ata: add AMD Seattle platform driver
[deliverable/linux.git] / fs / gfs2 / aops.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25
26 #include "gfs2.h"
27 #include "incore.h"
28 #include "bmap.h"
29 #include "glock.h"
30 #include "inode.h"
31 #include "log.h"
32 #include "meta_io.h"
33 #include "quota.h"
34 #include "trans.h"
35 #include "rgrp.h"
36 #include "super.h"
37 #include "util.h"
38 #include "glops.h"
39
40
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 unsigned int from, unsigned int to)
43 {
44 struct buffer_head *head = page_buffers(page);
45 unsigned int bsize = head->b_size;
46 struct buffer_head *bh;
47 unsigned int start, end;
48
49 for (bh = head, start = 0; bh != head || !start;
50 bh = bh->b_this_page, start = end) {
51 end = start + bsize;
52 if (end <= from || start >= to)
53 continue;
54 if (gfs2_is_jdata(ip))
55 set_buffer_uptodate(bh);
56 gfs2_trans_add_data(ip->i_gl, bh);
57 }
58 }
59
60 /**
61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62 * @inode: The inode
63 * @lblock: The block number to look up
64 * @bh_result: The buffer head to return the result in
65 * @create: Non-zero if we may add block to the file
66 *
67 * Returns: errno
68 */
69
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 struct buffer_head *bh_result, int create)
72 {
73 int error;
74
75 error = gfs2_block_map(inode, lblock, bh_result, 0);
76 if (error)
77 return error;
78 if (!buffer_mapped(bh_result))
79 return -EIO;
80 return 0;
81 }
82
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 struct buffer_head *bh_result, int create)
85 {
86 return gfs2_block_map(inode, lblock, bh_result, 0);
87 }
88
89 /**
90 * gfs2_writepage_common - Common bits of writepage
91 * @page: The page to be written
92 * @wbc: The writeback control
93 *
94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95 */
96
97 static int gfs2_writepage_common(struct page *page,
98 struct writeback_control *wbc)
99 {
100 struct inode *inode = page->mapping->host;
101 struct gfs2_inode *ip = GFS2_I(inode);
102 struct gfs2_sbd *sdp = GFS2_SB(inode);
103 loff_t i_size = i_size_read(inode);
104 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
105 unsigned offset;
106
107 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108 goto out;
109 if (current->journal_info)
110 goto redirty;
111 /* Is the page fully outside i_size? (truncate in progress) */
112 offset = i_size & (PAGE_CACHE_SIZE-1);
113 if (page->index > end_index || (page->index == end_index && !offset)) {
114 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
115 goto out;
116 }
117 return 1;
118 redirty:
119 redirty_page_for_writepage(wbc, page);
120 out:
121 unlock_page(page);
122 return 0;
123 }
124
125 /**
126 * gfs2_writepage - Write page for writeback mappings
127 * @page: The page
128 * @wbc: The writeback control
129 *
130 */
131
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133 {
134 int ret;
135
136 ret = gfs2_writepage_common(page, wbc);
137 if (ret <= 0)
138 return ret;
139
140 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141 }
142
143 /**
144 * __gfs2_jdata_writepage - The core of jdata writepage
145 * @page: The page to write
146 * @wbc: The writeback control
147 *
148 * This is shared between writepage and writepages and implements the
149 * core of the writepage operation. If a transaction is required then
150 * PageChecked will have been set and the transaction will have
151 * already been started before this is called.
152 */
153
154 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
155 {
156 struct inode *inode = page->mapping->host;
157 struct gfs2_inode *ip = GFS2_I(inode);
158 struct gfs2_sbd *sdp = GFS2_SB(inode);
159
160 if (PageChecked(page)) {
161 ClearPageChecked(page);
162 if (!page_has_buffers(page)) {
163 create_empty_buffers(page, inode->i_sb->s_blocksize,
164 (1 << BH_Dirty)|(1 << BH_Uptodate));
165 }
166 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
167 }
168 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169 }
170
171 /**
172 * gfs2_jdata_writepage - Write complete page
173 * @page: Page to write
174 * @wbc: The writeback control
175 *
176 * Returns: errno
177 *
178 */
179
180 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 {
182 struct inode *inode = page->mapping->host;
183 struct gfs2_sbd *sdp = GFS2_SB(inode);
184 int ret;
185 int done_trans = 0;
186
187 if (PageChecked(page)) {
188 if (wbc->sync_mode != WB_SYNC_ALL)
189 goto out_ignore;
190 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
191 if (ret)
192 goto out_ignore;
193 done_trans = 1;
194 }
195 ret = gfs2_writepage_common(page, wbc);
196 if (ret > 0)
197 ret = __gfs2_jdata_writepage(page, wbc);
198 if (done_trans)
199 gfs2_trans_end(sdp);
200 return ret;
201
202 out_ignore:
203 redirty_page_for_writepage(wbc, page);
204 unlock_page(page);
205 return 0;
206 }
207
208 /**
209 * gfs2_writepages - Write a bunch of dirty pages back to disk
210 * @mapping: The mapping to write
211 * @wbc: Write-back control
212 *
213 * Used for both ordered and writeback modes.
214 */
215 static int gfs2_writepages(struct address_space *mapping,
216 struct writeback_control *wbc)
217 {
218 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
219 }
220
221 /**
222 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
223 * @mapping: The mapping
224 * @wbc: The writeback control
225 * @pvec: The vector of pages
226 * @nr_pages: The number of pages to write
227 * @end: End position
228 * @done_index: Page index
229 *
230 * Returns: non-zero if loop should terminate, zero otherwise
231 */
232
233 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
234 struct writeback_control *wbc,
235 struct pagevec *pvec,
236 int nr_pages, pgoff_t end,
237 pgoff_t *done_index)
238 {
239 struct inode *inode = mapping->host;
240 struct gfs2_sbd *sdp = GFS2_SB(inode);
241 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
242 int i;
243 int ret;
244
245 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
246 if (ret < 0)
247 return ret;
248
249 for(i = 0; i < nr_pages; i++) {
250 struct page *page = pvec->pages[i];
251
252 /*
253 * At this point, the page may be truncated or
254 * invalidated (changing page->mapping to NULL), or
255 * even swizzled back from swapper_space to tmpfs file
256 * mapping. However, page->index will not change
257 * because we have a reference on the page.
258 */
259 if (page->index > end) {
260 /*
261 * can't be range_cyclic (1st pass) because
262 * end == -1 in that case.
263 */
264 ret = 1;
265 break;
266 }
267
268 *done_index = page->index;
269
270 lock_page(page);
271
272 if (unlikely(page->mapping != mapping)) {
273 continue_unlock:
274 unlock_page(page);
275 continue;
276 }
277
278 if (!PageDirty(page)) {
279 /* someone wrote it for us */
280 goto continue_unlock;
281 }
282
283 if (PageWriteback(page)) {
284 if (wbc->sync_mode != WB_SYNC_NONE)
285 wait_on_page_writeback(page);
286 else
287 goto continue_unlock;
288 }
289
290 BUG_ON(PageWriteback(page));
291 if (!clear_page_dirty_for_io(page))
292 goto continue_unlock;
293
294 trace_wbc_writepage(wbc, inode_to_bdi(inode));
295
296 ret = __gfs2_jdata_writepage(page, wbc);
297 if (unlikely(ret)) {
298 if (ret == AOP_WRITEPAGE_ACTIVATE) {
299 unlock_page(page);
300 ret = 0;
301 } else {
302
303 /*
304 * done_index is set past this page,
305 * so media errors will not choke
306 * background writeout for the entire
307 * file. This has consequences for
308 * range_cyclic semantics (ie. it may
309 * not be suitable for data integrity
310 * writeout).
311 */
312 *done_index = page->index + 1;
313 ret = 1;
314 break;
315 }
316 }
317
318 /*
319 * We stop writing back only if we are not doing
320 * integrity sync. In case of integrity sync we have to
321 * keep going until we have written all the pages
322 * we tagged for writeback prior to entering this loop.
323 */
324 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
325 ret = 1;
326 break;
327 }
328
329 }
330 gfs2_trans_end(sdp);
331 return ret;
332 }
333
334 /**
335 * gfs2_write_cache_jdata - Like write_cache_pages but different
336 * @mapping: The mapping to write
337 * @wbc: The writeback control
338 *
339 * The reason that we use our own function here is that we need to
340 * start transactions before we grab page locks. This allows us
341 * to get the ordering right.
342 */
343
344 static int gfs2_write_cache_jdata(struct address_space *mapping,
345 struct writeback_control *wbc)
346 {
347 int ret = 0;
348 int done = 0;
349 struct pagevec pvec;
350 int nr_pages;
351 pgoff_t uninitialized_var(writeback_index);
352 pgoff_t index;
353 pgoff_t end;
354 pgoff_t done_index;
355 int cycled;
356 int range_whole = 0;
357 int tag;
358
359 pagevec_init(&pvec, 0);
360 if (wbc->range_cyclic) {
361 writeback_index = mapping->writeback_index; /* prev offset */
362 index = writeback_index;
363 if (index == 0)
364 cycled = 1;
365 else
366 cycled = 0;
367 end = -1;
368 } else {
369 index = wbc->range_start >> PAGE_CACHE_SHIFT;
370 end = wbc->range_end >> PAGE_CACHE_SHIFT;
371 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
372 range_whole = 1;
373 cycled = 1; /* ignore range_cyclic tests */
374 }
375 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
376 tag = PAGECACHE_TAG_TOWRITE;
377 else
378 tag = PAGECACHE_TAG_DIRTY;
379
380 retry:
381 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
382 tag_pages_for_writeback(mapping, index, end);
383 done_index = index;
384 while (!done && (index <= end)) {
385 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
386 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
387 if (nr_pages == 0)
388 break;
389
390 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
391 if (ret)
392 done = 1;
393 if (ret > 0)
394 ret = 0;
395 pagevec_release(&pvec);
396 cond_resched();
397 }
398
399 if (!cycled && !done) {
400 /*
401 * range_cyclic:
402 * We hit the last page and there is more work to be done: wrap
403 * back to the start of the file
404 */
405 cycled = 1;
406 index = 0;
407 end = writeback_index - 1;
408 goto retry;
409 }
410
411 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
412 mapping->writeback_index = done_index;
413
414 return ret;
415 }
416
417
418 /**
419 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
420 * @mapping: The mapping to write
421 * @wbc: The writeback control
422 *
423 */
424
425 static int gfs2_jdata_writepages(struct address_space *mapping,
426 struct writeback_control *wbc)
427 {
428 struct gfs2_inode *ip = GFS2_I(mapping->host);
429 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
430 int ret;
431
432 ret = gfs2_write_cache_jdata(mapping, wbc);
433 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
434 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
435 ret = gfs2_write_cache_jdata(mapping, wbc);
436 }
437 return ret;
438 }
439
440 /**
441 * stuffed_readpage - Fill in a Linux page with stuffed file data
442 * @ip: the inode
443 * @page: the page
444 *
445 * Returns: errno
446 */
447
448 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
449 {
450 struct buffer_head *dibh;
451 u64 dsize = i_size_read(&ip->i_inode);
452 void *kaddr;
453 int error;
454
455 /*
456 * Due to the order of unstuffing files and ->fault(), we can be
457 * asked for a zero page in the case of a stuffed file being extended,
458 * so we need to supply one here. It doesn't happen often.
459 */
460 if (unlikely(page->index)) {
461 zero_user(page, 0, PAGE_CACHE_SIZE);
462 SetPageUptodate(page);
463 return 0;
464 }
465
466 error = gfs2_meta_inode_buffer(ip, &dibh);
467 if (error)
468 return error;
469
470 kaddr = kmap_atomic(page);
471 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
472 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
473 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
474 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
475 kunmap_atomic(kaddr);
476 flush_dcache_page(page);
477 brelse(dibh);
478 SetPageUptodate(page);
479
480 return 0;
481 }
482
483
484 /**
485 * __gfs2_readpage - readpage
486 * @file: The file to read a page for
487 * @page: The page to read
488 *
489 * This is the core of gfs2's readpage. Its used by the internal file
490 * reading code as in that case we already hold the glock. Also its
491 * called by gfs2_readpage() once the required lock has been granted.
492 *
493 */
494
495 static int __gfs2_readpage(void *file, struct page *page)
496 {
497 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
498 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
499 int error;
500
501 if (gfs2_is_stuffed(ip)) {
502 error = stuffed_readpage(ip, page);
503 unlock_page(page);
504 } else {
505 error = mpage_readpage(page, gfs2_block_map);
506 }
507
508 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
509 return -EIO;
510
511 return error;
512 }
513
514 /**
515 * gfs2_readpage - read a page of a file
516 * @file: The file to read
517 * @page: The page of the file
518 *
519 * This deals with the locking required. We have to unlock and
520 * relock the page in order to get the locking in the right
521 * order.
522 */
523
524 static int gfs2_readpage(struct file *file, struct page *page)
525 {
526 struct address_space *mapping = page->mapping;
527 struct gfs2_inode *ip = GFS2_I(mapping->host);
528 struct gfs2_holder gh;
529 int error;
530
531 unlock_page(page);
532 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
533 error = gfs2_glock_nq(&gh);
534 if (unlikely(error))
535 goto out;
536 error = AOP_TRUNCATED_PAGE;
537 lock_page(page);
538 if (page->mapping == mapping && !PageUptodate(page))
539 error = __gfs2_readpage(file, page);
540 else
541 unlock_page(page);
542 gfs2_glock_dq(&gh);
543 out:
544 gfs2_holder_uninit(&gh);
545 if (error && error != AOP_TRUNCATED_PAGE)
546 lock_page(page);
547 return error;
548 }
549
550 /**
551 * gfs2_internal_read - read an internal file
552 * @ip: The gfs2 inode
553 * @buf: The buffer to fill
554 * @pos: The file position
555 * @size: The amount to read
556 *
557 */
558
559 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
560 unsigned size)
561 {
562 struct address_space *mapping = ip->i_inode.i_mapping;
563 unsigned long index = *pos / PAGE_CACHE_SIZE;
564 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
565 unsigned copied = 0;
566 unsigned amt;
567 struct page *page;
568 void *p;
569
570 do {
571 amt = size - copied;
572 if (offset + size > PAGE_CACHE_SIZE)
573 amt = PAGE_CACHE_SIZE - offset;
574 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
575 if (IS_ERR(page))
576 return PTR_ERR(page);
577 p = kmap_atomic(page);
578 memcpy(buf + copied, p + offset, amt);
579 kunmap_atomic(p);
580 page_cache_release(page);
581 copied += amt;
582 index++;
583 offset = 0;
584 } while(copied < size);
585 (*pos) += size;
586 return size;
587 }
588
589 /**
590 * gfs2_readpages - Read a bunch of pages at once
591 * @file: The file to read from
592 * @mapping: Address space info
593 * @pages: List of pages to read
594 * @nr_pages: Number of pages to read
595 *
596 * Some notes:
597 * 1. This is only for readahead, so we can simply ignore any things
598 * which are slightly inconvenient (such as locking conflicts between
599 * the page lock and the glock) and return having done no I/O. Its
600 * obviously not something we'd want to do on too regular a basis.
601 * Any I/O we ignore at this time will be done via readpage later.
602 * 2. We don't handle stuffed files here we let readpage do the honours.
603 * 3. mpage_readpages() does most of the heavy lifting in the common case.
604 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
605 */
606
607 static int gfs2_readpages(struct file *file, struct address_space *mapping,
608 struct list_head *pages, unsigned nr_pages)
609 {
610 struct inode *inode = mapping->host;
611 struct gfs2_inode *ip = GFS2_I(inode);
612 struct gfs2_sbd *sdp = GFS2_SB(inode);
613 struct gfs2_holder gh;
614 int ret;
615
616 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
617 ret = gfs2_glock_nq(&gh);
618 if (unlikely(ret))
619 goto out_uninit;
620 if (!gfs2_is_stuffed(ip))
621 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
622 gfs2_glock_dq(&gh);
623 out_uninit:
624 gfs2_holder_uninit(&gh);
625 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
626 ret = -EIO;
627 return ret;
628 }
629
630 /**
631 * gfs2_write_begin - Begin to write to a file
632 * @file: The file to write to
633 * @mapping: The mapping in which to write
634 * @pos: The file offset at which to start writing
635 * @len: Length of the write
636 * @flags: Various flags
637 * @pagep: Pointer to return the page
638 * @fsdata: Pointer to return fs data (unused by GFS2)
639 *
640 * Returns: errno
641 */
642
643 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
644 loff_t pos, unsigned len, unsigned flags,
645 struct page **pagep, void **fsdata)
646 {
647 struct gfs2_inode *ip = GFS2_I(mapping->host);
648 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
649 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
650 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
651 unsigned requested = 0;
652 int alloc_required;
653 int error = 0;
654 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
655 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
656 struct page *page;
657
658 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
659 error = gfs2_glock_nq(&ip->i_gh);
660 if (unlikely(error))
661 goto out_uninit;
662 if (&ip->i_inode == sdp->sd_rindex) {
663 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
664 GL_NOCACHE, &m_ip->i_gh);
665 if (unlikely(error)) {
666 gfs2_glock_dq(&ip->i_gh);
667 goto out_uninit;
668 }
669 }
670
671 alloc_required = gfs2_write_alloc_required(ip, pos, len);
672
673 if (alloc_required || gfs2_is_jdata(ip))
674 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
675
676 if (alloc_required) {
677 struct gfs2_alloc_parms ap = { .aflags = 0, };
678 requested = data_blocks + ind_blocks;
679 ap.target = requested;
680 error = gfs2_quota_lock_check(ip, &ap);
681 if (error)
682 goto out_unlock;
683
684 error = gfs2_inplace_reserve(ip, &ap);
685 if (error)
686 goto out_qunlock;
687 }
688
689 rblocks = RES_DINODE + ind_blocks;
690 if (gfs2_is_jdata(ip))
691 rblocks += data_blocks ? data_blocks : 1;
692 if (ind_blocks || data_blocks)
693 rblocks += RES_STATFS + RES_QUOTA;
694 if (&ip->i_inode == sdp->sd_rindex)
695 rblocks += 2 * RES_STATFS;
696 if (alloc_required)
697 rblocks += gfs2_rg_blocks(ip, requested);
698
699 error = gfs2_trans_begin(sdp, rblocks,
700 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
701 if (error)
702 goto out_trans_fail;
703
704 error = -ENOMEM;
705 flags |= AOP_FLAG_NOFS;
706 page = grab_cache_page_write_begin(mapping, index, flags);
707 *pagep = page;
708 if (unlikely(!page))
709 goto out_endtrans;
710
711 if (gfs2_is_stuffed(ip)) {
712 error = 0;
713 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
714 error = gfs2_unstuff_dinode(ip, page);
715 if (error == 0)
716 goto prepare_write;
717 } else if (!PageUptodate(page)) {
718 error = stuffed_readpage(ip, page);
719 }
720 goto out;
721 }
722
723 prepare_write:
724 error = __block_write_begin(page, from, len, gfs2_block_map);
725 out:
726 if (error == 0)
727 return 0;
728
729 unlock_page(page);
730 page_cache_release(page);
731
732 gfs2_trans_end(sdp);
733 if (pos + len > ip->i_inode.i_size)
734 gfs2_trim_blocks(&ip->i_inode);
735 goto out_trans_fail;
736
737 out_endtrans:
738 gfs2_trans_end(sdp);
739 out_trans_fail:
740 if (alloc_required) {
741 gfs2_inplace_release(ip);
742 out_qunlock:
743 gfs2_quota_unlock(ip);
744 }
745 out_unlock:
746 if (&ip->i_inode == sdp->sd_rindex) {
747 gfs2_glock_dq(&m_ip->i_gh);
748 gfs2_holder_uninit(&m_ip->i_gh);
749 }
750 gfs2_glock_dq(&ip->i_gh);
751 out_uninit:
752 gfs2_holder_uninit(&ip->i_gh);
753 return error;
754 }
755
756 /**
757 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
758 * @inode: the rindex inode
759 */
760 static void adjust_fs_space(struct inode *inode)
761 {
762 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
763 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
764 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
765 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
766 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
767 struct buffer_head *m_bh, *l_bh;
768 u64 fs_total, new_free;
769
770 /* Total up the file system space, according to the latest rindex. */
771 fs_total = gfs2_ri_total(sdp);
772 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
773 return;
774
775 spin_lock(&sdp->sd_statfs_spin);
776 gfs2_statfs_change_in(m_sc, m_bh->b_data +
777 sizeof(struct gfs2_dinode));
778 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
779 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
780 else
781 new_free = 0;
782 spin_unlock(&sdp->sd_statfs_spin);
783 fs_warn(sdp, "File system extended by %llu blocks.\n",
784 (unsigned long long)new_free);
785 gfs2_statfs_change(sdp, new_free, new_free, 0);
786
787 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
788 goto out;
789 update_statfs(sdp, m_bh, l_bh);
790 brelse(l_bh);
791 out:
792 brelse(m_bh);
793 }
794
795 /**
796 * gfs2_stuffed_write_end - Write end for stuffed files
797 * @inode: The inode
798 * @dibh: The buffer_head containing the on-disk inode
799 * @pos: The file position
800 * @len: The length of the write
801 * @copied: How much was actually copied by the VFS
802 * @page: The page
803 *
804 * This copies the data from the page into the inode block after
805 * the inode data structure itself.
806 *
807 * Returns: errno
808 */
809 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
810 loff_t pos, unsigned len, unsigned copied,
811 struct page *page)
812 {
813 struct gfs2_inode *ip = GFS2_I(inode);
814 struct gfs2_sbd *sdp = GFS2_SB(inode);
815 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
816 u64 to = pos + copied;
817 void *kaddr;
818 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
819
820 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
821 kaddr = kmap_atomic(page);
822 memcpy(buf + pos, kaddr + pos, copied);
823 memset(kaddr + pos + copied, 0, len - copied);
824 flush_dcache_page(page);
825 kunmap_atomic(kaddr);
826
827 if (!PageUptodate(page))
828 SetPageUptodate(page);
829 unlock_page(page);
830 page_cache_release(page);
831
832 if (copied) {
833 if (inode->i_size < to)
834 i_size_write(inode, to);
835 mark_inode_dirty(inode);
836 }
837
838 if (inode == sdp->sd_rindex) {
839 adjust_fs_space(inode);
840 sdp->sd_rindex_uptodate = 0;
841 }
842
843 brelse(dibh);
844 gfs2_trans_end(sdp);
845 if (inode == sdp->sd_rindex) {
846 gfs2_glock_dq(&m_ip->i_gh);
847 gfs2_holder_uninit(&m_ip->i_gh);
848 }
849 gfs2_glock_dq(&ip->i_gh);
850 gfs2_holder_uninit(&ip->i_gh);
851 return copied;
852 }
853
854 /**
855 * gfs2_write_end
856 * @file: The file to write to
857 * @mapping: The address space to write to
858 * @pos: The file position
859 * @len: The length of the data
860 * @copied: How much was actually copied by the VFS
861 * @page: The page that has been written
862 * @fsdata: The fsdata (unused in GFS2)
863 *
864 * The main write_end function for GFS2. We have a separate one for
865 * stuffed files as they are slightly different, otherwise we just
866 * put our locking around the VFS provided functions.
867 *
868 * Returns: errno
869 */
870
871 static int gfs2_write_end(struct file *file, struct address_space *mapping,
872 loff_t pos, unsigned len, unsigned copied,
873 struct page *page, void *fsdata)
874 {
875 struct inode *inode = page->mapping->host;
876 struct gfs2_inode *ip = GFS2_I(inode);
877 struct gfs2_sbd *sdp = GFS2_SB(inode);
878 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
879 struct buffer_head *dibh;
880 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
881 unsigned int to = from + len;
882 int ret;
883 struct gfs2_trans *tr = current->journal_info;
884 BUG_ON(!tr);
885
886 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
887
888 ret = gfs2_meta_inode_buffer(ip, &dibh);
889 if (unlikely(ret)) {
890 unlock_page(page);
891 page_cache_release(page);
892 goto failed;
893 }
894
895 if (gfs2_is_stuffed(ip))
896 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
897
898 if (!gfs2_is_writeback(ip))
899 gfs2_page_add_databufs(ip, page, from, to);
900
901 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
902 if (tr->tr_num_buf_new)
903 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
904 else
905 gfs2_trans_add_meta(ip->i_gl, dibh);
906
907
908 if (inode == sdp->sd_rindex) {
909 adjust_fs_space(inode);
910 sdp->sd_rindex_uptodate = 0;
911 }
912
913 brelse(dibh);
914 failed:
915 gfs2_trans_end(sdp);
916 gfs2_inplace_release(ip);
917 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
918 gfs2_quota_unlock(ip);
919 if (inode == sdp->sd_rindex) {
920 gfs2_glock_dq(&m_ip->i_gh);
921 gfs2_holder_uninit(&m_ip->i_gh);
922 }
923 gfs2_glock_dq(&ip->i_gh);
924 gfs2_holder_uninit(&ip->i_gh);
925 return ret;
926 }
927
928 /**
929 * gfs2_set_page_dirty - Page dirtying function
930 * @page: The page to dirty
931 *
932 * Returns: 1 if it dirtyed the page, or 0 otherwise
933 */
934
935 static int gfs2_set_page_dirty(struct page *page)
936 {
937 SetPageChecked(page);
938 return __set_page_dirty_buffers(page);
939 }
940
941 /**
942 * gfs2_bmap - Block map function
943 * @mapping: Address space info
944 * @lblock: The block to map
945 *
946 * Returns: The disk address for the block or 0 on hole or error
947 */
948
949 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
950 {
951 struct gfs2_inode *ip = GFS2_I(mapping->host);
952 struct gfs2_holder i_gh;
953 sector_t dblock = 0;
954 int error;
955
956 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
957 if (error)
958 return 0;
959
960 if (!gfs2_is_stuffed(ip))
961 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
962
963 gfs2_glock_dq_uninit(&i_gh);
964
965 return dblock;
966 }
967
968 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
969 {
970 struct gfs2_bufdata *bd;
971
972 lock_buffer(bh);
973 gfs2_log_lock(sdp);
974 clear_buffer_dirty(bh);
975 bd = bh->b_private;
976 if (bd) {
977 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
978 list_del_init(&bd->bd_list);
979 else
980 gfs2_remove_from_journal(bh, current->journal_info, 0);
981 }
982 bh->b_bdev = NULL;
983 clear_buffer_mapped(bh);
984 clear_buffer_req(bh);
985 clear_buffer_new(bh);
986 gfs2_log_unlock(sdp);
987 unlock_buffer(bh);
988 }
989
990 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
991 unsigned int length)
992 {
993 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
994 unsigned int stop = offset + length;
995 int partial_page = (offset || length < PAGE_CACHE_SIZE);
996 struct buffer_head *bh, *head;
997 unsigned long pos = 0;
998
999 BUG_ON(!PageLocked(page));
1000 if (!partial_page)
1001 ClearPageChecked(page);
1002 if (!page_has_buffers(page))
1003 goto out;
1004
1005 bh = head = page_buffers(page);
1006 do {
1007 if (pos + bh->b_size > stop)
1008 return;
1009
1010 if (offset <= pos)
1011 gfs2_discard(sdp, bh);
1012 pos += bh->b_size;
1013 bh = bh->b_this_page;
1014 } while (bh != head);
1015 out:
1016 if (!partial_page)
1017 try_to_release_page(page, 0);
1018 }
1019
1020 /**
1021 * gfs2_ok_for_dio - check that dio is valid on this file
1022 * @ip: The inode
1023 * @offset: The offset at which we are reading or writing
1024 *
1025 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1026 * 1 (to accept the i/o request)
1027 */
1028 static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1029 {
1030 /*
1031 * Should we return an error here? I can't see that O_DIRECT for
1032 * a stuffed file makes any sense. For now we'll silently fall
1033 * back to buffered I/O
1034 */
1035 if (gfs2_is_stuffed(ip))
1036 return 0;
1037
1038 if (offset >= i_size_read(&ip->i_inode))
1039 return 0;
1040 return 1;
1041 }
1042
1043
1044
1045 static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1046 loff_t offset)
1047 {
1048 struct file *file = iocb->ki_filp;
1049 struct inode *inode = file->f_mapping->host;
1050 struct address_space *mapping = inode->i_mapping;
1051 struct gfs2_inode *ip = GFS2_I(inode);
1052 struct gfs2_holder gh;
1053 int rv;
1054
1055 /*
1056 * Deferred lock, even if its a write, since we do no allocation
1057 * on this path. All we need change is atime, and this lock mode
1058 * ensures that other nodes have flushed their buffered read caches
1059 * (i.e. their page cache entries for this inode). We do not,
1060 * unfortunately have the option of only flushing a range like
1061 * the VFS does.
1062 */
1063 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1064 rv = gfs2_glock_nq(&gh);
1065 if (rv)
1066 return rv;
1067 rv = gfs2_ok_for_dio(ip, offset);
1068 if (rv != 1)
1069 goto out; /* dio not valid, fall back to buffered i/o */
1070
1071 /*
1072 * Now since we are holding a deferred (CW) lock at this point, you
1073 * might be wondering why this is ever needed. There is a case however
1074 * where we've granted a deferred local lock against a cached exclusive
1075 * glock. That is ok provided all granted local locks are deferred, but
1076 * it also means that it is possible to encounter pages which are
1077 * cached and possibly also mapped. So here we check for that and sort
1078 * them out ahead of the dio. The glock state machine will take care of
1079 * everything else.
1080 *
1081 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1082 * the first place, mapping->nr_pages will always be zero.
1083 */
1084 if (mapping->nrpages) {
1085 loff_t lstart = offset & ~(PAGE_CACHE_SIZE - 1);
1086 loff_t len = iov_iter_count(iter);
1087 loff_t end = PAGE_ALIGN(offset + len) - 1;
1088
1089 rv = 0;
1090 if (len == 0)
1091 goto out;
1092 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1093 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1094 rv = filemap_write_and_wait_range(mapping, lstart, end);
1095 if (rv)
1096 goto out;
1097 if (iov_iter_rw(iter) == WRITE)
1098 truncate_inode_pages_range(mapping, lstart, end);
1099 }
1100
1101 rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1102 offset, gfs2_get_block_direct, NULL, NULL, 0);
1103 out:
1104 gfs2_glock_dq(&gh);
1105 gfs2_holder_uninit(&gh);
1106 return rv;
1107 }
1108
1109 /**
1110 * gfs2_releasepage - free the metadata associated with a page
1111 * @page: the page that's being released
1112 * @gfp_mask: passed from Linux VFS, ignored by us
1113 *
1114 * Call try_to_free_buffers() if the buffers in this page can be
1115 * released.
1116 *
1117 * Returns: 0
1118 */
1119
1120 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1121 {
1122 struct address_space *mapping = page->mapping;
1123 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1124 struct buffer_head *bh, *head;
1125 struct gfs2_bufdata *bd;
1126
1127 if (!page_has_buffers(page))
1128 return 0;
1129
1130 gfs2_log_lock(sdp);
1131 spin_lock(&sdp->sd_ail_lock);
1132 head = bh = page_buffers(page);
1133 do {
1134 if (atomic_read(&bh->b_count))
1135 goto cannot_release;
1136 bd = bh->b_private;
1137 if (bd && bd->bd_tr)
1138 goto cannot_release;
1139 if (buffer_pinned(bh) || buffer_dirty(bh))
1140 goto not_possible;
1141 bh = bh->b_this_page;
1142 } while(bh != head);
1143 spin_unlock(&sdp->sd_ail_lock);
1144
1145 head = bh = page_buffers(page);
1146 do {
1147 bd = bh->b_private;
1148 if (bd) {
1149 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1150 if (!list_empty(&bd->bd_list))
1151 list_del_init(&bd->bd_list);
1152 bd->bd_bh = NULL;
1153 bh->b_private = NULL;
1154 kmem_cache_free(gfs2_bufdata_cachep, bd);
1155 }
1156
1157 bh = bh->b_this_page;
1158 } while (bh != head);
1159 gfs2_log_unlock(sdp);
1160
1161 return try_to_free_buffers(page);
1162
1163 not_possible: /* Should never happen */
1164 WARN_ON(buffer_dirty(bh));
1165 WARN_ON(buffer_pinned(bh));
1166 cannot_release:
1167 spin_unlock(&sdp->sd_ail_lock);
1168 gfs2_log_unlock(sdp);
1169 return 0;
1170 }
1171
1172 static const struct address_space_operations gfs2_writeback_aops = {
1173 .writepage = gfs2_writepage,
1174 .writepages = gfs2_writepages,
1175 .readpage = gfs2_readpage,
1176 .readpages = gfs2_readpages,
1177 .write_begin = gfs2_write_begin,
1178 .write_end = gfs2_write_end,
1179 .bmap = gfs2_bmap,
1180 .invalidatepage = gfs2_invalidatepage,
1181 .releasepage = gfs2_releasepage,
1182 .direct_IO = gfs2_direct_IO,
1183 .migratepage = buffer_migrate_page,
1184 .is_partially_uptodate = block_is_partially_uptodate,
1185 .error_remove_page = generic_error_remove_page,
1186 };
1187
1188 static const struct address_space_operations gfs2_ordered_aops = {
1189 .writepage = gfs2_writepage,
1190 .writepages = gfs2_writepages,
1191 .readpage = gfs2_readpage,
1192 .readpages = gfs2_readpages,
1193 .write_begin = gfs2_write_begin,
1194 .write_end = gfs2_write_end,
1195 .set_page_dirty = gfs2_set_page_dirty,
1196 .bmap = gfs2_bmap,
1197 .invalidatepage = gfs2_invalidatepage,
1198 .releasepage = gfs2_releasepage,
1199 .direct_IO = gfs2_direct_IO,
1200 .migratepage = buffer_migrate_page,
1201 .is_partially_uptodate = block_is_partially_uptodate,
1202 .error_remove_page = generic_error_remove_page,
1203 };
1204
1205 static const struct address_space_operations gfs2_jdata_aops = {
1206 .writepage = gfs2_jdata_writepage,
1207 .writepages = gfs2_jdata_writepages,
1208 .readpage = gfs2_readpage,
1209 .readpages = gfs2_readpages,
1210 .write_begin = gfs2_write_begin,
1211 .write_end = gfs2_write_end,
1212 .set_page_dirty = gfs2_set_page_dirty,
1213 .bmap = gfs2_bmap,
1214 .invalidatepage = gfs2_invalidatepage,
1215 .releasepage = gfs2_releasepage,
1216 .is_partially_uptodate = block_is_partially_uptodate,
1217 .error_remove_page = generic_error_remove_page,
1218 };
1219
1220 void gfs2_set_aops(struct inode *inode)
1221 {
1222 struct gfs2_inode *ip = GFS2_I(inode);
1223
1224 if (gfs2_is_writeback(ip))
1225 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1226 else if (gfs2_is_ordered(ip))
1227 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1228 else if (gfs2_is_jdata(ip))
1229 inode->i_mapping->a_ops = &gfs2_jdata_aops;
1230 else
1231 BUG();
1232 }
1233
This page took 0.055962 seconds and 5 git commands to generate.