0f59799fa1050fc6e061f0f7273850bbc1297a0a
[deliverable/linux.git] / fs / binfmt_elf.c
1 /*
2 * linux/fs/binfmt_elf.c
3 *
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7 * Tools".
8 *
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
39 #include <asm/page.h>
40
41 #ifndef user_long_t
42 #define user_long_t long
43 #endif
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
46 #endif
47
48 static int load_elf_binary(struct linux_binprm *bprm);
49 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
50 int, int, unsigned long);
51
52 #ifdef CONFIG_USELIB
53 static int load_elf_library(struct file *);
54 #else
55 #define load_elf_library NULL
56 #endif
57
58 /*
59 * If we don't support core dumping, then supply a NULL so we
60 * don't even try.
61 */
62 #ifdef CONFIG_ELF_CORE
63 static int elf_core_dump(struct coredump_params *cprm);
64 #else
65 #define elf_core_dump NULL
66 #endif
67
68 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
69 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
70 #else
71 #define ELF_MIN_ALIGN PAGE_SIZE
72 #endif
73
74 #ifndef ELF_CORE_EFLAGS
75 #define ELF_CORE_EFLAGS 0
76 #endif
77
78 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
79 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
80 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
81
82 static struct linux_binfmt elf_format = {
83 .module = THIS_MODULE,
84 .load_binary = load_elf_binary,
85 .load_shlib = load_elf_library,
86 .core_dump = elf_core_dump,
87 .min_coredump = ELF_EXEC_PAGESIZE,
88 };
89
90 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
91
92 static int set_brk(unsigned long start, unsigned long end)
93 {
94 start = ELF_PAGEALIGN(start);
95 end = ELF_PAGEALIGN(end);
96 if (end > start) {
97 unsigned long addr;
98 addr = vm_brk(start, end - start);
99 if (BAD_ADDR(addr))
100 return addr;
101 }
102 current->mm->start_brk = current->mm->brk = end;
103 return 0;
104 }
105
106 /* We need to explicitly zero any fractional pages
107 after the data section (i.e. bss). This would
108 contain the junk from the file that should not
109 be in memory
110 */
111 static int padzero(unsigned long elf_bss)
112 {
113 unsigned long nbyte;
114
115 nbyte = ELF_PAGEOFFSET(elf_bss);
116 if (nbyte) {
117 nbyte = ELF_MIN_ALIGN - nbyte;
118 if (clear_user((void __user *) elf_bss, nbyte))
119 return -EFAULT;
120 }
121 return 0;
122 }
123
124 /* Let's use some macros to make this stack manipulation a little clearer */
125 #ifdef CONFIG_STACK_GROWSUP
126 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
127 #define STACK_ROUND(sp, items) \
128 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
129 #define STACK_ALLOC(sp, len) ({ \
130 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
131 old_sp; })
132 #else
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
134 #define STACK_ROUND(sp, items) \
135 (((unsigned long) (sp - items)) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
137 #endif
138
139 #ifndef ELF_BASE_PLATFORM
140 /*
141 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
142 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
143 * will be copied to the user stack in the same manner as AT_PLATFORM.
144 */
145 #define ELF_BASE_PLATFORM NULL
146 #endif
147
148 static int
149 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
150 unsigned long load_addr, unsigned long interp_load_addr)
151 {
152 unsigned long p = bprm->p;
153 int argc = bprm->argc;
154 int envc = bprm->envc;
155 elf_addr_t __user *argv;
156 elf_addr_t __user *envp;
157 elf_addr_t __user *sp;
158 elf_addr_t __user *u_platform;
159 elf_addr_t __user *u_base_platform;
160 elf_addr_t __user *u_rand_bytes;
161 const char *k_platform = ELF_PLATFORM;
162 const char *k_base_platform = ELF_BASE_PLATFORM;
163 unsigned char k_rand_bytes[16];
164 int items;
165 elf_addr_t *elf_info;
166 int ei_index = 0;
167 const struct cred *cred = current_cred();
168 struct vm_area_struct *vma;
169
170 /*
171 * In some cases (e.g. Hyper-Threading), we want to avoid L1
172 * evictions by the processes running on the same package. One
173 * thing we can do is to shuffle the initial stack for them.
174 */
175
176 p = arch_align_stack(p);
177
178 /*
179 * If this architecture has a platform capability string, copy it
180 * to userspace. In some cases (Sparc), this info is impossible
181 * for userspace to get any other way, in others (i386) it is
182 * merely difficult.
183 */
184 u_platform = NULL;
185 if (k_platform) {
186 size_t len = strlen(k_platform) + 1;
187
188 u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
189 if (__copy_to_user(u_platform, k_platform, len))
190 return -EFAULT;
191 }
192
193 /*
194 * If this architecture has a "base" platform capability
195 * string, copy it to userspace.
196 */
197 u_base_platform = NULL;
198 if (k_base_platform) {
199 size_t len = strlen(k_base_platform) + 1;
200
201 u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
202 if (__copy_to_user(u_base_platform, k_base_platform, len))
203 return -EFAULT;
204 }
205
206 /*
207 * Generate 16 random bytes for userspace PRNG seeding.
208 */
209 get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
210 u_rand_bytes = (elf_addr_t __user *)
211 STACK_ALLOC(p, sizeof(k_rand_bytes));
212 if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
213 return -EFAULT;
214
215 /* Create the ELF interpreter info */
216 elf_info = (elf_addr_t *)current->mm->saved_auxv;
217 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
218 #define NEW_AUX_ENT(id, val) \
219 do { \
220 elf_info[ei_index++] = id; \
221 elf_info[ei_index++] = val; \
222 } while (0)
223
224 #ifdef ARCH_DLINFO
225 /*
226 * ARCH_DLINFO must come first so PPC can do its special alignment of
227 * AUXV.
228 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
229 * ARCH_DLINFO changes
230 */
231 ARCH_DLINFO;
232 #endif
233 NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
234 NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
235 NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
236 NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
237 NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
238 NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
239 NEW_AUX_ENT(AT_BASE, interp_load_addr);
240 NEW_AUX_ENT(AT_FLAGS, 0);
241 NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
242 NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
243 NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
244 NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
245 NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
246 NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
247 NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
248 #ifdef ELF_HWCAP2
249 NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
250 #endif
251 NEW_AUX_ENT(AT_EXECFN, bprm->exec);
252 if (k_platform) {
253 NEW_AUX_ENT(AT_PLATFORM,
254 (elf_addr_t)(unsigned long)u_platform);
255 }
256 if (k_base_platform) {
257 NEW_AUX_ENT(AT_BASE_PLATFORM,
258 (elf_addr_t)(unsigned long)u_base_platform);
259 }
260 if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
261 NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
262 }
263 #undef NEW_AUX_ENT
264 /* AT_NULL is zero; clear the rest too */
265 memset(&elf_info[ei_index], 0,
266 sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
267
268 /* And advance past the AT_NULL entry. */
269 ei_index += 2;
270
271 sp = STACK_ADD(p, ei_index);
272
273 items = (argc + 1) + (envc + 1) + 1;
274 bprm->p = STACK_ROUND(sp, items);
275
276 /* Point sp at the lowest address on the stack */
277 #ifdef CONFIG_STACK_GROWSUP
278 sp = (elf_addr_t __user *)bprm->p - items - ei_index;
279 bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
280 #else
281 sp = (elf_addr_t __user *)bprm->p;
282 #endif
283
284
285 /*
286 * Grow the stack manually; some architectures have a limit on how
287 * far ahead a user-space access may be in order to grow the stack.
288 */
289 vma = find_extend_vma(current->mm, bprm->p);
290 if (!vma)
291 return -EFAULT;
292
293 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
294 if (__put_user(argc, sp++))
295 return -EFAULT;
296 argv = sp;
297 envp = argv + argc + 1;
298
299 /* Populate argv and envp */
300 p = current->mm->arg_end = current->mm->arg_start;
301 while (argc-- > 0) {
302 size_t len;
303 if (__put_user((elf_addr_t)p, argv++))
304 return -EFAULT;
305 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
306 if (!len || len > MAX_ARG_STRLEN)
307 return -EINVAL;
308 p += len;
309 }
310 if (__put_user(0, argv))
311 return -EFAULT;
312 current->mm->arg_end = current->mm->env_start = p;
313 while (envc-- > 0) {
314 size_t len;
315 if (__put_user((elf_addr_t)p, envp++))
316 return -EFAULT;
317 len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 if (!len || len > MAX_ARG_STRLEN)
319 return -EINVAL;
320 p += len;
321 }
322 if (__put_user(0, envp))
323 return -EFAULT;
324 current->mm->env_end = p;
325
326 /* Put the elf_info on the stack in the right place. */
327 sp = (elf_addr_t __user *)envp + 1;
328 if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
329 return -EFAULT;
330 return 0;
331 }
332
333 #ifndef elf_map
334
335 static unsigned long elf_map(struct file *filep, unsigned long addr,
336 struct elf_phdr *eppnt, int prot, int type,
337 unsigned long total_size)
338 {
339 unsigned long map_addr;
340 unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
341 unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
342 addr = ELF_PAGESTART(addr);
343 size = ELF_PAGEALIGN(size);
344
345 /* mmap() will return -EINVAL if given a zero size, but a
346 * segment with zero filesize is perfectly valid */
347 if (!size)
348 return addr;
349
350 /*
351 * total_size is the size of the ELF (interpreter) image.
352 * The _first_ mmap needs to know the full size, otherwise
353 * randomization might put this image into an overlapping
354 * position with the ELF binary image. (since size < total_size)
355 * So we first map the 'big' image - and unmap the remainder at
356 * the end. (which unmap is needed for ELF images with holes.)
357 */
358 if (total_size) {
359 total_size = ELF_PAGEALIGN(total_size);
360 map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
361 if (!BAD_ADDR(map_addr))
362 vm_munmap(map_addr+size, total_size-size);
363 } else
364 map_addr = vm_mmap(filep, addr, size, prot, type, off);
365
366 return(map_addr);
367 }
368
369 #endif /* !elf_map */
370
371 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
372 {
373 int i, first_idx = -1, last_idx = -1;
374
375 for (i = 0; i < nr; i++) {
376 if (cmds[i].p_type == PT_LOAD) {
377 last_idx = i;
378 if (first_idx == -1)
379 first_idx = i;
380 }
381 }
382 if (first_idx == -1)
383 return 0;
384
385 return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
386 ELF_PAGESTART(cmds[first_idx].p_vaddr);
387 }
388
389
390 /* This is much more generalized than the library routine read function,
391 so we keep this separate. Technically the library read function
392 is only provided so that we can read a.out libraries that have
393 an ELF header */
394
395 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
396 struct file *interpreter, unsigned long *interp_map_addr,
397 unsigned long no_base)
398 {
399 struct elf_phdr *elf_phdata;
400 struct elf_phdr *eppnt;
401 unsigned long load_addr = 0;
402 int load_addr_set = 0;
403 unsigned long last_bss = 0, elf_bss = 0;
404 unsigned long error = ~0UL;
405 unsigned long total_size;
406 int retval, i, size;
407
408 /* First of all, some simple consistency checks */
409 if (interp_elf_ex->e_type != ET_EXEC &&
410 interp_elf_ex->e_type != ET_DYN)
411 goto out;
412 if (!elf_check_arch(interp_elf_ex))
413 goto out;
414 if (!interpreter->f_op->mmap)
415 goto out;
416
417 /*
418 * If the size of this structure has changed, then punt, since
419 * we will be doing the wrong thing.
420 */
421 if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr))
422 goto out;
423 if (interp_elf_ex->e_phnum < 1 ||
424 interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
425 goto out;
426
427 /* Now read in all of the header information */
428 size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum;
429 if (size > ELF_MIN_ALIGN)
430 goto out;
431 elf_phdata = kmalloc(size, GFP_KERNEL);
432 if (!elf_phdata)
433 goto out;
434
435 retval = kernel_read(interpreter, interp_elf_ex->e_phoff,
436 (char *)elf_phdata, size);
437 error = -EIO;
438 if (retval != size) {
439 if (retval < 0)
440 error = retval;
441 goto out_close;
442 }
443
444 total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum);
445 if (!total_size) {
446 error = -EINVAL;
447 goto out_close;
448 }
449
450 eppnt = elf_phdata;
451 for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
452 if (eppnt->p_type == PT_LOAD) {
453 int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
454 int elf_prot = 0;
455 unsigned long vaddr = 0;
456 unsigned long k, map_addr;
457
458 if (eppnt->p_flags & PF_R)
459 elf_prot = PROT_READ;
460 if (eppnt->p_flags & PF_W)
461 elf_prot |= PROT_WRITE;
462 if (eppnt->p_flags & PF_X)
463 elf_prot |= PROT_EXEC;
464 vaddr = eppnt->p_vaddr;
465 if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
466 elf_type |= MAP_FIXED;
467 else if (no_base && interp_elf_ex->e_type == ET_DYN)
468 load_addr = -vaddr;
469
470 map_addr = elf_map(interpreter, load_addr + vaddr,
471 eppnt, elf_prot, elf_type, total_size);
472 total_size = 0;
473 if (!*interp_map_addr)
474 *interp_map_addr = map_addr;
475 error = map_addr;
476 if (BAD_ADDR(map_addr))
477 goto out_close;
478
479 if (!load_addr_set &&
480 interp_elf_ex->e_type == ET_DYN) {
481 load_addr = map_addr - ELF_PAGESTART(vaddr);
482 load_addr_set = 1;
483 }
484
485 /*
486 * Check to see if the section's size will overflow the
487 * allowed task size. Note that p_filesz must always be
488 * <= p_memsize so it's only necessary to check p_memsz.
489 */
490 k = load_addr + eppnt->p_vaddr;
491 if (BAD_ADDR(k) ||
492 eppnt->p_filesz > eppnt->p_memsz ||
493 eppnt->p_memsz > TASK_SIZE ||
494 TASK_SIZE - eppnt->p_memsz < k) {
495 error = -ENOMEM;
496 goto out_close;
497 }
498
499 /*
500 * Find the end of the file mapping for this phdr, and
501 * keep track of the largest address we see for this.
502 */
503 k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
504 if (k > elf_bss)
505 elf_bss = k;
506
507 /*
508 * Do the same thing for the memory mapping - between
509 * elf_bss and last_bss is the bss section.
510 */
511 k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
512 if (k > last_bss)
513 last_bss = k;
514 }
515 }
516
517 if (last_bss > elf_bss) {
518 /*
519 * Now fill out the bss section. First pad the last page up
520 * to the page boundary, and then perform a mmap to make sure
521 * that there are zero-mapped pages up to and including the
522 * last bss page.
523 */
524 if (padzero(elf_bss)) {
525 error = -EFAULT;
526 goto out_close;
527 }
528
529 /* What we have mapped so far */
530 elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1);
531
532 /* Map the last of the bss segment */
533 error = vm_brk(elf_bss, last_bss - elf_bss);
534 if (BAD_ADDR(error))
535 goto out_close;
536 }
537
538 error = load_addr;
539
540 out_close:
541 kfree(elf_phdata);
542 out:
543 return error;
544 }
545
546 /*
547 * These are the functions used to load ELF style executables and shared
548 * libraries. There is no binary dependent code anywhere else.
549 */
550
551 #ifndef STACK_RND_MASK
552 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
553 #endif
554
555 static unsigned long randomize_stack_top(unsigned long stack_top)
556 {
557 unsigned int random_variable = 0;
558
559 if ((current->flags & PF_RANDOMIZE) &&
560 !(current->personality & ADDR_NO_RANDOMIZE)) {
561 random_variable = get_random_int() & STACK_RND_MASK;
562 random_variable <<= PAGE_SHIFT;
563 }
564 #ifdef CONFIG_STACK_GROWSUP
565 return PAGE_ALIGN(stack_top) + random_variable;
566 #else
567 return PAGE_ALIGN(stack_top) - random_variable;
568 #endif
569 }
570
571 static int load_elf_binary(struct linux_binprm *bprm)
572 {
573 struct file *interpreter = NULL; /* to shut gcc up */
574 unsigned long load_addr = 0, load_bias = 0;
575 int load_addr_set = 0;
576 char * elf_interpreter = NULL;
577 unsigned long error;
578 struct elf_phdr *elf_ppnt, *elf_phdata;
579 unsigned long elf_bss, elf_brk;
580 int retval, i;
581 unsigned int size;
582 unsigned long elf_entry;
583 unsigned long interp_load_addr = 0;
584 unsigned long start_code, end_code, start_data, end_data;
585 unsigned long reloc_func_desc __maybe_unused = 0;
586 int executable_stack = EXSTACK_DEFAULT;
587 unsigned long def_flags = 0;
588 struct pt_regs *regs = current_pt_regs();
589 struct {
590 struct elfhdr elf_ex;
591 struct elfhdr interp_elf_ex;
592 } *loc;
593
594 loc = kmalloc(sizeof(*loc), GFP_KERNEL);
595 if (!loc) {
596 retval = -ENOMEM;
597 goto out_ret;
598 }
599
600 /* Get the exec-header */
601 loc->elf_ex = *((struct elfhdr *)bprm->buf);
602
603 retval = -ENOEXEC;
604 /* First of all, some simple consistency checks */
605 if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
606 goto out;
607
608 if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
609 goto out;
610 if (!elf_check_arch(&loc->elf_ex))
611 goto out;
612 if (!bprm->file->f_op->mmap)
613 goto out;
614
615 /* Now read in all of the header information */
616 if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr))
617 goto out;
618 if (loc->elf_ex.e_phnum < 1 ||
619 loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr))
620 goto out;
621 size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr);
622 retval = -ENOMEM;
623 elf_phdata = kmalloc(size, GFP_KERNEL);
624 if (!elf_phdata)
625 goto out;
626
627 retval = kernel_read(bprm->file, loc->elf_ex.e_phoff,
628 (char *)elf_phdata, size);
629 if (retval != size) {
630 if (retval >= 0)
631 retval = -EIO;
632 goto out_free_ph;
633 }
634
635 elf_ppnt = elf_phdata;
636 elf_bss = 0;
637 elf_brk = 0;
638
639 start_code = ~0UL;
640 end_code = 0;
641 start_data = 0;
642 end_data = 0;
643
644 for (i = 0; i < loc->elf_ex.e_phnum; i++) {
645 if (elf_ppnt->p_type == PT_INTERP) {
646 /* This is the program interpreter used for
647 * shared libraries - for now assume that this
648 * is an a.out format binary
649 */
650 retval = -ENOEXEC;
651 if (elf_ppnt->p_filesz > PATH_MAX ||
652 elf_ppnt->p_filesz < 2)
653 goto out_free_ph;
654
655 retval = -ENOMEM;
656 elf_interpreter = kmalloc(elf_ppnt->p_filesz,
657 GFP_KERNEL);
658 if (!elf_interpreter)
659 goto out_free_ph;
660
661 retval = kernel_read(bprm->file, elf_ppnt->p_offset,
662 elf_interpreter,
663 elf_ppnt->p_filesz);
664 if (retval != elf_ppnt->p_filesz) {
665 if (retval >= 0)
666 retval = -EIO;
667 goto out_free_interp;
668 }
669 /* make sure path is NULL terminated */
670 retval = -ENOEXEC;
671 if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
672 goto out_free_interp;
673
674 interpreter = open_exec(elf_interpreter);
675 retval = PTR_ERR(interpreter);
676 if (IS_ERR(interpreter))
677 goto out_free_interp;
678
679 /*
680 * If the binary is not readable then enforce
681 * mm->dumpable = 0 regardless of the interpreter's
682 * permissions.
683 */
684 would_dump(bprm, interpreter);
685
686 retval = kernel_read(interpreter, 0, bprm->buf,
687 BINPRM_BUF_SIZE);
688 if (retval != BINPRM_BUF_SIZE) {
689 if (retval >= 0)
690 retval = -EIO;
691 goto out_free_dentry;
692 }
693
694 /* Get the exec headers */
695 loc->interp_elf_ex = *((struct elfhdr *)bprm->buf);
696 break;
697 }
698 elf_ppnt++;
699 }
700
701 elf_ppnt = elf_phdata;
702 for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
703 if (elf_ppnt->p_type == PT_GNU_STACK) {
704 if (elf_ppnt->p_flags & PF_X)
705 executable_stack = EXSTACK_ENABLE_X;
706 else
707 executable_stack = EXSTACK_DISABLE_X;
708 break;
709 }
710
711 /* Some simple consistency checks for the interpreter */
712 if (elf_interpreter) {
713 retval = -ELIBBAD;
714 /* Not an ELF interpreter */
715 if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
716 goto out_free_dentry;
717 /* Verify the interpreter has a valid arch */
718 if (!elf_check_arch(&loc->interp_elf_ex))
719 goto out_free_dentry;
720 }
721
722 /* Flush all traces of the currently running executable */
723 retval = flush_old_exec(bprm);
724 if (retval)
725 goto out_free_dentry;
726
727 /* OK, This is the point of no return */
728 current->mm->def_flags = def_flags;
729
730 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
731 may depend on the personality. */
732 SET_PERSONALITY(loc->elf_ex);
733 if (elf_read_implies_exec(loc->elf_ex, executable_stack))
734 current->personality |= READ_IMPLIES_EXEC;
735
736 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
737 current->flags |= PF_RANDOMIZE;
738
739 setup_new_exec(bprm);
740
741 /* Do this so that we can load the interpreter, if need be. We will
742 change some of these later */
743 retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
744 executable_stack);
745 if (retval < 0) {
746 send_sig(SIGKILL, current, 0);
747 goto out_free_dentry;
748 }
749
750 current->mm->start_stack = bprm->p;
751
752 /* Now we do a little grungy work by mmapping the ELF image into
753 the correct location in memory. */
754 for(i = 0, elf_ppnt = elf_phdata;
755 i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
756 int elf_prot = 0, elf_flags;
757 unsigned long k, vaddr;
758
759 if (elf_ppnt->p_type != PT_LOAD)
760 continue;
761
762 if (unlikely (elf_brk > elf_bss)) {
763 unsigned long nbyte;
764
765 /* There was a PT_LOAD segment with p_memsz > p_filesz
766 before this one. Map anonymous pages, if needed,
767 and clear the area. */
768 retval = set_brk(elf_bss + load_bias,
769 elf_brk + load_bias);
770 if (retval) {
771 send_sig(SIGKILL, current, 0);
772 goto out_free_dentry;
773 }
774 nbyte = ELF_PAGEOFFSET(elf_bss);
775 if (nbyte) {
776 nbyte = ELF_MIN_ALIGN - nbyte;
777 if (nbyte > elf_brk - elf_bss)
778 nbyte = elf_brk - elf_bss;
779 if (clear_user((void __user *)elf_bss +
780 load_bias, nbyte)) {
781 /*
782 * This bss-zeroing can fail if the ELF
783 * file specifies odd protections. So
784 * we don't check the return value
785 */
786 }
787 }
788 }
789
790 if (elf_ppnt->p_flags & PF_R)
791 elf_prot |= PROT_READ;
792 if (elf_ppnt->p_flags & PF_W)
793 elf_prot |= PROT_WRITE;
794 if (elf_ppnt->p_flags & PF_X)
795 elf_prot |= PROT_EXEC;
796
797 elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
798
799 vaddr = elf_ppnt->p_vaddr;
800 if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
801 elf_flags |= MAP_FIXED;
802 } else if (loc->elf_ex.e_type == ET_DYN) {
803 /* Try and get dynamic programs out of the way of the
804 * default mmap base, as well as whatever program they
805 * might try to exec. This is because the brk will
806 * follow the loader, and is not movable. */
807 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
808 /* Memory randomization might have been switched off
809 * in runtime via sysctl or explicit setting of
810 * personality flags.
811 * If that is the case, retain the original non-zero
812 * load_bias value in order to establish proper
813 * non-randomized mappings.
814 */
815 if (current->flags & PF_RANDOMIZE)
816 load_bias = 0;
817 else
818 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
819 #else
820 load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr);
821 #endif
822 }
823
824 error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
825 elf_prot, elf_flags, 0);
826 if (BAD_ADDR(error)) {
827 send_sig(SIGKILL, current, 0);
828 retval = IS_ERR((void *)error) ?
829 PTR_ERR((void*)error) : -EINVAL;
830 goto out_free_dentry;
831 }
832
833 if (!load_addr_set) {
834 load_addr_set = 1;
835 load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
836 if (loc->elf_ex.e_type == ET_DYN) {
837 load_bias += error -
838 ELF_PAGESTART(load_bias + vaddr);
839 load_addr += load_bias;
840 reloc_func_desc = load_bias;
841 }
842 }
843 k = elf_ppnt->p_vaddr;
844 if (k < start_code)
845 start_code = k;
846 if (start_data < k)
847 start_data = k;
848
849 /*
850 * Check to see if the section's size will overflow the
851 * allowed task size. Note that p_filesz must always be
852 * <= p_memsz so it is only necessary to check p_memsz.
853 */
854 if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
855 elf_ppnt->p_memsz > TASK_SIZE ||
856 TASK_SIZE - elf_ppnt->p_memsz < k) {
857 /* set_brk can never work. Avoid overflows. */
858 send_sig(SIGKILL, current, 0);
859 retval = -EINVAL;
860 goto out_free_dentry;
861 }
862
863 k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
864
865 if (k > elf_bss)
866 elf_bss = k;
867 if ((elf_ppnt->p_flags & PF_X) && end_code < k)
868 end_code = k;
869 if (end_data < k)
870 end_data = k;
871 k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
872 if (k > elf_brk)
873 elf_brk = k;
874 }
875
876 loc->elf_ex.e_entry += load_bias;
877 elf_bss += load_bias;
878 elf_brk += load_bias;
879 start_code += load_bias;
880 end_code += load_bias;
881 start_data += load_bias;
882 end_data += load_bias;
883
884 /* Calling set_brk effectively mmaps the pages that we need
885 * for the bss and break sections. We must do this before
886 * mapping in the interpreter, to make sure it doesn't wind
887 * up getting placed where the bss needs to go.
888 */
889 retval = set_brk(elf_bss, elf_brk);
890 if (retval) {
891 send_sig(SIGKILL, current, 0);
892 goto out_free_dentry;
893 }
894 if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
895 send_sig(SIGSEGV, current, 0);
896 retval = -EFAULT; /* Nobody gets to see this, but.. */
897 goto out_free_dentry;
898 }
899
900 if (elf_interpreter) {
901 unsigned long interp_map_addr = 0;
902
903 elf_entry = load_elf_interp(&loc->interp_elf_ex,
904 interpreter,
905 &interp_map_addr,
906 load_bias);
907 if (!IS_ERR((void *)elf_entry)) {
908 /*
909 * load_elf_interp() returns relocation
910 * adjustment
911 */
912 interp_load_addr = elf_entry;
913 elf_entry += loc->interp_elf_ex.e_entry;
914 }
915 if (BAD_ADDR(elf_entry)) {
916 force_sig(SIGSEGV, current);
917 retval = IS_ERR((void *)elf_entry) ?
918 (int)elf_entry : -EINVAL;
919 goto out_free_dentry;
920 }
921 reloc_func_desc = interp_load_addr;
922
923 allow_write_access(interpreter);
924 fput(interpreter);
925 kfree(elf_interpreter);
926 } else {
927 elf_entry = loc->elf_ex.e_entry;
928 if (BAD_ADDR(elf_entry)) {
929 force_sig(SIGSEGV, current);
930 retval = -EINVAL;
931 goto out_free_dentry;
932 }
933 }
934
935 kfree(elf_phdata);
936
937 set_binfmt(&elf_format);
938
939 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
940 retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
941 if (retval < 0) {
942 send_sig(SIGKILL, current, 0);
943 goto out;
944 }
945 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
946
947 install_exec_creds(bprm);
948 retval = create_elf_tables(bprm, &loc->elf_ex,
949 load_addr, interp_load_addr);
950 if (retval < 0) {
951 send_sig(SIGKILL, current, 0);
952 goto out;
953 }
954 /* N.B. passed_fileno might not be initialized? */
955 current->mm->end_code = end_code;
956 current->mm->start_code = start_code;
957 current->mm->start_data = start_data;
958 current->mm->end_data = end_data;
959 current->mm->start_stack = bprm->p;
960
961 #ifdef arch_randomize_brk
962 if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
963 current->mm->brk = current->mm->start_brk =
964 arch_randomize_brk(current->mm);
965 #ifdef CONFIG_COMPAT_BRK
966 current->brk_randomized = 1;
967 #endif
968 }
969 #endif
970
971 if (current->personality & MMAP_PAGE_ZERO) {
972 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
973 and some applications "depend" upon this behavior.
974 Since we do not have the power to recompile these, we
975 emulate the SVr4 behavior. Sigh. */
976 error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
977 MAP_FIXED | MAP_PRIVATE, 0);
978 }
979
980 #ifdef ELF_PLAT_INIT
981 /*
982 * The ABI may specify that certain registers be set up in special
983 * ways (on i386 %edx is the address of a DT_FINI function, for
984 * example. In addition, it may also specify (eg, PowerPC64 ELF)
985 * that the e_entry field is the address of the function descriptor
986 * for the startup routine, rather than the address of the startup
987 * routine itself. This macro performs whatever initialization to
988 * the regs structure is required as well as any relocations to the
989 * function descriptor entries when executing dynamically links apps.
990 */
991 ELF_PLAT_INIT(regs, reloc_func_desc);
992 #endif
993
994 start_thread(regs, elf_entry, bprm->p);
995 retval = 0;
996 out:
997 kfree(loc);
998 out_ret:
999 return retval;
1000
1001 /* error cleanup */
1002 out_free_dentry:
1003 allow_write_access(interpreter);
1004 if (interpreter)
1005 fput(interpreter);
1006 out_free_interp:
1007 kfree(elf_interpreter);
1008 out_free_ph:
1009 kfree(elf_phdata);
1010 goto out;
1011 }
1012
1013 #ifdef CONFIG_USELIB
1014 /* This is really simpleminded and specialized - we are loading an
1015 a.out library that is given an ELF header. */
1016 static int load_elf_library(struct file *file)
1017 {
1018 struct elf_phdr *elf_phdata;
1019 struct elf_phdr *eppnt;
1020 unsigned long elf_bss, bss, len;
1021 int retval, error, i, j;
1022 struct elfhdr elf_ex;
1023
1024 error = -ENOEXEC;
1025 retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1026 if (retval != sizeof(elf_ex))
1027 goto out;
1028
1029 if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1030 goto out;
1031
1032 /* First of all, some simple consistency checks */
1033 if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1034 !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1035 goto out;
1036
1037 /* Now read in all of the header information */
1038
1039 j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1040 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1041
1042 error = -ENOMEM;
1043 elf_phdata = kmalloc(j, GFP_KERNEL);
1044 if (!elf_phdata)
1045 goto out;
1046
1047 eppnt = elf_phdata;
1048 error = -ENOEXEC;
1049 retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1050 if (retval != j)
1051 goto out_free_ph;
1052
1053 for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1054 if ((eppnt + i)->p_type == PT_LOAD)
1055 j++;
1056 if (j != 1)
1057 goto out_free_ph;
1058
1059 while (eppnt->p_type != PT_LOAD)
1060 eppnt++;
1061
1062 /* Now use mmap to map the library into memory. */
1063 error = vm_mmap(file,
1064 ELF_PAGESTART(eppnt->p_vaddr),
1065 (eppnt->p_filesz +
1066 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1067 PROT_READ | PROT_WRITE | PROT_EXEC,
1068 MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1069 (eppnt->p_offset -
1070 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1071 if (error != ELF_PAGESTART(eppnt->p_vaddr))
1072 goto out_free_ph;
1073
1074 elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1075 if (padzero(elf_bss)) {
1076 error = -EFAULT;
1077 goto out_free_ph;
1078 }
1079
1080 len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1081 ELF_MIN_ALIGN - 1);
1082 bss = eppnt->p_memsz + eppnt->p_vaddr;
1083 if (bss > len)
1084 vm_brk(len, bss - len);
1085 error = 0;
1086
1087 out_free_ph:
1088 kfree(elf_phdata);
1089 out:
1090 return error;
1091 }
1092 #endif /* #ifdef CONFIG_USELIB */
1093
1094 #ifdef CONFIG_ELF_CORE
1095 /*
1096 * ELF core dumper
1097 *
1098 * Modelled on fs/exec.c:aout_core_dump()
1099 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1100 */
1101
1102 /*
1103 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1104 * that are useful for post-mortem analysis are included in every core dump.
1105 * In that way we ensure that the core dump is fully interpretable later
1106 * without matching up the same kernel and hardware config to see what PC values
1107 * meant. These special mappings include - vDSO, vsyscall, and other
1108 * architecture specific mappings
1109 */
1110 static bool always_dump_vma(struct vm_area_struct *vma)
1111 {
1112 /* Any vsyscall mappings? */
1113 if (vma == get_gate_vma(vma->vm_mm))
1114 return true;
1115 /*
1116 * arch_vma_name() returns non-NULL for special architecture mappings,
1117 * such as vDSO sections.
1118 */
1119 if (arch_vma_name(vma))
1120 return true;
1121
1122 return false;
1123 }
1124
1125 /*
1126 * Decide what to dump of a segment, part, all or none.
1127 */
1128 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1129 unsigned long mm_flags)
1130 {
1131 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1132
1133 /* always dump the vdso and vsyscall sections */
1134 if (always_dump_vma(vma))
1135 goto whole;
1136
1137 if (vma->vm_flags & VM_DONTDUMP)
1138 return 0;
1139
1140 /* Hugetlb memory check */
1141 if (vma->vm_flags & VM_HUGETLB) {
1142 if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1143 goto whole;
1144 if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1145 goto whole;
1146 return 0;
1147 }
1148
1149 /* Do not dump I/O mapped devices or special mappings */
1150 if (vma->vm_flags & VM_IO)
1151 return 0;
1152
1153 /* By default, dump shared memory if mapped from an anonymous file. */
1154 if (vma->vm_flags & VM_SHARED) {
1155 if (file_inode(vma->vm_file)->i_nlink == 0 ?
1156 FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1157 goto whole;
1158 return 0;
1159 }
1160
1161 /* Dump segments that have been written to. */
1162 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1163 goto whole;
1164 if (vma->vm_file == NULL)
1165 return 0;
1166
1167 if (FILTER(MAPPED_PRIVATE))
1168 goto whole;
1169
1170 /*
1171 * If this looks like the beginning of a DSO or executable mapping,
1172 * check for an ELF header. If we find one, dump the first page to
1173 * aid in determining what was mapped here.
1174 */
1175 if (FILTER(ELF_HEADERS) &&
1176 vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1177 u32 __user *header = (u32 __user *) vma->vm_start;
1178 u32 word;
1179 mm_segment_t fs = get_fs();
1180 /*
1181 * Doing it this way gets the constant folded by GCC.
1182 */
1183 union {
1184 u32 cmp;
1185 char elfmag[SELFMAG];
1186 } magic;
1187 BUILD_BUG_ON(SELFMAG != sizeof word);
1188 magic.elfmag[EI_MAG0] = ELFMAG0;
1189 magic.elfmag[EI_MAG1] = ELFMAG1;
1190 magic.elfmag[EI_MAG2] = ELFMAG2;
1191 magic.elfmag[EI_MAG3] = ELFMAG3;
1192 /*
1193 * Switch to the user "segment" for get_user(),
1194 * then put back what elf_core_dump() had in place.
1195 */
1196 set_fs(USER_DS);
1197 if (unlikely(get_user(word, header)))
1198 word = 0;
1199 set_fs(fs);
1200 if (word == magic.cmp)
1201 return PAGE_SIZE;
1202 }
1203
1204 #undef FILTER
1205
1206 return 0;
1207
1208 whole:
1209 return vma->vm_end - vma->vm_start;
1210 }
1211
1212 /* An ELF note in memory */
1213 struct memelfnote
1214 {
1215 const char *name;
1216 int type;
1217 unsigned int datasz;
1218 void *data;
1219 };
1220
1221 static int notesize(struct memelfnote *en)
1222 {
1223 int sz;
1224
1225 sz = sizeof(struct elf_note);
1226 sz += roundup(strlen(en->name) + 1, 4);
1227 sz += roundup(en->datasz, 4);
1228
1229 return sz;
1230 }
1231
1232 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1233 {
1234 struct elf_note en;
1235 en.n_namesz = strlen(men->name) + 1;
1236 en.n_descsz = men->datasz;
1237 en.n_type = men->type;
1238
1239 return dump_emit(cprm, &en, sizeof(en)) &&
1240 dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1241 dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1242 }
1243
1244 static void fill_elf_header(struct elfhdr *elf, int segs,
1245 u16 machine, u32 flags)
1246 {
1247 memset(elf, 0, sizeof(*elf));
1248
1249 memcpy(elf->e_ident, ELFMAG, SELFMAG);
1250 elf->e_ident[EI_CLASS] = ELF_CLASS;
1251 elf->e_ident[EI_DATA] = ELF_DATA;
1252 elf->e_ident[EI_VERSION] = EV_CURRENT;
1253 elf->e_ident[EI_OSABI] = ELF_OSABI;
1254
1255 elf->e_type = ET_CORE;
1256 elf->e_machine = machine;
1257 elf->e_version = EV_CURRENT;
1258 elf->e_phoff = sizeof(struct elfhdr);
1259 elf->e_flags = flags;
1260 elf->e_ehsize = sizeof(struct elfhdr);
1261 elf->e_phentsize = sizeof(struct elf_phdr);
1262 elf->e_phnum = segs;
1263
1264 return;
1265 }
1266
1267 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1268 {
1269 phdr->p_type = PT_NOTE;
1270 phdr->p_offset = offset;
1271 phdr->p_vaddr = 0;
1272 phdr->p_paddr = 0;
1273 phdr->p_filesz = sz;
1274 phdr->p_memsz = 0;
1275 phdr->p_flags = 0;
1276 phdr->p_align = 0;
1277 return;
1278 }
1279
1280 static void fill_note(struct memelfnote *note, const char *name, int type,
1281 unsigned int sz, void *data)
1282 {
1283 note->name = name;
1284 note->type = type;
1285 note->datasz = sz;
1286 note->data = data;
1287 return;
1288 }
1289
1290 /*
1291 * fill up all the fields in prstatus from the given task struct, except
1292 * registers which need to be filled up separately.
1293 */
1294 static void fill_prstatus(struct elf_prstatus *prstatus,
1295 struct task_struct *p, long signr)
1296 {
1297 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1298 prstatus->pr_sigpend = p->pending.signal.sig[0];
1299 prstatus->pr_sighold = p->blocked.sig[0];
1300 rcu_read_lock();
1301 prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1302 rcu_read_unlock();
1303 prstatus->pr_pid = task_pid_vnr(p);
1304 prstatus->pr_pgrp = task_pgrp_vnr(p);
1305 prstatus->pr_sid = task_session_vnr(p);
1306 if (thread_group_leader(p)) {
1307 struct task_cputime cputime;
1308
1309 /*
1310 * This is the record for the group leader. It shows the
1311 * group-wide total, not its individual thread total.
1312 */
1313 thread_group_cputime(p, &cputime);
1314 cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1315 cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1316 } else {
1317 cputime_t utime, stime;
1318
1319 task_cputime(p, &utime, &stime);
1320 cputime_to_timeval(utime, &prstatus->pr_utime);
1321 cputime_to_timeval(stime, &prstatus->pr_stime);
1322 }
1323 cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1324 cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1325 }
1326
1327 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1328 struct mm_struct *mm)
1329 {
1330 const struct cred *cred;
1331 unsigned int i, len;
1332
1333 /* first copy the parameters from user space */
1334 memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1335
1336 len = mm->arg_end - mm->arg_start;
1337 if (len >= ELF_PRARGSZ)
1338 len = ELF_PRARGSZ-1;
1339 if (copy_from_user(&psinfo->pr_psargs,
1340 (const char __user *)mm->arg_start, len))
1341 return -EFAULT;
1342 for(i = 0; i < len; i++)
1343 if (psinfo->pr_psargs[i] == 0)
1344 psinfo->pr_psargs[i] = ' ';
1345 psinfo->pr_psargs[len] = 0;
1346
1347 rcu_read_lock();
1348 psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1349 rcu_read_unlock();
1350 psinfo->pr_pid = task_pid_vnr(p);
1351 psinfo->pr_pgrp = task_pgrp_vnr(p);
1352 psinfo->pr_sid = task_session_vnr(p);
1353
1354 i = p->state ? ffz(~p->state) + 1 : 0;
1355 psinfo->pr_state = i;
1356 psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1357 psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1358 psinfo->pr_nice = task_nice(p);
1359 psinfo->pr_flag = p->flags;
1360 rcu_read_lock();
1361 cred = __task_cred(p);
1362 SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1363 SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1364 rcu_read_unlock();
1365 strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1366
1367 return 0;
1368 }
1369
1370 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1371 {
1372 elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1373 int i = 0;
1374 do
1375 i += 2;
1376 while (auxv[i - 2] != AT_NULL);
1377 fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1378 }
1379
1380 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1381 const siginfo_t *siginfo)
1382 {
1383 mm_segment_t old_fs = get_fs();
1384 set_fs(KERNEL_DS);
1385 copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1386 set_fs(old_fs);
1387 fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1388 }
1389
1390 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1391 /*
1392 * Format of NT_FILE note:
1393 *
1394 * long count -- how many files are mapped
1395 * long page_size -- units for file_ofs
1396 * array of [COUNT] elements of
1397 * long start
1398 * long end
1399 * long file_ofs
1400 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1401 */
1402 static int fill_files_note(struct memelfnote *note)
1403 {
1404 struct vm_area_struct *vma;
1405 unsigned count, size, names_ofs, remaining, n;
1406 user_long_t *data;
1407 user_long_t *start_end_ofs;
1408 char *name_base, *name_curpos;
1409
1410 /* *Estimated* file count and total data size needed */
1411 count = current->mm->map_count;
1412 size = count * 64;
1413
1414 names_ofs = (2 + 3 * count) * sizeof(data[0]);
1415 alloc:
1416 if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1417 return -EINVAL;
1418 size = round_up(size, PAGE_SIZE);
1419 data = vmalloc(size);
1420 if (!data)
1421 return -ENOMEM;
1422
1423 start_end_ofs = data + 2;
1424 name_base = name_curpos = ((char *)data) + names_ofs;
1425 remaining = size - names_ofs;
1426 count = 0;
1427 for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1428 struct file *file;
1429 const char *filename;
1430
1431 file = vma->vm_file;
1432 if (!file)
1433 continue;
1434 filename = d_path(&file->f_path, name_curpos, remaining);
1435 if (IS_ERR(filename)) {
1436 if (PTR_ERR(filename) == -ENAMETOOLONG) {
1437 vfree(data);
1438 size = size * 5 / 4;
1439 goto alloc;
1440 }
1441 continue;
1442 }
1443
1444 /* d_path() fills at the end, move name down */
1445 /* n = strlen(filename) + 1: */
1446 n = (name_curpos + remaining) - filename;
1447 remaining = filename - name_curpos;
1448 memmove(name_curpos, filename, n);
1449 name_curpos += n;
1450
1451 *start_end_ofs++ = vma->vm_start;
1452 *start_end_ofs++ = vma->vm_end;
1453 *start_end_ofs++ = vma->vm_pgoff;
1454 count++;
1455 }
1456
1457 /* Now we know exact count of files, can store it */
1458 data[0] = count;
1459 data[1] = PAGE_SIZE;
1460 /*
1461 * Count usually is less than current->mm->map_count,
1462 * we need to move filenames down.
1463 */
1464 n = current->mm->map_count - count;
1465 if (n != 0) {
1466 unsigned shift_bytes = n * 3 * sizeof(data[0]);
1467 memmove(name_base - shift_bytes, name_base,
1468 name_curpos - name_base);
1469 name_curpos -= shift_bytes;
1470 }
1471
1472 size = name_curpos - (char *)data;
1473 fill_note(note, "CORE", NT_FILE, size, data);
1474 return 0;
1475 }
1476
1477 #ifdef CORE_DUMP_USE_REGSET
1478 #include <linux/regset.h>
1479
1480 struct elf_thread_core_info {
1481 struct elf_thread_core_info *next;
1482 struct task_struct *task;
1483 struct elf_prstatus prstatus;
1484 struct memelfnote notes[0];
1485 };
1486
1487 struct elf_note_info {
1488 struct elf_thread_core_info *thread;
1489 struct memelfnote psinfo;
1490 struct memelfnote signote;
1491 struct memelfnote auxv;
1492 struct memelfnote files;
1493 user_siginfo_t csigdata;
1494 size_t size;
1495 int thread_notes;
1496 };
1497
1498 /*
1499 * When a regset has a writeback hook, we call it on each thread before
1500 * dumping user memory. On register window machines, this makes sure the
1501 * user memory backing the register data is up to date before we read it.
1502 */
1503 static void do_thread_regset_writeback(struct task_struct *task,
1504 const struct user_regset *regset)
1505 {
1506 if (regset->writeback)
1507 regset->writeback(task, regset, 1);
1508 }
1509
1510 #ifndef PR_REG_SIZE
1511 #define PR_REG_SIZE(S) sizeof(S)
1512 #endif
1513
1514 #ifndef PRSTATUS_SIZE
1515 #define PRSTATUS_SIZE(S) sizeof(S)
1516 #endif
1517
1518 #ifndef PR_REG_PTR
1519 #define PR_REG_PTR(S) (&((S)->pr_reg))
1520 #endif
1521
1522 #ifndef SET_PR_FPVALID
1523 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1524 #endif
1525
1526 static int fill_thread_core_info(struct elf_thread_core_info *t,
1527 const struct user_regset_view *view,
1528 long signr, size_t *total)
1529 {
1530 unsigned int i;
1531
1532 /*
1533 * NT_PRSTATUS is the one special case, because the regset data
1534 * goes into the pr_reg field inside the note contents, rather
1535 * than being the whole note contents. We fill the reset in here.
1536 * We assume that regset 0 is NT_PRSTATUS.
1537 */
1538 fill_prstatus(&t->prstatus, t->task, signr);
1539 (void) view->regsets[0].get(t->task, &view->regsets[0],
1540 0, PR_REG_SIZE(t->prstatus.pr_reg),
1541 PR_REG_PTR(&t->prstatus), NULL);
1542
1543 fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1544 PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1545 *total += notesize(&t->notes[0]);
1546
1547 do_thread_regset_writeback(t->task, &view->regsets[0]);
1548
1549 /*
1550 * Each other regset might generate a note too. For each regset
1551 * that has no core_note_type or is inactive, we leave t->notes[i]
1552 * all zero and we'll know to skip writing it later.
1553 */
1554 for (i = 1; i < view->n; ++i) {
1555 const struct user_regset *regset = &view->regsets[i];
1556 do_thread_regset_writeback(t->task, regset);
1557 if (regset->core_note_type && regset->get &&
1558 (!regset->active || regset->active(t->task, regset))) {
1559 int ret;
1560 size_t size = regset->n * regset->size;
1561 void *data = kmalloc(size, GFP_KERNEL);
1562 if (unlikely(!data))
1563 return 0;
1564 ret = regset->get(t->task, regset,
1565 0, size, data, NULL);
1566 if (unlikely(ret))
1567 kfree(data);
1568 else {
1569 if (regset->core_note_type != NT_PRFPREG)
1570 fill_note(&t->notes[i], "LINUX",
1571 regset->core_note_type,
1572 size, data);
1573 else {
1574 SET_PR_FPVALID(&t->prstatus, 1);
1575 fill_note(&t->notes[i], "CORE",
1576 NT_PRFPREG, size, data);
1577 }
1578 *total += notesize(&t->notes[i]);
1579 }
1580 }
1581 }
1582
1583 return 1;
1584 }
1585
1586 static int fill_note_info(struct elfhdr *elf, int phdrs,
1587 struct elf_note_info *info,
1588 const siginfo_t *siginfo, struct pt_regs *regs)
1589 {
1590 struct task_struct *dump_task = current;
1591 const struct user_regset_view *view = task_user_regset_view(dump_task);
1592 struct elf_thread_core_info *t;
1593 struct elf_prpsinfo *psinfo;
1594 struct core_thread *ct;
1595 unsigned int i;
1596
1597 info->size = 0;
1598 info->thread = NULL;
1599
1600 psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1601 if (psinfo == NULL) {
1602 info->psinfo.data = NULL; /* So we don't free this wrongly */
1603 return 0;
1604 }
1605
1606 fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1607
1608 /*
1609 * Figure out how many notes we're going to need for each thread.
1610 */
1611 info->thread_notes = 0;
1612 for (i = 0; i < view->n; ++i)
1613 if (view->regsets[i].core_note_type != 0)
1614 ++info->thread_notes;
1615
1616 /*
1617 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1618 * since it is our one special case.
1619 */
1620 if (unlikely(info->thread_notes == 0) ||
1621 unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1622 WARN_ON(1);
1623 return 0;
1624 }
1625
1626 /*
1627 * Initialize the ELF file header.
1628 */
1629 fill_elf_header(elf, phdrs,
1630 view->e_machine, view->e_flags);
1631
1632 /*
1633 * Allocate a structure for each thread.
1634 */
1635 for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1636 t = kzalloc(offsetof(struct elf_thread_core_info,
1637 notes[info->thread_notes]),
1638 GFP_KERNEL);
1639 if (unlikely(!t))
1640 return 0;
1641
1642 t->task = ct->task;
1643 if (ct->task == dump_task || !info->thread) {
1644 t->next = info->thread;
1645 info->thread = t;
1646 } else {
1647 /*
1648 * Make sure to keep the original task at
1649 * the head of the list.
1650 */
1651 t->next = info->thread->next;
1652 info->thread->next = t;
1653 }
1654 }
1655
1656 /*
1657 * Now fill in each thread's information.
1658 */
1659 for (t = info->thread; t != NULL; t = t->next)
1660 if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1661 return 0;
1662
1663 /*
1664 * Fill in the two process-wide notes.
1665 */
1666 fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1667 info->size += notesize(&info->psinfo);
1668
1669 fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1670 info->size += notesize(&info->signote);
1671
1672 fill_auxv_note(&info->auxv, current->mm);
1673 info->size += notesize(&info->auxv);
1674
1675 if (fill_files_note(&info->files) == 0)
1676 info->size += notesize(&info->files);
1677
1678 return 1;
1679 }
1680
1681 static size_t get_note_info_size(struct elf_note_info *info)
1682 {
1683 return info->size;
1684 }
1685
1686 /*
1687 * Write all the notes for each thread. When writing the first thread, the
1688 * process-wide notes are interleaved after the first thread-specific note.
1689 */
1690 static int write_note_info(struct elf_note_info *info,
1691 struct coredump_params *cprm)
1692 {
1693 bool first = 1;
1694 struct elf_thread_core_info *t = info->thread;
1695
1696 do {
1697 int i;
1698
1699 if (!writenote(&t->notes[0], cprm))
1700 return 0;
1701
1702 if (first && !writenote(&info->psinfo, cprm))
1703 return 0;
1704 if (first && !writenote(&info->signote, cprm))
1705 return 0;
1706 if (first && !writenote(&info->auxv, cprm))
1707 return 0;
1708 if (first && info->files.data &&
1709 !writenote(&info->files, cprm))
1710 return 0;
1711
1712 for (i = 1; i < info->thread_notes; ++i)
1713 if (t->notes[i].data &&
1714 !writenote(&t->notes[i], cprm))
1715 return 0;
1716
1717 first = 0;
1718 t = t->next;
1719 } while (t);
1720
1721 return 1;
1722 }
1723
1724 static void free_note_info(struct elf_note_info *info)
1725 {
1726 struct elf_thread_core_info *threads = info->thread;
1727 while (threads) {
1728 unsigned int i;
1729 struct elf_thread_core_info *t = threads;
1730 threads = t->next;
1731 WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1732 for (i = 1; i < info->thread_notes; ++i)
1733 kfree(t->notes[i].data);
1734 kfree(t);
1735 }
1736 kfree(info->psinfo.data);
1737 vfree(info->files.data);
1738 }
1739
1740 #else
1741
1742 /* Here is the structure in which status of each thread is captured. */
1743 struct elf_thread_status
1744 {
1745 struct list_head list;
1746 struct elf_prstatus prstatus; /* NT_PRSTATUS */
1747 elf_fpregset_t fpu; /* NT_PRFPREG */
1748 struct task_struct *thread;
1749 #ifdef ELF_CORE_COPY_XFPREGS
1750 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1751 #endif
1752 struct memelfnote notes[3];
1753 int num_notes;
1754 };
1755
1756 /*
1757 * In order to add the specific thread information for the elf file format,
1758 * we need to keep a linked list of every threads pr_status and then create
1759 * a single section for them in the final core file.
1760 */
1761 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1762 {
1763 int sz = 0;
1764 struct task_struct *p = t->thread;
1765 t->num_notes = 0;
1766
1767 fill_prstatus(&t->prstatus, p, signr);
1768 elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1769
1770 fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1771 &(t->prstatus));
1772 t->num_notes++;
1773 sz += notesize(&t->notes[0]);
1774
1775 if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1776 &t->fpu))) {
1777 fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1778 &(t->fpu));
1779 t->num_notes++;
1780 sz += notesize(&t->notes[1]);
1781 }
1782
1783 #ifdef ELF_CORE_COPY_XFPREGS
1784 if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1785 fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1786 sizeof(t->xfpu), &t->xfpu);
1787 t->num_notes++;
1788 sz += notesize(&t->notes[2]);
1789 }
1790 #endif
1791 return sz;
1792 }
1793
1794 struct elf_note_info {
1795 struct memelfnote *notes;
1796 struct memelfnote *notes_files;
1797 struct elf_prstatus *prstatus; /* NT_PRSTATUS */
1798 struct elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1799 struct list_head thread_list;
1800 elf_fpregset_t *fpu;
1801 #ifdef ELF_CORE_COPY_XFPREGS
1802 elf_fpxregset_t *xfpu;
1803 #endif
1804 user_siginfo_t csigdata;
1805 int thread_status_size;
1806 int numnote;
1807 };
1808
1809 static int elf_note_info_init(struct elf_note_info *info)
1810 {
1811 memset(info, 0, sizeof(*info));
1812 INIT_LIST_HEAD(&info->thread_list);
1813
1814 /* Allocate space for ELF notes */
1815 info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1816 if (!info->notes)
1817 return 0;
1818 info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1819 if (!info->psinfo)
1820 return 0;
1821 info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1822 if (!info->prstatus)
1823 return 0;
1824 info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1825 if (!info->fpu)
1826 return 0;
1827 #ifdef ELF_CORE_COPY_XFPREGS
1828 info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1829 if (!info->xfpu)
1830 return 0;
1831 #endif
1832 return 1;
1833 }
1834
1835 static int fill_note_info(struct elfhdr *elf, int phdrs,
1836 struct elf_note_info *info,
1837 const siginfo_t *siginfo, struct pt_regs *regs)
1838 {
1839 struct list_head *t;
1840 struct core_thread *ct;
1841 struct elf_thread_status *ets;
1842
1843 if (!elf_note_info_init(info))
1844 return 0;
1845
1846 for (ct = current->mm->core_state->dumper.next;
1847 ct; ct = ct->next) {
1848 ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1849 if (!ets)
1850 return 0;
1851
1852 ets->thread = ct->task;
1853 list_add(&ets->list, &info->thread_list);
1854 }
1855
1856 list_for_each(t, &info->thread_list) {
1857 int sz;
1858
1859 ets = list_entry(t, struct elf_thread_status, list);
1860 sz = elf_dump_thread_status(siginfo->si_signo, ets);
1861 info->thread_status_size += sz;
1862 }
1863 /* now collect the dump for the current */
1864 memset(info->prstatus, 0, sizeof(*info->prstatus));
1865 fill_prstatus(info->prstatus, current, siginfo->si_signo);
1866 elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1867
1868 /* Set up header */
1869 fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1870
1871 /*
1872 * Set up the notes in similar form to SVR4 core dumps made
1873 * with info from their /proc.
1874 */
1875
1876 fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1877 sizeof(*info->prstatus), info->prstatus);
1878 fill_psinfo(info->psinfo, current->group_leader, current->mm);
1879 fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1880 sizeof(*info->psinfo), info->psinfo);
1881
1882 fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
1883 fill_auxv_note(info->notes + 3, current->mm);
1884 info->numnote = 4;
1885
1886 if (fill_files_note(info->notes + info->numnote) == 0) {
1887 info->notes_files = info->notes + info->numnote;
1888 info->numnote++;
1889 }
1890
1891 /* Try to dump the FPU. */
1892 info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
1893 info->fpu);
1894 if (info->prstatus->pr_fpvalid)
1895 fill_note(info->notes + info->numnote++,
1896 "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
1897 #ifdef ELF_CORE_COPY_XFPREGS
1898 if (elf_core_copy_task_xfpregs(current, info->xfpu))
1899 fill_note(info->notes + info->numnote++,
1900 "LINUX", ELF_CORE_XFPREG_TYPE,
1901 sizeof(*info->xfpu), info->xfpu);
1902 #endif
1903
1904 return 1;
1905 }
1906
1907 static size_t get_note_info_size(struct elf_note_info *info)
1908 {
1909 int sz = 0;
1910 int i;
1911
1912 for (i = 0; i < info->numnote; i++)
1913 sz += notesize(info->notes + i);
1914
1915 sz += info->thread_status_size;
1916
1917 return sz;
1918 }
1919
1920 static int write_note_info(struct elf_note_info *info,
1921 struct coredump_params *cprm)
1922 {
1923 int i;
1924 struct list_head *t;
1925
1926 for (i = 0; i < info->numnote; i++)
1927 if (!writenote(info->notes + i, cprm))
1928 return 0;
1929
1930 /* write out the thread status notes section */
1931 list_for_each(t, &info->thread_list) {
1932 struct elf_thread_status *tmp =
1933 list_entry(t, struct elf_thread_status, list);
1934
1935 for (i = 0; i < tmp->num_notes; i++)
1936 if (!writenote(&tmp->notes[i], cprm))
1937 return 0;
1938 }
1939
1940 return 1;
1941 }
1942
1943 static void free_note_info(struct elf_note_info *info)
1944 {
1945 while (!list_empty(&info->thread_list)) {
1946 struct list_head *tmp = info->thread_list.next;
1947 list_del(tmp);
1948 kfree(list_entry(tmp, struct elf_thread_status, list));
1949 }
1950
1951 /* Free data possibly allocated by fill_files_note(): */
1952 if (info->notes_files)
1953 vfree(info->notes_files->data);
1954
1955 kfree(info->prstatus);
1956 kfree(info->psinfo);
1957 kfree(info->notes);
1958 kfree(info->fpu);
1959 #ifdef ELF_CORE_COPY_XFPREGS
1960 kfree(info->xfpu);
1961 #endif
1962 }
1963
1964 #endif
1965
1966 static struct vm_area_struct *first_vma(struct task_struct *tsk,
1967 struct vm_area_struct *gate_vma)
1968 {
1969 struct vm_area_struct *ret = tsk->mm->mmap;
1970
1971 if (ret)
1972 return ret;
1973 return gate_vma;
1974 }
1975 /*
1976 * Helper function for iterating across a vma list. It ensures that the caller
1977 * will visit `gate_vma' prior to terminating the search.
1978 */
1979 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
1980 struct vm_area_struct *gate_vma)
1981 {
1982 struct vm_area_struct *ret;
1983
1984 ret = this_vma->vm_next;
1985 if (ret)
1986 return ret;
1987 if (this_vma == gate_vma)
1988 return NULL;
1989 return gate_vma;
1990 }
1991
1992 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
1993 elf_addr_t e_shoff, int segs)
1994 {
1995 elf->e_shoff = e_shoff;
1996 elf->e_shentsize = sizeof(*shdr4extnum);
1997 elf->e_shnum = 1;
1998 elf->e_shstrndx = SHN_UNDEF;
1999
2000 memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2001
2002 shdr4extnum->sh_type = SHT_NULL;
2003 shdr4extnum->sh_size = elf->e_shnum;
2004 shdr4extnum->sh_link = elf->e_shstrndx;
2005 shdr4extnum->sh_info = segs;
2006 }
2007
2008 static size_t elf_core_vma_data_size(struct vm_area_struct *gate_vma,
2009 unsigned long mm_flags)
2010 {
2011 struct vm_area_struct *vma;
2012 size_t size = 0;
2013
2014 for (vma = first_vma(current, gate_vma); vma != NULL;
2015 vma = next_vma(vma, gate_vma))
2016 size += vma_dump_size(vma, mm_flags);
2017 return size;
2018 }
2019
2020 /*
2021 * Actual dumper
2022 *
2023 * This is a two-pass process; first we find the offsets of the bits,
2024 * and then they are actually written out. If we run out of core limit
2025 * we just truncate.
2026 */
2027 static int elf_core_dump(struct coredump_params *cprm)
2028 {
2029 int has_dumped = 0;
2030 mm_segment_t fs;
2031 int segs;
2032 struct vm_area_struct *vma, *gate_vma;
2033 struct elfhdr *elf = NULL;
2034 loff_t offset = 0, dataoff;
2035 struct elf_note_info info = { };
2036 struct elf_phdr *phdr4note = NULL;
2037 struct elf_shdr *shdr4extnum = NULL;
2038 Elf_Half e_phnum;
2039 elf_addr_t e_shoff;
2040
2041 /*
2042 * We no longer stop all VM operations.
2043 *
2044 * This is because those proceses that could possibly change map_count
2045 * or the mmap / vma pages are now blocked in do_exit on current
2046 * finishing this core dump.
2047 *
2048 * Only ptrace can touch these memory addresses, but it doesn't change
2049 * the map_count or the pages allocated. So no possibility of crashing
2050 * exists while dumping the mm->vm_next areas to the core file.
2051 */
2052
2053 /* alloc memory for large data structures: too large to be on stack */
2054 elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2055 if (!elf)
2056 goto out;
2057 /*
2058 * The number of segs are recored into ELF header as 16bit value.
2059 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2060 */
2061 segs = current->mm->map_count;
2062 segs += elf_core_extra_phdrs();
2063
2064 gate_vma = get_gate_vma(current->mm);
2065 if (gate_vma != NULL)
2066 segs++;
2067
2068 /* for notes section */
2069 segs++;
2070
2071 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2072 * this, kernel supports extended numbering. Have a look at
2073 * include/linux/elf.h for further information. */
2074 e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2075
2076 /*
2077 * Collect all the non-memory information about the process for the
2078 * notes. This also sets up the file header.
2079 */
2080 if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2081 goto cleanup;
2082
2083 has_dumped = 1;
2084
2085 fs = get_fs();
2086 set_fs(KERNEL_DS);
2087
2088 offset += sizeof(*elf); /* Elf header */
2089 offset += segs * sizeof(struct elf_phdr); /* Program headers */
2090
2091 /* Write notes phdr entry */
2092 {
2093 size_t sz = get_note_info_size(&info);
2094
2095 sz += elf_coredump_extra_notes_size();
2096
2097 phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2098 if (!phdr4note)
2099 goto end_coredump;
2100
2101 fill_elf_note_phdr(phdr4note, sz, offset);
2102 offset += sz;
2103 }
2104
2105 dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2106
2107 offset += elf_core_vma_data_size(gate_vma, cprm->mm_flags);
2108 offset += elf_core_extra_data_size();
2109 e_shoff = offset;
2110
2111 if (e_phnum == PN_XNUM) {
2112 shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2113 if (!shdr4extnum)
2114 goto end_coredump;
2115 fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2116 }
2117
2118 offset = dataoff;
2119
2120 if (!dump_emit(cprm, elf, sizeof(*elf)))
2121 goto end_coredump;
2122
2123 if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2124 goto end_coredump;
2125
2126 /* Write program headers for segments dump */
2127 for (vma = first_vma(current, gate_vma); vma != NULL;
2128 vma = next_vma(vma, gate_vma)) {
2129 struct elf_phdr phdr;
2130
2131 phdr.p_type = PT_LOAD;
2132 phdr.p_offset = offset;
2133 phdr.p_vaddr = vma->vm_start;
2134 phdr.p_paddr = 0;
2135 phdr.p_filesz = vma_dump_size(vma, cprm->mm_flags);
2136 phdr.p_memsz = vma->vm_end - vma->vm_start;
2137 offset += phdr.p_filesz;
2138 phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2139 if (vma->vm_flags & VM_WRITE)
2140 phdr.p_flags |= PF_W;
2141 if (vma->vm_flags & VM_EXEC)
2142 phdr.p_flags |= PF_X;
2143 phdr.p_align = ELF_EXEC_PAGESIZE;
2144
2145 if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2146 goto end_coredump;
2147 }
2148
2149 if (!elf_core_write_extra_phdrs(cprm, offset))
2150 goto end_coredump;
2151
2152 /* write out the notes section */
2153 if (!write_note_info(&info, cprm))
2154 goto end_coredump;
2155
2156 if (elf_coredump_extra_notes_write(cprm))
2157 goto end_coredump;
2158
2159 /* Align to page */
2160 if (!dump_skip(cprm, dataoff - cprm->written))
2161 goto end_coredump;
2162
2163 for (vma = first_vma(current, gate_vma); vma != NULL;
2164 vma = next_vma(vma, gate_vma)) {
2165 unsigned long addr;
2166 unsigned long end;
2167
2168 end = vma->vm_start + vma_dump_size(vma, cprm->mm_flags);
2169
2170 for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2171 struct page *page;
2172 int stop;
2173
2174 page = get_dump_page(addr);
2175 if (page) {
2176 void *kaddr = kmap(page);
2177 stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2178 kunmap(page);
2179 page_cache_release(page);
2180 } else
2181 stop = !dump_skip(cprm, PAGE_SIZE);
2182 if (stop)
2183 goto end_coredump;
2184 }
2185 }
2186
2187 if (!elf_core_write_extra_data(cprm))
2188 goto end_coredump;
2189
2190 if (e_phnum == PN_XNUM) {
2191 if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2192 goto end_coredump;
2193 }
2194
2195 end_coredump:
2196 set_fs(fs);
2197
2198 cleanup:
2199 free_note_info(&info);
2200 kfree(shdr4extnum);
2201 kfree(phdr4note);
2202 kfree(elf);
2203 out:
2204 return has_dumped;
2205 }
2206
2207 #endif /* CONFIG_ELF_CORE */
2208
2209 static int __init init_elf_binfmt(void)
2210 {
2211 register_binfmt(&elf_format);
2212 return 0;
2213 }
2214
2215 static void __exit exit_elf_binfmt(void)
2216 {
2217 /* Remove the COFF and ELF loaders. */
2218 unregister_binfmt(&elf_format);
2219 }
2220
2221 core_initcall(init_elf_binfmt);
2222 module_exit(exit_elf_binfmt);
2223 MODULE_LICENSE("GPL");
This page took 0.072165 seconds and 4 git commands to generate.