net: macb: Probe MDIO bus before registering netdev
[deliverable/linux.git] / fs / block_dev.c
1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
33 #include "internal.h"
34
35 struct bdev_inode {
36 struct block_device bdev;
37 struct inode vfs_inode;
38 };
39
40 static const struct address_space_operations def_blk_aops;
41
42 static inline struct bdev_inode *BDEV_I(struct inode *inode)
43 {
44 return container_of(inode, struct bdev_inode, vfs_inode);
45 }
46
47 struct block_device *I_BDEV(struct inode *inode)
48 {
49 return &BDEV_I(inode)->bdev;
50 }
51 EXPORT_SYMBOL(I_BDEV);
52
53 static void bdev_write_inode(struct block_device *bdev)
54 {
55 struct inode *inode = bdev->bd_inode;
56 int ret;
57
58 spin_lock(&inode->i_lock);
59 while (inode->i_state & I_DIRTY) {
60 spin_unlock(&inode->i_lock);
61 ret = write_inode_now(inode, true);
62 if (ret) {
63 char name[BDEVNAME_SIZE];
64 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
65 "for block device %s (err=%d).\n",
66 bdevname(bdev, name), ret);
67 }
68 spin_lock(&inode->i_lock);
69 }
70 spin_unlock(&inode->i_lock);
71 }
72
73 /* Kill _all_ buffers and pagecache , dirty or not.. */
74 void kill_bdev(struct block_device *bdev)
75 {
76 struct address_space *mapping = bdev->bd_inode->i_mapping;
77
78 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
79 return;
80
81 invalidate_bh_lrus();
82 truncate_inode_pages(mapping, 0);
83 }
84 EXPORT_SYMBOL(kill_bdev);
85
86 /* Invalidate clean unused buffers and pagecache. */
87 void invalidate_bdev(struct block_device *bdev)
88 {
89 struct address_space *mapping = bdev->bd_inode->i_mapping;
90
91 if (mapping->nrpages == 0)
92 return;
93
94 invalidate_bh_lrus();
95 lru_add_drain_all(); /* make sure all lru add caches are flushed */
96 invalidate_mapping_pages(mapping, 0, -1);
97 /* 99% of the time, we don't need to flush the cleancache on the bdev.
98 * But, for the strange corners, lets be cautious
99 */
100 cleancache_invalidate_inode(mapping);
101 }
102 EXPORT_SYMBOL(invalidate_bdev);
103
104 int set_blocksize(struct block_device *bdev, int size)
105 {
106 /* Size must be a power of two, and between 512 and PAGE_SIZE */
107 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
108 return -EINVAL;
109
110 /* Size cannot be smaller than the size supported by the device */
111 if (size < bdev_logical_block_size(bdev))
112 return -EINVAL;
113
114 /* Don't change the size if it is same as current */
115 if (bdev->bd_block_size != size) {
116 sync_blockdev(bdev);
117 bdev->bd_block_size = size;
118 bdev->bd_inode->i_blkbits = blksize_bits(size);
119 kill_bdev(bdev);
120 }
121 return 0;
122 }
123
124 EXPORT_SYMBOL(set_blocksize);
125
126 int sb_set_blocksize(struct super_block *sb, int size)
127 {
128 if (set_blocksize(sb->s_bdev, size))
129 return 0;
130 /* If we get here, we know size is power of two
131 * and it's value is between 512 and PAGE_SIZE */
132 sb->s_blocksize = size;
133 sb->s_blocksize_bits = blksize_bits(size);
134 return sb->s_blocksize;
135 }
136
137 EXPORT_SYMBOL(sb_set_blocksize);
138
139 int sb_min_blocksize(struct super_block *sb, int size)
140 {
141 int minsize = bdev_logical_block_size(sb->s_bdev);
142 if (size < minsize)
143 size = minsize;
144 return sb_set_blocksize(sb, size);
145 }
146
147 EXPORT_SYMBOL(sb_min_blocksize);
148
149 static int
150 blkdev_get_block(struct inode *inode, sector_t iblock,
151 struct buffer_head *bh, int create)
152 {
153 bh->b_bdev = I_BDEV(inode);
154 bh->b_blocknr = iblock;
155 set_buffer_mapped(bh);
156 return 0;
157 }
158
159 static struct inode *bdev_file_inode(struct file *file)
160 {
161 return file->f_mapping->host;
162 }
163
164 static ssize_t
165 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, loff_t offset)
166 {
167 struct file *file = iocb->ki_filp;
168 struct inode *inode = bdev_file_inode(file);
169
170 if (IS_DAX(inode))
171 return dax_do_io(iocb, inode, iter, offset, blkdev_get_block,
172 NULL, DIO_SKIP_DIO_COUNT);
173 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter, offset,
174 blkdev_get_block, NULL, NULL,
175 DIO_SKIP_DIO_COUNT);
176 }
177
178 int __sync_blockdev(struct block_device *bdev, int wait)
179 {
180 if (!bdev)
181 return 0;
182 if (!wait)
183 return filemap_flush(bdev->bd_inode->i_mapping);
184 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
185 }
186
187 /*
188 * Write out and wait upon all the dirty data associated with a block
189 * device via its mapping. Does not take the superblock lock.
190 */
191 int sync_blockdev(struct block_device *bdev)
192 {
193 return __sync_blockdev(bdev, 1);
194 }
195 EXPORT_SYMBOL(sync_blockdev);
196
197 /*
198 * Write out and wait upon all dirty data associated with this
199 * device. Filesystem data as well as the underlying block
200 * device. Takes the superblock lock.
201 */
202 int fsync_bdev(struct block_device *bdev)
203 {
204 struct super_block *sb = get_super(bdev);
205 if (sb) {
206 int res = sync_filesystem(sb);
207 drop_super(sb);
208 return res;
209 }
210 return sync_blockdev(bdev);
211 }
212 EXPORT_SYMBOL(fsync_bdev);
213
214 /**
215 * freeze_bdev -- lock a filesystem and force it into a consistent state
216 * @bdev: blockdevice to lock
217 *
218 * If a superblock is found on this device, we take the s_umount semaphore
219 * on it to make sure nobody unmounts until the snapshot creation is done.
220 * The reference counter (bd_fsfreeze_count) guarantees that only the last
221 * unfreeze process can unfreeze the frozen filesystem actually when multiple
222 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
223 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
224 * actually.
225 */
226 struct super_block *freeze_bdev(struct block_device *bdev)
227 {
228 struct super_block *sb;
229 int error = 0;
230
231 mutex_lock(&bdev->bd_fsfreeze_mutex);
232 if (++bdev->bd_fsfreeze_count > 1) {
233 /*
234 * We don't even need to grab a reference - the first call
235 * to freeze_bdev grab an active reference and only the last
236 * thaw_bdev drops it.
237 */
238 sb = get_super(bdev);
239 drop_super(sb);
240 mutex_unlock(&bdev->bd_fsfreeze_mutex);
241 return sb;
242 }
243
244 sb = get_active_super(bdev);
245 if (!sb)
246 goto out;
247 if (sb->s_op->freeze_super)
248 error = sb->s_op->freeze_super(sb);
249 else
250 error = freeze_super(sb);
251 if (error) {
252 deactivate_super(sb);
253 bdev->bd_fsfreeze_count--;
254 mutex_unlock(&bdev->bd_fsfreeze_mutex);
255 return ERR_PTR(error);
256 }
257 deactivate_super(sb);
258 out:
259 sync_blockdev(bdev);
260 mutex_unlock(&bdev->bd_fsfreeze_mutex);
261 return sb; /* thaw_bdev releases s->s_umount */
262 }
263 EXPORT_SYMBOL(freeze_bdev);
264
265 /**
266 * thaw_bdev -- unlock filesystem
267 * @bdev: blockdevice to unlock
268 * @sb: associated superblock
269 *
270 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
271 */
272 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
273 {
274 int error = -EINVAL;
275
276 mutex_lock(&bdev->bd_fsfreeze_mutex);
277 if (!bdev->bd_fsfreeze_count)
278 goto out;
279
280 error = 0;
281 if (--bdev->bd_fsfreeze_count > 0)
282 goto out;
283
284 if (!sb)
285 goto out;
286
287 if (sb->s_op->thaw_super)
288 error = sb->s_op->thaw_super(sb);
289 else
290 error = thaw_super(sb);
291 if (error) {
292 bdev->bd_fsfreeze_count++;
293 mutex_unlock(&bdev->bd_fsfreeze_mutex);
294 return error;
295 }
296 out:
297 mutex_unlock(&bdev->bd_fsfreeze_mutex);
298 return 0;
299 }
300 EXPORT_SYMBOL(thaw_bdev);
301
302 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
303 {
304 return block_write_full_page(page, blkdev_get_block, wbc);
305 }
306
307 static int blkdev_readpage(struct file * file, struct page * page)
308 {
309 return block_read_full_page(page, blkdev_get_block);
310 }
311
312 static int blkdev_readpages(struct file *file, struct address_space *mapping,
313 struct list_head *pages, unsigned nr_pages)
314 {
315 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
316 }
317
318 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
319 loff_t pos, unsigned len, unsigned flags,
320 struct page **pagep, void **fsdata)
321 {
322 return block_write_begin(mapping, pos, len, flags, pagep,
323 blkdev_get_block);
324 }
325
326 static int blkdev_write_end(struct file *file, struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned copied,
328 struct page *page, void *fsdata)
329 {
330 int ret;
331 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
332
333 unlock_page(page);
334 put_page(page);
335
336 return ret;
337 }
338
339 /*
340 * private llseek:
341 * for a block special file file_inode(file)->i_size is zero
342 * so we compute the size by hand (just as in block_read/write above)
343 */
344 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
345 {
346 struct inode *bd_inode = bdev_file_inode(file);
347 loff_t retval;
348
349 inode_lock(bd_inode);
350 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
351 inode_unlock(bd_inode);
352 return retval;
353 }
354
355 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
356 {
357 struct inode *bd_inode = bdev_file_inode(filp);
358 struct block_device *bdev = I_BDEV(bd_inode);
359 int error;
360
361 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
362 if (error)
363 return error;
364
365 /*
366 * There is no need to serialise calls to blkdev_issue_flush with
367 * i_mutex and doing so causes performance issues with concurrent
368 * O_SYNC writers to a block device.
369 */
370 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
371 if (error == -EOPNOTSUPP)
372 error = 0;
373
374 return error;
375 }
376 EXPORT_SYMBOL(blkdev_fsync);
377
378 /**
379 * bdev_read_page() - Start reading a page from a block device
380 * @bdev: The device to read the page from
381 * @sector: The offset on the device to read the page to (need not be aligned)
382 * @page: The page to read
383 *
384 * On entry, the page should be locked. It will be unlocked when the page
385 * has been read. If the block driver implements rw_page synchronously,
386 * that will be true on exit from this function, but it need not be.
387 *
388 * Errors returned by this function are usually "soft", eg out of memory, or
389 * queue full; callers should try a different route to read this page rather
390 * than propagate an error back up the stack.
391 *
392 * Return: negative errno if an error occurs, 0 if submission was successful.
393 */
394 int bdev_read_page(struct block_device *bdev, sector_t sector,
395 struct page *page)
396 {
397 const struct block_device_operations *ops = bdev->bd_disk->fops;
398 int result = -EOPNOTSUPP;
399
400 if (!ops->rw_page || bdev_get_integrity(bdev))
401 return result;
402
403 result = blk_queue_enter(bdev->bd_queue, false);
404 if (result)
405 return result;
406 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ);
407 blk_queue_exit(bdev->bd_queue);
408 return result;
409 }
410 EXPORT_SYMBOL_GPL(bdev_read_page);
411
412 /**
413 * bdev_write_page() - Start writing a page to a block device
414 * @bdev: The device to write the page to
415 * @sector: The offset on the device to write the page to (need not be aligned)
416 * @page: The page to write
417 * @wbc: The writeback_control for the write
418 *
419 * On entry, the page should be locked and not currently under writeback.
420 * On exit, if the write started successfully, the page will be unlocked and
421 * under writeback. If the write failed already (eg the driver failed to
422 * queue the page to the device), the page will still be locked. If the
423 * caller is a ->writepage implementation, it will need to unlock the page.
424 *
425 * Errors returned by this function are usually "soft", eg out of memory, or
426 * queue full; callers should try a different route to write this page rather
427 * than propagate an error back up the stack.
428 *
429 * Return: negative errno if an error occurs, 0 if submission was successful.
430 */
431 int bdev_write_page(struct block_device *bdev, sector_t sector,
432 struct page *page, struct writeback_control *wbc)
433 {
434 int result;
435 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE;
436 const struct block_device_operations *ops = bdev->bd_disk->fops;
437
438 if (!ops->rw_page || bdev_get_integrity(bdev))
439 return -EOPNOTSUPP;
440 result = blk_queue_enter(bdev->bd_queue, false);
441 if (result)
442 return result;
443
444 set_page_writeback(page);
445 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw);
446 if (result)
447 end_page_writeback(page);
448 else
449 unlock_page(page);
450 blk_queue_exit(bdev->bd_queue);
451 return result;
452 }
453 EXPORT_SYMBOL_GPL(bdev_write_page);
454
455 /**
456 * bdev_direct_access() - Get the address for directly-accessibly memory
457 * @bdev: The device containing the memory
458 * @dax: control and output parameters for ->direct_access
459 *
460 * If a block device is made up of directly addressable memory, this function
461 * will tell the caller the PFN and the address of the memory. The address
462 * may be directly dereferenced within the kernel without the need to call
463 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
464 * page tables.
465 *
466 * Return: negative errno if an error occurs, otherwise the number of bytes
467 * accessible at this address.
468 */
469 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
470 {
471 sector_t sector = dax->sector;
472 long avail, size = dax->size;
473 const struct block_device_operations *ops = bdev->bd_disk->fops;
474
475 /*
476 * The device driver is allowed to sleep, in order to make the
477 * memory directly accessible.
478 */
479 might_sleep();
480
481 if (size < 0)
482 return size;
483 if (!ops->direct_access)
484 return -EOPNOTSUPP;
485 if ((sector + DIV_ROUND_UP(size, 512)) >
486 part_nr_sects_read(bdev->bd_part))
487 return -ERANGE;
488 sector += get_start_sect(bdev);
489 if (sector % (PAGE_SIZE / 512))
490 return -EINVAL;
491 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn);
492 if (!avail)
493 return -ERANGE;
494 if (avail > 0 && avail & ~PAGE_MASK)
495 return -ENXIO;
496 return min(avail, size);
497 }
498 EXPORT_SYMBOL_GPL(bdev_direct_access);
499
500 /*
501 * pseudo-fs
502 */
503
504 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
505 static struct kmem_cache * bdev_cachep __read_mostly;
506
507 static struct inode *bdev_alloc_inode(struct super_block *sb)
508 {
509 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
510 if (!ei)
511 return NULL;
512 return &ei->vfs_inode;
513 }
514
515 static void bdev_i_callback(struct rcu_head *head)
516 {
517 struct inode *inode = container_of(head, struct inode, i_rcu);
518 struct bdev_inode *bdi = BDEV_I(inode);
519
520 kmem_cache_free(bdev_cachep, bdi);
521 }
522
523 static void bdev_destroy_inode(struct inode *inode)
524 {
525 call_rcu(&inode->i_rcu, bdev_i_callback);
526 }
527
528 static void init_once(void *foo)
529 {
530 struct bdev_inode *ei = (struct bdev_inode *) foo;
531 struct block_device *bdev = &ei->bdev;
532
533 memset(bdev, 0, sizeof(*bdev));
534 mutex_init(&bdev->bd_mutex);
535 INIT_LIST_HEAD(&bdev->bd_inodes);
536 INIT_LIST_HEAD(&bdev->bd_list);
537 #ifdef CONFIG_SYSFS
538 INIT_LIST_HEAD(&bdev->bd_holder_disks);
539 #endif
540 inode_init_once(&ei->vfs_inode);
541 /* Initialize mutex for freeze. */
542 mutex_init(&bdev->bd_fsfreeze_mutex);
543 }
544
545 static inline void __bd_forget(struct inode *inode)
546 {
547 list_del_init(&inode->i_devices);
548 inode->i_bdev = NULL;
549 inode->i_mapping = &inode->i_data;
550 }
551
552 static void bdev_evict_inode(struct inode *inode)
553 {
554 struct block_device *bdev = &BDEV_I(inode)->bdev;
555 struct list_head *p;
556 truncate_inode_pages_final(&inode->i_data);
557 invalidate_inode_buffers(inode); /* is it needed here? */
558 clear_inode(inode);
559 spin_lock(&bdev_lock);
560 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) {
561 __bd_forget(list_entry(p, struct inode, i_devices));
562 }
563 list_del_init(&bdev->bd_list);
564 spin_unlock(&bdev_lock);
565 }
566
567 static const struct super_operations bdev_sops = {
568 .statfs = simple_statfs,
569 .alloc_inode = bdev_alloc_inode,
570 .destroy_inode = bdev_destroy_inode,
571 .drop_inode = generic_delete_inode,
572 .evict_inode = bdev_evict_inode,
573 };
574
575 static struct dentry *bd_mount(struct file_system_type *fs_type,
576 int flags, const char *dev_name, void *data)
577 {
578 struct dentry *dent;
579 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
580 if (dent)
581 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
582 return dent;
583 }
584
585 static struct file_system_type bd_type = {
586 .name = "bdev",
587 .mount = bd_mount,
588 .kill_sb = kill_anon_super,
589 };
590
591 struct super_block *blockdev_superblock __read_mostly;
592 EXPORT_SYMBOL_GPL(blockdev_superblock);
593
594 void __init bdev_cache_init(void)
595 {
596 int err;
597 static struct vfsmount *bd_mnt;
598
599 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
600 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
601 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
602 init_once);
603 err = register_filesystem(&bd_type);
604 if (err)
605 panic("Cannot register bdev pseudo-fs");
606 bd_mnt = kern_mount(&bd_type);
607 if (IS_ERR(bd_mnt))
608 panic("Cannot create bdev pseudo-fs");
609 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
610 }
611
612 /*
613 * Most likely _very_ bad one - but then it's hardly critical for small
614 * /dev and can be fixed when somebody will need really large one.
615 * Keep in mind that it will be fed through icache hash function too.
616 */
617 static inline unsigned long hash(dev_t dev)
618 {
619 return MAJOR(dev)+MINOR(dev);
620 }
621
622 static int bdev_test(struct inode *inode, void *data)
623 {
624 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
625 }
626
627 static int bdev_set(struct inode *inode, void *data)
628 {
629 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
630 return 0;
631 }
632
633 static LIST_HEAD(all_bdevs);
634
635 struct block_device *bdget(dev_t dev)
636 {
637 struct block_device *bdev;
638 struct inode *inode;
639
640 inode = iget5_locked(blockdev_superblock, hash(dev),
641 bdev_test, bdev_set, &dev);
642
643 if (!inode)
644 return NULL;
645
646 bdev = &BDEV_I(inode)->bdev;
647
648 if (inode->i_state & I_NEW) {
649 bdev->bd_contains = NULL;
650 bdev->bd_super = NULL;
651 bdev->bd_inode = inode;
652 bdev->bd_block_size = (1 << inode->i_blkbits);
653 bdev->bd_part_count = 0;
654 bdev->bd_invalidated = 0;
655 inode->i_mode = S_IFBLK;
656 inode->i_rdev = dev;
657 inode->i_bdev = bdev;
658 inode->i_data.a_ops = &def_blk_aops;
659 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
660 spin_lock(&bdev_lock);
661 list_add(&bdev->bd_list, &all_bdevs);
662 spin_unlock(&bdev_lock);
663 unlock_new_inode(inode);
664 }
665 return bdev;
666 }
667
668 EXPORT_SYMBOL(bdget);
669
670 /**
671 * bdgrab -- Grab a reference to an already referenced block device
672 * @bdev: Block device to grab a reference to.
673 */
674 struct block_device *bdgrab(struct block_device *bdev)
675 {
676 ihold(bdev->bd_inode);
677 return bdev;
678 }
679 EXPORT_SYMBOL(bdgrab);
680
681 long nr_blockdev_pages(void)
682 {
683 struct block_device *bdev;
684 long ret = 0;
685 spin_lock(&bdev_lock);
686 list_for_each_entry(bdev, &all_bdevs, bd_list) {
687 ret += bdev->bd_inode->i_mapping->nrpages;
688 }
689 spin_unlock(&bdev_lock);
690 return ret;
691 }
692
693 void bdput(struct block_device *bdev)
694 {
695 iput(bdev->bd_inode);
696 }
697
698 EXPORT_SYMBOL(bdput);
699
700 static struct block_device *bd_acquire(struct inode *inode)
701 {
702 struct block_device *bdev;
703
704 spin_lock(&bdev_lock);
705 bdev = inode->i_bdev;
706 if (bdev) {
707 bdgrab(bdev);
708 spin_unlock(&bdev_lock);
709 return bdev;
710 }
711 spin_unlock(&bdev_lock);
712
713 bdev = bdget(inode->i_rdev);
714 if (bdev) {
715 spin_lock(&bdev_lock);
716 if (!inode->i_bdev) {
717 /*
718 * We take an additional reference to bd_inode,
719 * and it's released in clear_inode() of inode.
720 * So, we can access it via ->i_mapping always
721 * without igrab().
722 */
723 bdgrab(bdev);
724 inode->i_bdev = bdev;
725 inode->i_mapping = bdev->bd_inode->i_mapping;
726 list_add(&inode->i_devices, &bdev->bd_inodes);
727 }
728 spin_unlock(&bdev_lock);
729 }
730 return bdev;
731 }
732
733 /* Call when you free inode */
734
735 void bd_forget(struct inode *inode)
736 {
737 struct block_device *bdev = NULL;
738
739 spin_lock(&bdev_lock);
740 if (!sb_is_blkdev_sb(inode->i_sb))
741 bdev = inode->i_bdev;
742 __bd_forget(inode);
743 spin_unlock(&bdev_lock);
744
745 if (bdev)
746 bdput(bdev);
747 }
748
749 /**
750 * bd_may_claim - test whether a block device can be claimed
751 * @bdev: block device of interest
752 * @whole: whole block device containing @bdev, may equal @bdev
753 * @holder: holder trying to claim @bdev
754 *
755 * Test whether @bdev can be claimed by @holder.
756 *
757 * CONTEXT:
758 * spin_lock(&bdev_lock).
759 *
760 * RETURNS:
761 * %true if @bdev can be claimed, %false otherwise.
762 */
763 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
764 void *holder)
765 {
766 if (bdev->bd_holder == holder)
767 return true; /* already a holder */
768 else if (bdev->bd_holder != NULL)
769 return false; /* held by someone else */
770 else if (bdev->bd_contains == bdev)
771 return true; /* is a whole device which isn't held */
772
773 else if (whole->bd_holder == bd_may_claim)
774 return true; /* is a partition of a device that is being partitioned */
775 else if (whole->bd_holder != NULL)
776 return false; /* is a partition of a held device */
777 else
778 return true; /* is a partition of an un-held device */
779 }
780
781 /**
782 * bd_prepare_to_claim - prepare to claim a block device
783 * @bdev: block device of interest
784 * @whole: the whole device containing @bdev, may equal @bdev
785 * @holder: holder trying to claim @bdev
786 *
787 * Prepare to claim @bdev. This function fails if @bdev is already
788 * claimed by another holder and waits if another claiming is in
789 * progress. This function doesn't actually claim. On successful
790 * return, the caller has ownership of bd_claiming and bd_holder[s].
791 *
792 * CONTEXT:
793 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
794 * it multiple times.
795 *
796 * RETURNS:
797 * 0 if @bdev can be claimed, -EBUSY otherwise.
798 */
799 static int bd_prepare_to_claim(struct block_device *bdev,
800 struct block_device *whole, void *holder)
801 {
802 retry:
803 /* if someone else claimed, fail */
804 if (!bd_may_claim(bdev, whole, holder))
805 return -EBUSY;
806
807 /* if claiming is already in progress, wait for it to finish */
808 if (whole->bd_claiming) {
809 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
810 DEFINE_WAIT(wait);
811
812 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
813 spin_unlock(&bdev_lock);
814 schedule();
815 finish_wait(wq, &wait);
816 spin_lock(&bdev_lock);
817 goto retry;
818 }
819
820 /* yay, all mine */
821 return 0;
822 }
823
824 /**
825 * bd_start_claiming - start claiming a block device
826 * @bdev: block device of interest
827 * @holder: holder trying to claim @bdev
828 *
829 * @bdev is about to be opened exclusively. Check @bdev can be opened
830 * exclusively and mark that an exclusive open is in progress. Each
831 * successful call to this function must be matched with a call to
832 * either bd_finish_claiming() or bd_abort_claiming() (which do not
833 * fail).
834 *
835 * This function is used to gain exclusive access to the block device
836 * without actually causing other exclusive open attempts to fail. It
837 * should be used when the open sequence itself requires exclusive
838 * access but may subsequently fail.
839 *
840 * CONTEXT:
841 * Might sleep.
842 *
843 * RETURNS:
844 * Pointer to the block device containing @bdev on success, ERR_PTR()
845 * value on failure.
846 */
847 static struct block_device *bd_start_claiming(struct block_device *bdev,
848 void *holder)
849 {
850 struct gendisk *disk;
851 struct block_device *whole;
852 int partno, err;
853
854 might_sleep();
855
856 /*
857 * @bdev might not have been initialized properly yet, look up
858 * and grab the outer block device the hard way.
859 */
860 disk = get_gendisk(bdev->bd_dev, &partno);
861 if (!disk)
862 return ERR_PTR(-ENXIO);
863
864 /*
865 * Normally, @bdev should equal what's returned from bdget_disk()
866 * if partno is 0; however, some drivers (floppy) use multiple
867 * bdev's for the same physical device and @bdev may be one of the
868 * aliases. Keep @bdev if partno is 0. This means claimer
869 * tracking is broken for those devices but it has always been that
870 * way.
871 */
872 if (partno)
873 whole = bdget_disk(disk, 0);
874 else
875 whole = bdgrab(bdev);
876
877 module_put(disk->fops->owner);
878 put_disk(disk);
879 if (!whole)
880 return ERR_PTR(-ENOMEM);
881
882 /* prepare to claim, if successful, mark claiming in progress */
883 spin_lock(&bdev_lock);
884
885 err = bd_prepare_to_claim(bdev, whole, holder);
886 if (err == 0) {
887 whole->bd_claiming = holder;
888 spin_unlock(&bdev_lock);
889 return whole;
890 } else {
891 spin_unlock(&bdev_lock);
892 bdput(whole);
893 return ERR_PTR(err);
894 }
895 }
896
897 #ifdef CONFIG_SYSFS
898 struct bd_holder_disk {
899 struct list_head list;
900 struct gendisk *disk;
901 int refcnt;
902 };
903
904 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
905 struct gendisk *disk)
906 {
907 struct bd_holder_disk *holder;
908
909 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
910 if (holder->disk == disk)
911 return holder;
912 return NULL;
913 }
914
915 static int add_symlink(struct kobject *from, struct kobject *to)
916 {
917 return sysfs_create_link(from, to, kobject_name(to));
918 }
919
920 static void del_symlink(struct kobject *from, struct kobject *to)
921 {
922 sysfs_remove_link(from, kobject_name(to));
923 }
924
925 /**
926 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
927 * @bdev: the claimed slave bdev
928 * @disk: the holding disk
929 *
930 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
931 *
932 * This functions creates the following sysfs symlinks.
933 *
934 * - from "slaves" directory of the holder @disk to the claimed @bdev
935 * - from "holders" directory of the @bdev to the holder @disk
936 *
937 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
938 * passed to bd_link_disk_holder(), then:
939 *
940 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
941 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
942 *
943 * The caller must have claimed @bdev before calling this function and
944 * ensure that both @bdev and @disk are valid during the creation and
945 * lifetime of these symlinks.
946 *
947 * CONTEXT:
948 * Might sleep.
949 *
950 * RETURNS:
951 * 0 on success, -errno on failure.
952 */
953 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
954 {
955 struct bd_holder_disk *holder;
956 int ret = 0;
957
958 mutex_lock(&bdev->bd_mutex);
959
960 WARN_ON_ONCE(!bdev->bd_holder);
961
962 /* FIXME: remove the following once add_disk() handles errors */
963 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
964 goto out_unlock;
965
966 holder = bd_find_holder_disk(bdev, disk);
967 if (holder) {
968 holder->refcnt++;
969 goto out_unlock;
970 }
971
972 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
973 if (!holder) {
974 ret = -ENOMEM;
975 goto out_unlock;
976 }
977
978 INIT_LIST_HEAD(&holder->list);
979 holder->disk = disk;
980 holder->refcnt = 1;
981
982 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
983 if (ret)
984 goto out_free;
985
986 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
987 if (ret)
988 goto out_del;
989 /*
990 * bdev could be deleted beneath us which would implicitly destroy
991 * the holder directory. Hold on to it.
992 */
993 kobject_get(bdev->bd_part->holder_dir);
994
995 list_add(&holder->list, &bdev->bd_holder_disks);
996 goto out_unlock;
997
998 out_del:
999 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1000 out_free:
1001 kfree(holder);
1002 out_unlock:
1003 mutex_unlock(&bdev->bd_mutex);
1004 return ret;
1005 }
1006 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1007
1008 /**
1009 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1010 * @bdev: the calimed slave bdev
1011 * @disk: the holding disk
1012 *
1013 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1014 *
1015 * CONTEXT:
1016 * Might sleep.
1017 */
1018 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1019 {
1020 struct bd_holder_disk *holder;
1021
1022 mutex_lock(&bdev->bd_mutex);
1023
1024 holder = bd_find_holder_disk(bdev, disk);
1025
1026 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1027 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1028 del_symlink(bdev->bd_part->holder_dir,
1029 &disk_to_dev(disk)->kobj);
1030 kobject_put(bdev->bd_part->holder_dir);
1031 list_del_init(&holder->list);
1032 kfree(holder);
1033 }
1034
1035 mutex_unlock(&bdev->bd_mutex);
1036 }
1037 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1038 #endif
1039
1040 /**
1041 * flush_disk - invalidates all buffer-cache entries on a disk
1042 *
1043 * @bdev: struct block device to be flushed
1044 * @kill_dirty: flag to guide handling of dirty inodes
1045 *
1046 * Invalidates all buffer-cache entries on a disk. It should be called
1047 * when a disk has been changed -- either by a media change or online
1048 * resize.
1049 */
1050 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1051 {
1052 if (__invalidate_device(bdev, kill_dirty)) {
1053 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1054 "resized disk %s\n",
1055 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1056 }
1057
1058 if (!bdev->bd_disk)
1059 return;
1060 if (disk_part_scan_enabled(bdev->bd_disk))
1061 bdev->bd_invalidated = 1;
1062 }
1063
1064 /**
1065 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1066 * @disk: struct gendisk to check
1067 * @bdev: struct bdev to adjust.
1068 *
1069 * This routine checks to see if the bdev size does not match the disk size
1070 * and adjusts it if it differs.
1071 */
1072 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1073 {
1074 loff_t disk_size, bdev_size;
1075
1076 disk_size = (loff_t)get_capacity(disk) << 9;
1077 bdev_size = i_size_read(bdev->bd_inode);
1078 if (disk_size != bdev_size) {
1079 printk(KERN_INFO
1080 "%s: detected capacity change from %lld to %lld\n",
1081 disk->disk_name, bdev_size, disk_size);
1082 i_size_write(bdev->bd_inode, disk_size);
1083 flush_disk(bdev, false);
1084 }
1085 }
1086 EXPORT_SYMBOL(check_disk_size_change);
1087
1088 /**
1089 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1090 * @disk: struct gendisk to be revalidated
1091 *
1092 * This routine is a wrapper for lower-level driver's revalidate_disk
1093 * call-backs. It is used to do common pre and post operations needed
1094 * for all revalidate_disk operations.
1095 */
1096 int revalidate_disk(struct gendisk *disk)
1097 {
1098 struct block_device *bdev;
1099 int ret = 0;
1100
1101 if (disk->fops->revalidate_disk)
1102 ret = disk->fops->revalidate_disk(disk);
1103 blk_integrity_revalidate(disk);
1104 bdev = bdget_disk(disk, 0);
1105 if (!bdev)
1106 return ret;
1107
1108 mutex_lock(&bdev->bd_mutex);
1109 check_disk_size_change(disk, bdev);
1110 bdev->bd_invalidated = 0;
1111 mutex_unlock(&bdev->bd_mutex);
1112 bdput(bdev);
1113 return ret;
1114 }
1115 EXPORT_SYMBOL(revalidate_disk);
1116
1117 /*
1118 * This routine checks whether a removable media has been changed,
1119 * and invalidates all buffer-cache-entries in that case. This
1120 * is a relatively slow routine, so we have to try to minimize using
1121 * it. Thus it is called only upon a 'mount' or 'open'. This
1122 * is the best way of combining speed and utility, I think.
1123 * People changing diskettes in the middle of an operation deserve
1124 * to lose :-)
1125 */
1126 int check_disk_change(struct block_device *bdev)
1127 {
1128 struct gendisk *disk = bdev->bd_disk;
1129 const struct block_device_operations *bdops = disk->fops;
1130 unsigned int events;
1131
1132 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1133 DISK_EVENT_EJECT_REQUEST);
1134 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1135 return 0;
1136
1137 flush_disk(bdev, true);
1138 if (bdops->revalidate_disk)
1139 bdops->revalidate_disk(bdev->bd_disk);
1140 return 1;
1141 }
1142
1143 EXPORT_SYMBOL(check_disk_change);
1144
1145 void bd_set_size(struct block_device *bdev, loff_t size)
1146 {
1147 unsigned bsize = bdev_logical_block_size(bdev);
1148
1149 inode_lock(bdev->bd_inode);
1150 i_size_write(bdev->bd_inode, size);
1151 inode_unlock(bdev->bd_inode);
1152 while (bsize < PAGE_SIZE) {
1153 if (size & bsize)
1154 break;
1155 bsize <<= 1;
1156 }
1157 bdev->bd_block_size = bsize;
1158 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1159 }
1160 EXPORT_SYMBOL(bd_set_size);
1161
1162 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1163
1164 /*
1165 * bd_mutex locking:
1166 *
1167 * mutex_lock(part->bd_mutex)
1168 * mutex_lock_nested(whole->bd_mutex, 1)
1169 */
1170
1171 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1172 {
1173 struct gendisk *disk;
1174 struct module *owner;
1175 int ret;
1176 int partno;
1177 int perm = 0;
1178
1179 if (mode & FMODE_READ)
1180 perm |= MAY_READ;
1181 if (mode & FMODE_WRITE)
1182 perm |= MAY_WRITE;
1183 /*
1184 * hooks: /n/, see "layering violations".
1185 */
1186 if (!for_part) {
1187 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1188 if (ret != 0) {
1189 bdput(bdev);
1190 return ret;
1191 }
1192 }
1193
1194 restart:
1195
1196 ret = -ENXIO;
1197 disk = get_gendisk(bdev->bd_dev, &partno);
1198 if (!disk)
1199 goto out;
1200 owner = disk->fops->owner;
1201
1202 disk_block_events(disk);
1203 mutex_lock_nested(&bdev->bd_mutex, for_part);
1204 if (!bdev->bd_openers) {
1205 bdev->bd_disk = disk;
1206 bdev->bd_queue = disk->queue;
1207 bdev->bd_contains = bdev;
1208 if (IS_ENABLED(CONFIG_BLK_DEV_DAX) && disk->fops->direct_access)
1209 bdev->bd_inode->i_flags = S_DAX;
1210 else
1211 bdev->bd_inode->i_flags = 0;
1212
1213 if (!partno) {
1214 ret = -ENXIO;
1215 bdev->bd_part = disk_get_part(disk, partno);
1216 if (!bdev->bd_part)
1217 goto out_clear;
1218
1219 ret = 0;
1220 if (disk->fops->open) {
1221 ret = disk->fops->open(bdev, mode);
1222 if (ret == -ERESTARTSYS) {
1223 /* Lost a race with 'disk' being
1224 * deleted, try again.
1225 * See md.c
1226 */
1227 disk_put_part(bdev->bd_part);
1228 bdev->bd_part = NULL;
1229 bdev->bd_disk = NULL;
1230 bdev->bd_queue = NULL;
1231 mutex_unlock(&bdev->bd_mutex);
1232 disk_unblock_events(disk);
1233 put_disk(disk);
1234 module_put(owner);
1235 goto restart;
1236 }
1237 }
1238
1239 if (!ret) {
1240 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1241 if (!blkdev_dax_capable(bdev))
1242 bdev->bd_inode->i_flags &= ~S_DAX;
1243 }
1244
1245 /*
1246 * If the device is invalidated, rescan partition
1247 * if open succeeded or failed with -ENOMEDIUM.
1248 * The latter is necessary to prevent ghost
1249 * partitions on a removed medium.
1250 */
1251 if (bdev->bd_invalidated) {
1252 if (!ret)
1253 rescan_partitions(disk, bdev);
1254 else if (ret == -ENOMEDIUM)
1255 invalidate_partitions(disk, bdev);
1256 }
1257
1258 if (ret)
1259 goto out_clear;
1260 } else {
1261 struct block_device *whole;
1262 whole = bdget_disk(disk, 0);
1263 ret = -ENOMEM;
1264 if (!whole)
1265 goto out_clear;
1266 BUG_ON(for_part);
1267 ret = __blkdev_get(whole, mode, 1);
1268 if (ret)
1269 goto out_clear;
1270 bdev->bd_contains = whole;
1271 bdev->bd_part = disk_get_part(disk, partno);
1272 if (!(disk->flags & GENHD_FL_UP) ||
1273 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1274 ret = -ENXIO;
1275 goto out_clear;
1276 }
1277 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1278 if (!blkdev_dax_capable(bdev))
1279 bdev->bd_inode->i_flags &= ~S_DAX;
1280 }
1281 } else {
1282 if (bdev->bd_contains == bdev) {
1283 ret = 0;
1284 if (bdev->bd_disk->fops->open)
1285 ret = bdev->bd_disk->fops->open(bdev, mode);
1286 /* the same as first opener case, read comment there */
1287 if (bdev->bd_invalidated) {
1288 if (!ret)
1289 rescan_partitions(bdev->bd_disk, bdev);
1290 else if (ret == -ENOMEDIUM)
1291 invalidate_partitions(bdev->bd_disk, bdev);
1292 }
1293 if (ret)
1294 goto out_unlock_bdev;
1295 }
1296 /* only one opener holds refs to the module and disk */
1297 put_disk(disk);
1298 module_put(owner);
1299 }
1300 bdev->bd_openers++;
1301 if (for_part)
1302 bdev->bd_part_count++;
1303 mutex_unlock(&bdev->bd_mutex);
1304 disk_unblock_events(disk);
1305 return 0;
1306
1307 out_clear:
1308 disk_put_part(bdev->bd_part);
1309 bdev->bd_disk = NULL;
1310 bdev->bd_part = NULL;
1311 bdev->bd_queue = NULL;
1312 if (bdev != bdev->bd_contains)
1313 __blkdev_put(bdev->bd_contains, mode, 1);
1314 bdev->bd_contains = NULL;
1315 out_unlock_bdev:
1316 mutex_unlock(&bdev->bd_mutex);
1317 disk_unblock_events(disk);
1318 put_disk(disk);
1319 module_put(owner);
1320 out:
1321 bdput(bdev);
1322
1323 return ret;
1324 }
1325
1326 /**
1327 * blkdev_get - open a block device
1328 * @bdev: block_device to open
1329 * @mode: FMODE_* mask
1330 * @holder: exclusive holder identifier
1331 *
1332 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1333 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1334 * @holder is invalid. Exclusive opens may nest for the same @holder.
1335 *
1336 * On success, the reference count of @bdev is unchanged. On failure,
1337 * @bdev is put.
1338 *
1339 * CONTEXT:
1340 * Might sleep.
1341 *
1342 * RETURNS:
1343 * 0 on success, -errno on failure.
1344 */
1345 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1346 {
1347 struct block_device *whole = NULL;
1348 int res;
1349
1350 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1351
1352 if ((mode & FMODE_EXCL) && holder) {
1353 whole = bd_start_claiming(bdev, holder);
1354 if (IS_ERR(whole)) {
1355 bdput(bdev);
1356 return PTR_ERR(whole);
1357 }
1358 }
1359
1360 res = __blkdev_get(bdev, mode, 0);
1361
1362 if (whole) {
1363 struct gendisk *disk = whole->bd_disk;
1364
1365 /* finish claiming */
1366 mutex_lock(&bdev->bd_mutex);
1367 spin_lock(&bdev_lock);
1368
1369 if (!res) {
1370 BUG_ON(!bd_may_claim(bdev, whole, holder));
1371 /*
1372 * Note that for a whole device bd_holders
1373 * will be incremented twice, and bd_holder
1374 * will be set to bd_may_claim before being
1375 * set to holder
1376 */
1377 whole->bd_holders++;
1378 whole->bd_holder = bd_may_claim;
1379 bdev->bd_holders++;
1380 bdev->bd_holder = holder;
1381 }
1382
1383 /* tell others that we're done */
1384 BUG_ON(whole->bd_claiming != holder);
1385 whole->bd_claiming = NULL;
1386 wake_up_bit(&whole->bd_claiming, 0);
1387
1388 spin_unlock(&bdev_lock);
1389
1390 /*
1391 * Block event polling for write claims if requested. Any
1392 * write holder makes the write_holder state stick until
1393 * all are released. This is good enough and tracking
1394 * individual writeable reference is too fragile given the
1395 * way @mode is used in blkdev_get/put().
1396 */
1397 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1398 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1399 bdev->bd_write_holder = true;
1400 disk_block_events(disk);
1401 }
1402
1403 mutex_unlock(&bdev->bd_mutex);
1404 bdput(whole);
1405 }
1406
1407 return res;
1408 }
1409 EXPORT_SYMBOL(blkdev_get);
1410
1411 /**
1412 * blkdev_get_by_path - open a block device by name
1413 * @path: path to the block device to open
1414 * @mode: FMODE_* mask
1415 * @holder: exclusive holder identifier
1416 *
1417 * Open the blockdevice described by the device file at @path. @mode
1418 * and @holder are identical to blkdev_get().
1419 *
1420 * On success, the returned block_device has reference count of one.
1421 *
1422 * CONTEXT:
1423 * Might sleep.
1424 *
1425 * RETURNS:
1426 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1427 */
1428 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1429 void *holder)
1430 {
1431 struct block_device *bdev;
1432 int err;
1433
1434 bdev = lookup_bdev(path);
1435 if (IS_ERR(bdev))
1436 return bdev;
1437
1438 err = blkdev_get(bdev, mode, holder);
1439 if (err)
1440 return ERR_PTR(err);
1441
1442 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1443 blkdev_put(bdev, mode);
1444 return ERR_PTR(-EACCES);
1445 }
1446
1447 return bdev;
1448 }
1449 EXPORT_SYMBOL(blkdev_get_by_path);
1450
1451 /**
1452 * blkdev_get_by_dev - open a block device by device number
1453 * @dev: device number of block device to open
1454 * @mode: FMODE_* mask
1455 * @holder: exclusive holder identifier
1456 *
1457 * Open the blockdevice described by device number @dev. @mode and
1458 * @holder are identical to blkdev_get().
1459 *
1460 * Use it ONLY if you really do not have anything better - i.e. when
1461 * you are behind a truly sucky interface and all you are given is a
1462 * device number. _Never_ to be used for internal purposes. If you
1463 * ever need it - reconsider your API.
1464 *
1465 * On success, the returned block_device has reference count of one.
1466 *
1467 * CONTEXT:
1468 * Might sleep.
1469 *
1470 * RETURNS:
1471 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1472 */
1473 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1474 {
1475 struct block_device *bdev;
1476 int err;
1477
1478 bdev = bdget(dev);
1479 if (!bdev)
1480 return ERR_PTR(-ENOMEM);
1481
1482 err = blkdev_get(bdev, mode, holder);
1483 if (err)
1484 return ERR_PTR(err);
1485
1486 return bdev;
1487 }
1488 EXPORT_SYMBOL(blkdev_get_by_dev);
1489
1490 static int blkdev_open(struct inode * inode, struct file * filp)
1491 {
1492 struct block_device *bdev;
1493
1494 /*
1495 * Preserve backwards compatibility and allow large file access
1496 * even if userspace doesn't ask for it explicitly. Some mkfs
1497 * binary needs it. We might want to drop this workaround
1498 * during an unstable branch.
1499 */
1500 filp->f_flags |= O_LARGEFILE;
1501
1502 if (filp->f_flags & O_NDELAY)
1503 filp->f_mode |= FMODE_NDELAY;
1504 if (filp->f_flags & O_EXCL)
1505 filp->f_mode |= FMODE_EXCL;
1506 if ((filp->f_flags & O_ACCMODE) == 3)
1507 filp->f_mode |= FMODE_WRITE_IOCTL;
1508
1509 bdev = bd_acquire(inode);
1510 if (bdev == NULL)
1511 return -ENOMEM;
1512
1513 filp->f_mapping = bdev->bd_inode->i_mapping;
1514
1515 return blkdev_get(bdev, filp->f_mode, filp);
1516 }
1517
1518 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1519 {
1520 struct gendisk *disk = bdev->bd_disk;
1521 struct block_device *victim = NULL;
1522
1523 mutex_lock_nested(&bdev->bd_mutex, for_part);
1524 if (for_part)
1525 bdev->bd_part_count--;
1526
1527 if (!--bdev->bd_openers) {
1528 WARN_ON_ONCE(bdev->bd_holders);
1529 sync_blockdev(bdev);
1530 kill_bdev(bdev);
1531
1532 bdev_write_inode(bdev);
1533 /*
1534 * Detaching bdev inode from its wb in __destroy_inode()
1535 * is too late: the queue which embeds its bdi (along with
1536 * root wb) can be gone as soon as we put_disk() below.
1537 */
1538 inode_detach_wb(bdev->bd_inode);
1539 }
1540 if (bdev->bd_contains == bdev) {
1541 if (disk->fops->release)
1542 disk->fops->release(disk, mode);
1543 }
1544 if (!bdev->bd_openers) {
1545 struct module *owner = disk->fops->owner;
1546
1547 disk_put_part(bdev->bd_part);
1548 bdev->bd_part = NULL;
1549 bdev->bd_disk = NULL;
1550 if (bdev != bdev->bd_contains)
1551 victim = bdev->bd_contains;
1552 bdev->bd_contains = NULL;
1553
1554 put_disk(disk);
1555 module_put(owner);
1556 }
1557 mutex_unlock(&bdev->bd_mutex);
1558 bdput(bdev);
1559 if (victim)
1560 __blkdev_put(victim, mode, 1);
1561 }
1562
1563 void blkdev_put(struct block_device *bdev, fmode_t mode)
1564 {
1565 mutex_lock(&bdev->bd_mutex);
1566
1567 if (mode & FMODE_EXCL) {
1568 bool bdev_free;
1569
1570 /*
1571 * Release a claim on the device. The holder fields
1572 * are protected with bdev_lock. bd_mutex is to
1573 * synchronize disk_holder unlinking.
1574 */
1575 spin_lock(&bdev_lock);
1576
1577 WARN_ON_ONCE(--bdev->bd_holders < 0);
1578 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1579
1580 /* bd_contains might point to self, check in a separate step */
1581 if ((bdev_free = !bdev->bd_holders))
1582 bdev->bd_holder = NULL;
1583 if (!bdev->bd_contains->bd_holders)
1584 bdev->bd_contains->bd_holder = NULL;
1585
1586 spin_unlock(&bdev_lock);
1587
1588 /*
1589 * If this was the last claim, remove holder link and
1590 * unblock evpoll if it was a write holder.
1591 */
1592 if (bdev_free && bdev->bd_write_holder) {
1593 disk_unblock_events(bdev->bd_disk);
1594 bdev->bd_write_holder = false;
1595 }
1596 }
1597
1598 /*
1599 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1600 * event. This is to ensure detection of media removal commanded
1601 * from userland - e.g. eject(1).
1602 */
1603 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1604
1605 mutex_unlock(&bdev->bd_mutex);
1606
1607 __blkdev_put(bdev, mode, 0);
1608 }
1609 EXPORT_SYMBOL(blkdev_put);
1610
1611 static int blkdev_close(struct inode * inode, struct file * filp)
1612 {
1613 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1614 blkdev_put(bdev, filp->f_mode);
1615 return 0;
1616 }
1617
1618 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1619 {
1620 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1621 fmode_t mode = file->f_mode;
1622
1623 /*
1624 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1625 * to updated it before every ioctl.
1626 */
1627 if (file->f_flags & O_NDELAY)
1628 mode |= FMODE_NDELAY;
1629 else
1630 mode &= ~FMODE_NDELAY;
1631
1632 return blkdev_ioctl(bdev, mode, cmd, arg);
1633 }
1634
1635 /*
1636 * Write data to the block device. Only intended for the block device itself
1637 * and the raw driver which basically is a fake block device.
1638 *
1639 * Does not take i_mutex for the write and thus is not for general purpose
1640 * use.
1641 */
1642 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1643 {
1644 struct file *file = iocb->ki_filp;
1645 struct inode *bd_inode = bdev_file_inode(file);
1646 loff_t size = i_size_read(bd_inode);
1647 struct blk_plug plug;
1648 ssize_t ret;
1649
1650 if (bdev_read_only(I_BDEV(bd_inode)))
1651 return -EPERM;
1652
1653 if (!iov_iter_count(from))
1654 return 0;
1655
1656 if (iocb->ki_pos >= size)
1657 return -ENOSPC;
1658
1659 iov_iter_truncate(from, size - iocb->ki_pos);
1660
1661 blk_start_plug(&plug);
1662 ret = __generic_file_write_iter(iocb, from);
1663 if (ret > 0) {
1664 ssize_t err;
1665 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
1666 if (err < 0)
1667 ret = err;
1668 }
1669 blk_finish_plug(&plug);
1670 return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1673
1674 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1675 {
1676 struct file *file = iocb->ki_filp;
1677 struct inode *bd_inode = bdev_file_inode(file);
1678 loff_t size = i_size_read(bd_inode);
1679 loff_t pos = iocb->ki_pos;
1680
1681 if (pos >= size)
1682 return 0;
1683
1684 size -= pos;
1685 iov_iter_truncate(to, size);
1686 return generic_file_read_iter(iocb, to);
1687 }
1688 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1689
1690 /*
1691 * Try to release a page associated with block device when the system
1692 * is under memory pressure.
1693 */
1694 static int blkdev_releasepage(struct page *page, gfp_t wait)
1695 {
1696 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1697
1698 if (super && super->s_op->bdev_try_to_free_page)
1699 return super->s_op->bdev_try_to_free_page(super, page, wait);
1700
1701 return try_to_free_buffers(page);
1702 }
1703
1704 static int blkdev_writepages(struct address_space *mapping,
1705 struct writeback_control *wbc)
1706 {
1707 if (dax_mapping(mapping)) {
1708 struct block_device *bdev = I_BDEV(mapping->host);
1709
1710 return dax_writeback_mapping_range(mapping, bdev, wbc);
1711 }
1712 return generic_writepages(mapping, wbc);
1713 }
1714
1715 static const struct address_space_operations def_blk_aops = {
1716 .readpage = blkdev_readpage,
1717 .readpages = blkdev_readpages,
1718 .writepage = blkdev_writepage,
1719 .write_begin = blkdev_write_begin,
1720 .write_end = blkdev_write_end,
1721 .writepages = blkdev_writepages,
1722 .releasepage = blkdev_releasepage,
1723 .direct_IO = blkdev_direct_IO,
1724 .is_dirty_writeback = buffer_check_dirty_writeback,
1725 };
1726
1727 #ifdef CONFIG_FS_DAX
1728 /*
1729 * In the raw block case we do not need to contend with truncation nor
1730 * unwritten file extents. Without those concerns there is no need for
1731 * additional locking beyond the mmap_sem context that these routines
1732 * are already executing under.
1733 *
1734 * Note, there is no protection if the block device is dynamically
1735 * resized (partition grow/shrink) during a fault. A stable block device
1736 * size is already not enforced in the blkdev_direct_IO path.
1737 *
1738 * For DAX, it is the responsibility of the block device driver to
1739 * ensure the whole-disk device size is stable while requests are in
1740 * flight.
1741 *
1742 * Finally, unlike the filemap_page_mkwrite() case there is no
1743 * filesystem superblock to sync against freezing. We still include a
1744 * pfn_mkwrite callback for dax drivers to receive write fault
1745 * notifications.
1746 */
1747 static int blkdev_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1748 {
1749 return __dax_fault(vma, vmf, blkdev_get_block, NULL);
1750 }
1751
1752 static int blkdev_dax_pfn_mkwrite(struct vm_area_struct *vma,
1753 struct vm_fault *vmf)
1754 {
1755 return dax_pfn_mkwrite(vma, vmf);
1756 }
1757
1758 static int blkdev_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
1759 pmd_t *pmd, unsigned int flags)
1760 {
1761 return __dax_pmd_fault(vma, addr, pmd, flags, blkdev_get_block, NULL);
1762 }
1763
1764 static const struct vm_operations_struct blkdev_dax_vm_ops = {
1765 .fault = blkdev_dax_fault,
1766 .pmd_fault = blkdev_dax_pmd_fault,
1767 .pfn_mkwrite = blkdev_dax_pfn_mkwrite,
1768 };
1769
1770 static const struct vm_operations_struct blkdev_default_vm_ops = {
1771 .fault = filemap_fault,
1772 .map_pages = filemap_map_pages,
1773 };
1774
1775 static int blkdev_mmap(struct file *file, struct vm_area_struct *vma)
1776 {
1777 struct inode *bd_inode = bdev_file_inode(file);
1778
1779 file_accessed(file);
1780 if (IS_DAX(bd_inode)) {
1781 vma->vm_ops = &blkdev_dax_vm_ops;
1782 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
1783 } else {
1784 vma->vm_ops = &blkdev_default_vm_ops;
1785 }
1786
1787 return 0;
1788 }
1789 #else
1790 #define blkdev_mmap generic_file_mmap
1791 #endif
1792
1793 const struct file_operations def_blk_fops = {
1794 .open = blkdev_open,
1795 .release = blkdev_close,
1796 .llseek = block_llseek,
1797 .read_iter = blkdev_read_iter,
1798 .write_iter = blkdev_write_iter,
1799 .mmap = blkdev_mmap,
1800 .fsync = blkdev_fsync,
1801 .unlocked_ioctl = block_ioctl,
1802 #ifdef CONFIG_COMPAT
1803 .compat_ioctl = compat_blkdev_ioctl,
1804 #endif
1805 .splice_read = generic_file_splice_read,
1806 .splice_write = iter_file_splice_write,
1807 };
1808
1809 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1810 {
1811 int res;
1812 mm_segment_t old_fs = get_fs();
1813 set_fs(KERNEL_DS);
1814 res = blkdev_ioctl(bdev, 0, cmd, arg);
1815 set_fs(old_fs);
1816 return res;
1817 }
1818
1819 EXPORT_SYMBOL(ioctl_by_bdev);
1820
1821 /**
1822 * lookup_bdev - lookup a struct block_device by name
1823 * @pathname: special file representing the block device
1824 *
1825 * Get a reference to the blockdevice at @pathname in the current
1826 * namespace if possible and return it. Return ERR_PTR(error)
1827 * otherwise.
1828 */
1829 struct block_device *lookup_bdev(const char *pathname)
1830 {
1831 struct block_device *bdev;
1832 struct inode *inode;
1833 struct path path;
1834 int error;
1835
1836 if (!pathname || !*pathname)
1837 return ERR_PTR(-EINVAL);
1838
1839 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1840 if (error)
1841 return ERR_PTR(error);
1842
1843 inode = d_backing_inode(path.dentry);
1844 error = -ENOTBLK;
1845 if (!S_ISBLK(inode->i_mode))
1846 goto fail;
1847 error = -EACCES;
1848 if (path.mnt->mnt_flags & MNT_NODEV)
1849 goto fail;
1850 error = -ENOMEM;
1851 bdev = bd_acquire(inode);
1852 if (!bdev)
1853 goto fail;
1854 out:
1855 path_put(&path);
1856 return bdev;
1857 fail:
1858 bdev = ERR_PTR(error);
1859 goto out;
1860 }
1861 EXPORT_SYMBOL(lookup_bdev);
1862
1863 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1864 {
1865 struct super_block *sb = get_super(bdev);
1866 int res = 0;
1867
1868 if (sb) {
1869 /*
1870 * no need to lock the super, get_super holds the
1871 * read mutex so the filesystem cannot go away
1872 * under us (->put_super runs with the write lock
1873 * hold).
1874 */
1875 shrink_dcache_sb(sb);
1876 res = invalidate_inodes(sb, kill_dirty);
1877 drop_super(sb);
1878 }
1879 invalidate_bdev(bdev);
1880 return res;
1881 }
1882 EXPORT_SYMBOL(__invalidate_device);
1883
1884 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1885 {
1886 struct inode *inode, *old_inode = NULL;
1887
1888 spin_lock(&blockdev_superblock->s_inode_list_lock);
1889 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1890 struct address_space *mapping = inode->i_mapping;
1891
1892 spin_lock(&inode->i_lock);
1893 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1894 mapping->nrpages == 0) {
1895 spin_unlock(&inode->i_lock);
1896 continue;
1897 }
1898 __iget(inode);
1899 spin_unlock(&inode->i_lock);
1900 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1901 /*
1902 * We hold a reference to 'inode' so it couldn't have been
1903 * removed from s_inodes list while we dropped the
1904 * s_inode_list_lock We cannot iput the inode now as we can
1905 * be holding the last reference and we cannot iput it under
1906 * s_inode_list_lock. So we keep the reference and iput it
1907 * later.
1908 */
1909 iput(old_inode);
1910 old_inode = inode;
1911
1912 func(I_BDEV(inode), arg);
1913
1914 spin_lock(&blockdev_superblock->s_inode_list_lock);
1915 }
1916 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1917 iput(old_inode);
1918 }
This page took 0.068123 seconds and 5 git commands to generate.