Merge tag 'iio-fixes-for-4.6d' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[deliverable/linux.git] / drivers / usb / host / xhci.c
1 /*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/pci.h>
24 #include <linux/irq.h>
25 #include <linux/log2.h>
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/slab.h>
29 #include <linux/dmi.h>
30 #include <linux/dma-mapping.h>
31
32 #include "xhci.h"
33 #include "xhci-trace.h"
34 #include "xhci-mtk.h"
35
36 #define DRIVER_AUTHOR "Sarah Sharp"
37 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
38
39 #define PORT_WAKE_BITS (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
40
41 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
42 static int link_quirk;
43 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
44 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
45
46 static unsigned int quirks;
47 module_param(quirks, uint, S_IRUGO);
48 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
49
50 /* TODO: copied from ehci-hcd.c - can this be refactored? */
51 /*
52 * xhci_handshake - spin reading hc until handshake completes or fails
53 * @ptr: address of hc register to be read
54 * @mask: bits to look at in result of read
55 * @done: value of those bits when handshake succeeds
56 * @usec: timeout in microseconds
57 *
58 * Returns negative errno, or zero on success
59 *
60 * Success happens when the "mask" bits have the specified value (hardware
61 * handshake done). There are two failure modes: "usec" have passed (major
62 * hardware flakeout), or the register reads as all-ones (hardware removed).
63 */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66 u32 result;
67
68 do {
69 result = readl(ptr);
70 if (result == ~(u32)0) /* card removed */
71 return -ENODEV;
72 result &= mask;
73 if (result == done)
74 return 0;
75 udelay(1);
76 usec--;
77 } while (usec > 0);
78 return -ETIMEDOUT;
79 }
80
81 /*
82 * Disable interrupts and begin the xHCI halting process.
83 */
84 void xhci_quiesce(struct xhci_hcd *xhci)
85 {
86 u32 halted;
87 u32 cmd;
88 u32 mask;
89
90 mask = ~(XHCI_IRQS);
91 halted = readl(&xhci->op_regs->status) & STS_HALT;
92 if (!halted)
93 mask &= ~CMD_RUN;
94
95 cmd = readl(&xhci->op_regs->command);
96 cmd &= mask;
97 writel(cmd, &xhci->op_regs->command);
98 }
99
100 /*
101 * Force HC into halt state.
102 *
103 * Disable any IRQs and clear the run/stop bit.
104 * HC will complete any current and actively pipelined transactions, and
105 * should halt within 16 ms of the run/stop bit being cleared.
106 * Read HC Halted bit in the status register to see when the HC is finished.
107 */
108 int xhci_halt(struct xhci_hcd *xhci)
109 {
110 int ret;
111 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
112 xhci_quiesce(xhci);
113
114 ret = xhci_handshake(&xhci->op_regs->status,
115 STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
116 if (!ret) {
117 xhci->xhc_state |= XHCI_STATE_HALTED;
118 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
119 } else
120 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
121 XHCI_MAX_HALT_USEC);
122 return ret;
123 }
124
125 /*
126 * Set the run bit and wait for the host to be running.
127 */
128 static int xhci_start(struct xhci_hcd *xhci)
129 {
130 u32 temp;
131 int ret;
132
133 temp = readl(&xhci->op_regs->command);
134 temp |= (CMD_RUN);
135 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
136 temp);
137 writel(temp, &xhci->op_regs->command);
138
139 /*
140 * Wait for the HCHalted Status bit to be 0 to indicate the host is
141 * running.
142 */
143 ret = xhci_handshake(&xhci->op_regs->status,
144 STS_HALT, 0, XHCI_MAX_HALT_USEC);
145 if (ret == -ETIMEDOUT)
146 xhci_err(xhci, "Host took too long to start, "
147 "waited %u microseconds.\n",
148 XHCI_MAX_HALT_USEC);
149 if (!ret)
150 xhci->xhc_state &= ~(XHCI_STATE_HALTED | XHCI_STATE_DYING);
151
152 return ret;
153 }
154
155 /*
156 * Reset a halted HC.
157 *
158 * This resets pipelines, timers, counters, state machines, etc.
159 * Transactions will be terminated immediately, and operational registers
160 * will be set to their defaults.
161 */
162 int xhci_reset(struct xhci_hcd *xhci)
163 {
164 u32 command;
165 u32 state;
166 int ret, i;
167
168 state = readl(&xhci->op_regs->status);
169 if ((state & STS_HALT) == 0) {
170 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
171 return 0;
172 }
173
174 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
175 command = readl(&xhci->op_regs->command);
176 command |= CMD_RESET;
177 writel(command, &xhci->op_regs->command);
178
179 /* Existing Intel xHCI controllers require a delay of 1 mS,
180 * after setting the CMD_RESET bit, and before accessing any
181 * HC registers. This allows the HC to complete the
182 * reset operation and be ready for HC register access.
183 * Without this delay, the subsequent HC register access,
184 * may result in a system hang very rarely.
185 */
186 if (xhci->quirks & XHCI_INTEL_HOST)
187 udelay(1000);
188
189 ret = xhci_handshake(&xhci->op_regs->command,
190 CMD_RESET, 0, 10 * 1000 * 1000);
191 if (ret)
192 return ret;
193
194 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
195 "Wait for controller to be ready for doorbell rings");
196 /*
197 * xHCI cannot write to any doorbells or operational registers other
198 * than status until the "Controller Not Ready" flag is cleared.
199 */
200 ret = xhci_handshake(&xhci->op_regs->status,
201 STS_CNR, 0, 10 * 1000 * 1000);
202
203 for (i = 0; i < 2; ++i) {
204 xhci->bus_state[i].port_c_suspend = 0;
205 xhci->bus_state[i].suspended_ports = 0;
206 xhci->bus_state[i].resuming_ports = 0;
207 }
208
209 return ret;
210 }
211
212 #ifdef CONFIG_PCI
213 static int xhci_free_msi(struct xhci_hcd *xhci)
214 {
215 int i;
216
217 if (!xhci->msix_entries)
218 return -EINVAL;
219
220 for (i = 0; i < xhci->msix_count; i++)
221 if (xhci->msix_entries[i].vector)
222 free_irq(xhci->msix_entries[i].vector,
223 xhci_to_hcd(xhci));
224 return 0;
225 }
226
227 /*
228 * Set up MSI
229 */
230 static int xhci_setup_msi(struct xhci_hcd *xhci)
231 {
232 int ret;
233 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
234
235 ret = pci_enable_msi(pdev);
236 if (ret) {
237 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 "failed to allocate MSI entry");
239 return ret;
240 }
241
242 ret = request_irq(pdev->irq, xhci_msi_irq,
243 0, "xhci_hcd", xhci_to_hcd(xhci));
244 if (ret) {
245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
246 "disable MSI interrupt");
247 pci_disable_msi(pdev);
248 }
249
250 return ret;
251 }
252
253 /*
254 * Free IRQs
255 * free all IRQs request
256 */
257 static void xhci_free_irq(struct xhci_hcd *xhci)
258 {
259 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
260 int ret;
261
262 /* return if using legacy interrupt */
263 if (xhci_to_hcd(xhci)->irq > 0)
264 return;
265
266 ret = xhci_free_msi(xhci);
267 if (!ret)
268 return;
269 if (pdev->irq > 0)
270 free_irq(pdev->irq, xhci_to_hcd(xhci));
271
272 return;
273 }
274
275 /*
276 * Set up MSI-X
277 */
278 static int xhci_setup_msix(struct xhci_hcd *xhci)
279 {
280 int i, ret = 0;
281 struct usb_hcd *hcd = xhci_to_hcd(xhci);
282 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
283
284 /*
285 * calculate number of msi-x vectors supported.
286 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
287 * with max number of interrupters based on the xhci HCSPARAMS1.
288 * - num_online_cpus: maximum msi-x vectors per CPUs core.
289 * Add additional 1 vector to ensure always available interrupt.
290 */
291 xhci->msix_count = min(num_online_cpus() + 1,
292 HCS_MAX_INTRS(xhci->hcs_params1));
293
294 xhci->msix_entries =
295 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
296 GFP_KERNEL);
297 if (!xhci->msix_entries) {
298 xhci_err(xhci, "Failed to allocate MSI-X entries\n");
299 return -ENOMEM;
300 }
301
302 for (i = 0; i < xhci->msix_count; i++) {
303 xhci->msix_entries[i].entry = i;
304 xhci->msix_entries[i].vector = 0;
305 }
306
307 ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308 if (ret) {
309 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310 "Failed to enable MSI-X");
311 goto free_entries;
312 }
313
314 for (i = 0; i < xhci->msix_count; i++) {
315 ret = request_irq(xhci->msix_entries[i].vector,
316 xhci_msi_irq,
317 0, "xhci_hcd", xhci_to_hcd(xhci));
318 if (ret)
319 goto disable_msix;
320 }
321
322 hcd->msix_enabled = 1;
323 return ret;
324
325 disable_msix:
326 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327 xhci_free_irq(xhci);
328 pci_disable_msix(pdev);
329 free_entries:
330 kfree(xhci->msix_entries);
331 xhci->msix_entries = NULL;
332 return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338 struct usb_hcd *hcd = xhci_to_hcd(xhci);
339 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341 if (xhci->quirks & XHCI_PLAT)
342 return;
343
344 xhci_free_irq(xhci);
345
346 if (xhci->msix_entries) {
347 pci_disable_msix(pdev);
348 kfree(xhci->msix_entries);
349 xhci->msix_entries = NULL;
350 } else {
351 pci_disable_msi(pdev);
352 }
353
354 hcd->msix_enabled = 0;
355 return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360 int i;
361
362 if (xhci->msix_entries) {
363 for (i = 0; i < xhci->msix_count; i++)
364 synchronize_irq(xhci->msix_entries[i].vector);
365 }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371 struct pci_dev *pdev;
372 int ret;
373
374 /* The xhci platform device has set up IRQs through usb_add_hcd. */
375 if (xhci->quirks & XHCI_PLAT)
376 return 0;
377
378 pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379 /*
380 * Some Fresco Logic host controllers advertise MSI, but fail to
381 * generate interrupts. Don't even try to enable MSI.
382 */
383 if (xhci->quirks & XHCI_BROKEN_MSI)
384 goto legacy_irq;
385
386 /* unregister the legacy interrupt */
387 if (hcd->irq)
388 free_irq(hcd->irq, hcd);
389 hcd->irq = 0;
390
391 ret = xhci_setup_msix(xhci);
392 if (ret)
393 /* fall back to msi*/
394 ret = xhci_setup_msi(xhci);
395
396 if (!ret)
397 /* hcd->irq is 0, we have MSI */
398 return 0;
399
400 if (!pdev->irq) {
401 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402 return -EINVAL;
403 }
404
405 legacy_irq:
406 if (!strlen(hcd->irq_descr))
407 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408 hcd->driver->description, hcd->self.busnum);
409
410 /* fall back to legacy interrupt*/
411 ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412 hcd->irq_descr, hcd);
413 if (ret) {
414 xhci_err(xhci, "request interrupt %d failed\n",
415 pdev->irq);
416 return ret;
417 }
418 hcd->irq = pdev->irq;
419 return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426 return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441 struct xhci_hcd *xhci;
442 struct usb_hcd *hcd;
443 u32 temp;
444 int i;
445
446 xhci = (struct xhci_hcd *)arg;
447
448 for (i = 0; i < xhci->num_usb3_ports; i++) {
449 temp = readl(xhci->usb3_ports[i]);
450 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451 /*
452 * Compliance Mode Detected. Letting USB Core
453 * handle the Warm Reset
454 */
455 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456 "Compliance mode detected->port %d",
457 i + 1);
458 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459 "Attempting compliance mode recovery");
460 hcd = xhci->shared_hcd;
461
462 if (hcd->state == HC_STATE_SUSPENDED)
463 usb_hcd_resume_root_hub(hcd);
464
465 usb_hcd_poll_rh_status(hcd);
466 }
467 }
468
469 if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470 mod_timer(&xhci->comp_mode_recovery_timer,
471 jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476 * that causes ports behind that hardware to enter compliance mode sometimes.
477 * The quirk creates a timer that polls every 2 seconds the link state of
478 * each host controller's port and recovers it by issuing a Warm reset
479 * if Compliance mode is detected, otherwise the port will become "dead" (no
480 * device connections or disconnections will be detected anymore). Becasue no
481 * status event is generated when entering compliance mode (per xhci spec),
482 * this quirk is needed on systems that have the failing hardware installed.
483 */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486 xhci->port_status_u0 = 0;
487 setup_timer(&xhci->comp_mode_recovery_timer,
488 compliance_mode_recovery, (unsigned long)xhci);
489 xhci->comp_mode_recovery_timer.expires = jiffies +
490 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492 set_timer_slack(&xhci->comp_mode_recovery_timer,
493 msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
494 add_timer(&xhci->comp_mode_recovery_timer);
495 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
496 "Compliance mode recovery timer initialized");
497 }
498
499 /*
500 * This function identifies the systems that have installed the SN65LVPE502CP
501 * USB3.0 re-driver and that need the Compliance Mode Quirk.
502 * Systems:
503 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
504 */
505 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
506 {
507 const char *dmi_product_name, *dmi_sys_vendor;
508
509 dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
510 dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
511 if (!dmi_product_name || !dmi_sys_vendor)
512 return false;
513
514 if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
515 return false;
516
517 if (strstr(dmi_product_name, "Z420") ||
518 strstr(dmi_product_name, "Z620") ||
519 strstr(dmi_product_name, "Z820") ||
520 strstr(dmi_product_name, "Z1 Workstation"))
521 return true;
522
523 return false;
524 }
525
526 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
527 {
528 return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
529 }
530
531
532 /*
533 * Initialize memory for HCD and xHC (one-time init).
534 *
535 * Program the PAGESIZE register, initialize the device context array, create
536 * device contexts (?), set up a command ring segment (or two?), create event
537 * ring (one for now).
538 */
539 int xhci_init(struct usb_hcd *hcd)
540 {
541 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
542 int retval = 0;
543
544 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
545 spin_lock_init(&xhci->lock);
546 if (xhci->hci_version == 0x95 && link_quirk) {
547 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
548 "QUIRK: Not clearing Link TRB chain bits.");
549 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
550 } else {
551 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
552 "xHCI doesn't need link TRB QUIRK");
553 }
554 retval = xhci_mem_init(xhci, GFP_KERNEL);
555 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
556
557 /* Initializing Compliance Mode Recovery Data If Needed */
558 if (xhci_compliance_mode_recovery_timer_quirk_check()) {
559 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
560 compliance_mode_recovery_timer_init(xhci);
561 }
562
563 return retval;
564 }
565
566 /*-------------------------------------------------------------------------*/
567
568
569 static int xhci_run_finished(struct xhci_hcd *xhci)
570 {
571 if (xhci_start(xhci)) {
572 xhci_halt(xhci);
573 return -ENODEV;
574 }
575 xhci->shared_hcd->state = HC_STATE_RUNNING;
576 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
577
578 if (xhci->quirks & XHCI_NEC_HOST)
579 xhci_ring_cmd_db(xhci);
580
581 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
582 "Finished xhci_run for USB3 roothub");
583 return 0;
584 }
585
586 /*
587 * Start the HC after it was halted.
588 *
589 * This function is called by the USB core when the HC driver is added.
590 * Its opposite is xhci_stop().
591 *
592 * xhci_init() must be called once before this function can be called.
593 * Reset the HC, enable device slot contexts, program DCBAAP, and
594 * set command ring pointer and event ring pointer.
595 *
596 * Setup MSI-X vectors and enable interrupts.
597 */
598 int xhci_run(struct usb_hcd *hcd)
599 {
600 u32 temp;
601 u64 temp_64;
602 int ret;
603 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
604
605 /* Start the xHCI host controller running only after the USB 2.0 roothub
606 * is setup.
607 */
608
609 hcd->uses_new_polling = 1;
610 if (!usb_hcd_is_primary_hcd(hcd))
611 return xhci_run_finished(xhci);
612
613 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
614
615 ret = xhci_try_enable_msi(hcd);
616 if (ret)
617 return ret;
618
619 xhci_dbg(xhci, "Command ring memory map follows:\n");
620 xhci_debug_ring(xhci, xhci->cmd_ring);
621 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
622 xhci_dbg_cmd_ptrs(xhci);
623
624 xhci_dbg(xhci, "ERST memory map follows:\n");
625 xhci_dbg_erst(xhci, &xhci->erst);
626 xhci_dbg(xhci, "Event ring:\n");
627 xhci_debug_ring(xhci, xhci->event_ring);
628 xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
629 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
630 temp_64 &= ~ERST_PTR_MASK;
631 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
632 "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
633
634 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
635 "// Set the interrupt modulation register");
636 temp = readl(&xhci->ir_set->irq_control);
637 temp &= ~ER_IRQ_INTERVAL_MASK;
638 /*
639 * the increment interval is 8 times as much as that defined
640 * in xHCI spec on MTK's controller
641 */
642 temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
643 writel(temp, &xhci->ir_set->irq_control);
644
645 /* Set the HCD state before we enable the irqs */
646 temp = readl(&xhci->op_regs->command);
647 temp |= (CMD_EIE);
648 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 "// Enable interrupts, cmd = 0x%x.", temp);
650 writel(temp, &xhci->op_regs->command);
651
652 temp = readl(&xhci->ir_set->irq_pending);
653 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
654 "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
655 xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
656 writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
657 xhci_print_ir_set(xhci, 0);
658
659 if (xhci->quirks & XHCI_NEC_HOST) {
660 struct xhci_command *command;
661 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
662 if (!command)
663 return -ENOMEM;
664 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
665 TRB_TYPE(TRB_NEC_GET_FW));
666 }
667 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
668 "Finished xhci_run for USB2 roothub");
669 return 0;
670 }
671 EXPORT_SYMBOL_GPL(xhci_run);
672
673 /*
674 * Stop xHCI driver.
675 *
676 * This function is called by the USB core when the HC driver is removed.
677 * Its opposite is xhci_run().
678 *
679 * Disable device contexts, disable IRQs, and quiesce the HC.
680 * Reset the HC, finish any completed transactions, and cleanup memory.
681 */
682 void xhci_stop(struct usb_hcd *hcd)
683 {
684 u32 temp;
685 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
686
687 if (xhci->xhc_state & XHCI_STATE_HALTED)
688 return;
689
690 mutex_lock(&xhci->mutex);
691 spin_lock_irq(&xhci->lock);
692 xhci->xhc_state |= XHCI_STATE_HALTED;
693 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
694
695 /* Make sure the xHC is halted for a USB3 roothub
696 * (xhci_stop() could be called as part of failed init).
697 */
698 xhci_halt(xhci);
699 xhci_reset(xhci);
700 spin_unlock_irq(&xhci->lock);
701
702 xhci_cleanup_msix(xhci);
703
704 /* Deleting Compliance Mode Recovery Timer */
705 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
706 (!(xhci_all_ports_seen_u0(xhci)))) {
707 del_timer_sync(&xhci->comp_mode_recovery_timer);
708 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
709 "%s: compliance mode recovery timer deleted",
710 __func__);
711 }
712
713 if (xhci->quirks & XHCI_AMD_PLL_FIX)
714 usb_amd_dev_put();
715
716 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
717 "// Disabling event ring interrupts");
718 temp = readl(&xhci->op_regs->status);
719 writel(temp & ~STS_EINT, &xhci->op_regs->status);
720 temp = readl(&xhci->ir_set->irq_pending);
721 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
722 xhci_print_ir_set(xhci, 0);
723
724 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
725 xhci_mem_cleanup(xhci);
726 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
727 "xhci_stop completed - status = %x",
728 readl(&xhci->op_regs->status));
729 mutex_unlock(&xhci->mutex);
730 }
731
732 /*
733 * Shutdown HC (not bus-specific)
734 *
735 * This is called when the machine is rebooting or halting. We assume that the
736 * machine will be powered off, and the HC's internal state will be reset.
737 * Don't bother to free memory.
738 *
739 * This will only ever be called with the main usb_hcd (the USB3 roothub).
740 */
741 void xhci_shutdown(struct usb_hcd *hcd)
742 {
743 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
744
745 if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
746 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
747
748 spin_lock_irq(&xhci->lock);
749 xhci_halt(xhci);
750 /* Workaround for spurious wakeups at shutdown with HSW */
751 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
752 xhci_reset(xhci);
753 spin_unlock_irq(&xhci->lock);
754
755 xhci_cleanup_msix(xhci);
756
757 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
758 "xhci_shutdown completed - status = %x",
759 readl(&xhci->op_regs->status));
760
761 /* Yet another workaround for spurious wakeups at shutdown with HSW */
762 if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
763 pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
764 }
765
766 #ifdef CONFIG_PM
767 static void xhci_save_registers(struct xhci_hcd *xhci)
768 {
769 xhci->s3.command = readl(&xhci->op_regs->command);
770 xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
771 xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
772 xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
773 xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
774 xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
775 xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
776 xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
777 xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
778 }
779
780 static void xhci_restore_registers(struct xhci_hcd *xhci)
781 {
782 writel(xhci->s3.command, &xhci->op_regs->command);
783 writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
784 xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
785 writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
786 writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
787 xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
788 xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
789 writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
790 writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
791 }
792
793 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
794 {
795 u64 val_64;
796
797 /* step 2: initialize command ring buffer */
798 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
799 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
800 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
801 xhci->cmd_ring->dequeue) &
802 (u64) ~CMD_RING_RSVD_BITS) |
803 xhci->cmd_ring->cycle_state;
804 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
805 "// Setting command ring address to 0x%llx",
806 (long unsigned long) val_64);
807 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
808 }
809
810 /*
811 * The whole command ring must be cleared to zero when we suspend the host.
812 *
813 * The host doesn't save the command ring pointer in the suspend well, so we
814 * need to re-program it on resume. Unfortunately, the pointer must be 64-byte
815 * aligned, because of the reserved bits in the command ring dequeue pointer
816 * register. Therefore, we can't just set the dequeue pointer back in the
817 * middle of the ring (TRBs are 16-byte aligned).
818 */
819 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
820 {
821 struct xhci_ring *ring;
822 struct xhci_segment *seg;
823
824 ring = xhci->cmd_ring;
825 seg = ring->deq_seg;
826 do {
827 memset(seg->trbs, 0,
828 sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
829 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
830 cpu_to_le32(~TRB_CYCLE);
831 seg = seg->next;
832 } while (seg != ring->deq_seg);
833
834 /* Reset the software enqueue and dequeue pointers */
835 ring->deq_seg = ring->first_seg;
836 ring->dequeue = ring->first_seg->trbs;
837 ring->enq_seg = ring->deq_seg;
838 ring->enqueue = ring->dequeue;
839
840 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
841 /*
842 * Ring is now zeroed, so the HW should look for change of ownership
843 * when the cycle bit is set to 1.
844 */
845 ring->cycle_state = 1;
846
847 /*
848 * Reset the hardware dequeue pointer.
849 * Yes, this will need to be re-written after resume, but we're paranoid
850 * and want to make sure the hardware doesn't access bogus memory
851 * because, say, the BIOS or an SMI started the host without changing
852 * the command ring pointers.
853 */
854 xhci_set_cmd_ring_deq(xhci);
855 }
856
857 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
858 {
859 int port_index;
860 __le32 __iomem **port_array;
861 unsigned long flags;
862 u32 t1, t2;
863
864 spin_lock_irqsave(&xhci->lock, flags);
865
866 /* disble usb3 ports Wake bits*/
867 port_index = xhci->num_usb3_ports;
868 port_array = xhci->usb3_ports;
869 while (port_index--) {
870 t1 = readl(port_array[port_index]);
871 t1 = xhci_port_state_to_neutral(t1);
872 t2 = t1 & ~PORT_WAKE_BITS;
873 if (t1 != t2)
874 writel(t2, port_array[port_index]);
875 }
876
877 /* disble usb2 ports Wake bits*/
878 port_index = xhci->num_usb2_ports;
879 port_array = xhci->usb2_ports;
880 while (port_index--) {
881 t1 = readl(port_array[port_index]);
882 t1 = xhci_port_state_to_neutral(t1);
883 t2 = t1 & ~PORT_WAKE_BITS;
884 if (t1 != t2)
885 writel(t2, port_array[port_index]);
886 }
887
888 spin_unlock_irqrestore(&xhci->lock, flags);
889 }
890
891 /*
892 * Stop HC (not bus-specific)
893 *
894 * This is called when the machine transition into S3/S4 mode.
895 *
896 */
897 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
898 {
899 int rc = 0;
900 unsigned int delay = XHCI_MAX_HALT_USEC;
901 struct usb_hcd *hcd = xhci_to_hcd(xhci);
902 u32 command;
903
904 if (!hcd->state)
905 return 0;
906
907 if (hcd->state != HC_STATE_SUSPENDED ||
908 xhci->shared_hcd->state != HC_STATE_SUSPENDED)
909 return -EINVAL;
910
911 /* Clear root port wake on bits if wakeup not allowed. */
912 if (!do_wakeup)
913 xhci_disable_port_wake_on_bits(xhci);
914
915 /* Don't poll the roothubs on bus suspend. */
916 xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
917 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
918 del_timer_sync(&hcd->rh_timer);
919 clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
920 del_timer_sync(&xhci->shared_hcd->rh_timer);
921
922 spin_lock_irq(&xhci->lock);
923 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
924 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
925 /* step 1: stop endpoint */
926 /* skipped assuming that port suspend has done */
927
928 /* step 2: clear Run/Stop bit */
929 command = readl(&xhci->op_regs->command);
930 command &= ~CMD_RUN;
931 writel(command, &xhci->op_regs->command);
932
933 /* Some chips from Fresco Logic need an extraordinary delay */
934 delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
935
936 if (xhci_handshake(&xhci->op_regs->status,
937 STS_HALT, STS_HALT, delay)) {
938 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
939 spin_unlock_irq(&xhci->lock);
940 return -ETIMEDOUT;
941 }
942 xhci_clear_command_ring(xhci);
943
944 /* step 3: save registers */
945 xhci_save_registers(xhci);
946
947 /* step 4: set CSS flag */
948 command = readl(&xhci->op_regs->command);
949 command |= CMD_CSS;
950 writel(command, &xhci->op_regs->command);
951 if (xhci_handshake(&xhci->op_regs->status,
952 STS_SAVE, 0, 10 * 1000)) {
953 xhci_warn(xhci, "WARN: xHC save state timeout\n");
954 spin_unlock_irq(&xhci->lock);
955 return -ETIMEDOUT;
956 }
957 spin_unlock_irq(&xhci->lock);
958
959 /*
960 * Deleting Compliance Mode Recovery Timer because the xHCI Host
961 * is about to be suspended.
962 */
963 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
964 (!(xhci_all_ports_seen_u0(xhci)))) {
965 del_timer_sync(&xhci->comp_mode_recovery_timer);
966 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
967 "%s: compliance mode recovery timer deleted",
968 __func__);
969 }
970
971 /* step 5: remove core well power */
972 /* synchronize irq when using MSI-X */
973 xhci_msix_sync_irqs(xhci);
974
975 return rc;
976 }
977 EXPORT_SYMBOL_GPL(xhci_suspend);
978
979 /*
980 * start xHC (not bus-specific)
981 *
982 * This is called when the machine transition from S3/S4 mode.
983 *
984 */
985 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
986 {
987 u32 command, temp = 0, status;
988 struct usb_hcd *hcd = xhci_to_hcd(xhci);
989 struct usb_hcd *secondary_hcd;
990 int retval = 0;
991 bool comp_timer_running = false;
992
993 if (!hcd->state)
994 return 0;
995
996 /* Wait a bit if either of the roothubs need to settle from the
997 * transition into bus suspend.
998 */
999 if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1000 time_before(jiffies,
1001 xhci->bus_state[1].next_statechange))
1002 msleep(100);
1003
1004 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1005 set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1006
1007 spin_lock_irq(&xhci->lock);
1008 if (xhci->quirks & XHCI_RESET_ON_RESUME)
1009 hibernated = true;
1010
1011 if (!hibernated) {
1012 /* step 1: restore register */
1013 xhci_restore_registers(xhci);
1014 /* step 2: initialize command ring buffer */
1015 xhci_set_cmd_ring_deq(xhci);
1016 /* step 3: restore state and start state*/
1017 /* step 3: set CRS flag */
1018 command = readl(&xhci->op_regs->command);
1019 command |= CMD_CRS;
1020 writel(command, &xhci->op_regs->command);
1021 if (xhci_handshake(&xhci->op_regs->status,
1022 STS_RESTORE, 0, 10 * 1000)) {
1023 xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1024 spin_unlock_irq(&xhci->lock);
1025 return -ETIMEDOUT;
1026 }
1027 temp = readl(&xhci->op_regs->status);
1028 }
1029
1030 /* If restore operation fails, re-initialize the HC during resume */
1031 if ((temp & STS_SRE) || hibernated) {
1032
1033 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1034 !(xhci_all_ports_seen_u0(xhci))) {
1035 del_timer_sync(&xhci->comp_mode_recovery_timer);
1036 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1037 "Compliance Mode Recovery Timer deleted!");
1038 }
1039
1040 /* Let the USB core know _both_ roothubs lost power. */
1041 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1042 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1043
1044 xhci_dbg(xhci, "Stop HCD\n");
1045 xhci_halt(xhci);
1046 xhci_reset(xhci);
1047 spin_unlock_irq(&xhci->lock);
1048 xhci_cleanup_msix(xhci);
1049
1050 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1051 temp = readl(&xhci->op_regs->status);
1052 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1053 temp = readl(&xhci->ir_set->irq_pending);
1054 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1055 xhci_print_ir_set(xhci, 0);
1056
1057 xhci_dbg(xhci, "cleaning up memory\n");
1058 xhci_mem_cleanup(xhci);
1059 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1060 readl(&xhci->op_regs->status));
1061
1062 /* USB core calls the PCI reinit and start functions twice:
1063 * first with the primary HCD, and then with the secondary HCD.
1064 * If we don't do the same, the host will never be started.
1065 */
1066 if (!usb_hcd_is_primary_hcd(hcd))
1067 secondary_hcd = hcd;
1068 else
1069 secondary_hcd = xhci->shared_hcd;
1070
1071 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1072 retval = xhci_init(hcd->primary_hcd);
1073 if (retval)
1074 return retval;
1075 comp_timer_running = true;
1076
1077 xhci_dbg(xhci, "Start the primary HCD\n");
1078 retval = xhci_run(hcd->primary_hcd);
1079 if (!retval) {
1080 xhci_dbg(xhci, "Start the secondary HCD\n");
1081 retval = xhci_run(secondary_hcd);
1082 }
1083 hcd->state = HC_STATE_SUSPENDED;
1084 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1085 goto done;
1086 }
1087
1088 /* step 4: set Run/Stop bit */
1089 command = readl(&xhci->op_regs->command);
1090 command |= CMD_RUN;
1091 writel(command, &xhci->op_regs->command);
1092 xhci_handshake(&xhci->op_regs->status, STS_HALT,
1093 0, 250 * 1000);
1094
1095 /* step 5: walk topology and initialize portsc,
1096 * portpmsc and portli
1097 */
1098 /* this is done in bus_resume */
1099
1100 /* step 6: restart each of the previously
1101 * Running endpoints by ringing their doorbells
1102 */
1103
1104 spin_unlock_irq(&xhci->lock);
1105
1106 done:
1107 if (retval == 0) {
1108 /* Resume root hubs only when have pending events. */
1109 status = readl(&xhci->op_regs->status);
1110 if (status & STS_EINT) {
1111 usb_hcd_resume_root_hub(hcd);
1112 usb_hcd_resume_root_hub(xhci->shared_hcd);
1113 }
1114 }
1115
1116 /*
1117 * If system is subject to the Quirk, Compliance Mode Timer needs to
1118 * be re-initialized Always after a system resume. Ports are subject
1119 * to suffer the Compliance Mode issue again. It doesn't matter if
1120 * ports have entered previously to U0 before system's suspension.
1121 */
1122 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1123 compliance_mode_recovery_timer_init(xhci);
1124
1125 /* Re-enable port polling. */
1126 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1127 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1128 usb_hcd_poll_rh_status(hcd);
1129 set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1130 usb_hcd_poll_rh_status(xhci->shared_hcd);
1131
1132 return retval;
1133 }
1134 EXPORT_SYMBOL_GPL(xhci_resume);
1135 #endif /* CONFIG_PM */
1136
1137 /*-------------------------------------------------------------------------*/
1138
1139 /**
1140 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1141 * HCDs. Find the index for an endpoint given its descriptor. Use the return
1142 * value to right shift 1 for the bitmask.
1143 *
1144 * Index = (epnum * 2) + direction - 1,
1145 * where direction = 0 for OUT, 1 for IN.
1146 * For control endpoints, the IN index is used (OUT index is unused), so
1147 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1148 */
1149 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1150 {
1151 unsigned int index;
1152 if (usb_endpoint_xfer_control(desc))
1153 index = (unsigned int) (usb_endpoint_num(desc)*2);
1154 else
1155 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1156 (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1157 return index;
1158 }
1159
1160 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1161 * address from the XHCI endpoint index.
1162 */
1163 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1164 {
1165 unsigned int number = DIV_ROUND_UP(ep_index, 2);
1166 unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1167 return direction | number;
1168 }
1169
1170 /* Find the flag for this endpoint (for use in the control context). Use the
1171 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1172 * bit 1, etc.
1173 */
1174 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1175 {
1176 return 1 << (xhci_get_endpoint_index(desc) + 1);
1177 }
1178
1179 /* Find the flag for this endpoint (for use in the control context). Use the
1180 * endpoint index to create a bitmask. The slot context is bit 0, endpoint 0 is
1181 * bit 1, etc.
1182 */
1183 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1184 {
1185 return 1 << (ep_index + 1);
1186 }
1187
1188 /* Compute the last valid endpoint context index. Basically, this is the
1189 * endpoint index plus one. For slot contexts with more than valid endpoint,
1190 * we find the most significant bit set in the added contexts flags.
1191 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1192 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1193 */
1194 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1195 {
1196 return fls(added_ctxs) - 1;
1197 }
1198
1199 /* Returns 1 if the arguments are OK;
1200 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1201 */
1202 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1203 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1204 const char *func) {
1205 struct xhci_hcd *xhci;
1206 struct xhci_virt_device *virt_dev;
1207
1208 if (!hcd || (check_ep && !ep) || !udev) {
1209 pr_debug("xHCI %s called with invalid args\n", func);
1210 return -EINVAL;
1211 }
1212 if (!udev->parent) {
1213 pr_debug("xHCI %s called for root hub\n", func);
1214 return 0;
1215 }
1216
1217 xhci = hcd_to_xhci(hcd);
1218 if (check_virt_dev) {
1219 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1220 xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1221 func);
1222 return -EINVAL;
1223 }
1224
1225 virt_dev = xhci->devs[udev->slot_id];
1226 if (virt_dev->udev != udev) {
1227 xhci_dbg(xhci, "xHCI %s called with udev and "
1228 "virt_dev does not match\n", func);
1229 return -EINVAL;
1230 }
1231 }
1232
1233 if (xhci->xhc_state & XHCI_STATE_HALTED)
1234 return -ENODEV;
1235
1236 return 1;
1237 }
1238
1239 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1240 struct usb_device *udev, struct xhci_command *command,
1241 bool ctx_change, bool must_succeed);
1242
1243 /*
1244 * Full speed devices may have a max packet size greater than 8 bytes, but the
1245 * USB core doesn't know that until it reads the first 8 bytes of the
1246 * descriptor. If the usb_device's max packet size changes after that point,
1247 * we need to issue an evaluate context command and wait on it.
1248 */
1249 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1250 unsigned int ep_index, struct urb *urb)
1251 {
1252 struct xhci_container_ctx *out_ctx;
1253 struct xhci_input_control_ctx *ctrl_ctx;
1254 struct xhci_ep_ctx *ep_ctx;
1255 struct xhci_command *command;
1256 int max_packet_size;
1257 int hw_max_packet_size;
1258 int ret = 0;
1259
1260 out_ctx = xhci->devs[slot_id]->out_ctx;
1261 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1262 hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1263 max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1264 if (hw_max_packet_size != max_packet_size) {
1265 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1266 "Max Packet Size for ep 0 changed.");
1267 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1268 "Max packet size in usb_device = %d",
1269 max_packet_size);
1270 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1271 "Max packet size in xHCI HW = %d",
1272 hw_max_packet_size);
1273 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1274 "Issuing evaluate context command.");
1275
1276 /* Set up the input context flags for the command */
1277 /* FIXME: This won't work if a non-default control endpoint
1278 * changes max packet sizes.
1279 */
1280
1281 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1282 if (!command)
1283 return -ENOMEM;
1284
1285 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1286 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1287 if (!ctrl_ctx) {
1288 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1289 __func__);
1290 ret = -ENOMEM;
1291 goto command_cleanup;
1292 }
1293 /* Set up the modified control endpoint 0 */
1294 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1295 xhci->devs[slot_id]->out_ctx, ep_index);
1296
1297 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1298 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1299 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1300
1301 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1302 ctrl_ctx->drop_flags = 0;
1303
1304 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1305 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1306 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1307 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1308
1309 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1310 true, false);
1311
1312 /* Clean up the input context for later use by bandwidth
1313 * functions.
1314 */
1315 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1316 command_cleanup:
1317 kfree(command->completion);
1318 kfree(command);
1319 }
1320 return ret;
1321 }
1322
1323 /*
1324 * non-error returns are a promise to giveback() the urb later
1325 * we drop ownership so next owner (or urb unlink) can get it
1326 */
1327 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1328 {
1329 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1330 struct xhci_td *buffer;
1331 unsigned long flags;
1332 int ret = 0;
1333 unsigned int slot_id, ep_index;
1334 struct urb_priv *urb_priv;
1335 int size, i;
1336
1337 if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1338 true, true, __func__) <= 0)
1339 return -EINVAL;
1340
1341 slot_id = urb->dev->slot_id;
1342 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1343
1344 if (!HCD_HW_ACCESSIBLE(hcd)) {
1345 if (!in_interrupt())
1346 xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1347 ret = -ESHUTDOWN;
1348 goto exit;
1349 }
1350
1351 if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1352 size = urb->number_of_packets;
1353 else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1354 urb->transfer_buffer_length > 0 &&
1355 urb->transfer_flags & URB_ZERO_PACKET &&
1356 !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1357 size = 2;
1358 else
1359 size = 1;
1360
1361 urb_priv = kzalloc(sizeof(struct urb_priv) +
1362 size * sizeof(struct xhci_td *), mem_flags);
1363 if (!urb_priv)
1364 return -ENOMEM;
1365
1366 buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1367 if (!buffer) {
1368 kfree(urb_priv);
1369 return -ENOMEM;
1370 }
1371
1372 for (i = 0; i < size; i++) {
1373 urb_priv->td[i] = buffer;
1374 buffer++;
1375 }
1376
1377 urb_priv->length = size;
1378 urb_priv->td_cnt = 0;
1379 urb->hcpriv = urb_priv;
1380
1381 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1382 /* Check to see if the max packet size for the default control
1383 * endpoint changed during FS device enumeration
1384 */
1385 if (urb->dev->speed == USB_SPEED_FULL) {
1386 ret = xhci_check_maxpacket(xhci, slot_id,
1387 ep_index, urb);
1388 if (ret < 0) {
1389 xhci_urb_free_priv(urb_priv);
1390 urb->hcpriv = NULL;
1391 return ret;
1392 }
1393 }
1394
1395 /* We have a spinlock and interrupts disabled, so we must pass
1396 * atomic context to this function, which may allocate memory.
1397 */
1398 spin_lock_irqsave(&xhci->lock, flags);
1399 if (xhci->xhc_state & XHCI_STATE_DYING)
1400 goto dying;
1401 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1402 slot_id, ep_index);
1403 if (ret)
1404 goto free_priv;
1405 spin_unlock_irqrestore(&xhci->lock, flags);
1406 } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1407 spin_lock_irqsave(&xhci->lock, flags);
1408 if (xhci->xhc_state & XHCI_STATE_DYING)
1409 goto dying;
1410 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1411 EP_GETTING_STREAMS) {
1412 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1413 "is transitioning to using streams.\n");
1414 ret = -EINVAL;
1415 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1416 EP_GETTING_NO_STREAMS) {
1417 xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1418 "is transitioning to "
1419 "not having streams.\n");
1420 ret = -EINVAL;
1421 } else {
1422 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1423 slot_id, ep_index);
1424 }
1425 if (ret)
1426 goto free_priv;
1427 spin_unlock_irqrestore(&xhci->lock, flags);
1428 } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1429 spin_lock_irqsave(&xhci->lock, flags);
1430 if (xhci->xhc_state & XHCI_STATE_DYING)
1431 goto dying;
1432 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1433 slot_id, ep_index);
1434 if (ret)
1435 goto free_priv;
1436 spin_unlock_irqrestore(&xhci->lock, flags);
1437 } else {
1438 spin_lock_irqsave(&xhci->lock, flags);
1439 if (xhci->xhc_state & XHCI_STATE_DYING)
1440 goto dying;
1441 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1442 slot_id, ep_index);
1443 if (ret)
1444 goto free_priv;
1445 spin_unlock_irqrestore(&xhci->lock, flags);
1446 }
1447 exit:
1448 return ret;
1449 dying:
1450 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1451 "non-responsive xHCI host.\n",
1452 urb->ep->desc.bEndpointAddress, urb);
1453 ret = -ESHUTDOWN;
1454 free_priv:
1455 xhci_urb_free_priv(urb_priv);
1456 urb->hcpriv = NULL;
1457 spin_unlock_irqrestore(&xhci->lock, flags);
1458 return ret;
1459 }
1460
1461 /* Get the right ring for the given URB.
1462 * If the endpoint supports streams, boundary check the URB's stream ID.
1463 * If the endpoint doesn't support streams, return the singular endpoint ring.
1464 */
1465 static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1466 struct urb *urb)
1467 {
1468 unsigned int slot_id;
1469 unsigned int ep_index;
1470 unsigned int stream_id;
1471 struct xhci_virt_ep *ep;
1472
1473 slot_id = urb->dev->slot_id;
1474 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1475 stream_id = urb->stream_id;
1476 ep = &xhci->devs[slot_id]->eps[ep_index];
1477 /* Common case: no streams */
1478 if (!(ep->ep_state & EP_HAS_STREAMS))
1479 return ep->ring;
1480
1481 if (stream_id == 0) {
1482 xhci_warn(xhci,
1483 "WARN: Slot ID %u, ep index %u has streams, "
1484 "but URB has no stream ID.\n",
1485 slot_id, ep_index);
1486 return NULL;
1487 }
1488
1489 if (stream_id < ep->stream_info->num_streams)
1490 return ep->stream_info->stream_rings[stream_id];
1491
1492 xhci_warn(xhci,
1493 "WARN: Slot ID %u, ep index %u has "
1494 "stream IDs 1 to %u allocated, "
1495 "but stream ID %u is requested.\n",
1496 slot_id, ep_index,
1497 ep->stream_info->num_streams - 1,
1498 stream_id);
1499 return NULL;
1500 }
1501
1502 /*
1503 * Remove the URB's TD from the endpoint ring. This may cause the HC to stop
1504 * USB transfers, potentially stopping in the middle of a TRB buffer. The HC
1505 * should pick up where it left off in the TD, unless a Set Transfer Ring
1506 * Dequeue Pointer is issued.
1507 *
1508 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1509 * the ring. Since the ring is a contiguous structure, they can't be physically
1510 * removed. Instead, there are two options:
1511 *
1512 * 1) If the HC is in the middle of processing the URB to be canceled, we
1513 * simply move the ring's dequeue pointer past those TRBs using the Set
1514 * Transfer Ring Dequeue Pointer command. This will be the common case,
1515 * when drivers timeout on the last submitted URB and attempt to cancel.
1516 *
1517 * 2) If the HC is in the middle of a different TD, we turn the TRBs into a
1518 * series of 1-TRB transfer no-op TDs. (No-ops shouldn't be chained.) The
1519 * HC will need to invalidate the any TRBs it has cached after the stop
1520 * endpoint command, as noted in the xHCI 0.95 errata.
1521 *
1522 * 3) The TD may have completed by the time the Stop Endpoint Command
1523 * completes, so software needs to handle that case too.
1524 *
1525 * This function should protect against the TD enqueueing code ringing the
1526 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1527 * It also needs to account for multiple cancellations on happening at the same
1528 * time for the same endpoint.
1529 *
1530 * Note that this function can be called in any context, or so says
1531 * usb_hcd_unlink_urb()
1532 */
1533 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1534 {
1535 unsigned long flags;
1536 int ret, i;
1537 u32 temp;
1538 struct xhci_hcd *xhci;
1539 struct urb_priv *urb_priv;
1540 struct xhci_td *td;
1541 unsigned int ep_index;
1542 struct xhci_ring *ep_ring;
1543 struct xhci_virt_ep *ep;
1544 struct xhci_command *command;
1545
1546 xhci = hcd_to_xhci(hcd);
1547 spin_lock_irqsave(&xhci->lock, flags);
1548 /* Make sure the URB hasn't completed or been unlinked already */
1549 ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1550 if (ret || !urb->hcpriv)
1551 goto done;
1552 temp = readl(&xhci->op_regs->status);
1553 if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1554 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1555 "HW died, freeing TD.");
1556 urb_priv = urb->hcpriv;
1557 for (i = urb_priv->td_cnt;
1558 i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1559 i++) {
1560 td = urb_priv->td[i];
1561 if (!list_empty(&td->td_list))
1562 list_del_init(&td->td_list);
1563 if (!list_empty(&td->cancelled_td_list))
1564 list_del_init(&td->cancelled_td_list);
1565 }
1566
1567 usb_hcd_unlink_urb_from_ep(hcd, urb);
1568 spin_unlock_irqrestore(&xhci->lock, flags);
1569 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1570 xhci_urb_free_priv(urb_priv);
1571 return ret;
1572 }
1573 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1574 (xhci->xhc_state & XHCI_STATE_HALTED)) {
1575 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1576 "Ep 0x%x: URB %p to be canceled on "
1577 "non-responsive xHCI host.",
1578 urb->ep->desc.bEndpointAddress, urb);
1579 /* Let the stop endpoint command watchdog timer (which set this
1580 * state) finish cleaning up the endpoint TD lists. We must
1581 * have caught it in the middle of dropping a lock and giving
1582 * back an URB.
1583 */
1584 goto done;
1585 }
1586
1587 ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1588 ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1589 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1590 if (!ep_ring) {
1591 ret = -EINVAL;
1592 goto done;
1593 }
1594
1595 urb_priv = urb->hcpriv;
1596 i = urb_priv->td_cnt;
1597 if (i < urb_priv->length)
1598 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1599 "Cancel URB %p, dev %s, ep 0x%x, "
1600 "starting at offset 0x%llx",
1601 urb, urb->dev->devpath,
1602 urb->ep->desc.bEndpointAddress,
1603 (unsigned long long) xhci_trb_virt_to_dma(
1604 urb_priv->td[i]->start_seg,
1605 urb_priv->td[i]->first_trb));
1606
1607 for (; i < urb_priv->length; i++) {
1608 td = urb_priv->td[i];
1609 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1610 }
1611
1612 /* Queue a stop endpoint command, but only if this is
1613 * the first cancellation to be handled.
1614 */
1615 if (!(ep->ep_state & EP_HALT_PENDING)) {
1616 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1617 if (!command) {
1618 ret = -ENOMEM;
1619 goto done;
1620 }
1621 ep->ep_state |= EP_HALT_PENDING;
1622 ep->stop_cmds_pending++;
1623 ep->stop_cmd_timer.expires = jiffies +
1624 XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1625 add_timer(&ep->stop_cmd_timer);
1626 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1627 ep_index, 0);
1628 xhci_ring_cmd_db(xhci);
1629 }
1630 done:
1631 spin_unlock_irqrestore(&xhci->lock, flags);
1632 return ret;
1633 }
1634
1635 /* Drop an endpoint from a new bandwidth configuration for this device.
1636 * Only one call to this function is allowed per endpoint before
1637 * check_bandwidth() or reset_bandwidth() must be called.
1638 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1639 * add the endpoint to the schedule with possibly new parameters denoted by a
1640 * different endpoint descriptor in usb_host_endpoint.
1641 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1642 * not allowed.
1643 *
1644 * The USB core will not allow URBs to be queued to an endpoint that is being
1645 * disabled, so there's no need for mutual exclusion to protect
1646 * the xhci->devs[slot_id] structure.
1647 */
1648 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1649 struct usb_host_endpoint *ep)
1650 {
1651 struct xhci_hcd *xhci;
1652 struct xhci_container_ctx *in_ctx, *out_ctx;
1653 struct xhci_input_control_ctx *ctrl_ctx;
1654 unsigned int ep_index;
1655 struct xhci_ep_ctx *ep_ctx;
1656 u32 drop_flag;
1657 u32 new_add_flags, new_drop_flags;
1658 int ret;
1659
1660 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1661 if (ret <= 0)
1662 return ret;
1663 xhci = hcd_to_xhci(hcd);
1664 if (xhci->xhc_state & XHCI_STATE_DYING)
1665 return -ENODEV;
1666
1667 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1668 drop_flag = xhci_get_endpoint_flag(&ep->desc);
1669 if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1670 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1671 __func__, drop_flag);
1672 return 0;
1673 }
1674
1675 in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1676 out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1677 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1678 if (!ctrl_ctx) {
1679 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1680 __func__);
1681 return 0;
1682 }
1683
1684 ep_index = xhci_get_endpoint_index(&ep->desc);
1685 ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1686 /* If the HC already knows the endpoint is disabled,
1687 * or the HCD has noted it is disabled, ignore this request
1688 */
1689 if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1690 cpu_to_le32(EP_STATE_DISABLED)) ||
1691 le32_to_cpu(ctrl_ctx->drop_flags) &
1692 xhci_get_endpoint_flag(&ep->desc)) {
1693 /* Do not warn when called after a usb_device_reset */
1694 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1695 xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1696 __func__, ep);
1697 return 0;
1698 }
1699
1700 ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1701 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1702
1703 ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1704 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1705
1706 xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1707
1708 if (xhci->quirks & XHCI_MTK_HOST)
1709 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1710
1711 xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1712 (unsigned int) ep->desc.bEndpointAddress,
1713 udev->slot_id,
1714 (unsigned int) new_drop_flags,
1715 (unsigned int) new_add_flags);
1716 return 0;
1717 }
1718
1719 /* Add an endpoint to a new possible bandwidth configuration for this device.
1720 * Only one call to this function is allowed per endpoint before
1721 * check_bandwidth() or reset_bandwidth() must be called.
1722 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1723 * add the endpoint to the schedule with possibly new parameters denoted by a
1724 * different endpoint descriptor in usb_host_endpoint.
1725 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1726 * not allowed.
1727 *
1728 * The USB core will not allow URBs to be queued to an endpoint until the
1729 * configuration or alt setting is installed in the device, so there's no need
1730 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1731 */
1732 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1733 struct usb_host_endpoint *ep)
1734 {
1735 struct xhci_hcd *xhci;
1736 struct xhci_container_ctx *in_ctx;
1737 unsigned int ep_index;
1738 struct xhci_input_control_ctx *ctrl_ctx;
1739 u32 added_ctxs;
1740 u32 new_add_flags, new_drop_flags;
1741 struct xhci_virt_device *virt_dev;
1742 int ret = 0;
1743
1744 ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1745 if (ret <= 0) {
1746 /* So we won't queue a reset ep command for a root hub */
1747 ep->hcpriv = NULL;
1748 return ret;
1749 }
1750 xhci = hcd_to_xhci(hcd);
1751 if (xhci->xhc_state & XHCI_STATE_DYING)
1752 return -ENODEV;
1753
1754 added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1755 if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1756 /* FIXME when we have to issue an evaluate endpoint command to
1757 * deal with ep0 max packet size changing once we get the
1758 * descriptors
1759 */
1760 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1761 __func__, added_ctxs);
1762 return 0;
1763 }
1764
1765 virt_dev = xhci->devs[udev->slot_id];
1766 in_ctx = virt_dev->in_ctx;
1767 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1768 if (!ctrl_ctx) {
1769 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1770 __func__);
1771 return 0;
1772 }
1773
1774 ep_index = xhci_get_endpoint_index(&ep->desc);
1775 /* If this endpoint is already in use, and the upper layers are trying
1776 * to add it again without dropping it, reject the addition.
1777 */
1778 if (virt_dev->eps[ep_index].ring &&
1779 !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1780 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1781 "without dropping it.\n",
1782 (unsigned int) ep->desc.bEndpointAddress);
1783 return -EINVAL;
1784 }
1785
1786 /* If the HCD has already noted the endpoint is enabled,
1787 * ignore this request.
1788 */
1789 if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1790 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1791 __func__, ep);
1792 return 0;
1793 }
1794
1795 /*
1796 * Configuration and alternate setting changes must be done in
1797 * process context, not interrupt context (or so documenation
1798 * for usb_set_interface() and usb_set_configuration() claim).
1799 */
1800 if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1801 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1802 __func__, ep->desc.bEndpointAddress);
1803 return -ENOMEM;
1804 }
1805
1806 if (xhci->quirks & XHCI_MTK_HOST) {
1807 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1808 if (ret < 0) {
1809 xhci_free_or_cache_endpoint_ring(xhci,
1810 virt_dev, ep_index);
1811 return ret;
1812 }
1813 }
1814
1815 ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1816 new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1817
1818 /* If xhci_endpoint_disable() was called for this endpoint, but the
1819 * xHC hasn't been notified yet through the check_bandwidth() call,
1820 * this re-adds a new state for the endpoint from the new endpoint
1821 * descriptors. We must drop and re-add this endpoint, so we leave the
1822 * drop flags alone.
1823 */
1824 new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1825
1826 /* Store the usb_device pointer for later use */
1827 ep->hcpriv = udev;
1828
1829 xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1830 (unsigned int) ep->desc.bEndpointAddress,
1831 udev->slot_id,
1832 (unsigned int) new_drop_flags,
1833 (unsigned int) new_add_flags);
1834 return 0;
1835 }
1836
1837 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1838 {
1839 struct xhci_input_control_ctx *ctrl_ctx;
1840 struct xhci_ep_ctx *ep_ctx;
1841 struct xhci_slot_ctx *slot_ctx;
1842 int i;
1843
1844 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1845 if (!ctrl_ctx) {
1846 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1847 __func__);
1848 return;
1849 }
1850
1851 /* When a device's add flag and drop flag are zero, any subsequent
1852 * configure endpoint command will leave that endpoint's state
1853 * untouched. Make sure we don't leave any old state in the input
1854 * endpoint contexts.
1855 */
1856 ctrl_ctx->drop_flags = 0;
1857 ctrl_ctx->add_flags = 0;
1858 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1859 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1860 /* Endpoint 0 is always valid */
1861 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1862 for (i = 1; i < 31; ++i) {
1863 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1864 ep_ctx->ep_info = 0;
1865 ep_ctx->ep_info2 = 0;
1866 ep_ctx->deq = 0;
1867 ep_ctx->tx_info = 0;
1868 }
1869 }
1870
1871 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1872 struct usb_device *udev, u32 *cmd_status)
1873 {
1874 int ret;
1875
1876 switch (*cmd_status) {
1877 case COMP_CMD_ABORT:
1878 case COMP_CMD_STOP:
1879 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1880 ret = -ETIME;
1881 break;
1882 case COMP_ENOMEM:
1883 dev_warn(&udev->dev,
1884 "Not enough host controller resources for new device state.\n");
1885 ret = -ENOMEM;
1886 /* FIXME: can we allocate more resources for the HC? */
1887 break;
1888 case COMP_BW_ERR:
1889 case COMP_2ND_BW_ERR:
1890 dev_warn(&udev->dev,
1891 "Not enough bandwidth for new device state.\n");
1892 ret = -ENOSPC;
1893 /* FIXME: can we go back to the old state? */
1894 break;
1895 case COMP_TRB_ERR:
1896 /* the HCD set up something wrong */
1897 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1898 "add flag = 1, "
1899 "and endpoint is not disabled.\n");
1900 ret = -EINVAL;
1901 break;
1902 case COMP_DEV_ERR:
1903 dev_warn(&udev->dev,
1904 "ERROR: Incompatible device for endpoint configure command.\n");
1905 ret = -ENODEV;
1906 break;
1907 case COMP_SUCCESS:
1908 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1909 "Successful Endpoint Configure command");
1910 ret = 0;
1911 break;
1912 default:
1913 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1914 *cmd_status);
1915 ret = -EINVAL;
1916 break;
1917 }
1918 return ret;
1919 }
1920
1921 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1922 struct usb_device *udev, u32 *cmd_status)
1923 {
1924 int ret;
1925 struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1926
1927 switch (*cmd_status) {
1928 case COMP_CMD_ABORT:
1929 case COMP_CMD_STOP:
1930 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1931 ret = -ETIME;
1932 break;
1933 case COMP_EINVAL:
1934 dev_warn(&udev->dev,
1935 "WARN: xHCI driver setup invalid evaluate context command.\n");
1936 ret = -EINVAL;
1937 break;
1938 case COMP_EBADSLT:
1939 dev_warn(&udev->dev,
1940 "WARN: slot not enabled for evaluate context command.\n");
1941 ret = -EINVAL;
1942 break;
1943 case COMP_CTX_STATE:
1944 dev_warn(&udev->dev,
1945 "WARN: invalid context state for evaluate context command.\n");
1946 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1947 ret = -EINVAL;
1948 break;
1949 case COMP_DEV_ERR:
1950 dev_warn(&udev->dev,
1951 "ERROR: Incompatible device for evaluate context command.\n");
1952 ret = -ENODEV;
1953 break;
1954 case COMP_MEL_ERR:
1955 /* Max Exit Latency too large error */
1956 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1957 ret = -EINVAL;
1958 break;
1959 case COMP_SUCCESS:
1960 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1961 "Successful evaluate context command");
1962 ret = 0;
1963 break;
1964 default:
1965 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1966 *cmd_status);
1967 ret = -EINVAL;
1968 break;
1969 }
1970 return ret;
1971 }
1972
1973 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1974 struct xhci_input_control_ctx *ctrl_ctx)
1975 {
1976 u32 valid_add_flags;
1977 u32 valid_drop_flags;
1978
1979 /* Ignore the slot flag (bit 0), and the default control endpoint flag
1980 * (bit 1). The default control endpoint is added during the Address
1981 * Device command and is never removed until the slot is disabled.
1982 */
1983 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1984 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1985
1986 /* Use hweight32 to count the number of ones in the add flags, or
1987 * number of endpoints added. Don't count endpoints that are changed
1988 * (both added and dropped).
1989 */
1990 return hweight32(valid_add_flags) -
1991 hweight32(valid_add_flags & valid_drop_flags);
1992 }
1993
1994 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1995 struct xhci_input_control_ctx *ctrl_ctx)
1996 {
1997 u32 valid_add_flags;
1998 u32 valid_drop_flags;
1999
2000 valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2001 valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2002
2003 return hweight32(valid_drop_flags) -
2004 hweight32(valid_add_flags & valid_drop_flags);
2005 }
2006
2007 /*
2008 * We need to reserve the new number of endpoints before the configure endpoint
2009 * command completes. We can't subtract the dropped endpoints from the number
2010 * of active endpoints until the command completes because we can oversubscribe
2011 * the host in this case:
2012 *
2013 * - the first configure endpoint command drops more endpoints than it adds
2014 * - a second configure endpoint command that adds more endpoints is queued
2015 * - the first configure endpoint command fails, so the config is unchanged
2016 * - the second command may succeed, even though there isn't enough resources
2017 *
2018 * Must be called with xhci->lock held.
2019 */
2020 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2021 struct xhci_input_control_ctx *ctrl_ctx)
2022 {
2023 u32 added_eps;
2024
2025 added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2026 if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2027 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2028 "Not enough ep ctxs: "
2029 "%u active, need to add %u, limit is %u.",
2030 xhci->num_active_eps, added_eps,
2031 xhci->limit_active_eps);
2032 return -ENOMEM;
2033 }
2034 xhci->num_active_eps += added_eps;
2035 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2036 "Adding %u ep ctxs, %u now active.", added_eps,
2037 xhci->num_active_eps);
2038 return 0;
2039 }
2040
2041 /*
2042 * The configure endpoint was failed by the xHC for some other reason, so we
2043 * need to revert the resources that failed configuration would have used.
2044 *
2045 * Must be called with xhci->lock held.
2046 */
2047 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2048 struct xhci_input_control_ctx *ctrl_ctx)
2049 {
2050 u32 num_failed_eps;
2051
2052 num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2053 xhci->num_active_eps -= num_failed_eps;
2054 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2055 "Removing %u failed ep ctxs, %u now active.",
2056 num_failed_eps,
2057 xhci->num_active_eps);
2058 }
2059
2060 /*
2061 * Now that the command has completed, clean up the active endpoint count by
2062 * subtracting out the endpoints that were dropped (but not changed).
2063 *
2064 * Must be called with xhci->lock held.
2065 */
2066 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2067 struct xhci_input_control_ctx *ctrl_ctx)
2068 {
2069 u32 num_dropped_eps;
2070
2071 num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2072 xhci->num_active_eps -= num_dropped_eps;
2073 if (num_dropped_eps)
2074 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2075 "Removing %u dropped ep ctxs, %u now active.",
2076 num_dropped_eps,
2077 xhci->num_active_eps);
2078 }
2079
2080 static unsigned int xhci_get_block_size(struct usb_device *udev)
2081 {
2082 switch (udev->speed) {
2083 case USB_SPEED_LOW:
2084 case USB_SPEED_FULL:
2085 return FS_BLOCK;
2086 case USB_SPEED_HIGH:
2087 return HS_BLOCK;
2088 case USB_SPEED_SUPER:
2089 case USB_SPEED_SUPER_PLUS:
2090 return SS_BLOCK;
2091 case USB_SPEED_UNKNOWN:
2092 case USB_SPEED_WIRELESS:
2093 default:
2094 /* Should never happen */
2095 return 1;
2096 }
2097 }
2098
2099 static unsigned int
2100 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2101 {
2102 if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2103 return LS_OVERHEAD;
2104 if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2105 return FS_OVERHEAD;
2106 return HS_OVERHEAD;
2107 }
2108
2109 /* If we are changing a LS/FS device under a HS hub,
2110 * make sure (if we are activating a new TT) that the HS bus has enough
2111 * bandwidth for this new TT.
2112 */
2113 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2114 struct xhci_virt_device *virt_dev,
2115 int old_active_eps)
2116 {
2117 struct xhci_interval_bw_table *bw_table;
2118 struct xhci_tt_bw_info *tt_info;
2119
2120 /* Find the bandwidth table for the root port this TT is attached to. */
2121 bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2122 tt_info = virt_dev->tt_info;
2123 /* If this TT already had active endpoints, the bandwidth for this TT
2124 * has already been added. Removing all periodic endpoints (and thus
2125 * making the TT enactive) will only decrease the bandwidth used.
2126 */
2127 if (old_active_eps)
2128 return 0;
2129 if (old_active_eps == 0 && tt_info->active_eps != 0) {
2130 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2131 return -ENOMEM;
2132 return 0;
2133 }
2134 /* Not sure why we would have no new active endpoints...
2135 *
2136 * Maybe because of an Evaluate Context change for a hub update or a
2137 * control endpoint 0 max packet size change?
2138 * FIXME: skip the bandwidth calculation in that case.
2139 */
2140 return 0;
2141 }
2142
2143 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2144 struct xhci_virt_device *virt_dev)
2145 {
2146 unsigned int bw_reserved;
2147
2148 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2149 if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2150 return -ENOMEM;
2151
2152 bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2153 if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2154 return -ENOMEM;
2155
2156 return 0;
2157 }
2158
2159 /*
2160 * This algorithm is a very conservative estimate of the worst-case scheduling
2161 * scenario for any one interval. The hardware dynamically schedules the
2162 * packets, so we can't tell which microframe could be the limiting factor in
2163 * the bandwidth scheduling. This only takes into account periodic endpoints.
2164 *
2165 * Obviously, we can't solve an NP complete problem to find the minimum worst
2166 * case scenario. Instead, we come up with an estimate that is no less than
2167 * the worst case bandwidth used for any one microframe, but may be an
2168 * over-estimate.
2169 *
2170 * We walk the requirements for each endpoint by interval, starting with the
2171 * smallest interval, and place packets in the schedule where there is only one
2172 * possible way to schedule packets for that interval. In order to simplify
2173 * this algorithm, we record the largest max packet size for each interval, and
2174 * assume all packets will be that size.
2175 *
2176 * For interval 0, we obviously must schedule all packets for each interval.
2177 * The bandwidth for interval 0 is just the amount of data to be transmitted
2178 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2179 * the number of packets).
2180 *
2181 * For interval 1, we have two possible microframes to schedule those packets
2182 * in. For this algorithm, if we can schedule the same number of packets for
2183 * each possible scheduling opportunity (each microframe), we will do so. The
2184 * remaining number of packets will be saved to be transmitted in the gaps in
2185 * the next interval's scheduling sequence.
2186 *
2187 * As we move those remaining packets to be scheduled with interval 2 packets,
2188 * we have to double the number of remaining packets to transmit. This is
2189 * because the intervals are actually powers of 2, and we would be transmitting
2190 * the previous interval's packets twice in this interval. We also have to be
2191 * sure that when we look at the largest max packet size for this interval, we
2192 * also look at the largest max packet size for the remaining packets and take
2193 * the greater of the two.
2194 *
2195 * The algorithm continues to evenly distribute packets in each scheduling
2196 * opportunity, and push the remaining packets out, until we get to the last
2197 * interval. Then those packets and their associated overhead are just added
2198 * to the bandwidth used.
2199 */
2200 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2201 struct xhci_virt_device *virt_dev,
2202 int old_active_eps)
2203 {
2204 unsigned int bw_reserved;
2205 unsigned int max_bandwidth;
2206 unsigned int bw_used;
2207 unsigned int block_size;
2208 struct xhci_interval_bw_table *bw_table;
2209 unsigned int packet_size = 0;
2210 unsigned int overhead = 0;
2211 unsigned int packets_transmitted = 0;
2212 unsigned int packets_remaining = 0;
2213 unsigned int i;
2214
2215 if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2216 return xhci_check_ss_bw(xhci, virt_dev);
2217
2218 if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2219 max_bandwidth = HS_BW_LIMIT;
2220 /* Convert percent of bus BW reserved to blocks reserved */
2221 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2222 } else {
2223 max_bandwidth = FS_BW_LIMIT;
2224 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2225 }
2226
2227 bw_table = virt_dev->bw_table;
2228 /* We need to translate the max packet size and max ESIT payloads into
2229 * the units the hardware uses.
2230 */
2231 block_size = xhci_get_block_size(virt_dev->udev);
2232
2233 /* If we are manipulating a LS/FS device under a HS hub, double check
2234 * that the HS bus has enough bandwidth if we are activing a new TT.
2235 */
2236 if (virt_dev->tt_info) {
2237 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2238 "Recalculating BW for rootport %u",
2239 virt_dev->real_port);
2240 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2241 xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2242 "newly activated TT.\n");
2243 return -ENOMEM;
2244 }
2245 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246 "Recalculating BW for TT slot %u port %u",
2247 virt_dev->tt_info->slot_id,
2248 virt_dev->tt_info->ttport);
2249 } else {
2250 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2251 "Recalculating BW for rootport %u",
2252 virt_dev->real_port);
2253 }
2254
2255 /* Add in how much bandwidth will be used for interval zero, or the
2256 * rounded max ESIT payload + number of packets * largest overhead.
2257 */
2258 bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2259 bw_table->interval_bw[0].num_packets *
2260 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2261
2262 for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2263 unsigned int bw_added;
2264 unsigned int largest_mps;
2265 unsigned int interval_overhead;
2266
2267 /*
2268 * How many packets could we transmit in this interval?
2269 * If packets didn't fit in the previous interval, we will need
2270 * to transmit that many packets twice within this interval.
2271 */
2272 packets_remaining = 2 * packets_remaining +
2273 bw_table->interval_bw[i].num_packets;
2274
2275 /* Find the largest max packet size of this or the previous
2276 * interval.
2277 */
2278 if (list_empty(&bw_table->interval_bw[i].endpoints))
2279 largest_mps = 0;
2280 else {
2281 struct xhci_virt_ep *virt_ep;
2282 struct list_head *ep_entry;
2283
2284 ep_entry = bw_table->interval_bw[i].endpoints.next;
2285 virt_ep = list_entry(ep_entry,
2286 struct xhci_virt_ep, bw_endpoint_list);
2287 /* Convert to blocks, rounding up */
2288 largest_mps = DIV_ROUND_UP(
2289 virt_ep->bw_info.max_packet_size,
2290 block_size);
2291 }
2292 if (largest_mps > packet_size)
2293 packet_size = largest_mps;
2294
2295 /* Use the larger overhead of this or the previous interval. */
2296 interval_overhead = xhci_get_largest_overhead(
2297 &bw_table->interval_bw[i]);
2298 if (interval_overhead > overhead)
2299 overhead = interval_overhead;
2300
2301 /* How many packets can we evenly distribute across
2302 * (1 << (i + 1)) possible scheduling opportunities?
2303 */
2304 packets_transmitted = packets_remaining >> (i + 1);
2305
2306 /* Add in the bandwidth used for those scheduled packets */
2307 bw_added = packets_transmitted * (overhead + packet_size);
2308
2309 /* How many packets do we have remaining to transmit? */
2310 packets_remaining = packets_remaining % (1 << (i + 1));
2311
2312 /* What largest max packet size should those packets have? */
2313 /* If we've transmitted all packets, don't carry over the
2314 * largest packet size.
2315 */
2316 if (packets_remaining == 0) {
2317 packet_size = 0;
2318 overhead = 0;
2319 } else if (packets_transmitted > 0) {
2320 /* Otherwise if we do have remaining packets, and we've
2321 * scheduled some packets in this interval, take the
2322 * largest max packet size from endpoints with this
2323 * interval.
2324 */
2325 packet_size = largest_mps;
2326 overhead = interval_overhead;
2327 }
2328 /* Otherwise carry over packet_size and overhead from the last
2329 * time we had a remainder.
2330 */
2331 bw_used += bw_added;
2332 if (bw_used > max_bandwidth) {
2333 xhci_warn(xhci, "Not enough bandwidth. "
2334 "Proposed: %u, Max: %u\n",
2335 bw_used, max_bandwidth);
2336 return -ENOMEM;
2337 }
2338 }
2339 /*
2340 * Ok, we know we have some packets left over after even-handedly
2341 * scheduling interval 15. We don't know which microframes they will
2342 * fit into, so we over-schedule and say they will be scheduled every
2343 * microframe.
2344 */
2345 if (packets_remaining > 0)
2346 bw_used += overhead + packet_size;
2347
2348 if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2349 unsigned int port_index = virt_dev->real_port - 1;
2350
2351 /* OK, we're manipulating a HS device attached to a
2352 * root port bandwidth domain. Include the number of active TTs
2353 * in the bandwidth used.
2354 */
2355 bw_used += TT_HS_OVERHEAD *
2356 xhci->rh_bw[port_index].num_active_tts;
2357 }
2358
2359 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2360 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2361 "Available: %u " "percent",
2362 bw_used, max_bandwidth, bw_reserved,
2363 (max_bandwidth - bw_used - bw_reserved) * 100 /
2364 max_bandwidth);
2365
2366 bw_used += bw_reserved;
2367 if (bw_used > max_bandwidth) {
2368 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2369 bw_used, max_bandwidth);
2370 return -ENOMEM;
2371 }
2372
2373 bw_table->bw_used = bw_used;
2374 return 0;
2375 }
2376
2377 static bool xhci_is_async_ep(unsigned int ep_type)
2378 {
2379 return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2380 ep_type != ISOC_IN_EP &&
2381 ep_type != INT_IN_EP);
2382 }
2383
2384 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2385 {
2386 return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2387 }
2388
2389 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2390 {
2391 unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2392
2393 if (ep_bw->ep_interval == 0)
2394 return SS_OVERHEAD_BURST +
2395 (ep_bw->mult * ep_bw->num_packets *
2396 (SS_OVERHEAD + mps));
2397 return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2398 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2399 1 << ep_bw->ep_interval);
2400
2401 }
2402
2403 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2404 struct xhci_bw_info *ep_bw,
2405 struct xhci_interval_bw_table *bw_table,
2406 struct usb_device *udev,
2407 struct xhci_virt_ep *virt_ep,
2408 struct xhci_tt_bw_info *tt_info)
2409 {
2410 struct xhci_interval_bw *interval_bw;
2411 int normalized_interval;
2412
2413 if (xhci_is_async_ep(ep_bw->type))
2414 return;
2415
2416 if (udev->speed >= USB_SPEED_SUPER) {
2417 if (xhci_is_sync_in_ep(ep_bw->type))
2418 xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2419 xhci_get_ss_bw_consumed(ep_bw);
2420 else
2421 xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2422 xhci_get_ss_bw_consumed(ep_bw);
2423 return;
2424 }
2425
2426 /* SuperSpeed endpoints never get added to intervals in the table, so
2427 * this check is only valid for HS/FS/LS devices.
2428 */
2429 if (list_empty(&virt_ep->bw_endpoint_list))
2430 return;
2431 /* For LS/FS devices, we need to translate the interval expressed in
2432 * microframes to frames.
2433 */
2434 if (udev->speed == USB_SPEED_HIGH)
2435 normalized_interval = ep_bw->ep_interval;
2436 else
2437 normalized_interval = ep_bw->ep_interval - 3;
2438
2439 if (normalized_interval == 0)
2440 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2441 interval_bw = &bw_table->interval_bw[normalized_interval];
2442 interval_bw->num_packets -= ep_bw->num_packets;
2443 switch (udev->speed) {
2444 case USB_SPEED_LOW:
2445 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2446 break;
2447 case USB_SPEED_FULL:
2448 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2449 break;
2450 case USB_SPEED_HIGH:
2451 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2452 break;
2453 case USB_SPEED_SUPER:
2454 case USB_SPEED_SUPER_PLUS:
2455 case USB_SPEED_UNKNOWN:
2456 case USB_SPEED_WIRELESS:
2457 /* Should never happen because only LS/FS/HS endpoints will get
2458 * added to the endpoint list.
2459 */
2460 return;
2461 }
2462 if (tt_info)
2463 tt_info->active_eps -= 1;
2464 list_del_init(&virt_ep->bw_endpoint_list);
2465 }
2466
2467 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2468 struct xhci_bw_info *ep_bw,
2469 struct xhci_interval_bw_table *bw_table,
2470 struct usb_device *udev,
2471 struct xhci_virt_ep *virt_ep,
2472 struct xhci_tt_bw_info *tt_info)
2473 {
2474 struct xhci_interval_bw *interval_bw;
2475 struct xhci_virt_ep *smaller_ep;
2476 int normalized_interval;
2477
2478 if (xhci_is_async_ep(ep_bw->type))
2479 return;
2480
2481 if (udev->speed == USB_SPEED_SUPER) {
2482 if (xhci_is_sync_in_ep(ep_bw->type))
2483 xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2484 xhci_get_ss_bw_consumed(ep_bw);
2485 else
2486 xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2487 xhci_get_ss_bw_consumed(ep_bw);
2488 return;
2489 }
2490
2491 /* For LS/FS devices, we need to translate the interval expressed in
2492 * microframes to frames.
2493 */
2494 if (udev->speed == USB_SPEED_HIGH)
2495 normalized_interval = ep_bw->ep_interval;
2496 else
2497 normalized_interval = ep_bw->ep_interval - 3;
2498
2499 if (normalized_interval == 0)
2500 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2501 interval_bw = &bw_table->interval_bw[normalized_interval];
2502 interval_bw->num_packets += ep_bw->num_packets;
2503 switch (udev->speed) {
2504 case USB_SPEED_LOW:
2505 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2506 break;
2507 case USB_SPEED_FULL:
2508 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2509 break;
2510 case USB_SPEED_HIGH:
2511 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2512 break;
2513 case USB_SPEED_SUPER:
2514 case USB_SPEED_SUPER_PLUS:
2515 case USB_SPEED_UNKNOWN:
2516 case USB_SPEED_WIRELESS:
2517 /* Should never happen because only LS/FS/HS endpoints will get
2518 * added to the endpoint list.
2519 */
2520 return;
2521 }
2522
2523 if (tt_info)
2524 tt_info->active_eps += 1;
2525 /* Insert the endpoint into the list, largest max packet size first. */
2526 list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2527 bw_endpoint_list) {
2528 if (ep_bw->max_packet_size >=
2529 smaller_ep->bw_info.max_packet_size) {
2530 /* Add the new ep before the smaller endpoint */
2531 list_add_tail(&virt_ep->bw_endpoint_list,
2532 &smaller_ep->bw_endpoint_list);
2533 return;
2534 }
2535 }
2536 /* Add the new endpoint at the end of the list. */
2537 list_add_tail(&virt_ep->bw_endpoint_list,
2538 &interval_bw->endpoints);
2539 }
2540
2541 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2542 struct xhci_virt_device *virt_dev,
2543 int old_active_eps)
2544 {
2545 struct xhci_root_port_bw_info *rh_bw_info;
2546 if (!virt_dev->tt_info)
2547 return;
2548
2549 rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2550 if (old_active_eps == 0 &&
2551 virt_dev->tt_info->active_eps != 0) {
2552 rh_bw_info->num_active_tts += 1;
2553 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2554 } else if (old_active_eps != 0 &&
2555 virt_dev->tt_info->active_eps == 0) {
2556 rh_bw_info->num_active_tts -= 1;
2557 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2558 }
2559 }
2560
2561 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2562 struct xhci_virt_device *virt_dev,
2563 struct xhci_container_ctx *in_ctx)
2564 {
2565 struct xhci_bw_info ep_bw_info[31];
2566 int i;
2567 struct xhci_input_control_ctx *ctrl_ctx;
2568 int old_active_eps = 0;
2569
2570 if (virt_dev->tt_info)
2571 old_active_eps = virt_dev->tt_info->active_eps;
2572
2573 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2574 if (!ctrl_ctx) {
2575 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2576 __func__);
2577 return -ENOMEM;
2578 }
2579
2580 for (i = 0; i < 31; i++) {
2581 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2582 continue;
2583
2584 /* Make a copy of the BW info in case we need to revert this */
2585 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2586 sizeof(ep_bw_info[i]));
2587 /* Drop the endpoint from the interval table if the endpoint is
2588 * being dropped or changed.
2589 */
2590 if (EP_IS_DROPPED(ctrl_ctx, i))
2591 xhci_drop_ep_from_interval_table(xhci,
2592 &virt_dev->eps[i].bw_info,
2593 virt_dev->bw_table,
2594 virt_dev->udev,
2595 &virt_dev->eps[i],
2596 virt_dev->tt_info);
2597 }
2598 /* Overwrite the information stored in the endpoints' bw_info */
2599 xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2600 for (i = 0; i < 31; i++) {
2601 /* Add any changed or added endpoints to the interval table */
2602 if (EP_IS_ADDED(ctrl_ctx, i))
2603 xhci_add_ep_to_interval_table(xhci,
2604 &virt_dev->eps[i].bw_info,
2605 virt_dev->bw_table,
2606 virt_dev->udev,
2607 &virt_dev->eps[i],
2608 virt_dev->tt_info);
2609 }
2610
2611 if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2612 /* Ok, this fits in the bandwidth we have.
2613 * Update the number of active TTs.
2614 */
2615 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2616 return 0;
2617 }
2618
2619 /* We don't have enough bandwidth for this, revert the stored info. */
2620 for (i = 0; i < 31; i++) {
2621 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2622 continue;
2623
2624 /* Drop the new copies of any added or changed endpoints from
2625 * the interval table.
2626 */
2627 if (EP_IS_ADDED(ctrl_ctx, i)) {
2628 xhci_drop_ep_from_interval_table(xhci,
2629 &virt_dev->eps[i].bw_info,
2630 virt_dev->bw_table,
2631 virt_dev->udev,
2632 &virt_dev->eps[i],
2633 virt_dev->tt_info);
2634 }
2635 /* Revert the endpoint back to its old information */
2636 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2637 sizeof(ep_bw_info[i]));
2638 /* Add any changed or dropped endpoints back into the table */
2639 if (EP_IS_DROPPED(ctrl_ctx, i))
2640 xhci_add_ep_to_interval_table(xhci,
2641 &virt_dev->eps[i].bw_info,
2642 virt_dev->bw_table,
2643 virt_dev->udev,
2644 &virt_dev->eps[i],
2645 virt_dev->tt_info);
2646 }
2647 return -ENOMEM;
2648 }
2649
2650
2651 /* Issue a configure endpoint command or evaluate context command
2652 * and wait for it to finish.
2653 */
2654 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2655 struct usb_device *udev,
2656 struct xhci_command *command,
2657 bool ctx_change, bool must_succeed)
2658 {
2659 int ret;
2660 unsigned long flags;
2661 struct xhci_input_control_ctx *ctrl_ctx;
2662 struct xhci_virt_device *virt_dev;
2663
2664 if (!command)
2665 return -EINVAL;
2666
2667 spin_lock_irqsave(&xhci->lock, flags);
2668 virt_dev = xhci->devs[udev->slot_id];
2669
2670 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2671 if (!ctrl_ctx) {
2672 spin_unlock_irqrestore(&xhci->lock, flags);
2673 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2674 __func__);
2675 return -ENOMEM;
2676 }
2677
2678 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2679 xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2680 spin_unlock_irqrestore(&xhci->lock, flags);
2681 xhci_warn(xhci, "Not enough host resources, "
2682 "active endpoint contexts = %u\n",
2683 xhci->num_active_eps);
2684 return -ENOMEM;
2685 }
2686 if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2687 xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2688 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2689 xhci_free_host_resources(xhci, ctrl_ctx);
2690 spin_unlock_irqrestore(&xhci->lock, flags);
2691 xhci_warn(xhci, "Not enough bandwidth\n");
2692 return -ENOMEM;
2693 }
2694
2695 if (!ctx_change)
2696 ret = xhci_queue_configure_endpoint(xhci, command,
2697 command->in_ctx->dma,
2698 udev->slot_id, must_succeed);
2699 else
2700 ret = xhci_queue_evaluate_context(xhci, command,
2701 command->in_ctx->dma,
2702 udev->slot_id, must_succeed);
2703 if (ret < 0) {
2704 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2705 xhci_free_host_resources(xhci, ctrl_ctx);
2706 spin_unlock_irqrestore(&xhci->lock, flags);
2707 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2708 "FIXME allocate a new ring segment");
2709 return -ENOMEM;
2710 }
2711 xhci_ring_cmd_db(xhci);
2712 spin_unlock_irqrestore(&xhci->lock, flags);
2713
2714 /* Wait for the configure endpoint command to complete */
2715 wait_for_completion(command->completion);
2716
2717 if (!ctx_change)
2718 ret = xhci_configure_endpoint_result(xhci, udev,
2719 &command->status);
2720 else
2721 ret = xhci_evaluate_context_result(xhci, udev,
2722 &command->status);
2723
2724 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2725 spin_lock_irqsave(&xhci->lock, flags);
2726 /* If the command failed, remove the reserved resources.
2727 * Otherwise, clean up the estimate to include dropped eps.
2728 */
2729 if (ret)
2730 xhci_free_host_resources(xhci, ctrl_ctx);
2731 else
2732 xhci_finish_resource_reservation(xhci, ctrl_ctx);
2733 spin_unlock_irqrestore(&xhci->lock, flags);
2734 }
2735 return ret;
2736 }
2737
2738 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2739 struct xhci_virt_device *vdev, int i)
2740 {
2741 struct xhci_virt_ep *ep = &vdev->eps[i];
2742
2743 if (ep->ep_state & EP_HAS_STREAMS) {
2744 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2745 xhci_get_endpoint_address(i));
2746 xhci_free_stream_info(xhci, ep->stream_info);
2747 ep->stream_info = NULL;
2748 ep->ep_state &= ~EP_HAS_STREAMS;
2749 }
2750 }
2751
2752 /* Called after one or more calls to xhci_add_endpoint() or
2753 * xhci_drop_endpoint(). If this call fails, the USB core is expected
2754 * to call xhci_reset_bandwidth().
2755 *
2756 * Since we are in the middle of changing either configuration or
2757 * installing a new alt setting, the USB core won't allow URBs to be
2758 * enqueued for any endpoint on the old config or interface. Nothing
2759 * else should be touching the xhci->devs[slot_id] structure, so we
2760 * don't need to take the xhci->lock for manipulating that.
2761 */
2762 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2763 {
2764 int i;
2765 int ret = 0;
2766 struct xhci_hcd *xhci;
2767 struct xhci_virt_device *virt_dev;
2768 struct xhci_input_control_ctx *ctrl_ctx;
2769 struct xhci_slot_ctx *slot_ctx;
2770 struct xhci_command *command;
2771
2772 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2773 if (ret <= 0)
2774 return ret;
2775 xhci = hcd_to_xhci(hcd);
2776 if (xhci->xhc_state & XHCI_STATE_DYING)
2777 return -ENODEV;
2778
2779 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2780 virt_dev = xhci->devs[udev->slot_id];
2781
2782 command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2783 if (!command)
2784 return -ENOMEM;
2785
2786 command->in_ctx = virt_dev->in_ctx;
2787
2788 /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2789 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2790 if (!ctrl_ctx) {
2791 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2792 __func__);
2793 ret = -ENOMEM;
2794 goto command_cleanup;
2795 }
2796 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2797 ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2798 ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2799
2800 /* Don't issue the command if there's no endpoints to update. */
2801 if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2802 ctrl_ctx->drop_flags == 0) {
2803 ret = 0;
2804 goto command_cleanup;
2805 }
2806 /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2807 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2808 for (i = 31; i >= 1; i--) {
2809 __le32 le32 = cpu_to_le32(BIT(i));
2810
2811 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2812 || (ctrl_ctx->add_flags & le32) || i == 1) {
2813 slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2814 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2815 break;
2816 }
2817 }
2818 xhci_dbg(xhci, "New Input Control Context:\n");
2819 xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2820 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2821
2822 ret = xhci_configure_endpoint(xhci, udev, command,
2823 false, false);
2824 if (ret)
2825 /* Callee should call reset_bandwidth() */
2826 goto command_cleanup;
2827
2828 xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2829 xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2830 LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2831
2832 /* Free any rings that were dropped, but not changed. */
2833 for (i = 1; i < 31; ++i) {
2834 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2835 !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2836 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2837 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2838 }
2839 }
2840 xhci_zero_in_ctx(xhci, virt_dev);
2841 /*
2842 * Install any rings for completely new endpoints or changed endpoints,
2843 * and free or cache any old rings from changed endpoints.
2844 */
2845 for (i = 1; i < 31; ++i) {
2846 if (!virt_dev->eps[i].new_ring)
2847 continue;
2848 /* Only cache or free the old ring if it exists.
2849 * It may not if this is the first add of an endpoint.
2850 */
2851 if (virt_dev->eps[i].ring) {
2852 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2853 }
2854 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2855 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2856 virt_dev->eps[i].new_ring = NULL;
2857 }
2858 command_cleanup:
2859 kfree(command->completion);
2860 kfree(command);
2861
2862 return ret;
2863 }
2864
2865 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2866 {
2867 struct xhci_hcd *xhci;
2868 struct xhci_virt_device *virt_dev;
2869 int i, ret;
2870
2871 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2872 if (ret <= 0)
2873 return;
2874 xhci = hcd_to_xhci(hcd);
2875
2876 xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2877 virt_dev = xhci->devs[udev->slot_id];
2878 /* Free any rings allocated for added endpoints */
2879 for (i = 0; i < 31; ++i) {
2880 if (virt_dev->eps[i].new_ring) {
2881 xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2882 virt_dev->eps[i].new_ring = NULL;
2883 }
2884 }
2885 xhci_zero_in_ctx(xhci, virt_dev);
2886 }
2887
2888 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2889 struct xhci_container_ctx *in_ctx,
2890 struct xhci_container_ctx *out_ctx,
2891 struct xhci_input_control_ctx *ctrl_ctx,
2892 u32 add_flags, u32 drop_flags)
2893 {
2894 ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2895 ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2896 xhci_slot_copy(xhci, in_ctx, out_ctx);
2897 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2898
2899 xhci_dbg(xhci, "Input Context:\n");
2900 xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2901 }
2902
2903 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2904 unsigned int slot_id, unsigned int ep_index,
2905 struct xhci_dequeue_state *deq_state)
2906 {
2907 struct xhci_input_control_ctx *ctrl_ctx;
2908 struct xhci_container_ctx *in_ctx;
2909 struct xhci_ep_ctx *ep_ctx;
2910 u32 added_ctxs;
2911 dma_addr_t addr;
2912
2913 in_ctx = xhci->devs[slot_id]->in_ctx;
2914 ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2915 if (!ctrl_ctx) {
2916 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2917 __func__);
2918 return;
2919 }
2920
2921 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2922 xhci->devs[slot_id]->out_ctx, ep_index);
2923 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2924 addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2925 deq_state->new_deq_ptr);
2926 if (addr == 0) {
2927 xhci_warn(xhci, "WARN Cannot submit config ep after "
2928 "reset ep command\n");
2929 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2930 deq_state->new_deq_seg,
2931 deq_state->new_deq_ptr);
2932 return;
2933 }
2934 ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2935
2936 added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2937 xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2938 xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2939 added_ctxs, added_ctxs);
2940 }
2941
2942 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2943 unsigned int ep_index, struct xhci_td *td)
2944 {
2945 struct xhci_dequeue_state deq_state;
2946 struct xhci_virt_ep *ep;
2947 struct usb_device *udev = td->urb->dev;
2948
2949 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2950 "Cleaning up stalled endpoint ring");
2951 ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2952 /* We need to move the HW's dequeue pointer past this TD,
2953 * or it will attempt to resend it on the next doorbell ring.
2954 */
2955 xhci_find_new_dequeue_state(xhci, udev->slot_id,
2956 ep_index, ep->stopped_stream, td, &deq_state);
2957
2958 if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2959 return;
2960
2961 /* HW with the reset endpoint quirk will use the saved dequeue state to
2962 * issue a configure endpoint command later.
2963 */
2964 if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2965 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2966 "Queueing new dequeue state");
2967 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2968 ep_index, ep->stopped_stream, &deq_state);
2969 } else {
2970 /* Better hope no one uses the input context between now and the
2971 * reset endpoint completion!
2972 * XXX: No idea how this hardware will react when stream rings
2973 * are enabled.
2974 */
2975 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2976 "Setting up input context for "
2977 "configure endpoint command");
2978 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2979 ep_index, &deq_state);
2980 }
2981 }
2982
2983 /* Called when clearing halted device. The core should have sent the control
2984 * message to clear the device halt condition. The host side of the halt should
2985 * already be cleared with a reset endpoint command issued when the STALL tx
2986 * event was received.
2987 *
2988 * Context: in_interrupt
2989 */
2990
2991 void xhci_endpoint_reset(struct usb_hcd *hcd,
2992 struct usb_host_endpoint *ep)
2993 {
2994 struct xhci_hcd *xhci;
2995
2996 xhci = hcd_to_xhci(hcd);
2997
2998 /*
2999 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3000 * The Reset Endpoint Command may only be issued to endpoints in the
3001 * Halted state. If software wishes reset the Data Toggle or Sequence
3002 * Number of an endpoint that isn't in the Halted state, then software
3003 * may issue a Configure Endpoint Command with the Drop and Add bits set
3004 * for the target endpoint. that is in the Stopped state.
3005 */
3006
3007 /* For now just print debug to follow the situation */
3008 xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3009 ep->desc.bEndpointAddress);
3010 }
3011
3012 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3013 struct usb_device *udev, struct usb_host_endpoint *ep,
3014 unsigned int slot_id)
3015 {
3016 int ret;
3017 unsigned int ep_index;
3018 unsigned int ep_state;
3019
3020 if (!ep)
3021 return -EINVAL;
3022 ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3023 if (ret <= 0)
3024 return -EINVAL;
3025 if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3026 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3027 " descriptor for ep 0x%x does not support streams\n",
3028 ep->desc.bEndpointAddress);
3029 return -EINVAL;
3030 }
3031
3032 ep_index = xhci_get_endpoint_index(&ep->desc);
3033 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3034 if (ep_state & EP_HAS_STREAMS ||
3035 ep_state & EP_GETTING_STREAMS) {
3036 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3037 "already has streams set up.\n",
3038 ep->desc.bEndpointAddress);
3039 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3040 "dynamic stream context array reallocation.\n");
3041 return -EINVAL;
3042 }
3043 if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3044 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3045 "endpoint 0x%x; URBs are pending.\n",
3046 ep->desc.bEndpointAddress);
3047 return -EINVAL;
3048 }
3049 return 0;
3050 }
3051
3052 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3053 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3054 {
3055 unsigned int max_streams;
3056
3057 /* The stream context array size must be a power of two */
3058 *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3059 /*
3060 * Find out how many primary stream array entries the host controller
3061 * supports. Later we may use secondary stream arrays (similar to 2nd
3062 * level page entries), but that's an optional feature for xHCI host
3063 * controllers. xHCs must support at least 4 stream IDs.
3064 */
3065 max_streams = HCC_MAX_PSA(xhci->hcc_params);
3066 if (*num_stream_ctxs > max_streams) {
3067 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3068 max_streams);
3069 *num_stream_ctxs = max_streams;
3070 *num_streams = max_streams;
3071 }
3072 }
3073
3074 /* Returns an error code if one of the endpoint already has streams.
3075 * This does not change any data structures, it only checks and gathers
3076 * information.
3077 */
3078 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3079 struct usb_device *udev,
3080 struct usb_host_endpoint **eps, unsigned int num_eps,
3081 unsigned int *num_streams, u32 *changed_ep_bitmask)
3082 {
3083 unsigned int max_streams;
3084 unsigned int endpoint_flag;
3085 int i;
3086 int ret;
3087
3088 for (i = 0; i < num_eps; i++) {
3089 ret = xhci_check_streams_endpoint(xhci, udev,
3090 eps[i], udev->slot_id);
3091 if (ret < 0)
3092 return ret;
3093
3094 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3095 if (max_streams < (*num_streams - 1)) {
3096 xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3097 eps[i]->desc.bEndpointAddress,
3098 max_streams);
3099 *num_streams = max_streams+1;
3100 }
3101
3102 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3103 if (*changed_ep_bitmask & endpoint_flag)
3104 return -EINVAL;
3105 *changed_ep_bitmask |= endpoint_flag;
3106 }
3107 return 0;
3108 }
3109
3110 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3111 struct usb_device *udev,
3112 struct usb_host_endpoint **eps, unsigned int num_eps)
3113 {
3114 u32 changed_ep_bitmask = 0;
3115 unsigned int slot_id;
3116 unsigned int ep_index;
3117 unsigned int ep_state;
3118 int i;
3119
3120 slot_id = udev->slot_id;
3121 if (!xhci->devs[slot_id])
3122 return 0;
3123
3124 for (i = 0; i < num_eps; i++) {
3125 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3126 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3127 /* Are streams already being freed for the endpoint? */
3128 if (ep_state & EP_GETTING_NO_STREAMS) {
3129 xhci_warn(xhci, "WARN Can't disable streams for "
3130 "endpoint 0x%x, "
3131 "streams are being disabled already\n",
3132 eps[i]->desc.bEndpointAddress);
3133 return 0;
3134 }
3135 /* Are there actually any streams to free? */
3136 if (!(ep_state & EP_HAS_STREAMS) &&
3137 !(ep_state & EP_GETTING_STREAMS)) {
3138 xhci_warn(xhci, "WARN Can't disable streams for "
3139 "endpoint 0x%x, "
3140 "streams are already disabled!\n",
3141 eps[i]->desc.bEndpointAddress);
3142 xhci_warn(xhci, "WARN xhci_free_streams() called "
3143 "with non-streams endpoint\n");
3144 return 0;
3145 }
3146 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3147 }
3148 return changed_ep_bitmask;
3149 }
3150
3151 /*
3152 * The USB device drivers use this function (through the HCD interface in USB
3153 * core) to prepare a set of bulk endpoints to use streams. Streams are used to
3154 * coordinate mass storage command queueing across multiple endpoints (basically
3155 * a stream ID == a task ID).
3156 *
3157 * Setting up streams involves allocating the same size stream context array
3158 * for each endpoint and issuing a configure endpoint command for all endpoints.
3159 *
3160 * Don't allow the call to succeed if one endpoint only supports one stream
3161 * (which means it doesn't support streams at all).
3162 *
3163 * Drivers may get less stream IDs than they asked for, if the host controller
3164 * hardware or endpoints claim they can't support the number of requested
3165 * stream IDs.
3166 */
3167 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3168 struct usb_host_endpoint **eps, unsigned int num_eps,
3169 unsigned int num_streams, gfp_t mem_flags)
3170 {
3171 int i, ret;
3172 struct xhci_hcd *xhci;
3173 struct xhci_virt_device *vdev;
3174 struct xhci_command *config_cmd;
3175 struct xhci_input_control_ctx *ctrl_ctx;
3176 unsigned int ep_index;
3177 unsigned int num_stream_ctxs;
3178 unsigned long flags;
3179 u32 changed_ep_bitmask = 0;
3180
3181 if (!eps)
3182 return -EINVAL;
3183
3184 /* Add one to the number of streams requested to account for
3185 * stream 0 that is reserved for xHCI usage.
3186 */
3187 num_streams += 1;
3188 xhci = hcd_to_xhci(hcd);
3189 xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3190 num_streams);
3191
3192 /* MaxPSASize value 0 (2 streams) means streams are not supported */
3193 if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3194 HCC_MAX_PSA(xhci->hcc_params) < 4) {
3195 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3196 return -ENOSYS;
3197 }
3198
3199 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3200 if (!config_cmd) {
3201 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3202 return -ENOMEM;
3203 }
3204 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3205 if (!ctrl_ctx) {
3206 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3207 __func__);
3208 xhci_free_command(xhci, config_cmd);
3209 return -ENOMEM;
3210 }
3211
3212 /* Check to make sure all endpoints are not already configured for
3213 * streams. While we're at it, find the maximum number of streams that
3214 * all the endpoints will support and check for duplicate endpoints.
3215 */
3216 spin_lock_irqsave(&xhci->lock, flags);
3217 ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3218 num_eps, &num_streams, &changed_ep_bitmask);
3219 if (ret < 0) {
3220 xhci_free_command(xhci, config_cmd);
3221 spin_unlock_irqrestore(&xhci->lock, flags);
3222 return ret;
3223 }
3224 if (num_streams <= 1) {
3225 xhci_warn(xhci, "WARN: endpoints can't handle "
3226 "more than one stream.\n");
3227 xhci_free_command(xhci, config_cmd);
3228 spin_unlock_irqrestore(&xhci->lock, flags);
3229 return -EINVAL;
3230 }
3231 vdev = xhci->devs[udev->slot_id];
3232 /* Mark each endpoint as being in transition, so
3233 * xhci_urb_enqueue() will reject all URBs.
3234 */
3235 for (i = 0; i < num_eps; i++) {
3236 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3237 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3238 }
3239 spin_unlock_irqrestore(&xhci->lock, flags);
3240
3241 /* Setup internal data structures and allocate HW data structures for
3242 * streams (but don't install the HW structures in the input context
3243 * until we're sure all memory allocation succeeded).
3244 */
3245 xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3246 xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3247 num_stream_ctxs, num_streams);
3248
3249 for (i = 0; i < num_eps; i++) {
3250 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3251 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3252 num_stream_ctxs,
3253 num_streams, mem_flags);
3254 if (!vdev->eps[ep_index].stream_info)
3255 goto cleanup;
3256 /* Set maxPstreams in endpoint context and update deq ptr to
3257 * point to stream context array. FIXME
3258 */
3259 }
3260
3261 /* Set up the input context for a configure endpoint command. */
3262 for (i = 0; i < num_eps; i++) {
3263 struct xhci_ep_ctx *ep_ctx;
3264
3265 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3266 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3267
3268 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3269 vdev->out_ctx, ep_index);
3270 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3271 vdev->eps[ep_index].stream_info);
3272 }
3273 /* Tell the HW to drop its old copy of the endpoint context info
3274 * and add the updated copy from the input context.
3275 */
3276 xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3277 vdev->out_ctx, ctrl_ctx,
3278 changed_ep_bitmask, changed_ep_bitmask);
3279
3280 /* Issue and wait for the configure endpoint command */
3281 ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3282 false, false);
3283
3284 /* xHC rejected the configure endpoint command for some reason, so we
3285 * leave the old ring intact and free our internal streams data
3286 * structure.
3287 */
3288 if (ret < 0)
3289 goto cleanup;
3290
3291 spin_lock_irqsave(&xhci->lock, flags);
3292 for (i = 0; i < num_eps; i++) {
3293 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3294 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3295 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3296 udev->slot_id, ep_index);
3297 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3298 }
3299 xhci_free_command(xhci, config_cmd);
3300 spin_unlock_irqrestore(&xhci->lock, flags);
3301
3302 /* Subtract 1 for stream 0, which drivers can't use */
3303 return num_streams - 1;
3304
3305 cleanup:
3306 /* If it didn't work, free the streams! */
3307 for (i = 0; i < num_eps; i++) {
3308 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3309 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3310 vdev->eps[ep_index].stream_info = NULL;
3311 /* FIXME Unset maxPstreams in endpoint context and
3312 * update deq ptr to point to normal string ring.
3313 */
3314 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3315 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3316 xhci_endpoint_zero(xhci, vdev, eps[i]);
3317 }
3318 xhci_free_command(xhci, config_cmd);
3319 return -ENOMEM;
3320 }
3321
3322 /* Transition the endpoint from using streams to being a "normal" endpoint
3323 * without streams.
3324 *
3325 * Modify the endpoint context state, submit a configure endpoint command,
3326 * and free all endpoint rings for streams if that completes successfully.
3327 */
3328 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3329 struct usb_host_endpoint **eps, unsigned int num_eps,
3330 gfp_t mem_flags)
3331 {
3332 int i, ret;
3333 struct xhci_hcd *xhci;
3334 struct xhci_virt_device *vdev;
3335 struct xhci_command *command;
3336 struct xhci_input_control_ctx *ctrl_ctx;
3337 unsigned int ep_index;
3338 unsigned long flags;
3339 u32 changed_ep_bitmask;
3340
3341 xhci = hcd_to_xhci(hcd);
3342 vdev = xhci->devs[udev->slot_id];
3343
3344 /* Set up a configure endpoint command to remove the streams rings */
3345 spin_lock_irqsave(&xhci->lock, flags);
3346 changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3347 udev, eps, num_eps);
3348 if (changed_ep_bitmask == 0) {
3349 spin_unlock_irqrestore(&xhci->lock, flags);
3350 return -EINVAL;
3351 }
3352
3353 /* Use the xhci_command structure from the first endpoint. We may have
3354 * allocated too many, but the driver may call xhci_free_streams() for
3355 * each endpoint it grouped into one call to xhci_alloc_streams().
3356 */
3357 ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3358 command = vdev->eps[ep_index].stream_info->free_streams_command;
3359 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3360 if (!ctrl_ctx) {
3361 spin_unlock_irqrestore(&xhci->lock, flags);
3362 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3363 __func__);
3364 return -EINVAL;
3365 }
3366
3367 for (i = 0; i < num_eps; i++) {
3368 struct xhci_ep_ctx *ep_ctx;
3369
3370 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3371 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3372 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3373 EP_GETTING_NO_STREAMS;
3374
3375 xhci_endpoint_copy(xhci, command->in_ctx,
3376 vdev->out_ctx, ep_index);
3377 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3378 &vdev->eps[ep_index]);
3379 }
3380 xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3381 vdev->out_ctx, ctrl_ctx,
3382 changed_ep_bitmask, changed_ep_bitmask);
3383 spin_unlock_irqrestore(&xhci->lock, flags);
3384
3385 /* Issue and wait for the configure endpoint command,
3386 * which must succeed.
3387 */
3388 ret = xhci_configure_endpoint(xhci, udev, command,
3389 false, true);
3390
3391 /* xHC rejected the configure endpoint command for some reason, so we
3392 * leave the streams rings intact.
3393 */
3394 if (ret < 0)
3395 return ret;
3396
3397 spin_lock_irqsave(&xhci->lock, flags);
3398 for (i = 0; i < num_eps; i++) {
3399 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3400 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3401 vdev->eps[ep_index].stream_info = NULL;
3402 /* FIXME Unset maxPstreams in endpoint context and
3403 * update deq ptr to point to normal string ring.
3404 */
3405 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3406 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3407 }
3408 spin_unlock_irqrestore(&xhci->lock, flags);
3409
3410 return 0;
3411 }
3412
3413 /*
3414 * Deletes endpoint resources for endpoints that were active before a Reset
3415 * Device command, or a Disable Slot command. The Reset Device command leaves
3416 * the control endpoint intact, whereas the Disable Slot command deletes it.
3417 *
3418 * Must be called with xhci->lock held.
3419 */
3420 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3421 struct xhci_virt_device *virt_dev, bool drop_control_ep)
3422 {
3423 int i;
3424 unsigned int num_dropped_eps = 0;
3425 unsigned int drop_flags = 0;
3426
3427 for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3428 if (virt_dev->eps[i].ring) {
3429 drop_flags |= 1 << i;
3430 num_dropped_eps++;
3431 }
3432 }
3433 xhci->num_active_eps -= num_dropped_eps;
3434 if (num_dropped_eps)
3435 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3436 "Dropped %u ep ctxs, flags = 0x%x, "
3437 "%u now active.",
3438 num_dropped_eps, drop_flags,
3439 xhci->num_active_eps);
3440 }
3441
3442 /*
3443 * This submits a Reset Device Command, which will set the device state to 0,
3444 * set the device address to 0, and disable all the endpoints except the default
3445 * control endpoint. The USB core should come back and call
3446 * xhci_address_device(), and then re-set up the configuration. If this is
3447 * called because of a usb_reset_and_verify_device(), then the old alternate
3448 * settings will be re-installed through the normal bandwidth allocation
3449 * functions.
3450 *
3451 * Wait for the Reset Device command to finish. Remove all structures
3452 * associated with the endpoints that were disabled. Clear the input device
3453 * structure? Cache the rings? Reset the control endpoint 0 max packet size?
3454 *
3455 * If the virt_dev to be reset does not exist or does not match the udev,
3456 * it means the device is lost, possibly due to the xHC restore error and
3457 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3458 * re-allocate the device.
3459 */
3460 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3461 {
3462 int ret, i;
3463 unsigned long flags;
3464 struct xhci_hcd *xhci;
3465 unsigned int slot_id;
3466 struct xhci_virt_device *virt_dev;
3467 struct xhci_command *reset_device_cmd;
3468 int last_freed_endpoint;
3469 struct xhci_slot_ctx *slot_ctx;
3470 int old_active_eps = 0;
3471
3472 ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3473 if (ret <= 0)
3474 return ret;
3475 xhci = hcd_to_xhci(hcd);
3476 slot_id = udev->slot_id;
3477 virt_dev = xhci->devs[slot_id];
3478 if (!virt_dev) {
3479 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3480 "not exist. Re-allocate the device\n", slot_id);
3481 ret = xhci_alloc_dev(hcd, udev);
3482 if (ret == 1)
3483 return 0;
3484 else
3485 return -EINVAL;
3486 }
3487
3488 if (virt_dev->tt_info)
3489 old_active_eps = virt_dev->tt_info->active_eps;
3490
3491 if (virt_dev->udev != udev) {
3492 /* If the virt_dev and the udev does not match, this virt_dev
3493 * may belong to another udev.
3494 * Re-allocate the device.
3495 */
3496 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3497 "not match the udev. Re-allocate the device\n",
3498 slot_id);
3499 ret = xhci_alloc_dev(hcd, udev);
3500 if (ret == 1)
3501 return 0;
3502 else
3503 return -EINVAL;
3504 }
3505
3506 /* If device is not setup, there is no point in resetting it */
3507 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3508 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3509 SLOT_STATE_DISABLED)
3510 return 0;
3511
3512 xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3513 /* Allocate the command structure that holds the struct completion.
3514 * Assume we're in process context, since the normal device reset
3515 * process has to wait for the device anyway. Storage devices are
3516 * reset as part of error handling, so use GFP_NOIO instead of
3517 * GFP_KERNEL.
3518 */
3519 reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3520 if (!reset_device_cmd) {
3521 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3522 return -ENOMEM;
3523 }
3524
3525 /* Attempt to submit the Reset Device command to the command ring */
3526 spin_lock_irqsave(&xhci->lock, flags);
3527
3528 ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3529 if (ret) {
3530 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3531 spin_unlock_irqrestore(&xhci->lock, flags);
3532 goto command_cleanup;
3533 }
3534 xhci_ring_cmd_db(xhci);
3535 spin_unlock_irqrestore(&xhci->lock, flags);
3536
3537 /* Wait for the Reset Device command to finish */
3538 wait_for_completion(reset_device_cmd->completion);
3539
3540 /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3541 * unless we tried to reset a slot ID that wasn't enabled,
3542 * or the device wasn't in the addressed or configured state.
3543 */
3544 ret = reset_device_cmd->status;
3545 switch (ret) {
3546 case COMP_CMD_ABORT:
3547 case COMP_CMD_STOP:
3548 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3549 ret = -ETIME;
3550 goto command_cleanup;
3551 case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3552 case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3553 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3554 slot_id,
3555 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3556 xhci_dbg(xhci, "Not freeing device rings.\n");
3557 /* Don't treat this as an error. May change my mind later. */
3558 ret = 0;
3559 goto command_cleanup;
3560 case COMP_SUCCESS:
3561 xhci_dbg(xhci, "Successful reset device command.\n");
3562 break;
3563 default:
3564 if (xhci_is_vendor_info_code(xhci, ret))
3565 break;
3566 xhci_warn(xhci, "Unknown completion code %u for "
3567 "reset device command.\n", ret);
3568 ret = -EINVAL;
3569 goto command_cleanup;
3570 }
3571
3572 /* Free up host controller endpoint resources */
3573 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3574 spin_lock_irqsave(&xhci->lock, flags);
3575 /* Don't delete the default control endpoint resources */
3576 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3577 spin_unlock_irqrestore(&xhci->lock, flags);
3578 }
3579
3580 /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3581 last_freed_endpoint = 1;
3582 for (i = 1; i < 31; ++i) {
3583 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3584
3585 if (ep->ep_state & EP_HAS_STREAMS) {
3586 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3587 xhci_get_endpoint_address(i));
3588 xhci_free_stream_info(xhci, ep->stream_info);
3589 ep->stream_info = NULL;
3590 ep->ep_state &= ~EP_HAS_STREAMS;
3591 }
3592
3593 if (ep->ring) {
3594 xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3595 last_freed_endpoint = i;
3596 }
3597 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3598 xhci_drop_ep_from_interval_table(xhci,
3599 &virt_dev->eps[i].bw_info,
3600 virt_dev->bw_table,
3601 udev,
3602 &virt_dev->eps[i],
3603 virt_dev->tt_info);
3604 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3605 }
3606 /* If necessary, update the number of active TTs on this root port */
3607 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3608
3609 xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3610 xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3611 ret = 0;
3612
3613 command_cleanup:
3614 xhci_free_command(xhci, reset_device_cmd);
3615 return ret;
3616 }
3617
3618 /*
3619 * At this point, the struct usb_device is about to go away, the device has
3620 * disconnected, and all traffic has been stopped and the endpoints have been
3621 * disabled. Free any HC data structures associated with that device.
3622 */
3623 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3624 {
3625 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3626 struct xhci_virt_device *virt_dev;
3627 unsigned long flags;
3628 u32 state;
3629 int i, ret;
3630 struct xhci_command *command;
3631
3632 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3633 if (!command)
3634 return;
3635
3636 #ifndef CONFIG_USB_DEFAULT_PERSIST
3637 /*
3638 * We called pm_runtime_get_noresume when the device was attached.
3639 * Decrement the counter here to allow controller to runtime suspend
3640 * if no devices remain.
3641 */
3642 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3643 pm_runtime_put_noidle(hcd->self.controller);
3644 #endif
3645
3646 ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3647 /* If the host is halted due to driver unload, we still need to free the
3648 * device.
3649 */
3650 if (ret <= 0 && ret != -ENODEV) {
3651 kfree(command);
3652 return;
3653 }
3654
3655 virt_dev = xhci->devs[udev->slot_id];
3656
3657 /* Stop any wayward timer functions (which may grab the lock) */
3658 for (i = 0; i < 31; ++i) {
3659 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3660 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3661 }
3662
3663 spin_lock_irqsave(&xhci->lock, flags);
3664 /* Don't disable the slot if the host controller is dead. */
3665 state = readl(&xhci->op_regs->status);
3666 if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3667 (xhci->xhc_state & XHCI_STATE_HALTED)) {
3668 xhci_free_virt_device(xhci, udev->slot_id);
3669 spin_unlock_irqrestore(&xhci->lock, flags);
3670 kfree(command);
3671 return;
3672 }
3673
3674 if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3675 udev->slot_id)) {
3676 spin_unlock_irqrestore(&xhci->lock, flags);
3677 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3678 return;
3679 }
3680 xhci_ring_cmd_db(xhci);
3681 spin_unlock_irqrestore(&xhci->lock, flags);
3682
3683 /*
3684 * Event command completion handler will free any data structures
3685 * associated with the slot. XXX Can free sleep?
3686 */
3687 }
3688
3689 /*
3690 * Checks if we have enough host controller resources for the default control
3691 * endpoint.
3692 *
3693 * Must be called with xhci->lock held.
3694 */
3695 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3696 {
3697 if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3698 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3699 "Not enough ep ctxs: "
3700 "%u active, need to add 1, limit is %u.",
3701 xhci->num_active_eps, xhci->limit_active_eps);
3702 return -ENOMEM;
3703 }
3704 xhci->num_active_eps += 1;
3705 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3706 "Adding 1 ep ctx, %u now active.",
3707 xhci->num_active_eps);
3708 return 0;
3709 }
3710
3711
3712 /*
3713 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3714 * timed out, or allocating memory failed. Returns 1 on success.
3715 */
3716 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3717 {
3718 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3719 unsigned long flags;
3720 int ret, slot_id;
3721 struct xhci_command *command;
3722
3723 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3724 if (!command)
3725 return 0;
3726
3727 /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3728 mutex_lock(&xhci->mutex);
3729 spin_lock_irqsave(&xhci->lock, flags);
3730 command->completion = &xhci->addr_dev;
3731 ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3732 if (ret) {
3733 spin_unlock_irqrestore(&xhci->lock, flags);
3734 mutex_unlock(&xhci->mutex);
3735 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3736 kfree(command);
3737 return 0;
3738 }
3739 xhci_ring_cmd_db(xhci);
3740 spin_unlock_irqrestore(&xhci->lock, flags);
3741
3742 wait_for_completion(command->completion);
3743 slot_id = xhci->slot_id;
3744 mutex_unlock(&xhci->mutex);
3745
3746 if (!slot_id || command->status != COMP_SUCCESS) {
3747 xhci_err(xhci, "Error while assigning device slot ID\n");
3748 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3749 HCS_MAX_SLOTS(
3750 readl(&xhci->cap_regs->hcs_params1)));
3751 kfree(command);
3752 return 0;
3753 }
3754
3755 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3756 spin_lock_irqsave(&xhci->lock, flags);
3757 ret = xhci_reserve_host_control_ep_resources(xhci);
3758 if (ret) {
3759 spin_unlock_irqrestore(&xhci->lock, flags);
3760 xhci_warn(xhci, "Not enough host resources, "
3761 "active endpoint contexts = %u\n",
3762 xhci->num_active_eps);
3763 goto disable_slot;
3764 }
3765 spin_unlock_irqrestore(&xhci->lock, flags);
3766 }
3767 /* Use GFP_NOIO, since this function can be called from
3768 * xhci_discover_or_reset_device(), which may be called as part of
3769 * mass storage driver error handling.
3770 */
3771 if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3772 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3773 goto disable_slot;
3774 }
3775 udev->slot_id = slot_id;
3776
3777 #ifndef CONFIG_USB_DEFAULT_PERSIST
3778 /*
3779 * If resetting upon resume, we can't put the controller into runtime
3780 * suspend if there is a device attached.
3781 */
3782 if (xhci->quirks & XHCI_RESET_ON_RESUME)
3783 pm_runtime_get_noresume(hcd->self.controller);
3784 #endif
3785
3786
3787 kfree(command);
3788 /* Is this a LS or FS device under a HS hub? */
3789 /* Hub or peripherial? */
3790 return 1;
3791
3792 disable_slot:
3793 /* Disable slot, if we can do it without mem alloc */
3794 spin_lock_irqsave(&xhci->lock, flags);
3795 command->completion = NULL;
3796 command->status = 0;
3797 if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3798 udev->slot_id))
3799 xhci_ring_cmd_db(xhci);
3800 spin_unlock_irqrestore(&xhci->lock, flags);
3801 return 0;
3802 }
3803
3804 /*
3805 * Issue an Address Device command and optionally send a corresponding
3806 * SetAddress request to the device.
3807 */
3808 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3809 enum xhci_setup_dev setup)
3810 {
3811 const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3812 unsigned long flags;
3813 struct xhci_virt_device *virt_dev;
3814 int ret = 0;
3815 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3816 struct xhci_slot_ctx *slot_ctx;
3817 struct xhci_input_control_ctx *ctrl_ctx;
3818 u64 temp_64;
3819 struct xhci_command *command = NULL;
3820
3821 mutex_lock(&xhci->mutex);
3822
3823 if (xhci->xhc_state) /* dying or halted */
3824 goto out;
3825
3826 if (!udev->slot_id) {
3827 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3828 "Bad Slot ID %d", udev->slot_id);
3829 ret = -EINVAL;
3830 goto out;
3831 }
3832
3833 virt_dev = xhci->devs[udev->slot_id];
3834
3835 if (WARN_ON(!virt_dev)) {
3836 /*
3837 * In plug/unplug torture test with an NEC controller,
3838 * a zero-dereference was observed once due to virt_dev = 0.
3839 * Print useful debug rather than crash if it is observed again!
3840 */
3841 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3842 udev->slot_id);
3843 ret = -EINVAL;
3844 goto out;
3845 }
3846
3847 if (setup == SETUP_CONTEXT_ONLY) {
3848 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3849 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3850 SLOT_STATE_DEFAULT) {
3851 xhci_dbg(xhci, "Slot already in default state\n");
3852 goto out;
3853 }
3854 }
3855
3856 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3857 if (!command) {
3858 ret = -ENOMEM;
3859 goto out;
3860 }
3861
3862 command->in_ctx = virt_dev->in_ctx;
3863 command->completion = &xhci->addr_dev;
3864
3865 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3866 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3867 if (!ctrl_ctx) {
3868 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3869 __func__);
3870 ret = -EINVAL;
3871 goto out;
3872 }
3873 /*
3874 * If this is the first Set Address since device plug-in or
3875 * virt_device realloaction after a resume with an xHCI power loss,
3876 * then set up the slot context.
3877 */
3878 if (!slot_ctx->dev_info)
3879 xhci_setup_addressable_virt_dev(xhci, udev);
3880 /* Otherwise, update the control endpoint ring enqueue pointer. */
3881 else
3882 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3883 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3884 ctrl_ctx->drop_flags = 0;
3885
3886 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3887 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3888 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3889 le32_to_cpu(slot_ctx->dev_info) >> 27);
3890
3891 spin_lock_irqsave(&xhci->lock, flags);
3892 ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3893 udev->slot_id, setup);
3894 if (ret) {
3895 spin_unlock_irqrestore(&xhci->lock, flags);
3896 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3897 "FIXME: allocate a command ring segment");
3898 goto out;
3899 }
3900 xhci_ring_cmd_db(xhci);
3901 spin_unlock_irqrestore(&xhci->lock, flags);
3902
3903 /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3904 wait_for_completion(command->completion);
3905
3906 /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3907 * the SetAddress() "recovery interval" required by USB and aborting the
3908 * command on a timeout.
3909 */
3910 switch (command->status) {
3911 case COMP_CMD_ABORT:
3912 case COMP_CMD_STOP:
3913 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3914 ret = -ETIME;
3915 break;
3916 case COMP_CTX_STATE:
3917 case COMP_EBADSLT:
3918 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3919 act, udev->slot_id);
3920 ret = -EINVAL;
3921 break;
3922 case COMP_TX_ERR:
3923 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3924 ret = -EPROTO;
3925 break;
3926 case COMP_DEV_ERR:
3927 dev_warn(&udev->dev,
3928 "ERROR: Incompatible device for setup %s command\n", act);
3929 ret = -ENODEV;
3930 break;
3931 case COMP_SUCCESS:
3932 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3933 "Successful setup %s command", act);
3934 break;
3935 default:
3936 xhci_err(xhci,
3937 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3938 act, command->status);
3939 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3940 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3941 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3942 ret = -EINVAL;
3943 break;
3944 }
3945 if (ret)
3946 goto out;
3947 temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3948 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3949 "Op regs DCBAA ptr = %#016llx", temp_64);
3950 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951 "Slot ID %d dcbaa entry @%p = %#016llx",
3952 udev->slot_id,
3953 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3954 (unsigned long long)
3955 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3956 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3957 "Output Context DMA address = %#08llx",
3958 (unsigned long long)virt_dev->out_ctx->dma);
3959 xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3960 xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3961 trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3962 le32_to_cpu(slot_ctx->dev_info) >> 27);
3963 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3964 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3965 /*
3966 * USB core uses address 1 for the roothubs, so we add one to the
3967 * address given back to us by the HC.
3968 */
3969 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3970 trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3971 le32_to_cpu(slot_ctx->dev_info) >> 27);
3972 /* Zero the input context control for later use */
3973 ctrl_ctx->add_flags = 0;
3974 ctrl_ctx->drop_flags = 0;
3975
3976 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3977 "Internal device address = %d",
3978 le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3979 out:
3980 mutex_unlock(&xhci->mutex);
3981 kfree(command);
3982 return ret;
3983 }
3984
3985 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3986 {
3987 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3988 }
3989
3990 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3991 {
3992 return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3993 }
3994
3995 /*
3996 * Transfer the port index into real index in the HW port status
3997 * registers. Caculate offset between the port's PORTSC register
3998 * and port status base. Divide the number of per port register
3999 * to get the real index. The raw port number bases 1.
4000 */
4001 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4002 {
4003 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4004 __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4005 __le32 __iomem *addr;
4006 int raw_port;
4007
4008 if (hcd->speed < HCD_USB3)
4009 addr = xhci->usb2_ports[port1 - 1];
4010 else
4011 addr = xhci->usb3_ports[port1 - 1];
4012
4013 raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4014 return raw_port;
4015 }
4016
4017 /*
4018 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4019 * slot context. If that succeeds, store the new MEL in the xhci_virt_device.
4020 */
4021 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4022 struct usb_device *udev, u16 max_exit_latency)
4023 {
4024 struct xhci_virt_device *virt_dev;
4025 struct xhci_command *command;
4026 struct xhci_input_control_ctx *ctrl_ctx;
4027 struct xhci_slot_ctx *slot_ctx;
4028 unsigned long flags;
4029 int ret;
4030
4031 spin_lock_irqsave(&xhci->lock, flags);
4032
4033 virt_dev = xhci->devs[udev->slot_id];
4034
4035 /*
4036 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4037 * xHC was re-initialized. Exit latency will be set later after
4038 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4039 */
4040
4041 if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4042 spin_unlock_irqrestore(&xhci->lock, flags);
4043 return 0;
4044 }
4045
4046 /* Attempt to issue an Evaluate Context command to change the MEL. */
4047 command = xhci->lpm_command;
4048 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4049 if (!ctrl_ctx) {
4050 spin_unlock_irqrestore(&xhci->lock, flags);
4051 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4052 __func__);
4053 return -ENOMEM;
4054 }
4055
4056 xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4057 spin_unlock_irqrestore(&xhci->lock, flags);
4058
4059 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4060 slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4061 slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4062 slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4063 slot_ctx->dev_state = 0;
4064
4065 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4066 "Set up evaluate context for LPM MEL change.");
4067 xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4068 xhci_dbg_ctx(xhci, command->in_ctx, 0);
4069
4070 /* Issue and wait for the evaluate context command. */
4071 ret = xhci_configure_endpoint(xhci, udev, command,
4072 true, true);
4073 xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4074 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4075
4076 if (!ret) {
4077 spin_lock_irqsave(&xhci->lock, flags);
4078 virt_dev->current_mel = max_exit_latency;
4079 spin_unlock_irqrestore(&xhci->lock, flags);
4080 }
4081 return ret;
4082 }
4083
4084 #ifdef CONFIG_PM
4085
4086 /* BESL to HIRD Encoding array for USB2 LPM */
4087 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4088 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4089
4090 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4091 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4092 struct usb_device *udev)
4093 {
4094 int u2del, besl, besl_host;
4095 int besl_device = 0;
4096 u32 field;
4097
4098 u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4099 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4100
4101 if (field & USB_BESL_SUPPORT) {
4102 for (besl_host = 0; besl_host < 16; besl_host++) {
4103 if (xhci_besl_encoding[besl_host] >= u2del)
4104 break;
4105 }
4106 /* Use baseline BESL value as default */
4107 if (field & USB_BESL_BASELINE_VALID)
4108 besl_device = USB_GET_BESL_BASELINE(field);
4109 else if (field & USB_BESL_DEEP_VALID)
4110 besl_device = USB_GET_BESL_DEEP(field);
4111 } else {
4112 if (u2del <= 50)
4113 besl_host = 0;
4114 else
4115 besl_host = (u2del - 51) / 75 + 1;
4116 }
4117
4118 besl = besl_host + besl_device;
4119 if (besl > 15)
4120 besl = 15;
4121
4122 return besl;
4123 }
4124
4125 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4126 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4127 {
4128 u32 field;
4129 int l1;
4130 int besld = 0;
4131 int hirdm = 0;
4132
4133 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4134
4135 /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4136 l1 = udev->l1_params.timeout / 256;
4137
4138 /* device has preferred BESLD */
4139 if (field & USB_BESL_DEEP_VALID) {
4140 besld = USB_GET_BESL_DEEP(field);
4141 hirdm = 1;
4142 }
4143
4144 return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4145 }
4146
4147 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4148 struct usb_device *udev, int enable)
4149 {
4150 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4151 __le32 __iomem **port_array;
4152 __le32 __iomem *pm_addr, *hlpm_addr;
4153 u32 pm_val, hlpm_val, field;
4154 unsigned int port_num;
4155 unsigned long flags;
4156 int hird, exit_latency;
4157 int ret;
4158
4159 if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4160 !udev->lpm_capable)
4161 return -EPERM;
4162
4163 if (!udev->parent || udev->parent->parent ||
4164 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4165 return -EPERM;
4166
4167 if (udev->usb2_hw_lpm_capable != 1)
4168 return -EPERM;
4169
4170 spin_lock_irqsave(&xhci->lock, flags);
4171
4172 port_array = xhci->usb2_ports;
4173 port_num = udev->portnum - 1;
4174 pm_addr = port_array[port_num] + PORTPMSC;
4175 pm_val = readl(pm_addr);
4176 hlpm_addr = port_array[port_num] + PORTHLPMC;
4177 field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4178
4179 xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4180 enable ? "enable" : "disable", port_num + 1);
4181
4182 if (enable) {
4183 /* Host supports BESL timeout instead of HIRD */
4184 if (udev->usb2_hw_lpm_besl_capable) {
4185 /* if device doesn't have a preferred BESL value use a
4186 * default one which works with mixed HIRD and BESL
4187 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4188 */
4189 if ((field & USB_BESL_SUPPORT) &&
4190 (field & USB_BESL_BASELINE_VALID))
4191 hird = USB_GET_BESL_BASELINE(field);
4192 else
4193 hird = udev->l1_params.besl;
4194
4195 exit_latency = xhci_besl_encoding[hird];
4196 spin_unlock_irqrestore(&xhci->lock, flags);
4197
4198 /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4199 * input context for link powermanagement evaluate
4200 * context commands. It is protected by hcd->bandwidth
4201 * mutex and is shared by all devices. We need to set
4202 * the max ext latency in USB 2 BESL LPM as well, so
4203 * use the same mutex and xhci_change_max_exit_latency()
4204 */
4205 mutex_lock(hcd->bandwidth_mutex);
4206 ret = xhci_change_max_exit_latency(xhci, udev,
4207 exit_latency);
4208 mutex_unlock(hcd->bandwidth_mutex);
4209
4210 if (ret < 0)
4211 return ret;
4212 spin_lock_irqsave(&xhci->lock, flags);
4213
4214 hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4215 writel(hlpm_val, hlpm_addr);
4216 /* flush write */
4217 readl(hlpm_addr);
4218 } else {
4219 hird = xhci_calculate_hird_besl(xhci, udev);
4220 }
4221
4222 pm_val &= ~PORT_HIRD_MASK;
4223 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4224 writel(pm_val, pm_addr);
4225 pm_val = readl(pm_addr);
4226 pm_val |= PORT_HLE;
4227 writel(pm_val, pm_addr);
4228 /* flush write */
4229 readl(pm_addr);
4230 } else {
4231 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4232 writel(pm_val, pm_addr);
4233 /* flush write */
4234 readl(pm_addr);
4235 if (udev->usb2_hw_lpm_besl_capable) {
4236 spin_unlock_irqrestore(&xhci->lock, flags);
4237 mutex_lock(hcd->bandwidth_mutex);
4238 xhci_change_max_exit_latency(xhci, udev, 0);
4239 mutex_unlock(hcd->bandwidth_mutex);
4240 return 0;
4241 }
4242 }
4243
4244 spin_unlock_irqrestore(&xhci->lock, flags);
4245 return 0;
4246 }
4247
4248 /* check if a usb2 port supports a given extened capability protocol
4249 * only USB2 ports extended protocol capability values are cached.
4250 * Return 1 if capability is supported
4251 */
4252 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4253 unsigned capability)
4254 {
4255 u32 port_offset, port_count;
4256 int i;
4257
4258 for (i = 0; i < xhci->num_ext_caps; i++) {
4259 if (xhci->ext_caps[i] & capability) {
4260 /* port offsets starts at 1 */
4261 port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4262 port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4263 if (port >= port_offset &&
4264 port < port_offset + port_count)
4265 return 1;
4266 }
4267 }
4268 return 0;
4269 }
4270
4271 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4272 {
4273 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4274 int portnum = udev->portnum - 1;
4275
4276 if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4277 !udev->lpm_capable)
4278 return 0;
4279
4280 /* we only support lpm for non-hub device connected to root hub yet */
4281 if (!udev->parent || udev->parent->parent ||
4282 udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4283 return 0;
4284
4285 if (xhci->hw_lpm_support == 1 &&
4286 xhci_check_usb2_port_capability(
4287 xhci, portnum, XHCI_HLC)) {
4288 udev->usb2_hw_lpm_capable = 1;
4289 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4290 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4291 if (xhci_check_usb2_port_capability(xhci, portnum,
4292 XHCI_BLC))
4293 udev->usb2_hw_lpm_besl_capable = 1;
4294 }
4295
4296 return 0;
4297 }
4298
4299 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4300
4301 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4302 static unsigned long long xhci_service_interval_to_ns(
4303 struct usb_endpoint_descriptor *desc)
4304 {
4305 return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4306 }
4307
4308 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4309 enum usb3_link_state state)
4310 {
4311 unsigned long long sel;
4312 unsigned long long pel;
4313 unsigned int max_sel_pel;
4314 char *state_name;
4315
4316 switch (state) {
4317 case USB3_LPM_U1:
4318 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4319 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4320 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4321 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4322 state_name = "U1";
4323 break;
4324 case USB3_LPM_U2:
4325 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4326 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4327 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4328 state_name = "U2";
4329 break;
4330 default:
4331 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4332 __func__);
4333 return USB3_LPM_DISABLED;
4334 }
4335
4336 if (sel <= max_sel_pel && pel <= max_sel_pel)
4337 return USB3_LPM_DEVICE_INITIATED;
4338
4339 if (sel > max_sel_pel)
4340 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4341 "due to long SEL %llu ms\n",
4342 state_name, sel);
4343 else
4344 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4345 "due to long PEL %llu ms\n",
4346 state_name, pel);
4347 return USB3_LPM_DISABLED;
4348 }
4349
4350 /* The U1 timeout should be the maximum of the following values:
4351 * - For control endpoints, U1 system exit latency (SEL) * 3
4352 * - For bulk endpoints, U1 SEL * 5
4353 * - For interrupt endpoints:
4354 * - Notification EPs, U1 SEL * 3
4355 * - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4356 * - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4357 */
4358 static unsigned long long xhci_calculate_intel_u1_timeout(
4359 struct usb_device *udev,
4360 struct usb_endpoint_descriptor *desc)
4361 {
4362 unsigned long long timeout_ns;
4363 int ep_type;
4364 int intr_type;
4365
4366 ep_type = usb_endpoint_type(desc);
4367 switch (ep_type) {
4368 case USB_ENDPOINT_XFER_CONTROL:
4369 timeout_ns = udev->u1_params.sel * 3;
4370 break;
4371 case USB_ENDPOINT_XFER_BULK:
4372 timeout_ns = udev->u1_params.sel * 5;
4373 break;
4374 case USB_ENDPOINT_XFER_INT:
4375 intr_type = usb_endpoint_interrupt_type(desc);
4376 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4377 timeout_ns = udev->u1_params.sel * 3;
4378 break;
4379 }
4380 /* Otherwise the calculation is the same as isoc eps */
4381 case USB_ENDPOINT_XFER_ISOC:
4382 timeout_ns = xhci_service_interval_to_ns(desc);
4383 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4384 if (timeout_ns < udev->u1_params.sel * 2)
4385 timeout_ns = udev->u1_params.sel * 2;
4386 break;
4387 default:
4388 return 0;
4389 }
4390
4391 return timeout_ns;
4392 }
4393
4394 /* Returns the hub-encoded U1 timeout value. */
4395 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4396 struct usb_device *udev,
4397 struct usb_endpoint_descriptor *desc)
4398 {
4399 unsigned long long timeout_ns;
4400
4401 if (xhci->quirks & XHCI_INTEL_HOST)
4402 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4403 else
4404 timeout_ns = udev->u1_params.sel;
4405
4406 /* The U1 timeout is encoded in 1us intervals.
4407 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4408 */
4409 if (timeout_ns == USB3_LPM_DISABLED)
4410 timeout_ns = 1;
4411 else
4412 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4413
4414 /* If the necessary timeout value is bigger than what we can set in the
4415 * USB 3.0 hub, we have to disable hub-initiated U1.
4416 */
4417 if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4418 return timeout_ns;
4419 dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4420 "due to long timeout %llu ms\n", timeout_ns);
4421 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4422 }
4423
4424 /* The U2 timeout should be the maximum of:
4425 * - 10 ms (to avoid the bandwidth impact on the scheduler)
4426 * - largest bInterval of any active periodic endpoint (to avoid going
4427 * into lower power link states between intervals).
4428 * - the U2 Exit Latency of the device
4429 */
4430 static unsigned long long xhci_calculate_intel_u2_timeout(
4431 struct usb_device *udev,
4432 struct usb_endpoint_descriptor *desc)
4433 {
4434 unsigned long long timeout_ns;
4435 unsigned long long u2_del_ns;
4436
4437 timeout_ns = 10 * 1000 * 1000;
4438
4439 if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4440 (xhci_service_interval_to_ns(desc) > timeout_ns))
4441 timeout_ns = xhci_service_interval_to_ns(desc);
4442
4443 u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4444 if (u2_del_ns > timeout_ns)
4445 timeout_ns = u2_del_ns;
4446
4447 return timeout_ns;
4448 }
4449
4450 /* Returns the hub-encoded U2 timeout value. */
4451 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4452 struct usb_device *udev,
4453 struct usb_endpoint_descriptor *desc)
4454 {
4455 unsigned long long timeout_ns;
4456
4457 if (xhci->quirks & XHCI_INTEL_HOST)
4458 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4459 else
4460 timeout_ns = udev->u2_params.sel;
4461
4462 /* The U2 timeout is encoded in 256us intervals */
4463 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4464 /* If the necessary timeout value is bigger than what we can set in the
4465 * USB 3.0 hub, we have to disable hub-initiated U2.
4466 */
4467 if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4468 return timeout_ns;
4469 dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4470 "due to long timeout %llu ms\n", timeout_ns);
4471 return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4472 }
4473
4474 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4475 struct usb_device *udev,
4476 struct usb_endpoint_descriptor *desc,
4477 enum usb3_link_state state,
4478 u16 *timeout)
4479 {
4480 if (state == USB3_LPM_U1)
4481 return xhci_calculate_u1_timeout(xhci, udev, desc);
4482 else if (state == USB3_LPM_U2)
4483 return xhci_calculate_u2_timeout(xhci, udev, desc);
4484
4485 return USB3_LPM_DISABLED;
4486 }
4487
4488 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4489 struct usb_device *udev,
4490 struct usb_endpoint_descriptor *desc,
4491 enum usb3_link_state state,
4492 u16 *timeout)
4493 {
4494 u16 alt_timeout;
4495
4496 alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4497 desc, state, timeout);
4498
4499 /* If we found we can't enable hub-initiated LPM, or
4500 * the U1 or U2 exit latency was too high to allow
4501 * device-initiated LPM as well, just stop searching.
4502 */
4503 if (alt_timeout == USB3_LPM_DISABLED ||
4504 alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4505 *timeout = alt_timeout;
4506 return -E2BIG;
4507 }
4508 if (alt_timeout > *timeout)
4509 *timeout = alt_timeout;
4510 return 0;
4511 }
4512
4513 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4514 struct usb_device *udev,
4515 struct usb_host_interface *alt,
4516 enum usb3_link_state state,
4517 u16 *timeout)
4518 {
4519 int j;
4520
4521 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4522 if (xhci_update_timeout_for_endpoint(xhci, udev,
4523 &alt->endpoint[j].desc, state, timeout))
4524 return -E2BIG;
4525 continue;
4526 }
4527 return 0;
4528 }
4529
4530 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4531 enum usb3_link_state state)
4532 {
4533 struct usb_device *parent;
4534 unsigned int num_hubs;
4535
4536 if (state == USB3_LPM_U2)
4537 return 0;
4538
4539 /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4540 for (parent = udev->parent, num_hubs = 0; parent->parent;
4541 parent = parent->parent)
4542 num_hubs++;
4543
4544 if (num_hubs < 2)
4545 return 0;
4546
4547 dev_dbg(&udev->dev, "Disabling U1 link state for device"
4548 " below second-tier hub.\n");
4549 dev_dbg(&udev->dev, "Plug device into first-tier hub "
4550 "to decrease power consumption.\n");
4551 return -E2BIG;
4552 }
4553
4554 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4555 struct usb_device *udev,
4556 enum usb3_link_state state)
4557 {
4558 if (xhci->quirks & XHCI_INTEL_HOST)
4559 return xhci_check_intel_tier_policy(udev, state);
4560 else
4561 return 0;
4562 }
4563
4564 /* Returns the U1 or U2 timeout that should be enabled.
4565 * If the tier check or timeout setting functions return with a non-zero exit
4566 * code, that means the timeout value has been finalized and we shouldn't look
4567 * at any more endpoints.
4568 */
4569 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4570 struct usb_device *udev, enum usb3_link_state state)
4571 {
4572 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4573 struct usb_host_config *config;
4574 char *state_name;
4575 int i;
4576 u16 timeout = USB3_LPM_DISABLED;
4577
4578 if (state == USB3_LPM_U1)
4579 state_name = "U1";
4580 else if (state == USB3_LPM_U2)
4581 state_name = "U2";
4582 else {
4583 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4584 state);
4585 return timeout;
4586 }
4587
4588 if (xhci_check_tier_policy(xhci, udev, state) < 0)
4589 return timeout;
4590
4591 /* Gather some information about the currently installed configuration
4592 * and alternate interface settings.
4593 */
4594 if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4595 state, &timeout))
4596 return timeout;
4597
4598 config = udev->actconfig;
4599 if (!config)
4600 return timeout;
4601
4602 for (i = 0; i < config->desc.bNumInterfaces; i++) {
4603 struct usb_driver *driver;
4604 struct usb_interface *intf = config->interface[i];
4605
4606 if (!intf)
4607 continue;
4608
4609 /* Check if any currently bound drivers want hub-initiated LPM
4610 * disabled.
4611 */
4612 if (intf->dev.driver) {
4613 driver = to_usb_driver(intf->dev.driver);
4614 if (driver && driver->disable_hub_initiated_lpm) {
4615 dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4616 "at request of driver %s\n",
4617 state_name, driver->name);
4618 return xhci_get_timeout_no_hub_lpm(udev, state);
4619 }
4620 }
4621
4622 /* Not sure how this could happen... */
4623 if (!intf->cur_altsetting)
4624 continue;
4625
4626 if (xhci_update_timeout_for_interface(xhci, udev,
4627 intf->cur_altsetting,
4628 state, &timeout))
4629 return timeout;
4630 }
4631 return timeout;
4632 }
4633
4634 static int calculate_max_exit_latency(struct usb_device *udev,
4635 enum usb3_link_state state_changed,
4636 u16 hub_encoded_timeout)
4637 {
4638 unsigned long long u1_mel_us = 0;
4639 unsigned long long u2_mel_us = 0;
4640 unsigned long long mel_us = 0;
4641 bool disabling_u1;
4642 bool disabling_u2;
4643 bool enabling_u1;
4644 bool enabling_u2;
4645
4646 disabling_u1 = (state_changed == USB3_LPM_U1 &&
4647 hub_encoded_timeout == USB3_LPM_DISABLED);
4648 disabling_u2 = (state_changed == USB3_LPM_U2 &&
4649 hub_encoded_timeout == USB3_LPM_DISABLED);
4650
4651 enabling_u1 = (state_changed == USB3_LPM_U1 &&
4652 hub_encoded_timeout != USB3_LPM_DISABLED);
4653 enabling_u2 = (state_changed == USB3_LPM_U2 &&
4654 hub_encoded_timeout != USB3_LPM_DISABLED);
4655
4656 /* If U1 was already enabled and we're not disabling it,
4657 * or we're going to enable U1, account for the U1 max exit latency.
4658 */
4659 if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4660 enabling_u1)
4661 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4662 if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4663 enabling_u2)
4664 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4665
4666 if (u1_mel_us > u2_mel_us)
4667 mel_us = u1_mel_us;
4668 else
4669 mel_us = u2_mel_us;
4670 /* xHCI host controller max exit latency field is only 16 bits wide. */
4671 if (mel_us > MAX_EXIT) {
4672 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4673 "is too big.\n", mel_us);
4674 return -E2BIG;
4675 }
4676 return mel_us;
4677 }
4678
4679 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4680 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4681 struct usb_device *udev, enum usb3_link_state state)
4682 {
4683 struct xhci_hcd *xhci;
4684 u16 hub_encoded_timeout;
4685 int mel;
4686 int ret;
4687
4688 xhci = hcd_to_xhci(hcd);
4689 /* The LPM timeout values are pretty host-controller specific, so don't
4690 * enable hub-initiated timeouts unless the vendor has provided
4691 * information about their timeout algorithm.
4692 */
4693 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4694 !xhci->devs[udev->slot_id])
4695 return USB3_LPM_DISABLED;
4696
4697 hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4698 mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4699 if (mel < 0) {
4700 /* Max Exit Latency is too big, disable LPM. */
4701 hub_encoded_timeout = USB3_LPM_DISABLED;
4702 mel = 0;
4703 }
4704
4705 ret = xhci_change_max_exit_latency(xhci, udev, mel);
4706 if (ret)
4707 return ret;
4708 return hub_encoded_timeout;
4709 }
4710
4711 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4712 struct usb_device *udev, enum usb3_link_state state)
4713 {
4714 struct xhci_hcd *xhci;
4715 u16 mel;
4716
4717 xhci = hcd_to_xhci(hcd);
4718 if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4719 !xhci->devs[udev->slot_id])
4720 return 0;
4721
4722 mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4723 return xhci_change_max_exit_latency(xhci, udev, mel);
4724 }
4725 #else /* CONFIG_PM */
4726
4727 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4728 struct usb_device *udev, int enable)
4729 {
4730 return 0;
4731 }
4732
4733 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4734 {
4735 return 0;
4736 }
4737
4738 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4739 struct usb_device *udev, enum usb3_link_state state)
4740 {
4741 return USB3_LPM_DISABLED;
4742 }
4743
4744 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4745 struct usb_device *udev, enum usb3_link_state state)
4746 {
4747 return 0;
4748 }
4749 #endif /* CONFIG_PM */
4750
4751 /*-------------------------------------------------------------------------*/
4752
4753 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4754 * internal data structures for the device.
4755 */
4756 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4757 struct usb_tt *tt, gfp_t mem_flags)
4758 {
4759 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4760 struct xhci_virt_device *vdev;
4761 struct xhci_command *config_cmd;
4762 struct xhci_input_control_ctx *ctrl_ctx;
4763 struct xhci_slot_ctx *slot_ctx;
4764 unsigned long flags;
4765 unsigned think_time;
4766 int ret;
4767
4768 /* Ignore root hubs */
4769 if (!hdev->parent)
4770 return 0;
4771
4772 vdev = xhci->devs[hdev->slot_id];
4773 if (!vdev) {
4774 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4775 return -EINVAL;
4776 }
4777 config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4778 if (!config_cmd) {
4779 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4780 return -ENOMEM;
4781 }
4782 ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4783 if (!ctrl_ctx) {
4784 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4785 __func__);
4786 xhci_free_command(xhci, config_cmd);
4787 return -ENOMEM;
4788 }
4789
4790 spin_lock_irqsave(&xhci->lock, flags);
4791 if (hdev->speed == USB_SPEED_HIGH &&
4792 xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4793 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4794 xhci_free_command(xhci, config_cmd);
4795 spin_unlock_irqrestore(&xhci->lock, flags);
4796 return -ENOMEM;
4797 }
4798
4799 xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4800 ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4801 slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4802 slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4803 /*
4804 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4805 * but it may be already set to 1 when setup an xHCI virtual
4806 * device, so clear it anyway.
4807 */
4808 if (tt->multi)
4809 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4810 else if (hdev->speed == USB_SPEED_FULL)
4811 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4812
4813 if (xhci->hci_version > 0x95) {
4814 xhci_dbg(xhci, "xHCI version %x needs hub "
4815 "TT think time and number of ports\n",
4816 (unsigned int) xhci->hci_version);
4817 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4818 /* Set TT think time - convert from ns to FS bit times.
4819 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4820 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4821 *
4822 * xHCI 1.0: this field shall be 0 if the device is not a
4823 * High-spped hub.
4824 */
4825 think_time = tt->think_time;
4826 if (think_time != 0)
4827 think_time = (think_time / 666) - 1;
4828 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4829 slot_ctx->tt_info |=
4830 cpu_to_le32(TT_THINK_TIME(think_time));
4831 } else {
4832 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4833 "TT think time or number of ports\n",
4834 (unsigned int) xhci->hci_version);
4835 }
4836 slot_ctx->dev_state = 0;
4837 spin_unlock_irqrestore(&xhci->lock, flags);
4838
4839 xhci_dbg(xhci, "Set up %s for hub device.\n",
4840 (xhci->hci_version > 0x95) ?
4841 "configure endpoint" : "evaluate context");
4842 xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4843 xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4844
4845 /* Issue and wait for the configure endpoint or
4846 * evaluate context command.
4847 */
4848 if (xhci->hci_version > 0x95)
4849 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4850 false, false);
4851 else
4852 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4853 true, false);
4854
4855 xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4856 xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4857
4858 xhci_free_command(xhci, config_cmd);
4859 return ret;
4860 }
4861
4862 int xhci_get_frame(struct usb_hcd *hcd)
4863 {
4864 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4865 /* EHCI mods by the periodic size. Why? */
4866 return readl(&xhci->run_regs->microframe_index) >> 3;
4867 }
4868
4869 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4870 {
4871 struct xhci_hcd *xhci;
4872 struct device *dev = hcd->self.controller;
4873 int retval;
4874
4875 /* Accept arbitrarily long scatter-gather lists */
4876 hcd->self.sg_tablesize = ~0;
4877
4878 /* support to build packet from discontinuous buffers */
4879 hcd->self.no_sg_constraint = 1;
4880
4881 /* XHCI controllers don't stop the ep queue on short packets :| */
4882 hcd->self.no_stop_on_short = 1;
4883
4884 xhci = hcd_to_xhci(hcd);
4885
4886 if (usb_hcd_is_primary_hcd(hcd)) {
4887 xhci->main_hcd = hcd;
4888 /* Mark the first roothub as being USB 2.0.
4889 * The xHCI driver will register the USB 3.0 roothub.
4890 */
4891 hcd->speed = HCD_USB2;
4892 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4893 /*
4894 * USB 2.0 roothub under xHCI has an integrated TT,
4895 * (rate matching hub) as opposed to having an OHCI/UHCI
4896 * companion controller.
4897 */
4898 hcd->has_tt = 1;
4899 } else {
4900 if (xhci->sbrn == 0x31) {
4901 xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4902 hcd->speed = HCD_USB31;
4903 hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4904 }
4905 /* xHCI private pointer was set in xhci_pci_probe for the second
4906 * registered roothub.
4907 */
4908 return 0;
4909 }
4910
4911 mutex_init(&xhci->mutex);
4912 xhci->cap_regs = hcd->regs;
4913 xhci->op_regs = hcd->regs +
4914 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4915 xhci->run_regs = hcd->regs +
4916 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4917 /* Cache read-only capability registers */
4918 xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4919 xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4920 xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4921 xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4922 xhci->hci_version = HC_VERSION(xhci->hcc_params);
4923 xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4924 if (xhci->hci_version > 0x100)
4925 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4926 xhci_print_registers(xhci);
4927
4928 xhci->quirks = quirks;
4929
4930 get_quirks(dev, xhci);
4931
4932 /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4933 * success event after a short transfer. This quirk will ignore such
4934 * spurious event.
4935 */
4936 if (xhci->hci_version > 0x96)
4937 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4938
4939 /* Make sure the HC is halted. */
4940 retval = xhci_halt(xhci);
4941 if (retval)
4942 return retval;
4943
4944 xhci_dbg(xhci, "Resetting HCD\n");
4945 /* Reset the internal HC memory state and registers. */
4946 retval = xhci_reset(xhci);
4947 if (retval)
4948 return retval;
4949 xhci_dbg(xhci, "Reset complete\n");
4950
4951 /* Set dma_mask and coherent_dma_mask to 64-bits,
4952 * if xHC supports 64-bit addressing */
4953 if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4954 !dma_set_mask(dev, DMA_BIT_MASK(64))) {
4955 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4956 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4957 } else {
4958 /*
4959 * This is to avoid error in cases where a 32-bit USB
4960 * controller is used on a 64-bit capable system.
4961 */
4962 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4963 if (retval)
4964 return retval;
4965 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4966 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4967 }
4968
4969 xhci_dbg(xhci, "Calling HCD init\n");
4970 /* Initialize HCD and host controller data structures. */
4971 retval = xhci_init(hcd);
4972 if (retval)
4973 return retval;
4974 xhci_dbg(xhci, "Called HCD init\n");
4975
4976 xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4977 xhci->hcc_params, xhci->hci_version, xhci->quirks);
4978
4979 return 0;
4980 }
4981 EXPORT_SYMBOL_GPL(xhci_gen_setup);
4982
4983 static const struct hc_driver xhci_hc_driver = {
4984 .description = "xhci-hcd",
4985 .product_desc = "xHCI Host Controller",
4986 .hcd_priv_size = sizeof(struct xhci_hcd),
4987
4988 /*
4989 * generic hardware linkage
4990 */
4991 .irq = xhci_irq,
4992 .flags = HCD_MEMORY | HCD_USB3 | HCD_SHARED,
4993
4994 /*
4995 * basic lifecycle operations
4996 */
4997 .reset = NULL, /* set in xhci_init_driver() */
4998 .start = xhci_run,
4999 .stop = xhci_stop,
5000 .shutdown = xhci_shutdown,
5001
5002 /*
5003 * managing i/o requests and associated device resources
5004 */
5005 .urb_enqueue = xhci_urb_enqueue,
5006 .urb_dequeue = xhci_urb_dequeue,
5007 .alloc_dev = xhci_alloc_dev,
5008 .free_dev = xhci_free_dev,
5009 .alloc_streams = xhci_alloc_streams,
5010 .free_streams = xhci_free_streams,
5011 .add_endpoint = xhci_add_endpoint,
5012 .drop_endpoint = xhci_drop_endpoint,
5013 .endpoint_reset = xhci_endpoint_reset,
5014 .check_bandwidth = xhci_check_bandwidth,
5015 .reset_bandwidth = xhci_reset_bandwidth,
5016 .address_device = xhci_address_device,
5017 .enable_device = xhci_enable_device,
5018 .update_hub_device = xhci_update_hub_device,
5019 .reset_device = xhci_discover_or_reset_device,
5020
5021 /*
5022 * scheduling support
5023 */
5024 .get_frame_number = xhci_get_frame,
5025
5026 /*
5027 * root hub support
5028 */
5029 .hub_control = xhci_hub_control,
5030 .hub_status_data = xhci_hub_status_data,
5031 .bus_suspend = xhci_bus_suspend,
5032 .bus_resume = xhci_bus_resume,
5033
5034 /*
5035 * call back when device connected and addressed
5036 */
5037 .update_device = xhci_update_device,
5038 .set_usb2_hw_lpm = xhci_set_usb2_hardware_lpm,
5039 .enable_usb3_lpm_timeout = xhci_enable_usb3_lpm_timeout,
5040 .disable_usb3_lpm_timeout = xhci_disable_usb3_lpm_timeout,
5041 .find_raw_port_number = xhci_find_raw_port_number,
5042 };
5043
5044 void xhci_init_driver(struct hc_driver *drv,
5045 const struct xhci_driver_overrides *over)
5046 {
5047 BUG_ON(!over);
5048
5049 /* Copy the generic table to drv then apply the overrides */
5050 *drv = xhci_hc_driver;
5051
5052 if (over) {
5053 drv->hcd_priv_size += over->extra_priv_size;
5054 if (over->reset)
5055 drv->reset = over->reset;
5056 if (over->start)
5057 drv->start = over->start;
5058 }
5059 }
5060 EXPORT_SYMBOL_GPL(xhci_init_driver);
5061
5062 MODULE_DESCRIPTION(DRIVER_DESC);
5063 MODULE_AUTHOR(DRIVER_AUTHOR);
5064 MODULE_LICENSE("GPL");
5065
5066 static int __init xhci_hcd_init(void)
5067 {
5068 /*
5069 * Check the compiler generated sizes of structures that must be laid
5070 * out in specific ways for hardware access.
5071 */
5072 BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5073 BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5074 BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5075 /* xhci_device_control has eight fields, and also
5076 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5077 */
5078 BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5079 BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5080 BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5081 BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5082 BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5083 /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5084 BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5085
5086 if (usb_disabled())
5087 return -ENODEV;
5088
5089 return 0;
5090 }
5091
5092 /*
5093 * If an init function is provided, an exit function must also be provided
5094 * to allow module unload.
5095 */
5096 static void __exit xhci_hcd_fini(void) { }
5097
5098 module_init(xhci_hcd_init);
5099 module_exit(xhci_hcd_fini);
This page took 0.158916 seconds and 5 git commands to generate.