virtio: Silence uninitialized variable warning
[deliverable/linux.git] / drivers / staging / rdma / hfi1 / file_ops.c
1 /*
2 * Copyright(c) 2015, 2016 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51
52 #include "hfi.h"
53 #include "pio.h"
54 #include "device.h"
55 #include "common.h"
56 #include "trace.h"
57 #include "user_sdma.h"
58 #include "user_exp_rcv.h"
59 #include "eprom.h"
60 #include "aspm.h"
61 #include "mmu_rb.h"
62
63 #undef pr_fmt
64 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
65
66 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
67
68 /*
69 * File operation functions
70 */
71 static int hfi1_file_open(struct inode *, struct file *);
72 static int hfi1_file_close(struct inode *, struct file *);
73 static ssize_t hfi1_file_write(struct file *, const char __user *,
74 size_t, loff_t *);
75 static ssize_t hfi1_write_iter(struct kiocb *, struct iov_iter *);
76 static unsigned int hfi1_poll(struct file *, struct poll_table_struct *);
77 static int hfi1_file_mmap(struct file *, struct vm_area_struct *);
78
79 static u64 kvirt_to_phys(void *);
80 static int assign_ctxt(struct file *, struct hfi1_user_info *);
81 static int init_subctxts(struct hfi1_ctxtdata *, const struct hfi1_user_info *);
82 static int user_init(struct file *);
83 static int get_ctxt_info(struct file *, void __user *, __u32);
84 static int get_base_info(struct file *, void __user *, __u32);
85 static int setup_ctxt(struct file *);
86 static int setup_subctxt(struct hfi1_ctxtdata *);
87 static int get_user_context(struct file *, struct hfi1_user_info *,
88 int, unsigned);
89 static int find_shared_ctxt(struct file *, const struct hfi1_user_info *);
90 static int allocate_ctxt(struct file *, struct hfi1_devdata *,
91 struct hfi1_user_info *);
92 static unsigned int poll_urgent(struct file *, struct poll_table_struct *);
93 static unsigned int poll_next(struct file *, struct poll_table_struct *);
94 static int user_event_ack(struct hfi1_ctxtdata *, int, unsigned long);
95 static int set_ctxt_pkey(struct hfi1_ctxtdata *, unsigned, u16);
96 static int manage_rcvq(struct hfi1_ctxtdata *, unsigned, int);
97 static int vma_fault(struct vm_area_struct *, struct vm_fault *);
98
99 static const struct file_operations hfi1_file_ops = {
100 .owner = THIS_MODULE,
101 .write = hfi1_file_write,
102 .write_iter = hfi1_write_iter,
103 .open = hfi1_file_open,
104 .release = hfi1_file_close,
105 .poll = hfi1_poll,
106 .mmap = hfi1_file_mmap,
107 .llseek = noop_llseek,
108 };
109
110 static struct vm_operations_struct vm_ops = {
111 .fault = vma_fault,
112 };
113
114 /*
115 * Types of memories mapped into user processes' space
116 */
117 enum mmap_types {
118 PIO_BUFS = 1,
119 PIO_BUFS_SOP,
120 PIO_CRED,
121 RCV_HDRQ,
122 RCV_EGRBUF,
123 UREGS,
124 EVENTS,
125 STATUS,
126 RTAIL,
127 SUBCTXT_UREGS,
128 SUBCTXT_RCV_HDRQ,
129 SUBCTXT_EGRBUF,
130 SDMA_COMP
131 };
132
133 /*
134 * Masks and offsets defining the mmap tokens
135 */
136 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
137 #define HFI1_MMAP_OFFSET_SHIFT 0
138 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
139 #define HFI1_MMAP_SUBCTXT_SHIFT 12
140 #define HFI1_MMAP_CTXT_MASK 0xffULL
141 #define HFI1_MMAP_CTXT_SHIFT 16
142 #define HFI1_MMAP_TYPE_MASK 0xfULL
143 #define HFI1_MMAP_TYPE_SHIFT 24
144 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
145 #define HFI1_MMAP_MAGIC_SHIFT 32
146
147 #define HFI1_MMAP_MAGIC 0xdabbad00
148
149 #define HFI1_MMAP_TOKEN_SET(field, val) \
150 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
151 #define HFI1_MMAP_TOKEN_GET(field, token) \
152 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
153 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
154 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
155 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
156 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
157 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
158 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
159
160 #define dbg(fmt, ...) \
161 pr_info(fmt, ##__VA_ARGS__)
162
163 static inline int is_valid_mmap(u64 token)
164 {
165 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
166 }
167
168 static int hfi1_file_open(struct inode *inode, struct file *fp)
169 {
170 /* The real work is performed later in assign_ctxt() */
171 fp->private_data = kzalloc(sizeof(struct hfi1_filedata), GFP_KERNEL);
172 if (fp->private_data) /* no cpu affinity by default */
173 ((struct hfi1_filedata *)fp->private_data)->rec_cpu_num = -1;
174 return fp->private_data ? 0 : -ENOMEM;
175 }
176
177 static ssize_t hfi1_file_write(struct file *fp, const char __user *data,
178 size_t count, loff_t *offset)
179 {
180 const struct hfi1_cmd __user *ucmd;
181 struct hfi1_filedata *fd = fp->private_data;
182 struct hfi1_ctxtdata *uctxt = fd->uctxt;
183 struct hfi1_cmd cmd;
184 struct hfi1_user_info uinfo;
185 struct hfi1_tid_info tinfo;
186 unsigned long addr;
187 ssize_t consumed = 0, copy = 0, ret = 0;
188 void *dest = NULL;
189 __u64 user_val = 0;
190 int uctxt_required = 1;
191 int must_be_root = 0;
192
193 if (count < sizeof(cmd)) {
194 ret = -EINVAL;
195 goto bail;
196 }
197
198 ucmd = (const struct hfi1_cmd __user *)data;
199 if (copy_from_user(&cmd, ucmd, sizeof(cmd))) {
200 ret = -EFAULT;
201 goto bail;
202 }
203
204 consumed = sizeof(cmd);
205
206 switch (cmd.type) {
207 case HFI1_CMD_ASSIGN_CTXT:
208 uctxt_required = 0; /* assigned user context not required */
209 copy = sizeof(uinfo);
210 dest = &uinfo;
211 break;
212 case HFI1_CMD_SDMA_STATUS_UPD:
213 case HFI1_CMD_CREDIT_UPD:
214 copy = 0;
215 break;
216 case HFI1_CMD_TID_UPDATE:
217 case HFI1_CMD_TID_FREE:
218 case HFI1_CMD_TID_INVAL_READ:
219 copy = sizeof(tinfo);
220 dest = &tinfo;
221 break;
222 case HFI1_CMD_USER_INFO:
223 case HFI1_CMD_RECV_CTRL:
224 case HFI1_CMD_POLL_TYPE:
225 case HFI1_CMD_ACK_EVENT:
226 case HFI1_CMD_CTXT_INFO:
227 case HFI1_CMD_SET_PKEY:
228 case HFI1_CMD_CTXT_RESET:
229 copy = 0;
230 user_val = cmd.addr;
231 break;
232 case HFI1_CMD_EP_INFO:
233 case HFI1_CMD_EP_ERASE_CHIP:
234 case HFI1_CMD_EP_ERASE_RANGE:
235 case HFI1_CMD_EP_READ_RANGE:
236 case HFI1_CMD_EP_WRITE_RANGE:
237 uctxt_required = 0; /* assigned user context not required */
238 must_be_root = 1; /* validate user */
239 copy = 0;
240 break;
241 default:
242 ret = -EINVAL;
243 goto bail;
244 }
245
246 /* If the command comes with user data, copy it. */
247 if (copy) {
248 if (copy_from_user(dest, (void __user *)cmd.addr, copy)) {
249 ret = -EFAULT;
250 goto bail;
251 }
252 consumed += copy;
253 }
254
255 /*
256 * Make sure there is a uctxt when needed.
257 */
258 if (uctxt_required && !uctxt) {
259 ret = -EINVAL;
260 goto bail;
261 }
262
263 /* only root can do these operations */
264 if (must_be_root && !capable(CAP_SYS_ADMIN)) {
265 ret = -EPERM;
266 goto bail;
267 }
268
269 switch (cmd.type) {
270 case HFI1_CMD_ASSIGN_CTXT:
271 ret = assign_ctxt(fp, &uinfo);
272 if (ret < 0)
273 goto bail;
274 ret = setup_ctxt(fp);
275 if (ret)
276 goto bail;
277 ret = user_init(fp);
278 break;
279 case HFI1_CMD_CTXT_INFO:
280 ret = get_ctxt_info(fp, (void __user *)(unsigned long)
281 user_val, cmd.len);
282 break;
283 case HFI1_CMD_USER_INFO:
284 ret = get_base_info(fp, (void __user *)(unsigned long)
285 user_val, cmd.len);
286 break;
287 case HFI1_CMD_SDMA_STATUS_UPD:
288 break;
289 case HFI1_CMD_CREDIT_UPD:
290 if (uctxt && uctxt->sc)
291 sc_return_credits(uctxt->sc);
292 break;
293 case HFI1_CMD_TID_UPDATE:
294 ret = hfi1_user_exp_rcv_setup(fp, &tinfo);
295 if (!ret) {
296 /*
297 * Copy the number of tidlist entries we used
298 * and the length of the buffer we registered.
299 * These fields are adjacent in the structure so
300 * we can copy them at the same time.
301 */
302 addr = (unsigned long)cmd.addr +
303 offsetof(struct hfi1_tid_info, tidcnt);
304 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
305 sizeof(tinfo.tidcnt) +
306 sizeof(tinfo.length)))
307 ret = -EFAULT;
308 }
309 break;
310 case HFI1_CMD_TID_INVAL_READ:
311 ret = hfi1_user_exp_rcv_invalid(fp, &tinfo);
312 if (ret)
313 break;
314 addr = (unsigned long)cmd.addr +
315 offsetof(struct hfi1_tid_info, tidcnt);
316 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
317 sizeof(tinfo.tidcnt)))
318 ret = -EFAULT;
319 break;
320 case HFI1_CMD_TID_FREE:
321 ret = hfi1_user_exp_rcv_clear(fp, &tinfo);
322 if (ret)
323 break;
324 addr = (unsigned long)cmd.addr +
325 offsetof(struct hfi1_tid_info, tidcnt);
326 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
327 sizeof(tinfo.tidcnt)))
328 ret = -EFAULT;
329 break;
330 case HFI1_CMD_RECV_CTRL:
331 ret = manage_rcvq(uctxt, fd->subctxt, (int)user_val);
332 break;
333 case HFI1_CMD_POLL_TYPE:
334 uctxt->poll_type = (typeof(uctxt->poll_type))user_val;
335 break;
336 case HFI1_CMD_ACK_EVENT:
337 ret = user_event_ack(uctxt, fd->subctxt, user_val);
338 break;
339 case HFI1_CMD_SET_PKEY:
340 if (HFI1_CAP_IS_USET(PKEY_CHECK))
341 ret = set_ctxt_pkey(uctxt, fd->subctxt, user_val);
342 else
343 ret = -EPERM;
344 break;
345 case HFI1_CMD_CTXT_RESET: {
346 struct send_context *sc;
347 struct hfi1_devdata *dd;
348
349 if (!uctxt || !uctxt->dd || !uctxt->sc) {
350 ret = -EINVAL;
351 break;
352 }
353 /*
354 * There is no protection here. User level has to
355 * guarantee that no one will be writing to the send
356 * context while it is being re-initialized.
357 * If user level breaks that guarantee, it will break
358 * it's own context and no one else's.
359 */
360 dd = uctxt->dd;
361 sc = uctxt->sc;
362 /*
363 * Wait until the interrupt handler has marked the
364 * context as halted or frozen. Report error if we time
365 * out.
366 */
367 wait_event_interruptible_timeout(
368 sc->halt_wait, (sc->flags & SCF_HALTED),
369 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
370 if (!(sc->flags & SCF_HALTED)) {
371 ret = -ENOLCK;
372 break;
373 }
374 /*
375 * If the send context was halted due to a Freeze,
376 * wait until the device has been "unfrozen" before
377 * resetting the context.
378 */
379 if (sc->flags & SCF_FROZEN) {
380 wait_event_interruptible_timeout(
381 dd->event_queue,
382 !(ACCESS_ONCE(dd->flags) & HFI1_FROZEN),
383 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
384 if (dd->flags & HFI1_FROZEN) {
385 ret = -ENOLCK;
386 break;
387 }
388 if (dd->flags & HFI1_FORCED_FREEZE) {
389 /*
390 * Don't allow context reset if we are into
391 * forced freeze
392 */
393 ret = -ENODEV;
394 break;
395 }
396 sc_disable(sc);
397 ret = sc_enable(sc);
398 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB,
399 uctxt->ctxt);
400 } else {
401 ret = sc_restart(sc);
402 }
403 if (!ret)
404 sc_return_credits(sc);
405 break;
406 }
407 case HFI1_CMD_EP_INFO:
408 case HFI1_CMD_EP_ERASE_CHIP:
409 case HFI1_CMD_EP_ERASE_RANGE:
410 case HFI1_CMD_EP_READ_RANGE:
411 case HFI1_CMD_EP_WRITE_RANGE:
412 ret = handle_eprom_command(fp, &cmd);
413 break;
414 }
415
416 if (ret >= 0)
417 ret = consumed;
418 bail:
419 return ret;
420 }
421
422 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
423 {
424 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
425 struct hfi1_user_sdma_pkt_q *pq = fd->pq;
426 struct hfi1_user_sdma_comp_q *cq = fd->cq;
427 int ret = 0, done = 0, reqs = 0;
428 unsigned long dim = from->nr_segs;
429
430 if (!cq || !pq) {
431 ret = -EIO;
432 goto done;
433 }
434
435 if (!iter_is_iovec(from) || !dim) {
436 ret = -EINVAL;
437 goto done;
438 }
439
440 hfi1_cdbg(SDMA, "SDMA request from %u:%u (%lu)",
441 fd->uctxt->ctxt, fd->subctxt, dim);
442
443 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
444 ret = -ENOSPC;
445 goto done;
446 }
447
448 while (dim) {
449 unsigned long count = 0;
450
451 ret = hfi1_user_sdma_process_request(
452 kiocb->ki_filp, (struct iovec *)(from->iov + done),
453 dim, &count);
454 if (ret)
455 goto done;
456 dim -= count;
457 done += count;
458 reqs++;
459 }
460 done:
461 return ret ? ret : reqs;
462 }
463
464 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
465 {
466 struct hfi1_filedata *fd = fp->private_data;
467 struct hfi1_ctxtdata *uctxt = fd->uctxt;
468 struct hfi1_devdata *dd;
469 unsigned long flags, pfn;
470 u64 token = vma->vm_pgoff << PAGE_SHIFT,
471 memaddr = 0;
472 u8 subctxt, mapio = 0, vmf = 0, type;
473 ssize_t memlen = 0;
474 int ret = 0;
475 u16 ctxt;
476
477 if (!is_valid_mmap(token) || !uctxt ||
478 !(vma->vm_flags & VM_SHARED)) {
479 ret = -EINVAL;
480 goto done;
481 }
482 dd = uctxt->dd;
483 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
484 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
485 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
486 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
487 ret = -EINVAL;
488 goto done;
489 }
490
491 flags = vma->vm_flags;
492
493 switch (type) {
494 case PIO_BUFS:
495 case PIO_BUFS_SOP:
496 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
497 /* chip pio base */
498 (uctxt->sc->hw_context * BIT(16))) +
499 /* 64K PIO space / ctxt */
500 (type == PIO_BUFS_SOP ?
501 (TXE_PIO_SIZE / 2) : 0); /* sop? */
502 /*
503 * Map only the amount allocated to the context, not the
504 * entire available context's PIO space.
505 */
506 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
507 flags &= ~VM_MAYREAD;
508 flags |= VM_DONTCOPY | VM_DONTEXPAND;
509 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
510 mapio = 1;
511 break;
512 case PIO_CRED:
513 if (flags & VM_WRITE) {
514 ret = -EPERM;
515 goto done;
516 }
517 /*
518 * The credit return location for this context could be on the
519 * second or third page allocated for credit returns (if number
520 * of enabled contexts > 64 and 128 respectively).
521 */
522 memaddr = dd->cr_base[uctxt->numa_id].pa +
523 (((u64)uctxt->sc->hw_free -
524 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
525 memlen = PAGE_SIZE;
526 flags &= ~VM_MAYWRITE;
527 flags |= VM_DONTCOPY | VM_DONTEXPAND;
528 /*
529 * The driver has already allocated memory for credit
530 * returns and programmed it into the chip. Has that
531 * memory been flagged as non-cached?
532 */
533 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
534 mapio = 1;
535 break;
536 case RCV_HDRQ:
537 memaddr = uctxt->rcvhdrq_phys;
538 memlen = uctxt->rcvhdrq_size;
539 break;
540 case RCV_EGRBUF: {
541 unsigned long addr;
542 int i;
543 /*
544 * The RcvEgr buffer need to be handled differently
545 * as multiple non-contiguous pages need to be mapped
546 * into the user process.
547 */
548 memlen = uctxt->egrbufs.size;
549 if ((vma->vm_end - vma->vm_start) != memlen) {
550 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
551 (vma->vm_end - vma->vm_start), memlen);
552 ret = -EINVAL;
553 goto done;
554 }
555 if (vma->vm_flags & VM_WRITE) {
556 ret = -EPERM;
557 goto done;
558 }
559 vma->vm_flags &= ~VM_MAYWRITE;
560 addr = vma->vm_start;
561 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
562 ret = remap_pfn_range(
563 vma, addr,
564 uctxt->egrbufs.buffers[i].phys >> PAGE_SHIFT,
565 uctxt->egrbufs.buffers[i].len,
566 vma->vm_page_prot);
567 if (ret < 0)
568 goto done;
569 addr += uctxt->egrbufs.buffers[i].len;
570 }
571 ret = 0;
572 goto done;
573 }
574 case UREGS:
575 /*
576 * Map only the page that contains this context's user
577 * registers.
578 */
579 memaddr = (unsigned long)
580 (dd->physaddr + RXE_PER_CONTEXT_USER)
581 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
582 /*
583 * TidFlow table is on the same page as the rest of the
584 * user registers.
585 */
586 memlen = PAGE_SIZE;
587 flags |= VM_DONTCOPY | VM_DONTEXPAND;
588 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
589 mapio = 1;
590 break;
591 case EVENTS:
592 /*
593 * Use the page where this context's flags are. User level
594 * knows where it's own bitmap is within the page.
595 */
596 memaddr = (unsigned long)(dd->events +
597 ((uctxt->ctxt - dd->first_user_ctxt) *
598 HFI1_MAX_SHARED_CTXTS)) & PAGE_MASK;
599 memlen = PAGE_SIZE;
600 /*
601 * v3.7 removes VM_RESERVED but the effect is kept by
602 * using VM_IO.
603 */
604 flags |= VM_IO | VM_DONTEXPAND;
605 vmf = 1;
606 break;
607 case STATUS:
608 memaddr = kvirt_to_phys((void *)dd->status);
609 memlen = PAGE_SIZE;
610 flags |= VM_IO | VM_DONTEXPAND;
611 break;
612 case RTAIL:
613 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
614 /*
615 * If the memory allocation failed, the context alloc
616 * also would have failed, so we would never get here
617 */
618 ret = -EINVAL;
619 goto done;
620 }
621 if (flags & VM_WRITE) {
622 ret = -EPERM;
623 goto done;
624 }
625 memaddr = uctxt->rcvhdrqtailaddr_phys;
626 memlen = PAGE_SIZE;
627 flags &= ~VM_MAYWRITE;
628 break;
629 case SUBCTXT_UREGS:
630 memaddr = (u64)uctxt->subctxt_uregbase;
631 memlen = PAGE_SIZE;
632 flags |= VM_IO | VM_DONTEXPAND;
633 vmf = 1;
634 break;
635 case SUBCTXT_RCV_HDRQ:
636 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
637 memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt;
638 flags |= VM_IO | VM_DONTEXPAND;
639 vmf = 1;
640 break;
641 case SUBCTXT_EGRBUF:
642 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
643 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
644 flags |= VM_IO | VM_DONTEXPAND;
645 flags &= ~VM_MAYWRITE;
646 vmf = 1;
647 break;
648 case SDMA_COMP: {
649 struct hfi1_user_sdma_comp_q *cq = fd->cq;
650
651 if (!cq) {
652 ret = -EFAULT;
653 goto done;
654 }
655 memaddr = (u64)cq->comps;
656 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
657 flags |= VM_IO | VM_DONTEXPAND;
658 vmf = 1;
659 break;
660 }
661 default:
662 ret = -EINVAL;
663 break;
664 }
665
666 if ((vma->vm_end - vma->vm_start) != memlen) {
667 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
668 uctxt->ctxt, fd->subctxt,
669 (vma->vm_end - vma->vm_start), memlen);
670 ret = -EINVAL;
671 goto done;
672 }
673
674 vma->vm_flags = flags;
675 hfi1_cdbg(PROC,
676 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
677 ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
678 vma->vm_end - vma->vm_start, vma->vm_flags);
679 pfn = (unsigned long)(memaddr >> PAGE_SHIFT);
680 if (vmf) {
681 vma->vm_pgoff = pfn;
682 vma->vm_ops = &vm_ops;
683 ret = 0;
684 } else if (mapio) {
685 ret = io_remap_pfn_range(vma, vma->vm_start, pfn, memlen,
686 vma->vm_page_prot);
687 } else {
688 ret = remap_pfn_range(vma, vma->vm_start, pfn, memlen,
689 vma->vm_page_prot);
690 }
691 done:
692 return ret;
693 }
694
695 /*
696 * Local (non-chip) user memory is not mapped right away but as it is
697 * accessed by the user-level code.
698 */
699 static int vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
700 {
701 struct page *page;
702
703 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
704 if (!page)
705 return VM_FAULT_SIGBUS;
706
707 get_page(page);
708 vmf->page = page;
709
710 return 0;
711 }
712
713 static unsigned int hfi1_poll(struct file *fp, struct poll_table_struct *pt)
714 {
715 struct hfi1_ctxtdata *uctxt;
716 unsigned pollflag;
717
718 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
719 if (!uctxt)
720 pollflag = POLLERR;
721 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
722 pollflag = poll_urgent(fp, pt);
723 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
724 pollflag = poll_next(fp, pt);
725 else /* invalid */
726 pollflag = POLLERR;
727
728 return pollflag;
729 }
730
731 static int hfi1_file_close(struct inode *inode, struct file *fp)
732 {
733 struct hfi1_filedata *fdata = fp->private_data;
734 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
735 struct hfi1_devdata *dd;
736 unsigned long flags, *ev;
737
738 fp->private_data = NULL;
739
740 if (!uctxt)
741 goto done;
742
743 hfi1_cdbg(PROC, "freeing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
744 dd = uctxt->dd;
745 mutex_lock(&hfi1_mutex);
746
747 flush_wc();
748 /* drain user sdma queue */
749 hfi1_user_sdma_free_queues(fdata);
750
751 /* release the cpu */
752 hfi1_put_proc_affinity(dd, fdata->rec_cpu_num);
753
754 /*
755 * Clear any left over, unhandled events so the next process that
756 * gets this context doesn't get confused.
757 */
758 ev = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
759 HFI1_MAX_SHARED_CTXTS) + fdata->subctxt;
760 *ev = 0;
761
762 if (--uctxt->cnt) {
763 uctxt->active_slaves &= ~(1 << fdata->subctxt);
764 uctxt->subpid[fdata->subctxt] = 0;
765 mutex_unlock(&hfi1_mutex);
766 goto done;
767 }
768
769 spin_lock_irqsave(&dd->uctxt_lock, flags);
770 /*
771 * Disable receive context and interrupt available, reset all
772 * RcvCtxtCtrl bits to default values.
773 */
774 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
775 HFI1_RCVCTRL_TIDFLOW_DIS |
776 HFI1_RCVCTRL_INTRAVAIL_DIS |
777 HFI1_RCVCTRL_TAILUPD_DIS |
778 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
779 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
780 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt->ctxt);
781 /* Clear the context's J_KEY */
782 hfi1_clear_ctxt_jkey(dd, uctxt->ctxt);
783 /*
784 * Reset context integrity checks to default.
785 * (writes to CSRs probably belong in chip.c)
786 */
787 write_kctxt_csr(dd, uctxt->sc->hw_context, SEND_CTXT_CHECK_ENABLE,
788 hfi1_pkt_default_send_ctxt_mask(dd, uctxt->sc->type));
789 sc_disable(uctxt->sc);
790 uctxt->pid = 0;
791 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
792
793 dd->rcd[uctxt->ctxt] = NULL;
794 uctxt->rcvwait_to = 0;
795 uctxt->piowait_to = 0;
796 uctxt->rcvnowait = 0;
797 uctxt->pionowait = 0;
798 uctxt->event_flags = 0;
799
800 hfi1_user_exp_rcv_free(fdata);
801 hfi1_clear_ctxt_pkey(dd, uctxt->ctxt);
802
803 hfi1_stats.sps_ctxts--;
804 if (++dd->freectxts == dd->num_user_contexts)
805 aspm_enable_all(dd);
806 mutex_unlock(&hfi1_mutex);
807 hfi1_free_ctxtdata(dd, uctxt);
808 done:
809 kfree(fdata);
810 return 0;
811 }
812
813 /*
814 * Convert kernel *virtual* addresses to physical addresses.
815 * This is used to vmalloc'ed addresses.
816 */
817 static u64 kvirt_to_phys(void *addr)
818 {
819 struct page *page;
820 u64 paddr = 0;
821
822 page = vmalloc_to_page(addr);
823 if (page)
824 paddr = page_to_pfn(page) << PAGE_SHIFT;
825
826 return paddr;
827 }
828
829 static int assign_ctxt(struct file *fp, struct hfi1_user_info *uinfo)
830 {
831 int i_minor, ret = 0;
832 unsigned swmajor, swminor, alg = HFI1_ALG_ACROSS;
833
834 swmajor = uinfo->userversion >> 16;
835 if (swmajor != HFI1_USER_SWMAJOR) {
836 ret = -ENODEV;
837 goto done;
838 }
839
840 swminor = uinfo->userversion & 0xffff;
841
842 if (uinfo->hfi1_alg < HFI1_ALG_COUNT)
843 alg = uinfo->hfi1_alg;
844
845 mutex_lock(&hfi1_mutex);
846 /* First, lets check if we need to setup a shared context? */
847 if (uinfo->subctxt_cnt) {
848 struct hfi1_filedata *fd = fp->private_data;
849
850 ret = find_shared_ctxt(fp, uinfo);
851 if (ret < 0)
852 goto done_unlock;
853 if (ret)
854 fd->rec_cpu_num = hfi1_get_proc_affinity(
855 fd->uctxt->dd, fd->uctxt->numa_id);
856 }
857
858 /*
859 * We execute the following block if we couldn't find a
860 * shared context or if context sharing is not required.
861 */
862 if (!ret) {
863 i_minor = iminor(file_inode(fp)) - HFI1_USER_MINOR_BASE;
864 ret = get_user_context(fp, uinfo, i_minor - 1, alg);
865 }
866 done_unlock:
867 mutex_unlock(&hfi1_mutex);
868 done:
869 return ret;
870 }
871
872 /* return true if the device available for general use */
873 static int usable_device(struct hfi1_devdata *dd)
874 {
875 struct hfi1_pportdata *ppd = dd->pport;
876
877 return driver_lstate(ppd) == IB_PORT_ACTIVE;
878 }
879
880 static int get_user_context(struct file *fp, struct hfi1_user_info *uinfo,
881 int devno, unsigned alg)
882 {
883 struct hfi1_devdata *dd = NULL;
884 int ret = 0, devmax, npresent, nup, dev;
885
886 devmax = hfi1_count_units(&npresent, &nup);
887 if (!npresent) {
888 ret = -ENXIO;
889 goto done;
890 }
891 if (!nup) {
892 ret = -ENETDOWN;
893 goto done;
894 }
895 if (devno >= 0) {
896 dd = hfi1_lookup(devno);
897 if (!dd)
898 ret = -ENODEV;
899 else if (!dd->freectxts)
900 ret = -EBUSY;
901 } else {
902 struct hfi1_devdata *pdd;
903
904 if (alg == HFI1_ALG_ACROSS) {
905 unsigned free = 0U;
906
907 for (dev = 0; dev < devmax; dev++) {
908 pdd = hfi1_lookup(dev);
909 if (!pdd)
910 continue;
911 if (!usable_device(pdd))
912 continue;
913 if (pdd->freectxts &&
914 pdd->freectxts > free) {
915 dd = pdd;
916 free = pdd->freectxts;
917 }
918 }
919 } else {
920 for (dev = 0; dev < devmax; dev++) {
921 pdd = hfi1_lookup(dev);
922 if (!pdd)
923 continue;
924 if (!usable_device(pdd))
925 continue;
926 if (pdd->freectxts) {
927 dd = pdd;
928 break;
929 }
930 }
931 }
932 if (!dd)
933 ret = -EBUSY;
934 }
935 done:
936 return ret ? ret : allocate_ctxt(fp, dd, uinfo);
937 }
938
939 static int find_shared_ctxt(struct file *fp,
940 const struct hfi1_user_info *uinfo)
941 {
942 int devmax, ndev, i;
943 int ret = 0;
944 struct hfi1_filedata *fd = fp->private_data;
945
946 devmax = hfi1_count_units(NULL, NULL);
947
948 for (ndev = 0; ndev < devmax; ndev++) {
949 struct hfi1_devdata *dd = hfi1_lookup(ndev);
950
951 if (!(dd && (dd->flags & HFI1_PRESENT) && dd->kregbase))
952 continue;
953 for (i = dd->first_user_ctxt; i < dd->num_rcv_contexts; i++) {
954 struct hfi1_ctxtdata *uctxt = dd->rcd[i];
955
956 /* Skip ctxts which are not yet open */
957 if (!uctxt || !uctxt->cnt)
958 continue;
959 /* Skip ctxt if it doesn't match the requested one */
960 if (memcmp(uctxt->uuid, uinfo->uuid,
961 sizeof(uctxt->uuid)) ||
962 uctxt->jkey != generate_jkey(current_uid()) ||
963 uctxt->subctxt_id != uinfo->subctxt_id ||
964 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
965 continue;
966
967 /* Verify the sharing process matches the master */
968 if (uctxt->userversion != uinfo->userversion ||
969 uctxt->cnt >= uctxt->subctxt_cnt) {
970 ret = -EINVAL;
971 goto done;
972 }
973 fd->uctxt = uctxt;
974 fd->subctxt = uctxt->cnt++;
975 uctxt->subpid[fd->subctxt] = current->pid;
976 uctxt->active_slaves |= 1 << fd->subctxt;
977 ret = 1;
978 goto done;
979 }
980 }
981
982 done:
983 return ret;
984 }
985
986 static int allocate_ctxt(struct file *fp, struct hfi1_devdata *dd,
987 struct hfi1_user_info *uinfo)
988 {
989 struct hfi1_filedata *fd = fp->private_data;
990 struct hfi1_ctxtdata *uctxt;
991 unsigned ctxt;
992 int ret, numa;
993
994 if (dd->flags & HFI1_FROZEN) {
995 /*
996 * Pick an error that is unique from all other errors
997 * that are returned so the user process knows that
998 * it tried to allocate while the SPC was frozen. It
999 * it should be able to retry with success in a short
1000 * while.
1001 */
1002 return -EIO;
1003 }
1004
1005 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts; ctxt++)
1006 if (!dd->rcd[ctxt])
1007 break;
1008
1009 if (ctxt == dd->num_rcv_contexts)
1010 return -EBUSY;
1011
1012 fd->rec_cpu_num = hfi1_get_proc_affinity(dd, -1);
1013 if (fd->rec_cpu_num != -1)
1014 numa = cpu_to_node(fd->rec_cpu_num);
1015 else
1016 numa = numa_node_id();
1017 uctxt = hfi1_create_ctxtdata(dd->pport, ctxt, numa);
1018 if (!uctxt) {
1019 dd_dev_err(dd,
1020 "Unable to allocate ctxtdata memory, failing open\n");
1021 return -ENOMEM;
1022 }
1023 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
1024 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
1025 uctxt->numa_id);
1026
1027 /*
1028 * Allocate and enable a PIO send context.
1029 */
1030 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize,
1031 uctxt->dd->node);
1032 if (!uctxt->sc)
1033 return -ENOMEM;
1034
1035 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
1036 uctxt->sc->hw_context);
1037 ret = sc_enable(uctxt->sc);
1038 if (ret)
1039 return ret;
1040 /*
1041 * Setup shared context resources if the user-level has requested
1042 * shared contexts and this is the 'master' process.
1043 * This has to be done here so the rest of the sub-contexts find the
1044 * proper master.
1045 */
1046 if (uinfo->subctxt_cnt && !fd->subctxt) {
1047 ret = init_subctxts(uctxt, uinfo);
1048 /*
1049 * On error, we don't need to disable and de-allocate the
1050 * send context because it will be done during file close
1051 */
1052 if (ret)
1053 return ret;
1054 }
1055 uctxt->userversion = uinfo->userversion;
1056 uctxt->pid = current->pid;
1057 uctxt->flags = HFI1_CAP_UGET(MASK);
1058 init_waitqueue_head(&uctxt->wait);
1059 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1060 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1061 uctxt->jkey = generate_jkey(current_uid());
1062 INIT_LIST_HEAD(&uctxt->sdma_queues);
1063 spin_lock_init(&uctxt->sdma_qlock);
1064 hfi1_stats.sps_ctxts++;
1065 /*
1066 * Disable ASPM when there are open user/PSM contexts to avoid
1067 * issues with ASPM L1 exit latency
1068 */
1069 if (dd->freectxts-- == dd->num_user_contexts)
1070 aspm_disable_all(dd);
1071 fd->uctxt = uctxt;
1072
1073 return 0;
1074 }
1075
1076 static int init_subctxts(struct hfi1_ctxtdata *uctxt,
1077 const struct hfi1_user_info *uinfo)
1078 {
1079 unsigned num_subctxts;
1080
1081 num_subctxts = uinfo->subctxt_cnt;
1082 if (num_subctxts > HFI1_MAX_SHARED_CTXTS)
1083 return -EINVAL;
1084
1085 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1086 uctxt->subctxt_id = uinfo->subctxt_id;
1087 uctxt->active_slaves = 1;
1088 uctxt->redirect_seq_cnt = 1;
1089 set_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1090
1091 return 0;
1092 }
1093
1094 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1095 {
1096 int ret = 0;
1097 unsigned num_subctxts = uctxt->subctxt_cnt;
1098
1099 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1100 if (!uctxt->subctxt_uregbase) {
1101 ret = -ENOMEM;
1102 goto bail;
1103 }
1104 /* We can take the size of the RcvHdr Queue from the master */
1105 uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size *
1106 num_subctxts);
1107 if (!uctxt->subctxt_rcvhdr_base) {
1108 ret = -ENOMEM;
1109 goto bail_ureg;
1110 }
1111
1112 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1113 num_subctxts);
1114 if (!uctxt->subctxt_rcvegrbuf) {
1115 ret = -ENOMEM;
1116 goto bail_rhdr;
1117 }
1118 goto bail;
1119 bail_rhdr:
1120 vfree(uctxt->subctxt_rcvhdr_base);
1121 bail_ureg:
1122 vfree(uctxt->subctxt_uregbase);
1123 uctxt->subctxt_uregbase = NULL;
1124 bail:
1125 return ret;
1126 }
1127
1128 static int user_init(struct file *fp)
1129 {
1130 int ret;
1131 unsigned int rcvctrl_ops = 0;
1132 struct hfi1_filedata *fd = fp->private_data;
1133 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1134
1135 /* make sure that the context has already been setup */
1136 if (!test_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags)) {
1137 ret = -EFAULT;
1138 goto done;
1139 }
1140
1141 /*
1142 * Subctxts don't need to initialize anything since master
1143 * has done it.
1144 */
1145 if (fd->subctxt) {
1146 ret = wait_event_interruptible(uctxt->wait, !test_bit(
1147 HFI1_CTXT_MASTER_UNINIT,
1148 &uctxt->event_flags));
1149 goto expected;
1150 }
1151
1152 /* initialize poll variables... */
1153 uctxt->urgent = 0;
1154 uctxt->urgent_poll = 0;
1155
1156 /*
1157 * Now enable the ctxt for receive.
1158 * For chips that are set to DMA the tail register to memory
1159 * when they change (and when the update bit transitions from
1160 * 0 to 1. So for those chips, we turn it off and then back on.
1161 * This will (very briefly) affect any other open ctxts, but the
1162 * duration is very short, and therefore isn't an issue. We
1163 * explicitly set the in-memory tail copy to 0 beforehand, so we
1164 * don't have to wait to be sure the DMA update has happened
1165 * (chip resets head/tail to 0 on transition to enable).
1166 */
1167 if (uctxt->rcvhdrtail_kvaddr)
1168 clear_rcvhdrtail(uctxt);
1169
1170 /* Setup J_KEY before enabling the context */
1171 hfi1_set_ctxt_jkey(uctxt->dd, uctxt->ctxt, uctxt->jkey);
1172
1173 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1174 if (HFI1_CAP_KGET_MASK(uctxt->flags, HDRSUPP))
1175 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1176 /*
1177 * Ignore the bit in the flags for now until proper
1178 * support for multiple packet per rcv array entry is
1179 * added.
1180 */
1181 if (!HFI1_CAP_KGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1182 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1183 if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1184 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1185 if (HFI1_CAP_KGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1186 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1187 /*
1188 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1189 * We can't rely on the correct value to be set from prior
1190 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1191 * for both cases.
1192 */
1193 if (HFI1_CAP_KGET_MASK(uctxt->flags, DMA_RTAIL))
1194 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1195 else
1196 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1197 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt->ctxt);
1198
1199 /* Notify any waiting slaves */
1200 if (uctxt->subctxt_cnt) {
1201 clear_bit(HFI1_CTXT_MASTER_UNINIT, &uctxt->event_flags);
1202 wake_up(&uctxt->wait);
1203 }
1204
1205 expected:
1206 /*
1207 * Expected receive has to be setup for all processes (including
1208 * shared contexts). However, it has to be done after the master
1209 * context has been fully configured as it depends on the
1210 * eager/expected split of the RcvArray entries.
1211 * Setting it up here ensures that the subcontexts will be waiting
1212 * (due to the above wait_event_interruptible() until the master
1213 * is setup.
1214 */
1215 ret = hfi1_user_exp_rcv_init(fp);
1216 done:
1217 return ret;
1218 }
1219
1220 static int get_ctxt_info(struct file *fp, void __user *ubase, __u32 len)
1221 {
1222 struct hfi1_ctxt_info cinfo;
1223 struct hfi1_filedata *fd = fp->private_data;
1224 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1225 int ret = 0;
1226
1227 memset(&cinfo, 0, sizeof(cinfo));
1228 ret = hfi1_get_base_kinfo(uctxt, &cinfo);
1229 if (ret < 0)
1230 goto done;
1231 cinfo.num_active = hfi1_count_active_units();
1232 cinfo.unit = uctxt->dd->unit;
1233 cinfo.ctxt = uctxt->ctxt;
1234 cinfo.subctxt = fd->subctxt;
1235 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1236 uctxt->dd->rcv_entries.group_size) +
1237 uctxt->expected_count;
1238 cinfo.credits = uctxt->sc->credits;
1239 cinfo.numa_node = uctxt->numa_id;
1240 cinfo.rec_cpu = fd->rec_cpu_num;
1241 cinfo.send_ctxt = uctxt->sc->hw_context;
1242
1243 cinfo.egrtids = uctxt->egrbufs.alloced;
1244 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
1245 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
1246 cinfo.sdma_ring_size = fd->cq->nentries;
1247 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1248
1249 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, cinfo);
1250 if (copy_to_user(ubase, &cinfo, sizeof(cinfo)))
1251 ret = -EFAULT;
1252 done:
1253 return ret;
1254 }
1255
1256 static int setup_ctxt(struct file *fp)
1257 {
1258 struct hfi1_filedata *fd = fp->private_data;
1259 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1260 struct hfi1_devdata *dd = uctxt->dd;
1261 int ret = 0;
1262
1263 /*
1264 * Context should be set up only once (including allocation and
1265 * programming of eager buffers. This is done if context sharing
1266 * is not requested or by the master process.
1267 */
1268 if (!uctxt->subctxt_cnt || !fd->subctxt) {
1269 ret = hfi1_init_ctxt(uctxt->sc);
1270 if (ret)
1271 goto done;
1272
1273 /* Now allocate the RcvHdr queue and eager buffers. */
1274 ret = hfi1_create_rcvhdrq(dd, uctxt);
1275 if (ret)
1276 goto done;
1277 ret = hfi1_setup_eagerbufs(uctxt);
1278 if (ret)
1279 goto done;
1280 if (uctxt->subctxt_cnt && !fd->subctxt) {
1281 ret = setup_subctxt(uctxt);
1282 if (ret)
1283 goto done;
1284 }
1285 }
1286 ret = hfi1_user_sdma_alloc_queues(uctxt, fp);
1287 if (ret)
1288 goto done;
1289
1290 set_bit(HFI1_CTXT_SETUP_DONE, &uctxt->event_flags);
1291 done:
1292 return ret;
1293 }
1294
1295 static int get_base_info(struct file *fp, void __user *ubase, __u32 len)
1296 {
1297 struct hfi1_base_info binfo;
1298 struct hfi1_filedata *fd = fp->private_data;
1299 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1300 struct hfi1_devdata *dd = uctxt->dd;
1301 ssize_t sz;
1302 unsigned offset;
1303 int ret = 0;
1304
1305 trace_hfi1_uctxtdata(uctxt->dd, uctxt);
1306
1307 memset(&binfo, 0, sizeof(binfo));
1308 binfo.hw_version = dd->revision;
1309 binfo.sw_version = HFI1_KERN_SWVERSION;
1310 binfo.bthqp = kdeth_qp;
1311 binfo.jkey = uctxt->jkey;
1312 /*
1313 * If more than 64 contexts are enabled the allocated credit
1314 * return will span two or three contiguous pages. Since we only
1315 * map the page containing the context's credit return address,
1316 * we need to calculate the offset in the proper page.
1317 */
1318 offset = ((u64)uctxt->sc->hw_free -
1319 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1320 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1321 fd->subctxt, offset);
1322 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1323 fd->subctxt,
1324 uctxt->sc->base_addr);
1325 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1326 uctxt->ctxt,
1327 fd->subctxt,
1328 uctxt->sc->base_addr);
1329 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1330 fd->subctxt,
1331 uctxt->rcvhdrq);
1332 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1333 fd->subctxt,
1334 uctxt->egrbufs.rcvtids[0].phys);
1335 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1336 fd->subctxt, 0);
1337 /*
1338 * user regs are at
1339 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1340 */
1341 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1342 fd->subctxt, 0);
1343 offset = offset_in_page((((uctxt->ctxt - dd->first_user_ctxt) *
1344 HFI1_MAX_SHARED_CTXTS) + fd->subctxt) *
1345 sizeof(*dd->events));
1346 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1347 fd->subctxt,
1348 offset);
1349 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1350 fd->subctxt,
1351 dd->status);
1352 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1353 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1354 fd->subctxt, 0);
1355 if (uctxt->subctxt_cnt) {
1356 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1357 uctxt->ctxt,
1358 fd->subctxt, 0);
1359 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1360 uctxt->ctxt,
1361 fd->subctxt, 0);
1362 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1363 uctxt->ctxt,
1364 fd->subctxt, 0);
1365 }
1366 sz = (len < sizeof(binfo)) ? len : sizeof(binfo);
1367 if (copy_to_user(ubase, &binfo, sz))
1368 ret = -EFAULT;
1369 return ret;
1370 }
1371
1372 static unsigned int poll_urgent(struct file *fp,
1373 struct poll_table_struct *pt)
1374 {
1375 struct hfi1_filedata *fd = fp->private_data;
1376 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1377 struct hfi1_devdata *dd = uctxt->dd;
1378 unsigned pollflag;
1379
1380 poll_wait(fp, &uctxt->wait, pt);
1381
1382 spin_lock_irq(&dd->uctxt_lock);
1383 if (uctxt->urgent != uctxt->urgent_poll) {
1384 pollflag = POLLIN | POLLRDNORM;
1385 uctxt->urgent_poll = uctxt->urgent;
1386 } else {
1387 pollflag = 0;
1388 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1389 }
1390 spin_unlock_irq(&dd->uctxt_lock);
1391
1392 return pollflag;
1393 }
1394
1395 static unsigned int poll_next(struct file *fp,
1396 struct poll_table_struct *pt)
1397 {
1398 struct hfi1_filedata *fd = fp->private_data;
1399 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1400 struct hfi1_devdata *dd = uctxt->dd;
1401 unsigned pollflag;
1402
1403 poll_wait(fp, &uctxt->wait, pt);
1404
1405 spin_lock_irq(&dd->uctxt_lock);
1406 if (hdrqempty(uctxt)) {
1407 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1408 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt->ctxt);
1409 pollflag = 0;
1410 } else {
1411 pollflag = POLLIN | POLLRDNORM;
1412 }
1413 spin_unlock_irq(&dd->uctxt_lock);
1414
1415 return pollflag;
1416 }
1417
1418 /*
1419 * Find all user contexts in use, and set the specified bit in their
1420 * event mask.
1421 * See also find_ctxt() for a similar use, that is specific to send buffers.
1422 */
1423 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1424 {
1425 struct hfi1_ctxtdata *uctxt;
1426 struct hfi1_devdata *dd = ppd->dd;
1427 unsigned ctxt;
1428 int ret = 0;
1429 unsigned long flags;
1430
1431 if (!dd->events) {
1432 ret = -EINVAL;
1433 goto done;
1434 }
1435
1436 spin_lock_irqsave(&dd->uctxt_lock, flags);
1437 for (ctxt = dd->first_user_ctxt; ctxt < dd->num_rcv_contexts;
1438 ctxt++) {
1439 uctxt = dd->rcd[ctxt];
1440 if (uctxt) {
1441 unsigned long *evs = dd->events +
1442 (uctxt->ctxt - dd->first_user_ctxt) *
1443 HFI1_MAX_SHARED_CTXTS;
1444 int i;
1445 /*
1446 * subctxt_cnt is 0 if not shared, so do base
1447 * separately, first, then remaining subctxt, if any
1448 */
1449 set_bit(evtbit, evs);
1450 for (i = 1; i < uctxt->subctxt_cnt; i++)
1451 set_bit(evtbit, evs + i);
1452 }
1453 }
1454 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
1455 done:
1456 return ret;
1457 }
1458
1459 /**
1460 * manage_rcvq - manage a context's receive queue
1461 * @uctxt: the context
1462 * @subctxt: the sub-context
1463 * @start_stop: action to carry out
1464 *
1465 * start_stop == 0 disables receive on the context, for use in queue
1466 * overflow conditions. start_stop==1 re-enables, to be used to
1467 * re-init the software copy of the head register
1468 */
1469 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1470 int start_stop)
1471 {
1472 struct hfi1_devdata *dd = uctxt->dd;
1473 unsigned int rcvctrl_op;
1474
1475 if (subctxt)
1476 goto bail;
1477 /* atomically clear receive enable ctxt. */
1478 if (start_stop) {
1479 /*
1480 * On enable, force in-memory copy of the tail register to
1481 * 0, so that protocol code doesn't have to worry about
1482 * whether or not the chip has yet updated the in-memory
1483 * copy or not on return from the system call. The chip
1484 * always resets it's tail register back to 0 on a
1485 * transition from disabled to enabled.
1486 */
1487 if (uctxt->rcvhdrtail_kvaddr)
1488 clear_rcvhdrtail(uctxt);
1489 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1490 } else {
1491 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1492 }
1493 hfi1_rcvctrl(dd, rcvctrl_op, uctxt->ctxt);
1494 /* always; new head should be equal to new tail; see above */
1495 bail:
1496 return 0;
1497 }
1498
1499 /*
1500 * clear the event notifier events for this context.
1501 * User process then performs actions appropriate to bit having been
1502 * set, if desired, and checks again in future.
1503 */
1504 static int user_event_ack(struct hfi1_ctxtdata *uctxt, int subctxt,
1505 unsigned long events)
1506 {
1507 int i;
1508 struct hfi1_devdata *dd = uctxt->dd;
1509 unsigned long *evs;
1510
1511 if (!dd->events)
1512 return 0;
1513
1514 evs = dd->events + ((uctxt->ctxt - dd->first_user_ctxt) *
1515 HFI1_MAX_SHARED_CTXTS) + subctxt;
1516
1517 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1518 if (!test_bit(i, &events))
1519 continue;
1520 clear_bit(i, evs);
1521 }
1522 return 0;
1523 }
1524
1525 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned subctxt,
1526 u16 pkey)
1527 {
1528 int ret = -ENOENT, i, intable = 0;
1529 struct hfi1_pportdata *ppd = uctxt->ppd;
1530 struct hfi1_devdata *dd = uctxt->dd;
1531
1532 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY) {
1533 ret = -EINVAL;
1534 goto done;
1535 }
1536
1537 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1538 if (pkey == ppd->pkeys[i]) {
1539 intable = 1;
1540 break;
1541 }
1542
1543 if (intable)
1544 ret = hfi1_set_ctxt_pkey(dd, uctxt->ctxt, pkey);
1545 done:
1546 return ret;
1547 }
1548
1549 static int ui_open(struct inode *inode, struct file *filp)
1550 {
1551 struct hfi1_devdata *dd;
1552
1553 dd = container_of(inode->i_cdev, struct hfi1_devdata, ui_cdev);
1554 filp->private_data = dd; /* for other methods */
1555 return 0;
1556 }
1557
1558 static int ui_release(struct inode *inode, struct file *filp)
1559 {
1560 /* nothing to do */
1561 return 0;
1562 }
1563
1564 static loff_t ui_lseek(struct file *filp, loff_t offset, int whence)
1565 {
1566 struct hfi1_devdata *dd = filp->private_data;
1567
1568 switch (whence) {
1569 case SEEK_SET:
1570 break;
1571 case SEEK_CUR:
1572 offset += filp->f_pos;
1573 break;
1574 case SEEK_END:
1575 offset = ((dd->kregend - dd->kregbase) + DC8051_DATA_MEM_SIZE) -
1576 offset;
1577 break;
1578 default:
1579 return -EINVAL;
1580 }
1581
1582 if (offset < 0)
1583 return -EINVAL;
1584
1585 if (offset >= (dd->kregend - dd->kregbase) + DC8051_DATA_MEM_SIZE)
1586 return -EINVAL;
1587
1588 filp->f_pos = offset;
1589
1590 return filp->f_pos;
1591 }
1592
1593 /* NOTE: assumes unsigned long is 8 bytes */
1594 static ssize_t ui_read(struct file *filp, char __user *buf, size_t count,
1595 loff_t *f_pos)
1596 {
1597 struct hfi1_devdata *dd = filp->private_data;
1598 void __iomem *base = dd->kregbase;
1599 unsigned long total, csr_off,
1600 barlen = (dd->kregend - dd->kregbase);
1601 u64 data;
1602
1603 /* only read 8 byte quantities */
1604 if ((count % 8) != 0)
1605 return -EINVAL;
1606 /* offset must be 8-byte aligned */
1607 if ((*f_pos % 8) != 0)
1608 return -EINVAL;
1609 /* destination buffer must be 8-byte aligned */
1610 if ((unsigned long)buf % 8 != 0)
1611 return -EINVAL;
1612 /* must be in range */
1613 if (*f_pos + count > (barlen + DC8051_DATA_MEM_SIZE))
1614 return -EINVAL;
1615 /* only set the base if we are not starting past the BAR */
1616 if (*f_pos < barlen)
1617 base += *f_pos;
1618 csr_off = *f_pos;
1619 for (total = 0; total < count; total += 8, csr_off += 8) {
1620 /* accessing LCB CSRs requires more checks */
1621 if (is_lcb_offset(csr_off)) {
1622 if (read_lcb_csr(dd, csr_off, (u64 *)&data))
1623 break; /* failed */
1624 }
1625 /*
1626 * Cannot read ASIC GPIO/QSFP* clear and force CSRs without a
1627 * false parity error. Avoid the whole issue by not reading
1628 * them. These registers are defined as having a read value
1629 * of 0.
1630 */
1631 else if (csr_off == ASIC_GPIO_CLEAR ||
1632 csr_off == ASIC_GPIO_FORCE ||
1633 csr_off == ASIC_QSFP1_CLEAR ||
1634 csr_off == ASIC_QSFP1_FORCE ||
1635 csr_off == ASIC_QSFP2_CLEAR ||
1636 csr_off == ASIC_QSFP2_FORCE)
1637 data = 0;
1638 else if (csr_off >= barlen) {
1639 /*
1640 * read_8051_data can read more than just 8 bytes at
1641 * a time. However, folding this into the loop and
1642 * handling the reads in 8 byte increments allows us
1643 * to smoothly transition from chip memory to 8051
1644 * memory.
1645 */
1646 if (read_8051_data(dd,
1647 (u32)(csr_off - barlen),
1648 sizeof(data), &data))
1649 break; /* failed */
1650 } else
1651 data = readq(base + total);
1652 if (put_user(data, (unsigned long __user *)(buf + total)))
1653 break;
1654 }
1655 *f_pos += total;
1656 return total;
1657 }
1658
1659 /* NOTE: assumes unsigned long is 8 bytes */
1660 static ssize_t ui_write(struct file *filp, const char __user *buf,
1661 size_t count, loff_t *f_pos)
1662 {
1663 struct hfi1_devdata *dd = filp->private_data;
1664 void __iomem *base;
1665 unsigned long total, data, csr_off;
1666 int in_lcb;
1667
1668 /* only write 8 byte quantities */
1669 if ((count % 8) != 0)
1670 return -EINVAL;
1671 /* offset must be 8-byte aligned */
1672 if ((*f_pos % 8) != 0)
1673 return -EINVAL;
1674 /* source buffer must be 8-byte aligned */
1675 if ((unsigned long)buf % 8 != 0)
1676 return -EINVAL;
1677 /* must be in range */
1678 if (*f_pos + count > dd->kregend - dd->kregbase)
1679 return -EINVAL;
1680
1681 base = (void __iomem *)dd->kregbase + *f_pos;
1682 csr_off = *f_pos;
1683 in_lcb = 0;
1684 for (total = 0; total < count; total += 8, csr_off += 8) {
1685 if (get_user(data, (unsigned long __user *)(buf + total)))
1686 break;
1687 /* accessing LCB CSRs requires a special procedure */
1688 if (is_lcb_offset(csr_off)) {
1689 if (!in_lcb) {
1690 int ret = acquire_lcb_access(dd, 1);
1691
1692 if (ret)
1693 break;
1694 in_lcb = 1;
1695 }
1696 } else {
1697 if (in_lcb) {
1698 release_lcb_access(dd, 1);
1699 in_lcb = 0;
1700 }
1701 }
1702 writeq(data, base + total);
1703 }
1704 if (in_lcb)
1705 release_lcb_access(dd, 1);
1706 *f_pos += total;
1707 return total;
1708 }
1709
1710 static const struct file_operations ui_file_ops = {
1711 .owner = THIS_MODULE,
1712 .llseek = ui_lseek,
1713 .read = ui_read,
1714 .write = ui_write,
1715 .open = ui_open,
1716 .release = ui_release,
1717 };
1718
1719 #define UI_OFFSET 192 /* device minor offset for UI devices */
1720 static int create_ui = 1;
1721
1722 static struct cdev wildcard_cdev;
1723 static struct device *wildcard_device;
1724
1725 static atomic_t user_count = ATOMIC_INIT(0);
1726
1727 static void user_remove(struct hfi1_devdata *dd)
1728 {
1729 if (atomic_dec_return(&user_count) == 0)
1730 hfi1_cdev_cleanup(&wildcard_cdev, &wildcard_device);
1731
1732 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1733 hfi1_cdev_cleanup(&dd->ui_cdev, &dd->ui_device);
1734 }
1735
1736 static int user_add(struct hfi1_devdata *dd)
1737 {
1738 char name[10];
1739 int ret;
1740
1741 if (atomic_inc_return(&user_count) == 1) {
1742 ret = hfi1_cdev_init(0, class_name(), &hfi1_file_ops,
1743 &wildcard_cdev, &wildcard_device,
1744 true);
1745 if (ret)
1746 goto done;
1747 }
1748
1749 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1750 ret = hfi1_cdev_init(dd->unit + 1, name, &hfi1_file_ops,
1751 &dd->user_cdev, &dd->user_device,
1752 true);
1753 if (ret)
1754 goto done;
1755
1756 if (create_ui) {
1757 snprintf(name, sizeof(name),
1758 "%s_ui%d", class_name(), dd->unit);
1759 ret = hfi1_cdev_init(dd->unit + UI_OFFSET, name, &ui_file_ops,
1760 &dd->ui_cdev, &dd->ui_device,
1761 false);
1762 if (ret)
1763 goto done;
1764 }
1765
1766 return 0;
1767 done:
1768 user_remove(dd);
1769 return ret;
1770 }
1771
1772 /*
1773 * Create per-unit files in /dev
1774 */
1775 int hfi1_device_create(struct hfi1_devdata *dd)
1776 {
1777 int r, ret;
1778
1779 r = user_add(dd);
1780 ret = hfi1_diag_add(dd);
1781 if (r && !ret)
1782 ret = r;
1783 return ret;
1784 }
1785
1786 /*
1787 * Remove per-unit files in /dev
1788 * void, core kernel returns no errors for this stuff
1789 */
1790 void hfi1_device_remove(struct hfi1_devdata *dd)
1791 {
1792 user_remove(dd);
1793 hfi1_diag_remove(dd);
1794 }
This page took 0.069157 seconds and 5 git commands to generate.