Restartable sequences system call (v8)
[deliverable/linux.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191 {
192 struct page *page;
193 int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
200 }
201 #endif
202 /*
203 * We are doing an exec(). 'current' is the process
204 * doing the exec and bprm->mm is the new process's mm.
205 */
206 ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
207 1, &page, NULL);
208 if (ret <= 0)
209 return NULL;
210
211 if (write) {
212 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
213 struct rlimit *rlim;
214
215 acct_arg_size(bprm, size / PAGE_SIZE);
216
217 /*
218 * We've historically supported up to 32 pages (ARG_MAX)
219 * of argument strings even with small stacks
220 */
221 if (size <= ARG_MAX)
222 return page;
223
224 /*
225 * Limit to 1/4-th the stack size for the argv+env strings.
226 * This ensures that:
227 * - the remaining binfmt code will not run out of stack space,
228 * - the program will have a reasonable amount of stack left
229 * to work from.
230 */
231 rlim = current->signal->rlim;
232 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
233 put_page(page);
234 return NULL;
235 }
236 }
237
238 return page;
239 }
240
241 static void put_arg_page(struct page *page)
242 {
243 put_page(page);
244 }
245
246 static void free_arg_pages(struct linux_binprm *bprm)
247 {
248 }
249
250 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
251 struct page *page)
252 {
253 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
254 }
255
256 static int __bprm_mm_init(struct linux_binprm *bprm)
257 {
258 int err;
259 struct vm_area_struct *vma = NULL;
260 struct mm_struct *mm = bprm->mm;
261
262 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
263 if (!vma)
264 return -ENOMEM;
265
266 if (down_write_killable(&mm->mmap_sem)) {
267 err = -EINTR;
268 goto err_free;
269 }
270 vma->vm_mm = mm;
271
272 /*
273 * Place the stack at the largest stack address the architecture
274 * supports. Later, we'll move this to an appropriate place. We don't
275 * use STACK_TOP because that can depend on attributes which aren't
276 * configured yet.
277 */
278 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
279 vma->vm_end = STACK_TOP_MAX;
280 vma->vm_start = vma->vm_end - PAGE_SIZE;
281 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
282 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
283 INIT_LIST_HEAD(&vma->anon_vma_chain);
284
285 err = insert_vm_struct(mm, vma);
286 if (err)
287 goto err;
288
289 mm->stack_vm = mm->total_vm = 1;
290 arch_bprm_mm_init(mm, vma);
291 up_write(&mm->mmap_sem);
292 bprm->p = vma->vm_end - sizeof(void *);
293 return 0;
294 err:
295 up_write(&mm->mmap_sem);
296 err_free:
297 bprm->vma = NULL;
298 kmem_cache_free(vm_area_cachep, vma);
299 return err;
300 }
301
302 static bool valid_arg_len(struct linux_binprm *bprm, long len)
303 {
304 return len <= MAX_ARG_STRLEN;
305 }
306
307 #else
308
309 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
310 {
311 }
312
313 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
314 int write)
315 {
316 struct page *page;
317
318 page = bprm->page[pos / PAGE_SIZE];
319 if (!page && write) {
320 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
321 if (!page)
322 return NULL;
323 bprm->page[pos / PAGE_SIZE] = page;
324 }
325
326 return page;
327 }
328
329 static void put_arg_page(struct page *page)
330 {
331 }
332
333 static void free_arg_page(struct linux_binprm *bprm, int i)
334 {
335 if (bprm->page[i]) {
336 __free_page(bprm->page[i]);
337 bprm->page[i] = NULL;
338 }
339 }
340
341 static void free_arg_pages(struct linux_binprm *bprm)
342 {
343 int i;
344
345 for (i = 0; i < MAX_ARG_PAGES; i++)
346 free_arg_page(bprm, i);
347 }
348
349 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
350 struct page *page)
351 {
352 }
353
354 static int __bprm_mm_init(struct linux_binprm *bprm)
355 {
356 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
357 return 0;
358 }
359
360 static bool valid_arg_len(struct linux_binprm *bprm, long len)
361 {
362 return len <= bprm->p;
363 }
364
365 #endif /* CONFIG_MMU */
366
367 /*
368 * Create a new mm_struct and populate it with a temporary stack
369 * vm_area_struct. We don't have enough context at this point to set the stack
370 * flags, permissions, and offset, so we use temporary values. We'll update
371 * them later in setup_arg_pages().
372 */
373 static int bprm_mm_init(struct linux_binprm *bprm)
374 {
375 int err;
376 struct mm_struct *mm = NULL;
377
378 bprm->mm = mm = mm_alloc();
379 err = -ENOMEM;
380 if (!mm)
381 goto err;
382
383 err = __bprm_mm_init(bprm);
384 if (err)
385 goto err;
386
387 return 0;
388
389 err:
390 if (mm) {
391 bprm->mm = NULL;
392 mmdrop(mm);
393 }
394
395 return err;
396 }
397
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 bool is_compat;
401 #endif
402 union {
403 const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 const compat_uptr_t __user *compat;
406 #endif
407 } ptr;
408 };
409
410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 const char __user *native;
413
414 #ifdef CONFIG_COMPAT
415 if (unlikely(argv.is_compat)) {
416 compat_uptr_t compat;
417
418 if (get_user(compat, argv.ptr.compat + nr))
419 return ERR_PTR(-EFAULT);
420
421 return compat_ptr(compat);
422 }
423 #endif
424
425 if (get_user(native, argv.ptr.native + nr))
426 return ERR_PTR(-EFAULT);
427
428 return native;
429 }
430
431 /*
432 * count() counts the number of strings in array ARGV.
433 */
434 static int count(struct user_arg_ptr argv, int max)
435 {
436 int i = 0;
437
438 if (argv.ptr.native != NULL) {
439 for (;;) {
440 const char __user *p = get_user_arg_ptr(argv, i);
441
442 if (!p)
443 break;
444
445 if (IS_ERR(p))
446 return -EFAULT;
447
448 if (i >= max)
449 return -E2BIG;
450 ++i;
451
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
454 cond_resched();
455 }
456 }
457 return i;
458 }
459
460 /*
461 * 'copy_strings()' copies argument/environment strings from the old
462 * processes's memory to the new process's stack. The call to get_user_pages()
463 * ensures the destination page is created and not swapped out.
464 */
465 static int copy_strings(int argc, struct user_arg_ptr argv,
466 struct linux_binprm *bprm)
467 {
468 struct page *kmapped_page = NULL;
469 char *kaddr = NULL;
470 unsigned long kpos = 0;
471 int ret;
472
473 while (argc-- > 0) {
474 const char __user *str;
475 int len;
476 unsigned long pos;
477
478 ret = -EFAULT;
479 str = get_user_arg_ptr(argv, argc);
480 if (IS_ERR(str))
481 goto out;
482
483 len = strnlen_user(str, MAX_ARG_STRLEN);
484 if (!len)
485 goto out;
486
487 ret = -E2BIG;
488 if (!valid_arg_len(bprm, len))
489 goto out;
490
491 /* We're going to work our way backwords. */
492 pos = bprm->p;
493 str += len;
494 bprm->p -= len;
495
496 while (len > 0) {
497 int offset, bytes_to_copy;
498
499 if (fatal_signal_pending(current)) {
500 ret = -ERESTARTNOHAND;
501 goto out;
502 }
503 cond_resched();
504
505 offset = pos % PAGE_SIZE;
506 if (offset == 0)
507 offset = PAGE_SIZE;
508
509 bytes_to_copy = offset;
510 if (bytes_to_copy > len)
511 bytes_to_copy = len;
512
513 offset -= bytes_to_copy;
514 pos -= bytes_to_copy;
515 str -= bytes_to_copy;
516 len -= bytes_to_copy;
517
518 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
519 struct page *page;
520
521 page = get_arg_page(bprm, pos, 1);
522 if (!page) {
523 ret = -E2BIG;
524 goto out;
525 }
526
527 if (kmapped_page) {
528 flush_kernel_dcache_page(kmapped_page);
529 kunmap(kmapped_page);
530 put_arg_page(kmapped_page);
531 }
532 kmapped_page = page;
533 kaddr = kmap(kmapped_page);
534 kpos = pos & PAGE_MASK;
535 flush_arg_page(bprm, kpos, kmapped_page);
536 }
537 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
538 ret = -EFAULT;
539 goto out;
540 }
541 }
542 }
543 ret = 0;
544 out:
545 if (kmapped_page) {
546 flush_kernel_dcache_page(kmapped_page);
547 kunmap(kmapped_page);
548 put_arg_page(kmapped_page);
549 }
550 return ret;
551 }
552
553 /*
554 * Like copy_strings, but get argv and its values from kernel memory.
555 */
556 int copy_strings_kernel(int argc, const char *const *__argv,
557 struct linux_binprm *bprm)
558 {
559 int r;
560 mm_segment_t oldfs = get_fs();
561 struct user_arg_ptr argv = {
562 .ptr.native = (const char __user *const __user *)__argv,
563 };
564
565 set_fs(KERNEL_DS);
566 r = copy_strings(argc, argv, bprm);
567 set_fs(oldfs);
568
569 return r;
570 }
571 EXPORT_SYMBOL(copy_strings_kernel);
572
573 #ifdef CONFIG_MMU
574
575 /*
576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
577 * the binfmt code determines where the new stack should reside, we shift it to
578 * its final location. The process proceeds as follows:
579 *
580 * 1) Use shift to calculate the new vma endpoints.
581 * 2) Extend vma to cover both the old and new ranges. This ensures the
582 * arguments passed to subsequent functions are consistent.
583 * 3) Move vma's page tables to the new range.
584 * 4) Free up any cleared pgd range.
585 * 5) Shrink the vma to cover only the new range.
586 */
587 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
588 {
589 struct mm_struct *mm = vma->vm_mm;
590 unsigned long old_start = vma->vm_start;
591 unsigned long old_end = vma->vm_end;
592 unsigned long length = old_end - old_start;
593 unsigned long new_start = old_start - shift;
594 unsigned long new_end = old_end - shift;
595 struct mmu_gather tlb;
596
597 BUG_ON(new_start > new_end);
598
599 /*
600 * ensure there are no vmas between where we want to go
601 * and where we are
602 */
603 if (vma != find_vma(mm, new_start))
604 return -EFAULT;
605
606 /*
607 * cover the whole range: [new_start, old_end)
608 */
609 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
610 return -ENOMEM;
611
612 /*
613 * move the page tables downwards, on failure we rely on
614 * process cleanup to remove whatever mess we made.
615 */
616 if (length != move_page_tables(vma, old_start,
617 vma, new_start, length, false))
618 return -ENOMEM;
619
620 lru_add_drain();
621 tlb_gather_mmu(&tlb, mm, old_start, old_end);
622 if (new_end > old_start) {
623 /*
624 * when the old and new regions overlap clear from new_end.
625 */
626 free_pgd_range(&tlb, new_end, old_end, new_end,
627 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
628 } else {
629 /*
630 * otherwise, clean from old_start; this is done to not touch
631 * the address space in [new_end, old_start) some architectures
632 * have constraints on va-space that make this illegal (IA64) -
633 * for the others its just a little faster.
634 */
635 free_pgd_range(&tlb, old_start, old_end, new_end,
636 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
637 }
638 tlb_finish_mmu(&tlb, old_start, old_end);
639
640 /*
641 * Shrink the vma to just the new range. Always succeeds.
642 */
643 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
644
645 return 0;
646 }
647
648 /*
649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
650 * the stack is optionally relocated, and some extra space is added.
651 */
652 int setup_arg_pages(struct linux_binprm *bprm,
653 unsigned long stack_top,
654 int executable_stack)
655 {
656 unsigned long ret;
657 unsigned long stack_shift;
658 struct mm_struct *mm = current->mm;
659 struct vm_area_struct *vma = bprm->vma;
660 struct vm_area_struct *prev = NULL;
661 unsigned long vm_flags;
662 unsigned long stack_base;
663 unsigned long stack_size;
664 unsigned long stack_expand;
665 unsigned long rlim_stack;
666
667 #ifdef CONFIG_STACK_GROWSUP
668 /* Limit stack size */
669 stack_base = rlimit_max(RLIMIT_STACK);
670 if (stack_base > STACK_SIZE_MAX)
671 stack_base = STACK_SIZE_MAX;
672
673 /* Add space for stack randomization. */
674 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
675
676 /* Make sure we didn't let the argument array grow too large. */
677 if (vma->vm_end - vma->vm_start > stack_base)
678 return -ENOMEM;
679
680 stack_base = PAGE_ALIGN(stack_top - stack_base);
681
682 stack_shift = vma->vm_start - stack_base;
683 mm->arg_start = bprm->p - stack_shift;
684 bprm->p = vma->vm_end - stack_shift;
685 #else
686 stack_top = arch_align_stack(stack_top);
687 stack_top = PAGE_ALIGN(stack_top);
688
689 if (unlikely(stack_top < mmap_min_addr) ||
690 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
691 return -ENOMEM;
692
693 stack_shift = vma->vm_end - stack_top;
694
695 bprm->p -= stack_shift;
696 mm->arg_start = bprm->p;
697 #endif
698
699 if (bprm->loader)
700 bprm->loader -= stack_shift;
701 bprm->exec -= stack_shift;
702
703 if (down_write_killable(&mm->mmap_sem))
704 return -EINTR;
705
706 vm_flags = VM_STACK_FLAGS;
707
708 /*
709 * Adjust stack execute permissions; explicitly enable for
710 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
711 * (arch default) otherwise.
712 */
713 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
714 vm_flags |= VM_EXEC;
715 else if (executable_stack == EXSTACK_DISABLE_X)
716 vm_flags &= ~VM_EXEC;
717 vm_flags |= mm->def_flags;
718 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
719
720 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
721 vm_flags);
722 if (ret)
723 goto out_unlock;
724 BUG_ON(prev != vma);
725
726 /* Move stack pages down in memory. */
727 if (stack_shift) {
728 ret = shift_arg_pages(vma, stack_shift);
729 if (ret)
730 goto out_unlock;
731 }
732
733 /* mprotect_fixup is overkill to remove the temporary stack flags */
734 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
735
736 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
737 stack_size = vma->vm_end - vma->vm_start;
738 /*
739 * Align this down to a page boundary as expand_stack
740 * will align it up.
741 */
742 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
743 #ifdef CONFIG_STACK_GROWSUP
744 if (stack_size + stack_expand > rlim_stack)
745 stack_base = vma->vm_start + rlim_stack;
746 else
747 stack_base = vma->vm_end + stack_expand;
748 #else
749 if (stack_size + stack_expand > rlim_stack)
750 stack_base = vma->vm_end - rlim_stack;
751 else
752 stack_base = vma->vm_start - stack_expand;
753 #endif
754 current->mm->start_stack = bprm->p;
755 ret = expand_stack(vma, stack_base);
756 if (ret)
757 ret = -EFAULT;
758
759 out_unlock:
760 up_write(&mm->mmap_sem);
761 return ret;
762 }
763 EXPORT_SYMBOL(setup_arg_pages);
764
765 #else
766
767 /*
768 * Transfer the program arguments and environment from the holding pages
769 * onto the stack. The provided stack pointer is adjusted accordingly.
770 */
771 int transfer_args_to_stack(struct linux_binprm *bprm,
772 unsigned long *sp_location)
773 {
774 unsigned long index, stop, sp;
775 int ret = 0;
776
777 stop = bprm->p >> PAGE_SHIFT;
778 sp = *sp_location;
779
780 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
781 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
782 char *src = kmap(bprm->page[index]) + offset;
783 sp -= PAGE_SIZE - offset;
784 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
785 ret = -EFAULT;
786 kunmap(bprm->page[index]);
787 if (ret)
788 goto out;
789 }
790
791 *sp_location = sp;
792
793 out:
794 return ret;
795 }
796 EXPORT_SYMBOL(transfer_args_to_stack);
797
798 #endif /* CONFIG_MMU */
799
800 static struct file *do_open_execat(int fd, struct filename *name, int flags)
801 {
802 struct file *file;
803 int err;
804 struct open_flags open_exec_flags = {
805 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
806 .acc_mode = MAY_EXEC,
807 .intent = LOOKUP_OPEN,
808 .lookup_flags = LOOKUP_FOLLOW,
809 };
810
811 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
812 return ERR_PTR(-EINVAL);
813 if (flags & AT_SYMLINK_NOFOLLOW)
814 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
815 if (flags & AT_EMPTY_PATH)
816 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
817
818 file = do_filp_open(fd, name, &open_exec_flags);
819 if (IS_ERR(file))
820 goto out;
821
822 err = -EACCES;
823 if (!S_ISREG(file_inode(file)->i_mode))
824 goto exit;
825
826 if (path_noexec(&file->f_path))
827 goto exit;
828
829 err = deny_write_access(file);
830 if (err)
831 goto exit;
832
833 if (name->name[0] != '\0')
834 fsnotify_open(file);
835
836 out:
837 return file;
838
839 exit:
840 fput(file);
841 return ERR_PTR(err);
842 }
843
844 struct file *open_exec(const char *name)
845 {
846 struct filename *filename = getname_kernel(name);
847 struct file *f = ERR_CAST(filename);
848
849 if (!IS_ERR(filename)) {
850 f = do_open_execat(AT_FDCWD, filename, 0);
851 putname(filename);
852 }
853 return f;
854 }
855 EXPORT_SYMBOL(open_exec);
856
857 int kernel_read(struct file *file, loff_t offset,
858 char *addr, unsigned long count)
859 {
860 mm_segment_t old_fs;
861 loff_t pos = offset;
862 int result;
863
864 old_fs = get_fs();
865 set_fs(get_ds());
866 /* The cast to a user pointer is valid due to the set_fs() */
867 result = vfs_read(file, (void __user *)addr, count, &pos);
868 set_fs(old_fs);
869 return result;
870 }
871
872 EXPORT_SYMBOL(kernel_read);
873
874 int kernel_read_file(struct file *file, void **buf, loff_t *size,
875 loff_t max_size, enum kernel_read_file_id id)
876 {
877 loff_t i_size, pos;
878 ssize_t bytes = 0;
879 int ret;
880
881 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
882 return -EINVAL;
883
884 ret = security_kernel_read_file(file, id);
885 if (ret)
886 return ret;
887
888 ret = deny_write_access(file);
889 if (ret)
890 return ret;
891
892 i_size = i_size_read(file_inode(file));
893 if (max_size > 0 && i_size > max_size) {
894 ret = -EFBIG;
895 goto out;
896 }
897 if (i_size <= 0) {
898 ret = -EINVAL;
899 goto out;
900 }
901
902 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
903 *buf = vmalloc(i_size);
904 if (!*buf) {
905 ret = -ENOMEM;
906 goto out;
907 }
908
909 pos = 0;
910 while (pos < i_size) {
911 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
912 i_size - pos);
913 if (bytes < 0) {
914 ret = bytes;
915 goto out;
916 }
917
918 if (bytes == 0)
919 break;
920 pos += bytes;
921 }
922
923 if (pos != i_size) {
924 ret = -EIO;
925 goto out_free;
926 }
927
928 ret = security_kernel_post_read_file(file, *buf, i_size, id);
929 if (!ret)
930 *size = pos;
931
932 out_free:
933 if (ret < 0) {
934 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
935 vfree(*buf);
936 *buf = NULL;
937 }
938 }
939
940 out:
941 allow_write_access(file);
942 return ret;
943 }
944 EXPORT_SYMBOL_GPL(kernel_read_file);
945
946 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
947 loff_t max_size, enum kernel_read_file_id id)
948 {
949 struct file *file;
950 int ret;
951
952 if (!path || !*path)
953 return -EINVAL;
954
955 file = filp_open(path, O_RDONLY, 0);
956 if (IS_ERR(file))
957 return PTR_ERR(file);
958
959 ret = kernel_read_file(file, buf, size, max_size, id);
960 fput(file);
961 return ret;
962 }
963 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
964
965 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
966 enum kernel_read_file_id id)
967 {
968 struct fd f = fdget(fd);
969 int ret = -EBADF;
970
971 if (!f.file)
972 goto out;
973
974 ret = kernel_read_file(f.file, buf, size, max_size, id);
975 out:
976 fdput(f);
977 return ret;
978 }
979 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
980
981 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
982 {
983 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
984 if (res > 0)
985 flush_icache_range(addr, addr + len);
986 return res;
987 }
988 EXPORT_SYMBOL(read_code);
989
990 static int exec_mmap(struct mm_struct *mm)
991 {
992 struct task_struct *tsk;
993 struct mm_struct *old_mm, *active_mm;
994
995 /* Notify parent that we're no longer interested in the old VM */
996 tsk = current;
997 old_mm = current->mm;
998 mm_release(tsk, old_mm);
999
1000 if (old_mm) {
1001 sync_mm_rss(old_mm);
1002 /*
1003 * Make sure that if there is a core dump in progress
1004 * for the old mm, we get out and die instead of going
1005 * through with the exec. We must hold mmap_sem around
1006 * checking core_state and changing tsk->mm.
1007 */
1008 down_read(&old_mm->mmap_sem);
1009 if (unlikely(old_mm->core_state)) {
1010 up_read(&old_mm->mmap_sem);
1011 return -EINTR;
1012 }
1013 }
1014 task_lock(tsk);
1015 active_mm = tsk->active_mm;
1016 tsk->mm = mm;
1017 tsk->active_mm = mm;
1018 activate_mm(active_mm, mm);
1019 tsk->mm->vmacache_seqnum = 0;
1020 vmacache_flush(tsk);
1021 task_unlock(tsk);
1022 if (old_mm) {
1023 up_read(&old_mm->mmap_sem);
1024 BUG_ON(active_mm != old_mm);
1025 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1026 mm_update_next_owner(old_mm);
1027 mmput(old_mm);
1028 return 0;
1029 }
1030 mmdrop(active_mm);
1031 return 0;
1032 }
1033
1034 /*
1035 * This function makes sure the current process has its own signal table,
1036 * so that flush_signal_handlers can later reset the handlers without
1037 * disturbing other processes. (Other processes might share the signal
1038 * table via the CLONE_SIGHAND option to clone().)
1039 */
1040 static int de_thread(struct task_struct *tsk)
1041 {
1042 struct signal_struct *sig = tsk->signal;
1043 struct sighand_struct *oldsighand = tsk->sighand;
1044 spinlock_t *lock = &oldsighand->siglock;
1045
1046 if (thread_group_empty(tsk))
1047 goto no_thread_group;
1048
1049 /*
1050 * Kill all other threads in the thread group.
1051 */
1052 spin_lock_irq(lock);
1053 if (signal_group_exit(sig)) {
1054 /*
1055 * Another group action in progress, just
1056 * return so that the signal is processed.
1057 */
1058 spin_unlock_irq(lock);
1059 return -EAGAIN;
1060 }
1061
1062 sig->group_exit_task = tsk;
1063 sig->notify_count = zap_other_threads(tsk);
1064 if (!thread_group_leader(tsk))
1065 sig->notify_count--;
1066
1067 while (sig->notify_count) {
1068 __set_current_state(TASK_KILLABLE);
1069 spin_unlock_irq(lock);
1070 schedule();
1071 if (unlikely(__fatal_signal_pending(tsk)))
1072 goto killed;
1073 spin_lock_irq(lock);
1074 }
1075 spin_unlock_irq(lock);
1076
1077 /*
1078 * At this point all other threads have exited, all we have to
1079 * do is to wait for the thread group leader to become inactive,
1080 * and to assume its PID:
1081 */
1082 if (!thread_group_leader(tsk)) {
1083 struct task_struct *leader = tsk->group_leader;
1084
1085 for (;;) {
1086 threadgroup_change_begin(tsk);
1087 write_lock_irq(&tasklist_lock);
1088 /*
1089 * Do this under tasklist_lock to ensure that
1090 * exit_notify() can't miss ->group_exit_task
1091 */
1092 sig->notify_count = -1;
1093 if (likely(leader->exit_state))
1094 break;
1095 __set_current_state(TASK_KILLABLE);
1096 write_unlock_irq(&tasklist_lock);
1097 threadgroup_change_end(tsk);
1098 schedule();
1099 if (unlikely(__fatal_signal_pending(tsk)))
1100 goto killed;
1101 }
1102
1103 /*
1104 * The only record we have of the real-time age of a
1105 * process, regardless of execs it's done, is start_time.
1106 * All the past CPU time is accumulated in signal_struct
1107 * from sister threads now dead. But in this non-leader
1108 * exec, nothing survives from the original leader thread,
1109 * whose birth marks the true age of this process now.
1110 * When we take on its identity by switching to its PID, we
1111 * also take its birthdate (always earlier than our own).
1112 */
1113 tsk->start_time = leader->start_time;
1114 tsk->real_start_time = leader->real_start_time;
1115
1116 BUG_ON(!same_thread_group(leader, tsk));
1117 BUG_ON(has_group_leader_pid(tsk));
1118 /*
1119 * An exec() starts a new thread group with the
1120 * TGID of the previous thread group. Rehash the
1121 * two threads with a switched PID, and release
1122 * the former thread group leader:
1123 */
1124
1125 /* Become a process group leader with the old leader's pid.
1126 * The old leader becomes a thread of the this thread group.
1127 * Note: The old leader also uses this pid until release_task
1128 * is called. Odd but simple and correct.
1129 */
1130 tsk->pid = leader->pid;
1131 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1132 transfer_pid(leader, tsk, PIDTYPE_PGID);
1133 transfer_pid(leader, tsk, PIDTYPE_SID);
1134
1135 list_replace_rcu(&leader->tasks, &tsk->tasks);
1136 list_replace_init(&leader->sibling, &tsk->sibling);
1137
1138 tsk->group_leader = tsk;
1139 leader->group_leader = tsk;
1140
1141 tsk->exit_signal = SIGCHLD;
1142 leader->exit_signal = -1;
1143
1144 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1145 leader->exit_state = EXIT_DEAD;
1146
1147 /*
1148 * We are going to release_task()->ptrace_unlink() silently,
1149 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150 * the tracer wont't block again waiting for this thread.
1151 */
1152 if (unlikely(leader->ptrace))
1153 __wake_up_parent(leader, leader->parent);
1154 write_unlock_irq(&tasklist_lock);
1155 threadgroup_change_end(tsk);
1156
1157 release_task(leader);
1158 }
1159
1160 sig->group_exit_task = NULL;
1161 sig->notify_count = 0;
1162
1163 no_thread_group:
1164 /* we have changed execution domain */
1165 tsk->exit_signal = SIGCHLD;
1166
1167 exit_itimers(sig);
1168 flush_itimer_signals();
1169
1170 if (atomic_read(&oldsighand->count) != 1) {
1171 struct sighand_struct *newsighand;
1172 /*
1173 * This ->sighand is shared with the CLONE_SIGHAND
1174 * but not CLONE_THREAD task, switch to the new one.
1175 */
1176 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1177 if (!newsighand)
1178 return -ENOMEM;
1179
1180 atomic_set(&newsighand->count, 1);
1181 memcpy(newsighand->action, oldsighand->action,
1182 sizeof(newsighand->action));
1183
1184 write_lock_irq(&tasklist_lock);
1185 spin_lock(&oldsighand->siglock);
1186 rcu_assign_pointer(tsk->sighand, newsighand);
1187 spin_unlock(&oldsighand->siglock);
1188 write_unlock_irq(&tasklist_lock);
1189
1190 __cleanup_sighand(oldsighand);
1191 }
1192
1193 BUG_ON(!thread_group_leader(tsk));
1194 return 0;
1195
1196 killed:
1197 /* protects against exit_notify() and __exit_signal() */
1198 read_lock(&tasklist_lock);
1199 sig->group_exit_task = NULL;
1200 sig->notify_count = 0;
1201 read_unlock(&tasklist_lock);
1202 return -EAGAIN;
1203 }
1204
1205 char *get_task_comm(char *buf, struct task_struct *tsk)
1206 {
1207 /* buf must be at least sizeof(tsk->comm) in size */
1208 task_lock(tsk);
1209 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1210 task_unlock(tsk);
1211 return buf;
1212 }
1213 EXPORT_SYMBOL_GPL(get_task_comm);
1214
1215 /*
1216 * These functions flushes out all traces of the currently running executable
1217 * so that a new one can be started
1218 */
1219
1220 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1221 {
1222 task_lock(tsk);
1223 trace_task_rename(tsk, buf);
1224 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1225 task_unlock(tsk);
1226 perf_event_comm(tsk, exec);
1227 }
1228
1229 int flush_old_exec(struct linux_binprm * bprm)
1230 {
1231 int retval;
1232
1233 /*
1234 * Make sure we have a private signal table and that
1235 * we are unassociated from the previous thread group.
1236 */
1237 retval = de_thread(current);
1238 if (retval)
1239 goto out;
1240
1241 /*
1242 * Must be called _before_ exec_mmap() as bprm->mm is
1243 * not visibile until then. This also enables the update
1244 * to be lockless.
1245 */
1246 set_mm_exe_file(bprm->mm, bprm->file);
1247
1248 /*
1249 * Release all of the old mmap stuff
1250 */
1251 acct_arg_size(bprm, 0);
1252 retval = exec_mmap(bprm->mm);
1253 if (retval)
1254 goto out;
1255
1256 bprm->mm = NULL; /* We're using it now */
1257
1258 set_fs(USER_DS);
1259 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1260 PF_NOFREEZE | PF_NO_SETAFFINITY);
1261 flush_thread();
1262 current->personality &= ~bprm->per_clear;
1263
1264 return 0;
1265
1266 out:
1267 return retval;
1268 }
1269 EXPORT_SYMBOL(flush_old_exec);
1270
1271 void would_dump(struct linux_binprm *bprm, struct file *file)
1272 {
1273 if (inode_permission(file_inode(file), MAY_READ) < 0)
1274 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1275 }
1276 EXPORT_SYMBOL(would_dump);
1277
1278 void setup_new_exec(struct linux_binprm * bprm)
1279 {
1280 arch_pick_mmap_layout(current->mm);
1281
1282 /* This is the point of no return */
1283 current->sas_ss_sp = current->sas_ss_size = 0;
1284
1285 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1286 set_dumpable(current->mm, SUID_DUMP_USER);
1287 else
1288 set_dumpable(current->mm, suid_dumpable);
1289
1290 perf_event_exec();
1291 __set_task_comm(current, kbasename(bprm->filename), true);
1292
1293 /* Set the new mm task size. We have to do that late because it may
1294 * depend on TIF_32BIT which is only updated in flush_thread() on
1295 * some architectures like powerpc
1296 */
1297 current->mm->task_size = TASK_SIZE;
1298
1299 /* install the new credentials */
1300 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1301 !gid_eq(bprm->cred->gid, current_egid())) {
1302 current->pdeath_signal = 0;
1303 } else {
1304 would_dump(bprm, bprm->file);
1305 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1306 set_dumpable(current->mm, suid_dumpable);
1307 }
1308
1309 /* An exec changes our domain. We are no longer part of the thread
1310 group */
1311 current->self_exec_id++;
1312 flush_signal_handlers(current, 0);
1313 do_close_on_exec(current->files);
1314 }
1315 EXPORT_SYMBOL(setup_new_exec);
1316
1317 /*
1318 * Prepare credentials and lock ->cred_guard_mutex.
1319 * install_exec_creds() commits the new creds and drops the lock.
1320 * Or, if exec fails before, free_bprm() should release ->cred and
1321 * and unlock.
1322 */
1323 int prepare_bprm_creds(struct linux_binprm *bprm)
1324 {
1325 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1326 return -ERESTARTNOINTR;
1327
1328 bprm->cred = prepare_exec_creds();
1329 if (likely(bprm->cred))
1330 return 0;
1331
1332 mutex_unlock(&current->signal->cred_guard_mutex);
1333 return -ENOMEM;
1334 }
1335
1336 static void free_bprm(struct linux_binprm *bprm)
1337 {
1338 free_arg_pages(bprm);
1339 if (bprm->cred) {
1340 mutex_unlock(&current->signal->cred_guard_mutex);
1341 abort_creds(bprm->cred);
1342 }
1343 if (bprm->file) {
1344 allow_write_access(bprm->file);
1345 fput(bprm->file);
1346 }
1347 /* If a binfmt changed the interp, free it. */
1348 if (bprm->interp != bprm->filename)
1349 kfree(bprm->interp);
1350 kfree(bprm);
1351 }
1352
1353 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1354 {
1355 /* If a binfmt changed the interp, free it first. */
1356 if (bprm->interp != bprm->filename)
1357 kfree(bprm->interp);
1358 bprm->interp = kstrdup(interp, GFP_KERNEL);
1359 if (!bprm->interp)
1360 return -ENOMEM;
1361 return 0;
1362 }
1363 EXPORT_SYMBOL(bprm_change_interp);
1364
1365 /*
1366 * install the new credentials for this executable
1367 */
1368 void install_exec_creds(struct linux_binprm *bprm)
1369 {
1370 security_bprm_committing_creds(bprm);
1371
1372 commit_creds(bprm->cred);
1373 bprm->cred = NULL;
1374
1375 /*
1376 * Disable monitoring for regular users
1377 * when executing setuid binaries. Must
1378 * wait until new credentials are committed
1379 * by commit_creds() above
1380 */
1381 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1382 perf_event_exit_task(current);
1383 /*
1384 * cred_guard_mutex must be held at least to this point to prevent
1385 * ptrace_attach() from altering our determination of the task's
1386 * credentials; any time after this it may be unlocked.
1387 */
1388 security_bprm_committed_creds(bprm);
1389 mutex_unlock(&current->signal->cred_guard_mutex);
1390 }
1391 EXPORT_SYMBOL(install_exec_creds);
1392
1393 /*
1394 * determine how safe it is to execute the proposed program
1395 * - the caller must hold ->cred_guard_mutex to protect against
1396 * PTRACE_ATTACH or seccomp thread-sync
1397 */
1398 static void check_unsafe_exec(struct linux_binprm *bprm)
1399 {
1400 struct task_struct *p = current, *t;
1401 unsigned n_fs;
1402
1403 if (p->ptrace) {
1404 if (p->ptrace & PT_PTRACE_CAP)
1405 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1406 else
1407 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1408 }
1409
1410 /*
1411 * This isn't strictly necessary, but it makes it harder for LSMs to
1412 * mess up.
1413 */
1414 if (task_no_new_privs(current))
1415 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1416
1417 t = p;
1418 n_fs = 1;
1419 spin_lock(&p->fs->lock);
1420 rcu_read_lock();
1421 while_each_thread(p, t) {
1422 if (t->fs == p->fs)
1423 n_fs++;
1424 }
1425 rcu_read_unlock();
1426
1427 if (p->fs->users > n_fs)
1428 bprm->unsafe |= LSM_UNSAFE_SHARE;
1429 else
1430 p->fs->in_exec = 1;
1431 spin_unlock(&p->fs->lock);
1432 }
1433
1434 static void bprm_fill_uid(struct linux_binprm *bprm)
1435 {
1436 struct inode *inode;
1437 unsigned int mode;
1438 kuid_t uid;
1439 kgid_t gid;
1440
1441 /*
1442 * Since this can be called multiple times (via prepare_binprm),
1443 * we must clear any previous work done when setting set[ug]id
1444 * bits from any earlier bprm->file uses (for example when run
1445 * first for a setuid script then again for its interpreter).
1446 */
1447 bprm->cred->euid = current_euid();
1448 bprm->cred->egid = current_egid();
1449
1450 if (!mnt_may_suid(bprm->file->f_path.mnt))
1451 return;
1452
1453 if (task_no_new_privs(current))
1454 return;
1455
1456 inode = file_inode(bprm->file);
1457 mode = READ_ONCE(inode->i_mode);
1458 if (!(mode & (S_ISUID|S_ISGID)))
1459 return;
1460
1461 /* Be careful if suid/sgid is set */
1462 inode_lock(inode);
1463
1464 /* reload atomically mode/uid/gid now that lock held */
1465 mode = inode->i_mode;
1466 uid = inode->i_uid;
1467 gid = inode->i_gid;
1468 inode_unlock(inode);
1469
1470 /* We ignore suid/sgid if there are no mappings for them in the ns */
1471 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1472 !kgid_has_mapping(bprm->cred->user_ns, gid))
1473 return;
1474
1475 if (mode & S_ISUID) {
1476 bprm->per_clear |= PER_CLEAR_ON_SETID;
1477 bprm->cred->euid = uid;
1478 }
1479
1480 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1481 bprm->per_clear |= PER_CLEAR_ON_SETID;
1482 bprm->cred->egid = gid;
1483 }
1484 }
1485
1486 /*
1487 * Fill the binprm structure from the inode.
1488 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1489 *
1490 * This may be called multiple times for binary chains (scripts for example).
1491 */
1492 int prepare_binprm(struct linux_binprm *bprm)
1493 {
1494 int retval;
1495
1496 bprm_fill_uid(bprm);
1497
1498 /* fill in binprm security blob */
1499 retval = security_bprm_set_creds(bprm);
1500 if (retval)
1501 return retval;
1502 bprm->cred_prepared = 1;
1503
1504 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1505 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1506 }
1507
1508 EXPORT_SYMBOL(prepare_binprm);
1509
1510 /*
1511 * Arguments are '\0' separated strings found at the location bprm->p
1512 * points to; chop off the first by relocating brpm->p to right after
1513 * the first '\0' encountered.
1514 */
1515 int remove_arg_zero(struct linux_binprm *bprm)
1516 {
1517 int ret = 0;
1518 unsigned long offset;
1519 char *kaddr;
1520 struct page *page;
1521
1522 if (!bprm->argc)
1523 return 0;
1524
1525 do {
1526 offset = bprm->p & ~PAGE_MASK;
1527 page = get_arg_page(bprm, bprm->p, 0);
1528 if (!page) {
1529 ret = -EFAULT;
1530 goto out;
1531 }
1532 kaddr = kmap_atomic(page);
1533
1534 for (; offset < PAGE_SIZE && kaddr[offset];
1535 offset++, bprm->p++)
1536 ;
1537
1538 kunmap_atomic(kaddr);
1539 put_arg_page(page);
1540 } while (offset == PAGE_SIZE);
1541
1542 bprm->p++;
1543 bprm->argc--;
1544 ret = 0;
1545
1546 out:
1547 return ret;
1548 }
1549 EXPORT_SYMBOL(remove_arg_zero);
1550
1551 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1552 /*
1553 * cycle the list of binary formats handler, until one recognizes the image
1554 */
1555 int search_binary_handler(struct linux_binprm *bprm)
1556 {
1557 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1558 struct linux_binfmt *fmt;
1559 int retval;
1560
1561 /* This allows 4 levels of binfmt rewrites before failing hard. */
1562 if (bprm->recursion_depth > 5)
1563 return -ELOOP;
1564
1565 retval = security_bprm_check(bprm);
1566 if (retval)
1567 return retval;
1568
1569 retval = -ENOENT;
1570 retry:
1571 read_lock(&binfmt_lock);
1572 list_for_each_entry(fmt, &formats, lh) {
1573 if (!try_module_get(fmt->module))
1574 continue;
1575 read_unlock(&binfmt_lock);
1576 bprm->recursion_depth++;
1577 retval = fmt->load_binary(bprm);
1578 read_lock(&binfmt_lock);
1579 put_binfmt(fmt);
1580 bprm->recursion_depth--;
1581 if (retval < 0 && !bprm->mm) {
1582 /* we got to flush_old_exec() and failed after it */
1583 read_unlock(&binfmt_lock);
1584 force_sigsegv(SIGSEGV, current);
1585 return retval;
1586 }
1587 if (retval != -ENOEXEC || !bprm->file) {
1588 read_unlock(&binfmt_lock);
1589 return retval;
1590 }
1591 }
1592 read_unlock(&binfmt_lock);
1593
1594 if (need_retry) {
1595 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1596 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1597 return retval;
1598 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1599 return retval;
1600 need_retry = false;
1601 goto retry;
1602 }
1603
1604 return retval;
1605 }
1606 EXPORT_SYMBOL(search_binary_handler);
1607
1608 static int exec_binprm(struct linux_binprm *bprm)
1609 {
1610 pid_t old_pid, old_vpid;
1611 int ret;
1612
1613 /* Need to fetch pid before load_binary changes it */
1614 old_pid = current->pid;
1615 rcu_read_lock();
1616 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1617 rcu_read_unlock();
1618
1619 ret = search_binary_handler(bprm);
1620 if (ret >= 0) {
1621 audit_bprm(bprm);
1622 trace_sched_process_exec(current, old_pid, bprm);
1623 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1624 proc_exec_connector(current);
1625 }
1626
1627 return ret;
1628 }
1629
1630 /*
1631 * sys_execve() executes a new program.
1632 */
1633 static int do_execveat_common(int fd, struct filename *filename,
1634 struct user_arg_ptr argv,
1635 struct user_arg_ptr envp,
1636 int flags)
1637 {
1638 char *pathbuf = NULL;
1639 struct linux_binprm *bprm;
1640 struct file *file;
1641 struct files_struct *displaced;
1642 int retval;
1643
1644 if (IS_ERR(filename))
1645 return PTR_ERR(filename);
1646
1647 /*
1648 * We move the actual failure in case of RLIMIT_NPROC excess from
1649 * set*uid() to execve() because too many poorly written programs
1650 * don't check setuid() return code. Here we additionally recheck
1651 * whether NPROC limit is still exceeded.
1652 */
1653 if ((current->flags & PF_NPROC_EXCEEDED) &&
1654 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1655 retval = -EAGAIN;
1656 goto out_ret;
1657 }
1658
1659 /* We're below the limit (still or again), so we don't want to make
1660 * further execve() calls fail. */
1661 current->flags &= ~PF_NPROC_EXCEEDED;
1662
1663 retval = unshare_files(&displaced);
1664 if (retval)
1665 goto out_ret;
1666
1667 retval = -ENOMEM;
1668 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1669 if (!bprm)
1670 goto out_files;
1671
1672 retval = prepare_bprm_creds(bprm);
1673 if (retval)
1674 goto out_free;
1675
1676 check_unsafe_exec(bprm);
1677 current->in_execve = 1;
1678
1679 file = do_open_execat(fd, filename, flags);
1680 retval = PTR_ERR(file);
1681 if (IS_ERR(file))
1682 goto out_unmark;
1683
1684 sched_exec();
1685
1686 bprm->file = file;
1687 if (fd == AT_FDCWD || filename->name[0] == '/') {
1688 bprm->filename = filename->name;
1689 } else {
1690 if (filename->name[0] == '\0')
1691 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1692 else
1693 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1694 fd, filename->name);
1695 if (!pathbuf) {
1696 retval = -ENOMEM;
1697 goto out_unmark;
1698 }
1699 /*
1700 * Record that a name derived from an O_CLOEXEC fd will be
1701 * inaccessible after exec. Relies on having exclusive access to
1702 * current->files (due to unshare_files above).
1703 */
1704 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1705 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1706 bprm->filename = pathbuf;
1707 }
1708 bprm->interp = bprm->filename;
1709
1710 retval = bprm_mm_init(bprm);
1711 if (retval)
1712 goto out_unmark;
1713
1714 bprm->argc = count(argv, MAX_ARG_STRINGS);
1715 if ((retval = bprm->argc) < 0)
1716 goto out;
1717
1718 bprm->envc = count(envp, MAX_ARG_STRINGS);
1719 if ((retval = bprm->envc) < 0)
1720 goto out;
1721
1722 retval = prepare_binprm(bprm);
1723 if (retval < 0)
1724 goto out;
1725
1726 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1727 if (retval < 0)
1728 goto out;
1729
1730 bprm->exec = bprm->p;
1731 retval = copy_strings(bprm->envc, envp, bprm);
1732 if (retval < 0)
1733 goto out;
1734
1735 retval = copy_strings(bprm->argc, argv, bprm);
1736 if (retval < 0)
1737 goto out;
1738
1739 retval = exec_binprm(bprm);
1740 if (retval < 0)
1741 goto out;
1742
1743 /* execve succeeded */
1744 current->fs->in_exec = 0;
1745 current->in_execve = 0;
1746 rseq_execve(current);
1747 acct_update_integrals(current);
1748 task_numa_free(current);
1749 free_bprm(bprm);
1750 kfree(pathbuf);
1751 putname(filename);
1752 if (displaced)
1753 put_files_struct(displaced);
1754 return retval;
1755
1756 out:
1757 if (bprm->mm) {
1758 acct_arg_size(bprm, 0);
1759 mmput(bprm->mm);
1760 }
1761
1762 out_unmark:
1763 current->fs->in_exec = 0;
1764 current->in_execve = 0;
1765
1766 out_free:
1767 free_bprm(bprm);
1768 kfree(pathbuf);
1769
1770 out_files:
1771 if (displaced)
1772 reset_files_struct(displaced);
1773 out_ret:
1774 putname(filename);
1775 return retval;
1776 }
1777
1778 int do_execve(struct filename *filename,
1779 const char __user *const __user *__argv,
1780 const char __user *const __user *__envp)
1781 {
1782 struct user_arg_ptr argv = { .ptr.native = __argv };
1783 struct user_arg_ptr envp = { .ptr.native = __envp };
1784 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1785 }
1786
1787 int do_execveat(int fd, struct filename *filename,
1788 const char __user *const __user *__argv,
1789 const char __user *const __user *__envp,
1790 int flags)
1791 {
1792 struct user_arg_ptr argv = { .ptr.native = __argv };
1793 struct user_arg_ptr envp = { .ptr.native = __envp };
1794
1795 return do_execveat_common(fd, filename, argv, envp, flags);
1796 }
1797
1798 #ifdef CONFIG_COMPAT
1799 static int compat_do_execve(struct filename *filename,
1800 const compat_uptr_t __user *__argv,
1801 const compat_uptr_t __user *__envp)
1802 {
1803 struct user_arg_ptr argv = {
1804 .is_compat = true,
1805 .ptr.compat = __argv,
1806 };
1807 struct user_arg_ptr envp = {
1808 .is_compat = true,
1809 .ptr.compat = __envp,
1810 };
1811 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1812 }
1813
1814 static int compat_do_execveat(int fd, struct filename *filename,
1815 const compat_uptr_t __user *__argv,
1816 const compat_uptr_t __user *__envp,
1817 int flags)
1818 {
1819 struct user_arg_ptr argv = {
1820 .is_compat = true,
1821 .ptr.compat = __argv,
1822 };
1823 struct user_arg_ptr envp = {
1824 .is_compat = true,
1825 .ptr.compat = __envp,
1826 };
1827 return do_execveat_common(fd, filename, argv, envp, flags);
1828 }
1829 #endif
1830
1831 void set_binfmt(struct linux_binfmt *new)
1832 {
1833 struct mm_struct *mm = current->mm;
1834
1835 if (mm->binfmt)
1836 module_put(mm->binfmt->module);
1837
1838 mm->binfmt = new;
1839 if (new)
1840 __module_get(new->module);
1841 }
1842 EXPORT_SYMBOL(set_binfmt);
1843
1844 /*
1845 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1846 */
1847 void set_dumpable(struct mm_struct *mm, int value)
1848 {
1849 unsigned long old, new;
1850
1851 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1852 return;
1853
1854 do {
1855 old = ACCESS_ONCE(mm->flags);
1856 new = (old & ~MMF_DUMPABLE_MASK) | value;
1857 } while (cmpxchg(&mm->flags, old, new) != old);
1858 }
1859
1860 SYSCALL_DEFINE3(execve,
1861 const char __user *, filename,
1862 const char __user *const __user *, argv,
1863 const char __user *const __user *, envp)
1864 {
1865 return do_execve(getname(filename), argv, envp);
1866 }
1867
1868 SYSCALL_DEFINE5(execveat,
1869 int, fd, const char __user *, filename,
1870 const char __user *const __user *, argv,
1871 const char __user *const __user *, envp,
1872 int, flags)
1873 {
1874 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1875
1876 return do_execveat(fd,
1877 getname_flags(filename, lookup_flags, NULL),
1878 argv, envp, flags);
1879 }
1880
1881 #ifdef CONFIG_COMPAT
1882 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1883 const compat_uptr_t __user *, argv,
1884 const compat_uptr_t __user *, envp)
1885 {
1886 return compat_do_execve(getname(filename), argv, envp);
1887 }
1888
1889 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1890 const char __user *, filename,
1891 const compat_uptr_t __user *, argv,
1892 const compat_uptr_t __user *, envp,
1893 int, flags)
1894 {
1895 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1896
1897 return compat_do_execveat(fd,
1898 getname_flags(filename, lookup_flags, NULL),
1899 argv, envp, flags);
1900 }
1901 #endif
This page took 0.082172 seconds and 5 git commands to generate.