Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 trace_writeback_queue(wb, work);
180
181 spin_lock_bh(&wb->work_lock);
182 if (!test_bit(WB_registered, &wb->state))
183 goto out_unlock;
184 if (work->done)
185 atomic_inc(&work->done->cnt);
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 spin_unlock_bh(&wb->work_lock);
190 }
191
192 /**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205 {
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227 static struct workqueue_struct *isw_wq;
228
229 void __inode_attach_wb(struct inode *inode, struct page *page)
230 {
231 struct backing_dev_info *bdi = inode_to_bdi(inode);
232 struct bdi_writeback *wb = NULL;
233
234 if (inode_cgwb_enabled(inode)) {
235 struct cgroup_subsys_state *memcg_css;
236
237 if (page) {
238 memcg_css = mem_cgroup_css_from_page(page);
239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 } else {
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css = task_get_css(current, memory_cgrp_id);
243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 css_put(memcg_css);
245 }
246 }
247
248 if (!wb)
249 wb = &bdi->wb;
250
251 /*
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
254 */
255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 wb_put(wb);
257 }
258
259 /**
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
262 *
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
266 */
267 static struct bdi_writeback *
268 locked_inode_to_wb_and_lock_list(struct inode *inode)
269 __releases(&inode->i_lock)
270 __acquires(&wb->list_lock)
271 {
272 while (true) {
273 struct bdi_writeback *wb = inode_to_wb(inode);
274
275 /*
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
280 */
281 wb_get(wb);
282 spin_unlock(&inode->i_lock);
283 spin_lock(&wb->list_lock);
284
285 /* i_wb may have changed inbetween, can't use inode_to_wb() */
286 if (likely(wb == inode->i_wb)) {
287 wb_put(wb); /* @inode already has ref */
288 return wb;
289 }
290
291 spin_unlock(&wb->list_lock);
292 wb_put(wb);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296 }
297
298 /**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307 {
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310 }
311
312 struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318 };
319
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
327 struct bdi_writeback *new_wb = isw->new_wb;
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
341 */
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
349 spin_lock(&inode->i_lock);
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_io_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_io_list)) {
394 struct inode *pos;
395
396 inode_io_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
406
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
411 switched = true;
412 skip_switch:
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419 spin_unlock_irq(&mapping->tree_lock);
420 spin_unlock(&inode->i_lock);
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
423
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
428 wb_put(new_wb);
429
430 iput(inode);
431 kfree(isw);
432
433 atomic_dec(&isw_nr_in_flight);
434 }
435
436 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437 {
438 struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 struct inode_switch_wbs_context, rcu_head);
440
441 /* needs to grab bh-unsafe locks, bounce to work item */
442 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
443 queue_work(isw_wq, &isw->work);
444 }
445
446 /**
447 * inode_switch_wbs - change the wb association of an inode
448 * @inode: target inode
449 * @new_wb_id: ID of the new wb
450 *
451 * Switch @inode's wb association to the wb identified by @new_wb_id. The
452 * switching is performed asynchronously and may fail silently.
453 */
454 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455 {
456 struct backing_dev_info *bdi = inode_to_bdi(inode);
457 struct cgroup_subsys_state *memcg_css;
458 struct inode_switch_wbs_context *isw;
459
460 /* noop if seems to be already in progress */
461 if (inode->i_state & I_WB_SWITCH)
462 return;
463
464 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 if (!isw)
466 return;
467
468 /* find and pin the new wb */
469 rcu_read_lock();
470 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 if (memcg_css)
472 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 rcu_read_unlock();
474 if (!isw->new_wb)
475 goto out_free;
476
477 /* while holding I_WB_SWITCH, no one else can update the association */
478 spin_lock(&inode->i_lock);
479 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 inode_to_wb(inode) == isw->new_wb) {
482 spin_unlock(&inode->i_lock);
483 goto out_free;
484 }
485 inode->i_state |= I_WB_SWITCH;
486 spin_unlock(&inode->i_lock);
487
488 ihold(inode);
489 isw->inode = inode;
490
491 atomic_inc(&isw_nr_in_flight);
492
493 /*
494 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 * the RCU protected stat update paths to grab the mapping's
496 * tree_lock so that stat transfer can synchronize against them.
497 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 */
499 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 return;
501
502 out_free:
503 if (isw->new_wb)
504 wb_put(isw->new_wb);
505 kfree(isw);
506 }
507
508 /**
509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510 * @wbc: writeback_control of interest
511 * @inode: target inode
512 *
513 * @inode is locked and about to be written back under the control of @wbc.
514 * Record @inode's writeback context into @wbc and unlock the i_lock. On
515 * writeback completion, wbc_detach_inode() should be called. This is used
516 * to track the cgroup writeback context.
517 */
518 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 struct inode *inode)
520 {
521 if (!inode_cgwb_enabled(inode)) {
522 spin_unlock(&inode->i_lock);
523 return;
524 }
525
526 wbc->wb = inode_to_wb(inode);
527 wbc->inode = inode;
528
529 wbc->wb_id = wbc->wb->memcg_css->id;
530 wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 wbc->wb_tcand_id = 0;
532 wbc->wb_bytes = 0;
533 wbc->wb_lcand_bytes = 0;
534 wbc->wb_tcand_bytes = 0;
535
536 wb_get(wbc->wb);
537 spin_unlock(&inode->i_lock);
538
539 /*
540 * A dying wb indicates that the memcg-blkcg mapping has changed
541 * and a new wb is already serving the memcg. Switch immediately.
542 */
543 if (unlikely(wb_dying(wbc->wb)))
544 inode_switch_wbs(inode, wbc->wb_id);
545 }
546
547 /**
548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549 * @wbc: writeback_control of the just finished writeback
550 *
551 * To be called after a writeback attempt of an inode finishes and undoes
552 * wbc_attach_and_unlock_inode(). Can be called under any context.
553 *
554 * As concurrent write sharing of an inode is expected to be very rare and
555 * memcg only tracks page ownership on first-use basis severely confining
556 * the usefulness of such sharing, cgroup writeback tracks ownership
557 * per-inode. While the support for concurrent write sharing of an inode
558 * is deemed unnecessary, an inode being written to by different cgroups at
559 * different points in time is a lot more common, and, more importantly,
560 * charging only by first-use can too readily lead to grossly incorrect
561 * behaviors (single foreign page can lead to gigabytes of writeback to be
562 * incorrectly attributed).
563 *
564 * To resolve this issue, cgroup writeback detects the majority dirtier of
565 * an inode and transfers the ownership to it. To avoid unnnecessary
566 * oscillation, the detection mechanism keeps track of history and gives
567 * out the switch verdict only if the foreign usage pattern is stable over
568 * a certain amount of time and/or writeback attempts.
569 *
570 * On each writeback attempt, @wbc tries to detect the majority writer
571 * using Boyer-Moore majority vote algorithm. In addition to the byte
572 * count from the majority voting, it also counts the bytes written for the
573 * current wb and the last round's winner wb (max of last round's current
574 * wb, the winner from two rounds ago, and the last round's majority
575 * candidate). Keeping track of the historical winner helps the algorithm
576 * to semi-reliably detect the most active writer even when it's not the
577 * absolute majority.
578 *
579 * Once the winner of the round is determined, whether the winner is
580 * foreign or not and how much IO time the round consumed is recorded in
581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
582 * over a certain threshold, the switch verdict is given.
583 */
584 void wbc_detach_inode(struct writeback_control *wbc)
585 {
586 struct bdi_writeback *wb = wbc->wb;
587 struct inode *inode = wbc->inode;
588 unsigned long avg_time, max_bytes, max_time;
589 u16 history;
590 int max_id;
591
592 if (!wb)
593 return;
594
595 history = inode->i_wb_frn_history;
596 avg_time = inode->i_wb_frn_avg_time;
597
598 /* pick the winner of this round */
599 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 max_id = wbc->wb_id;
602 max_bytes = wbc->wb_bytes;
603 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 max_id = wbc->wb_lcand_id;
605 max_bytes = wbc->wb_lcand_bytes;
606 } else {
607 max_id = wbc->wb_tcand_id;
608 max_bytes = wbc->wb_tcand_bytes;
609 }
610
611 /*
612 * Calculate the amount of IO time the winner consumed and fold it
613 * into the running average kept per inode. If the consumed IO
614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 * deciding whether to switch or not. This is to prevent one-off
616 * small dirtiers from skewing the verdict.
617 */
618 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 wb->avg_write_bandwidth);
620 if (avg_time)
621 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 else
624 avg_time = max_time; /* immediate catch up on first run */
625
626 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 int slots;
628
629 /*
630 * The switch verdict is reached if foreign wb's consume
631 * more than a certain proportion of IO time in a
632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
633 * history mask where each bit represents one sixteenth of
634 * the period. Determine the number of slots to shift into
635 * history from @max_time.
636 */
637 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 history <<= slots;
640 if (wbc->wb_id != max_id)
641 history |= (1U << slots) - 1;
642
643 /*
644 * Switch if the current wb isn't the consistent winner.
645 * If there are multiple closely competing dirtiers, the
646 * inode may switch across them repeatedly over time, which
647 * is okay. The main goal is avoiding keeping an inode on
648 * the wrong wb for an extended period of time.
649 */
650 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 inode_switch_wbs(inode, max_id);
652 }
653
654 /*
655 * Multiple instances of this function may race to update the
656 * following fields but we don't mind occassional inaccuracies.
657 */
658 inode->i_wb_frn_winner = max_id;
659 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 inode->i_wb_frn_history = history;
661
662 wb_put(wbc->wb);
663 wbc->wb = NULL;
664 }
665
666 /**
667 * wbc_account_io - account IO issued during writeback
668 * @wbc: writeback_control of the writeback in progress
669 * @page: page being written out
670 * @bytes: number of bytes being written out
671 *
672 * @bytes from @page are about to written out during the writeback
673 * controlled by @wbc. Keep the book for foreign inode detection. See
674 * wbc_detach_inode().
675 */
676 void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 size_t bytes)
678 {
679 int id;
680
681 /*
682 * pageout() path doesn't attach @wbc to the inode being written
683 * out. This is intentional as we don't want the function to block
684 * behind a slow cgroup. Ultimately, we want pageout() to kick off
685 * regular writeback instead of writing things out itself.
686 */
687 if (!wbc->wb)
688 return;
689
690 id = mem_cgroup_css_from_page(page)->id;
691
692 if (id == wbc->wb_id) {
693 wbc->wb_bytes += bytes;
694 return;
695 }
696
697 if (id == wbc->wb_lcand_id)
698 wbc->wb_lcand_bytes += bytes;
699
700 /* Boyer-Moore majority vote algorithm */
701 if (!wbc->wb_tcand_bytes)
702 wbc->wb_tcand_id = id;
703 if (id == wbc->wb_tcand_id)
704 wbc->wb_tcand_bytes += bytes;
705 else
706 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
707 }
708 EXPORT_SYMBOL_GPL(wbc_account_io);
709
710 /**
711 * inode_congested - test whether an inode is congested
712 * @inode: inode to test for congestion (may be NULL)
713 * @cong_bits: mask of WB_[a]sync_congested bits to test
714 *
715 * Tests whether @inode is congested. @cong_bits is the mask of congestion
716 * bits to test and the return value is the mask of set bits.
717 *
718 * If cgroup writeback is enabled for @inode, the congestion state is
719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720 * associated with @inode is congested; otherwise, the root wb's congestion
721 * state is used.
722 *
723 * @inode is allowed to be NULL as this function is often called on
724 * mapping->host which is NULL for the swapper space.
725 */
726 int inode_congested(struct inode *inode, int cong_bits)
727 {
728 /*
729 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 * Start transaction iff ->i_wb is visible.
731 */
732 if (inode && inode_to_wb_is_valid(inode)) {
733 struct bdi_writeback *wb;
734 bool locked, congested;
735
736 wb = unlocked_inode_to_wb_begin(inode, &locked);
737 congested = wb_congested(wb, cong_bits);
738 unlocked_inode_to_wb_end(inode, locked);
739 return congested;
740 }
741
742 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
743 }
744 EXPORT_SYMBOL_GPL(inode_congested);
745
746 /**
747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748 * @wb: target bdi_writeback to split @nr_pages to
749 * @nr_pages: number of pages to write for the whole bdi
750 *
751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
753 * @wb->bdi.
754 */
755 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
756 {
757 unsigned long this_bw = wb->avg_write_bandwidth;
758 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
759
760 if (nr_pages == LONG_MAX)
761 return LONG_MAX;
762
763 /*
764 * This may be called on clean wb's and proportional distribution
765 * may not make sense, just use the original @nr_pages in those
766 * cases. In general, we wanna err on the side of writing more.
767 */
768 if (!tot_bw || this_bw >= tot_bw)
769 return nr_pages;
770 else
771 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
772 }
773
774 /**
775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776 * @bdi: target backing_dev_info
777 * @base_work: wb_writeback_work to issue
778 * @skip_if_busy: skip wb's which already have writeback in progress
779 *
780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
782 * distributed to the busy wbs according to each wb's proportion in the
783 * total active write bandwidth of @bdi.
784 */
785 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
786 struct wb_writeback_work *base_work,
787 bool skip_if_busy)
788 {
789 struct bdi_writeback *last_wb = NULL;
790 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
791 struct bdi_writeback, bdi_node);
792
793 might_sleep();
794 restart:
795 rcu_read_lock();
796 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
797 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
798 struct wb_writeback_work fallback_work;
799 struct wb_writeback_work *work;
800 long nr_pages;
801
802 if (last_wb) {
803 wb_put(last_wb);
804 last_wb = NULL;
805 }
806
807 /* SYNC_ALL writes out I_DIRTY_TIME too */
808 if (!wb_has_dirty_io(wb) &&
809 (base_work->sync_mode == WB_SYNC_NONE ||
810 list_empty(&wb->b_dirty_time)))
811 continue;
812 if (skip_if_busy && writeback_in_progress(wb))
813 continue;
814
815 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
816
817 work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 if (work) {
819 *work = *base_work;
820 work->nr_pages = nr_pages;
821 work->auto_free = 1;
822 wb_queue_work(wb, work);
823 continue;
824 }
825
826 /* alloc failed, execute synchronously using on-stack fallback */
827 work = &fallback_work;
828 *work = *base_work;
829 work->nr_pages = nr_pages;
830 work->auto_free = 0;
831 work->done = &fallback_work_done;
832
833 wb_queue_work(wb, work);
834
835 /*
836 * Pin @wb so that it stays on @bdi->wb_list. This allows
837 * continuing iteration from @wb after dropping and
838 * regrabbing rcu read lock.
839 */
840 wb_get(wb);
841 last_wb = wb;
842
843 rcu_read_unlock();
844 wb_wait_for_completion(bdi, &fallback_work_done);
845 goto restart;
846 }
847 rcu_read_unlock();
848
849 if (last_wb)
850 wb_put(last_wb);
851 }
852
853 /**
854 * cgroup_writeback_umount - flush inode wb switches for umount
855 *
856 * This function is called when a super_block is about to be destroyed and
857 * flushes in-flight inode wb switches. An inode wb switch goes through
858 * RCU and then workqueue, so the two need to be flushed in order to ensure
859 * that all previously scheduled switches are finished. As wb switches are
860 * rare occurrences and synchronize_rcu() can take a while, perform
861 * flushing iff wb switches are in flight.
862 */
863 void cgroup_writeback_umount(void)
864 {
865 if (atomic_read(&isw_nr_in_flight)) {
866 synchronize_rcu();
867 flush_workqueue(isw_wq);
868 }
869 }
870
871 static int __init cgroup_writeback_init(void)
872 {
873 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
874 if (!isw_wq)
875 return -ENOMEM;
876 return 0;
877 }
878 fs_initcall(cgroup_writeback_init);
879
880 #else /* CONFIG_CGROUP_WRITEBACK */
881
882 static struct bdi_writeback *
883 locked_inode_to_wb_and_lock_list(struct inode *inode)
884 __releases(&inode->i_lock)
885 __acquires(&wb->list_lock)
886 {
887 struct bdi_writeback *wb = inode_to_wb(inode);
888
889 spin_unlock(&inode->i_lock);
890 spin_lock(&wb->list_lock);
891 return wb;
892 }
893
894 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
895 __acquires(&wb->list_lock)
896 {
897 struct bdi_writeback *wb = inode_to_wb(inode);
898
899 spin_lock(&wb->list_lock);
900 return wb;
901 }
902
903 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
904 {
905 return nr_pages;
906 }
907
908 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
909 struct wb_writeback_work *base_work,
910 bool skip_if_busy)
911 {
912 might_sleep();
913
914 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
915 base_work->auto_free = 0;
916 wb_queue_work(&bdi->wb, base_work);
917 }
918 }
919
920 #endif /* CONFIG_CGROUP_WRITEBACK */
921
922 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
923 bool range_cyclic, enum wb_reason reason)
924 {
925 struct wb_writeback_work *work;
926
927 if (!wb_has_dirty_io(wb))
928 return;
929
930 /*
931 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 * wakeup the thread for old dirty data writeback
933 */
934 work = kzalloc(sizeof(*work), GFP_ATOMIC);
935 if (!work) {
936 trace_writeback_nowork(wb);
937 wb_wakeup(wb);
938 return;
939 }
940
941 work->sync_mode = WB_SYNC_NONE;
942 work->nr_pages = nr_pages;
943 work->range_cyclic = range_cyclic;
944 work->reason = reason;
945 work->auto_free = 1;
946
947 wb_queue_work(wb, work);
948 }
949
950 /**
951 * wb_start_background_writeback - start background writeback
952 * @wb: bdi_writback to write from
953 *
954 * Description:
955 * This makes sure WB_SYNC_NONE background writeback happens. When
956 * this function returns, it is only guaranteed that for given wb
957 * some IO is happening if we are over background dirty threshold.
958 * Caller need not hold sb s_umount semaphore.
959 */
960 void wb_start_background_writeback(struct bdi_writeback *wb)
961 {
962 /*
963 * We just wake up the flusher thread. It will perform background
964 * writeback as soon as there is no other work to do.
965 */
966 trace_writeback_wake_background(wb);
967 wb_wakeup(wb);
968 }
969
970 /*
971 * Remove the inode from the writeback list it is on.
972 */
973 void inode_io_list_del(struct inode *inode)
974 {
975 struct bdi_writeback *wb;
976
977 wb = inode_to_wb_and_lock_list(inode);
978 inode_io_list_del_locked(inode, wb);
979 spin_unlock(&wb->list_lock);
980 }
981
982 /*
983 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
984 * furthest end of its superblock's dirty-inode list.
985 *
986 * Before stamping the inode's ->dirtied_when, we check to see whether it is
987 * already the most-recently-dirtied inode on the b_dirty list. If that is
988 * the case then the inode must have been redirtied while it was being written
989 * out and we don't reset its dirtied_when.
990 */
991 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
992 {
993 if (!list_empty(&wb->b_dirty)) {
994 struct inode *tail;
995
996 tail = wb_inode(wb->b_dirty.next);
997 if (time_before(inode->dirtied_when, tail->dirtied_when))
998 inode->dirtied_when = jiffies;
999 }
1000 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1001 }
1002
1003 /*
1004 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1005 */
1006 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1007 {
1008 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1009 }
1010
1011 static void inode_sync_complete(struct inode *inode)
1012 {
1013 inode->i_state &= ~I_SYNC;
1014 /* If inode is clean an unused, put it into LRU now... */
1015 inode_add_lru(inode);
1016 /* Waiters must see I_SYNC cleared before being woken up */
1017 smp_mb();
1018 wake_up_bit(&inode->i_state, __I_SYNC);
1019 }
1020
1021 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1022 {
1023 bool ret = time_after(inode->dirtied_when, t);
1024 #ifndef CONFIG_64BIT
1025 /*
1026 * For inodes being constantly redirtied, dirtied_when can get stuck.
1027 * It _appears_ to be in the future, but is actually in distant past.
1028 * This test is necessary to prevent such wrapped-around relative times
1029 * from permanently stopping the whole bdi writeback.
1030 */
1031 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1032 #endif
1033 return ret;
1034 }
1035
1036 #define EXPIRE_DIRTY_ATIME 0x0001
1037
1038 /*
1039 * Move expired (dirtied before work->older_than_this) dirty inodes from
1040 * @delaying_queue to @dispatch_queue.
1041 */
1042 static int move_expired_inodes(struct list_head *delaying_queue,
1043 struct list_head *dispatch_queue,
1044 int flags,
1045 struct wb_writeback_work *work)
1046 {
1047 unsigned long *older_than_this = NULL;
1048 unsigned long expire_time;
1049 LIST_HEAD(tmp);
1050 struct list_head *pos, *node;
1051 struct super_block *sb = NULL;
1052 struct inode *inode;
1053 int do_sb_sort = 0;
1054 int moved = 0;
1055
1056 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1057 older_than_this = work->older_than_this;
1058 else if (!work->for_sync) {
1059 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1060 older_than_this = &expire_time;
1061 }
1062 while (!list_empty(delaying_queue)) {
1063 inode = wb_inode(delaying_queue->prev);
1064 if (older_than_this &&
1065 inode_dirtied_after(inode, *older_than_this))
1066 break;
1067 list_move(&inode->i_io_list, &tmp);
1068 moved++;
1069 if (flags & EXPIRE_DIRTY_ATIME)
1070 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1071 if (sb_is_blkdev_sb(inode->i_sb))
1072 continue;
1073 if (sb && sb != inode->i_sb)
1074 do_sb_sort = 1;
1075 sb = inode->i_sb;
1076 }
1077
1078 /* just one sb in list, splice to dispatch_queue and we're done */
1079 if (!do_sb_sort) {
1080 list_splice(&tmp, dispatch_queue);
1081 goto out;
1082 }
1083
1084 /* Move inodes from one superblock together */
1085 while (!list_empty(&tmp)) {
1086 sb = wb_inode(tmp.prev)->i_sb;
1087 list_for_each_prev_safe(pos, node, &tmp) {
1088 inode = wb_inode(pos);
1089 if (inode->i_sb == sb)
1090 list_move(&inode->i_io_list, dispatch_queue);
1091 }
1092 }
1093 out:
1094 return moved;
1095 }
1096
1097 /*
1098 * Queue all expired dirty inodes for io, eldest first.
1099 * Before
1100 * newly dirtied b_dirty b_io b_more_io
1101 * =============> gf edc BA
1102 * After
1103 * newly dirtied b_dirty b_io b_more_io
1104 * =============> g fBAedc
1105 * |
1106 * +--> dequeue for IO
1107 */
1108 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1109 {
1110 int moved;
1111
1112 assert_spin_locked(&wb->list_lock);
1113 list_splice_init(&wb->b_more_io, &wb->b_io);
1114 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1115 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1116 EXPIRE_DIRTY_ATIME, work);
1117 if (moved)
1118 wb_io_lists_populated(wb);
1119 trace_writeback_queue_io(wb, work, moved);
1120 }
1121
1122 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1123 {
1124 int ret;
1125
1126 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1127 trace_writeback_write_inode_start(inode, wbc);
1128 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1129 trace_writeback_write_inode(inode, wbc);
1130 return ret;
1131 }
1132 return 0;
1133 }
1134
1135 /*
1136 * Wait for writeback on an inode to complete. Called with i_lock held.
1137 * Caller must make sure inode cannot go away when we drop i_lock.
1138 */
1139 static void __inode_wait_for_writeback(struct inode *inode)
1140 __releases(inode->i_lock)
1141 __acquires(inode->i_lock)
1142 {
1143 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1144 wait_queue_head_t *wqh;
1145
1146 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1147 while (inode->i_state & I_SYNC) {
1148 spin_unlock(&inode->i_lock);
1149 __wait_on_bit(wqh, &wq, bit_wait,
1150 TASK_UNINTERRUPTIBLE);
1151 spin_lock(&inode->i_lock);
1152 }
1153 }
1154
1155 /*
1156 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1157 */
1158 void inode_wait_for_writeback(struct inode *inode)
1159 {
1160 spin_lock(&inode->i_lock);
1161 __inode_wait_for_writeback(inode);
1162 spin_unlock(&inode->i_lock);
1163 }
1164
1165 /*
1166 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1167 * held and drops it. It is aimed for callers not holding any inode reference
1168 * so once i_lock is dropped, inode can go away.
1169 */
1170 static void inode_sleep_on_writeback(struct inode *inode)
1171 __releases(inode->i_lock)
1172 {
1173 DEFINE_WAIT(wait);
1174 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1175 int sleep;
1176
1177 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1178 sleep = inode->i_state & I_SYNC;
1179 spin_unlock(&inode->i_lock);
1180 if (sleep)
1181 schedule();
1182 finish_wait(wqh, &wait);
1183 }
1184
1185 /*
1186 * Find proper writeback list for the inode depending on its current state and
1187 * possibly also change of its state while we were doing writeback. Here we
1188 * handle things such as livelock prevention or fairness of writeback among
1189 * inodes. This function can be called only by flusher thread - noone else
1190 * processes all inodes in writeback lists and requeueing inodes behind flusher
1191 * thread's back can have unexpected consequences.
1192 */
1193 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1194 struct writeback_control *wbc)
1195 {
1196 if (inode->i_state & I_FREEING)
1197 return;
1198
1199 /*
1200 * Sync livelock prevention. Each inode is tagged and synced in one
1201 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1202 * the dirty time to prevent enqueue and sync it again.
1203 */
1204 if ((inode->i_state & I_DIRTY) &&
1205 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1206 inode->dirtied_when = jiffies;
1207
1208 if (wbc->pages_skipped) {
1209 /*
1210 * writeback is not making progress due to locked
1211 * buffers. Skip this inode for now.
1212 */
1213 redirty_tail(inode, wb);
1214 return;
1215 }
1216
1217 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1218 /*
1219 * We didn't write back all the pages. nfs_writepages()
1220 * sometimes bales out without doing anything.
1221 */
1222 if (wbc->nr_to_write <= 0) {
1223 /* Slice used up. Queue for next turn. */
1224 requeue_io(inode, wb);
1225 } else {
1226 /*
1227 * Writeback blocked by something other than
1228 * congestion. Delay the inode for some time to
1229 * avoid spinning on the CPU (100% iowait)
1230 * retrying writeback of the dirty page/inode
1231 * that cannot be performed immediately.
1232 */
1233 redirty_tail(inode, wb);
1234 }
1235 } else if (inode->i_state & I_DIRTY) {
1236 /*
1237 * Filesystems can dirty the inode during writeback operations,
1238 * such as delayed allocation during submission or metadata
1239 * updates after data IO completion.
1240 */
1241 redirty_tail(inode, wb);
1242 } else if (inode->i_state & I_DIRTY_TIME) {
1243 inode->dirtied_when = jiffies;
1244 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1245 } else {
1246 /* The inode is clean. Remove from writeback lists. */
1247 inode_io_list_del_locked(inode, wb);
1248 }
1249 }
1250
1251 /*
1252 * Write out an inode and its dirty pages. Do not update the writeback list
1253 * linkage. That is left to the caller. The caller is also responsible for
1254 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1255 */
1256 static int
1257 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1258 {
1259 struct address_space *mapping = inode->i_mapping;
1260 long nr_to_write = wbc->nr_to_write;
1261 unsigned dirty;
1262 int ret;
1263
1264 WARN_ON(!(inode->i_state & I_SYNC));
1265
1266 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1267
1268 ret = do_writepages(mapping, wbc);
1269
1270 /*
1271 * Make sure to wait on the data before writing out the metadata.
1272 * This is important for filesystems that modify metadata on data
1273 * I/O completion. We don't do it for sync(2) writeback because it has a
1274 * separate, external IO completion path and ->sync_fs for guaranteeing
1275 * inode metadata is written back correctly.
1276 */
1277 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1278 int err = filemap_fdatawait(mapping);
1279 if (ret == 0)
1280 ret = err;
1281 }
1282
1283 /*
1284 * Some filesystems may redirty the inode during the writeback
1285 * due to delalloc, clear dirty metadata flags right before
1286 * write_inode()
1287 */
1288 spin_lock(&inode->i_lock);
1289
1290 dirty = inode->i_state & I_DIRTY;
1291 if (inode->i_state & I_DIRTY_TIME) {
1292 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1293 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1294 unlikely(time_after(jiffies,
1295 (inode->dirtied_time_when +
1296 dirtytime_expire_interval * HZ)))) {
1297 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1298 trace_writeback_lazytime(inode);
1299 }
1300 } else
1301 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1302 inode->i_state &= ~dirty;
1303
1304 /*
1305 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1306 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1307 * either they see the I_DIRTY bits cleared or we see the dirtied
1308 * inode.
1309 *
1310 * I_DIRTY_PAGES is always cleared together above even if @mapping
1311 * still has dirty pages. The flag is reinstated after smp_mb() if
1312 * necessary. This guarantees that either __mark_inode_dirty()
1313 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1314 */
1315 smp_mb();
1316
1317 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1318 inode->i_state |= I_DIRTY_PAGES;
1319
1320 spin_unlock(&inode->i_lock);
1321
1322 if (dirty & I_DIRTY_TIME)
1323 mark_inode_dirty_sync(inode);
1324 /* Don't write the inode if only I_DIRTY_PAGES was set */
1325 if (dirty & ~I_DIRTY_PAGES) {
1326 int err = write_inode(inode, wbc);
1327 if (ret == 0)
1328 ret = err;
1329 }
1330 trace_writeback_single_inode(inode, wbc, nr_to_write);
1331 return ret;
1332 }
1333
1334 /*
1335 * Write out an inode's dirty pages. Either the caller has an active reference
1336 * on the inode or the inode has I_WILL_FREE set.
1337 *
1338 * This function is designed to be called for writing back one inode which
1339 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1340 * and does more profound writeback list handling in writeback_sb_inodes().
1341 */
1342 static int writeback_single_inode(struct inode *inode,
1343 struct writeback_control *wbc)
1344 {
1345 struct bdi_writeback *wb;
1346 int ret = 0;
1347
1348 spin_lock(&inode->i_lock);
1349 if (!atomic_read(&inode->i_count))
1350 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1351 else
1352 WARN_ON(inode->i_state & I_WILL_FREE);
1353
1354 if (inode->i_state & I_SYNC) {
1355 if (wbc->sync_mode != WB_SYNC_ALL)
1356 goto out;
1357 /*
1358 * It's a data-integrity sync. We must wait. Since callers hold
1359 * inode reference or inode has I_WILL_FREE set, it cannot go
1360 * away under us.
1361 */
1362 __inode_wait_for_writeback(inode);
1363 }
1364 WARN_ON(inode->i_state & I_SYNC);
1365 /*
1366 * Skip inode if it is clean and we have no outstanding writeback in
1367 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1368 * function since flusher thread may be doing for example sync in
1369 * parallel and if we move the inode, it could get skipped. So here we
1370 * make sure inode is on some writeback list and leave it there unless
1371 * we have completely cleaned the inode.
1372 */
1373 if (!(inode->i_state & I_DIRTY_ALL) &&
1374 (wbc->sync_mode != WB_SYNC_ALL ||
1375 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1376 goto out;
1377 inode->i_state |= I_SYNC;
1378 wbc_attach_and_unlock_inode(wbc, inode);
1379
1380 ret = __writeback_single_inode(inode, wbc);
1381
1382 wbc_detach_inode(wbc);
1383
1384 wb = inode_to_wb_and_lock_list(inode);
1385 spin_lock(&inode->i_lock);
1386 /*
1387 * If inode is clean, remove it from writeback lists. Otherwise don't
1388 * touch it. See comment above for explanation.
1389 */
1390 if (!(inode->i_state & I_DIRTY_ALL))
1391 inode_io_list_del_locked(inode, wb);
1392 spin_unlock(&wb->list_lock);
1393 inode_sync_complete(inode);
1394 out:
1395 spin_unlock(&inode->i_lock);
1396 return ret;
1397 }
1398
1399 static long writeback_chunk_size(struct bdi_writeback *wb,
1400 struct wb_writeback_work *work)
1401 {
1402 long pages;
1403
1404 /*
1405 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1406 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1407 * here avoids calling into writeback_inodes_wb() more than once.
1408 *
1409 * The intended call sequence for WB_SYNC_ALL writeback is:
1410 *
1411 * wb_writeback()
1412 * writeback_sb_inodes() <== called only once
1413 * write_cache_pages() <== called once for each inode
1414 * (quickly) tag currently dirty pages
1415 * (maybe slowly) sync all tagged pages
1416 */
1417 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1418 pages = LONG_MAX;
1419 else {
1420 pages = min(wb->avg_write_bandwidth / 2,
1421 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1422 pages = min(pages, work->nr_pages);
1423 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1424 MIN_WRITEBACK_PAGES);
1425 }
1426
1427 return pages;
1428 }
1429
1430 /*
1431 * Write a portion of b_io inodes which belong to @sb.
1432 *
1433 * Return the number of pages and/or inodes written.
1434 *
1435 * NOTE! This is called with wb->list_lock held, and will
1436 * unlock and relock that for each inode it ends up doing
1437 * IO for.
1438 */
1439 static long writeback_sb_inodes(struct super_block *sb,
1440 struct bdi_writeback *wb,
1441 struct wb_writeback_work *work)
1442 {
1443 struct writeback_control wbc = {
1444 .sync_mode = work->sync_mode,
1445 .tagged_writepages = work->tagged_writepages,
1446 .for_kupdate = work->for_kupdate,
1447 .for_background = work->for_background,
1448 .for_sync = work->for_sync,
1449 .range_cyclic = work->range_cyclic,
1450 .range_start = 0,
1451 .range_end = LLONG_MAX,
1452 };
1453 unsigned long start_time = jiffies;
1454 long write_chunk;
1455 long wrote = 0; /* count both pages and inodes */
1456
1457 while (!list_empty(&wb->b_io)) {
1458 struct inode *inode = wb_inode(wb->b_io.prev);
1459 struct bdi_writeback *tmp_wb;
1460
1461 if (inode->i_sb != sb) {
1462 if (work->sb) {
1463 /*
1464 * We only want to write back data for this
1465 * superblock, move all inodes not belonging
1466 * to it back onto the dirty list.
1467 */
1468 redirty_tail(inode, wb);
1469 continue;
1470 }
1471
1472 /*
1473 * The inode belongs to a different superblock.
1474 * Bounce back to the caller to unpin this and
1475 * pin the next superblock.
1476 */
1477 break;
1478 }
1479
1480 /*
1481 * Don't bother with new inodes or inodes being freed, first
1482 * kind does not need periodic writeout yet, and for the latter
1483 * kind writeout is handled by the freer.
1484 */
1485 spin_lock(&inode->i_lock);
1486 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1487 spin_unlock(&inode->i_lock);
1488 redirty_tail(inode, wb);
1489 continue;
1490 }
1491 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1492 /*
1493 * If this inode is locked for writeback and we are not
1494 * doing writeback-for-data-integrity, move it to
1495 * b_more_io so that writeback can proceed with the
1496 * other inodes on s_io.
1497 *
1498 * We'll have another go at writing back this inode
1499 * when we completed a full scan of b_io.
1500 */
1501 spin_unlock(&inode->i_lock);
1502 requeue_io(inode, wb);
1503 trace_writeback_sb_inodes_requeue(inode);
1504 continue;
1505 }
1506 spin_unlock(&wb->list_lock);
1507
1508 /*
1509 * We already requeued the inode if it had I_SYNC set and we
1510 * are doing WB_SYNC_NONE writeback. So this catches only the
1511 * WB_SYNC_ALL case.
1512 */
1513 if (inode->i_state & I_SYNC) {
1514 /* Wait for I_SYNC. This function drops i_lock... */
1515 inode_sleep_on_writeback(inode);
1516 /* Inode may be gone, start again */
1517 spin_lock(&wb->list_lock);
1518 continue;
1519 }
1520 inode->i_state |= I_SYNC;
1521 wbc_attach_and_unlock_inode(&wbc, inode);
1522
1523 write_chunk = writeback_chunk_size(wb, work);
1524 wbc.nr_to_write = write_chunk;
1525 wbc.pages_skipped = 0;
1526
1527 /*
1528 * We use I_SYNC to pin the inode in memory. While it is set
1529 * evict_inode() will wait so the inode cannot be freed.
1530 */
1531 __writeback_single_inode(inode, &wbc);
1532
1533 wbc_detach_inode(&wbc);
1534 work->nr_pages -= write_chunk - wbc.nr_to_write;
1535 wrote += write_chunk - wbc.nr_to_write;
1536
1537 if (need_resched()) {
1538 /*
1539 * We're trying to balance between building up a nice
1540 * long list of IOs to improve our merge rate, and
1541 * getting those IOs out quickly for anyone throttling
1542 * in balance_dirty_pages(). cond_resched() doesn't
1543 * unplug, so get our IOs out the door before we
1544 * give up the CPU.
1545 */
1546 blk_flush_plug(current);
1547 cond_resched();
1548 }
1549
1550 /*
1551 * Requeue @inode if still dirty. Be careful as @inode may
1552 * have been switched to another wb in the meantime.
1553 */
1554 tmp_wb = inode_to_wb_and_lock_list(inode);
1555 spin_lock(&inode->i_lock);
1556 if (!(inode->i_state & I_DIRTY_ALL))
1557 wrote++;
1558 requeue_inode(inode, tmp_wb, &wbc);
1559 inode_sync_complete(inode);
1560 spin_unlock(&inode->i_lock);
1561
1562 if (unlikely(tmp_wb != wb)) {
1563 spin_unlock(&tmp_wb->list_lock);
1564 spin_lock(&wb->list_lock);
1565 }
1566
1567 /*
1568 * bail out to wb_writeback() often enough to check
1569 * background threshold and other termination conditions.
1570 */
1571 if (wrote) {
1572 if (time_is_before_jiffies(start_time + HZ / 10UL))
1573 break;
1574 if (work->nr_pages <= 0)
1575 break;
1576 }
1577 }
1578 return wrote;
1579 }
1580
1581 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1582 struct wb_writeback_work *work)
1583 {
1584 unsigned long start_time = jiffies;
1585 long wrote = 0;
1586
1587 while (!list_empty(&wb->b_io)) {
1588 struct inode *inode = wb_inode(wb->b_io.prev);
1589 struct super_block *sb = inode->i_sb;
1590
1591 if (!trylock_super(sb)) {
1592 /*
1593 * trylock_super() may fail consistently due to
1594 * s_umount being grabbed by someone else. Don't use
1595 * requeue_io() to avoid busy retrying the inode/sb.
1596 */
1597 redirty_tail(inode, wb);
1598 continue;
1599 }
1600 wrote += writeback_sb_inodes(sb, wb, work);
1601 up_read(&sb->s_umount);
1602
1603 /* refer to the same tests at the end of writeback_sb_inodes */
1604 if (wrote) {
1605 if (time_is_before_jiffies(start_time + HZ / 10UL))
1606 break;
1607 if (work->nr_pages <= 0)
1608 break;
1609 }
1610 }
1611 /* Leave any unwritten inodes on b_io */
1612 return wrote;
1613 }
1614
1615 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1616 enum wb_reason reason)
1617 {
1618 struct wb_writeback_work work = {
1619 .nr_pages = nr_pages,
1620 .sync_mode = WB_SYNC_NONE,
1621 .range_cyclic = 1,
1622 .reason = reason,
1623 };
1624 struct blk_plug plug;
1625
1626 blk_start_plug(&plug);
1627 spin_lock(&wb->list_lock);
1628 if (list_empty(&wb->b_io))
1629 queue_io(wb, &work);
1630 __writeback_inodes_wb(wb, &work);
1631 spin_unlock(&wb->list_lock);
1632 blk_finish_plug(&plug);
1633
1634 return nr_pages - work.nr_pages;
1635 }
1636
1637 /*
1638 * Explicit flushing or periodic writeback of "old" data.
1639 *
1640 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1641 * dirtying-time in the inode's address_space. So this periodic writeback code
1642 * just walks the superblock inode list, writing back any inodes which are
1643 * older than a specific point in time.
1644 *
1645 * Try to run once per dirty_writeback_interval. But if a writeback event
1646 * takes longer than a dirty_writeback_interval interval, then leave a
1647 * one-second gap.
1648 *
1649 * older_than_this takes precedence over nr_to_write. So we'll only write back
1650 * all dirty pages if they are all attached to "old" mappings.
1651 */
1652 static long wb_writeback(struct bdi_writeback *wb,
1653 struct wb_writeback_work *work)
1654 {
1655 unsigned long wb_start = jiffies;
1656 long nr_pages = work->nr_pages;
1657 unsigned long oldest_jif;
1658 struct inode *inode;
1659 long progress;
1660 struct blk_plug plug;
1661
1662 oldest_jif = jiffies;
1663 work->older_than_this = &oldest_jif;
1664
1665 blk_start_plug(&plug);
1666 spin_lock(&wb->list_lock);
1667 for (;;) {
1668 /*
1669 * Stop writeback when nr_pages has been consumed
1670 */
1671 if (work->nr_pages <= 0)
1672 break;
1673
1674 /*
1675 * Background writeout and kupdate-style writeback may
1676 * run forever. Stop them if there is other work to do
1677 * so that e.g. sync can proceed. They'll be restarted
1678 * after the other works are all done.
1679 */
1680 if ((work->for_background || work->for_kupdate) &&
1681 !list_empty(&wb->work_list))
1682 break;
1683
1684 /*
1685 * For background writeout, stop when we are below the
1686 * background dirty threshold
1687 */
1688 if (work->for_background && !wb_over_bg_thresh(wb))
1689 break;
1690
1691 /*
1692 * Kupdate and background works are special and we want to
1693 * include all inodes that need writing. Livelock avoidance is
1694 * handled by these works yielding to any other work so we are
1695 * safe.
1696 */
1697 if (work->for_kupdate) {
1698 oldest_jif = jiffies -
1699 msecs_to_jiffies(dirty_expire_interval * 10);
1700 } else if (work->for_background)
1701 oldest_jif = jiffies;
1702
1703 trace_writeback_start(wb, work);
1704 if (list_empty(&wb->b_io))
1705 queue_io(wb, work);
1706 if (work->sb)
1707 progress = writeback_sb_inodes(work->sb, wb, work);
1708 else
1709 progress = __writeback_inodes_wb(wb, work);
1710 trace_writeback_written(wb, work);
1711
1712 wb_update_bandwidth(wb, wb_start);
1713
1714 /*
1715 * Did we write something? Try for more
1716 *
1717 * Dirty inodes are moved to b_io for writeback in batches.
1718 * The completion of the current batch does not necessarily
1719 * mean the overall work is done. So we keep looping as long
1720 * as made some progress on cleaning pages or inodes.
1721 */
1722 if (progress)
1723 continue;
1724 /*
1725 * No more inodes for IO, bail
1726 */
1727 if (list_empty(&wb->b_more_io))
1728 break;
1729 /*
1730 * Nothing written. Wait for some inode to
1731 * become available for writeback. Otherwise
1732 * we'll just busyloop.
1733 */
1734 if (!list_empty(&wb->b_more_io)) {
1735 trace_writeback_wait(wb, work);
1736 inode = wb_inode(wb->b_more_io.prev);
1737 spin_lock(&inode->i_lock);
1738 spin_unlock(&wb->list_lock);
1739 /* This function drops i_lock... */
1740 inode_sleep_on_writeback(inode);
1741 spin_lock(&wb->list_lock);
1742 }
1743 }
1744 spin_unlock(&wb->list_lock);
1745 blk_finish_plug(&plug);
1746
1747 return nr_pages - work->nr_pages;
1748 }
1749
1750 /*
1751 * Return the next wb_writeback_work struct that hasn't been processed yet.
1752 */
1753 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1754 {
1755 struct wb_writeback_work *work = NULL;
1756
1757 spin_lock_bh(&wb->work_lock);
1758 if (!list_empty(&wb->work_list)) {
1759 work = list_entry(wb->work_list.next,
1760 struct wb_writeback_work, list);
1761 list_del_init(&work->list);
1762 }
1763 spin_unlock_bh(&wb->work_lock);
1764 return work;
1765 }
1766
1767 /*
1768 * Add in the number of potentially dirty inodes, because each inode
1769 * write can dirty pagecache in the underlying blockdev.
1770 */
1771 static unsigned long get_nr_dirty_pages(void)
1772 {
1773 return global_page_state(NR_FILE_DIRTY) +
1774 global_page_state(NR_UNSTABLE_NFS) +
1775 get_nr_dirty_inodes();
1776 }
1777
1778 static long wb_check_background_flush(struct bdi_writeback *wb)
1779 {
1780 if (wb_over_bg_thresh(wb)) {
1781
1782 struct wb_writeback_work work = {
1783 .nr_pages = LONG_MAX,
1784 .sync_mode = WB_SYNC_NONE,
1785 .for_background = 1,
1786 .range_cyclic = 1,
1787 .reason = WB_REASON_BACKGROUND,
1788 };
1789
1790 return wb_writeback(wb, &work);
1791 }
1792
1793 return 0;
1794 }
1795
1796 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1797 {
1798 unsigned long expired;
1799 long nr_pages;
1800
1801 /*
1802 * When set to zero, disable periodic writeback
1803 */
1804 if (!dirty_writeback_interval)
1805 return 0;
1806
1807 expired = wb->last_old_flush +
1808 msecs_to_jiffies(dirty_writeback_interval * 10);
1809 if (time_before(jiffies, expired))
1810 return 0;
1811
1812 wb->last_old_flush = jiffies;
1813 nr_pages = get_nr_dirty_pages();
1814
1815 if (nr_pages) {
1816 struct wb_writeback_work work = {
1817 .nr_pages = nr_pages,
1818 .sync_mode = WB_SYNC_NONE,
1819 .for_kupdate = 1,
1820 .range_cyclic = 1,
1821 .reason = WB_REASON_PERIODIC,
1822 };
1823
1824 return wb_writeback(wb, &work);
1825 }
1826
1827 return 0;
1828 }
1829
1830 /*
1831 * Retrieve work items and do the writeback they describe
1832 */
1833 static long wb_do_writeback(struct bdi_writeback *wb)
1834 {
1835 struct wb_writeback_work *work;
1836 long wrote = 0;
1837
1838 set_bit(WB_writeback_running, &wb->state);
1839 while ((work = get_next_work_item(wb)) != NULL) {
1840 struct wb_completion *done = work->done;
1841
1842 trace_writeback_exec(wb, work);
1843
1844 wrote += wb_writeback(wb, work);
1845
1846 if (work->auto_free)
1847 kfree(work);
1848 if (done && atomic_dec_and_test(&done->cnt))
1849 wake_up_all(&wb->bdi->wb_waitq);
1850 }
1851
1852 /*
1853 * Check for periodic writeback, kupdated() style
1854 */
1855 wrote += wb_check_old_data_flush(wb);
1856 wrote += wb_check_background_flush(wb);
1857 clear_bit(WB_writeback_running, &wb->state);
1858
1859 return wrote;
1860 }
1861
1862 /*
1863 * Handle writeback of dirty data for the device backed by this bdi. Also
1864 * reschedules periodically and does kupdated style flushing.
1865 */
1866 void wb_workfn(struct work_struct *work)
1867 {
1868 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1869 struct bdi_writeback, dwork);
1870 long pages_written;
1871
1872 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1873 current->flags |= PF_SWAPWRITE;
1874
1875 if (likely(!current_is_workqueue_rescuer() ||
1876 !test_bit(WB_registered, &wb->state))) {
1877 /*
1878 * The normal path. Keep writing back @wb until its
1879 * work_list is empty. Note that this path is also taken
1880 * if @wb is shutting down even when we're running off the
1881 * rescuer as work_list needs to be drained.
1882 */
1883 do {
1884 pages_written = wb_do_writeback(wb);
1885 trace_writeback_pages_written(pages_written);
1886 } while (!list_empty(&wb->work_list));
1887 } else {
1888 /*
1889 * bdi_wq can't get enough workers and we're running off
1890 * the emergency worker. Don't hog it. Hopefully, 1024 is
1891 * enough for efficient IO.
1892 */
1893 pages_written = writeback_inodes_wb(wb, 1024,
1894 WB_REASON_FORKER_THREAD);
1895 trace_writeback_pages_written(pages_written);
1896 }
1897
1898 if (!list_empty(&wb->work_list))
1899 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1900 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1901 wb_wakeup_delayed(wb);
1902
1903 current->flags &= ~PF_SWAPWRITE;
1904 }
1905
1906 /*
1907 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1908 * the whole world.
1909 */
1910 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1911 {
1912 struct backing_dev_info *bdi;
1913
1914 if (!nr_pages)
1915 nr_pages = get_nr_dirty_pages();
1916
1917 rcu_read_lock();
1918 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1919 struct bdi_writeback *wb;
1920
1921 if (!bdi_has_dirty_io(bdi))
1922 continue;
1923
1924 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1925 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1926 false, reason);
1927 }
1928 rcu_read_unlock();
1929 }
1930
1931 /*
1932 * Wake up bdi's periodically to make sure dirtytime inodes gets
1933 * written back periodically. We deliberately do *not* check the
1934 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1935 * kernel to be constantly waking up once there are any dirtytime
1936 * inodes on the system. So instead we define a separate delayed work
1937 * function which gets called much more rarely. (By default, only
1938 * once every 12 hours.)
1939 *
1940 * If there is any other write activity going on in the file system,
1941 * this function won't be necessary. But if the only thing that has
1942 * happened on the file system is a dirtytime inode caused by an atime
1943 * update, we need this infrastructure below to make sure that inode
1944 * eventually gets pushed out to disk.
1945 */
1946 static void wakeup_dirtytime_writeback(struct work_struct *w);
1947 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1948
1949 static void wakeup_dirtytime_writeback(struct work_struct *w)
1950 {
1951 struct backing_dev_info *bdi;
1952
1953 rcu_read_lock();
1954 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1955 struct bdi_writeback *wb;
1956
1957 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1958 if (!list_empty(&wb->b_dirty_time))
1959 wb_wakeup(wb);
1960 }
1961 rcu_read_unlock();
1962 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1963 }
1964
1965 static int __init start_dirtytime_writeback(void)
1966 {
1967 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1968 return 0;
1969 }
1970 __initcall(start_dirtytime_writeback);
1971
1972 int dirtytime_interval_handler(struct ctl_table *table, int write,
1973 void __user *buffer, size_t *lenp, loff_t *ppos)
1974 {
1975 int ret;
1976
1977 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1978 if (ret == 0 && write)
1979 mod_delayed_work(system_wq, &dirtytime_work, 0);
1980 return ret;
1981 }
1982
1983 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1984 {
1985 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1986 struct dentry *dentry;
1987 const char *name = "?";
1988
1989 dentry = d_find_alias(inode);
1990 if (dentry) {
1991 spin_lock(&dentry->d_lock);
1992 name = (const char *) dentry->d_name.name;
1993 }
1994 printk(KERN_DEBUG
1995 "%s(%d): dirtied inode %lu (%s) on %s\n",
1996 current->comm, task_pid_nr(current), inode->i_ino,
1997 name, inode->i_sb->s_id);
1998 if (dentry) {
1999 spin_unlock(&dentry->d_lock);
2000 dput(dentry);
2001 }
2002 }
2003 }
2004
2005 /**
2006 * __mark_inode_dirty - internal function
2007 * @inode: inode to mark
2008 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2009 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2010 * mark_inode_dirty_sync.
2011 *
2012 * Put the inode on the super block's dirty list.
2013 *
2014 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2015 * dirty list only if it is hashed or if it refers to a blockdev.
2016 * If it was not hashed, it will never be added to the dirty list
2017 * even if it is later hashed, as it will have been marked dirty already.
2018 *
2019 * In short, make sure you hash any inodes _before_ you start marking
2020 * them dirty.
2021 *
2022 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2023 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2024 * the kernel-internal blockdev inode represents the dirtying time of the
2025 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2026 * page->mapping->host, so the page-dirtying time is recorded in the internal
2027 * blockdev inode.
2028 */
2029 void __mark_inode_dirty(struct inode *inode, int flags)
2030 {
2031 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2032 struct super_block *sb = inode->i_sb;
2033 int dirtytime;
2034
2035 trace_writeback_mark_inode_dirty(inode, flags);
2036
2037 /*
2038 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2039 * dirty the inode itself
2040 */
2041 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2042 trace_writeback_dirty_inode_start(inode, flags);
2043
2044 if (sb->s_op->dirty_inode)
2045 sb->s_op->dirty_inode(inode, flags);
2046
2047 trace_writeback_dirty_inode(inode, flags);
2048 }
2049 if (flags & I_DIRTY_INODE)
2050 flags &= ~I_DIRTY_TIME;
2051 dirtytime = flags & I_DIRTY_TIME;
2052
2053 /*
2054 * Paired with smp_mb() in __writeback_single_inode() for the
2055 * following lockless i_state test. See there for details.
2056 */
2057 smp_mb();
2058
2059 if (((inode->i_state & flags) == flags) ||
2060 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2061 return;
2062
2063 if (unlikely(block_dump))
2064 block_dump___mark_inode_dirty(inode);
2065
2066 spin_lock(&inode->i_lock);
2067 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2068 goto out_unlock_inode;
2069 if ((inode->i_state & flags) != flags) {
2070 const int was_dirty = inode->i_state & I_DIRTY;
2071
2072 inode_attach_wb(inode, NULL);
2073
2074 if (flags & I_DIRTY_INODE)
2075 inode->i_state &= ~I_DIRTY_TIME;
2076 inode->i_state |= flags;
2077
2078 /*
2079 * If the inode is being synced, just update its dirty state.
2080 * The unlocker will place the inode on the appropriate
2081 * superblock list, based upon its state.
2082 */
2083 if (inode->i_state & I_SYNC)
2084 goto out_unlock_inode;
2085
2086 /*
2087 * Only add valid (hashed) inodes to the superblock's
2088 * dirty list. Add blockdev inodes as well.
2089 */
2090 if (!S_ISBLK(inode->i_mode)) {
2091 if (inode_unhashed(inode))
2092 goto out_unlock_inode;
2093 }
2094 if (inode->i_state & I_FREEING)
2095 goto out_unlock_inode;
2096
2097 /*
2098 * If the inode was already on b_dirty/b_io/b_more_io, don't
2099 * reposition it (that would break b_dirty time-ordering).
2100 */
2101 if (!was_dirty) {
2102 struct bdi_writeback *wb;
2103 struct list_head *dirty_list;
2104 bool wakeup_bdi = false;
2105
2106 wb = locked_inode_to_wb_and_lock_list(inode);
2107
2108 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2109 !test_bit(WB_registered, &wb->state),
2110 "bdi-%s not registered\n", wb->bdi->name);
2111
2112 inode->dirtied_when = jiffies;
2113 if (dirtytime)
2114 inode->dirtied_time_when = jiffies;
2115
2116 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2117 dirty_list = &wb->b_dirty;
2118 else
2119 dirty_list = &wb->b_dirty_time;
2120
2121 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2122 dirty_list);
2123
2124 spin_unlock(&wb->list_lock);
2125 trace_writeback_dirty_inode_enqueue(inode);
2126
2127 /*
2128 * If this is the first dirty inode for this bdi,
2129 * we have to wake-up the corresponding bdi thread
2130 * to make sure background write-back happens
2131 * later.
2132 */
2133 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2134 wb_wakeup_delayed(wb);
2135 return;
2136 }
2137 }
2138 out_unlock_inode:
2139 spin_unlock(&inode->i_lock);
2140
2141 #undef I_DIRTY_INODE
2142 }
2143 EXPORT_SYMBOL(__mark_inode_dirty);
2144
2145 /*
2146 * The @s_sync_lock is used to serialise concurrent sync operations
2147 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2148 * Concurrent callers will block on the s_sync_lock rather than doing contending
2149 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2150 * has been issued up to the time this function is enter is guaranteed to be
2151 * completed by the time we have gained the lock and waited for all IO that is
2152 * in progress regardless of the order callers are granted the lock.
2153 */
2154 static void wait_sb_inodes(struct super_block *sb)
2155 {
2156 struct inode *inode, *old_inode = NULL;
2157
2158 /*
2159 * We need to be protected against the filesystem going from
2160 * r/o to r/w or vice versa.
2161 */
2162 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2163
2164 mutex_lock(&sb->s_sync_lock);
2165 spin_lock(&sb->s_inode_list_lock);
2166
2167 /*
2168 * Data integrity sync. Must wait for all pages under writeback,
2169 * because there may have been pages dirtied before our sync
2170 * call, but which had writeout started before we write it out.
2171 * In which case, the inode may not be on the dirty list, but
2172 * we still have to wait for that writeout.
2173 */
2174 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2175 struct address_space *mapping = inode->i_mapping;
2176
2177 spin_lock(&inode->i_lock);
2178 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2179 (mapping->nrpages == 0)) {
2180 spin_unlock(&inode->i_lock);
2181 continue;
2182 }
2183 __iget(inode);
2184 spin_unlock(&inode->i_lock);
2185 spin_unlock(&sb->s_inode_list_lock);
2186
2187 /*
2188 * We hold a reference to 'inode' so it couldn't have been
2189 * removed from s_inodes list while we dropped the
2190 * s_inode_list_lock. We cannot iput the inode now as we can
2191 * be holding the last reference and we cannot iput it under
2192 * s_inode_list_lock. So we keep the reference and iput it
2193 * later.
2194 */
2195 iput(old_inode);
2196 old_inode = inode;
2197
2198 /*
2199 * We keep the error status of individual mapping so that
2200 * applications can catch the writeback error using fsync(2).
2201 * See filemap_fdatawait_keep_errors() for details.
2202 */
2203 filemap_fdatawait_keep_errors(mapping);
2204
2205 cond_resched();
2206
2207 spin_lock(&sb->s_inode_list_lock);
2208 }
2209 spin_unlock(&sb->s_inode_list_lock);
2210 iput(old_inode);
2211 mutex_unlock(&sb->s_sync_lock);
2212 }
2213
2214 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2215 enum wb_reason reason, bool skip_if_busy)
2216 {
2217 DEFINE_WB_COMPLETION_ONSTACK(done);
2218 struct wb_writeback_work work = {
2219 .sb = sb,
2220 .sync_mode = WB_SYNC_NONE,
2221 .tagged_writepages = 1,
2222 .done = &done,
2223 .nr_pages = nr,
2224 .reason = reason,
2225 };
2226 struct backing_dev_info *bdi = sb->s_bdi;
2227
2228 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2229 return;
2230 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2231
2232 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2233 wb_wait_for_completion(bdi, &done);
2234 }
2235
2236 /**
2237 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2238 * @sb: the superblock
2239 * @nr: the number of pages to write
2240 * @reason: reason why some writeback work initiated
2241 *
2242 * Start writeback on some inodes on this super_block. No guarantees are made
2243 * on how many (if any) will be written, and this function does not wait
2244 * for IO completion of submitted IO.
2245 */
2246 void writeback_inodes_sb_nr(struct super_block *sb,
2247 unsigned long nr,
2248 enum wb_reason reason)
2249 {
2250 __writeback_inodes_sb_nr(sb, nr, reason, false);
2251 }
2252 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2253
2254 /**
2255 * writeback_inodes_sb - writeback dirty inodes from given super_block
2256 * @sb: the superblock
2257 * @reason: reason why some writeback work was initiated
2258 *
2259 * Start writeback on some inodes on this super_block. No guarantees are made
2260 * on how many (if any) will be written, and this function does not wait
2261 * for IO completion of submitted IO.
2262 */
2263 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2264 {
2265 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2266 }
2267 EXPORT_SYMBOL(writeback_inodes_sb);
2268
2269 /**
2270 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2271 * @sb: the superblock
2272 * @nr: the number of pages to write
2273 * @reason: the reason of writeback
2274 *
2275 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2276 * Returns 1 if writeback was started, 0 if not.
2277 */
2278 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2279 enum wb_reason reason)
2280 {
2281 if (!down_read_trylock(&sb->s_umount))
2282 return false;
2283
2284 __writeback_inodes_sb_nr(sb, nr, reason, true);
2285 up_read(&sb->s_umount);
2286 return true;
2287 }
2288 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2289
2290 /**
2291 * try_to_writeback_inodes_sb - try to start writeback if none underway
2292 * @sb: the superblock
2293 * @reason: reason why some writeback work was initiated
2294 *
2295 * Implement by try_to_writeback_inodes_sb_nr()
2296 * Returns 1 if writeback was started, 0 if not.
2297 */
2298 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2299 {
2300 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2301 }
2302 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2303
2304 /**
2305 * sync_inodes_sb - sync sb inode pages
2306 * @sb: the superblock
2307 *
2308 * This function writes and waits on any dirty inode belonging to this
2309 * super_block.
2310 */
2311 void sync_inodes_sb(struct super_block *sb)
2312 {
2313 DEFINE_WB_COMPLETION_ONSTACK(done);
2314 struct wb_writeback_work work = {
2315 .sb = sb,
2316 .sync_mode = WB_SYNC_ALL,
2317 .nr_pages = LONG_MAX,
2318 .range_cyclic = 0,
2319 .done = &done,
2320 .reason = WB_REASON_SYNC,
2321 .for_sync = 1,
2322 };
2323 struct backing_dev_info *bdi = sb->s_bdi;
2324
2325 /*
2326 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2327 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2328 * bdi_has_dirty() need to be written out too.
2329 */
2330 if (bdi == &noop_backing_dev_info)
2331 return;
2332 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2333
2334 bdi_split_work_to_wbs(bdi, &work, false);
2335 wb_wait_for_completion(bdi, &done);
2336
2337 wait_sb_inodes(sb);
2338 }
2339 EXPORT_SYMBOL(sync_inodes_sb);
2340
2341 /**
2342 * write_inode_now - write an inode to disk
2343 * @inode: inode to write to disk
2344 * @sync: whether the write should be synchronous or not
2345 *
2346 * This function commits an inode to disk immediately if it is dirty. This is
2347 * primarily needed by knfsd.
2348 *
2349 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2350 */
2351 int write_inode_now(struct inode *inode, int sync)
2352 {
2353 struct writeback_control wbc = {
2354 .nr_to_write = LONG_MAX,
2355 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2356 .range_start = 0,
2357 .range_end = LLONG_MAX,
2358 };
2359
2360 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2361 wbc.nr_to_write = 0;
2362
2363 might_sleep();
2364 return writeback_single_inode(inode, &wbc);
2365 }
2366 EXPORT_SYMBOL(write_inode_now);
2367
2368 /**
2369 * sync_inode - write an inode and its pages to disk.
2370 * @inode: the inode to sync
2371 * @wbc: controls the writeback mode
2372 *
2373 * sync_inode() will write an inode and its pages to disk. It will also
2374 * correctly update the inode on its superblock's dirty inode lists and will
2375 * update inode->i_state.
2376 *
2377 * The caller must have a ref on the inode.
2378 */
2379 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2380 {
2381 return writeback_single_inode(inode, wbc);
2382 }
2383 EXPORT_SYMBOL(sync_inode);
2384
2385 /**
2386 * sync_inode_metadata - write an inode to disk
2387 * @inode: the inode to sync
2388 * @wait: wait for I/O to complete.
2389 *
2390 * Write an inode to disk and adjust its dirty state after completion.
2391 *
2392 * Note: only writes the actual inode, no associated data or other metadata.
2393 */
2394 int sync_inode_metadata(struct inode *inode, int wait)
2395 {
2396 struct writeback_control wbc = {
2397 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2398 .nr_to_write = 0, /* metadata-only */
2399 };
2400
2401 return sync_inode(inode, &wbc);
2402 }
2403 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.08292 seconds and 5 git commands to generate.