(&ioc->free_list)) {
2317 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2318 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2319 ioc->name, __func__);
2320 return 0;
2321 }
2322
2323 request = list_entry(ioc->free_list.next,
2324 struct scsiio_tracker, tracker_list);
2325 request->scmd = scmd;
2326 request->cb_idx = cb_idx;
2327 smid = request->smid;
2328 request->msix_io = _base_get_msix_index(ioc);
2329 list_del(&request->tracker_list);
2330 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2331 return smid;
2332 }
2333
2334 /**
2335 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2336 * @ioc: per adapter object
2337 * @cb_idx: callback index
2338 *
2339 * Returns smid (zero is invalid)
2340 */
2341 u16
2342 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2343 {
2344 unsigned long flags;
2345 struct request_tracker *request;
2346 u16 smid;
2347
2348 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2349 if (list_empty(&ioc->hpr_free_list)) {
2350 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2351 return 0;
2352 }
2353
2354 request = list_entry(ioc->hpr_free_list.next,
2355 struct request_tracker, tracker_list);
2356 request->cb_idx = cb_idx;
2357 smid = request->smid;
2358 list_del(&request->tracker_list);
2359 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2360 return smid;
2361 }
2362
2363 /**
2364 * mpt3sas_base_free_smid - put smid back on free_list
2365 * @ioc: per adapter object
2366 * @smid: system request message index
2367 *
2368 * Return nothing.
2369 */
2370 void
2371 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2372 {
2373 unsigned long flags;
2374 int i;
2375 struct chain_tracker *chain_req, *next;
2376
2377 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2378 if (smid < ioc->hi_priority_smid) {
2379 /* scsiio queue */
2380 i = smid - 1;
2381 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2382 list_for_each_entry_safe(chain_req, next,
2383 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2384 list_del_init(&chain_req->tracker_list);
2385 list_add(&chain_req->tracker_list,
2386 &ioc->free_chain_list);
2387 }
2388 }
2389 ioc->scsi_lookup[i].cb_idx = 0xFF;
2390 ioc->scsi_lookup[i].scmd = NULL;
2391 ioc->scsi_lookup[i].direct_io = 0;
2392 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2393 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2394
2395 /*
2396 * See _wait_for_commands_to_complete() call with regards
2397 * to this code.
2398 */
2399 if (ioc->shost_recovery && ioc->pending_io_count) {
2400 if (ioc->pending_io_count == 1)
2401 wake_up(&ioc->reset_wq);
2402 ioc->pending_io_count--;
2403 }
2404 return;
2405 } else if (smid < ioc->internal_smid) {
2406 /* hi-priority */
2407 i = smid - ioc->hi_priority_smid;
2408 ioc->hpr_lookup[i].cb_idx = 0xFF;
2409 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2410 } else if (smid <= ioc->hba_queue_depth) {
2411 /* internal queue */
2412 i = smid - ioc->internal_smid;
2413 ioc->internal_lookup[i].cb_idx = 0xFF;
2414 list_add(&ioc->internal_lookup[i].tracker_list,
2415 &ioc->internal_free_list);
2416 }
2417 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2418 }
2419
2420 /**
2421 * _base_writeq - 64 bit write to MMIO
2422 * @ioc: per adapter object
2423 * @b: data payload
2424 * @addr: address in MMIO space
2425 * @writeq_lock: spin lock
2426 *
2427 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2428 * care of 32 bit environment where its not quarenteed to send the entire word
2429 * in one transfer.
2430 */
2431 #if defined(writeq) && defined(CONFIG_64BIT)
2432 static inline void
2433 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2434 {
2435 writeq(cpu_to_le64(b), addr);
2436 }
2437 #else
2438 static inline void
2439 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2440 {
2441 unsigned long flags;
2442 __u64 data_out = cpu_to_le64(b);
2443
2444 spin_lock_irqsave(writeq_lock, flags);
2445 writel((u32)(data_out), addr);
2446 writel((u32)(data_out >> 32), (addr + 4));
2447 spin_unlock_irqrestore(writeq_lock, flags);
2448 }
2449 #endif
2450
2451 /**
2452 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2453 * @ioc: per adapter object
2454 * @smid: system request message index
2455 * @handle: device handle
2456 *
2457 * Return nothing.
2458 */
2459 void
2460 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2461 {
2462 Mpi2RequestDescriptorUnion_t descriptor;
2463 u64 *request = (u64 *)&descriptor;
2464
2465
2466 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2467 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2468 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2469 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2470 descriptor.SCSIIO.LMID = 0;
2471 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2472 &ioc->scsi_lookup_lock);
2473 }
2474
2475 /**
2476 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2477 * @ioc: per adapter object
2478 * @smid: system request message index
2479 * @handle: device handle
2480 *
2481 * Return nothing.
2482 */
2483 void
2484 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2485 u16 handle)
2486 {
2487 Mpi2RequestDescriptorUnion_t descriptor;
2488 u64 *request = (u64 *)&descriptor;
2489
2490 descriptor.SCSIIO.RequestFlags =
2491 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2492 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2493 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2494 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2495 descriptor.SCSIIO.LMID = 0;
2496 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2497 &ioc->scsi_lookup_lock);
2498 }
2499
2500 /**
2501 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2502 * @ioc: per adapter object
2503 * @smid: system request message index
2504 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2505 * Return nothing.
2506 */
2507 void
2508 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2509 u16 msix_task)
2510 {
2511 Mpi2RequestDescriptorUnion_t descriptor;
2512 u64 *request = (u64 *)&descriptor;
2513
2514 descriptor.HighPriority.RequestFlags =
2515 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2516 descriptor.HighPriority.MSIxIndex = msix_task;
2517 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2518 descriptor.HighPriority.LMID = 0;
2519 descriptor.HighPriority.Reserved1 = 0;
2520 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2521 &ioc->scsi_lookup_lock);
2522 }
2523
2524 /**
2525 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2526 * @ioc: per adapter object
2527 * @smid: system request message index
2528 *
2529 * Return nothing.
2530 */
2531 void
2532 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2533 {
2534 Mpi2RequestDescriptorUnion_t descriptor;
2535 u64 *request = (u64 *)&descriptor;
2536
2537 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2538 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2539 descriptor.Default.SMID = cpu_to_le16(smid);
2540 descriptor.Default.LMID = 0;
2541 descriptor.Default.DescriptorTypeDependent = 0;
2542 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2543 &ioc->scsi_lookup_lock);
2544 }
2545
2546 /**
2547 * _base_display_OEMs_branding - Display branding string
2548 * @ioc: per adapter object
2549 *
2550 * Return nothing.
2551 */
2552 static void
2553 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2554 {
2555 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2556 return;
2557
2558 switch (ioc->pdev->subsystem_vendor) {
2559 case PCI_VENDOR_ID_INTEL:
2560 switch (ioc->pdev->device) {
2561 case MPI2_MFGPAGE_DEVID_SAS2008:
2562 switch (ioc->pdev->subsystem_device) {
2563 case MPT2SAS_INTEL_RMS2LL080_SSDID:
2564 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2565 MPT2SAS_INTEL_RMS2LL080_BRANDING);
2566 break;
2567 case MPT2SAS_INTEL_RMS2LL040_SSDID:
2568 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2569 MPT2SAS_INTEL_RMS2LL040_BRANDING);
2570 break;
2571 case MPT2SAS_INTEL_SSD910_SSDID:
2572 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2573 MPT2SAS_INTEL_SSD910_BRANDING);
2574 break;
2575 default:
2576 pr_info(MPT3SAS_FMT
2577 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2578 ioc->name, ioc->pdev->subsystem_device);
2579 break;
2580 }
2581 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2582 switch (ioc->pdev->subsystem_device) {
2583 case MPT2SAS_INTEL_RS25GB008_SSDID:
2584 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2585 MPT2SAS_INTEL_RS25GB008_BRANDING);
2586 break;
2587 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2588 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2589 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2590 break;
2591 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2592 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2593 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2594 break;
2595 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2596 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2597 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2598 break;
2599 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2600 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2601 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2602 break;
2603 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2604 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2605 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2606 break;
2607 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2608 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2609 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2610 break;
2611 default:
2612 pr_info(MPT3SAS_FMT
2613 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2614 ioc->name, ioc->pdev->subsystem_device);
2615 break;
2616 }
2617 case MPI25_MFGPAGE_DEVID_SAS3008:
2618 switch (ioc->pdev->subsystem_device) {
2619 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2620 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2621 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2622 break;
2623
2624 case MPT3SAS_INTEL_RS3GC008_SSDID:
2625 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2626 MPT3SAS_INTEL_RS3GC008_BRANDING);
2627 break;
2628 case MPT3SAS_INTEL_RS3FC044_SSDID:
2629 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2630 MPT3SAS_INTEL_RS3FC044_BRANDING);
2631 break;
2632 case MPT3SAS_INTEL_RS3UC080_SSDID:
2633 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2634 MPT3SAS_INTEL_RS3UC080_BRANDING);
2635 break;
2636 default:
2637 pr_info(MPT3SAS_FMT
2638 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2639 ioc->name, ioc->pdev->subsystem_device);
2640 break;
2641 }
2642 break;
2643 default:
2644 pr_info(MPT3SAS_FMT
2645 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2646 ioc->name, ioc->pdev->subsystem_device);
2647 break;
2648 }
2649 break;
2650 case PCI_VENDOR_ID_DELL:
2651 switch (ioc->pdev->device) {
2652 case MPI2_MFGPAGE_DEVID_SAS2008:
2653 switch (ioc->pdev->subsystem_device) {
2654 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2655 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2656 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2657 break;
2658 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2659 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2660 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2661 break;
2662 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2663 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2664 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2665 break;
2666 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2667 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2668 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2669 break;
2670 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2671 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2672 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2673 break;
2674 case MPT2SAS_DELL_PERC_H200_SSDID:
2675 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2676 MPT2SAS_DELL_PERC_H200_BRANDING);
2677 break;
2678 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2679 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2680 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2681 break;
2682 default:
2683 pr_info(MPT3SAS_FMT
2684 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2685 ioc->name, ioc->pdev->subsystem_device);
2686 break;
2687 }
2688 break;
2689 case MPI25_MFGPAGE_DEVID_SAS3008:
2690 switch (ioc->pdev->subsystem_device) {
2691 case MPT3SAS_DELL_12G_HBA_SSDID:
2692 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2693 MPT3SAS_DELL_12G_HBA_BRANDING);
2694 break;
2695 default:
2696 pr_info(MPT3SAS_FMT
2697 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2698 ioc->name, ioc->pdev->subsystem_device);
2699 break;
2700 }
2701 break;
2702 default:
2703 pr_info(MPT3SAS_FMT
2704 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2705 ioc->pdev->subsystem_device);
2706 break;
2707 }
2708 break;
2709 case PCI_VENDOR_ID_CISCO:
2710 switch (ioc->pdev->device) {
2711 case MPI25_MFGPAGE_DEVID_SAS3008:
2712 switch (ioc->pdev->subsystem_device) {
2713 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2714 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2715 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2716 break;
2717 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2718 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2719 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2720 break;
2721 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2722 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2723 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2724 break;
2725 default:
2726 pr_info(MPT3SAS_FMT
2727 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2728 ioc->name, ioc->pdev->subsystem_device);
2729 break;
2730 }
2731 break;
2732 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2733 switch (ioc->pdev->subsystem_device) {
2734 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2735 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2736 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2737 break;
2738 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2739 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2740 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2741 );
2742 break;
2743 default:
2744 pr_info(MPT3SAS_FMT
2745 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2746 ioc->name, ioc->pdev->subsystem_device);
2747 break;
2748 }
2749 break;
2750 default:
2751 pr_info(MPT3SAS_FMT
2752 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2753 ioc->name, ioc->pdev->subsystem_device);
2754 break;
2755 }
2756 break;
2757 case MPT2SAS_HP_3PAR_SSVID:
2758 switch (ioc->pdev->device) {
2759 case MPI2_MFGPAGE_DEVID_SAS2004:
2760 switch (ioc->pdev->subsystem_device) {
2761 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2762 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2763 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2764 break;
2765 default:
2766 pr_info(MPT3SAS_FMT
2767 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2768 ioc->name, ioc->pdev->subsystem_device);
2769 break;
2770 }
2771 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2772 switch (ioc->pdev->subsystem_device) {
2773 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2774 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2775 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2776 break;
2777 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2778 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2779 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2780 break;
2781 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2782 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2783 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2784 break;
2785 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2786 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2787 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2788 break;
2789 default:
2790 pr_info(MPT3SAS_FMT
2791 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2792 ioc->name, ioc->pdev->subsystem_device);
2793 break;
2794 }
2795 default:
2796 pr_info(MPT3SAS_FMT
2797 "HP SAS HBA: Subsystem ID: 0x%X\n",
2798 ioc->name, ioc->pdev->subsystem_device);
2799 break;
2800 }
2801 default:
2802 break;
2803 }
2804 }
2805
2806 /**
2807 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2808 * @ioc: per adapter object
2809 *
2810 * Return nothing.
2811 */
2812 static void
2813 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2814 {
2815 int i = 0;
2816 char desc[16];
2817 u32 iounit_pg1_flags;
2818 u32 bios_version;
2819
2820 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2821 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2822 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2823 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2824 ioc->name, desc,
2825 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2826 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2827 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2828 ioc->facts.FWVersion.Word & 0x000000FF,
2829 ioc->pdev->revision,
2830 (bios_version & 0xFF000000) >> 24,
2831 (bios_version & 0x00FF0000) >> 16,
2832 (bios_version & 0x0000FF00) >> 8,
2833 bios_version & 0x000000FF);
2834
2835 _base_display_OEMs_branding(ioc);
2836
2837 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2838
2839 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2840 pr_info("Initiator");
2841 i++;
2842 }
2843
2844 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2845 pr_info("%sTarget", i ? "," : "");
2846 i++;
2847 }
2848
2849 i = 0;
2850 pr_info("), ");
2851 pr_info("Capabilities=(");
2852
2853 if (!ioc->hide_ir_msg) {
2854 if (ioc->facts.IOCCapabilities &
2855 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2856 pr_info("Raid");
2857 i++;
2858 }
2859 }
2860
2861 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2862 pr_info("%sTLR", i ? "," : "");
2863 i++;
2864 }
2865
2866 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2867 pr_info("%sMulticast", i ? "," : "");
2868 i++;
2869 }
2870
2871 if (ioc->facts.IOCCapabilities &
2872 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2873 pr_info("%sBIDI Target", i ? "," : "");
2874 i++;
2875 }
2876
2877 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2878 pr_info("%sEEDP", i ? "," : "");
2879 i++;
2880 }
2881
2882 if (ioc->facts.IOCCapabilities &
2883 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2884 pr_info("%sSnapshot Buffer", i ? "," : "");
2885 i++;
2886 }
2887
2888 if (ioc->facts.IOCCapabilities &
2889 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2890 pr_info("%sDiag Trace Buffer", i ? "," : "");
2891 i++;
2892 }
2893
2894 if (ioc->facts.IOCCapabilities &
2895 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2896 pr_info("%sDiag Extended Buffer", i ? "," : "");
2897 i++;
2898 }
2899
2900 if (ioc->facts.IOCCapabilities &
2901 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2902 pr_info("%sTask Set Full", i ? "," : "");
2903 i++;
2904 }
2905
2906 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2907 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2908 pr_info("%sNCQ", i ? "," : "");
2909 i++;
2910 }
2911
2912 pr_info(")\n");
2913 }
2914
2915 /**
2916 * mpt3sas_base_update_missing_delay - change the missing delay timers
2917 * @ioc: per adapter object
2918 * @device_missing_delay: amount of time till device is reported missing
2919 * @io_missing_delay: interval IO is returned when there is a missing device
2920 *
2921 * Return nothing.
2922 *
2923 * Passed on the command line, this function will modify the device missing
2924 * delay, as well as the io missing delay. This should be called at driver
2925 * load time.
2926 */
2927 void
2928 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2929 u16 device_missing_delay, u8 io_missing_delay)
2930 {
2931 u16 dmd, dmd_new, dmd_orignal;
2932 u8 io_missing_delay_original;
2933 u16 sz;
2934 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2935 Mpi2ConfigReply_t mpi_reply;
2936 u8 num_phys = 0;
2937 u16 ioc_status;
2938
2939 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2940 if (!num_phys)
2941 return;
2942
2943 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2944 sizeof(Mpi2SasIOUnit1PhyData_t));
2945 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2946 if (!sas_iounit_pg1) {
2947 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2948 ioc->name, __FILE__, __LINE__, __func__);
2949 goto out;
2950 }
2951 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2952 sas_iounit_pg1, sz))) {
2953 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2954 ioc->name, __FILE__, __LINE__, __func__);
2955 goto out;
2956 }
2957 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2958 MPI2_IOCSTATUS_MASK;
2959 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2960 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2961 ioc->name, __FILE__, __LINE__, __func__);
2962 goto out;
2963 }
2964
2965 /* device missing delay */
2966 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2967 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2968 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2969 else
2970 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2971 dmd_orignal = dmd;
2972 if (device_missing_delay > 0x7F) {
2973 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2974 device_missing_delay;
2975 dmd = dmd / 16;
2976 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2977 } else
2978 dmd = device_missing_delay;
2979 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2980
2981 /* io missing delay */
2982 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2983 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2984
2985 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2986 sz)) {
2987 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2988 dmd_new = (dmd &
2989 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2990 else
2991 dmd_new =
2992 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2993 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2994 ioc->name, dmd_orignal, dmd_new);
2995 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2996 ioc->name, io_missing_delay_original,
2997 io_missing_delay);
2998 ioc->device_missing_delay = dmd_new;
2999 ioc->io_missing_delay = io_missing_delay;
3000 }
3001
3002 out:
3003 kfree(sas_iounit_pg1);
3004 }
3005 /**
3006 * _base_static_config_pages - static start of day config pages
3007 * @ioc: per adapter object
3008 *
3009 * Return nothing.
3010 */
3011 static void
3012 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
3013 {
3014 Mpi2ConfigReply_t mpi_reply;
3015 u32 iounit_pg1_flags;
3016
3017 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3018 if (ioc->ir_firmware)
3019 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3020 &ioc->manu_pg10);
3021
3022 /*
3023 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3024 * flag unset in NVDATA.
3025 */
3026 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3027 if (ioc->manu_pg11.EEDPTagMode == 0) {
3028 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3029 ioc->name);
3030 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3031 ioc->manu_pg11.EEDPTagMode |= 0x1;
3032 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3033 &ioc->manu_pg11);
3034 }
3035
3036 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3037 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3038 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3039 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3040 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3041 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3042 _base_display_ioc_capabilities(ioc);
3043
3044 /*
3045 * Enable task_set_full handling in iounit_pg1 when the
3046 * facts capabilities indicate that its supported.
3047 */
3048 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3049 if ((ioc->facts.IOCCapabilities &
3050 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3051 iounit_pg1_flags &=
3052 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3053 else
3054 iounit_pg1_flags |=
3055 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3056 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3057 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3058
3059 if (ioc->iounit_pg8.NumSensors)
3060 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3061 }
3062
3063 /**
3064 * _base_release_memory_pools - release memory
3065 * @ioc: per adapter object
3066 *
3067 * Free memory allocated from _base_allocate_memory_pools.
3068 *
3069 * Return nothing.
3070 */
3071 static void
3072 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3073 {
3074 int i = 0;
3075 struct reply_post_struct *rps;
3076
3077 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3078 __func__));
3079
3080 if (ioc->request) {
3081 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3082 ioc->request, ioc->request_dma);
3083 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3084 "request_pool(0x%p): free\n",
3085 ioc->name, ioc->request));
3086 ioc->request = NULL;
3087 }
3088
3089 if (ioc->sense) {
3090 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3091 if (ioc->sense_dma_pool)
3092 pci_pool_destroy(ioc->sense_dma_pool);
3093 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3094 "sense_pool(0x%p): free\n",
3095 ioc->name, ioc->sense));
3096 ioc->sense = NULL;
3097 }
3098
3099 if (ioc->reply) {
3100 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3101 if (ioc->reply_dma_pool)
3102 pci_pool_destroy(ioc->reply_dma_pool);
3103 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3104 "reply_pool(0x%p): free\n",
3105 ioc->name, ioc->reply));
3106 ioc->reply = NULL;
3107 }
3108
3109 if (ioc->reply_free) {
3110 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3111 ioc->reply_free_dma);
3112 if (ioc->reply_free_dma_pool)
3113 pci_pool_destroy(ioc->reply_free_dma_pool);
3114 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3115 "reply_free_pool(0x%p): free\n",
3116 ioc->name, ioc->reply_free));
3117 ioc->reply_free = NULL;
3118 }
3119
3120 if (ioc->reply_post) {
3121 do {
3122 rps = &ioc->reply_post[i];
3123 if (rps->reply_post_free) {
3124 pci_pool_free(
3125 ioc->reply_post_free_dma_pool,
3126 rps->reply_post_free,
3127 rps->reply_post_free_dma);
3128 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3129 "reply_post_free_pool(0x%p): free\n",
3130 ioc->name, rps->reply_post_free));
3131 rps->reply_post_free = NULL;
3132 }
3133 } while (ioc->rdpq_array_enable &&
3134 (++i < ioc->reply_queue_count));
3135
3136 if (ioc->reply_post_free_dma_pool)
3137 pci_pool_destroy(ioc->reply_post_free_dma_pool);
3138 kfree(ioc->reply_post);
3139 }
3140
3141 if (ioc->config_page) {
3142 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3143 "config_page(0x%p): free\n", ioc->name,
3144 ioc->config_page));
3145 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3146 ioc->config_page, ioc->config_page_dma);
3147 }
3148
3149 if (ioc->scsi_lookup) {
3150 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3151 ioc->scsi_lookup = NULL;
3152 }
3153 kfree(ioc->hpr_lookup);
3154 kfree(ioc->internal_lookup);
3155 if (ioc->chain_lookup) {
3156 for (i = 0; i < ioc->chain_depth; i++) {
3157 if (ioc->chain_lookup[i].chain_buffer)
3158 pci_pool_free(ioc->chain_dma_pool,
3159 ioc->chain_lookup[i].chain_buffer,
3160 ioc->chain_lookup[i].chain_buffer_dma);
3161 }
3162 if (ioc->chain_dma_pool)
3163 pci_pool_destroy(ioc->chain_dma_pool);
3164 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3165 ioc->chain_lookup = NULL;
3166 }
3167 }
3168
3169 /**
3170 * _base_allocate_memory_pools - allocate start of day memory pools
3171 * @ioc: per adapter object
3172 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3173 *
3174 * Returns 0 success, anything else error
3175 */
3176 static int
3177 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3178 {
3179 struct mpt3sas_facts *facts;
3180 u16 max_sge_elements;
3181 u16 chains_needed_per_io;
3182 u32 sz, total_sz, reply_post_free_sz;
3183 u32 retry_sz;
3184 u16 max_request_credit;
3185 unsigned short sg_tablesize;
3186 u16 sge_size;
3187 int i;
3188
3189 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3190 __func__));
3191
3192
3193 retry_sz = 0;
3194 facts = &ioc->facts;
3195
3196 /* command line tunables for max sgl entries */
3197 if (max_sgl_entries != -1)
3198 sg_tablesize = max_sgl_entries;
3199 else {
3200 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3201 sg_tablesize = MPT2SAS_SG_DEPTH;
3202 else
3203 sg_tablesize = MPT3SAS_SG_DEPTH;
3204 }
3205
3206 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3207 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3208 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3209 sg_tablesize = min_t(unsigned short, sg_tablesize,
3210 SCSI_MAX_SG_CHAIN_SEGMENTS);
3211 pr_warn(MPT3SAS_FMT
3212 "sg_tablesize(%u) is bigger than kernel"
3213 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
3214 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3215 }
3216 ioc->shost->sg_tablesize = sg_tablesize;
3217
3218 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
3219 (facts->RequestCredit / 4));
3220 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
3221 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
3222 INTERNAL_SCSIIO_CMDS_COUNT)) {
3223 pr_err(MPT3SAS_FMT "IOC doesn't have enough Request \
3224 Credits, it has just %d number of credits\n",
3225 ioc->name, facts->RequestCredit);
3226 return -ENOMEM;
3227 }
3228 ioc->internal_depth = 10;
3229 }
3230
3231 ioc->hi_priority_depth = ioc->internal_depth - (5);
3232 /* command line tunables for max controller queue depth */
3233 if (max_queue_depth != -1 && max_queue_depth != 0) {
3234 max_request_credit = min_t(u16, max_queue_depth +
3235 ioc->internal_depth, facts->RequestCredit);
3236 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3237 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3238 } else
3239 max_request_credit = min_t(u16, facts->RequestCredit,
3240 MAX_HBA_QUEUE_DEPTH);
3241
3242 /* Firmware maintains additional facts->HighPriorityCredit number of
3243 * credits for HiPriprity Request messages, so hba queue depth will be
3244 * sum of max_request_credit and high priority queue depth.
3245 */
3246 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
3247
3248 /* request frame size */
3249 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3250
3251 /* reply frame size */
3252 ioc->reply_sz = facts->ReplyFrameSize * 4;
3253
3254 /* chain segment size */
3255 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3256 if (facts->IOCMaxChainSegmentSize)
3257 ioc->chain_segment_sz =
3258 facts->IOCMaxChainSegmentSize *
3259 MAX_CHAIN_ELEMT_SZ;
3260 else
3261 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
3262 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
3263 MAX_CHAIN_ELEMT_SZ;
3264 } else
3265 ioc->chain_segment_sz = ioc->request_sz;
3266
3267 /* calculate the max scatter element size */
3268 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3269
3270 retry_allocation:
3271 total_sz = 0;
3272 /* calculate number of sg elements left over in the 1st frame */
3273 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3274 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3275 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3276
3277 /* now do the same for a chain buffer */
3278 max_sge_elements = ioc->chain_segment_sz - sge_size;
3279 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3280
3281 /*
3282 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3283 */
3284 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3285 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3286 + 1;
3287 if (chains_needed_per_io > facts->MaxChainDepth) {
3288 chains_needed_per_io = facts->MaxChainDepth;
3289 ioc->shost->sg_tablesize = min_t(u16,
3290 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3291 * chains_needed_per_io), ioc->shost->sg_tablesize);
3292 }
3293 ioc->chains_needed_per_io = chains_needed_per_io;
3294
3295 /* reply free queue sizing - taking into account for 64 FW events */
3296 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3297
3298 /* calculate reply descriptor post queue depth */
3299 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3300 ioc->reply_free_queue_depth + 1 ;
3301 /* align the reply post queue on the next 16 count boundary */
3302 if (ioc->reply_post_queue_depth % 16)
3303 ioc->reply_post_queue_depth += 16 -
3304 (ioc->reply_post_queue_depth % 16);
3305
3306 if (ioc->reply_post_queue_depth >
3307 facts->MaxReplyDescriptorPostQueueDepth) {
3308 ioc->reply_post_queue_depth =
3309 facts->MaxReplyDescriptorPostQueueDepth -
3310 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3311 ioc->hba_queue_depth =
3312 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3313 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3314 }
3315
3316 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3317 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3318 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3319 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3320 ioc->chains_needed_per_io));
3321
3322 /* reply post queue, 16 byte align */
3323 reply_post_free_sz = ioc->reply_post_queue_depth *
3324 sizeof(Mpi2DefaultReplyDescriptor_t);
3325
3326 sz = reply_post_free_sz;
3327 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3328 sz *= ioc->reply_queue_count;
3329
3330 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3331 (ioc->reply_queue_count):1,
3332 sizeof(struct reply_post_struct), GFP_KERNEL);
3333
3334 if (!ioc->reply_post) {
3335 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3336 ioc->name);
3337 goto out;
3338 }
3339 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3340 ioc->pdev, sz, 16, 0);
3341 if (!ioc->reply_post_free_dma_pool) {
3342 pr_err(MPT3SAS_FMT
3343 "reply_post_free pool: pci_pool_create failed\n",
3344 ioc->name);
3345 goto out;
3346 }
3347 i = 0;
3348 do {
3349 ioc->reply_post[i].reply_post_free =
3350 pci_pool_alloc(ioc->reply_post_free_dma_pool,
3351 GFP_KERNEL,
3352 &ioc->reply_post[i].reply_post_free_dma);
3353 if (!ioc->reply_post[i].reply_post_free) {
3354 pr_err(MPT3SAS_FMT
3355 "reply_post_free pool: pci_pool_alloc failed\n",
3356 ioc->name);
3357 goto out;
3358 }
3359 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3360 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3361 "reply post free pool (0x%p): depth(%d),"
3362 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3363 ioc->reply_post[i].reply_post_free,
3364 ioc->reply_post_queue_depth, 8, sz/1024));
3365 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3366 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3367 (unsigned long long)
3368 ioc->reply_post[i].reply_post_free_dma));
3369 total_sz += sz;
3370 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3371
3372 if (ioc->dma_mask == 64) {
3373 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3374 pr_warn(MPT3SAS_FMT
3375 "no suitable consistent DMA mask for %s\n",
3376 ioc->name, pci_name(ioc->pdev));
3377 goto out;
3378 }
3379 }
3380
3381 ioc->scsiio_depth = ioc->hba_queue_depth -
3382 ioc->hi_priority_depth - ioc->internal_depth;
3383
3384 /* set the scsi host can_queue depth
3385 * with some internal commands that could be outstanding
3386 */
3387 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
3388 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3389 "scsi host: can_queue depth (%d)\n",
3390 ioc->name, ioc->shost->can_queue));
3391
3392
3393 /* contiguous pool for request and chains, 16 byte align, one extra "
3394 * "frame for smid=0
3395 */
3396 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3397 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3398
3399 /* hi-priority queue */
3400 sz += (ioc->hi_priority_depth * ioc->request_sz);
3401
3402 /* internal queue */
3403 sz += (ioc->internal_depth * ioc->request_sz);
3404
3405 ioc->request_dma_sz = sz;
3406 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3407 if (!ioc->request) {
3408 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3409 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3410 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3411 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3412 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3413 goto out;
3414 retry_sz = 64;
3415 ioc->hba_queue_depth -= retry_sz;
3416 _base_release_memory_pools(ioc);
3417 goto retry_allocation;
3418 }
3419
3420 if (retry_sz)
3421 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3422 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3423 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3424 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3425
3426 /* hi-priority queue */
3427 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3428 ioc->request_sz);
3429 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3430 ioc->request_sz);
3431
3432 /* internal queue */
3433 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3434 ioc->request_sz);
3435 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3436 ioc->request_sz);
3437
3438 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3439 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3440 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3441 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3442
3443 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3444 ioc->name, (unsigned long long) ioc->request_dma));
3445 total_sz += sz;
3446
3447 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3448 ioc->scsi_lookup_pages = get_order(sz);
3449 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3450 GFP_KERNEL, ioc->scsi_lookup_pages);
3451 if (!ioc->scsi_lookup) {
3452 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3453 ioc->name, (int)sz);
3454 goto out;
3455 }
3456
3457 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3458 ioc->name, ioc->request, ioc->scsiio_depth));
3459
3460 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3461 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3462 ioc->chain_pages = get_order(sz);
3463 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3464 GFP_KERNEL, ioc->chain_pages);
3465 if (!ioc->chain_lookup) {
3466 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3467 ioc->name);
3468 goto out;
3469 }
3470 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3471 ioc->chain_segment_sz, 16, 0);
3472 if (!ioc->chain_dma_pool) {
3473 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3474 ioc->name);
3475 goto out;
3476 }
3477 for (i = 0; i < ioc->chain_depth; i++) {
3478 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3479 ioc->chain_dma_pool , GFP_KERNEL,
3480 &ioc->chain_lookup[i].chain_buffer_dma);
3481 if (!ioc->chain_lookup[i].chain_buffer) {
3482 ioc->chain_depth = i;
3483 goto chain_done;
3484 }
3485 total_sz += ioc->chain_segment_sz;
3486 }
3487 chain_done:
3488 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3489 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3490 ioc->name, ioc->chain_depth, ioc->chain_segment_sz,
3491 ((ioc->chain_depth * ioc->chain_segment_sz))/1024));
3492
3493 /* initialize hi-priority queue smid's */
3494 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3495 sizeof(struct request_tracker), GFP_KERNEL);
3496 if (!ioc->hpr_lookup) {
3497 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3498 ioc->name);
3499 goto out;
3500 }
3501 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3502 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3503 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3504 ioc->name, ioc->hi_priority,
3505 ioc->hi_priority_depth, ioc->hi_priority_smid));
3506
3507 /* initialize internal queue smid's */
3508 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3509 sizeof(struct request_tracker), GFP_KERNEL);
3510 if (!ioc->internal_lookup) {
3511 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3512 ioc->name);
3513 goto out;
3514 }
3515 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3516 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3517 "internal(0x%p): depth(%d), start smid(%d)\n",
3518 ioc->name, ioc->internal,
3519 ioc->internal_depth, ioc->internal_smid));
3520
3521 /* sense buffers, 4 byte align */
3522 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3523 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3524 0);
3525 if (!ioc->sense_dma_pool) {
3526 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3527 ioc->name);
3528 goto out;
3529 }
3530 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3531 &ioc->sense_dma);
3532 if (!ioc->sense) {
3533 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3534 ioc->name);
3535 goto out;
3536 }
3537 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3538 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3539 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3540 SCSI_SENSE_BUFFERSIZE, sz/1024));
3541 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3542 ioc->name, (unsigned long long)ioc->sense_dma));
3543 total_sz += sz;
3544
3545 /* reply pool, 4 byte align */
3546 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3547 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3548 0);
3549 if (!ioc->reply_dma_pool) {
3550 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3551 ioc->name);
3552 goto out;
3553 }
3554 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3555 &ioc->reply_dma);
3556 if (!ioc->reply) {
3557 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3558 ioc->name);
3559 goto out;
3560 }
3561 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3562 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3563 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3564 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3565 ioc->name, ioc->reply,
3566 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3567 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3568 ioc->name, (unsigned long long)ioc->reply_dma));
3569 total_sz += sz;
3570
3571 /* reply free queue, 16 byte align */
3572 sz = ioc->reply_free_queue_depth * 4;
3573 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3574 ioc->pdev, sz, 16, 0);
3575 if (!ioc->reply_free_dma_pool) {
3576 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3577 ioc->name);
3578 goto out;
3579 }
3580 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3581 &ioc->reply_free_dma);
3582 if (!ioc->reply_free) {
3583 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3584 ioc->name);
3585 goto out;
3586 }
3587 memset(ioc->reply_free, 0, sz);
3588 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3589 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3590 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3591 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3592 "reply_free_dma (0x%llx)\n",
3593 ioc->name, (unsigned long long)ioc->reply_free_dma));
3594 total_sz += sz;
3595
3596 ioc->config_page_sz = 512;
3597 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3598 ioc->config_page_sz, &ioc->config_page_dma);
3599 if (!ioc->config_page) {
3600 pr_err(MPT3SAS_FMT
3601 "config page: pci_pool_alloc failed\n",
3602 ioc->name);
3603 goto out;
3604 }
3605 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3606 "config page(0x%p): size(%d)\n",
3607 ioc->name, ioc->config_page, ioc->config_page_sz));
3608 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3609 ioc->name, (unsigned long long)ioc->config_page_dma));
3610 total_sz += ioc->config_page_sz;
3611
3612 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3613 ioc->name, total_sz/1024);
3614 pr_info(MPT3SAS_FMT
3615 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3616 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3617 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3618 ioc->name, ioc->shost->sg_tablesize);
3619 return 0;
3620
3621 out:
3622 return -ENOMEM;
3623 }
3624
3625 /**
3626 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3627 * @ioc: Pointer to MPT_ADAPTER structure
3628 * @cooked: Request raw or cooked IOC state
3629 *
3630 * Returns all IOC Doorbell register bits if cooked==0, else just the
3631 * Doorbell bits in MPI_IOC_STATE_MASK.
3632 */
3633 u32
3634 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3635 {
3636 u32 s, sc;
3637
3638 s = readl(&ioc->chip->Doorbell);
3639 sc = s & MPI2_IOC_STATE_MASK;
3640 return cooked ? sc : s;
3641 }
3642
3643 /**
3644 * _base_wait_on_iocstate - waiting on a particular ioc state
3645 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3646 * @timeout: timeout in second
3647 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3648 *
3649 * Returns 0 for success, non-zero for failure.
3650 */
3651 static int
3652 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3653 int sleep_flag)
3654 {
3655 u32 count, cntdn;
3656 u32 current_state;
3657
3658 count = 0;
3659 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3660 do {
3661 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3662 if (current_state == ioc_state)
3663 return 0;
3664 if (count && current_state == MPI2_IOC_STATE_FAULT)
3665 break;
3666 if (sleep_flag == CAN_SLEEP)
3667 usleep_range(1000, 1500);
3668 else
3669 udelay(500);
3670 count++;
3671 } while (--cntdn);
3672
3673 return current_state;
3674 }
3675
3676 /**
3677 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3678 * a write to the doorbell)
3679 * @ioc: per adapter object
3680 * @timeout: timeout in second
3681 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3682 *
3683 * Returns 0 for success, non-zero for failure.
3684 *
3685 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3686 */
3687 static int
3688 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3689
3690 static int
3691 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3692 int sleep_flag)
3693 {
3694 u32 cntdn, count;
3695 u32 int_status;
3696
3697 count = 0;
3698 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3699 do {
3700 int_status = readl(&ioc->chip->HostInterruptStatus);
3701 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3702 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3703 "%s: successful count(%d), timeout(%d)\n",
3704 ioc->name, __func__, count, timeout));
3705 return 0;
3706 }
3707 if (sleep_flag == CAN_SLEEP)
3708 usleep_range(1000, 1500);
3709 else
3710 udelay(500);
3711 count++;
3712 } while (--cntdn);
3713
3714 pr_err(MPT3SAS_FMT
3715 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3716 ioc->name, __func__, count, int_status);
3717 return -EFAULT;
3718 }
3719
3720 /**
3721 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3722 * @ioc: per adapter object
3723 * @timeout: timeout in second
3724 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3725 *
3726 * Returns 0 for success, non-zero for failure.
3727 *
3728 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3729 * doorbell.
3730 */
3731 static int
3732 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3733 int sleep_flag)
3734 {
3735 u32 cntdn, count;
3736 u32 int_status;
3737 u32 doorbell;
3738
3739 count = 0;
3740 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3741 do {
3742 int_status = readl(&ioc->chip->HostInterruptStatus);
3743 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3744 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3745 "%s: successful count(%d), timeout(%d)\n",
3746 ioc->name, __func__, count, timeout));
3747 return 0;
3748 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3749 doorbell = readl(&ioc->chip->Doorbell);
3750 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3751 MPI2_IOC_STATE_FAULT) {
3752 mpt3sas_base_fault_info(ioc , doorbell);
3753 return -EFAULT;
3754 }
3755 } else if (int_status == 0xFFFFFFFF)
3756 goto out;
3757
3758 if (sleep_flag == CAN_SLEEP)
3759 usleep_range(1000, 1500);
3760 else
3761 udelay(500);
3762 count++;
3763 } while (--cntdn);
3764
3765 out:
3766 pr_err(MPT3SAS_FMT
3767 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3768 ioc->name, __func__, count, int_status);
3769 return -EFAULT;
3770 }
3771
3772 /**
3773 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3774 * @ioc: per adapter object
3775 * @timeout: timeout in second
3776 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3777 *
3778 * Returns 0 for success, non-zero for failure.
3779 *
3780 */
3781 static int
3782 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3783 int sleep_flag)
3784 {
3785 u32 cntdn, count;
3786 u32 doorbell_reg;
3787
3788 count = 0;
3789 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3790 do {
3791 doorbell_reg = readl(&ioc->chip->Doorbell);
3792 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3793 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3794 "%s: successful count(%d), timeout(%d)\n",
3795 ioc->name, __func__, count, timeout));
3796 return 0;
3797 }
3798 if (sleep_flag == CAN_SLEEP)
3799 usleep_range(1000, 1500);
3800 else
3801 udelay(500);
3802 count++;
3803 } while (--cntdn);
3804
3805 pr_err(MPT3SAS_FMT
3806 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3807 ioc->name, __func__, count, doorbell_reg);
3808 return -EFAULT;
3809 }
3810
3811 /**
3812 * _base_send_ioc_reset - send doorbell reset
3813 * @ioc: per adapter object
3814 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3815 * @timeout: timeout in second
3816 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3817 *
3818 * Returns 0 for success, non-zero for failure.
3819 */
3820 static int
3821 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3822 int sleep_flag)
3823 {
3824 u32 ioc_state;
3825 int r = 0;
3826
3827 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3828 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3829 ioc->name, __func__);
3830 return -EFAULT;
3831 }
3832
3833 if (!(ioc->facts.IOCCapabilities &
3834 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3835 return -EFAULT;
3836
3837 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3838
3839 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3840 &ioc->chip->Doorbell);
3841 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3842 r = -EFAULT;
3843 goto out;
3844 }
3845 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3846 timeout, sleep_flag);
3847 if (ioc_state) {
3848 pr_err(MPT3SAS_FMT
3849 "%s: failed going to ready state (ioc_state=0x%x)\n",
3850 ioc->name, __func__, ioc_state);
3851 r = -EFAULT;
3852 goto out;
3853 }
3854 out:
3855 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3856 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3857 return r;
3858 }
3859
3860 /**
3861 * _base_handshake_req_reply_wait - send request thru doorbell interface
3862 * @ioc: per adapter object
3863 * @request_bytes: request length
3864 * @request: pointer having request payload
3865 * @reply_bytes: reply length
3866 * @reply: pointer to reply payload
3867 * @timeout: timeout in second
3868 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3869 *
3870 * Returns 0 for success, non-zero for failure.
3871 */
3872 static int
3873 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3874 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3875 {
3876 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3877 int i;
3878 u8 failed;
3879 u16 dummy;
3880 __le32 *mfp;
3881
3882 /* make sure doorbell is not in use */
3883 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3884 pr_err(MPT3SAS_FMT
3885 "doorbell is in use (line=%d)\n",
3886 ioc->name, __LINE__);
3887 return -EFAULT;
3888 }
3889
3890 /* clear pending doorbell interrupts from previous state changes */
3891 if (readl(&ioc->chip->HostInterruptStatus) &
3892 MPI2_HIS_IOC2SYS_DB_STATUS)
3893 writel(0, &ioc->chip->HostInterruptStatus);
3894
3895 /* send message to ioc */
3896 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3897 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3898 &ioc->chip->Doorbell);
3899
3900 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3901 pr_err(MPT3SAS_FMT
3902 "doorbell handshake int failed (line=%d)\n",
3903 ioc->name, __LINE__);
3904 return -EFAULT;
3905 }
3906 writel(0, &ioc->chip->HostInterruptStatus);
3907
3908 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3909 pr_err(MPT3SAS_FMT
3910 "doorbell handshake ack failed (line=%d)\n",
3911 ioc->name, __LINE__);
3912 return -EFAULT;
3913 }
3914
3915 /* send message 32-bits at a time */
3916 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3917 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3918 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3919 failed = 1;
3920 }
3921
3922 if (failed) {
3923 pr_err(MPT3SAS_FMT
3924 "doorbell handshake sending request failed (line=%d)\n",
3925 ioc->name, __LINE__);
3926 return -EFAULT;
3927 }
3928
3929 /* now wait for the reply */
3930 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3931 pr_err(MPT3SAS_FMT
3932 "doorbell handshake int failed (line=%d)\n",
3933 ioc->name, __LINE__);
3934 return -EFAULT;
3935 }
3936
3937 /* read the first two 16-bits, it gives the total length of the reply */
3938 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3939 & MPI2_DOORBELL_DATA_MASK);
3940 writel(0, &ioc->chip->HostInterruptStatus);
3941 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3942 pr_err(MPT3SAS_FMT
3943 "doorbell handshake int failed (line=%d)\n",
3944 ioc->name, __LINE__);
3945 return -EFAULT;
3946 }
3947 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3948 & MPI2_DOORBELL_DATA_MASK);
3949 writel(0, &ioc->chip->HostInterruptStatus);
3950
3951 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3952 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3953 pr_err(MPT3SAS_FMT
3954 "doorbell handshake int failed (line=%d)\n",
3955 ioc->name, __LINE__);
3956 return -EFAULT;
3957 }
3958 if (i >= reply_bytes/2) /* overflow case */
3959 dummy = readl(&ioc->chip->Doorbell);
3960 else
3961 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3962 & MPI2_DOORBELL_DATA_MASK);
3963 writel(0, &ioc->chip->HostInterruptStatus);
3964 }
3965
3966 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3967 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3968 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3969 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3970 }
3971 writel(0, &ioc->chip->HostInterruptStatus);
3972
3973 if (ioc->logging_level & MPT_DEBUG_INIT) {
3974 mfp = (__le32 *)reply;
3975 pr_info("\toffset:data\n");
3976 for (i = 0; i < reply_bytes/4; i++)
3977 pr_info("\t[0x%02x]:%08x\n", i*4,
3978 le32_to_cpu(mfp[i]));
3979 }
3980 return 0;
3981 }
3982
3983 /**
3984 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3985 * @ioc: per adapter object
3986 * @mpi_reply: the reply payload from FW
3987 * @mpi_request: the request payload sent to FW
3988 *
3989 * The SAS IO Unit Control Request message allows the host to perform low-level
3990 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3991 * to obtain the IOC assigned device handles for a device if it has other
3992 * identifying information about the device, in addition allows the host to
3993 * remove IOC resources associated with the device.
3994 *
3995 * Returns 0 for success, non-zero for failure.
3996 */
3997 int
3998 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3999 Mpi2SasIoUnitControlReply_t *mpi_reply,
4000 Mpi2SasIoUnitControlRequest_t *mpi_request)
4001 {
4002 u16 smid;
4003 u32 ioc_state;
4004 unsigned long timeleft;
4005 bool issue_reset = false;
4006 int rc;
4007 void *request;
4008 u16 wait_state_count;
4009
4010 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4011 __func__));
4012
4013 mutex_lock(&ioc->base_cmds.mutex);
4014
4015 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4016 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4017 ioc->name, __func__);
4018 rc = -EAGAIN;
4019 goto out;
4020 }
4021
4022 wait_state_count = 0;
4023 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4024 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4025 if (wait_state_count++ == 10) {
4026 pr_err(MPT3SAS_FMT
4027 "%s: failed due to ioc not operational\n",
4028 ioc->name, __func__);
4029 rc = -EFAULT;
4030 goto out;
4031 }
4032 ssleep(1);
4033 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4034 pr_info(MPT3SAS_FMT
4035 "%s: waiting for operational state(count=%d)\n",
4036 ioc->name, __func__, wait_state_count);
4037 }
4038
4039 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4040 if (!smid) {
4041 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4042 ioc->name, __func__);
4043 rc = -EAGAIN;
4044 goto out;
4045 }
4046
4047 rc = 0;
4048 ioc->base_cmds.status = MPT3_CMD_PENDING;
4049 request = mpt3sas_base_get_msg_frame(ioc, smid);
4050 ioc->base_cmds.smid = smid;
4051 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4052 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4053 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4054 ioc->ioc_link_reset_in_progress = 1;
4055 init_completion(&ioc->base_cmds.done);
4056 mpt3sas_base_put_smid_default(ioc, smid);
4057 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4058 msecs_to_jiffies(10000));
4059 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4060 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4061 ioc->ioc_link_reset_in_progress)
4062 ioc->ioc_link_reset_in_progress = 0;
4063 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4064 pr_err(MPT3SAS_FMT "%s: timeout\n",
4065 ioc->name, __func__);
4066 _debug_dump_mf(mpi_request,
4067 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4068 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4069 issue_reset = true;
4070 goto issue_host_reset;
4071 }
4072 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4073 memcpy(mpi_reply, ioc->base_cmds.reply,
4074 sizeof(Mpi2SasIoUnitControlReply_t));
4075 else
4076 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4077 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4078 goto out;
4079
4080 issue_host_reset:
4081 if (issue_reset)
4082 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4083 FORCE_BIG_HAMMER);
4084 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4085 rc = -EFAULT;
4086 out:
4087 mutex_unlock(&ioc->base_cmds.mutex);
4088 return rc;
4089 }
4090
4091 /**
4092 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4093 * @ioc: per adapter object
4094 * @mpi_reply: the reply payload from FW
4095 * @mpi_request: the request payload sent to FW
4096 *
4097 * The SCSI Enclosure Processor request message causes the IOC to
4098 * communicate with SES devices to control LED status signals.
4099 *
4100 * Returns 0 for success, non-zero for failure.
4101 */
4102 int
4103 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4104 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4105 {
4106 u16 smid;
4107 u32 ioc_state;
4108 unsigned long timeleft;
4109 bool issue_reset = false;
4110 int rc;
4111 void *request;
4112 u16 wait_state_count;
4113
4114 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4115 __func__));
4116
4117 mutex_lock(&ioc->base_cmds.mutex);
4118
4119 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4120 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4121 ioc->name, __func__);
4122 rc = -EAGAIN;
4123 goto out;
4124 }
4125
4126 wait_state_count = 0;
4127 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4128 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4129 if (wait_state_count++ == 10) {
4130 pr_err(MPT3SAS_FMT
4131 "%s: failed due to ioc not operational\n",
4132 ioc->name, __func__);
4133 rc = -EFAULT;
4134 goto out;
4135 }
4136 ssleep(1);
4137 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4138 pr_info(MPT3SAS_FMT
4139 "%s: waiting for operational state(count=%d)\n",
4140 ioc->name,
4141 __func__, wait_state_count);
4142 }
4143
4144 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4145 if (!smid) {
4146 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4147 ioc->name, __func__);
4148 rc = -EAGAIN;
4149 goto out;
4150 }
4151
4152 rc = 0;
4153 ioc->base_cmds.status = MPT3_CMD_PENDING;
4154 request = mpt3sas_base_get_msg_frame(ioc, smid);
4155 ioc->base_cmds.smid = smid;
4156 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4157 init_completion(&ioc->base_cmds.done);
4158 mpt3sas_base_put_smid_default(ioc, smid);
4159 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4160 msecs_to_jiffies(10000));
4161 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4162 pr_err(MPT3SAS_FMT "%s: timeout\n",
4163 ioc->name, __func__);
4164 _debug_dump_mf(mpi_request,
4165 sizeof(Mpi2SepRequest_t)/4);
4166 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4167 issue_reset = false;
4168 goto issue_host_reset;
4169 }
4170 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4171 memcpy(mpi_reply, ioc->base_cmds.reply,
4172 sizeof(Mpi2SepReply_t));
4173 else
4174 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4175 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4176 goto out;
4177
4178 issue_host_reset:
4179 if (issue_reset)
4180 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4181 FORCE_BIG_HAMMER);
4182 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4183 rc = -EFAULT;
4184 out:
4185 mutex_unlock(&ioc->base_cmds.mutex);
4186 return rc;
4187 }
4188
4189 /**
4190 * _base_get_port_facts - obtain port facts reply and save in ioc
4191 * @ioc: per adapter object
4192 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4193 *
4194 * Returns 0 for success, non-zero for failure.
4195 */
4196 static int
4197 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4198 {
4199 Mpi2PortFactsRequest_t mpi_request;
4200 Mpi2PortFactsReply_t mpi_reply;
4201 struct mpt3sas_port_facts *pfacts;
4202 int mpi_reply_sz, mpi_request_sz, r;
4203
4204 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4205 __func__));
4206
4207 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4208 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4209 memset(&mpi_request, 0, mpi_request_sz);
4210 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4211 mpi_request.PortNumber = port;
4212 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4213 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4214
4215 if (r != 0) {
4216 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4217 ioc->name, __func__, r);
4218 return r;
4219 }
4220
4221 pfacts = &ioc->pfacts[port];
4222 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4223 pfacts->PortNumber = mpi_reply.PortNumber;
4224 pfacts->VP_ID = mpi_reply.VP_ID;
4225 pfacts->VF_ID = mpi_reply.VF_ID;
4226 pfacts->MaxPostedCmdBuffers =
4227 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4228
4229 return 0;
4230 }
4231
4232 /**
4233 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4234 * @ioc: per adapter object
4235 * @timeout:
4236 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4237 *
4238 * Returns 0 for success, non-zero for failure.
4239 */
4240 static int
4241 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4242 int sleep_flag)
4243 {
4244 u32 ioc_state;
4245 int rc;
4246
4247 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4248 __func__));
4249
4250 if (ioc->pci_error_recovery) {
4251 dfailprintk(ioc, printk(MPT3SAS_FMT
4252 "%s: host in pci error recovery\n", ioc->name, __func__));
4253 return -EFAULT;
4254 }
4255
4256 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4257 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4258 ioc->name, __func__, ioc_state));
4259
4260 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4261 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4262 return 0;
4263
4264 if (ioc_state & MPI2_DOORBELL_USED) {
4265 dhsprintk(ioc, printk(MPT3SAS_FMT
4266 "unexpected doorbell active!\n", ioc->name));
4267 goto issue_diag_reset;
4268 }
4269
4270 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4271 mpt3sas_base_fault_info(ioc, ioc_state &
4272 MPI2_DOORBELL_DATA_MASK);
4273 goto issue_diag_reset;
4274 }
4275
4276 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4277 timeout, sleep_flag);
4278 if (ioc_state) {
4279 dfailprintk(ioc, printk(MPT3SAS_FMT
4280 "%s: failed going to ready state (ioc_state=0x%x)\n",
4281 ioc->name, __func__, ioc_state));
4282 return -EFAULT;
4283 }
4284
4285 issue_diag_reset:
4286 rc = _base_diag_reset(ioc, sleep_flag);
4287 return rc;
4288 }
4289
4290 /**
4291 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4292 * @ioc: per adapter object
4293 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4294 *
4295 * Returns 0 for success, non-zero for failure.
4296 */
4297 static int
4298 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4299 {
4300 Mpi2IOCFactsRequest_t mpi_request;
4301 Mpi2IOCFactsReply_t mpi_reply;
4302 struct mpt3sas_facts *facts;
4303 int mpi_reply_sz, mpi_request_sz, r;
4304
4305 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4306 __func__));
4307
4308 r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4309 if (r) {
4310 dfailprintk(ioc, printk(MPT3SAS_FMT
4311 "%s: failed getting to correct state\n",
4312 ioc->name, __func__));
4313 return r;
4314 }
4315 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4316 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4317 memset(&mpi_request, 0, mpi_request_sz);
4318 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4319 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4320 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4321
4322 if (r != 0) {
4323 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4324 ioc->name, __func__, r);
4325 return r;
4326 }
4327
4328 facts = &ioc->facts;
4329 memset(facts, 0, sizeof(struct mpt3sas_facts));
4330 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4331 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4332 facts->VP_ID = mpi_reply.VP_ID;
4333 facts->VF_ID = mpi_reply.VF_ID;
4334 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4335 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4336 facts->WhoInit = mpi_reply.WhoInit;
4337 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4338 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4339 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4340 facts->MaxReplyDescriptorPostQueueDepth =
4341 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4342 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4343 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4344 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4345 ioc->ir_firmware = 1;
4346 if ((facts->IOCCapabilities &
4347 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4348 ioc->rdpq_array_capable = 1;
4349 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4350 facts->IOCRequestFrameSize =
4351 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4352 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
4353 facts->IOCMaxChainSegmentSize =
4354 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
4355 }
4356 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4357 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4358 ioc->shost->max_id = -1;
4359 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4360 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4361 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4362 facts->HighPriorityCredit =
4363 le16_to_cpu(mpi_reply.HighPriorityCredit);
4364 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4365 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4366
4367 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4368 "hba queue depth(%d), max chains per io(%d)\n",
4369 ioc->name, facts->RequestCredit,
4370 facts->MaxChainDepth));
4371 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4372 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4373 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4374 return 0;
4375 }
4376
4377 /**
4378 * _base_send_ioc_init - send ioc_init to firmware
4379 * @ioc: per adapter object
4380 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4381 *
4382 * Returns 0 for success, non-zero for failure.
4383 */
4384 static int
4385 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4386 {
4387 Mpi2IOCInitRequest_t mpi_request;
4388 Mpi2IOCInitReply_t mpi_reply;
4389 int i, r = 0;
4390 struct timeval current_time;
4391 u16 ioc_status;
4392 u32 reply_post_free_array_sz = 0;
4393 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4394 dma_addr_t reply_post_free_array_dma;
4395
4396 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4397 __func__));
4398
4399 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4400 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4401 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4402 mpi_request.VF_ID = 0; /* TODO */
4403 mpi_request.VP_ID = 0;
4404 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4405 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4406
4407 if (_base_is_controller_msix_enabled(ioc))
4408 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4409 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4410 mpi_request.ReplyDescriptorPostQueueDepth =
4411 cpu_to_le16(ioc->reply_post_queue_depth);
4412 mpi_request.ReplyFreeQueueDepth =
4413 cpu_to_le16(ioc->reply_free_queue_depth);
4414
4415 mpi_request.SenseBufferAddressHigh =
4416 cpu_to_le32((u64)ioc->sense_dma >> 32);
4417 mpi_request.SystemReplyAddressHigh =
4418 cpu_to_le32((u64)ioc->reply_dma >> 32);
4419 mpi_request.SystemRequestFrameBaseAddress =
4420 cpu_to_le64((u64)ioc->request_dma);
4421 mpi_request.ReplyFreeQueueAddress =
4422 cpu_to_le64((u64)ioc->reply_free_dma);
4423
4424 if (ioc->rdpq_array_enable) {
4425 reply_post_free_array_sz = ioc->reply_queue_count *
4426 sizeof(Mpi2IOCInitRDPQArrayEntry);
4427 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4428 reply_post_free_array_sz, &reply_post_free_array_dma);
4429 if (!reply_post_free_array) {
4430 pr_err(MPT3SAS_FMT
4431 "reply_post_free_array: pci_alloc_consistent failed\n",
4432 ioc->name);
4433 r = -ENOMEM;
4434 goto out;
4435 }
4436 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4437 for (i = 0; i < ioc->reply_queue_count; i++)
4438 reply_post_free_array[i].RDPQBaseAddress =
4439 cpu_to_le64(
4440 (u64)ioc->reply_post[i].reply_post_free_dma);
4441 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4442 mpi_request.ReplyDescriptorPostQueueAddress =
4443 cpu_to_le64((u64)reply_post_free_array_dma);
4444 } else {
4445 mpi_request.ReplyDescriptorPostQueueAddress =
4446 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4447 }
4448
4449 /* This time stamp specifies number of milliseconds
4450 * since epoch ~ midnight January 1, 1970.
4451 */
4452 do_gettimeofday(&current_time);
4453 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4454 (current_time.tv_usec / 1000));
4455
4456 if (ioc->logging_level & MPT_DEBUG_INIT) {
4457 __le32 *mfp;
4458 int i;
4459
4460 mfp = (__le32 *)&mpi_request;
4461 pr_info("\toffset:data\n");
4462 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4463 pr_info("\t[0x%02x]:%08x\n", i*4,
4464 le32_to_cpu(mfp[i]));
4465 }
4466
4467 r = _base_handshake_req_reply_wait(ioc,
4468 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4469 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4470 sleep_flag);
4471
4472 if (r != 0) {
4473 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4474 ioc->name, __func__, r);
4475 goto out;
4476 }
4477
4478 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4479 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4480 mpi_reply.IOCLogInfo) {
4481 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4482 r = -EIO;
4483 }
4484
4485 out:
4486 if (reply_post_free_array)
4487 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4488 reply_post_free_array,
4489 reply_post_free_array_dma);
4490 return r;
4491 }
4492
4493 /**
4494 * mpt3sas_port_enable_done - command completion routine for port enable
4495 * @ioc: per adapter object
4496 * @smid: system request message index
4497 * @msix_index: MSIX table index supplied by the OS
4498 * @reply: reply message frame(lower 32bit addr)
4499 *
4500 * Return 1 meaning mf should be freed from _base_interrupt
4501 * 0 means the mf is freed from this function.
4502 */
4503 u8
4504 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4505 u32 reply)
4506 {
4507 MPI2DefaultReply_t *mpi_reply;
4508 u16 ioc_status;
4509
4510 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4511 return 1;
4512
4513 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4514 if (!mpi_reply)
4515 return 1;
4516
4517 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4518 return 1;
4519
4520 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4521 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4522 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4523 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4524 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4525 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4526 ioc->port_enable_failed = 1;
4527
4528 if (ioc->is_driver_loading) {
4529 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4530 mpt3sas_port_enable_complete(ioc);
4531 return 1;
4532 } else {
4533 ioc->start_scan_failed = ioc_status;
4534 ioc->start_scan = 0;
4535 return 1;
4536 }
4537 }
4538 complete(&ioc->port_enable_cmds.done);
4539 return 1;
4540 }
4541
4542 /**
4543 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4544 * @ioc: per adapter object
4545 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4546 *
4547 * Returns 0 for success, non-zero for failure.
4548 */
4549 static int
4550 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4551 {
4552 Mpi2PortEnableRequest_t *mpi_request;
4553 Mpi2PortEnableReply_t *mpi_reply;
4554 unsigned long timeleft;
4555 int r = 0;
4556 u16 smid;
4557 u16 ioc_status;
4558
4559 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4560
4561 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4562 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4563 ioc->name, __func__);
4564 return -EAGAIN;
4565 }
4566
4567 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4568 if (!smid) {
4569 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4570 ioc->name, __func__);
4571 return -EAGAIN;
4572 }
4573
4574 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4575 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4576 ioc->port_enable_cmds.smid = smid;
4577 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4578 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4579
4580 init_completion(&ioc->port_enable_cmds.done);
4581 mpt3sas_base_put_smid_default(ioc, smid);
4582 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4583 300*HZ);
4584 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4585 pr_err(MPT3SAS_FMT "%s: timeout\n",
4586 ioc->name, __func__);
4587 _debug_dump_mf(mpi_request,
4588 sizeof(Mpi2PortEnableRequest_t)/4);
4589 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4590 r = -EFAULT;
4591 else
4592 r = -ETIME;
4593 goto out;
4594 }
4595
4596 mpi_reply = ioc->port_enable_cmds.reply;
4597 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4598 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4599 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4600 ioc->name, __func__, ioc_status);
4601 r = -EFAULT;
4602 goto out;
4603 }
4604
4605 out:
4606 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4607 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4608 "SUCCESS" : "FAILED"));
4609 return r;
4610 }
4611
4612 /**
4613 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4614 * @ioc: per adapter object
4615 *
4616 * Returns 0 for success, non-zero for failure.
4617 */
4618 int
4619 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4620 {
4621 Mpi2PortEnableRequest_t *mpi_request;
4622 u16 smid;
4623
4624 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4625
4626 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4627 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4628 ioc->name, __func__);
4629 return -EAGAIN;
4630 }
4631
4632 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4633 if (!smid) {
4634 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4635 ioc->name, __func__);
4636 return -EAGAIN;
4637 }
4638
4639 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4640 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4641 ioc->port_enable_cmds.smid = smid;
4642 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4643 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4644
4645 mpt3sas_base_put_smid_default(ioc, smid);
4646 return 0;
4647 }
4648
4649 /**
4650 * _base_determine_wait_on_discovery - desposition
4651 * @ioc: per adapter object
4652 *
4653 * Decide whether to wait on discovery to complete. Used to either
4654 * locate boot device, or report volumes ahead of physical devices.
4655 *
4656 * Returns 1 for wait, 0 for don't wait
4657 */
4658 static int
4659 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4660 {
4661 /* We wait for discovery to complete if IR firmware is loaded.
4662 * The sas topology events arrive before PD events, so we need time to
4663 * turn on the bit in ioc->pd_handles to indicate PD
4664 * Also, it maybe required to report Volumes ahead of physical
4665 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4666 */
4667 if (ioc->ir_firmware)
4668 return 1;
4669
4670 /* if no Bios, then we don't need to wait */
4671 if (!ioc->bios_pg3.BiosVersion)
4672 return 0;
4673
4674 /* Bios is present, then we drop down here.
4675 *
4676 * If there any entries in the Bios Page 2, then we wait
4677 * for discovery to complete.
4678 */
4679
4680 /* Current Boot Device */
4681 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4682 MPI2_BIOSPAGE2_FORM_MASK) ==
4683 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4684 /* Request Boot Device */
4685 (ioc->bios_pg2.ReqBootDeviceForm &
4686 MPI2_BIOSPAGE2_FORM_MASK) ==
4687 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4688 /* Alternate Request Boot Device */
4689 (ioc->bios_pg2.ReqAltBootDeviceForm &
4690 MPI2_BIOSPAGE2_FORM_MASK) ==
4691 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4692 return 0;
4693
4694 return 1;
4695 }
4696
4697 /**
4698 * _base_unmask_events - turn on notification for this event
4699 * @ioc: per adapter object
4700 * @event: firmware event
4701 *
4702 * The mask is stored in ioc->event_masks.
4703 */
4704 static void
4705 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4706 {
4707 u32 desired_event;
4708
4709 if (event >= 128)
4710 return;
4711
4712 desired_event = (1 << (event % 32));
4713
4714 if (event < 32)
4715 ioc->event_masks[0] &= ~desired_event;
4716 else if (event < 64)
4717 ioc->event_masks[1] &= ~desired_event;
4718 else if (event < 96)
4719 ioc->event_masks[2] &= ~desired_event;
4720 else if (event < 128)
4721 ioc->event_masks[3] &= ~desired_event;
4722 }
4723
4724 /**
4725 * _base_event_notification - send event notification
4726 * @ioc: per adapter object
4727 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4728 *
4729 * Returns 0 for success, non-zero for failure.
4730 */
4731 static int
4732 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4733 {
4734 Mpi2EventNotificationRequest_t *mpi_request;
4735 unsigned long timeleft;
4736 u16 smid;
4737 int r = 0;
4738 int i;
4739
4740 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4741 __func__));
4742
4743 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4744 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4745 ioc->name, __func__);
4746 return -EAGAIN;
4747 }
4748
4749 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4750 if (!smid) {
4751 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4752 ioc->name, __func__);
4753 return -EAGAIN;
4754 }
4755 ioc->base_cmds.status = MPT3_CMD_PENDING;
4756 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4757 ioc->base_cmds.smid = smid;
4758 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4759 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4760 mpi_request->VF_ID = 0; /* TODO */
4761 mpi_request->VP_ID = 0;
4762 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4763 mpi_request->EventMasks[i] =
4764 cpu_to_le32(ioc->event_masks[i]);
4765 init_completion(&ioc->base_cmds.done);
4766 mpt3sas_base_put_smid_default(ioc, smid);
4767 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4768 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4769 pr_err(MPT3SAS_FMT "%s: timeout\n",
4770 ioc->name, __func__);
4771 _debug_dump_mf(mpi_request,
4772 sizeof(Mpi2EventNotificationRequest_t)/4);
4773 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4774 r = -EFAULT;
4775 else
4776 r = -ETIME;
4777 } else
4778 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4779 ioc->name, __func__));
4780 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4781 return r;
4782 }
4783
4784 /**
4785 * mpt3sas_base_validate_event_type - validating event types
4786 * @ioc: per adapter object
4787 * @event: firmware event
4788 *
4789 * This will turn on firmware event notification when application
4790 * ask for that event. We don't mask events that are already enabled.
4791 */
4792 void
4793 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4794 {
4795 int i, j;
4796 u32 event_mask, desired_event;
4797 u8 send_update_to_fw;
4798
4799 for (i = 0, send_update_to_fw = 0; i <
4800 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4801 event_mask = ~event_type[i];
4802 desired_event = 1;
4803 for (j = 0; j < 32; j++) {
4804 if (!(event_mask & desired_event) &&
4805 (ioc->event_masks[i] & desired_event)) {
4806 ioc->event_masks[i] &= ~desired_event;
4807 send_update_to_fw = 1;
4808 }
4809 desired_event = (desired_event << 1);
4810 }
4811 }
4812
4813 if (!send_update_to_fw)
4814 return;
4815
4816 mutex_lock(&ioc->base_cmds.mutex);
4817 _base_event_notification(ioc, CAN_SLEEP);
4818 mutex_unlock(&ioc->base_cmds.mutex);
4819 }
4820
4821 /**
4822 * _base_diag_reset - the "big hammer" start of day reset
4823 * @ioc: per adapter object
4824 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4825 *
4826 * Returns 0 for success, non-zero for failure.
4827 */
4828 static int
4829 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4830 {
4831 u32 host_diagnostic;
4832 u32 ioc_state;
4833 u32 count;
4834 u32 hcb_size;
4835
4836 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4837
4838 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4839 ioc->name));
4840
4841 count = 0;
4842 do {
4843 /* Write magic sequence to WriteSequence register
4844 * Loop until in diagnostic mode
4845 */
4846 drsprintk(ioc, pr_info(MPT3SAS_FMT
4847 "write magic sequence\n", ioc->name));
4848 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4849 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4850 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4851 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4852 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4853 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4854 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4855
4856 /* wait 100 msec */
4857 if (sleep_flag == CAN_SLEEP)
4858 msleep(100);
4859 else
4860 mdelay(100);
4861
4862 if (count++ > 20)
4863 goto out;
4864
4865 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4866 drsprintk(ioc, pr_info(MPT3SAS_FMT
4867 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4868 ioc->name, count, host_diagnostic));
4869
4870 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4871
4872 hcb_size = readl(&ioc->chip->HCBSize);
4873
4874 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4875 ioc->name));
4876 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4877 &ioc->chip->HostDiagnostic);
4878
4879 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4880 if (sleep_flag == CAN_SLEEP)
4881 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4882 else
4883 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4884
4885 /* Approximately 300 second max wait */
4886 for (count = 0; count < (300000000 /
4887 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4888
4889 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4890
4891 if (host_diagnostic == 0xFFFFFFFF)
4892 goto out;
4893 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4894 break;
4895
4896 /* Wait to pass the second read delay window */
4897 if (sleep_flag == CAN_SLEEP)
4898 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4899 / 1000);
4900 else
4901 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4902 / 1000);
4903 }
4904
4905 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4906
4907 drsprintk(ioc, pr_info(MPT3SAS_FMT
4908 "restart the adapter assuming the HCB Address points to good F/W\n",
4909 ioc->name));
4910 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4911 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4912 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4913
4914 drsprintk(ioc, pr_info(MPT3SAS_FMT
4915 "re-enable the HCDW\n", ioc->name));
4916 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4917 &ioc->chip->HCBSize);
4918 }
4919
4920 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4921 ioc->name));
4922 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4923 &ioc->chip->HostDiagnostic);
4924
4925 drsprintk(ioc, pr_info(MPT3SAS_FMT
4926 "disable writes to the diagnostic register\n", ioc->name));
4927 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4928
4929 drsprintk(ioc, pr_info(MPT3SAS_FMT
4930 "Wait for FW to go to the READY state\n", ioc->name));
4931 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4932 sleep_flag);
4933 if (ioc_state) {
4934 pr_err(MPT3SAS_FMT
4935 "%s: failed going to ready state (ioc_state=0x%x)\n",
4936 ioc->name, __func__, ioc_state);
4937 goto out;
4938 }
4939
4940 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4941 return 0;
4942
4943 out:
4944 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4945 return -EFAULT;
4946 }
4947
4948 /**
4949 * _base_make_ioc_ready - put controller in READY state
4950 * @ioc: per adapter object
4951 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4952 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4953 *
4954 * Returns 0 for success, non-zero for failure.
4955 */
4956 static int
4957 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4958 enum reset_type type)
4959 {
4960 u32 ioc_state;
4961 int rc;
4962 int count;
4963
4964 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4965 __func__));
4966
4967 if (ioc->pci_error_recovery)
4968 return 0;
4969
4970 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4971 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4972 ioc->name, __func__, ioc_state));
4973
4974 /* if in RESET state, it should move to READY state shortly */
4975 count = 0;
4976 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4977 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4978 MPI2_IOC_STATE_READY) {
4979 if (count++ == 10) {
4980 pr_err(MPT3SAS_FMT
4981 "%s: failed going to ready state (ioc_state=0x%x)\n",
4982 ioc->name, __func__, ioc_state);
4983 return -EFAULT;
4984 }
4985 if (sleep_flag == CAN_SLEEP)
4986 ssleep(1);
4987 else
4988 mdelay(1000);
4989 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4990 }
4991 }
4992
4993 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4994 return 0;
4995
4996 if (ioc_state & MPI2_DOORBELL_USED) {
4997 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4998 "unexpected doorbell active!\n",
4999 ioc->name));
5000 goto issue_diag_reset;
5001 }
5002
5003 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
5004 mpt3sas_base_fault_info(ioc, ioc_state &
5005 MPI2_DOORBELL_DATA_MASK);
5006 goto issue_diag_reset;
5007 }
5008
5009 if (type == FORCE_BIG_HAMMER)
5010 goto issue_diag_reset;
5011
5012 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
5013 if (!(_base_send_ioc_reset(ioc,
5014 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
5015 return 0;
5016 }
5017
5018 issue_diag_reset:
5019 rc = _base_diag_reset(ioc, CAN_SLEEP);
5020 return rc;
5021 }
5022
5023 /**
5024 * _base_make_ioc_operational - put controller in OPERATIONAL state
5025 * @ioc: per adapter object
5026 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5027 *
5028 * Returns 0 for success, non-zero for failure.
5029 */
5030 static int
5031 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5032 {
5033 int r, i;
5034 unsigned long flags;
5035 u32 reply_address;
5036 u16 smid;
5037 struct _tr_list *delayed_tr, *delayed_tr_next;
5038 struct _sc_list *delayed_sc, *delayed_sc_next;
5039 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
5040 u8 hide_flag;
5041 struct adapter_reply_queue *reply_q;
5042 long reply_post_free;
5043 u32 reply_post_free_sz, index = 0;
5044
5045 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5046 __func__));
5047
5048 /* clean the delayed target reset list */
5049 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5050 &ioc->delayed_tr_list, list) {
5051 list_del(&delayed_tr->list);
5052 kfree(delayed_tr);
5053 }
5054
5055
5056 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5057 &ioc->delayed_tr_volume_list, list) {
5058 list_del(&delayed_tr->list);
5059 kfree(delayed_tr);
5060 }
5061
5062 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
5063 &ioc->delayed_sc_list, list) {
5064 list_del(&delayed_sc->list);
5065 kfree(delayed_sc);
5066 }
5067
5068 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
5069 &ioc->delayed_event_ack_list, list) {
5070 list_del(&delayed_event_ack->list);
5071 kfree(delayed_event_ack);
5072 }
5073
5074 /* initialize the scsi lookup free list */
5075 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5076 INIT_LIST_HEAD(&ioc->free_list);
5077 smid = 1;
5078 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5079 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5080 ioc->scsi_lookup[i].cb_idx = 0xFF;
5081 ioc->scsi_lookup[i].smid = smid;
5082 ioc->scsi_lookup[i].scmd = NULL;
5083 ioc->scsi_lookup[i].direct_io = 0;
5084 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5085 &ioc->free_list);
5086 }
5087
5088 /* hi-priority queue */
5089 INIT_LIST_HEAD(&ioc->hpr_free_list);
5090 smid = ioc->hi_priority_smid;
5091 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5092 ioc->hpr_lookup[i].cb_idx = 0xFF;
5093 ioc->hpr_lookup[i].smid = smid;
5094 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5095 &ioc->hpr_free_list);
5096 }
5097
5098 /* internal queue */
5099 INIT_LIST_HEAD(&ioc->internal_free_list);
5100 smid = ioc->internal_smid;
5101 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5102 ioc->internal_lookup[i].cb_idx = 0xFF;
5103 ioc->internal_lookup[i].smid = smid;
5104 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5105 &ioc->internal_free_list);
5106 }
5107
5108 /* chain pool */
5109 INIT_LIST_HEAD(&ioc->free_chain_list);
5110 for (i = 0; i < ioc->chain_depth; i++)
5111 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5112 &ioc->free_chain_list);
5113
5114 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5115
5116 /* initialize Reply Free Queue */
5117 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5118 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5119 ioc->reply_sz)
5120 ioc->reply_free[i] = cpu_to_le32(reply_address);
5121
5122 /* initialize reply queues */
5123 if (ioc->is_driver_loading)
5124 _base_assign_reply_queues(ioc);
5125
5126 /* initialize Reply Post Free Queue */
5127 reply_post_free_sz = ioc->reply_post_queue_depth *
5128 sizeof(Mpi2DefaultReplyDescriptor_t);
5129 reply_post_free = (long)ioc->reply_post[index].reply_post_free;
5130 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5131 reply_q->reply_post_host_index = 0;
5132 reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
5133 reply_post_free;
5134 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5135 reply_q->reply_post_free[i].Words =
5136 cpu_to_le64(ULLONG_MAX);
5137 if (!_base_is_controller_msix_enabled(ioc))
5138 goto skip_init_reply_post_free_queue;
5139 /*
5140 * If RDPQ is enabled, switch to the next allocation.
5141 * Otherwise advance within the contiguous region.
5142 */
5143 if (ioc->rdpq_array_enable)
5144 reply_post_free = (long)
5145 ioc->reply_post[++index].reply_post_free;
5146 else
5147 reply_post_free += reply_post_free_sz;
5148 }
5149 skip_init_reply_post_free_queue:
5150
5151 r = _base_send_ioc_init(ioc, sleep_flag);
5152 if (r)
5153 return r;
5154
5155 /* initialize reply free host index */
5156 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5157 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5158
5159 /* initialize reply post host index */
5160 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5161 if (ioc->msix96_vector)
5162 writel((reply_q->msix_index & 7)<<
5163 MPI2_RPHI_MSIX_INDEX_SHIFT,
5164 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5165 else
5166 writel(reply_q->msix_index <<
5167 MPI2_RPHI_MSIX_INDEX_SHIFT,
5168 &ioc->chip->ReplyPostHostIndex);
5169
5170 if (!_base_is_controller_msix_enabled(ioc))
5171 goto skip_init_reply_post_host_index;
5172 }
5173
5174 skip_init_reply_post_host_index:
5175
5176 _base_unmask_interrupts(ioc);
5177 r = _base_event_notification(ioc, sleep_flag);
5178 if (r)
5179 return r;
5180
5181 if (sleep_flag == CAN_SLEEP)
5182 _base_static_config_pages(ioc);
5183
5184
5185 if (ioc->is_driver_loading) {
5186
5187 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5188 == 0x80) {
5189 hide_flag = (u8) (
5190 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5191 MFG_PAGE10_HIDE_SSDS_MASK);
5192 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5193 ioc->mfg_pg10_hide_flag = hide_flag;
5194 }
5195
5196 ioc->wait_for_discovery_to_complete =
5197 _base_determine_wait_on_discovery(ioc);
5198
5199 return r; /* scan_start and scan_finished support */
5200 }
5201
5202 r = _base_send_port_enable(ioc, sleep_flag);
5203 if (r)
5204 return r;
5205
5206 return r;
5207 }
5208
5209 /**
5210 * mpt3sas_base_free_resources - free resources controller resources
5211 * @ioc: per adapter object
5212 *
5213 * Return nothing.
5214 */
5215 void
5216 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5217 {
5218 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5219 __func__));
5220
5221 /* synchronizing freeing resource with pci_access_mutex lock */
5222 mutex_lock(&ioc->pci_access_mutex);
5223 if (ioc->chip_phys && ioc->chip) {
5224 _base_mask_interrupts(ioc);
5225 ioc->shost_recovery = 1;
5226 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5227 ioc->shost_recovery = 0;
5228 }
5229
5230 mpt3sas_base_unmap_resources(ioc);
5231 mutex_unlock(&ioc->pci_access_mutex);
5232 return;
5233 }
5234
5235 /**
5236 * mpt3sas_base_attach - attach controller instance
5237 * @ioc: per adapter object
5238 *
5239 * Returns 0 for success, non-zero for failure.
5240 */
5241 int
5242 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5243 {
5244 int r, i;
5245 int cpu_id, last_cpu_id = 0;
5246
5247 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5248 __func__));
5249
5250 /* setup cpu_msix_table */
5251 ioc->cpu_count = num_online_cpus();
5252 for_each_online_cpu(cpu_id)
5253 last_cpu_id = cpu_id;
5254 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5255 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5256 ioc->reply_queue_count = 1;
5257 if (!ioc->cpu_msix_table) {
5258 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5259 "allocation for cpu_msix_table failed!!!\n",
5260 ioc->name));
5261 r = -ENOMEM;
5262 goto out_free_resources;
5263 }
5264
5265 if (ioc->is_warpdrive) {
5266 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5267 sizeof(resource_size_t *), GFP_KERNEL);
5268 if (!ioc->reply_post_host_index) {
5269 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5270 "for cpu_msix_table failed!!!\n", ioc->name));
5271 r = -ENOMEM;
5272 goto out_free_resources;
5273 }
5274 }
5275
5276 ioc->rdpq_array_enable_assigned = 0;
5277 ioc->dma_mask = 0;
5278 r = mpt3sas_base_map_resources(ioc);
5279 if (r)
5280 goto out_free_resources;
5281
5282 if (ioc->is_warpdrive) {
5283 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
5284 &ioc->chip->ReplyPostHostIndex;
5285
5286 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
5287 ioc->reply_post_host_index[i] =
5288 (resource_size_t __iomem *)
5289 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
5290 * 4)));
5291 }
5292
5293 pci_set_drvdata(ioc->pdev, ioc->shost);
5294 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5295 if (r)
5296 goto out_free_resources;
5297
5298 switch (ioc->hba_mpi_version_belonged) {
5299 case MPI2_VERSION:
5300 ioc->build_sg_scmd = &_base_build_sg_scmd;
5301 ioc->build_sg = &_base_build_sg;
5302 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5303 break;
5304 case MPI25_VERSION:
5305 case MPI26_VERSION:
5306 /*
5307 * In SAS3.0,
5308 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5309 * Target Status - all require the IEEE formated scatter gather
5310 * elements.
5311 */
5312 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5313 ioc->build_sg = &_base_build_sg_ieee;
5314 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5315 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5316 break;
5317 }
5318
5319 /*
5320 * These function pointers for other requests that don't
5321 * the require IEEE scatter gather elements.
5322 *
5323 * For example Configuration Pages and SAS IOUNIT Control don't.
5324 */
5325 ioc->build_sg_mpi = &_base_build_sg;
5326 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5327
5328 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5329 if (r)
5330 goto out_free_resources;
5331
5332 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5333 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5334 if (!ioc->pfacts) {
5335 r = -ENOMEM;
5336 goto out_free_resources;
5337 }
5338
5339 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5340 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5341 if (r)
5342 goto out_free_resources;
5343 }
5344
5345 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5346 if (r)
5347 goto out_free_resources;
5348
5349 init_waitqueue_head(&ioc->reset_wq);
5350
5351 /* allocate memory pd handle bitmask list */
5352 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5353 if (ioc->facts.MaxDevHandle % 8)
5354 ioc->pd_handles_sz++;
5355 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5356 GFP_KERNEL);
5357 if (!ioc->pd_handles) {
5358 r = -ENOMEM;
5359 goto out_free_resources;
5360 }
5361 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5362 GFP_KERNEL);
5363 if (!ioc->blocking_handles) {
5364 r = -ENOMEM;
5365 goto out_free_resources;
5366 }
5367
5368 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5369
5370 /* base internal command bits */
5371 mutex_init(&ioc->base_cmds.mutex);
5372 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5373 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5374
5375 /* port_enable command bits */
5376 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5377 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5378
5379 /* transport internal command bits */
5380 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5381 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5382 mutex_init(&ioc->transport_cmds.mutex);
5383
5384 /* scsih internal command bits */
5385 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5386 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5387 mutex_init(&ioc->scsih_cmds.mutex);
5388
5389 /* task management internal command bits */
5390 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5391 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5392 mutex_init(&ioc->tm_cmds.mutex);
5393
5394 /* config page internal command bits */
5395 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5396 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5397 mutex_init(&ioc->config_cmds.mutex);
5398
5399 /* ctl module internal command bits */
5400 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5401 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5402 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5403 mutex_init(&ioc->ctl_cmds.mutex);
5404
5405 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5406 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5407 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5408 !ioc->ctl_cmds.sense) {
5409 r = -ENOMEM;
5410 goto out_free_resources;
5411 }
5412
5413 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5414 ioc->event_masks[i] = -1;
5415
5416 /* here we enable the events we care about */
5417 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5418 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5419 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5420 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5421 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5422 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5423 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5424 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5425 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5426 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5427 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5428
5429 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5430 if (r)
5431 goto out_free_resources;
5432
5433 ioc->non_operational_loop = 0;
5434 return 0;
5435
5436 out_free_resources:
5437
5438 ioc->remove_host = 1;
5439
5440 mpt3sas_base_free_resources(ioc);
5441 _base_release_memory_pools(ioc);
5442 pci_set_drvdata(ioc->pdev, NULL);
5443 kfree(ioc->cpu_msix_table);
5444 if (ioc->is_warpdrive)
5445 kfree(ioc->reply_post_host_index);
5446 kfree(ioc->pd_handles);
5447 kfree(ioc->blocking_handles);
5448 kfree(ioc->tm_cmds.reply);
5449 kfree(ioc->transport_cmds.reply);
5450 kfree(ioc->scsih_cmds.reply);
5451 kfree(ioc->config_cmds.reply);
5452 kfree(ioc->base_cmds.reply);
5453 kfree(ioc->port_enable_cmds.reply);
5454 kfree(ioc->ctl_cmds.reply);
5455 kfree(ioc->ctl_cmds.sense);
5456 kfree(ioc->pfacts);
5457 ioc->ctl_cmds.reply = NULL;
5458 ioc->base_cmds.reply = NULL;
5459 ioc->tm_cmds.reply = NULL;
5460 ioc->scsih_cmds.reply = NULL;
5461 ioc->transport_cmds.reply = NULL;
5462 ioc->config_cmds.reply = NULL;
5463 ioc->pfacts = NULL;
5464 return r;
5465 }
5466
5467
5468 /**
5469 * mpt3sas_base_detach - remove controller instance
5470 * @ioc: per adapter object
5471 *
5472 * Return nothing.
5473 */
5474 void
5475 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5476 {
5477 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5478 __func__));
5479
5480 mpt3sas_base_stop_watchdog(ioc);
5481 mpt3sas_base_free_resources(ioc);
5482 _base_release_memory_pools(ioc);
5483 pci_set_drvdata(ioc->pdev, NULL);
5484 kfree(ioc->cpu_msix_table);
5485 if (ioc->is_warpdrive)
5486 kfree(ioc->reply_post_host_index);
5487 kfree(ioc->pd_handles);
5488 kfree(ioc->blocking_handles);
5489 kfree(ioc->pfacts);
5490 kfree(ioc->ctl_cmds.reply);
5491 kfree(ioc->ctl_cmds.sense);
5492 kfree(ioc->base_cmds.reply);
5493 kfree(ioc->port_enable_cmds.reply);
5494 kfree(ioc->tm_cmds.reply);
5495 kfree(ioc->transport_cmds.reply);
5496 kfree(ioc->scsih_cmds.reply);
5497 kfree(ioc->config_cmds.reply);
5498 }
5499
5500 /**
5501 * _base_reset_handler - reset callback handler (for base)
5502 * @ioc: per adapter object
5503 * @reset_phase: phase
5504 *
5505 * The handler for doing any required cleanup or initialization.
5506 *
5507 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5508 * MPT3_IOC_DONE_RESET
5509 *
5510 * Return nothing.
5511 */
5512 static void
5513 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5514 {
5515 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5516 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5517 switch (reset_phase) {
5518 case MPT3_IOC_PRE_RESET:
5519 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5520 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5521 break;
5522 case MPT3_IOC_AFTER_RESET:
5523 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5524 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5525 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5526 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5527 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5528 complete(&ioc->transport_cmds.done);
5529 }
5530 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5531 ioc->base_cmds.status |= MPT3_CMD_RESET;
5532 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5533 complete(&ioc->base_cmds.done);
5534 }
5535 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5536 ioc->port_enable_failed = 1;
5537 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5538 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5539 if (ioc->is_driver_loading) {
5540 ioc->start_scan_failed =
5541 MPI2_IOCSTATUS_INTERNAL_ERROR;
5542 ioc->start_scan = 0;
5543 ioc->port_enable_cmds.status =
5544 MPT3_CMD_NOT_USED;
5545 } else
5546 complete(&ioc->port_enable_cmds.done);
5547 }
5548 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5549 ioc->config_cmds.status |= MPT3_CMD_RESET;
5550 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5551 ioc->config_cmds.smid = USHRT_MAX;
5552 complete(&ioc->config_cmds.done);
5553 }
5554 break;
5555 case MPT3_IOC_DONE_RESET:
5556 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5557 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5558 break;
5559 }
5560 }
5561
5562 /**
5563 * _wait_for_commands_to_complete - reset controller
5564 * @ioc: Pointer to MPT_ADAPTER structure
5565 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5566 *
5567 * This function waiting(3s) for all pending commands to complete
5568 * prior to putting controller in reset.
5569 */
5570 static void
5571 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5572 {
5573 u32 ioc_state;
5574 unsigned long flags;
5575 u16 i;
5576
5577 ioc->pending_io_count = 0;
5578 if (sleep_flag != CAN_SLEEP)
5579 return;
5580
5581 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5582 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5583 return;
5584
5585 /* pending command count */
5586 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5587 for (i = 0; i < ioc->scsiio_depth; i++)
5588 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5589 ioc->pending_io_count++;
5590 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5591
5592 if (!ioc->pending_io_count)
5593 return;
5594
5595 /* wait for pending commands to complete */
5596 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5597 }
5598
5599 /**
5600 * mpt3sas_base_hard_reset_handler - reset controller
5601 * @ioc: Pointer to MPT_ADAPTER structure
5602 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5603 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5604 *
5605 * Returns 0 for success, non-zero for failure.
5606 */
5607 int
5608 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5609 enum reset_type type)
5610 {
5611 int r;
5612 unsigned long flags;
5613 u32 ioc_state;
5614 u8 is_fault = 0, is_trigger = 0;
5615
5616 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5617 __func__));
5618
5619 if (ioc->pci_error_recovery) {
5620 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5621 ioc->name, __func__);
5622 r = 0;
5623 goto out_unlocked;
5624 }
5625
5626 if (mpt3sas_fwfault_debug)
5627 mpt3sas_halt_firmware(ioc);
5628
5629 /* TODO - What we really should be doing is pulling
5630 * out all the code associated with NO_SLEEP; its never used.
5631 * That is legacy code from mpt fusion driver, ported over.
5632 * I will leave this BUG_ON here for now till its been resolved.
5633 */
5634 BUG_ON(sleep_flag == NO_SLEEP);
5635
5636 /* wait for an active reset in progress to complete */
5637 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5638 do {
5639 ssleep(1);
5640 } while (ioc->shost_recovery == 1);
5641 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5642 __func__));
5643 return ioc->ioc_reset_in_progress_status;
5644 }
5645
5646 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5647 ioc->shost_recovery = 1;
5648 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5649
5650 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5651 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5652 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5653 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5654 is_trigger = 1;
5655 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5656 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5657 is_fault = 1;
5658 }
5659 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5660 _wait_for_commands_to_complete(ioc, sleep_flag);
5661 _base_mask_interrupts(ioc);
5662 r = _base_make_ioc_ready(ioc, sleep_flag, type);
5663 if (r)
5664 goto out;
5665 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5666
5667 /* If this hard reset is called while port enable is active, then
5668 * there is no reason to call make_ioc_operational
5669 */
5670 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5671 ioc->remove_host = 1;
5672 r = -EFAULT;
5673 goto out;
5674 }
5675 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5676 if (r)
5677 goto out;
5678
5679 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5680 panic("%s: Issue occurred with flashing controller firmware."
5681 "Please reboot the system and ensure that the correct"
5682 " firmware version is running\n", ioc->name);
5683
5684 r = _base_make_ioc_operational(ioc, sleep_flag);
5685 if (!r)
5686 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5687
5688 out:
5689 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5690 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5691
5692 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5693 ioc->ioc_reset_in_progress_status = r;
5694 ioc->shost_recovery = 0;
5695 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5696 ioc->ioc_reset_count++;
5697 mutex_unlock(&ioc->reset_in_progress_mutex);
5698
5699 out_unlocked:
5700 if ((r == 0) && is_trigger) {
5701 if (is_fault)
5702 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5703 else
5704 mpt3sas_trigger_master(ioc,
5705 MASTER_TRIGGER_ADAPTER_RESET);
5706 }
5707 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5708 __func__));
5709 return r;
5710 }
This page took 0.157272 seconds and 5 git commands to generate.