Restartable sequences: self-tests
[deliverable/linux.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 trace_writeback_queue(wb, work);
180
181 spin_lock_bh(&wb->work_lock);
182 if (!test_bit(WB_registered, &wb->state))
183 goto out_unlock;
184 if (work->done)
185 atomic_inc(&work->done->cnt);
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 spin_unlock_bh(&wb->work_lock);
190 }
191
192 /**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205 {
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209
210 #ifdef CONFIG_CGROUP_WRITEBACK
211
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227 static struct workqueue_struct *isw_wq;
228
229 void __inode_attach_wb(struct inode *inode, struct page *page)
230 {
231 struct backing_dev_info *bdi = inode_to_bdi(inode);
232 struct bdi_writeback *wb = NULL;
233
234 if (inode_cgwb_enabled(inode)) {
235 struct cgroup_subsys_state *memcg_css;
236
237 if (page) {
238 memcg_css = mem_cgroup_css_from_page(page);
239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 } else {
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css = task_get_css(current, memory_cgrp_id);
243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 css_put(memcg_css);
245 }
246 }
247
248 if (!wb)
249 wb = &bdi->wb;
250
251 /*
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
254 */
255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 wb_put(wb);
257 }
258
259 /**
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
262 *
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
266 */
267 static struct bdi_writeback *
268 locked_inode_to_wb_and_lock_list(struct inode *inode)
269 __releases(&inode->i_lock)
270 __acquires(&wb->list_lock)
271 {
272 while (true) {
273 struct bdi_writeback *wb = inode_to_wb(inode);
274
275 /*
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
280 */
281 wb_get(wb);
282 spin_unlock(&inode->i_lock);
283 spin_lock(&wb->list_lock);
284
285 /* i_wb may have changed inbetween, can't use inode_to_wb() */
286 if (likely(wb == inode->i_wb)) {
287 wb_put(wb); /* @inode already has ref */
288 return wb;
289 }
290
291 spin_unlock(&wb->list_lock);
292 wb_put(wb);
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296 }
297
298 /**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307 {
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310 }
311
312 struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318 };
319
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
327 struct bdi_writeback *new_wb = isw->new_wb;
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
341 */
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
349 spin_lock(&inode->i_lock);
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_io_list.
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
393 if (!list_empty(&inode->i_io_list)) {
394 struct inode *pos;
395
396 inode_io_list_del_locked(inode, old_wb);
397 inode->i_wb = new_wb;
398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 } else {
404 inode->i_wb = new_wb;
405 }
406
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
411 switched = true;
412 skip_switch:
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
419 spin_unlock_irq(&mapping->tree_lock);
420 spin_unlock(&inode->i_lock);
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
423
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
428 wb_put(new_wb);
429
430 iput(inode);
431 kfree(isw);
432
433 atomic_dec(&isw_nr_in_flight);
434 }
435
436 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437 {
438 struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 struct inode_switch_wbs_context, rcu_head);
440
441 /* needs to grab bh-unsafe locks, bounce to work item */
442 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
443 queue_work(isw_wq, &isw->work);
444 }
445
446 /**
447 * inode_switch_wbs - change the wb association of an inode
448 * @inode: target inode
449 * @new_wb_id: ID of the new wb
450 *
451 * Switch @inode's wb association to the wb identified by @new_wb_id. The
452 * switching is performed asynchronously and may fail silently.
453 */
454 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455 {
456 struct backing_dev_info *bdi = inode_to_bdi(inode);
457 struct cgroup_subsys_state *memcg_css;
458 struct inode_switch_wbs_context *isw;
459
460 /* noop if seems to be already in progress */
461 if (inode->i_state & I_WB_SWITCH)
462 return;
463
464 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 if (!isw)
466 return;
467
468 /* find and pin the new wb */
469 rcu_read_lock();
470 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 if (memcg_css)
472 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 rcu_read_unlock();
474 if (!isw->new_wb)
475 goto out_free;
476
477 /* while holding I_WB_SWITCH, no one else can update the association */
478 spin_lock(&inode->i_lock);
479 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 inode_to_wb(inode) == isw->new_wb) {
482 spin_unlock(&inode->i_lock);
483 goto out_free;
484 }
485 inode->i_state |= I_WB_SWITCH;
486 __iget(inode);
487 spin_unlock(&inode->i_lock);
488
489 isw->inode = inode;
490
491 atomic_inc(&isw_nr_in_flight);
492
493 /*
494 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 * the RCU protected stat update paths to grab the mapping's
496 * tree_lock so that stat transfer can synchronize against them.
497 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 */
499 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 return;
501
502 out_free:
503 if (isw->new_wb)
504 wb_put(isw->new_wb);
505 kfree(isw);
506 }
507
508 /**
509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510 * @wbc: writeback_control of interest
511 * @inode: target inode
512 *
513 * @inode is locked and about to be written back under the control of @wbc.
514 * Record @inode's writeback context into @wbc and unlock the i_lock. On
515 * writeback completion, wbc_detach_inode() should be called. This is used
516 * to track the cgroup writeback context.
517 */
518 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 struct inode *inode)
520 {
521 if (!inode_cgwb_enabled(inode)) {
522 spin_unlock(&inode->i_lock);
523 return;
524 }
525
526 wbc->wb = inode_to_wb(inode);
527 wbc->inode = inode;
528
529 wbc->wb_id = wbc->wb->memcg_css->id;
530 wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 wbc->wb_tcand_id = 0;
532 wbc->wb_bytes = 0;
533 wbc->wb_lcand_bytes = 0;
534 wbc->wb_tcand_bytes = 0;
535
536 wb_get(wbc->wb);
537 spin_unlock(&inode->i_lock);
538
539 /*
540 * A dying wb indicates that the memcg-blkcg mapping has changed
541 * and a new wb is already serving the memcg. Switch immediately.
542 */
543 if (unlikely(wb_dying(wbc->wb)))
544 inode_switch_wbs(inode, wbc->wb_id);
545 }
546
547 /**
548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549 * @wbc: writeback_control of the just finished writeback
550 *
551 * To be called after a writeback attempt of an inode finishes and undoes
552 * wbc_attach_and_unlock_inode(). Can be called under any context.
553 *
554 * As concurrent write sharing of an inode is expected to be very rare and
555 * memcg only tracks page ownership on first-use basis severely confining
556 * the usefulness of such sharing, cgroup writeback tracks ownership
557 * per-inode. While the support for concurrent write sharing of an inode
558 * is deemed unnecessary, an inode being written to by different cgroups at
559 * different points in time is a lot more common, and, more importantly,
560 * charging only by first-use can too readily lead to grossly incorrect
561 * behaviors (single foreign page can lead to gigabytes of writeback to be
562 * incorrectly attributed).
563 *
564 * To resolve this issue, cgroup writeback detects the majority dirtier of
565 * an inode and transfers the ownership to it. To avoid unnnecessary
566 * oscillation, the detection mechanism keeps track of history and gives
567 * out the switch verdict only if the foreign usage pattern is stable over
568 * a certain amount of time and/or writeback attempts.
569 *
570 * On each writeback attempt, @wbc tries to detect the majority writer
571 * using Boyer-Moore majority vote algorithm. In addition to the byte
572 * count from the majority voting, it also counts the bytes written for the
573 * current wb and the last round's winner wb (max of last round's current
574 * wb, the winner from two rounds ago, and the last round's majority
575 * candidate). Keeping track of the historical winner helps the algorithm
576 * to semi-reliably detect the most active writer even when it's not the
577 * absolute majority.
578 *
579 * Once the winner of the round is determined, whether the winner is
580 * foreign or not and how much IO time the round consumed is recorded in
581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
582 * over a certain threshold, the switch verdict is given.
583 */
584 void wbc_detach_inode(struct writeback_control *wbc)
585 {
586 struct bdi_writeback *wb = wbc->wb;
587 struct inode *inode = wbc->inode;
588 unsigned long avg_time, max_bytes, max_time;
589 u16 history;
590 int max_id;
591
592 if (!wb)
593 return;
594
595 history = inode->i_wb_frn_history;
596 avg_time = inode->i_wb_frn_avg_time;
597
598 /* pick the winner of this round */
599 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 max_id = wbc->wb_id;
602 max_bytes = wbc->wb_bytes;
603 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 max_id = wbc->wb_lcand_id;
605 max_bytes = wbc->wb_lcand_bytes;
606 } else {
607 max_id = wbc->wb_tcand_id;
608 max_bytes = wbc->wb_tcand_bytes;
609 }
610
611 /*
612 * Calculate the amount of IO time the winner consumed and fold it
613 * into the running average kept per inode. If the consumed IO
614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 * deciding whether to switch or not. This is to prevent one-off
616 * small dirtiers from skewing the verdict.
617 */
618 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 wb->avg_write_bandwidth);
620 if (avg_time)
621 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 else
624 avg_time = max_time; /* immediate catch up on first run */
625
626 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 int slots;
628
629 /*
630 * The switch verdict is reached if foreign wb's consume
631 * more than a certain proportion of IO time in a
632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
633 * history mask where each bit represents one sixteenth of
634 * the period. Determine the number of slots to shift into
635 * history from @max_time.
636 */
637 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 history <<= slots;
640 if (wbc->wb_id != max_id)
641 history |= (1U << slots) - 1;
642
643 /*
644 * Switch if the current wb isn't the consistent winner.
645 * If there are multiple closely competing dirtiers, the
646 * inode may switch across them repeatedly over time, which
647 * is okay. The main goal is avoiding keeping an inode on
648 * the wrong wb for an extended period of time.
649 */
650 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 inode_switch_wbs(inode, max_id);
652 }
653
654 /*
655 * Multiple instances of this function may race to update the
656 * following fields but we don't mind occassional inaccuracies.
657 */
658 inode->i_wb_frn_winner = max_id;
659 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 inode->i_wb_frn_history = history;
661
662 wb_put(wbc->wb);
663 wbc->wb = NULL;
664 }
665
666 /**
667 * wbc_account_io - account IO issued during writeback
668 * @wbc: writeback_control of the writeback in progress
669 * @page: page being written out
670 * @bytes: number of bytes being written out
671 *
672 * @bytes from @page are about to written out during the writeback
673 * controlled by @wbc. Keep the book for foreign inode detection. See
674 * wbc_detach_inode().
675 */
676 void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 size_t bytes)
678 {
679 int id;
680
681 /*
682 * pageout() path doesn't attach @wbc to the inode being written
683 * out. This is intentional as we don't want the function to block
684 * behind a slow cgroup. Ultimately, we want pageout() to kick off
685 * regular writeback instead of writing things out itself.
686 */
687 if (!wbc->wb)
688 return;
689
690 id = mem_cgroup_css_from_page(page)->id;
691
692 if (id == wbc->wb_id) {
693 wbc->wb_bytes += bytes;
694 return;
695 }
696
697 if (id == wbc->wb_lcand_id)
698 wbc->wb_lcand_bytes += bytes;
699
700 /* Boyer-Moore majority vote algorithm */
701 if (!wbc->wb_tcand_bytes)
702 wbc->wb_tcand_id = id;
703 if (id == wbc->wb_tcand_id)
704 wbc->wb_tcand_bytes += bytes;
705 else
706 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
707 }
708 EXPORT_SYMBOL_GPL(wbc_account_io);
709
710 /**
711 * inode_congested - test whether an inode is congested
712 * @inode: inode to test for congestion (may be NULL)
713 * @cong_bits: mask of WB_[a]sync_congested bits to test
714 *
715 * Tests whether @inode is congested. @cong_bits is the mask of congestion
716 * bits to test and the return value is the mask of set bits.
717 *
718 * If cgroup writeback is enabled for @inode, the congestion state is
719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720 * associated with @inode is congested; otherwise, the root wb's congestion
721 * state is used.
722 *
723 * @inode is allowed to be NULL as this function is often called on
724 * mapping->host which is NULL for the swapper space.
725 */
726 int inode_congested(struct inode *inode, int cong_bits)
727 {
728 /*
729 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 * Start transaction iff ->i_wb is visible.
731 */
732 if (inode && inode_to_wb_is_valid(inode)) {
733 struct bdi_writeback *wb;
734 bool locked, congested;
735
736 wb = unlocked_inode_to_wb_begin(inode, &locked);
737 congested = wb_congested(wb, cong_bits);
738 unlocked_inode_to_wb_end(inode, locked);
739 return congested;
740 }
741
742 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
743 }
744 EXPORT_SYMBOL_GPL(inode_congested);
745
746 /**
747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748 * @wb: target bdi_writeback to split @nr_pages to
749 * @nr_pages: number of pages to write for the whole bdi
750 *
751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
753 * @wb->bdi.
754 */
755 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
756 {
757 unsigned long this_bw = wb->avg_write_bandwidth;
758 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
759
760 if (nr_pages == LONG_MAX)
761 return LONG_MAX;
762
763 /*
764 * This may be called on clean wb's and proportional distribution
765 * may not make sense, just use the original @nr_pages in those
766 * cases. In general, we wanna err on the side of writing more.
767 */
768 if (!tot_bw || this_bw >= tot_bw)
769 return nr_pages;
770 else
771 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
772 }
773
774 /**
775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776 * @bdi: target backing_dev_info
777 * @base_work: wb_writeback_work to issue
778 * @skip_if_busy: skip wb's which already have writeback in progress
779 *
780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
782 * distributed to the busy wbs according to each wb's proportion in the
783 * total active write bandwidth of @bdi.
784 */
785 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
786 struct wb_writeback_work *base_work,
787 bool skip_if_busy)
788 {
789 struct bdi_writeback *last_wb = NULL;
790 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
791 struct bdi_writeback, bdi_node);
792
793 might_sleep();
794 restart:
795 rcu_read_lock();
796 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
797 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
798 struct wb_writeback_work fallback_work;
799 struct wb_writeback_work *work;
800 long nr_pages;
801
802 if (last_wb) {
803 wb_put(last_wb);
804 last_wb = NULL;
805 }
806
807 /* SYNC_ALL writes out I_DIRTY_TIME too */
808 if (!wb_has_dirty_io(wb) &&
809 (base_work->sync_mode == WB_SYNC_NONE ||
810 list_empty(&wb->b_dirty_time)))
811 continue;
812 if (skip_if_busy && writeback_in_progress(wb))
813 continue;
814
815 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
816
817 work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 if (work) {
819 *work = *base_work;
820 work->nr_pages = nr_pages;
821 work->auto_free = 1;
822 wb_queue_work(wb, work);
823 continue;
824 }
825
826 /* alloc failed, execute synchronously using on-stack fallback */
827 work = &fallback_work;
828 *work = *base_work;
829 work->nr_pages = nr_pages;
830 work->auto_free = 0;
831 work->done = &fallback_work_done;
832
833 wb_queue_work(wb, work);
834
835 /*
836 * Pin @wb so that it stays on @bdi->wb_list. This allows
837 * continuing iteration from @wb after dropping and
838 * regrabbing rcu read lock.
839 */
840 wb_get(wb);
841 last_wb = wb;
842
843 rcu_read_unlock();
844 wb_wait_for_completion(bdi, &fallback_work_done);
845 goto restart;
846 }
847 rcu_read_unlock();
848
849 if (last_wb)
850 wb_put(last_wb);
851 }
852
853 /**
854 * cgroup_writeback_umount - flush inode wb switches for umount
855 *
856 * This function is called when a super_block is about to be destroyed and
857 * flushes in-flight inode wb switches. An inode wb switch goes through
858 * RCU and then workqueue, so the two need to be flushed in order to ensure
859 * that all previously scheduled switches are finished. As wb switches are
860 * rare occurrences and synchronize_rcu() can take a while, perform
861 * flushing iff wb switches are in flight.
862 */
863 void cgroup_writeback_umount(void)
864 {
865 if (atomic_read(&isw_nr_in_flight)) {
866 synchronize_rcu();
867 flush_workqueue(isw_wq);
868 }
869 }
870
871 static int __init cgroup_writeback_init(void)
872 {
873 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
874 if (!isw_wq)
875 return -ENOMEM;
876 return 0;
877 }
878 fs_initcall(cgroup_writeback_init);
879
880 #else /* CONFIG_CGROUP_WRITEBACK */
881
882 static struct bdi_writeback *
883 locked_inode_to_wb_and_lock_list(struct inode *inode)
884 __releases(&inode->i_lock)
885 __acquires(&wb->list_lock)
886 {
887 struct bdi_writeback *wb = inode_to_wb(inode);
888
889 spin_unlock(&inode->i_lock);
890 spin_lock(&wb->list_lock);
891 return wb;
892 }
893
894 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
895 __acquires(&wb->list_lock)
896 {
897 struct bdi_writeback *wb = inode_to_wb(inode);
898
899 spin_lock(&wb->list_lock);
900 return wb;
901 }
902
903 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
904 {
905 return nr_pages;
906 }
907
908 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
909 struct wb_writeback_work *base_work,
910 bool skip_if_busy)
911 {
912 might_sleep();
913
914 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
915 base_work->auto_free = 0;
916 wb_queue_work(&bdi->wb, base_work);
917 }
918 }
919
920 #endif /* CONFIG_CGROUP_WRITEBACK */
921
922 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
923 bool range_cyclic, enum wb_reason reason)
924 {
925 struct wb_writeback_work *work;
926
927 if (!wb_has_dirty_io(wb))
928 return;
929
930 /*
931 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 * wakeup the thread for old dirty data writeback
933 */
934 work = kzalloc(sizeof(*work),
935 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
936 if (!work) {
937 trace_writeback_nowork(wb);
938 wb_wakeup(wb);
939 return;
940 }
941
942 work->sync_mode = WB_SYNC_NONE;
943 work->nr_pages = nr_pages;
944 work->range_cyclic = range_cyclic;
945 work->reason = reason;
946 work->auto_free = 1;
947
948 wb_queue_work(wb, work);
949 }
950
951 /**
952 * wb_start_background_writeback - start background writeback
953 * @wb: bdi_writback to write from
954 *
955 * Description:
956 * This makes sure WB_SYNC_NONE background writeback happens. When
957 * this function returns, it is only guaranteed that for given wb
958 * some IO is happening if we are over background dirty threshold.
959 * Caller need not hold sb s_umount semaphore.
960 */
961 void wb_start_background_writeback(struct bdi_writeback *wb)
962 {
963 /*
964 * We just wake up the flusher thread. It will perform background
965 * writeback as soon as there is no other work to do.
966 */
967 trace_writeback_wake_background(wb);
968 wb_wakeup(wb);
969 }
970
971 /*
972 * Remove the inode from the writeback list it is on.
973 */
974 void inode_io_list_del(struct inode *inode)
975 {
976 struct bdi_writeback *wb;
977
978 wb = inode_to_wb_and_lock_list(inode);
979 inode_io_list_del_locked(inode, wb);
980 spin_unlock(&wb->list_lock);
981 }
982
983 /*
984 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
985 * furthest end of its superblock's dirty-inode list.
986 *
987 * Before stamping the inode's ->dirtied_when, we check to see whether it is
988 * already the most-recently-dirtied inode on the b_dirty list. If that is
989 * the case then the inode must have been redirtied while it was being written
990 * out and we don't reset its dirtied_when.
991 */
992 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
993 {
994 if (!list_empty(&wb->b_dirty)) {
995 struct inode *tail;
996
997 tail = wb_inode(wb->b_dirty.next);
998 if (time_before(inode->dirtied_when, tail->dirtied_when))
999 inode->dirtied_when = jiffies;
1000 }
1001 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1002 }
1003
1004 /*
1005 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1006 */
1007 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1008 {
1009 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1010 }
1011
1012 static void inode_sync_complete(struct inode *inode)
1013 {
1014 inode->i_state &= ~I_SYNC;
1015 /* If inode is clean an unused, put it into LRU now... */
1016 inode_add_lru(inode);
1017 /* Waiters must see I_SYNC cleared before being woken up */
1018 smp_mb();
1019 wake_up_bit(&inode->i_state, __I_SYNC);
1020 }
1021
1022 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1023 {
1024 bool ret = time_after(inode->dirtied_when, t);
1025 #ifndef CONFIG_64BIT
1026 /*
1027 * For inodes being constantly redirtied, dirtied_when can get stuck.
1028 * It _appears_ to be in the future, but is actually in distant past.
1029 * This test is necessary to prevent such wrapped-around relative times
1030 * from permanently stopping the whole bdi writeback.
1031 */
1032 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1033 #endif
1034 return ret;
1035 }
1036
1037 #define EXPIRE_DIRTY_ATIME 0x0001
1038
1039 /*
1040 * Move expired (dirtied before work->older_than_this) dirty inodes from
1041 * @delaying_queue to @dispatch_queue.
1042 */
1043 static int move_expired_inodes(struct list_head *delaying_queue,
1044 struct list_head *dispatch_queue,
1045 int flags,
1046 struct wb_writeback_work *work)
1047 {
1048 unsigned long *older_than_this = NULL;
1049 unsigned long expire_time;
1050 LIST_HEAD(tmp);
1051 struct list_head *pos, *node;
1052 struct super_block *sb = NULL;
1053 struct inode *inode;
1054 int do_sb_sort = 0;
1055 int moved = 0;
1056
1057 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1058 older_than_this = work->older_than_this;
1059 else if (!work->for_sync) {
1060 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1061 older_than_this = &expire_time;
1062 }
1063 while (!list_empty(delaying_queue)) {
1064 inode = wb_inode(delaying_queue->prev);
1065 if (older_than_this &&
1066 inode_dirtied_after(inode, *older_than_this))
1067 break;
1068 list_move(&inode->i_io_list, &tmp);
1069 moved++;
1070 if (flags & EXPIRE_DIRTY_ATIME)
1071 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1072 if (sb_is_blkdev_sb(inode->i_sb))
1073 continue;
1074 if (sb && sb != inode->i_sb)
1075 do_sb_sort = 1;
1076 sb = inode->i_sb;
1077 }
1078
1079 /* just one sb in list, splice to dispatch_queue and we're done */
1080 if (!do_sb_sort) {
1081 list_splice(&tmp, dispatch_queue);
1082 goto out;
1083 }
1084
1085 /* Move inodes from one superblock together */
1086 while (!list_empty(&tmp)) {
1087 sb = wb_inode(tmp.prev)->i_sb;
1088 list_for_each_prev_safe(pos, node, &tmp) {
1089 inode = wb_inode(pos);
1090 if (inode->i_sb == sb)
1091 list_move(&inode->i_io_list, dispatch_queue);
1092 }
1093 }
1094 out:
1095 return moved;
1096 }
1097
1098 /*
1099 * Queue all expired dirty inodes for io, eldest first.
1100 * Before
1101 * newly dirtied b_dirty b_io b_more_io
1102 * =============> gf edc BA
1103 * After
1104 * newly dirtied b_dirty b_io b_more_io
1105 * =============> g fBAedc
1106 * |
1107 * +--> dequeue for IO
1108 */
1109 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1110 {
1111 int moved;
1112
1113 assert_spin_locked(&wb->list_lock);
1114 list_splice_init(&wb->b_more_io, &wb->b_io);
1115 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1116 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1117 EXPIRE_DIRTY_ATIME, work);
1118 if (moved)
1119 wb_io_lists_populated(wb);
1120 trace_writeback_queue_io(wb, work, moved);
1121 }
1122
1123 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1124 {
1125 int ret;
1126
1127 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1128 trace_writeback_write_inode_start(inode, wbc);
1129 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1130 trace_writeback_write_inode(inode, wbc);
1131 return ret;
1132 }
1133 return 0;
1134 }
1135
1136 /*
1137 * Wait for writeback on an inode to complete. Called with i_lock held.
1138 * Caller must make sure inode cannot go away when we drop i_lock.
1139 */
1140 static void __inode_wait_for_writeback(struct inode *inode)
1141 __releases(inode->i_lock)
1142 __acquires(inode->i_lock)
1143 {
1144 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1145 wait_queue_head_t *wqh;
1146
1147 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1148 while (inode->i_state & I_SYNC) {
1149 spin_unlock(&inode->i_lock);
1150 __wait_on_bit(wqh, &wq, bit_wait,
1151 TASK_UNINTERRUPTIBLE);
1152 spin_lock(&inode->i_lock);
1153 }
1154 }
1155
1156 /*
1157 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1158 */
1159 void inode_wait_for_writeback(struct inode *inode)
1160 {
1161 spin_lock(&inode->i_lock);
1162 __inode_wait_for_writeback(inode);
1163 spin_unlock(&inode->i_lock);
1164 }
1165
1166 /*
1167 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1168 * held and drops it. It is aimed for callers not holding any inode reference
1169 * so once i_lock is dropped, inode can go away.
1170 */
1171 static void inode_sleep_on_writeback(struct inode *inode)
1172 __releases(inode->i_lock)
1173 {
1174 DEFINE_WAIT(wait);
1175 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1176 int sleep;
1177
1178 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1179 sleep = inode->i_state & I_SYNC;
1180 spin_unlock(&inode->i_lock);
1181 if (sleep)
1182 schedule();
1183 finish_wait(wqh, &wait);
1184 }
1185
1186 /*
1187 * Find proper writeback list for the inode depending on its current state and
1188 * possibly also change of its state while we were doing writeback. Here we
1189 * handle things such as livelock prevention or fairness of writeback among
1190 * inodes. This function can be called only by flusher thread - noone else
1191 * processes all inodes in writeback lists and requeueing inodes behind flusher
1192 * thread's back can have unexpected consequences.
1193 */
1194 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1195 struct writeback_control *wbc)
1196 {
1197 if (inode->i_state & I_FREEING)
1198 return;
1199
1200 /*
1201 * Sync livelock prevention. Each inode is tagged and synced in one
1202 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1203 * the dirty time to prevent enqueue and sync it again.
1204 */
1205 if ((inode->i_state & I_DIRTY) &&
1206 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1207 inode->dirtied_when = jiffies;
1208
1209 if (wbc->pages_skipped) {
1210 /*
1211 * writeback is not making progress due to locked
1212 * buffers. Skip this inode for now.
1213 */
1214 redirty_tail(inode, wb);
1215 return;
1216 }
1217
1218 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1219 /*
1220 * We didn't write back all the pages. nfs_writepages()
1221 * sometimes bales out without doing anything.
1222 */
1223 if (wbc->nr_to_write <= 0) {
1224 /* Slice used up. Queue for next turn. */
1225 requeue_io(inode, wb);
1226 } else {
1227 /*
1228 * Writeback blocked by something other than
1229 * congestion. Delay the inode for some time to
1230 * avoid spinning on the CPU (100% iowait)
1231 * retrying writeback of the dirty page/inode
1232 * that cannot be performed immediately.
1233 */
1234 redirty_tail(inode, wb);
1235 }
1236 } else if (inode->i_state & I_DIRTY) {
1237 /*
1238 * Filesystems can dirty the inode during writeback operations,
1239 * such as delayed allocation during submission or metadata
1240 * updates after data IO completion.
1241 */
1242 redirty_tail(inode, wb);
1243 } else if (inode->i_state & I_DIRTY_TIME) {
1244 inode->dirtied_when = jiffies;
1245 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1246 } else {
1247 /* The inode is clean. Remove from writeback lists. */
1248 inode_io_list_del_locked(inode, wb);
1249 }
1250 }
1251
1252 /*
1253 * Write out an inode and its dirty pages. Do not update the writeback list
1254 * linkage. That is left to the caller. The caller is also responsible for
1255 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1256 */
1257 static int
1258 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1259 {
1260 struct address_space *mapping = inode->i_mapping;
1261 long nr_to_write = wbc->nr_to_write;
1262 unsigned dirty;
1263 int ret;
1264
1265 WARN_ON(!(inode->i_state & I_SYNC));
1266
1267 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1268
1269 ret = do_writepages(mapping, wbc);
1270
1271 /*
1272 * Make sure to wait on the data before writing out the metadata.
1273 * This is important for filesystems that modify metadata on data
1274 * I/O completion. We don't do it for sync(2) writeback because it has a
1275 * separate, external IO completion path and ->sync_fs for guaranteeing
1276 * inode metadata is written back correctly.
1277 */
1278 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1279 int err = filemap_fdatawait(mapping);
1280 if (ret == 0)
1281 ret = err;
1282 }
1283
1284 /*
1285 * Some filesystems may redirty the inode during the writeback
1286 * due to delalloc, clear dirty metadata flags right before
1287 * write_inode()
1288 */
1289 spin_lock(&inode->i_lock);
1290
1291 dirty = inode->i_state & I_DIRTY;
1292 if (inode->i_state & I_DIRTY_TIME) {
1293 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1294 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1295 unlikely(time_after(jiffies,
1296 (inode->dirtied_time_when +
1297 dirtytime_expire_interval * HZ)))) {
1298 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1299 trace_writeback_lazytime(inode);
1300 }
1301 } else
1302 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1303 inode->i_state &= ~dirty;
1304
1305 /*
1306 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1307 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1308 * either they see the I_DIRTY bits cleared or we see the dirtied
1309 * inode.
1310 *
1311 * I_DIRTY_PAGES is always cleared together above even if @mapping
1312 * still has dirty pages. The flag is reinstated after smp_mb() if
1313 * necessary. This guarantees that either __mark_inode_dirty()
1314 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1315 */
1316 smp_mb();
1317
1318 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1319 inode->i_state |= I_DIRTY_PAGES;
1320
1321 spin_unlock(&inode->i_lock);
1322
1323 if (dirty & I_DIRTY_TIME)
1324 mark_inode_dirty_sync(inode);
1325 /* Don't write the inode if only I_DIRTY_PAGES was set */
1326 if (dirty & ~I_DIRTY_PAGES) {
1327 int err = write_inode(inode, wbc);
1328 if (ret == 0)
1329 ret = err;
1330 }
1331 trace_writeback_single_inode(inode, wbc, nr_to_write);
1332 return ret;
1333 }
1334
1335 /*
1336 * Write out an inode's dirty pages. Either the caller has an active reference
1337 * on the inode or the inode has I_WILL_FREE set.
1338 *
1339 * This function is designed to be called for writing back one inode which
1340 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1341 * and does more profound writeback list handling in writeback_sb_inodes().
1342 */
1343 static int writeback_single_inode(struct inode *inode,
1344 struct writeback_control *wbc)
1345 {
1346 struct bdi_writeback *wb;
1347 int ret = 0;
1348
1349 spin_lock(&inode->i_lock);
1350 if (!atomic_read(&inode->i_count))
1351 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1352 else
1353 WARN_ON(inode->i_state & I_WILL_FREE);
1354
1355 if (inode->i_state & I_SYNC) {
1356 if (wbc->sync_mode != WB_SYNC_ALL)
1357 goto out;
1358 /*
1359 * It's a data-integrity sync. We must wait. Since callers hold
1360 * inode reference or inode has I_WILL_FREE set, it cannot go
1361 * away under us.
1362 */
1363 __inode_wait_for_writeback(inode);
1364 }
1365 WARN_ON(inode->i_state & I_SYNC);
1366 /*
1367 * Skip inode if it is clean and we have no outstanding writeback in
1368 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1369 * function since flusher thread may be doing for example sync in
1370 * parallel and if we move the inode, it could get skipped. So here we
1371 * make sure inode is on some writeback list and leave it there unless
1372 * we have completely cleaned the inode.
1373 */
1374 if (!(inode->i_state & I_DIRTY_ALL) &&
1375 (wbc->sync_mode != WB_SYNC_ALL ||
1376 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1377 goto out;
1378 inode->i_state |= I_SYNC;
1379 wbc_attach_and_unlock_inode(wbc, inode);
1380
1381 ret = __writeback_single_inode(inode, wbc);
1382
1383 wbc_detach_inode(wbc);
1384
1385 wb = inode_to_wb_and_lock_list(inode);
1386 spin_lock(&inode->i_lock);
1387 /*
1388 * If inode is clean, remove it from writeback lists. Otherwise don't
1389 * touch it. See comment above for explanation.
1390 */
1391 if (!(inode->i_state & I_DIRTY_ALL))
1392 inode_io_list_del_locked(inode, wb);
1393 spin_unlock(&wb->list_lock);
1394 inode_sync_complete(inode);
1395 out:
1396 spin_unlock(&inode->i_lock);
1397 return ret;
1398 }
1399
1400 static long writeback_chunk_size(struct bdi_writeback *wb,
1401 struct wb_writeback_work *work)
1402 {
1403 long pages;
1404
1405 /*
1406 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1407 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1408 * here avoids calling into writeback_inodes_wb() more than once.
1409 *
1410 * The intended call sequence for WB_SYNC_ALL writeback is:
1411 *
1412 * wb_writeback()
1413 * writeback_sb_inodes() <== called only once
1414 * write_cache_pages() <== called once for each inode
1415 * (quickly) tag currently dirty pages
1416 * (maybe slowly) sync all tagged pages
1417 */
1418 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1419 pages = LONG_MAX;
1420 else {
1421 pages = min(wb->avg_write_bandwidth / 2,
1422 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1423 pages = min(pages, work->nr_pages);
1424 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1425 MIN_WRITEBACK_PAGES);
1426 }
1427
1428 return pages;
1429 }
1430
1431 /*
1432 * Write a portion of b_io inodes which belong to @sb.
1433 *
1434 * Return the number of pages and/or inodes written.
1435 *
1436 * NOTE! This is called with wb->list_lock held, and will
1437 * unlock and relock that for each inode it ends up doing
1438 * IO for.
1439 */
1440 static long writeback_sb_inodes(struct super_block *sb,
1441 struct bdi_writeback *wb,
1442 struct wb_writeback_work *work)
1443 {
1444 struct writeback_control wbc = {
1445 .sync_mode = work->sync_mode,
1446 .tagged_writepages = work->tagged_writepages,
1447 .for_kupdate = work->for_kupdate,
1448 .for_background = work->for_background,
1449 .for_sync = work->for_sync,
1450 .range_cyclic = work->range_cyclic,
1451 .range_start = 0,
1452 .range_end = LLONG_MAX,
1453 };
1454 unsigned long start_time = jiffies;
1455 long write_chunk;
1456 long wrote = 0; /* count both pages and inodes */
1457
1458 while (!list_empty(&wb->b_io)) {
1459 struct inode *inode = wb_inode(wb->b_io.prev);
1460 struct bdi_writeback *tmp_wb;
1461
1462 if (inode->i_sb != sb) {
1463 if (work->sb) {
1464 /*
1465 * We only want to write back data for this
1466 * superblock, move all inodes not belonging
1467 * to it back onto the dirty list.
1468 */
1469 redirty_tail(inode, wb);
1470 continue;
1471 }
1472
1473 /*
1474 * The inode belongs to a different superblock.
1475 * Bounce back to the caller to unpin this and
1476 * pin the next superblock.
1477 */
1478 break;
1479 }
1480
1481 /*
1482 * Don't bother with new inodes or inodes being freed, first
1483 * kind does not need periodic writeout yet, and for the latter
1484 * kind writeout is handled by the freer.
1485 */
1486 spin_lock(&inode->i_lock);
1487 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1488 spin_unlock(&inode->i_lock);
1489 redirty_tail(inode, wb);
1490 continue;
1491 }
1492 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1493 /*
1494 * If this inode is locked for writeback and we are not
1495 * doing writeback-for-data-integrity, move it to
1496 * b_more_io so that writeback can proceed with the
1497 * other inodes on s_io.
1498 *
1499 * We'll have another go at writing back this inode
1500 * when we completed a full scan of b_io.
1501 */
1502 spin_unlock(&inode->i_lock);
1503 requeue_io(inode, wb);
1504 trace_writeback_sb_inodes_requeue(inode);
1505 continue;
1506 }
1507 spin_unlock(&wb->list_lock);
1508
1509 /*
1510 * We already requeued the inode if it had I_SYNC set and we
1511 * are doing WB_SYNC_NONE writeback. So this catches only the
1512 * WB_SYNC_ALL case.
1513 */
1514 if (inode->i_state & I_SYNC) {
1515 /* Wait for I_SYNC. This function drops i_lock... */
1516 inode_sleep_on_writeback(inode);
1517 /* Inode may be gone, start again */
1518 spin_lock(&wb->list_lock);
1519 continue;
1520 }
1521 inode->i_state |= I_SYNC;
1522 wbc_attach_and_unlock_inode(&wbc, inode);
1523
1524 write_chunk = writeback_chunk_size(wb, work);
1525 wbc.nr_to_write = write_chunk;
1526 wbc.pages_skipped = 0;
1527
1528 /*
1529 * We use I_SYNC to pin the inode in memory. While it is set
1530 * evict_inode() will wait so the inode cannot be freed.
1531 */
1532 __writeback_single_inode(inode, &wbc);
1533
1534 wbc_detach_inode(&wbc);
1535 work->nr_pages -= write_chunk - wbc.nr_to_write;
1536 wrote += write_chunk - wbc.nr_to_write;
1537
1538 if (need_resched()) {
1539 /*
1540 * We're trying to balance between building up a nice
1541 * long list of IOs to improve our merge rate, and
1542 * getting those IOs out quickly for anyone throttling
1543 * in balance_dirty_pages(). cond_resched() doesn't
1544 * unplug, so get our IOs out the door before we
1545 * give up the CPU.
1546 */
1547 blk_flush_plug(current);
1548 cond_resched();
1549 }
1550
1551 /*
1552 * Requeue @inode if still dirty. Be careful as @inode may
1553 * have been switched to another wb in the meantime.
1554 */
1555 tmp_wb = inode_to_wb_and_lock_list(inode);
1556 spin_lock(&inode->i_lock);
1557 if (!(inode->i_state & I_DIRTY_ALL))
1558 wrote++;
1559 requeue_inode(inode, tmp_wb, &wbc);
1560 inode_sync_complete(inode);
1561 spin_unlock(&inode->i_lock);
1562
1563 if (unlikely(tmp_wb != wb)) {
1564 spin_unlock(&tmp_wb->list_lock);
1565 spin_lock(&wb->list_lock);
1566 }
1567
1568 /*
1569 * bail out to wb_writeback() often enough to check
1570 * background threshold and other termination conditions.
1571 */
1572 if (wrote) {
1573 if (time_is_before_jiffies(start_time + HZ / 10UL))
1574 break;
1575 if (work->nr_pages <= 0)
1576 break;
1577 }
1578 }
1579 return wrote;
1580 }
1581
1582 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1583 struct wb_writeback_work *work)
1584 {
1585 unsigned long start_time = jiffies;
1586 long wrote = 0;
1587
1588 while (!list_empty(&wb->b_io)) {
1589 struct inode *inode = wb_inode(wb->b_io.prev);
1590 struct super_block *sb = inode->i_sb;
1591
1592 if (!trylock_super(sb)) {
1593 /*
1594 * trylock_super() may fail consistently due to
1595 * s_umount being grabbed by someone else. Don't use
1596 * requeue_io() to avoid busy retrying the inode/sb.
1597 */
1598 redirty_tail(inode, wb);
1599 continue;
1600 }
1601 wrote += writeback_sb_inodes(sb, wb, work);
1602 up_read(&sb->s_umount);
1603
1604 /* refer to the same tests at the end of writeback_sb_inodes */
1605 if (wrote) {
1606 if (time_is_before_jiffies(start_time + HZ / 10UL))
1607 break;
1608 if (work->nr_pages <= 0)
1609 break;
1610 }
1611 }
1612 /* Leave any unwritten inodes on b_io */
1613 return wrote;
1614 }
1615
1616 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1617 enum wb_reason reason)
1618 {
1619 struct wb_writeback_work work = {
1620 .nr_pages = nr_pages,
1621 .sync_mode = WB_SYNC_NONE,
1622 .range_cyclic = 1,
1623 .reason = reason,
1624 };
1625 struct blk_plug plug;
1626
1627 blk_start_plug(&plug);
1628 spin_lock(&wb->list_lock);
1629 if (list_empty(&wb->b_io))
1630 queue_io(wb, &work);
1631 __writeback_inodes_wb(wb, &work);
1632 spin_unlock(&wb->list_lock);
1633 blk_finish_plug(&plug);
1634
1635 return nr_pages - work.nr_pages;
1636 }
1637
1638 /*
1639 * Explicit flushing or periodic writeback of "old" data.
1640 *
1641 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1642 * dirtying-time in the inode's address_space. So this periodic writeback code
1643 * just walks the superblock inode list, writing back any inodes which are
1644 * older than a specific point in time.
1645 *
1646 * Try to run once per dirty_writeback_interval. But if a writeback event
1647 * takes longer than a dirty_writeback_interval interval, then leave a
1648 * one-second gap.
1649 *
1650 * older_than_this takes precedence over nr_to_write. So we'll only write back
1651 * all dirty pages if they are all attached to "old" mappings.
1652 */
1653 static long wb_writeback(struct bdi_writeback *wb,
1654 struct wb_writeback_work *work)
1655 {
1656 unsigned long wb_start = jiffies;
1657 long nr_pages = work->nr_pages;
1658 unsigned long oldest_jif;
1659 struct inode *inode;
1660 long progress;
1661 struct blk_plug plug;
1662
1663 oldest_jif = jiffies;
1664 work->older_than_this = &oldest_jif;
1665
1666 blk_start_plug(&plug);
1667 spin_lock(&wb->list_lock);
1668 for (;;) {
1669 /*
1670 * Stop writeback when nr_pages has been consumed
1671 */
1672 if (work->nr_pages <= 0)
1673 break;
1674
1675 /*
1676 * Background writeout and kupdate-style writeback may
1677 * run forever. Stop them if there is other work to do
1678 * so that e.g. sync can proceed. They'll be restarted
1679 * after the other works are all done.
1680 */
1681 if ((work->for_background || work->for_kupdate) &&
1682 !list_empty(&wb->work_list))
1683 break;
1684
1685 /*
1686 * For background writeout, stop when we are below the
1687 * background dirty threshold
1688 */
1689 if (work->for_background && !wb_over_bg_thresh(wb))
1690 break;
1691
1692 /*
1693 * Kupdate and background works are special and we want to
1694 * include all inodes that need writing. Livelock avoidance is
1695 * handled by these works yielding to any other work so we are
1696 * safe.
1697 */
1698 if (work->for_kupdate) {
1699 oldest_jif = jiffies -
1700 msecs_to_jiffies(dirty_expire_interval * 10);
1701 } else if (work->for_background)
1702 oldest_jif = jiffies;
1703
1704 trace_writeback_start(wb, work);
1705 if (list_empty(&wb->b_io))
1706 queue_io(wb, work);
1707 if (work->sb)
1708 progress = writeback_sb_inodes(work->sb, wb, work);
1709 else
1710 progress = __writeback_inodes_wb(wb, work);
1711 trace_writeback_written(wb, work);
1712
1713 wb_update_bandwidth(wb, wb_start);
1714
1715 /*
1716 * Did we write something? Try for more
1717 *
1718 * Dirty inodes are moved to b_io for writeback in batches.
1719 * The completion of the current batch does not necessarily
1720 * mean the overall work is done. So we keep looping as long
1721 * as made some progress on cleaning pages or inodes.
1722 */
1723 if (progress)
1724 continue;
1725 /*
1726 * No more inodes for IO, bail
1727 */
1728 if (list_empty(&wb->b_more_io))
1729 break;
1730 /*
1731 * Nothing written. Wait for some inode to
1732 * become available for writeback. Otherwise
1733 * we'll just busyloop.
1734 */
1735 if (!list_empty(&wb->b_more_io)) {
1736 trace_writeback_wait(wb, work);
1737 inode = wb_inode(wb->b_more_io.prev);
1738 spin_lock(&inode->i_lock);
1739 spin_unlock(&wb->list_lock);
1740 /* This function drops i_lock... */
1741 inode_sleep_on_writeback(inode);
1742 spin_lock(&wb->list_lock);
1743 }
1744 }
1745 spin_unlock(&wb->list_lock);
1746 blk_finish_plug(&plug);
1747
1748 return nr_pages - work->nr_pages;
1749 }
1750
1751 /*
1752 * Return the next wb_writeback_work struct that hasn't been processed yet.
1753 */
1754 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1755 {
1756 struct wb_writeback_work *work = NULL;
1757
1758 spin_lock_bh(&wb->work_lock);
1759 if (!list_empty(&wb->work_list)) {
1760 work = list_entry(wb->work_list.next,
1761 struct wb_writeback_work, list);
1762 list_del_init(&work->list);
1763 }
1764 spin_unlock_bh(&wb->work_lock);
1765 return work;
1766 }
1767
1768 /*
1769 * Add in the number of potentially dirty inodes, because each inode
1770 * write can dirty pagecache in the underlying blockdev.
1771 */
1772 static unsigned long get_nr_dirty_pages(void)
1773 {
1774 return global_page_state(NR_FILE_DIRTY) +
1775 global_page_state(NR_UNSTABLE_NFS) +
1776 get_nr_dirty_inodes();
1777 }
1778
1779 static long wb_check_background_flush(struct bdi_writeback *wb)
1780 {
1781 if (wb_over_bg_thresh(wb)) {
1782
1783 struct wb_writeback_work work = {
1784 .nr_pages = LONG_MAX,
1785 .sync_mode = WB_SYNC_NONE,
1786 .for_background = 1,
1787 .range_cyclic = 1,
1788 .reason = WB_REASON_BACKGROUND,
1789 };
1790
1791 return wb_writeback(wb, &work);
1792 }
1793
1794 return 0;
1795 }
1796
1797 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1798 {
1799 unsigned long expired;
1800 long nr_pages;
1801
1802 /*
1803 * When set to zero, disable periodic writeback
1804 */
1805 if (!dirty_writeback_interval)
1806 return 0;
1807
1808 expired = wb->last_old_flush +
1809 msecs_to_jiffies(dirty_writeback_interval * 10);
1810 if (time_before(jiffies, expired))
1811 return 0;
1812
1813 wb->last_old_flush = jiffies;
1814 nr_pages = get_nr_dirty_pages();
1815
1816 if (nr_pages) {
1817 struct wb_writeback_work work = {
1818 .nr_pages = nr_pages,
1819 .sync_mode = WB_SYNC_NONE,
1820 .for_kupdate = 1,
1821 .range_cyclic = 1,
1822 .reason = WB_REASON_PERIODIC,
1823 };
1824
1825 return wb_writeback(wb, &work);
1826 }
1827
1828 return 0;
1829 }
1830
1831 /*
1832 * Retrieve work items and do the writeback they describe
1833 */
1834 static long wb_do_writeback(struct bdi_writeback *wb)
1835 {
1836 struct wb_writeback_work *work;
1837 long wrote = 0;
1838
1839 set_bit(WB_writeback_running, &wb->state);
1840 while ((work = get_next_work_item(wb)) != NULL) {
1841 struct wb_completion *done = work->done;
1842
1843 trace_writeback_exec(wb, work);
1844
1845 wrote += wb_writeback(wb, work);
1846
1847 if (work->auto_free)
1848 kfree(work);
1849 if (done && atomic_dec_and_test(&done->cnt))
1850 wake_up_all(&wb->bdi->wb_waitq);
1851 }
1852
1853 /*
1854 * Check for periodic writeback, kupdated() style
1855 */
1856 wrote += wb_check_old_data_flush(wb);
1857 wrote += wb_check_background_flush(wb);
1858 clear_bit(WB_writeback_running, &wb->state);
1859
1860 return wrote;
1861 }
1862
1863 /*
1864 * Handle writeback of dirty data for the device backed by this bdi. Also
1865 * reschedules periodically and does kupdated style flushing.
1866 */
1867 void wb_workfn(struct work_struct *work)
1868 {
1869 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1870 struct bdi_writeback, dwork);
1871 long pages_written;
1872
1873 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1874 current->flags |= PF_SWAPWRITE;
1875
1876 if (likely(!current_is_workqueue_rescuer() ||
1877 !test_bit(WB_registered, &wb->state))) {
1878 /*
1879 * The normal path. Keep writing back @wb until its
1880 * work_list is empty. Note that this path is also taken
1881 * if @wb is shutting down even when we're running off the
1882 * rescuer as work_list needs to be drained.
1883 */
1884 do {
1885 pages_written = wb_do_writeback(wb);
1886 trace_writeback_pages_written(pages_written);
1887 } while (!list_empty(&wb->work_list));
1888 } else {
1889 /*
1890 * bdi_wq can't get enough workers and we're running off
1891 * the emergency worker. Don't hog it. Hopefully, 1024 is
1892 * enough for efficient IO.
1893 */
1894 pages_written = writeback_inodes_wb(wb, 1024,
1895 WB_REASON_FORKER_THREAD);
1896 trace_writeback_pages_written(pages_written);
1897 }
1898
1899 if (!list_empty(&wb->work_list))
1900 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1901 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1902 wb_wakeup_delayed(wb);
1903
1904 current->flags &= ~PF_SWAPWRITE;
1905 }
1906
1907 /*
1908 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1909 * the whole world.
1910 */
1911 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1912 {
1913 struct backing_dev_info *bdi;
1914
1915 if (!nr_pages)
1916 nr_pages = get_nr_dirty_pages();
1917
1918 rcu_read_lock();
1919 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1920 struct bdi_writeback *wb;
1921
1922 if (!bdi_has_dirty_io(bdi))
1923 continue;
1924
1925 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1926 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1927 false, reason);
1928 }
1929 rcu_read_unlock();
1930 }
1931
1932 /*
1933 * Wake up bdi's periodically to make sure dirtytime inodes gets
1934 * written back periodically. We deliberately do *not* check the
1935 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1936 * kernel to be constantly waking up once there are any dirtytime
1937 * inodes on the system. So instead we define a separate delayed work
1938 * function which gets called much more rarely. (By default, only
1939 * once every 12 hours.)
1940 *
1941 * If there is any other write activity going on in the file system,
1942 * this function won't be necessary. But if the only thing that has
1943 * happened on the file system is a dirtytime inode caused by an atime
1944 * update, we need this infrastructure below to make sure that inode
1945 * eventually gets pushed out to disk.
1946 */
1947 static void wakeup_dirtytime_writeback(struct work_struct *w);
1948 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1949
1950 static void wakeup_dirtytime_writeback(struct work_struct *w)
1951 {
1952 struct backing_dev_info *bdi;
1953
1954 rcu_read_lock();
1955 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1956 struct bdi_writeback *wb;
1957
1958 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1959 if (!list_empty(&wb->b_dirty_time))
1960 wb_wakeup(wb);
1961 }
1962 rcu_read_unlock();
1963 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1964 }
1965
1966 static int __init start_dirtytime_writeback(void)
1967 {
1968 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1969 return 0;
1970 }
1971 __initcall(start_dirtytime_writeback);
1972
1973 int dirtytime_interval_handler(struct ctl_table *table, int write,
1974 void __user *buffer, size_t *lenp, loff_t *ppos)
1975 {
1976 int ret;
1977
1978 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1979 if (ret == 0 && write)
1980 mod_delayed_work(system_wq, &dirtytime_work, 0);
1981 return ret;
1982 }
1983
1984 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1985 {
1986 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1987 struct dentry *dentry;
1988 const char *name = "?";
1989
1990 dentry = d_find_alias(inode);
1991 if (dentry) {
1992 spin_lock(&dentry->d_lock);
1993 name = (const char *) dentry->d_name.name;
1994 }
1995 printk(KERN_DEBUG
1996 "%s(%d): dirtied inode %lu (%s) on %s\n",
1997 current->comm, task_pid_nr(current), inode->i_ino,
1998 name, inode->i_sb->s_id);
1999 if (dentry) {
2000 spin_unlock(&dentry->d_lock);
2001 dput(dentry);
2002 }
2003 }
2004 }
2005
2006 /**
2007 * __mark_inode_dirty - internal function
2008 * @inode: inode to mark
2009 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2010 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2011 * mark_inode_dirty_sync.
2012 *
2013 * Put the inode on the super block's dirty list.
2014 *
2015 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2016 * dirty list only if it is hashed or if it refers to a blockdev.
2017 * If it was not hashed, it will never be added to the dirty list
2018 * even if it is later hashed, as it will have been marked dirty already.
2019 *
2020 * In short, make sure you hash any inodes _before_ you start marking
2021 * them dirty.
2022 *
2023 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2024 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2025 * the kernel-internal blockdev inode represents the dirtying time of the
2026 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2027 * page->mapping->host, so the page-dirtying time is recorded in the internal
2028 * blockdev inode.
2029 */
2030 void __mark_inode_dirty(struct inode *inode, int flags)
2031 {
2032 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2033 struct super_block *sb = inode->i_sb;
2034 int dirtytime;
2035
2036 trace_writeback_mark_inode_dirty(inode, flags);
2037
2038 /*
2039 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2040 * dirty the inode itself
2041 */
2042 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2043 trace_writeback_dirty_inode_start(inode, flags);
2044
2045 if (sb->s_op->dirty_inode)
2046 sb->s_op->dirty_inode(inode, flags);
2047
2048 trace_writeback_dirty_inode(inode, flags);
2049 }
2050 if (flags & I_DIRTY_INODE)
2051 flags &= ~I_DIRTY_TIME;
2052 dirtytime = flags & I_DIRTY_TIME;
2053
2054 /*
2055 * Paired with smp_mb() in __writeback_single_inode() for the
2056 * following lockless i_state test. See there for details.
2057 */
2058 smp_mb();
2059
2060 if (((inode->i_state & flags) == flags) ||
2061 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2062 return;
2063
2064 if (unlikely(block_dump))
2065 block_dump___mark_inode_dirty(inode);
2066
2067 spin_lock(&inode->i_lock);
2068 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2069 goto out_unlock_inode;
2070 if ((inode->i_state & flags) != flags) {
2071 const int was_dirty = inode->i_state & I_DIRTY;
2072
2073 inode_attach_wb(inode, NULL);
2074
2075 if (flags & I_DIRTY_INODE)
2076 inode->i_state &= ~I_DIRTY_TIME;
2077 inode->i_state |= flags;
2078
2079 /*
2080 * If the inode is being synced, just update its dirty state.
2081 * The unlocker will place the inode on the appropriate
2082 * superblock list, based upon its state.
2083 */
2084 if (inode->i_state & I_SYNC)
2085 goto out_unlock_inode;
2086
2087 /*
2088 * Only add valid (hashed) inodes to the superblock's
2089 * dirty list. Add blockdev inodes as well.
2090 */
2091 if (!S_ISBLK(inode->i_mode)) {
2092 if (inode_unhashed(inode))
2093 goto out_unlock_inode;
2094 }
2095 if (inode->i_state & I_FREEING)
2096 goto out_unlock_inode;
2097
2098 /*
2099 * If the inode was already on b_dirty/b_io/b_more_io, don't
2100 * reposition it (that would break b_dirty time-ordering).
2101 */
2102 if (!was_dirty) {
2103 struct bdi_writeback *wb;
2104 struct list_head *dirty_list;
2105 bool wakeup_bdi = false;
2106
2107 wb = locked_inode_to_wb_and_lock_list(inode);
2108
2109 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2110 !test_bit(WB_registered, &wb->state),
2111 "bdi-%s not registered\n", wb->bdi->name);
2112
2113 inode->dirtied_when = jiffies;
2114 if (dirtytime)
2115 inode->dirtied_time_when = jiffies;
2116
2117 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2118 dirty_list = &wb->b_dirty;
2119 else
2120 dirty_list = &wb->b_dirty_time;
2121
2122 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2123 dirty_list);
2124
2125 spin_unlock(&wb->list_lock);
2126 trace_writeback_dirty_inode_enqueue(inode);
2127
2128 /*
2129 * If this is the first dirty inode for this bdi,
2130 * we have to wake-up the corresponding bdi thread
2131 * to make sure background write-back happens
2132 * later.
2133 */
2134 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2135 wb_wakeup_delayed(wb);
2136 return;
2137 }
2138 }
2139 out_unlock_inode:
2140 spin_unlock(&inode->i_lock);
2141
2142 #undef I_DIRTY_INODE
2143 }
2144 EXPORT_SYMBOL(__mark_inode_dirty);
2145
2146 /*
2147 * The @s_sync_lock is used to serialise concurrent sync operations
2148 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2149 * Concurrent callers will block on the s_sync_lock rather than doing contending
2150 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2151 * has been issued up to the time this function is enter is guaranteed to be
2152 * completed by the time we have gained the lock and waited for all IO that is
2153 * in progress regardless of the order callers are granted the lock.
2154 */
2155 static void wait_sb_inodes(struct super_block *sb)
2156 {
2157 struct inode *inode, *old_inode = NULL;
2158
2159 /*
2160 * We need to be protected against the filesystem going from
2161 * r/o to r/w or vice versa.
2162 */
2163 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2164
2165 mutex_lock(&sb->s_sync_lock);
2166 spin_lock(&sb->s_inode_list_lock);
2167
2168 /*
2169 * Data integrity sync. Must wait for all pages under writeback,
2170 * because there may have been pages dirtied before our sync
2171 * call, but which had writeout started before we write it out.
2172 * In which case, the inode may not be on the dirty list, but
2173 * we still have to wait for that writeout.
2174 */
2175 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2176 struct address_space *mapping = inode->i_mapping;
2177
2178 spin_lock(&inode->i_lock);
2179 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2180 (mapping->nrpages == 0)) {
2181 spin_unlock(&inode->i_lock);
2182 continue;
2183 }
2184 __iget(inode);
2185 spin_unlock(&inode->i_lock);
2186 spin_unlock(&sb->s_inode_list_lock);
2187
2188 /*
2189 * We hold a reference to 'inode' so it couldn't have been
2190 * removed from s_inodes list while we dropped the
2191 * s_inode_list_lock. We cannot iput the inode now as we can
2192 * be holding the last reference and we cannot iput it under
2193 * s_inode_list_lock. So we keep the reference and iput it
2194 * later.
2195 */
2196 iput(old_inode);
2197 old_inode = inode;
2198
2199 /*
2200 * We keep the error status of individual mapping so that
2201 * applications can catch the writeback error using fsync(2).
2202 * See filemap_fdatawait_keep_errors() for details.
2203 */
2204 filemap_fdatawait_keep_errors(mapping);
2205
2206 cond_resched();
2207
2208 spin_lock(&sb->s_inode_list_lock);
2209 }
2210 spin_unlock(&sb->s_inode_list_lock);
2211 iput(old_inode);
2212 mutex_unlock(&sb->s_sync_lock);
2213 }
2214
2215 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2216 enum wb_reason reason, bool skip_if_busy)
2217 {
2218 DEFINE_WB_COMPLETION_ONSTACK(done);
2219 struct wb_writeback_work work = {
2220 .sb = sb,
2221 .sync_mode = WB_SYNC_NONE,
2222 .tagged_writepages = 1,
2223 .done = &done,
2224 .nr_pages = nr,
2225 .reason = reason,
2226 };
2227 struct backing_dev_info *bdi = sb->s_bdi;
2228
2229 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2230 return;
2231 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2232
2233 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2234 wb_wait_for_completion(bdi, &done);
2235 }
2236
2237 /**
2238 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2239 * @sb: the superblock
2240 * @nr: the number of pages to write
2241 * @reason: reason why some writeback work initiated
2242 *
2243 * Start writeback on some inodes on this super_block. No guarantees are made
2244 * on how many (if any) will be written, and this function does not wait
2245 * for IO completion of submitted IO.
2246 */
2247 void writeback_inodes_sb_nr(struct super_block *sb,
2248 unsigned long nr,
2249 enum wb_reason reason)
2250 {
2251 __writeback_inodes_sb_nr(sb, nr, reason, false);
2252 }
2253 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2254
2255 /**
2256 * writeback_inodes_sb - writeback dirty inodes from given super_block
2257 * @sb: the superblock
2258 * @reason: reason why some writeback work was initiated
2259 *
2260 * Start writeback on some inodes on this super_block. No guarantees are made
2261 * on how many (if any) will be written, and this function does not wait
2262 * for IO completion of submitted IO.
2263 */
2264 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2265 {
2266 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2267 }
2268 EXPORT_SYMBOL(writeback_inodes_sb);
2269
2270 /**
2271 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2272 * @sb: the superblock
2273 * @nr: the number of pages to write
2274 * @reason: the reason of writeback
2275 *
2276 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2277 * Returns 1 if writeback was started, 0 if not.
2278 */
2279 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2280 enum wb_reason reason)
2281 {
2282 if (!down_read_trylock(&sb->s_umount))
2283 return false;
2284
2285 __writeback_inodes_sb_nr(sb, nr, reason, true);
2286 up_read(&sb->s_umount);
2287 return true;
2288 }
2289 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2290
2291 /**
2292 * try_to_writeback_inodes_sb - try to start writeback if none underway
2293 * @sb: the superblock
2294 * @reason: reason why some writeback work was initiated
2295 *
2296 * Implement by try_to_writeback_inodes_sb_nr()
2297 * Returns 1 if writeback was started, 0 if not.
2298 */
2299 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2300 {
2301 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2302 }
2303 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2304
2305 /**
2306 * sync_inodes_sb - sync sb inode pages
2307 * @sb: the superblock
2308 *
2309 * This function writes and waits on any dirty inode belonging to this
2310 * super_block.
2311 */
2312 void sync_inodes_sb(struct super_block *sb)
2313 {
2314 DEFINE_WB_COMPLETION_ONSTACK(done);
2315 struct wb_writeback_work work = {
2316 .sb = sb,
2317 .sync_mode = WB_SYNC_ALL,
2318 .nr_pages = LONG_MAX,
2319 .range_cyclic = 0,
2320 .done = &done,
2321 .reason = WB_REASON_SYNC,
2322 .for_sync = 1,
2323 };
2324 struct backing_dev_info *bdi = sb->s_bdi;
2325
2326 /*
2327 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2328 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2329 * bdi_has_dirty() need to be written out too.
2330 */
2331 if (bdi == &noop_backing_dev_info)
2332 return;
2333 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2334
2335 bdi_split_work_to_wbs(bdi, &work, false);
2336 wb_wait_for_completion(bdi, &done);
2337
2338 wait_sb_inodes(sb);
2339 }
2340 EXPORT_SYMBOL(sync_inodes_sb);
2341
2342 /**
2343 * write_inode_now - write an inode to disk
2344 * @inode: inode to write to disk
2345 * @sync: whether the write should be synchronous or not
2346 *
2347 * This function commits an inode to disk immediately if it is dirty. This is
2348 * primarily needed by knfsd.
2349 *
2350 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2351 */
2352 int write_inode_now(struct inode *inode, int sync)
2353 {
2354 struct writeback_control wbc = {
2355 .nr_to_write = LONG_MAX,
2356 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2357 .range_start = 0,
2358 .range_end = LLONG_MAX,
2359 };
2360
2361 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2362 wbc.nr_to_write = 0;
2363
2364 might_sleep();
2365 return writeback_single_inode(inode, &wbc);
2366 }
2367 EXPORT_SYMBOL(write_inode_now);
2368
2369 /**
2370 * sync_inode - write an inode and its pages to disk.
2371 * @inode: the inode to sync
2372 * @wbc: controls the writeback mode
2373 *
2374 * sync_inode() will write an inode and its pages to disk. It will also
2375 * correctly update the inode on its superblock's dirty inode lists and will
2376 * update inode->i_state.
2377 *
2378 * The caller must have a ref on the inode.
2379 */
2380 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2381 {
2382 return writeback_single_inode(inode, wbc);
2383 }
2384 EXPORT_SYMBOL(sync_inode);
2385
2386 /**
2387 * sync_inode_metadata - write an inode to disk
2388 * @inode: the inode to sync
2389 * @wait: wait for I/O to complete.
2390 *
2391 * Write an inode to disk and adjust its dirty state after completion.
2392 *
2393 * Note: only writes the actual inode, no associated data or other metadata.
2394 */
2395 int sync_inode_metadata(struct inode *inode, int wait)
2396 {
2397 struct writeback_control wbc = {
2398 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2399 .nr_to_write = 0, /* metadata-only */
2400 };
2401
2402 return sync_inode(inode, &wbc);
2403 }
2404 EXPORT_SYMBOL(sync_inode_metadata);
This page took 0.076912 seconds and 5 git commands to generate.