ARM: 8573/1: domain: move {set,get}_domain under config guard
[deliverable/linux.git] / fs / kernfs / mount.c
1 /*
2 * fs/kernfs/mount.c - kernfs mount implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18
19 #include "kernfs-internal.h"
20
21 struct kmem_cache *kernfs_node_cache;
22
23 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
24 {
25 struct kernfs_root *root = kernfs_info(sb)->root;
26 struct kernfs_syscall_ops *scops = root->syscall_ops;
27
28 if (scops && scops->remount_fs)
29 return scops->remount_fs(root, flags, data);
30 return 0;
31 }
32
33 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
34 {
35 struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
36 struct kernfs_syscall_ops *scops = root->syscall_ops;
37
38 if (scops && scops->show_options)
39 return scops->show_options(sf, root);
40 return 0;
41 }
42
43 const struct super_operations kernfs_sops = {
44 .statfs = simple_statfs,
45 .drop_inode = generic_delete_inode,
46 .evict_inode = kernfs_evict_inode,
47
48 .remount_fs = kernfs_sop_remount_fs,
49 .show_options = kernfs_sop_show_options,
50 };
51
52 /**
53 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
54 * @sb: the super_block in question
55 *
56 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one,
57 * %NULL is returned.
58 */
59 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
60 {
61 if (sb->s_op == &kernfs_sops)
62 return kernfs_info(sb)->root;
63 return NULL;
64 }
65
66 /*
67 * find the next ancestor in the path down to @child, where @parent was the
68 * ancestor whose descendant we want to find.
69 *
70 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root
71 * node. If @parent is b, then we return the node for c.
72 * Passing in d as @parent is not ok.
73 */
74 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
75 struct kernfs_node *parent)
76 {
77 if (child == parent) {
78 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
79 return NULL;
80 }
81
82 while (child->parent != parent) {
83 if (!child->parent)
84 return NULL;
85 child = child->parent;
86 }
87
88 return child;
89 }
90
91 /**
92 * kernfs_node_dentry - get a dentry for the given kernfs_node
93 * @kn: kernfs_node for which a dentry is needed
94 * @sb: the kernfs super_block
95 */
96 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
97 struct super_block *sb)
98 {
99 struct dentry *dentry;
100 struct kernfs_node *knparent = NULL;
101
102 BUG_ON(sb->s_op != &kernfs_sops);
103
104 dentry = dget(sb->s_root);
105
106 /* Check if this is the root kernfs_node */
107 if (!kn->parent)
108 return dentry;
109
110 knparent = find_next_ancestor(kn, NULL);
111 if (WARN_ON(!knparent))
112 return ERR_PTR(-EINVAL);
113
114 do {
115 struct dentry *dtmp;
116 struct kernfs_node *kntmp;
117
118 if (kn == knparent)
119 return dentry;
120 kntmp = find_next_ancestor(kn, knparent);
121 if (WARN_ON(!kntmp))
122 return ERR_PTR(-EINVAL);
123 mutex_lock(&d_inode(dentry)->i_mutex);
124 dtmp = lookup_one_len(kntmp->name, dentry, strlen(kntmp->name));
125 mutex_unlock(&d_inode(dentry)->i_mutex);
126 dput(dentry);
127 if (IS_ERR(dtmp))
128 return dtmp;
129 knparent = kntmp;
130 dentry = dtmp;
131 } while (true);
132 }
133
134 static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
135 {
136 struct kernfs_super_info *info = kernfs_info(sb);
137 struct inode *inode;
138 struct dentry *root;
139
140 info->sb = sb;
141 sb->s_blocksize = PAGE_CACHE_SIZE;
142 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
143 sb->s_magic = magic;
144 sb->s_op = &kernfs_sops;
145 sb->s_time_gran = 1;
146
147 /* get root inode, initialize and unlock it */
148 mutex_lock(&kernfs_mutex);
149 inode = kernfs_get_inode(sb, info->root->kn);
150 mutex_unlock(&kernfs_mutex);
151 if (!inode) {
152 pr_debug("kernfs: could not get root inode\n");
153 return -ENOMEM;
154 }
155
156 /* instantiate and link root dentry */
157 root = d_make_root(inode);
158 if (!root) {
159 pr_debug("%s: could not get root dentry!\n", __func__);
160 return -ENOMEM;
161 }
162 kernfs_get(info->root->kn);
163 root->d_fsdata = info->root->kn;
164 sb->s_root = root;
165 sb->s_d_op = &kernfs_dops;
166 return 0;
167 }
168
169 static int kernfs_test_super(struct super_block *sb, void *data)
170 {
171 struct kernfs_super_info *sb_info = kernfs_info(sb);
172 struct kernfs_super_info *info = data;
173
174 return sb_info->root == info->root && sb_info->ns == info->ns;
175 }
176
177 static int kernfs_set_super(struct super_block *sb, void *data)
178 {
179 int error;
180 error = set_anon_super(sb, data);
181 if (!error)
182 sb->s_fs_info = data;
183 return error;
184 }
185
186 /**
187 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
188 * @sb: super_block of interest
189 *
190 * Return the namespace tag associated with kernfs super_block @sb.
191 */
192 const void *kernfs_super_ns(struct super_block *sb)
193 {
194 struct kernfs_super_info *info = kernfs_info(sb);
195
196 return info->ns;
197 }
198
199 /**
200 * kernfs_mount_ns - kernfs mount helper
201 * @fs_type: file_system_type of the fs being mounted
202 * @flags: mount flags specified for the mount
203 * @root: kernfs_root of the hierarchy being mounted
204 * @magic: file system specific magic number
205 * @new_sb_created: tell the caller if we allocated a new superblock
206 * @ns: optional namespace tag of the mount
207 *
208 * This is to be called from each kernfs user's file_system_type->mount()
209 * implementation, which should pass through the specified @fs_type and
210 * @flags, and specify the hierarchy and namespace tag to mount via @root
211 * and @ns, respectively.
212 *
213 * The return value can be passed to the vfs layer verbatim.
214 */
215 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
216 struct kernfs_root *root, unsigned long magic,
217 bool *new_sb_created, const void *ns)
218 {
219 struct super_block *sb;
220 struct kernfs_super_info *info;
221 int error;
222
223 info = kzalloc(sizeof(*info), GFP_KERNEL);
224 if (!info)
225 return ERR_PTR(-ENOMEM);
226
227 info->root = root;
228 info->ns = ns;
229
230 sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info);
231 if (IS_ERR(sb) || sb->s_fs_info != info)
232 kfree(info);
233 if (IS_ERR(sb))
234 return ERR_CAST(sb);
235
236 if (new_sb_created)
237 *new_sb_created = !sb->s_root;
238
239 if (!sb->s_root) {
240 struct kernfs_super_info *info = kernfs_info(sb);
241
242 error = kernfs_fill_super(sb, magic);
243 if (error) {
244 deactivate_locked_super(sb);
245 return ERR_PTR(error);
246 }
247 sb->s_flags |= MS_ACTIVE;
248
249 mutex_lock(&kernfs_mutex);
250 list_add(&info->node, &root->supers);
251 mutex_unlock(&kernfs_mutex);
252 }
253
254 return dget(sb->s_root);
255 }
256
257 /**
258 * kernfs_kill_sb - kill_sb for kernfs
259 * @sb: super_block being killed
260 *
261 * This can be used directly for file_system_type->kill_sb(). If a kernfs
262 * user needs extra cleanup, it can implement its own kill_sb() and call
263 * this function at the end.
264 */
265 void kernfs_kill_sb(struct super_block *sb)
266 {
267 struct kernfs_super_info *info = kernfs_info(sb);
268 struct kernfs_node *root_kn = sb->s_root->d_fsdata;
269
270 mutex_lock(&kernfs_mutex);
271 list_del(&info->node);
272 mutex_unlock(&kernfs_mutex);
273
274 /*
275 * Remove the superblock from fs_supers/s_instances
276 * so we can't find it, before freeing kernfs_super_info.
277 */
278 kill_anon_super(sb);
279 kfree(info);
280 kernfs_put(root_kn);
281 }
282
283 /**
284 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
285 * @kernfs_root: the kernfs_root in question
286 * @ns: the namespace tag
287 *
288 * Pin the superblock so the superblock won't be destroyed in subsequent
289 * operations. This can be used to block ->kill_sb() which may be useful
290 * for kernfs users which dynamically manage superblocks.
291 *
292 * Returns NULL if there's no superblock associated to this kernfs_root, or
293 * -EINVAL if the superblock is being freed.
294 */
295 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
296 {
297 struct kernfs_super_info *info;
298 struct super_block *sb = NULL;
299
300 mutex_lock(&kernfs_mutex);
301 list_for_each_entry(info, &root->supers, node) {
302 if (info->ns == ns) {
303 sb = info->sb;
304 if (!atomic_inc_not_zero(&info->sb->s_active))
305 sb = ERR_PTR(-EINVAL);
306 break;
307 }
308 }
309 mutex_unlock(&kernfs_mutex);
310 return sb;
311 }
312
313 void __init kernfs_init(void)
314 {
315 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
316 sizeof(struct kernfs_node),
317 0, SLAB_PANIC, NULL);
318 }
This page took 0.036246 seconds and 5 git commands to generate.