Merge tag 'media/v4.6-5' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / fs / btrfs / check-integrity.c
1 /*
2 * Copyright (C) STRATO AG 2011. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 /*
20 * This module can be used to catch cases when the btrfs kernel
21 * code executes write requests to the disk that bring the file
22 * system in an inconsistent state. In such a state, a power-loss
23 * or kernel panic event would cause that the data on disk is
24 * lost or at least damaged.
25 *
26 * Code is added that examines all block write requests during
27 * runtime (including writes of the super block). Three rules
28 * are verified and an error is printed on violation of the
29 * rules:
30 * 1. It is not allowed to write a disk block which is
31 * currently referenced by the super block (either directly
32 * or indirectly).
33 * 2. When a super block is written, it is verified that all
34 * referenced (directly or indirectly) blocks fulfill the
35 * following requirements:
36 * 2a. All referenced blocks have either been present when
37 * the file system was mounted, (i.e., they have been
38 * referenced by the super block) or they have been
39 * written since then and the write completion callback
40 * was called and no write error was indicated and a
41 * FLUSH request to the device where these blocks are
42 * located was received and completed.
43 * 2b. All referenced blocks need to have a generation
44 * number which is equal to the parent's number.
45 *
46 * One issue that was found using this module was that the log
47 * tree on disk became temporarily corrupted because disk blocks
48 * that had been in use for the log tree had been freed and
49 * reused too early, while being referenced by the written super
50 * block.
51 *
52 * The search term in the kernel log that can be used to filter
53 * on the existence of detected integrity issues is
54 * "btrfs: attempt".
55 *
56 * The integrity check is enabled via mount options. These
57 * mount options are only supported if the integrity check
58 * tool is compiled by defining BTRFS_FS_CHECK_INTEGRITY.
59 *
60 * Example #1, apply integrity checks to all metadata:
61 * mount /dev/sdb1 /mnt -o check_int
62 *
63 * Example #2, apply integrity checks to all metadata and
64 * to data extents:
65 * mount /dev/sdb1 /mnt -o check_int_data
66 *
67 * Example #3, apply integrity checks to all metadata and dump
68 * the tree that the super block references to kernel messages
69 * each time after a super block was written:
70 * mount /dev/sdb1 /mnt -o check_int,check_int_print_mask=263
71 *
72 * If the integrity check tool is included and activated in
73 * the mount options, plenty of kernel memory is used, and
74 * plenty of additional CPU cycles are spent. Enabling this
75 * functionality is not intended for normal use. In most
76 * cases, unless you are a btrfs developer who needs to verify
77 * the integrity of (super)-block write requests, do not
78 * enable the config option BTRFS_FS_CHECK_INTEGRITY to
79 * include and compile the integrity check tool.
80 *
81 * Expect millions of lines of information in the kernel log with an
82 * enabled check_int_print_mask. Therefore set LOG_BUF_SHIFT in the
83 * kernel config to at least 26 (which is 64MB). Usually the value is
84 * limited to 21 (which is 2MB) in init/Kconfig. The file needs to be
85 * changed like this before LOG_BUF_SHIFT can be set to a high value:
86 * config LOG_BUF_SHIFT
87 * int "Kernel log buffer size (16 => 64KB, 17 => 128KB)"
88 * range 12 30
89 */
90
91 #include <linux/sched.h>
92 #include <linux/slab.h>
93 #include <linux/buffer_head.h>
94 #include <linux/mutex.h>
95 #include <linux/genhd.h>
96 #include <linux/blkdev.h>
97 #include <linux/vmalloc.h>
98 #include <linux/string.h>
99 #include "ctree.h"
100 #include "disk-io.h"
101 #include "hash.h"
102 #include "transaction.h"
103 #include "extent_io.h"
104 #include "volumes.h"
105 #include "print-tree.h"
106 #include "locking.h"
107 #include "check-integrity.h"
108 #include "rcu-string.h"
109 #include "compression.h"
110
111 #define BTRFSIC_BLOCK_HASHTABLE_SIZE 0x10000
112 #define BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE 0x10000
113 #define BTRFSIC_DEV2STATE_HASHTABLE_SIZE 0x100
114 #define BTRFSIC_BLOCK_MAGIC_NUMBER 0x14491051
115 #define BTRFSIC_BLOCK_LINK_MAGIC_NUMBER 0x11070807
116 #define BTRFSIC_DEV2STATE_MAGIC_NUMBER 0x20111530
117 #define BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER 20111300
118 #define BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL (200 - 6) /* in characters,
119 * excluding " [...]" */
120 #define BTRFSIC_GENERATION_UNKNOWN ((u64)-1)
121
122 /*
123 * The definition of the bitmask fields for the print_mask.
124 * They are specified with the mount option check_integrity_print_mask.
125 */
126 #define BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE 0x00000001
127 #define BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION 0x00000002
128 #define BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE 0x00000004
129 #define BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE 0x00000008
130 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH 0x00000010
131 #define BTRFSIC_PRINT_MASK_END_IO_BIO_BH 0x00000020
132 #define BTRFSIC_PRINT_MASK_VERBOSE 0x00000040
133 #define BTRFSIC_PRINT_MASK_VERY_VERBOSE 0x00000080
134 #define BTRFSIC_PRINT_MASK_INITIAL_TREE 0x00000100
135 #define BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES 0x00000200
136 #define BTRFSIC_PRINT_MASK_INITIAL_DATABASE 0x00000400
137 #define BTRFSIC_PRINT_MASK_NUM_COPIES 0x00000800
138 #define BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS 0x00001000
139 #define BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE 0x00002000
140
141 struct btrfsic_dev_state;
142 struct btrfsic_state;
143
144 struct btrfsic_block {
145 u32 magic_num; /* only used for debug purposes */
146 unsigned int is_metadata:1; /* if it is meta-data, not data-data */
147 unsigned int is_superblock:1; /* if it is one of the superblocks */
148 unsigned int is_iodone:1; /* if is done by lower subsystem */
149 unsigned int iodone_w_error:1; /* error was indicated to endio */
150 unsigned int never_written:1; /* block was added because it was
151 * referenced, not because it was
152 * written */
153 unsigned int mirror_num; /* large enough to hold
154 * BTRFS_SUPER_MIRROR_MAX */
155 struct btrfsic_dev_state *dev_state;
156 u64 dev_bytenr; /* key, physical byte num on disk */
157 u64 logical_bytenr; /* logical byte num on disk */
158 u64 generation;
159 struct btrfs_disk_key disk_key; /* extra info to print in case of
160 * issues, will not always be correct */
161 struct list_head collision_resolving_node; /* list node */
162 struct list_head all_blocks_node; /* list node */
163
164 /* the following two lists contain block_link items */
165 struct list_head ref_to_list; /* list */
166 struct list_head ref_from_list; /* list */
167 struct btrfsic_block *next_in_same_bio;
168 void *orig_bio_bh_private;
169 union {
170 bio_end_io_t *bio;
171 bh_end_io_t *bh;
172 } orig_bio_bh_end_io;
173 int submit_bio_bh_rw;
174 u64 flush_gen; /* only valid if !never_written */
175 };
176
177 /*
178 * Elements of this type are allocated dynamically and required because
179 * each block object can refer to and can be ref from multiple blocks.
180 * The key to lookup them in the hashtable is the dev_bytenr of
181 * the block ref to plus the one from the block referred from.
182 * The fact that they are searchable via a hashtable and that a
183 * ref_cnt is maintained is not required for the btrfs integrity
184 * check algorithm itself, it is only used to make the output more
185 * beautiful in case that an error is detected (an error is defined
186 * as a write operation to a block while that block is still referenced).
187 */
188 struct btrfsic_block_link {
189 u32 magic_num; /* only used for debug purposes */
190 u32 ref_cnt;
191 struct list_head node_ref_to; /* list node */
192 struct list_head node_ref_from; /* list node */
193 struct list_head collision_resolving_node; /* list node */
194 struct btrfsic_block *block_ref_to;
195 struct btrfsic_block *block_ref_from;
196 u64 parent_generation;
197 };
198
199 struct btrfsic_dev_state {
200 u32 magic_num; /* only used for debug purposes */
201 struct block_device *bdev;
202 struct btrfsic_state *state;
203 struct list_head collision_resolving_node; /* list node */
204 struct btrfsic_block dummy_block_for_bio_bh_flush;
205 u64 last_flush_gen;
206 char name[BDEVNAME_SIZE];
207 };
208
209 struct btrfsic_block_hashtable {
210 struct list_head table[BTRFSIC_BLOCK_HASHTABLE_SIZE];
211 };
212
213 struct btrfsic_block_link_hashtable {
214 struct list_head table[BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE];
215 };
216
217 struct btrfsic_dev_state_hashtable {
218 struct list_head table[BTRFSIC_DEV2STATE_HASHTABLE_SIZE];
219 };
220
221 struct btrfsic_block_data_ctx {
222 u64 start; /* virtual bytenr */
223 u64 dev_bytenr; /* physical bytenr on device */
224 u32 len;
225 struct btrfsic_dev_state *dev;
226 char **datav;
227 struct page **pagev;
228 void *mem_to_free;
229 };
230
231 /* This structure is used to implement recursion without occupying
232 * any stack space, refer to btrfsic_process_metablock() */
233 struct btrfsic_stack_frame {
234 u32 magic;
235 u32 nr;
236 int error;
237 int i;
238 int limit_nesting;
239 int num_copies;
240 int mirror_num;
241 struct btrfsic_block *block;
242 struct btrfsic_block_data_ctx *block_ctx;
243 struct btrfsic_block *next_block;
244 struct btrfsic_block_data_ctx next_block_ctx;
245 struct btrfs_header *hdr;
246 struct btrfsic_stack_frame *prev;
247 };
248
249 /* Some state per mounted filesystem */
250 struct btrfsic_state {
251 u32 print_mask;
252 int include_extent_data;
253 int csum_size;
254 struct list_head all_blocks_list;
255 struct btrfsic_block_hashtable block_hashtable;
256 struct btrfsic_block_link_hashtable block_link_hashtable;
257 struct btrfs_root *root;
258 u64 max_superblock_generation;
259 struct btrfsic_block *latest_superblock;
260 u32 metablock_size;
261 u32 datablock_size;
262 };
263
264 static void btrfsic_block_init(struct btrfsic_block *b);
265 static struct btrfsic_block *btrfsic_block_alloc(void);
266 static void btrfsic_block_free(struct btrfsic_block *b);
267 static void btrfsic_block_link_init(struct btrfsic_block_link *n);
268 static struct btrfsic_block_link *btrfsic_block_link_alloc(void);
269 static void btrfsic_block_link_free(struct btrfsic_block_link *n);
270 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds);
271 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void);
272 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds);
273 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h);
274 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
275 struct btrfsic_block_hashtable *h);
276 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b);
277 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
278 struct block_device *bdev,
279 u64 dev_bytenr,
280 struct btrfsic_block_hashtable *h);
281 static void btrfsic_block_link_hashtable_init(
282 struct btrfsic_block_link_hashtable *h);
283 static void btrfsic_block_link_hashtable_add(
284 struct btrfsic_block_link *l,
285 struct btrfsic_block_link_hashtable *h);
286 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l);
287 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
288 struct block_device *bdev_ref_to,
289 u64 dev_bytenr_ref_to,
290 struct block_device *bdev_ref_from,
291 u64 dev_bytenr_ref_from,
292 struct btrfsic_block_link_hashtable *h);
293 static void btrfsic_dev_state_hashtable_init(
294 struct btrfsic_dev_state_hashtable *h);
295 static void btrfsic_dev_state_hashtable_add(
296 struct btrfsic_dev_state *ds,
297 struct btrfsic_dev_state_hashtable *h);
298 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds);
299 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
300 struct block_device *bdev,
301 struct btrfsic_dev_state_hashtable *h);
302 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void);
303 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf);
304 static int btrfsic_process_superblock(struct btrfsic_state *state,
305 struct btrfs_fs_devices *fs_devices);
306 static int btrfsic_process_metablock(struct btrfsic_state *state,
307 struct btrfsic_block *block,
308 struct btrfsic_block_data_ctx *block_ctx,
309 int limit_nesting, int force_iodone_flag);
310 static void btrfsic_read_from_block_data(
311 struct btrfsic_block_data_ctx *block_ctx,
312 void *dst, u32 offset, size_t len);
313 static int btrfsic_create_link_to_next_block(
314 struct btrfsic_state *state,
315 struct btrfsic_block *block,
316 struct btrfsic_block_data_ctx
317 *block_ctx, u64 next_bytenr,
318 int limit_nesting,
319 struct btrfsic_block_data_ctx *next_block_ctx,
320 struct btrfsic_block **next_blockp,
321 int force_iodone_flag,
322 int *num_copiesp, int *mirror_nump,
323 struct btrfs_disk_key *disk_key,
324 u64 parent_generation);
325 static int btrfsic_handle_extent_data(struct btrfsic_state *state,
326 struct btrfsic_block *block,
327 struct btrfsic_block_data_ctx *block_ctx,
328 u32 item_offset, int force_iodone_flag);
329 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
330 struct btrfsic_block_data_ctx *block_ctx_out,
331 int mirror_num);
332 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx);
333 static int btrfsic_read_block(struct btrfsic_state *state,
334 struct btrfsic_block_data_ctx *block_ctx);
335 static void btrfsic_dump_database(struct btrfsic_state *state);
336 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
337 char **datav, unsigned int num_pages);
338 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
339 u64 dev_bytenr, char **mapped_datav,
340 unsigned int num_pages,
341 struct bio *bio, int *bio_is_patched,
342 struct buffer_head *bh,
343 int submit_bio_bh_rw);
344 static int btrfsic_process_written_superblock(
345 struct btrfsic_state *state,
346 struct btrfsic_block *const block,
347 struct btrfs_super_block *const super_hdr);
348 static void btrfsic_bio_end_io(struct bio *bp);
349 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate);
350 static int btrfsic_is_block_ref_by_superblock(const struct btrfsic_state *state,
351 const struct btrfsic_block *block,
352 int recursion_level);
353 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
354 struct btrfsic_block *const block,
355 int recursion_level);
356 static void btrfsic_print_add_link(const struct btrfsic_state *state,
357 const struct btrfsic_block_link *l);
358 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
359 const struct btrfsic_block_link *l);
360 static char btrfsic_get_block_type(const struct btrfsic_state *state,
361 const struct btrfsic_block *block);
362 static void btrfsic_dump_tree(const struct btrfsic_state *state);
363 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
364 const struct btrfsic_block *block,
365 int indent_level);
366 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
367 struct btrfsic_state *state,
368 struct btrfsic_block_data_ctx *next_block_ctx,
369 struct btrfsic_block *next_block,
370 struct btrfsic_block *from_block,
371 u64 parent_generation);
372 static struct btrfsic_block *btrfsic_block_lookup_or_add(
373 struct btrfsic_state *state,
374 struct btrfsic_block_data_ctx *block_ctx,
375 const char *additional_string,
376 int is_metadata,
377 int is_iodone,
378 int never_written,
379 int mirror_num,
380 int *was_created);
381 static int btrfsic_process_superblock_dev_mirror(
382 struct btrfsic_state *state,
383 struct btrfsic_dev_state *dev_state,
384 struct btrfs_device *device,
385 int superblock_mirror_num,
386 struct btrfsic_dev_state **selected_dev_state,
387 struct btrfs_super_block *selected_super);
388 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
389 struct block_device *bdev);
390 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
391 u64 bytenr,
392 struct btrfsic_dev_state *dev_state,
393 u64 dev_bytenr);
394
395 static struct mutex btrfsic_mutex;
396 static int btrfsic_is_initialized;
397 static struct btrfsic_dev_state_hashtable btrfsic_dev_state_hashtable;
398
399
400 static void btrfsic_block_init(struct btrfsic_block *b)
401 {
402 b->magic_num = BTRFSIC_BLOCK_MAGIC_NUMBER;
403 b->dev_state = NULL;
404 b->dev_bytenr = 0;
405 b->logical_bytenr = 0;
406 b->generation = BTRFSIC_GENERATION_UNKNOWN;
407 b->disk_key.objectid = 0;
408 b->disk_key.type = 0;
409 b->disk_key.offset = 0;
410 b->is_metadata = 0;
411 b->is_superblock = 0;
412 b->is_iodone = 0;
413 b->iodone_w_error = 0;
414 b->never_written = 0;
415 b->mirror_num = 0;
416 b->next_in_same_bio = NULL;
417 b->orig_bio_bh_private = NULL;
418 b->orig_bio_bh_end_io.bio = NULL;
419 INIT_LIST_HEAD(&b->collision_resolving_node);
420 INIT_LIST_HEAD(&b->all_blocks_node);
421 INIT_LIST_HEAD(&b->ref_to_list);
422 INIT_LIST_HEAD(&b->ref_from_list);
423 b->submit_bio_bh_rw = 0;
424 b->flush_gen = 0;
425 }
426
427 static struct btrfsic_block *btrfsic_block_alloc(void)
428 {
429 struct btrfsic_block *b;
430
431 b = kzalloc(sizeof(*b), GFP_NOFS);
432 if (NULL != b)
433 btrfsic_block_init(b);
434
435 return b;
436 }
437
438 static void btrfsic_block_free(struct btrfsic_block *b)
439 {
440 BUG_ON(!(NULL == b || BTRFSIC_BLOCK_MAGIC_NUMBER == b->magic_num));
441 kfree(b);
442 }
443
444 static void btrfsic_block_link_init(struct btrfsic_block_link *l)
445 {
446 l->magic_num = BTRFSIC_BLOCK_LINK_MAGIC_NUMBER;
447 l->ref_cnt = 1;
448 INIT_LIST_HEAD(&l->node_ref_to);
449 INIT_LIST_HEAD(&l->node_ref_from);
450 INIT_LIST_HEAD(&l->collision_resolving_node);
451 l->block_ref_to = NULL;
452 l->block_ref_from = NULL;
453 }
454
455 static struct btrfsic_block_link *btrfsic_block_link_alloc(void)
456 {
457 struct btrfsic_block_link *l;
458
459 l = kzalloc(sizeof(*l), GFP_NOFS);
460 if (NULL != l)
461 btrfsic_block_link_init(l);
462
463 return l;
464 }
465
466 static void btrfsic_block_link_free(struct btrfsic_block_link *l)
467 {
468 BUG_ON(!(NULL == l || BTRFSIC_BLOCK_LINK_MAGIC_NUMBER == l->magic_num));
469 kfree(l);
470 }
471
472 static void btrfsic_dev_state_init(struct btrfsic_dev_state *ds)
473 {
474 ds->magic_num = BTRFSIC_DEV2STATE_MAGIC_NUMBER;
475 ds->bdev = NULL;
476 ds->state = NULL;
477 ds->name[0] = '\0';
478 INIT_LIST_HEAD(&ds->collision_resolving_node);
479 ds->last_flush_gen = 0;
480 btrfsic_block_init(&ds->dummy_block_for_bio_bh_flush);
481 ds->dummy_block_for_bio_bh_flush.is_iodone = 1;
482 ds->dummy_block_for_bio_bh_flush.dev_state = ds;
483 }
484
485 static struct btrfsic_dev_state *btrfsic_dev_state_alloc(void)
486 {
487 struct btrfsic_dev_state *ds;
488
489 ds = kzalloc(sizeof(*ds), GFP_NOFS);
490 if (NULL != ds)
491 btrfsic_dev_state_init(ds);
492
493 return ds;
494 }
495
496 static void btrfsic_dev_state_free(struct btrfsic_dev_state *ds)
497 {
498 BUG_ON(!(NULL == ds ||
499 BTRFSIC_DEV2STATE_MAGIC_NUMBER == ds->magic_num));
500 kfree(ds);
501 }
502
503 static void btrfsic_block_hashtable_init(struct btrfsic_block_hashtable *h)
504 {
505 int i;
506
507 for (i = 0; i < BTRFSIC_BLOCK_HASHTABLE_SIZE; i++)
508 INIT_LIST_HEAD(h->table + i);
509 }
510
511 static void btrfsic_block_hashtable_add(struct btrfsic_block *b,
512 struct btrfsic_block_hashtable *h)
513 {
514 const unsigned int hashval =
515 (((unsigned int)(b->dev_bytenr >> 16)) ^
516 ((unsigned int)((uintptr_t)b->dev_state->bdev))) &
517 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
518
519 list_add(&b->collision_resolving_node, h->table + hashval);
520 }
521
522 static void btrfsic_block_hashtable_remove(struct btrfsic_block *b)
523 {
524 list_del(&b->collision_resolving_node);
525 }
526
527 static struct btrfsic_block *btrfsic_block_hashtable_lookup(
528 struct block_device *bdev,
529 u64 dev_bytenr,
530 struct btrfsic_block_hashtable *h)
531 {
532 const unsigned int hashval =
533 (((unsigned int)(dev_bytenr >> 16)) ^
534 ((unsigned int)((uintptr_t)bdev))) &
535 (BTRFSIC_BLOCK_HASHTABLE_SIZE - 1);
536 struct btrfsic_block *b;
537
538 list_for_each_entry(b, h->table + hashval, collision_resolving_node) {
539 if (b->dev_state->bdev == bdev && b->dev_bytenr == dev_bytenr)
540 return b;
541 }
542
543 return NULL;
544 }
545
546 static void btrfsic_block_link_hashtable_init(
547 struct btrfsic_block_link_hashtable *h)
548 {
549 int i;
550
551 for (i = 0; i < BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE; i++)
552 INIT_LIST_HEAD(h->table + i);
553 }
554
555 static void btrfsic_block_link_hashtable_add(
556 struct btrfsic_block_link *l,
557 struct btrfsic_block_link_hashtable *h)
558 {
559 const unsigned int hashval =
560 (((unsigned int)(l->block_ref_to->dev_bytenr >> 16)) ^
561 ((unsigned int)(l->block_ref_from->dev_bytenr >> 16)) ^
562 ((unsigned int)((uintptr_t)l->block_ref_to->dev_state->bdev)) ^
563 ((unsigned int)((uintptr_t)l->block_ref_from->dev_state->bdev)))
564 & (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
565
566 BUG_ON(NULL == l->block_ref_to);
567 BUG_ON(NULL == l->block_ref_from);
568 list_add(&l->collision_resolving_node, h->table + hashval);
569 }
570
571 static void btrfsic_block_link_hashtable_remove(struct btrfsic_block_link *l)
572 {
573 list_del(&l->collision_resolving_node);
574 }
575
576 static struct btrfsic_block_link *btrfsic_block_link_hashtable_lookup(
577 struct block_device *bdev_ref_to,
578 u64 dev_bytenr_ref_to,
579 struct block_device *bdev_ref_from,
580 u64 dev_bytenr_ref_from,
581 struct btrfsic_block_link_hashtable *h)
582 {
583 const unsigned int hashval =
584 (((unsigned int)(dev_bytenr_ref_to >> 16)) ^
585 ((unsigned int)(dev_bytenr_ref_from >> 16)) ^
586 ((unsigned int)((uintptr_t)bdev_ref_to)) ^
587 ((unsigned int)((uintptr_t)bdev_ref_from))) &
588 (BTRFSIC_BLOCK_LINK_HASHTABLE_SIZE - 1);
589 struct btrfsic_block_link *l;
590
591 list_for_each_entry(l, h->table + hashval, collision_resolving_node) {
592 BUG_ON(NULL == l->block_ref_to);
593 BUG_ON(NULL == l->block_ref_from);
594 if (l->block_ref_to->dev_state->bdev == bdev_ref_to &&
595 l->block_ref_to->dev_bytenr == dev_bytenr_ref_to &&
596 l->block_ref_from->dev_state->bdev == bdev_ref_from &&
597 l->block_ref_from->dev_bytenr == dev_bytenr_ref_from)
598 return l;
599 }
600
601 return NULL;
602 }
603
604 static void btrfsic_dev_state_hashtable_init(
605 struct btrfsic_dev_state_hashtable *h)
606 {
607 int i;
608
609 for (i = 0; i < BTRFSIC_DEV2STATE_HASHTABLE_SIZE; i++)
610 INIT_LIST_HEAD(h->table + i);
611 }
612
613 static void btrfsic_dev_state_hashtable_add(
614 struct btrfsic_dev_state *ds,
615 struct btrfsic_dev_state_hashtable *h)
616 {
617 const unsigned int hashval =
618 (((unsigned int)((uintptr_t)ds->bdev)) &
619 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
620
621 list_add(&ds->collision_resolving_node, h->table + hashval);
622 }
623
624 static void btrfsic_dev_state_hashtable_remove(struct btrfsic_dev_state *ds)
625 {
626 list_del(&ds->collision_resolving_node);
627 }
628
629 static struct btrfsic_dev_state *btrfsic_dev_state_hashtable_lookup(
630 struct block_device *bdev,
631 struct btrfsic_dev_state_hashtable *h)
632 {
633 const unsigned int hashval =
634 (((unsigned int)((uintptr_t)bdev)) &
635 (BTRFSIC_DEV2STATE_HASHTABLE_SIZE - 1));
636 struct btrfsic_dev_state *ds;
637
638 list_for_each_entry(ds, h->table + hashval, collision_resolving_node) {
639 if (ds->bdev == bdev)
640 return ds;
641 }
642
643 return NULL;
644 }
645
646 static int btrfsic_process_superblock(struct btrfsic_state *state,
647 struct btrfs_fs_devices *fs_devices)
648 {
649 int ret = 0;
650 struct btrfs_super_block *selected_super;
651 struct list_head *dev_head = &fs_devices->devices;
652 struct btrfs_device *device;
653 struct btrfsic_dev_state *selected_dev_state = NULL;
654 int pass;
655
656 BUG_ON(NULL == state);
657 selected_super = kzalloc(sizeof(*selected_super), GFP_NOFS);
658 if (NULL == selected_super) {
659 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
660 return -ENOMEM;
661 }
662
663 list_for_each_entry(device, dev_head, dev_list) {
664 int i;
665 struct btrfsic_dev_state *dev_state;
666
667 if (!device->bdev || !device->name)
668 continue;
669
670 dev_state = btrfsic_dev_state_lookup(device->bdev);
671 BUG_ON(NULL == dev_state);
672 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
673 ret = btrfsic_process_superblock_dev_mirror(
674 state, dev_state, device, i,
675 &selected_dev_state, selected_super);
676 if (0 != ret && 0 == i) {
677 kfree(selected_super);
678 return ret;
679 }
680 }
681 }
682
683 if (NULL == state->latest_superblock) {
684 printk(KERN_INFO "btrfsic: no superblock found!\n");
685 kfree(selected_super);
686 return -1;
687 }
688
689 state->csum_size = btrfs_super_csum_size(selected_super);
690
691 for (pass = 0; pass < 3; pass++) {
692 int num_copies;
693 int mirror_num;
694 u64 next_bytenr;
695
696 switch (pass) {
697 case 0:
698 next_bytenr = btrfs_super_root(selected_super);
699 if (state->print_mask &
700 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
701 printk(KERN_INFO "root@%llu\n", next_bytenr);
702 break;
703 case 1:
704 next_bytenr = btrfs_super_chunk_root(selected_super);
705 if (state->print_mask &
706 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
707 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
708 break;
709 case 2:
710 next_bytenr = btrfs_super_log_root(selected_super);
711 if (0 == next_bytenr)
712 continue;
713 if (state->print_mask &
714 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
715 printk(KERN_INFO "log@%llu\n", next_bytenr);
716 break;
717 }
718
719 num_copies =
720 btrfs_num_copies(state->root->fs_info,
721 next_bytenr, state->metablock_size);
722 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
723 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
724 next_bytenr, num_copies);
725
726 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
727 struct btrfsic_block *next_block;
728 struct btrfsic_block_data_ctx tmp_next_block_ctx;
729 struct btrfsic_block_link *l;
730
731 ret = btrfsic_map_block(state, next_bytenr,
732 state->metablock_size,
733 &tmp_next_block_ctx,
734 mirror_num);
735 if (ret) {
736 printk(KERN_INFO "btrfsic:"
737 " btrfsic_map_block(root @%llu,"
738 " mirror %d) failed!\n",
739 next_bytenr, mirror_num);
740 kfree(selected_super);
741 return -1;
742 }
743
744 next_block = btrfsic_block_hashtable_lookup(
745 tmp_next_block_ctx.dev->bdev,
746 tmp_next_block_ctx.dev_bytenr,
747 &state->block_hashtable);
748 BUG_ON(NULL == next_block);
749
750 l = btrfsic_block_link_hashtable_lookup(
751 tmp_next_block_ctx.dev->bdev,
752 tmp_next_block_ctx.dev_bytenr,
753 state->latest_superblock->dev_state->
754 bdev,
755 state->latest_superblock->dev_bytenr,
756 &state->block_link_hashtable);
757 BUG_ON(NULL == l);
758
759 ret = btrfsic_read_block(state, &tmp_next_block_ctx);
760 if (ret < (int)PAGE_SIZE) {
761 printk(KERN_INFO
762 "btrfsic: read @logical %llu failed!\n",
763 tmp_next_block_ctx.start);
764 btrfsic_release_block_ctx(&tmp_next_block_ctx);
765 kfree(selected_super);
766 return -1;
767 }
768
769 ret = btrfsic_process_metablock(state,
770 next_block,
771 &tmp_next_block_ctx,
772 BTRFS_MAX_LEVEL + 3, 1);
773 btrfsic_release_block_ctx(&tmp_next_block_ctx);
774 }
775 }
776
777 kfree(selected_super);
778 return ret;
779 }
780
781 static int btrfsic_process_superblock_dev_mirror(
782 struct btrfsic_state *state,
783 struct btrfsic_dev_state *dev_state,
784 struct btrfs_device *device,
785 int superblock_mirror_num,
786 struct btrfsic_dev_state **selected_dev_state,
787 struct btrfs_super_block *selected_super)
788 {
789 struct btrfs_super_block *super_tmp;
790 u64 dev_bytenr;
791 struct buffer_head *bh;
792 struct btrfsic_block *superblock_tmp;
793 int pass;
794 struct block_device *const superblock_bdev = device->bdev;
795
796 /* super block bytenr is always the unmapped device bytenr */
797 dev_bytenr = btrfs_sb_offset(superblock_mirror_num);
798 if (dev_bytenr + BTRFS_SUPER_INFO_SIZE > device->commit_total_bytes)
799 return -1;
800 bh = __bread(superblock_bdev, dev_bytenr / 4096,
801 BTRFS_SUPER_INFO_SIZE);
802 if (NULL == bh)
803 return -1;
804 super_tmp = (struct btrfs_super_block *)
805 (bh->b_data + (dev_bytenr & 4095));
806
807 if (btrfs_super_bytenr(super_tmp) != dev_bytenr ||
808 btrfs_super_magic(super_tmp) != BTRFS_MAGIC ||
809 memcmp(device->uuid, super_tmp->dev_item.uuid, BTRFS_UUID_SIZE) ||
810 btrfs_super_nodesize(super_tmp) != state->metablock_size ||
811 btrfs_super_sectorsize(super_tmp) != state->datablock_size) {
812 brelse(bh);
813 return 0;
814 }
815
816 superblock_tmp =
817 btrfsic_block_hashtable_lookup(superblock_bdev,
818 dev_bytenr,
819 &state->block_hashtable);
820 if (NULL == superblock_tmp) {
821 superblock_tmp = btrfsic_block_alloc();
822 if (NULL == superblock_tmp) {
823 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
824 brelse(bh);
825 return -1;
826 }
827 /* for superblock, only the dev_bytenr makes sense */
828 superblock_tmp->dev_bytenr = dev_bytenr;
829 superblock_tmp->dev_state = dev_state;
830 superblock_tmp->logical_bytenr = dev_bytenr;
831 superblock_tmp->generation = btrfs_super_generation(super_tmp);
832 superblock_tmp->is_metadata = 1;
833 superblock_tmp->is_superblock = 1;
834 superblock_tmp->is_iodone = 1;
835 superblock_tmp->never_written = 0;
836 superblock_tmp->mirror_num = 1 + superblock_mirror_num;
837 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
838 btrfs_info_in_rcu(device->dev_root->fs_info,
839 "new initial S-block (bdev %p, %s) @%llu (%s/%llu/%d)",
840 superblock_bdev,
841 rcu_str_deref(device->name), dev_bytenr,
842 dev_state->name, dev_bytenr,
843 superblock_mirror_num);
844 list_add(&superblock_tmp->all_blocks_node,
845 &state->all_blocks_list);
846 btrfsic_block_hashtable_add(superblock_tmp,
847 &state->block_hashtable);
848 }
849
850 /* select the one with the highest generation field */
851 if (btrfs_super_generation(super_tmp) >
852 state->max_superblock_generation ||
853 0 == state->max_superblock_generation) {
854 memcpy(selected_super, super_tmp, sizeof(*selected_super));
855 *selected_dev_state = dev_state;
856 state->max_superblock_generation =
857 btrfs_super_generation(super_tmp);
858 state->latest_superblock = superblock_tmp;
859 }
860
861 for (pass = 0; pass < 3; pass++) {
862 u64 next_bytenr;
863 int num_copies;
864 int mirror_num;
865 const char *additional_string = NULL;
866 struct btrfs_disk_key tmp_disk_key;
867
868 tmp_disk_key.type = BTRFS_ROOT_ITEM_KEY;
869 tmp_disk_key.offset = 0;
870 switch (pass) {
871 case 0:
872 btrfs_set_disk_key_objectid(&tmp_disk_key,
873 BTRFS_ROOT_TREE_OBJECTID);
874 additional_string = "initial root ";
875 next_bytenr = btrfs_super_root(super_tmp);
876 break;
877 case 1:
878 btrfs_set_disk_key_objectid(&tmp_disk_key,
879 BTRFS_CHUNK_TREE_OBJECTID);
880 additional_string = "initial chunk ";
881 next_bytenr = btrfs_super_chunk_root(super_tmp);
882 break;
883 case 2:
884 btrfs_set_disk_key_objectid(&tmp_disk_key,
885 BTRFS_TREE_LOG_OBJECTID);
886 additional_string = "initial log ";
887 next_bytenr = btrfs_super_log_root(super_tmp);
888 if (0 == next_bytenr)
889 continue;
890 break;
891 }
892
893 num_copies =
894 btrfs_num_copies(state->root->fs_info,
895 next_bytenr, state->metablock_size);
896 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
897 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
898 next_bytenr, num_copies);
899 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
900 struct btrfsic_block *next_block;
901 struct btrfsic_block_data_ctx tmp_next_block_ctx;
902 struct btrfsic_block_link *l;
903
904 if (btrfsic_map_block(state, next_bytenr,
905 state->metablock_size,
906 &tmp_next_block_ctx,
907 mirror_num)) {
908 printk(KERN_INFO "btrfsic: btrfsic_map_block("
909 "bytenr @%llu, mirror %d) failed!\n",
910 next_bytenr, mirror_num);
911 brelse(bh);
912 return -1;
913 }
914
915 next_block = btrfsic_block_lookup_or_add(
916 state, &tmp_next_block_ctx,
917 additional_string, 1, 1, 0,
918 mirror_num, NULL);
919 if (NULL == next_block) {
920 btrfsic_release_block_ctx(&tmp_next_block_ctx);
921 brelse(bh);
922 return -1;
923 }
924
925 next_block->disk_key = tmp_disk_key;
926 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
927 l = btrfsic_block_link_lookup_or_add(
928 state, &tmp_next_block_ctx,
929 next_block, superblock_tmp,
930 BTRFSIC_GENERATION_UNKNOWN);
931 btrfsic_release_block_ctx(&tmp_next_block_ctx);
932 if (NULL == l) {
933 brelse(bh);
934 return -1;
935 }
936 }
937 }
938 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_ALL_TREES)
939 btrfsic_dump_tree_sub(state, superblock_tmp, 0);
940
941 brelse(bh);
942 return 0;
943 }
944
945 static struct btrfsic_stack_frame *btrfsic_stack_frame_alloc(void)
946 {
947 struct btrfsic_stack_frame *sf;
948
949 sf = kzalloc(sizeof(*sf), GFP_NOFS);
950 if (NULL == sf)
951 printk(KERN_INFO "btrfsic: alloc memory failed!\n");
952 else
953 sf->magic = BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER;
954 return sf;
955 }
956
957 static void btrfsic_stack_frame_free(struct btrfsic_stack_frame *sf)
958 {
959 BUG_ON(!(NULL == sf ||
960 BTRFSIC_BLOCK_STACK_FRAME_MAGIC_NUMBER == sf->magic));
961 kfree(sf);
962 }
963
964 static int btrfsic_process_metablock(
965 struct btrfsic_state *state,
966 struct btrfsic_block *const first_block,
967 struct btrfsic_block_data_ctx *const first_block_ctx,
968 int first_limit_nesting, int force_iodone_flag)
969 {
970 struct btrfsic_stack_frame initial_stack_frame = { 0 };
971 struct btrfsic_stack_frame *sf;
972 struct btrfsic_stack_frame *next_stack;
973 struct btrfs_header *const first_hdr =
974 (struct btrfs_header *)first_block_ctx->datav[0];
975
976 BUG_ON(!first_hdr);
977 sf = &initial_stack_frame;
978 sf->error = 0;
979 sf->i = -1;
980 sf->limit_nesting = first_limit_nesting;
981 sf->block = first_block;
982 sf->block_ctx = first_block_ctx;
983 sf->next_block = NULL;
984 sf->hdr = first_hdr;
985 sf->prev = NULL;
986
987 continue_with_new_stack_frame:
988 sf->block->generation = le64_to_cpu(sf->hdr->generation);
989 if (0 == sf->hdr->level) {
990 struct btrfs_leaf *const leafhdr =
991 (struct btrfs_leaf *)sf->hdr;
992
993 if (-1 == sf->i) {
994 sf->nr = btrfs_stack_header_nritems(&leafhdr->header);
995
996 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
997 printk(KERN_INFO
998 "leaf %llu items %d generation %llu"
999 " owner %llu\n",
1000 sf->block_ctx->start, sf->nr,
1001 btrfs_stack_header_generation(
1002 &leafhdr->header),
1003 btrfs_stack_header_owner(
1004 &leafhdr->header));
1005 }
1006
1007 continue_with_current_leaf_stack_frame:
1008 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1009 sf->i++;
1010 sf->num_copies = 0;
1011 }
1012
1013 if (sf->i < sf->nr) {
1014 struct btrfs_item disk_item;
1015 u32 disk_item_offset =
1016 (uintptr_t)(leafhdr->items + sf->i) -
1017 (uintptr_t)leafhdr;
1018 struct btrfs_disk_key *disk_key;
1019 u8 type;
1020 u32 item_offset;
1021 u32 item_size;
1022
1023 if (disk_item_offset + sizeof(struct btrfs_item) >
1024 sf->block_ctx->len) {
1025 leaf_item_out_of_bounce_error:
1026 printk(KERN_INFO
1027 "btrfsic: leaf item out of bounce at logical %llu, dev %s\n",
1028 sf->block_ctx->start,
1029 sf->block_ctx->dev->name);
1030 goto one_stack_frame_backwards;
1031 }
1032 btrfsic_read_from_block_data(sf->block_ctx,
1033 &disk_item,
1034 disk_item_offset,
1035 sizeof(struct btrfs_item));
1036 item_offset = btrfs_stack_item_offset(&disk_item);
1037 item_size = btrfs_stack_item_size(&disk_item);
1038 disk_key = &disk_item.key;
1039 type = btrfs_disk_key_type(disk_key);
1040
1041 if (BTRFS_ROOT_ITEM_KEY == type) {
1042 struct btrfs_root_item root_item;
1043 u32 root_item_offset;
1044 u64 next_bytenr;
1045
1046 root_item_offset = item_offset +
1047 offsetof(struct btrfs_leaf, items);
1048 if (root_item_offset + item_size >
1049 sf->block_ctx->len)
1050 goto leaf_item_out_of_bounce_error;
1051 btrfsic_read_from_block_data(
1052 sf->block_ctx, &root_item,
1053 root_item_offset,
1054 item_size);
1055 next_bytenr = btrfs_root_bytenr(&root_item);
1056
1057 sf->error =
1058 btrfsic_create_link_to_next_block(
1059 state,
1060 sf->block,
1061 sf->block_ctx,
1062 next_bytenr,
1063 sf->limit_nesting,
1064 &sf->next_block_ctx,
1065 &sf->next_block,
1066 force_iodone_flag,
1067 &sf->num_copies,
1068 &sf->mirror_num,
1069 disk_key,
1070 btrfs_root_generation(
1071 &root_item));
1072 if (sf->error)
1073 goto one_stack_frame_backwards;
1074
1075 if (NULL != sf->next_block) {
1076 struct btrfs_header *const next_hdr =
1077 (struct btrfs_header *)
1078 sf->next_block_ctx.datav[0];
1079
1080 next_stack =
1081 btrfsic_stack_frame_alloc();
1082 if (NULL == next_stack) {
1083 sf->error = -1;
1084 btrfsic_release_block_ctx(
1085 &sf->
1086 next_block_ctx);
1087 goto one_stack_frame_backwards;
1088 }
1089
1090 next_stack->i = -1;
1091 next_stack->block = sf->next_block;
1092 next_stack->block_ctx =
1093 &sf->next_block_ctx;
1094 next_stack->next_block = NULL;
1095 next_stack->hdr = next_hdr;
1096 next_stack->limit_nesting =
1097 sf->limit_nesting - 1;
1098 next_stack->prev = sf;
1099 sf = next_stack;
1100 goto continue_with_new_stack_frame;
1101 }
1102 } else if (BTRFS_EXTENT_DATA_KEY == type &&
1103 state->include_extent_data) {
1104 sf->error = btrfsic_handle_extent_data(
1105 state,
1106 sf->block,
1107 sf->block_ctx,
1108 item_offset,
1109 force_iodone_flag);
1110 if (sf->error)
1111 goto one_stack_frame_backwards;
1112 }
1113
1114 goto continue_with_current_leaf_stack_frame;
1115 }
1116 } else {
1117 struct btrfs_node *const nodehdr = (struct btrfs_node *)sf->hdr;
1118
1119 if (-1 == sf->i) {
1120 sf->nr = btrfs_stack_header_nritems(&nodehdr->header);
1121
1122 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1123 printk(KERN_INFO "node %llu level %d items %d"
1124 " generation %llu owner %llu\n",
1125 sf->block_ctx->start,
1126 nodehdr->header.level, sf->nr,
1127 btrfs_stack_header_generation(
1128 &nodehdr->header),
1129 btrfs_stack_header_owner(
1130 &nodehdr->header));
1131 }
1132
1133 continue_with_current_node_stack_frame:
1134 if (0 == sf->num_copies || sf->mirror_num > sf->num_copies) {
1135 sf->i++;
1136 sf->num_copies = 0;
1137 }
1138
1139 if (sf->i < sf->nr) {
1140 struct btrfs_key_ptr key_ptr;
1141 u32 key_ptr_offset;
1142 u64 next_bytenr;
1143
1144 key_ptr_offset = (uintptr_t)(nodehdr->ptrs + sf->i) -
1145 (uintptr_t)nodehdr;
1146 if (key_ptr_offset + sizeof(struct btrfs_key_ptr) >
1147 sf->block_ctx->len) {
1148 printk(KERN_INFO
1149 "btrfsic: node item out of bounce at logical %llu, dev %s\n",
1150 sf->block_ctx->start,
1151 sf->block_ctx->dev->name);
1152 goto one_stack_frame_backwards;
1153 }
1154 btrfsic_read_from_block_data(
1155 sf->block_ctx, &key_ptr, key_ptr_offset,
1156 sizeof(struct btrfs_key_ptr));
1157 next_bytenr = btrfs_stack_key_blockptr(&key_ptr);
1158
1159 sf->error = btrfsic_create_link_to_next_block(
1160 state,
1161 sf->block,
1162 sf->block_ctx,
1163 next_bytenr,
1164 sf->limit_nesting,
1165 &sf->next_block_ctx,
1166 &sf->next_block,
1167 force_iodone_flag,
1168 &sf->num_copies,
1169 &sf->mirror_num,
1170 &key_ptr.key,
1171 btrfs_stack_key_generation(&key_ptr));
1172 if (sf->error)
1173 goto one_stack_frame_backwards;
1174
1175 if (NULL != sf->next_block) {
1176 struct btrfs_header *const next_hdr =
1177 (struct btrfs_header *)
1178 sf->next_block_ctx.datav[0];
1179
1180 next_stack = btrfsic_stack_frame_alloc();
1181 if (NULL == next_stack) {
1182 sf->error = -1;
1183 goto one_stack_frame_backwards;
1184 }
1185
1186 next_stack->i = -1;
1187 next_stack->block = sf->next_block;
1188 next_stack->block_ctx = &sf->next_block_ctx;
1189 next_stack->next_block = NULL;
1190 next_stack->hdr = next_hdr;
1191 next_stack->limit_nesting =
1192 sf->limit_nesting - 1;
1193 next_stack->prev = sf;
1194 sf = next_stack;
1195 goto continue_with_new_stack_frame;
1196 }
1197
1198 goto continue_with_current_node_stack_frame;
1199 }
1200 }
1201
1202 one_stack_frame_backwards:
1203 if (NULL != sf->prev) {
1204 struct btrfsic_stack_frame *const prev = sf->prev;
1205
1206 /* the one for the initial block is freed in the caller */
1207 btrfsic_release_block_ctx(sf->block_ctx);
1208
1209 if (sf->error) {
1210 prev->error = sf->error;
1211 btrfsic_stack_frame_free(sf);
1212 sf = prev;
1213 goto one_stack_frame_backwards;
1214 }
1215
1216 btrfsic_stack_frame_free(sf);
1217 sf = prev;
1218 goto continue_with_new_stack_frame;
1219 } else {
1220 BUG_ON(&initial_stack_frame != sf);
1221 }
1222
1223 return sf->error;
1224 }
1225
1226 static void btrfsic_read_from_block_data(
1227 struct btrfsic_block_data_ctx *block_ctx,
1228 void *dstv, u32 offset, size_t len)
1229 {
1230 size_t cur;
1231 size_t offset_in_page;
1232 char *kaddr;
1233 char *dst = (char *)dstv;
1234 size_t start_offset = block_ctx->start & ((u64)PAGE_SIZE - 1);
1235 unsigned long i = (start_offset + offset) >> PAGE_SHIFT;
1236
1237 WARN_ON(offset + len > block_ctx->len);
1238 offset_in_page = (start_offset + offset) & (PAGE_SIZE - 1);
1239
1240 while (len > 0) {
1241 cur = min(len, ((size_t)PAGE_SIZE - offset_in_page));
1242 BUG_ON(i >= DIV_ROUND_UP(block_ctx->len, PAGE_SIZE));
1243 kaddr = block_ctx->datav[i];
1244 memcpy(dst, kaddr + offset_in_page, cur);
1245
1246 dst += cur;
1247 len -= cur;
1248 offset_in_page = 0;
1249 i++;
1250 }
1251 }
1252
1253 static int btrfsic_create_link_to_next_block(
1254 struct btrfsic_state *state,
1255 struct btrfsic_block *block,
1256 struct btrfsic_block_data_ctx *block_ctx,
1257 u64 next_bytenr,
1258 int limit_nesting,
1259 struct btrfsic_block_data_ctx *next_block_ctx,
1260 struct btrfsic_block **next_blockp,
1261 int force_iodone_flag,
1262 int *num_copiesp, int *mirror_nump,
1263 struct btrfs_disk_key *disk_key,
1264 u64 parent_generation)
1265 {
1266 struct btrfsic_block *next_block = NULL;
1267 int ret;
1268 struct btrfsic_block_link *l;
1269 int did_alloc_block_link;
1270 int block_was_created;
1271
1272 *next_blockp = NULL;
1273 if (0 == *num_copiesp) {
1274 *num_copiesp =
1275 btrfs_num_copies(state->root->fs_info,
1276 next_bytenr, state->metablock_size);
1277 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1278 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1279 next_bytenr, *num_copiesp);
1280 *mirror_nump = 1;
1281 }
1282
1283 if (*mirror_nump > *num_copiesp)
1284 return 0;
1285
1286 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1287 printk(KERN_INFO
1288 "btrfsic_create_link_to_next_block(mirror_num=%d)\n",
1289 *mirror_nump);
1290 ret = btrfsic_map_block(state, next_bytenr,
1291 state->metablock_size,
1292 next_block_ctx, *mirror_nump);
1293 if (ret) {
1294 printk(KERN_INFO
1295 "btrfsic: btrfsic_map_block(@%llu, mirror=%d) failed!\n",
1296 next_bytenr, *mirror_nump);
1297 btrfsic_release_block_ctx(next_block_ctx);
1298 *next_blockp = NULL;
1299 return -1;
1300 }
1301
1302 next_block = btrfsic_block_lookup_or_add(state,
1303 next_block_ctx, "referenced ",
1304 1, force_iodone_flag,
1305 !force_iodone_flag,
1306 *mirror_nump,
1307 &block_was_created);
1308 if (NULL == next_block) {
1309 btrfsic_release_block_ctx(next_block_ctx);
1310 *next_blockp = NULL;
1311 return -1;
1312 }
1313 if (block_was_created) {
1314 l = NULL;
1315 next_block->generation = BTRFSIC_GENERATION_UNKNOWN;
1316 } else {
1317 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1318 if (next_block->logical_bytenr != next_bytenr &&
1319 !(!next_block->is_metadata &&
1320 0 == next_block->logical_bytenr))
1321 printk(KERN_INFO
1322 "Referenced block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1323 next_bytenr, next_block_ctx->dev->name,
1324 next_block_ctx->dev_bytenr, *mirror_nump,
1325 btrfsic_get_block_type(state,
1326 next_block),
1327 next_block->logical_bytenr);
1328 else
1329 printk(KERN_INFO
1330 "Referenced block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1331 next_bytenr, next_block_ctx->dev->name,
1332 next_block_ctx->dev_bytenr, *mirror_nump,
1333 btrfsic_get_block_type(state,
1334 next_block));
1335 }
1336 next_block->logical_bytenr = next_bytenr;
1337
1338 next_block->mirror_num = *mirror_nump;
1339 l = btrfsic_block_link_hashtable_lookup(
1340 next_block_ctx->dev->bdev,
1341 next_block_ctx->dev_bytenr,
1342 block_ctx->dev->bdev,
1343 block_ctx->dev_bytenr,
1344 &state->block_link_hashtable);
1345 }
1346
1347 next_block->disk_key = *disk_key;
1348 if (NULL == l) {
1349 l = btrfsic_block_link_alloc();
1350 if (NULL == l) {
1351 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
1352 btrfsic_release_block_ctx(next_block_ctx);
1353 *next_blockp = NULL;
1354 return -1;
1355 }
1356
1357 did_alloc_block_link = 1;
1358 l->block_ref_to = next_block;
1359 l->block_ref_from = block;
1360 l->ref_cnt = 1;
1361 l->parent_generation = parent_generation;
1362
1363 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1364 btrfsic_print_add_link(state, l);
1365
1366 list_add(&l->node_ref_to, &block->ref_to_list);
1367 list_add(&l->node_ref_from, &next_block->ref_from_list);
1368
1369 btrfsic_block_link_hashtable_add(l,
1370 &state->block_link_hashtable);
1371 } else {
1372 did_alloc_block_link = 0;
1373 if (0 == limit_nesting) {
1374 l->ref_cnt++;
1375 l->parent_generation = parent_generation;
1376 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1377 btrfsic_print_add_link(state, l);
1378 }
1379 }
1380
1381 if (limit_nesting > 0 && did_alloc_block_link) {
1382 ret = btrfsic_read_block(state, next_block_ctx);
1383 if (ret < (int)next_block_ctx->len) {
1384 printk(KERN_INFO
1385 "btrfsic: read block @logical %llu failed!\n",
1386 next_bytenr);
1387 btrfsic_release_block_ctx(next_block_ctx);
1388 *next_blockp = NULL;
1389 return -1;
1390 }
1391
1392 *next_blockp = next_block;
1393 } else {
1394 *next_blockp = NULL;
1395 }
1396 (*mirror_nump)++;
1397
1398 return 0;
1399 }
1400
1401 static int btrfsic_handle_extent_data(
1402 struct btrfsic_state *state,
1403 struct btrfsic_block *block,
1404 struct btrfsic_block_data_ctx *block_ctx,
1405 u32 item_offset, int force_iodone_flag)
1406 {
1407 int ret;
1408 struct btrfs_file_extent_item file_extent_item;
1409 u64 file_extent_item_offset;
1410 u64 next_bytenr;
1411 u64 num_bytes;
1412 u64 generation;
1413 struct btrfsic_block_link *l;
1414
1415 file_extent_item_offset = offsetof(struct btrfs_leaf, items) +
1416 item_offset;
1417 if (file_extent_item_offset +
1418 offsetof(struct btrfs_file_extent_item, disk_num_bytes) >
1419 block_ctx->len) {
1420 printk(KERN_INFO
1421 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1422 block_ctx->start, block_ctx->dev->name);
1423 return -1;
1424 }
1425
1426 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1427 file_extent_item_offset,
1428 offsetof(struct btrfs_file_extent_item, disk_num_bytes));
1429 if (BTRFS_FILE_EXTENT_REG != file_extent_item.type ||
1430 btrfs_stack_file_extent_disk_bytenr(&file_extent_item) == 0) {
1431 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1432 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu\n",
1433 file_extent_item.type,
1434 btrfs_stack_file_extent_disk_bytenr(
1435 &file_extent_item));
1436 return 0;
1437 }
1438
1439 if (file_extent_item_offset + sizeof(struct btrfs_file_extent_item) >
1440 block_ctx->len) {
1441 printk(KERN_INFO
1442 "btrfsic: file item out of bounce at logical %llu, dev %s\n",
1443 block_ctx->start, block_ctx->dev->name);
1444 return -1;
1445 }
1446 btrfsic_read_from_block_data(block_ctx, &file_extent_item,
1447 file_extent_item_offset,
1448 sizeof(struct btrfs_file_extent_item));
1449 next_bytenr = btrfs_stack_file_extent_disk_bytenr(&file_extent_item);
1450 if (btrfs_stack_file_extent_compression(&file_extent_item) ==
1451 BTRFS_COMPRESS_NONE) {
1452 next_bytenr += btrfs_stack_file_extent_offset(&file_extent_item);
1453 num_bytes = btrfs_stack_file_extent_num_bytes(&file_extent_item);
1454 } else {
1455 num_bytes = btrfs_stack_file_extent_disk_num_bytes(&file_extent_item);
1456 }
1457 generation = btrfs_stack_file_extent_generation(&file_extent_item);
1458
1459 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1460 printk(KERN_INFO "extent_data: type %u, disk_bytenr = %llu,"
1461 " offset = %llu, num_bytes = %llu\n",
1462 file_extent_item.type,
1463 btrfs_stack_file_extent_disk_bytenr(&file_extent_item),
1464 btrfs_stack_file_extent_offset(&file_extent_item),
1465 num_bytes);
1466 while (num_bytes > 0) {
1467 u32 chunk_len;
1468 int num_copies;
1469 int mirror_num;
1470
1471 if (num_bytes > state->datablock_size)
1472 chunk_len = state->datablock_size;
1473 else
1474 chunk_len = num_bytes;
1475
1476 num_copies =
1477 btrfs_num_copies(state->root->fs_info,
1478 next_bytenr, state->datablock_size);
1479 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
1480 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
1481 next_bytenr, num_copies);
1482 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
1483 struct btrfsic_block_data_ctx next_block_ctx;
1484 struct btrfsic_block *next_block;
1485 int block_was_created;
1486
1487 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1488 printk(KERN_INFO "btrfsic_handle_extent_data("
1489 "mirror_num=%d)\n", mirror_num);
1490 if (state->print_mask & BTRFSIC_PRINT_MASK_VERY_VERBOSE)
1491 printk(KERN_INFO
1492 "\tdisk_bytenr = %llu, num_bytes %u\n",
1493 next_bytenr, chunk_len);
1494 ret = btrfsic_map_block(state, next_bytenr,
1495 chunk_len, &next_block_ctx,
1496 mirror_num);
1497 if (ret) {
1498 printk(KERN_INFO
1499 "btrfsic: btrfsic_map_block(@%llu,"
1500 " mirror=%d) failed!\n",
1501 next_bytenr, mirror_num);
1502 return -1;
1503 }
1504
1505 next_block = btrfsic_block_lookup_or_add(
1506 state,
1507 &next_block_ctx,
1508 "referenced ",
1509 0,
1510 force_iodone_flag,
1511 !force_iodone_flag,
1512 mirror_num,
1513 &block_was_created);
1514 if (NULL == next_block) {
1515 printk(KERN_INFO
1516 "btrfsic: error, kmalloc failed!\n");
1517 btrfsic_release_block_ctx(&next_block_ctx);
1518 return -1;
1519 }
1520 if (!block_was_created) {
1521 if ((state->print_mask &
1522 BTRFSIC_PRINT_MASK_VERBOSE) &&
1523 next_block->logical_bytenr != next_bytenr &&
1524 !(!next_block->is_metadata &&
1525 0 == next_block->logical_bytenr)) {
1526 printk(KERN_INFO
1527 "Referenced block"
1528 " @%llu (%s/%llu/%d)"
1529 " found in hash table, D,"
1530 " bytenr mismatch"
1531 " (!= stored %llu).\n",
1532 next_bytenr,
1533 next_block_ctx.dev->name,
1534 next_block_ctx.dev_bytenr,
1535 mirror_num,
1536 next_block->logical_bytenr);
1537 }
1538 next_block->logical_bytenr = next_bytenr;
1539 next_block->mirror_num = mirror_num;
1540 }
1541
1542 l = btrfsic_block_link_lookup_or_add(state,
1543 &next_block_ctx,
1544 next_block, block,
1545 generation);
1546 btrfsic_release_block_ctx(&next_block_ctx);
1547 if (NULL == l)
1548 return -1;
1549 }
1550
1551 next_bytenr += chunk_len;
1552 num_bytes -= chunk_len;
1553 }
1554
1555 return 0;
1556 }
1557
1558 static int btrfsic_map_block(struct btrfsic_state *state, u64 bytenr, u32 len,
1559 struct btrfsic_block_data_ctx *block_ctx_out,
1560 int mirror_num)
1561 {
1562 int ret;
1563 u64 length;
1564 struct btrfs_bio *multi = NULL;
1565 struct btrfs_device *device;
1566
1567 length = len;
1568 ret = btrfs_map_block(state->root->fs_info, READ,
1569 bytenr, &length, &multi, mirror_num);
1570
1571 if (ret) {
1572 block_ctx_out->start = 0;
1573 block_ctx_out->dev_bytenr = 0;
1574 block_ctx_out->len = 0;
1575 block_ctx_out->dev = NULL;
1576 block_ctx_out->datav = NULL;
1577 block_ctx_out->pagev = NULL;
1578 block_ctx_out->mem_to_free = NULL;
1579
1580 return ret;
1581 }
1582
1583 device = multi->stripes[0].dev;
1584 block_ctx_out->dev = btrfsic_dev_state_lookup(device->bdev);
1585 block_ctx_out->dev_bytenr = multi->stripes[0].physical;
1586 block_ctx_out->start = bytenr;
1587 block_ctx_out->len = len;
1588 block_ctx_out->datav = NULL;
1589 block_ctx_out->pagev = NULL;
1590 block_ctx_out->mem_to_free = NULL;
1591
1592 kfree(multi);
1593 if (NULL == block_ctx_out->dev) {
1594 ret = -ENXIO;
1595 printk(KERN_INFO "btrfsic: error, cannot lookup dev (#1)!\n");
1596 }
1597
1598 return ret;
1599 }
1600
1601 static void btrfsic_release_block_ctx(struct btrfsic_block_data_ctx *block_ctx)
1602 {
1603 if (block_ctx->mem_to_free) {
1604 unsigned int num_pages;
1605
1606 BUG_ON(!block_ctx->datav);
1607 BUG_ON(!block_ctx->pagev);
1608 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1609 PAGE_SHIFT;
1610 while (num_pages > 0) {
1611 num_pages--;
1612 if (block_ctx->datav[num_pages]) {
1613 kunmap(block_ctx->pagev[num_pages]);
1614 block_ctx->datav[num_pages] = NULL;
1615 }
1616 if (block_ctx->pagev[num_pages]) {
1617 __free_page(block_ctx->pagev[num_pages]);
1618 block_ctx->pagev[num_pages] = NULL;
1619 }
1620 }
1621
1622 kfree(block_ctx->mem_to_free);
1623 block_ctx->mem_to_free = NULL;
1624 block_ctx->pagev = NULL;
1625 block_ctx->datav = NULL;
1626 }
1627 }
1628
1629 static int btrfsic_read_block(struct btrfsic_state *state,
1630 struct btrfsic_block_data_ctx *block_ctx)
1631 {
1632 unsigned int num_pages;
1633 unsigned int i;
1634 u64 dev_bytenr;
1635 int ret;
1636
1637 BUG_ON(block_ctx->datav);
1638 BUG_ON(block_ctx->pagev);
1639 BUG_ON(block_ctx->mem_to_free);
1640 if (block_ctx->dev_bytenr & ((u64)PAGE_SIZE - 1)) {
1641 printk(KERN_INFO
1642 "btrfsic: read_block() with unaligned bytenr %llu\n",
1643 block_ctx->dev_bytenr);
1644 return -1;
1645 }
1646
1647 num_pages = (block_ctx->len + (u64)PAGE_SIZE - 1) >>
1648 PAGE_SHIFT;
1649 block_ctx->mem_to_free = kzalloc((sizeof(*block_ctx->datav) +
1650 sizeof(*block_ctx->pagev)) *
1651 num_pages, GFP_NOFS);
1652 if (!block_ctx->mem_to_free)
1653 return -ENOMEM;
1654 block_ctx->datav = block_ctx->mem_to_free;
1655 block_ctx->pagev = (struct page **)(block_ctx->datav + num_pages);
1656 for (i = 0; i < num_pages; i++) {
1657 block_ctx->pagev[i] = alloc_page(GFP_NOFS);
1658 if (!block_ctx->pagev[i])
1659 return -1;
1660 }
1661
1662 dev_bytenr = block_ctx->dev_bytenr;
1663 for (i = 0; i < num_pages;) {
1664 struct bio *bio;
1665 unsigned int j;
1666
1667 bio = btrfs_io_bio_alloc(GFP_NOFS, num_pages - i);
1668 if (!bio) {
1669 printk(KERN_INFO
1670 "btrfsic: bio_alloc() for %u pages failed!\n",
1671 num_pages - i);
1672 return -1;
1673 }
1674 bio->bi_bdev = block_ctx->dev->bdev;
1675 bio->bi_iter.bi_sector = dev_bytenr >> 9;
1676
1677 for (j = i; j < num_pages; j++) {
1678 ret = bio_add_page(bio, block_ctx->pagev[j],
1679 PAGE_SIZE, 0);
1680 if (PAGE_SIZE != ret)
1681 break;
1682 }
1683 if (j == i) {
1684 printk(KERN_INFO
1685 "btrfsic: error, failed to add a single page!\n");
1686 return -1;
1687 }
1688 if (submit_bio_wait(READ, bio)) {
1689 printk(KERN_INFO
1690 "btrfsic: read error at logical %llu dev %s!\n",
1691 block_ctx->start, block_ctx->dev->name);
1692 bio_put(bio);
1693 return -1;
1694 }
1695 bio_put(bio);
1696 dev_bytenr += (j - i) * PAGE_SIZE;
1697 i = j;
1698 }
1699 for (i = 0; i < num_pages; i++) {
1700 block_ctx->datav[i] = kmap(block_ctx->pagev[i]);
1701 if (!block_ctx->datav[i]) {
1702 printk(KERN_INFO "btrfsic: kmap() failed (dev %s)!\n",
1703 block_ctx->dev->name);
1704 return -1;
1705 }
1706 }
1707
1708 return block_ctx->len;
1709 }
1710
1711 static void btrfsic_dump_database(struct btrfsic_state *state)
1712 {
1713 const struct btrfsic_block *b_all;
1714
1715 BUG_ON(NULL == state);
1716
1717 printk(KERN_INFO "all_blocks_list:\n");
1718 list_for_each_entry(b_all, &state->all_blocks_list, all_blocks_node) {
1719 const struct btrfsic_block_link *l;
1720
1721 printk(KERN_INFO "%c-block @%llu (%s/%llu/%d)\n",
1722 btrfsic_get_block_type(state, b_all),
1723 b_all->logical_bytenr, b_all->dev_state->name,
1724 b_all->dev_bytenr, b_all->mirror_num);
1725
1726 list_for_each_entry(l, &b_all->ref_to_list, node_ref_to) {
1727 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1728 " refers %u* to"
1729 " %c @%llu (%s/%llu/%d)\n",
1730 btrfsic_get_block_type(state, b_all),
1731 b_all->logical_bytenr, b_all->dev_state->name,
1732 b_all->dev_bytenr, b_all->mirror_num,
1733 l->ref_cnt,
1734 btrfsic_get_block_type(state, l->block_ref_to),
1735 l->block_ref_to->logical_bytenr,
1736 l->block_ref_to->dev_state->name,
1737 l->block_ref_to->dev_bytenr,
1738 l->block_ref_to->mirror_num);
1739 }
1740
1741 list_for_each_entry(l, &b_all->ref_from_list, node_ref_from) {
1742 printk(KERN_INFO " %c @%llu (%s/%llu/%d)"
1743 " is ref %u* from"
1744 " %c @%llu (%s/%llu/%d)\n",
1745 btrfsic_get_block_type(state, b_all),
1746 b_all->logical_bytenr, b_all->dev_state->name,
1747 b_all->dev_bytenr, b_all->mirror_num,
1748 l->ref_cnt,
1749 btrfsic_get_block_type(state, l->block_ref_from),
1750 l->block_ref_from->logical_bytenr,
1751 l->block_ref_from->dev_state->name,
1752 l->block_ref_from->dev_bytenr,
1753 l->block_ref_from->mirror_num);
1754 }
1755
1756 printk(KERN_INFO "\n");
1757 }
1758 }
1759
1760 /*
1761 * Test whether the disk block contains a tree block (leaf or node)
1762 * (note that this test fails for the super block)
1763 */
1764 static int btrfsic_test_for_metadata(struct btrfsic_state *state,
1765 char **datav, unsigned int num_pages)
1766 {
1767 struct btrfs_header *h;
1768 u8 csum[BTRFS_CSUM_SIZE];
1769 u32 crc = ~(u32)0;
1770 unsigned int i;
1771
1772 if (num_pages * PAGE_SIZE < state->metablock_size)
1773 return 1; /* not metadata */
1774 num_pages = state->metablock_size >> PAGE_SHIFT;
1775 h = (struct btrfs_header *)datav[0];
1776
1777 if (memcmp(h->fsid, state->root->fs_info->fsid, BTRFS_UUID_SIZE))
1778 return 1;
1779
1780 for (i = 0; i < num_pages; i++) {
1781 u8 *data = i ? datav[i] : (datav[i] + BTRFS_CSUM_SIZE);
1782 size_t sublen = i ? PAGE_SIZE :
1783 (PAGE_SIZE - BTRFS_CSUM_SIZE);
1784
1785 crc = btrfs_crc32c(crc, data, sublen);
1786 }
1787 btrfs_csum_final(crc, csum);
1788 if (memcmp(csum, h->csum, state->csum_size))
1789 return 1;
1790
1791 return 0; /* is metadata */
1792 }
1793
1794 static void btrfsic_process_written_block(struct btrfsic_dev_state *dev_state,
1795 u64 dev_bytenr, char **mapped_datav,
1796 unsigned int num_pages,
1797 struct bio *bio, int *bio_is_patched,
1798 struct buffer_head *bh,
1799 int submit_bio_bh_rw)
1800 {
1801 int is_metadata;
1802 struct btrfsic_block *block;
1803 struct btrfsic_block_data_ctx block_ctx;
1804 int ret;
1805 struct btrfsic_state *state = dev_state->state;
1806 struct block_device *bdev = dev_state->bdev;
1807 unsigned int processed_len;
1808
1809 if (NULL != bio_is_patched)
1810 *bio_is_patched = 0;
1811
1812 again:
1813 if (num_pages == 0)
1814 return;
1815
1816 processed_len = 0;
1817 is_metadata = (0 == btrfsic_test_for_metadata(state, mapped_datav,
1818 num_pages));
1819
1820 block = btrfsic_block_hashtable_lookup(bdev, dev_bytenr,
1821 &state->block_hashtable);
1822 if (NULL != block) {
1823 u64 bytenr = 0;
1824 struct btrfsic_block_link *l, *tmp;
1825
1826 if (block->is_superblock) {
1827 bytenr = btrfs_super_bytenr((struct btrfs_super_block *)
1828 mapped_datav[0]);
1829 if (num_pages * PAGE_SIZE <
1830 BTRFS_SUPER_INFO_SIZE) {
1831 printk(KERN_INFO
1832 "btrfsic: cannot work with too short bios!\n");
1833 return;
1834 }
1835 is_metadata = 1;
1836 BUG_ON(BTRFS_SUPER_INFO_SIZE & (PAGE_SIZE - 1));
1837 processed_len = BTRFS_SUPER_INFO_SIZE;
1838 if (state->print_mask &
1839 BTRFSIC_PRINT_MASK_TREE_BEFORE_SB_WRITE) {
1840 printk(KERN_INFO
1841 "[before new superblock is written]:\n");
1842 btrfsic_dump_tree_sub(state, block, 0);
1843 }
1844 }
1845 if (is_metadata) {
1846 if (!block->is_superblock) {
1847 if (num_pages * PAGE_SIZE <
1848 state->metablock_size) {
1849 printk(KERN_INFO
1850 "btrfsic: cannot work with too short bios!\n");
1851 return;
1852 }
1853 processed_len = state->metablock_size;
1854 bytenr = btrfs_stack_header_bytenr(
1855 (struct btrfs_header *)
1856 mapped_datav[0]);
1857 btrfsic_cmp_log_and_dev_bytenr(state, bytenr,
1858 dev_state,
1859 dev_bytenr);
1860 }
1861 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE) {
1862 if (block->logical_bytenr != bytenr &&
1863 !(!block->is_metadata &&
1864 block->logical_bytenr == 0))
1865 printk(KERN_INFO
1866 "Written block @%llu (%s/%llu/%d) found in hash table, %c, bytenr mismatch (!= stored %llu).\n",
1867 bytenr, dev_state->name,
1868 dev_bytenr,
1869 block->mirror_num,
1870 btrfsic_get_block_type(state,
1871 block),
1872 block->logical_bytenr);
1873 else
1874 printk(KERN_INFO
1875 "Written block @%llu (%s/%llu/%d) found in hash table, %c.\n",
1876 bytenr, dev_state->name,
1877 dev_bytenr, block->mirror_num,
1878 btrfsic_get_block_type(state,
1879 block));
1880 }
1881 block->logical_bytenr = bytenr;
1882 } else {
1883 if (num_pages * PAGE_SIZE <
1884 state->datablock_size) {
1885 printk(KERN_INFO
1886 "btrfsic: cannot work with too short bios!\n");
1887 return;
1888 }
1889 processed_len = state->datablock_size;
1890 bytenr = block->logical_bytenr;
1891 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1892 printk(KERN_INFO
1893 "Written block @%llu (%s/%llu/%d)"
1894 " found in hash table, %c.\n",
1895 bytenr, dev_state->name, dev_bytenr,
1896 block->mirror_num,
1897 btrfsic_get_block_type(state, block));
1898 }
1899
1900 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1901 printk(KERN_INFO
1902 "ref_to_list: %cE, ref_from_list: %cE\n",
1903 list_empty(&block->ref_to_list) ? ' ' : '!',
1904 list_empty(&block->ref_from_list) ? ' ' : '!');
1905 if (btrfsic_is_block_ref_by_superblock(state, block, 0)) {
1906 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1907 " @%llu (%s/%llu/%d), old(gen=%llu,"
1908 " objectid=%llu, type=%d, offset=%llu),"
1909 " new(gen=%llu),"
1910 " which is referenced by most recent superblock"
1911 " (superblockgen=%llu)!\n",
1912 btrfsic_get_block_type(state, block), bytenr,
1913 dev_state->name, dev_bytenr, block->mirror_num,
1914 block->generation,
1915 btrfs_disk_key_objectid(&block->disk_key),
1916 block->disk_key.type,
1917 btrfs_disk_key_offset(&block->disk_key),
1918 btrfs_stack_header_generation(
1919 (struct btrfs_header *) mapped_datav[0]),
1920 state->max_superblock_generation);
1921 btrfsic_dump_tree(state);
1922 }
1923
1924 if (!block->is_iodone && !block->never_written) {
1925 printk(KERN_INFO "btrfs: attempt to overwrite %c-block"
1926 " @%llu (%s/%llu/%d), oldgen=%llu, newgen=%llu,"
1927 " which is not yet iodone!\n",
1928 btrfsic_get_block_type(state, block), bytenr,
1929 dev_state->name, dev_bytenr, block->mirror_num,
1930 block->generation,
1931 btrfs_stack_header_generation(
1932 (struct btrfs_header *)
1933 mapped_datav[0]));
1934 /* it would not be safe to go on */
1935 btrfsic_dump_tree(state);
1936 goto continue_loop;
1937 }
1938
1939 /*
1940 * Clear all references of this block. Do not free
1941 * the block itself even if is not referenced anymore
1942 * because it still carries valueable information
1943 * like whether it was ever written and IO completed.
1944 */
1945 list_for_each_entry_safe(l, tmp, &block->ref_to_list,
1946 node_ref_to) {
1947 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
1948 btrfsic_print_rem_link(state, l);
1949 l->ref_cnt--;
1950 if (0 == l->ref_cnt) {
1951 list_del(&l->node_ref_to);
1952 list_del(&l->node_ref_from);
1953 btrfsic_block_link_hashtable_remove(l);
1954 btrfsic_block_link_free(l);
1955 }
1956 }
1957
1958 block_ctx.dev = dev_state;
1959 block_ctx.dev_bytenr = dev_bytenr;
1960 block_ctx.start = bytenr;
1961 block_ctx.len = processed_len;
1962 block_ctx.pagev = NULL;
1963 block_ctx.mem_to_free = NULL;
1964 block_ctx.datav = mapped_datav;
1965
1966 if (is_metadata || state->include_extent_data) {
1967 block->never_written = 0;
1968 block->iodone_w_error = 0;
1969 if (NULL != bio) {
1970 block->is_iodone = 0;
1971 BUG_ON(NULL == bio_is_patched);
1972 if (!*bio_is_patched) {
1973 block->orig_bio_bh_private =
1974 bio->bi_private;
1975 block->orig_bio_bh_end_io.bio =
1976 bio->bi_end_io;
1977 block->next_in_same_bio = NULL;
1978 bio->bi_private = block;
1979 bio->bi_end_io = btrfsic_bio_end_io;
1980 *bio_is_patched = 1;
1981 } else {
1982 struct btrfsic_block *chained_block =
1983 (struct btrfsic_block *)
1984 bio->bi_private;
1985
1986 BUG_ON(NULL == chained_block);
1987 block->orig_bio_bh_private =
1988 chained_block->orig_bio_bh_private;
1989 block->orig_bio_bh_end_io.bio =
1990 chained_block->orig_bio_bh_end_io.
1991 bio;
1992 block->next_in_same_bio = chained_block;
1993 bio->bi_private = block;
1994 }
1995 } else if (NULL != bh) {
1996 block->is_iodone = 0;
1997 block->orig_bio_bh_private = bh->b_private;
1998 block->orig_bio_bh_end_io.bh = bh->b_end_io;
1999 block->next_in_same_bio = NULL;
2000 bh->b_private = block;
2001 bh->b_end_io = btrfsic_bh_end_io;
2002 } else {
2003 block->is_iodone = 1;
2004 block->orig_bio_bh_private = NULL;
2005 block->orig_bio_bh_end_io.bio = NULL;
2006 block->next_in_same_bio = NULL;
2007 }
2008 }
2009
2010 block->flush_gen = dev_state->last_flush_gen + 1;
2011 block->submit_bio_bh_rw = submit_bio_bh_rw;
2012 if (is_metadata) {
2013 block->logical_bytenr = bytenr;
2014 block->is_metadata = 1;
2015 if (block->is_superblock) {
2016 BUG_ON(PAGE_SIZE !=
2017 BTRFS_SUPER_INFO_SIZE);
2018 ret = btrfsic_process_written_superblock(
2019 state,
2020 block,
2021 (struct btrfs_super_block *)
2022 mapped_datav[0]);
2023 if (state->print_mask &
2024 BTRFSIC_PRINT_MASK_TREE_AFTER_SB_WRITE) {
2025 printk(KERN_INFO
2026 "[after new superblock is written]:\n");
2027 btrfsic_dump_tree_sub(state, block, 0);
2028 }
2029 } else {
2030 block->mirror_num = 0; /* unknown */
2031 ret = btrfsic_process_metablock(
2032 state,
2033 block,
2034 &block_ctx,
2035 0, 0);
2036 }
2037 if (ret)
2038 printk(KERN_INFO
2039 "btrfsic: btrfsic_process_metablock"
2040 "(root @%llu) failed!\n",
2041 dev_bytenr);
2042 } else {
2043 block->is_metadata = 0;
2044 block->mirror_num = 0; /* unknown */
2045 block->generation = BTRFSIC_GENERATION_UNKNOWN;
2046 if (!state->include_extent_data
2047 && list_empty(&block->ref_from_list)) {
2048 /*
2049 * disk block is overwritten with extent
2050 * data (not meta data) and we are configured
2051 * to not include extent data: take the
2052 * chance and free the block's memory
2053 */
2054 btrfsic_block_hashtable_remove(block);
2055 list_del(&block->all_blocks_node);
2056 btrfsic_block_free(block);
2057 }
2058 }
2059 btrfsic_release_block_ctx(&block_ctx);
2060 } else {
2061 /* block has not been found in hash table */
2062 u64 bytenr;
2063
2064 if (!is_metadata) {
2065 processed_len = state->datablock_size;
2066 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2067 printk(KERN_INFO "Written block (%s/%llu/?)"
2068 " !found in hash table, D.\n",
2069 dev_state->name, dev_bytenr);
2070 if (!state->include_extent_data) {
2071 /* ignore that written D block */
2072 goto continue_loop;
2073 }
2074
2075 /* this is getting ugly for the
2076 * include_extent_data case... */
2077 bytenr = 0; /* unknown */
2078 } else {
2079 processed_len = state->metablock_size;
2080 bytenr = btrfs_stack_header_bytenr(
2081 (struct btrfs_header *)
2082 mapped_datav[0]);
2083 btrfsic_cmp_log_and_dev_bytenr(state, bytenr, dev_state,
2084 dev_bytenr);
2085 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2086 printk(KERN_INFO
2087 "Written block @%llu (%s/%llu/?)"
2088 " !found in hash table, M.\n",
2089 bytenr, dev_state->name, dev_bytenr);
2090 }
2091
2092 block_ctx.dev = dev_state;
2093 block_ctx.dev_bytenr = dev_bytenr;
2094 block_ctx.start = bytenr;
2095 block_ctx.len = processed_len;
2096 block_ctx.pagev = NULL;
2097 block_ctx.mem_to_free = NULL;
2098 block_ctx.datav = mapped_datav;
2099
2100 block = btrfsic_block_alloc();
2101 if (NULL == block) {
2102 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2103 btrfsic_release_block_ctx(&block_ctx);
2104 goto continue_loop;
2105 }
2106 block->dev_state = dev_state;
2107 block->dev_bytenr = dev_bytenr;
2108 block->logical_bytenr = bytenr;
2109 block->is_metadata = is_metadata;
2110 block->never_written = 0;
2111 block->iodone_w_error = 0;
2112 block->mirror_num = 0; /* unknown */
2113 block->flush_gen = dev_state->last_flush_gen + 1;
2114 block->submit_bio_bh_rw = submit_bio_bh_rw;
2115 if (NULL != bio) {
2116 block->is_iodone = 0;
2117 BUG_ON(NULL == bio_is_patched);
2118 if (!*bio_is_patched) {
2119 block->orig_bio_bh_private = bio->bi_private;
2120 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
2121 block->next_in_same_bio = NULL;
2122 bio->bi_private = block;
2123 bio->bi_end_io = btrfsic_bio_end_io;
2124 *bio_is_patched = 1;
2125 } else {
2126 struct btrfsic_block *chained_block =
2127 (struct btrfsic_block *)
2128 bio->bi_private;
2129
2130 BUG_ON(NULL == chained_block);
2131 block->orig_bio_bh_private =
2132 chained_block->orig_bio_bh_private;
2133 block->orig_bio_bh_end_io.bio =
2134 chained_block->orig_bio_bh_end_io.bio;
2135 block->next_in_same_bio = chained_block;
2136 bio->bi_private = block;
2137 }
2138 } else if (NULL != bh) {
2139 block->is_iodone = 0;
2140 block->orig_bio_bh_private = bh->b_private;
2141 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2142 block->next_in_same_bio = NULL;
2143 bh->b_private = block;
2144 bh->b_end_io = btrfsic_bh_end_io;
2145 } else {
2146 block->is_iodone = 1;
2147 block->orig_bio_bh_private = NULL;
2148 block->orig_bio_bh_end_io.bio = NULL;
2149 block->next_in_same_bio = NULL;
2150 }
2151 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2152 printk(KERN_INFO
2153 "New written %c-block @%llu (%s/%llu/%d)\n",
2154 is_metadata ? 'M' : 'D',
2155 block->logical_bytenr, block->dev_state->name,
2156 block->dev_bytenr, block->mirror_num);
2157 list_add(&block->all_blocks_node, &state->all_blocks_list);
2158 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2159
2160 if (is_metadata) {
2161 ret = btrfsic_process_metablock(state, block,
2162 &block_ctx, 0, 0);
2163 if (ret)
2164 printk(KERN_INFO
2165 "btrfsic: process_metablock(root @%llu)"
2166 " failed!\n",
2167 dev_bytenr);
2168 }
2169 btrfsic_release_block_ctx(&block_ctx);
2170 }
2171
2172 continue_loop:
2173 BUG_ON(!processed_len);
2174 dev_bytenr += processed_len;
2175 mapped_datav += processed_len >> PAGE_SHIFT;
2176 num_pages -= processed_len >> PAGE_SHIFT;
2177 goto again;
2178 }
2179
2180 static void btrfsic_bio_end_io(struct bio *bp)
2181 {
2182 struct btrfsic_block *block = (struct btrfsic_block *)bp->bi_private;
2183 int iodone_w_error;
2184
2185 /* mutex is not held! This is not save if IO is not yet completed
2186 * on umount */
2187 iodone_w_error = 0;
2188 if (bp->bi_error)
2189 iodone_w_error = 1;
2190
2191 BUG_ON(NULL == block);
2192 bp->bi_private = block->orig_bio_bh_private;
2193 bp->bi_end_io = block->orig_bio_bh_end_io.bio;
2194
2195 do {
2196 struct btrfsic_block *next_block;
2197 struct btrfsic_dev_state *const dev_state = block->dev_state;
2198
2199 if ((dev_state->state->print_mask &
2200 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2201 printk(KERN_INFO
2202 "bio_end_io(err=%d) for %c @%llu (%s/%llu/%d)\n",
2203 bp->bi_error,
2204 btrfsic_get_block_type(dev_state->state, block),
2205 block->logical_bytenr, dev_state->name,
2206 block->dev_bytenr, block->mirror_num);
2207 next_block = block->next_in_same_bio;
2208 block->iodone_w_error = iodone_w_error;
2209 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2210 dev_state->last_flush_gen++;
2211 if ((dev_state->state->print_mask &
2212 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2213 printk(KERN_INFO
2214 "bio_end_io() new %s flush_gen=%llu\n",
2215 dev_state->name,
2216 dev_state->last_flush_gen);
2217 }
2218 if (block->submit_bio_bh_rw & REQ_FUA)
2219 block->flush_gen = 0; /* FUA completed means block is
2220 * on disk */
2221 block->is_iodone = 1; /* for FLUSH, this releases the block */
2222 block = next_block;
2223 } while (NULL != block);
2224
2225 bp->bi_end_io(bp);
2226 }
2227
2228 static void btrfsic_bh_end_io(struct buffer_head *bh, int uptodate)
2229 {
2230 struct btrfsic_block *block = (struct btrfsic_block *)bh->b_private;
2231 int iodone_w_error = !uptodate;
2232 struct btrfsic_dev_state *dev_state;
2233
2234 BUG_ON(NULL == block);
2235 dev_state = block->dev_state;
2236 if ((dev_state->state->print_mask & BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2237 printk(KERN_INFO
2238 "bh_end_io(error=%d) for %c @%llu (%s/%llu/%d)\n",
2239 iodone_w_error,
2240 btrfsic_get_block_type(dev_state->state, block),
2241 block->logical_bytenr, block->dev_state->name,
2242 block->dev_bytenr, block->mirror_num);
2243
2244 block->iodone_w_error = iodone_w_error;
2245 if (block->submit_bio_bh_rw & REQ_FLUSH) {
2246 dev_state->last_flush_gen++;
2247 if ((dev_state->state->print_mask &
2248 BTRFSIC_PRINT_MASK_END_IO_BIO_BH))
2249 printk(KERN_INFO
2250 "bh_end_io() new %s flush_gen=%llu\n",
2251 dev_state->name, dev_state->last_flush_gen);
2252 }
2253 if (block->submit_bio_bh_rw & REQ_FUA)
2254 block->flush_gen = 0; /* FUA completed means block is on disk */
2255
2256 bh->b_private = block->orig_bio_bh_private;
2257 bh->b_end_io = block->orig_bio_bh_end_io.bh;
2258 block->is_iodone = 1; /* for FLUSH, this releases the block */
2259 bh->b_end_io(bh, uptodate);
2260 }
2261
2262 static int btrfsic_process_written_superblock(
2263 struct btrfsic_state *state,
2264 struct btrfsic_block *const superblock,
2265 struct btrfs_super_block *const super_hdr)
2266 {
2267 int pass;
2268
2269 superblock->generation = btrfs_super_generation(super_hdr);
2270 if (!(superblock->generation > state->max_superblock_generation ||
2271 0 == state->max_superblock_generation)) {
2272 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2273 printk(KERN_INFO
2274 "btrfsic: superblock @%llu (%s/%llu/%d)"
2275 " with old gen %llu <= %llu\n",
2276 superblock->logical_bytenr,
2277 superblock->dev_state->name,
2278 superblock->dev_bytenr, superblock->mirror_num,
2279 btrfs_super_generation(super_hdr),
2280 state->max_superblock_generation);
2281 } else {
2282 if (state->print_mask & BTRFSIC_PRINT_MASK_SUPERBLOCK_WRITE)
2283 printk(KERN_INFO
2284 "btrfsic: got new superblock @%llu (%s/%llu/%d)"
2285 " with new gen %llu > %llu\n",
2286 superblock->logical_bytenr,
2287 superblock->dev_state->name,
2288 superblock->dev_bytenr, superblock->mirror_num,
2289 btrfs_super_generation(super_hdr),
2290 state->max_superblock_generation);
2291
2292 state->max_superblock_generation =
2293 btrfs_super_generation(super_hdr);
2294 state->latest_superblock = superblock;
2295 }
2296
2297 for (pass = 0; pass < 3; pass++) {
2298 int ret;
2299 u64 next_bytenr;
2300 struct btrfsic_block *next_block;
2301 struct btrfsic_block_data_ctx tmp_next_block_ctx;
2302 struct btrfsic_block_link *l;
2303 int num_copies;
2304 int mirror_num;
2305 const char *additional_string = NULL;
2306 struct btrfs_disk_key tmp_disk_key = {0};
2307
2308 btrfs_set_disk_key_objectid(&tmp_disk_key,
2309 BTRFS_ROOT_ITEM_KEY);
2310 btrfs_set_disk_key_objectid(&tmp_disk_key, 0);
2311
2312 switch (pass) {
2313 case 0:
2314 btrfs_set_disk_key_objectid(&tmp_disk_key,
2315 BTRFS_ROOT_TREE_OBJECTID);
2316 additional_string = "root ";
2317 next_bytenr = btrfs_super_root(super_hdr);
2318 if (state->print_mask &
2319 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2320 printk(KERN_INFO "root@%llu\n", next_bytenr);
2321 break;
2322 case 1:
2323 btrfs_set_disk_key_objectid(&tmp_disk_key,
2324 BTRFS_CHUNK_TREE_OBJECTID);
2325 additional_string = "chunk ";
2326 next_bytenr = btrfs_super_chunk_root(super_hdr);
2327 if (state->print_mask &
2328 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2329 printk(KERN_INFO "chunk@%llu\n", next_bytenr);
2330 break;
2331 case 2:
2332 btrfs_set_disk_key_objectid(&tmp_disk_key,
2333 BTRFS_TREE_LOG_OBJECTID);
2334 additional_string = "log ";
2335 next_bytenr = btrfs_super_log_root(super_hdr);
2336 if (0 == next_bytenr)
2337 continue;
2338 if (state->print_mask &
2339 BTRFSIC_PRINT_MASK_ROOT_CHUNK_LOG_TREE_LOCATION)
2340 printk(KERN_INFO "log@%llu\n", next_bytenr);
2341 break;
2342 }
2343
2344 num_copies =
2345 btrfs_num_copies(state->root->fs_info,
2346 next_bytenr, BTRFS_SUPER_INFO_SIZE);
2347 if (state->print_mask & BTRFSIC_PRINT_MASK_NUM_COPIES)
2348 printk(KERN_INFO "num_copies(log_bytenr=%llu) = %d\n",
2349 next_bytenr, num_copies);
2350 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2351 int was_created;
2352
2353 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2354 printk(KERN_INFO
2355 "btrfsic_process_written_superblock("
2356 "mirror_num=%d)\n", mirror_num);
2357 ret = btrfsic_map_block(state, next_bytenr,
2358 BTRFS_SUPER_INFO_SIZE,
2359 &tmp_next_block_ctx,
2360 mirror_num);
2361 if (ret) {
2362 printk(KERN_INFO
2363 "btrfsic: btrfsic_map_block(@%llu,"
2364 " mirror=%d) failed!\n",
2365 next_bytenr, mirror_num);
2366 return -1;
2367 }
2368
2369 next_block = btrfsic_block_lookup_or_add(
2370 state,
2371 &tmp_next_block_ctx,
2372 additional_string,
2373 1, 0, 1,
2374 mirror_num,
2375 &was_created);
2376 if (NULL == next_block) {
2377 printk(KERN_INFO
2378 "btrfsic: error, kmalloc failed!\n");
2379 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2380 return -1;
2381 }
2382
2383 next_block->disk_key = tmp_disk_key;
2384 if (was_created)
2385 next_block->generation =
2386 BTRFSIC_GENERATION_UNKNOWN;
2387 l = btrfsic_block_link_lookup_or_add(
2388 state,
2389 &tmp_next_block_ctx,
2390 next_block,
2391 superblock,
2392 BTRFSIC_GENERATION_UNKNOWN);
2393 btrfsic_release_block_ctx(&tmp_next_block_ctx);
2394 if (NULL == l)
2395 return -1;
2396 }
2397 }
2398
2399 if (WARN_ON(-1 == btrfsic_check_all_ref_blocks(state, superblock, 0)))
2400 btrfsic_dump_tree(state);
2401
2402 return 0;
2403 }
2404
2405 static int btrfsic_check_all_ref_blocks(struct btrfsic_state *state,
2406 struct btrfsic_block *const block,
2407 int recursion_level)
2408 {
2409 const struct btrfsic_block_link *l;
2410 int ret = 0;
2411
2412 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2413 /*
2414 * Note that this situation can happen and does not
2415 * indicate an error in regular cases. It happens
2416 * when disk blocks are freed and later reused.
2417 * The check-integrity module is not aware of any
2418 * block free operations, it just recognizes block
2419 * write operations. Therefore it keeps the linkage
2420 * information for a block until a block is
2421 * rewritten. This can temporarily cause incorrect
2422 * and even circular linkage informations. This
2423 * causes no harm unless such blocks are referenced
2424 * by the most recent super block.
2425 */
2426 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2427 printk(KERN_INFO
2428 "btrfsic: abort cyclic linkage (case 1).\n");
2429
2430 return ret;
2431 }
2432
2433 /*
2434 * This algorithm is recursive because the amount of used stack
2435 * space is very small and the max recursion depth is limited.
2436 */
2437 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2438 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2439 printk(KERN_INFO
2440 "rl=%d, %c @%llu (%s/%llu/%d)"
2441 " %u* refers to %c @%llu (%s/%llu/%d)\n",
2442 recursion_level,
2443 btrfsic_get_block_type(state, block),
2444 block->logical_bytenr, block->dev_state->name,
2445 block->dev_bytenr, block->mirror_num,
2446 l->ref_cnt,
2447 btrfsic_get_block_type(state, l->block_ref_to),
2448 l->block_ref_to->logical_bytenr,
2449 l->block_ref_to->dev_state->name,
2450 l->block_ref_to->dev_bytenr,
2451 l->block_ref_to->mirror_num);
2452 if (l->block_ref_to->never_written) {
2453 printk(KERN_INFO "btrfs: attempt to write superblock"
2454 " which references block %c @%llu (%s/%llu/%d)"
2455 " which is never written!\n",
2456 btrfsic_get_block_type(state, l->block_ref_to),
2457 l->block_ref_to->logical_bytenr,
2458 l->block_ref_to->dev_state->name,
2459 l->block_ref_to->dev_bytenr,
2460 l->block_ref_to->mirror_num);
2461 ret = -1;
2462 } else if (!l->block_ref_to->is_iodone) {
2463 printk(KERN_INFO "btrfs: attempt to write superblock"
2464 " which references block %c @%llu (%s/%llu/%d)"
2465 " which is not yet iodone!\n",
2466 btrfsic_get_block_type(state, l->block_ref_to),
2467 l->block_ref_to->logical_bytenr,
2468 l->block_ref_to->dev_state->name,
2469 l->block_ref_to->dev_bytenr,
2470 l->block_ref_to->mirror_num);
2471 ret = -1;
2472 } else if (l->block_ref_to->iodone_w_error) {
2473 printk(KERN_INFO "btrfs: attempt to write superblock"
2474 " which references block %c @%llu (%s/%llu/%d)"
2475 " which has write error!\n",
2476 btrfsic_get_block_type(state, l->block_ref_to),
2477 l->block_ref_to->logical_bytenr,
2478 l->block_ref_to->dev_state->name,
2479 l->block_ref_to->dev_bytenr,
2480 l->block_ref_to->mirror_num);
2481 ret = -1;
2482 } else if (l->parent_generation !=
2483 l->block_ref_to->generation &&
2484 BTRFSIC_GENERATION_UNKNOWN !=
2485 l->parent_generation &&
2486 BTRFSIC_GENERATION_UNKNOWN !=
2487 l->block_ref_to->generation) {
2488 printk(KERN_INFO "btrfs: attempt to write superblock"
2489 " which references block %c @%llu (%s/%llu/%d)"
2490 " with generation %llu !="
2491 " parent generation %llu!\n",
2492 btrfsic_get_block_type(state, l->block_ref_to),
2493 l->block_ref_to->logical_bytenr,
2494 l->block_ref_to->dev_state->name,
2495 l->block_ref_to->dev_bytenr,
2496 l->block_ref_to->mirror_num,
2497 l->block_ref_to->generation,
2498 l->parent_generation);
2499 ret = -1;
2500 } else if (l->block_ref_to->flush_gen >
2501 l->block_ref_to->dev_state->last_flush_gen) {
2502 printk(KERN_INFO "btrfs: attempt to write superblock"
2503 " which references block %c @%llu (%s/%llu/%d)"
2504 " which is not flushed out of disk's write cache"
2505 " (block flush_gen=%llu,"
2506 " dev->flush_gen=%llu)!\n",
2507 btrfsic_get_block_type(state, l->block_ref_to),
2508 l->block_ref_to->logical_bytenr,
2509 l->block_ref_to->dev_state->name,
2510 l->block_ref_to->dev_bytenr,
2511 l->block_ref_to->mirror_num, block->flush_gen,
2512 l->block_ref_to->dev_state->last_flush_gen);
2513 ret = -1;
2514 } else if (-1 == btrfsic_check_all_ref_blocks(state,
2515 l->block_ref_to,
2516 recursion_level +
2517 1)) {
2518 ret = -1;
2519 }
2520 }
2521
2522 return ret;
2523 }
2524
2525 static int btrfsic_is_block_ref_by_superblock(
2526 const struct btrfsic_state *state,
2527 const struct btrfsic_block *block,
2528 int recursion_level)
2529 {
2530 const struct btrfsic_block_link *l;
2531
2532 if (recursion_level >= 3 + BTRFS_MAX_LEVEL) {
2533 /* refer to comment at "abort cyclic linkage (case 1)" */
2534 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2535 printk(KERN_INFO
2536 "btrfsic: abort cyclic linkage (case 2).\n");
2537
2538 return 0;
2539 }
2540
2541 /*
2542 * This algorithm is recursive because the amount of used stack space
2543 * is very small and the max recursion depth is limited.
2544 */
2545 list_for_each_entry(l, &block->ref_from_list, node_ref_from) {
2546 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2547 printk(KERN_INFO
2548 "rl=%d, %c @%llu (%s/%llu/%d)"
2549 " is ref %u* from %c @%llu (%s/%llu/%d)\n",
2550 recursion_level,
2551 btrfsic_get_block_type(state, block),
2552 block->logical_bytenr, block->dev_state->name,
2553 block->dev_bytenr, block->mirror_num,
2554 l->ref_cnt,
2555 btrfsic_get_block_type(state, l->block_ref_from),
2556 l->block_ref_from->logical_bytenr,
2557 l->block_ref_from->dev_state->name,
2558 l->block_ref_from->dev_bytenr,
2559 l->block_ref_from->mirror_num);
2560 if (l->block_ref_from->is_superblock &&
2561 state->latest_superblock->dev_bytenr ==
2562 l->block_ref_from->dev_bytenr &&
2563 state->latest_superblock->dev_state->bdev ==
2564 l->block_ref_from->dev_state->bdev)
2565 return 1;
2566 else if (btrfsic_is_block_ref_by_superblock(state,
2567 l->block_ref_from,
2568 recursion_level +
2569 1))
2570 return 1;
2571 }
2572
2573 return 0;
2574 }
2575
2576 static void btrfsic_print_add_link(const struct btrfsic_state *state,
2577 const struct btrfsic_block_link *l)
2578 {
2579 printk(KERN_INFO
2580 "Add %u* link from %c @%llu (%s/%llu/%d)"
2581 " to %c @%llu (%s/%llu/%d).\n",
2582 l->ref_cnt,
2583 btrfsic_get_block_type(state, l->block_ref_from),
2584 l->block_ref_from->logical_bytenr,
2585 l->block_ref_from->dev_state->name,
2586 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2587 btrfsic_get_block_type(state, l->block_ref_to),
2588 l->block_ref_to->logical_bytenr,
2589 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2590 l->block_ref_to->mirror_num);
2591 }
2592
2593 static void btrfsic_print_rem_link(const struct btrfsic_state *state,
2594 const struct btrfsic_block_link *l)
2595 {
2596 printk(KERN_INFO
2597 "Rem %u* link from %c @%llu (%s/%llu/%d)"
2598 " to %c @%llu (%s/%llu/%d).\n",
2599 l->ref_cnt,
2600 btrfsic_get_block_type(state, l->block_ref_from),
2601 l->block_ref_from->logical_bytenr,
2602 l->block_ref_from->dev_state->name,
2603 l->block_ref_from->dev_bytenr, l->block_ref_from->mirror_num,
2604 btrfsic_get_block_type(state, l->block_ref_to),
2605 l->block_ref_to->logical_bytenr,
2606 l->block_ref_to->dev_state->name, l->block_ref_to->dev_bytenr,
2607 l->block_ref_to->mirror_num);
2608 }
2609
2610 static char btrfsic_get_block_type(const struct btrfsic_state *state,
2611 const struct btrfsic_block *block)
2612 {
2613 if (block->is_superblock &&
2614 state->latest_superblock->dev_bytenr == block->dev_bytenr &&
2615 state->latest_superblock->dev_state->bdev == block->dev_state->bdev)
2616 return 'S';
2617 else if (block->is_superblock)
2618 return 's';
2619 else if (block->is_metadata)
2620 return 'M';
2621 else
2622 return 'D';
2623 }
2624
2625 static void btrfsic_dump_tree(const struct btrfsic_state *state)
2626 {
2627 btrfsic_dump_tree_sub(state, state->latest_superblock, 0);
2628 }
2629
2630 static void btrfsic_dump_tree_sub(const struct btrfsic_state *state,
2631 const struct btrfsic_block *block,
2632 int indent_level)
2633 {
2634 const struct btrfsic_block_link *l;
2635 int indent_add;
2636 static char buf[80];
2637 int cursor_position;
2638
2639 /*
2640 * Should better fill an on-stack buffer with a complete line and
2641 * dump it at once when it is time to print a newline character.
2642 */
2643
2644 /*
2645 * This algorithm is recursive because the amount of used stack space
2646 * is very small and the max recursion depth is limited.
2647 */
2648 indent_add = sprintf(buf, "%c-%llu(%s/%llu/%d)",
2649 btrfsic_get_block_type(state, block),
2650 block->logical_bytenr, block->dev_state->name,
2651 block->dev_bytenr, block->mirror_num);
2652 if (indent_level + indent_add > BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2653 printk("[...]\n");
2654 return;
2655 }
2656 printk(buf);
2657 indent_level += indent_add;
2658 if (list_empty(&block->ref_to_list)) {
2659 printk("\n");
2660 return;
2661 }
2662 if (block->mirror_num > 1 &&
2663 !(state->print_mask & BTRFSIC_PRINT_MASK_TREE_WITH_ALL_MIRRORS)) {
2664 printk(" [...]\n");
2665 return;
2666 }
2667
2668 cursor_position = indent_level;
2669 list_for_each_entry(l, &block->ref_to_list, node_ref_to) {
2670 while (cursor_position < indent_level) {
2671 printk(" ");
2672 cursor_position++;
2673 }
2674 if (l->ref_cnt > 1)
2675 indent_add = sprintf(buf, " %d*--> ", l->ref_cnt);
2676 else
2677 indent_add = sprintf(buf, " --> ");
2678 if (indent_level + indent_add >
2679 BTRFSIC_TREE_DUMP_MAX_INDENT_LEVEL) {
2680 printk("[...]\n");
2681 cursor_position = 0;
2682 continue;
2683 }
2684
2685 printk(buf);
2686
2687 btrfsic_dump_tree_sub(state, l->block_ref_to,
2688 indent_level + indent_add);
2689 cursor_position = 0;
2690 }
2691 }
2692
2693 static struct btrfsic_block_link *btrfsic_block_link_lookup_or_add(
2694 struct btrfsic_state *state,
2695 struct btrfsic_block_data_ctx *next_block_ctx,
2696 struct btrfsic_block *next_block,
2697 struct btrfsic_block *from_block,
2698 u64 parent_generation)
2699 {
2700 struct btrfsic_block_link *l;
2701
2702 l = btrfsic_block_link_hashtable_lookup(next_block_ctx->dev->bdev,
2703 next_block_ctx->dev_bytenr,
2704 from_block->dev_state->bdev,
2705 from_block->dev_bytenr,
2706 &state->block_link_hashtable);
2707 if (NULL == l) {
2708 l = btrfsic_block_link_alloc();
2709 if (NULL == l) {
2710 printk(KERN_INFO
2711 "btrfsic: error, kmalloc" " failed!\n");
2712 return NULL;
2713 }
2714
2715 l->block_ref_to = next_block;
2716 l->block_ref_from = from_block;
2717 l->ref_cnt = 1;
2718 l->parent_generation = parent_generation;
2719
2720 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2721 btrfsic_print_add_link(state, l);
2722
2723 list_add(&l->node_ref_to, &from_block->ref_to_list);
2724 list_add(&l->node_ref_from, &next_block->ref_from_list);
2725
2726 btrfsic_block_link_hashtable_add(l,
2727 &state->block_link_hashtable);
2728 } else {
2729 l->ref_cnt++;
2730 l->parent_generation = parent_generation;
2731 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2732 btrfsic_print_add_link(state, l);
2733 }
2734
2735 return l;
2736 }
2737
2738 static struct btrfsic_block *btrfsic_block_lookup_or_add(
2739 struct btrfsic_state *state,
2740 struct btrfsic_block_data_ctx *block_ctx,
2741 const char *additional_string,
2742 int is_metadata,
2743 int is_iodone,
2744 int never_written,
2745 int mirror_num,
2746 int *was_created)
2747 {
2748 struct btrfsic_block *block;
2749
2750 block = btrfsic_block_hashtable_lookup(block_ctx->dev->bdev,
2751 block_ctx->dev_bytenr,
2752 &state->block_hashtable);
2753 if (NULL == block) {
2754 struct btrfsic_dev_state *dev_state;
2755
2756 block = btrfsic_block_alloc();
2757 if (NULL == block) {
2758 printk(KERN_INFO "btrfsic: error, kmalloc failed!\n");
2759 return NULL;
2760 }
2761 dev_state = btrfsic_dev_state_lookup(block_ctx->dev->bdev);
2762 if (NULL == dev_state) {
2763 printk(KERN_INFO
2764 "btrfsic: error, lookup dev_state failed!\n");
2765 btrfsic_block_free(block);
2766 return NULL;
2767 }
2768 block->dev_state = dev_state;
2769 block->dev_bytenr = block_ctx->dev_bytenr;
2770 block->logical_bytenr = block_ctx->start;
2771 block->is_metadata = is_metadata;
2772 block->is_iodone = is_iodone;
2773 block->never_written = never_written;
2774 block->mirror_num = mirror_num;
2775 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
2776 printk(KERN_INFO
2777 "New %s%c-block @%llu (%s/%llu/%d)\n",
2778 additional_string,
2779 btrfsic_get_block_type(state, block),
2780 block->logical_bytenr, dev_state->name,
2781 block->dev_bytenr, mirror_num);
2782 list_add(&block->all_blocks_node, &state->all_blocks_list);
2783 btrfsic_block_hashtable_add(block, &state->block_hashtable);
2784 if (NULL != was_created)
2785 *was_created = 1;
2786 } else {
2787 if (NULL != was_created)
2788 *was_created = 0;
2789 }
2790
2791 return block;
2792 }
2793
2794 static void btrfsic_cmp_log_and_dev_bytenr(struct btrfsic_state *state,
2795 u64 bytenr,
2796 struct btrfsic_dev_state *dev_state,
2797 u64 dev_bytenr)
2798 {
2799 int num_copies;
2800 int mirror_num;
2801 int ret;
2802 struct btrfsic_block_data_ctx block_ctx;
2803 int match = 0;
2804
2805 num_copies = btrfs_num_copies(state->root->fs_info,
2806 bytenr, state->metablock_size);
2807
2808 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2809 ret = btrfsic_map_block(state, bytenr, state->metablock_size,
2810 &block_ctx, mirror_num);
2811 if (ret) {
2812 printk(KERN_INFO "btrfsic:"
2813 " btrfsic_map_block(logical @%llu,"
2814 " mirror %d) failed!\n",
2815 bytenr, mirror_num);
2816 continue;
2817 }
2818
2819 if (dev_state->bdev == block_ctx.dev->bdev &&
2820 dev_bytenr == block_ctx.dev_bytenr) {
2821 match++;
2822 btrfsic_release_block_ctx(&block_ctx);
2823 break;
2824 }
2825 btrfsic_release_block_ctx(&block_ctx);
2826 }
2827
2828 if (WARN_ON(!match)) {
2829 printk(KERN_INFO "btrfs: attempt to write M-block which contains logical bytenr that doesn't map to dev+physical bytenr of submit_bio,"
2830 " buffer->log_bytenr=%llu, submit_bio(bdev=%s,"
2831 " phys_bytenr=%llu)!\n",
2832 bytenr, dev_state->name, dev_bytenr);
2833 for (mirror_num = 1; mirror_num <= num_copies; mirror_num++) {
2834 ret = btrfsic_map_block(state, bytenr,
2835 state->metablock_size,
2836 &block_ctx, mirror_num);
2837 if (ret)
2838 continue;
2839
2840 printk(KERN_INFO "Read logical bytenr @%llu maps to"
2841 " (%s/%llu/%d)\n",
2842 bytenr, block_ctx.dev->name,
2843 block_ctx.dev_bytenr, mirror_num);
2844 }
2845 }
2846 }
2847
2848 static struct btrfsic_dev_state *btrfsic_dev_state_lookup(
2849 struct block_device *bdev)
2850 {
2851 struct btrfsic_dev_state *ds;
2852
2853 ds = btrfsic_dev_state_hashtable_lookup(bdev,
2854 &btrfsic_dev_state_hashtable);
2855 return ds;
2856 }
2857
2858 int btrfsic_submit_bh(int rw, struct buffer_head *bh)
2859 {
2860 struct btrfsic_dev_state *dev_state;
2861
2862 if (!btrfsic_is_initialized)
2863 return submit_bh(rw, bh);
2864
2865 mutex_lock(&btrfsic_mutex);
2866 /* since btrfsic_submit_bh() might also be called before
2867 * btrfsic_mount(), this might return NULL */
2868 dev_state = btrfsic_dev_state_lookup(bh->b_bdev);
2869
2870 /* Only called to write the superblock (incl. FLUSH/FUA) */
2871 if (NULL != dev_state &&
2872 (rw & WRITE) && bh->b_size > 0) {
2873 u64 dev_bytenr;
2874
2875 dev_bytenr = 4096 * bh->b_blocknr;
2876 if (dev_state->state->print_mask &
2877 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2878 printk(KERN_INFO
2879 "submit_bh(rw=0x%x, blocknr=%llu (bytenr %llu),"
2880 " size=%zu, data=%p, bdev=%p)\n",
2881 rw, (unsigned long long)bh->b_blocknr,
2882 dev_bytenr, bh->b_size, bh->b_data, bh->b_bdev);
2883 btrfsic_process_written_block(dev_state, dev_bytenr,
2884 &bh->b_data, 1, NULL,
2885 NULL, bh, rw);
2886 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2887 if (dev_state->state->print_mask &
2888 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2889 printk(KERN_INFO
2890 "submit_bh(rw=0x%x FLUSH, bdev=%p)\n",
2891 rw, bh->b_bdev);
2892 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2893 if ((dev_state->state->print_mask &
2894 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2895 BTRFSIC_PRINT_MASK_VERBOSE)))
2896 printk(KERN_INFO
2897 "btrfsic_submit_bh(%s) with FLUSH"
2898 " but dummy block already in use"
2899 " (ignored)!\n",
2900 dev_state->name);
2901 } else {
2902 struct btrfsic_block *const block =
2903 &dev_state->dummy_block_for_bio_bh_flush;
2904
2905 block->is_iodone = 0;
2906 block->never_written = 0;
2907 block->iodone_w_error = 0;
2908 block->flush_gen = dev_state->last_flush_gen + 1;
2909 block->submit_bio_bh_rw = rw;
2910 block->orig_bio_bh_private = bh->b_private;
2911 block->orig_bio_bh_end_io.bh = bh->b_end_io;
2912 block->next_in_same_bio = NULL;
2913 bh->b_private = block;
2914 bh->b_end_io = btrfsic_bh_end_io;
2915 }
2916 }
2917 mutex_unlock(&btrfsic_mutex);
2918 return submit_bh(rw, bh);
2919 }
2920
2921 static void __btrfsic_submit_bio(int rw, struct bio *bio)
2922 {
2923 struct btrfsic_dev_state *dev_state;
2924
2925 if (!btrfsic_is_initialized)
2926 return;
2927
2928 mutex_lock(&btrfsic_mutex);
2929 /* since btrfsic_submit_bio() is also called before
2930 * btrfsic_mount(), this might return NULL */
2931 dev_state = btrfsic_dev_state_lookup(bio->bi_bdev);
2932 if (NULL != dev_state &&
2933 (rw & WRITE) && NULL != bio->bi_io_vec) {
2934 unsigned int i;
2935 u64 dev_bytenr;
2936 u64 cur_bytenr;
2937 int bio_is_patched;
2938 char **mapped_datav;
2939
2940 dev_bytenr = 512 * bio->bi_iter.bi_sector;
2941 bio_is_patched = 0;
2942 if (dev_state->state->print_mask &
2943 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2944 printk(KERN_INFO
2945 "submit_bio(rw=0x%x, bi_vcnt=%u,"
2946 " bi_sector=%llu (bytenr %llu), bi_bdev=%p)\n",
2947 rw, bio->bi_vcnt,
2948 (unsigned long long)bio->bi_iter.bi_sector,
2949 dev_bytenr, bio->bi_bdev);
2950
2951 mapped_datav = kmalloc_array(bio->bi_vcnt,
2952 sizeof(*mapped_datav), GFP_NOFS);
2953 if (!mapped_datav)
2954 goto leave;
2955 cur_bytenr = dev_bytenr;
2956 for (i = 0; i < bio->bi_vcnt; i++) {
2957 BUG_ON(bio->bi_io_vec[i].bv_len != PAGE_SIZE);
2958 mapped_datav[i] = kmap(bio->bi_io_vec[i].bv_page);
2959 if (!mapped_datav[i]) {
2960 while (i > 0) {
2961 i--;
2962 kunmap(bio->bi_io_vec[i].bv_page);
2963 }
2964 kfree(mapped_datav);
2965 goto leave;
2966 }
2967 if (dev_state->state->print_mask &
2968 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH_VERBOSE)
2969 printk(KERN_INFO
2970 "#%u: bytenr=%llu, len=%u, offset=%u\n",
2971 i, cur_bytenr, bio->bi_io_vec[i].bv_len,
2972 bio->bi_io_vec[i].bv_offset);
2973 cur_bytenr += bio->bi_io_vec[i].bv_len;
2974 }
2975 btrfsic_process_written_block(dev_state, dev_bytenr,
2976 mapped_datav, bio->bi_vcnt,
2977 bio, &bio_is_patched,
2978 NULL, rw);
2979 while (i > 0) {
2980 i--;
2981 kunmap(bio->bi_io_vec[i].bv_page);
2982 }
2983 kfree(mapped_datav);
2984 } else if (NULL != dev_state && (rw & REQ_FLUSH)) {
2985 if (dev_state->state->print_mask &
2986 BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH)
2987 printk(KERN_INFO
2988 "submit_bio(rw=0x%x FLUSH, bdev=%p)\n",
2989 rw, bio->bi_bdev);
2990 if (!dev_state->dummy_block_for_bio_bh_flush.is_iodone) {
2991 if ((dev_state->state->print_mask &
2992 (BTRFSIC_PRINT_MASK_SUBMIT_BIO_BH |
2993 BTRFSIC_PRINT_MASK_VERBOSE)))
2994 printk(KERN_INFO
2995 "btrfsic_submit_bio(%s) with FLUSH"
2996 " but dummy block already in use"
2997 " (ignored)!\n",
2998 dev_state->name);
2999 } else {
3000 struct btrfsic_block *const block =
3001 &dev_state->dummy_block_for_bio_bh_flush;
3002
3003 block->is_iodone = 0;
3004 block->never_written = 0;
3005 block->iodone_w_error = 0;
3006 block->flush_gen = dev_state->last_flush_gen + 1;
3007 block->submit_bio_bh_rw = rw;
3008 block->orig_bio_bh_private = bio->bi_private;
3009 block->orig_bio_bh_end_io.bio = bio->bi_end_io;
3010 block->next_in_same_bio = NULL;
3011 bio->bi_private = block;
3012 bio->bi_end_io = btrfsic_bio_end_io;
3013 }
3014 }
3015 leave:
3016 mutex_unlock(&btrfsic_mutex);
3017 }
3018
3019 void btrfsic_submit_bio(int rw, struct bio *bio)
3020 {
3021 __btrfsic_submit_bio(rw, bio);
3022 submit_bio(rw, bio);
3023 }
3024
3025 int btrfsic_submit_bio_wait(int rw, struct bio *bio)
3026 {
3027 __btrfsic_submit_bio(rw, bio);
3028 return submit_bio_wait(rw, bio);
3029 }
3030
3031 int btrfsic_mount(struct btrfs_root *root,
3032 struct btrfs_fs_devices *fs_devices,
3033 int including_extent_data, u32 print_mask)
3034 {
3035 int ret;
3036 struct btrfsic_state *state;
3037 struct list_head *dev_head = &fs_devices->devices;
3038 struct btrfs_device *device;
3039
3040 if (root->nodesize & ((u64)PAGE_SIZE - 1)) {
3041 printk(KERN_INFO
3042 "btrfsic: cannot handle nodesize %d not being a multiple of PAGE_SIZE %ld!\n",
3043 root->nodesize, PAGE_SIZE);
3044 return -1;
3045 }
3046 if (root->sectorsize & ((u64)PAGE_SIZE - 1)) {
3047 printk(KERN_INFO
3048 "btrfsic: cannot handle sectorsize %d not being a multiple of PAGE_SIZE %ld!\n",
3049 root->sectorsize, PAGE_SIZE);
3050 return -1;
3051 }
3052 state = kzalloc(sizeof(*state), GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
3053 if (!state) {
3054 state = vzalloc(sizeof(*state));
3055 if (!state) {
3056 printk(KERN_INFO "btrfs check-integrity: vzalloc() failed!\n");
3057 return -1;
3058 }
3059 }
3060
3061 if (!btrfsic_is_initialized) {
3062 mutex_init(&btrfsic_mutex);
3063 btrfsic_dev_state_hashtable_init(&btrfsic_dev_state_hashtable);
3064 btrfsic_is_initialized = 1;
3065 }
3066 mutex_lock(&btrfsic_mutex);
3067 state->root = root;
3068 state->print_mask = print_mask;
3069 state->include_extent_data = including_extent_data;
3070 state->csum_size = 0;
3071 state->metablock_size = root->nodesize;
3072 state->datablock_size = root->sectorsize;
3073 INIT_LIST_HEAD(&state->all_blocks_list);
3074 btrfsic_block_hashtable_init(&state->block_hashtable);
3075 btrfsic_block_link_hashtable_init(&state->block_link_hashtable);
3076 state->max_superblock_generation = 0;
3077 state->latest_superblock = NULL;
3078
3079 list_for_each_entry(device, dev_head, dev_list) {
3080 struct btrfsic_dev_state *ds;
3081 const char *p;
3082
3083 if (!device->bdev || !device->name)
3084 continue;
3085
3086 ds = btrfsic_dev_state_alloc();
3087 if (NULL == ds) {
3088 printk(KERN_INFO
3089 "btrfs check-integrity: kmalloc() failed!\n");
3090 mutex_unlock(&btrfsic_mutex);
3091 return -1;
3092 }
3093 ds->bdev = device->bdev;
3094 ds->state = state;
3095 bdevname(ds->bdev, ds->name);
3096 ds->name[BDEVNAME_SIZE - 1] = '\0';
3097 p = kbasename(ds->name);
3098 strlcpy(ds->name, p, sizeof(ds->name));
3099 btrfsic_dev_state_hashtable_add(ds,
3100 &btrfsic_dev_state_hashtable);
3101 }
3102
3103 ret = btrfsic_process_superblock(state, fs_devices);
3104 if (0 != ret) {
3105 mutex_unlock(&btrfsic_mutex);
3106 btrfsic_unmount(root, fs_devices);
3107 return ret;
3108 }
3109
3110 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_DATABASE)
3111 btrfsic_dump_database(state);
3112 if (state->print_mask & BTRFSIC_PRINT_MASK_INITIAL_TREE)
3113 btrfsic_dump_tree(state);
3114
3115 mutex_unlock(&btrfsic_mutex);
3116 return 0;
3117 }
3118
3119 void btrfsic_unmount(struct btrfs_root *root,
3120 struct btrfs_fs_devices *fs_devices)
3121 {
3122 struct btrfsic_block *b_all, *tmp_all;
3123 struct btrfsic_state *state;
3124 struct list_head *dev_head = &fs_devices->devices;
3125 struct btrfs_device *device;
3126
3127 if (!btrfsic_is_initialized)
3128 return;
3129
3130 mutex_lock(&btrfsic_mutex);
3131
3132 state = NULL;
3133 list_for_each_entry(device, dev_head, dev_list) {
3134 struct btrfsic_dev_state *ds;
3135
3136 if (!device->bdev || !device->name)
3137 continue;
3138
3139 ds = btrfsic_dev_state_hashtable_lookup(
3140 device->bdev,
3141 &btrfsic_dev_state_hashtable);
3142 if (NULL != ds) {
3143 state = ds->state;
3144 btrfsic_dev_state_hashtable_remove(ds);
3145 btrfsic_dev_state_free(ds);
3146 }
3147 }
3148
3149 if (NULL == state) {
3150 printk(KERN_INFO
3151 "btrfsic: error, cannot find state information"
3152 " on umount!\n");
3153 mutex_unlock(&btrfsic_mutex);
3154 return;
3155 }
3156
3157 /*
3158 * Don't care about keeping the lists' state up to date,
3159 * just free all memory that was allocated dynamically.
3160 * Free the blocks and the block_links.
3161 */
3162 list_for_each_entry_safe(b_all, tmp_all, &state->all_blocks_list,
3163 all_blocks_node) {
3164 struct btrfsic_block_link *l, *tmp;
3165
3166 list_for_each_entry_safe(l, tmp, &b_all->ref_to_list,
3167 node_ref_to) {
3168 if (state->print_mask & BTRFSIC_PRINT_MASK_VERBOSE)
3169 btrfsic_print_rem_link(state, l);
3170
3171 l->ref_cnt--;
3172 if (0 == l->ref_cnt)
3173 btrfsic_block_link_free(l);
3174 }
3175
3176 if (b_all->is_iodone || b_all->never_written)
3177 btrfsic_block_free(b_all);
3178 else
3179 printk(KERN_INFO "btrfs: attempt to free %c-block"
3180 " @%llu (%s/%llu/%d) on umount which is"
3181 " not yet iodone!\n",
3182 btrfsic_get_block_type(state, b_all),
3183 b_all->logical_bytenr, b_all->dev_state->name,
3184 b_all->dev_bytenr, b_all->mirror_num);
3185 }
3186
3187 mutex_unlock(&btrfsic_mutex);
3188
3189 kvfree(state);
3190 }
This page took 0.099409 seconds and 5 git commands to generate.