rapidio/mport_cdev: fix uapi type definitions
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 struct delayed_call done;
509 const char *name;
510 unsigned seq;
511 } *stack, internal[EMBEDDED_LEVELS];
512 struct filename *name;
513 struct nameidata *saved;
514 struct inode *link_inode;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 do_delayed_call(&last->done);
594 clear_delayed_call(&last->done);
595 }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600 drop_links(nd);
601 if (!(nd->flags & LOOKUP_RCU)) {
602 int i;
603 path_put(&nd->path);
604 for (i = 0; i < nd->depth; i++)
605 path_put(&nd->stack[i].link);
606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 path_put(&nd->root);
608 nd->root.mnt = NULL;
609 }
610 } else {
611 nd->flags &= ~LOOKUP_RCU;
612 if (!(nd->flags & LOOKUP_ROOT))
613 nd->root.mnt = NULL;
614 rcu_read_unlock();
615 }
616 nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 struct path *path, unsigned seq)
622 {
623 int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 if (unlikely(res)) {
625 if (res > 0)
626 path->mnt = NULL;
627 path->dentry = NULL;
628 return false;
629 }
630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 path->dentry = NULL;
632 return false;
633 }
634 return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 for (i = 0; i < nd->depth; i++) {
641 struct saved *last = nd->stack + i;
642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 drop_links(nd);
644 nd->depth = i + 1;
645 return false;
646 }
647 }
648 return true;
649 }
650
651 /*
652 * Path walking has 2 modes, rcu-walk and ref-walk (see
653 * Documentation/filesystems/path-lookup.txt). In situations when we can't
654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
656 * mode. Refcounts are grabbed at the last known good point before rcu-walk
657 * got stuck, so ref-walk may continue from there. If this is not successful
658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
659 * to restart the path walk from the beginning in ref-walk mode.
660 */
661
662 /**
663 * unlazy_walk - try to switch to ref-walk mode.
664 * @nd: nameidata pathwalk data
665 * @dentry: child of nd->path.dentry or NULL
666 * @seq: seq number to check dentry against
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
671 * @nd or NULL. Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out2;
684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 goto out2;
686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 goto out1;
688
689 /*
690 * For a negative lookup, the lookup sequence point is the parents
691 * sequence point, and it only needs to revalidate the parent dentry.
692 *
693 * For a positive lookup, we need to move both the parent and the
694 * dentry from the RCU domain to be properly refcounted. And the
695 * sequence number in the dentry validates *both* dentry counters,
696 * since we checked the sequence number of the parent after we got
697 * the child sequence number. So we know the parent must still
698 * be valid if the child sequence number is still valid.
699 */
700 if (!dentry) {
701 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 goto out;
703 BUG_ON(nd->inode != parent->d_inode);
704 } else {
705 if (!lockref_get_not_dead(&dentry->d_lockref))
706 goto out;
707 if (read_seqcount_retry(&dentry->d_seq, seq))
708 goto drop_dentry;
709 }
710
711 /*
712 * Sequence counts matched. Now make sure that the root is
713 * still valid and get it if required.
714 */
715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 rcu_read_unlock();
718 dput(dentry);
719 return -ECHILD;
720 }
721 }
722
723 rcu_read_unlock();
724 return 0;
725
726 drop_dentry:
727 rcu_read_unlock();
728 dput(dentry);
729 goto drop_root_mnt;
730 out2:
731 nd->path.mnt = NULL;
732 out1:
733 nd->path.dentry = NULL;
734 out:
735 rcu_read_unlock();
736 drop_root_mnt:
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 if (unlikely(!legitimize_path(nd, link, seq))) {
745 drop_links(nd);
746 nd->depth = 0;
747 nd->flags &= ~LOOKUP_RCU;
748 nd->path.mnt = NULL;
749 nd->path.dentry = NULL;
750 if (!(nd->flags & LOOKUP_ROOT))
751 nd->root.mnt = NULL;
752 rcu_read_unlock();
753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 return 0;
755 }
756 path_put(link);
757 return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766 * complete_walk - successful completion of path walk
767 * @nd: pointer nameidata
768 *
769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
770 * Revalidate the final result, unless we'd already done that during
771 * the path walk or the filesystem doesn't ask for it. Return 0 on
772 * success, -error on failure. In case of failure caller does not
773 * need to drop nd->path.
774 */
775 static int complete_walk(struct nameidata *nd)
776 {
777 struct dentry *dentry = nd->path.dentry;
778 int status;
779
780 if (nd->flags & LOOKUP_RCU) {
781 if (!(nd->flags & LOOKUP_ROOT))
782 nd->root.mnt = NULL;
783 if (unlikely(unlazy_walk(nd, NULL, 0)))
784 return -ECHILD;
785 }
786
787 if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 return 0;
789
790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 return 0;
792
793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 if (status > 0)
795 return 0;
796
797 if (!status)
798 status = -ESTALE;
799
800 return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805 struct fs_struct *fs = current->fs;
806
807 if (nd->flags & LOOKUP_RCU) {
808 unsigned seq;
809
810 do {
811 seq = read_seqcount_begin(&fs->seq);
812 nd->root = fs->root;
813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 } while (read_seqcount_retry(&fs->seq, seq));
815 } else {
816 get_fs_root(fs, &nd->root);
817 }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 dput(path->dentry);
823 if (path->mnt != nd->path.mnt)
824 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828 struct nameidata *nd)
829 {
830 if (!(nd->flags & LOOKUP_RCU)) {
831 dput(nd->path.dentry);
832 if (nd->path.mnt != path->mnt)
833 mntput(nd->path.mnt);
834 }
835 nd->path.mnt = path->mnt;
836 nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 if (nd->flags & LOOKUP_RCU) {
842 struct dentry *d;
843 nd->path = nd->root;
844 d = nd->path.dentry;
845 nd->inode = d->d_inode;
846 nd->seq = nd->root_seq;
847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 return -ECHILD;
849 } else {
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->path);
853 nd->inode = nd->path.dentry->d_inode;
854 }
855 nd->flags |= LOOKUP_JUMPED;
856 return 0;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->get_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 do_delayed_call(&last->done);
877 if (!(nd->flags & LOOKUP_RCU))
878 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885 * may_follow_link - Check symlink following for unsafe situations
886 * @nd: nameidata pathwalk data
887 *
888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890 * in a sticky world-writable directory. This is to protect privileged
891 * processes from failing races against path names that may change out
892 * from under them by way of other users creating malicious symlinks.
893 * It will permit symlinks to be followed only when outside a sticky
894 * world-writable directory, or when the uid of the symlink and follower
895 * match, or when the directory owner matches the symlink's owner.
896 *
897 * Returns 0 if following the symlink is allowed, -ve on error.
898 */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 const struct inode *inode;
902 const struct inode *parent;
903
904 if (!sysctl_protected_symlinks)
905 return 0;
906
907 /* Allowed if owner and follower match. */
908 inode = nd->link_inode;
909 if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 return 0;
911
912 /* Allowed if parent directory not sticky and world-writable. */
913 parent = nd->inode;
914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 return 0;
916
917 /* Allowed if parent directory and link owner match. */
918 if (uid_eq(parent->i_uid, inode->i_uid))
919 return 0;
920
921 if (nd->flags & LOOKUP_RCU)
922 return -ECHILD;
923
924 audit_log_link_denied("follow_link", &nd->stack[0].link);
925 return -EACCES;
926 }
927
928 /**
929 * safe_hardlink_source - Check for safe hardlink conditions
930 * @inode: the source inode to hardlink from
931 *
932 * Return false if at least one of the following conditions:
933 * - inode is not a regular file
934 * - inode is setuid
935 * - inode is setgid and group-exec
936 * - access failure for read and write
937 *
938 * Otherwise returns true.
939 */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 umode_t mode = inode->i_mode;
943
944 /* Special files should not get pinned to the filesystem. */
945 if (!S_ISREG(mode))
946 return false;
947
948 /* Setuid files should not get pinned to the filesystem. */
949 if (mode & S_ISUID)
950 return false;
951
952 /* Executable setgid files should not get pinned to the filesystem. */
953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 return false;
955
956 /* Hardlinking to unreadable or unwritable sources is dangerous. */
957 if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 return false;
959
960 return true;
961 }
962
963 /**
964 * may_linkat - Check permissions for creating a hardlink
965 * @link: the source to hardlink from
966 *
967 * Block hardlink when all of:
968 * - sysctl_protected_hardlinks enabled
969 * - fsuid does not match inode
970 * - hardlink source is unsafe (see safe_hardlink_source() above)
971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
972 *
973 * Returns 0 if successful, -ve on error.
974 */
975 static int may_linkat(struct path *link)
976 {
977 struct inode *inode;
978
979 if (!sysctl_protected_hardlinks)
980 return 0;
981
982 inode = link->dentry->d_inode;
983
984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 * otherwise, it must be a safe source.
986 */
987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 return 0;
989
990 audit_log_link_denied("linkat", link);
991 return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 struct saved *last = nd->stack + nd->depth - 1;
998 struct dentry *dentry = last->link.dentry;
999 struct inode *inode = nd->link_inode;
1000 int error;
1001 const char *res;
1002
1003 if (!(nd->flags & LOOKUP_RCU)) {
1004 touch_atime(&last->link);
1005 cond_resched();
1006 } else if (atime_needs_update(&last->link, inode)) {
1007 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 return ERR_PTR(-ECHILD);
1009 touch_atime(&last->link);
1010 }
1011
1012 error = security_inode_follow_link(dentry, inode,
1013 nd->flags & LOOKUP_RCU);
1014 if (unlikely(error))
1015 return ERR_PTR(error);
1016
1017 nd->last_type = LAST_BIND;
1018 res = inode->i_link;
1019 if (!res) {
1020 const char * (*get)(struct dentry *, struct inode *,
1021 struct delayed_call *);
1022 get = inode->i_op->get_link;
1023 if (nd->flags & LOOKUP_RCU) {
1024 res = get(NULL, inode, &last->done);
1025 if (res == ERR_PTR(-ECHILD)) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 res = get(dentry, inode, &last->done);
1029 }
1030 } else {
1031 res = get(dentry, inode, &last->done);
1032 }
1033 if (IS_ERR_OR_NULL(res))
1034 return res;
1035 }
1036 if (*res == '/') {
1037 if (!nd->root.mnt)
1038 set_root(nd);
1039 if (unlikely(nd_jump_root(nd)))
1040 return ERR_PTR(-ECHILD);
1041 while (unlikely(*++res == '/'))
1042 ;
1043 }
1044 if (!*res)
1045 res = NULL;
1046 return res;
1047 }
1048
1049 /*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059 int follow_up(struct path *path)
1060 {
1061 struct mount *mnt = real_mount(path->mnt);
1062 struct mount *parent;
1063 struct dentry *mountpoint;
1064
1065 read_seqlock_excl(&mount_lock);
1066 parent = mnt->mnt_parent;
1067 if (parent == mnt) {
1068 read_sequnlock_excl(&mount_lock);
1069 return 0;
1070 }
1071 mntget(&parent->mnt);
1072 mountpoint = dget(mnt->mnt_mountpoint);
1073 read_sequnlock_excl(&mount_lock);
1074 dput(path->dentry);
1075 path->dentry = mountpoint;
1076 mntput(path->mnt);
1077 path->mnt = &parent->mnt;
1078 return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 * were called with.
1086 */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 bool *need_mntput)
1089 {
1090 struct vfsmount *mnt;
1091 int err;
1092
1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 return -EREMOTE;
1095
1096 /* We don't want to mount if someone's just doing a stat -
1097 * unless they're stat'ing a directory and appended a '/' to
1098 * the name.
1099 *
1100 * We do, however, want to mount if someone wants to open or
1101 * create a file of any type under the mountpoint, wants to
1102 * traverse through the mountpoint or wants to open the
1103 * mounted directory. Also, autofs may mark negative dentries
1104 * as being automount points. These will need the attentions
1105 * of the daemon to instantiate them before they can be used.
1106 */
1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 path->dentry->d_inode)
1110 return -EISDIR;
1111
1112 nd->total_link_count++;
1113 if (nd->total_link_count >= 40)
1114 return -ELOOP;
1115
1116 mnt = path->dentry->d_op->d_automount(path);
1117 if (IS_ERR(mnt)) {
1118 /*
1119 * The filesystem is allowed to return -EISDIR here to indicate
1120 * it doesn't want to automount. For instance, autofs would do
1121 * this so that its userspace daemon can mount on this dentry.
1122 *
1123 * However, we can only permit this if it's a terminal point in
1124 * the path being looked up; if it wasn't then the remainder of
1125 * the path is inaccessible and we should say so.
1126 */
1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 return -EREMOTE;
1129 return PTR_ERR(mnt);
1130 }
1131
1132 if (!mnt) /* mount collision */
1133 return 0;
1134
1135 if (!*need_mntput) {
1136 /* lock_mount() may release path->mnt on error */
1137 mntget(path->mnt);
1138 *need_mntput = true;
1139 }
1140 err = finish_automount(mnt, path);
1141
1142 switch (err) {
1143 case -EBUSY:
1144 /* Someone else made a mount here whilst we were busy */
1145 return 0;
1146 case 0:
1147 path_put(path);
1148 path->mnt = mnt;
1149 path->dentry = dget(mnt->mnt_root);
1150 return 0;
1151 default:
1152 return err;
1153 }
1154
1155 }
1156
1157 /*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 unsigned managed;
1171 bool need_mntput = false;
1172 int ret = 0;
1173
1174 /* Given that we're not holding a lock here, we retain the value in a
1175 * local variable for each dentry as we look at it so that we don't see
1176 * the components of that value change under us */
1177 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 managed &= DCACHE_MANAGED_DENTRY,
1179 unlikely(managed != 0)) {
1180 /* Allow the filesystem to manage the transit without i_mutex
1181 * being held. */
1182 if (managed & DCACHE_MANAGE_TRANSIT) {
1183 BUG_ON(!path->dentry->d_op);
1184 BUG_ON(!path->dentry->d_op->d_manage);
1185 ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 if (ret < 0)
1187 break;
1188 }
1189
1190 /* Transit to a mounted filesystem. */
1191 if (managed & DCACHE_MOUNTED) {
1192 struct vfsmount *mounted = lookup_mnt(path);
1193 if (mounted) {
1194 dput(path->dentry);
1195 if (need_mntput)
1196 mntput(path->mnt);
1197 path->mnt = mounted;
1198 path->dentry = dget(mounted->mnt_root);
1199 need_mntput = true;
1200 continue;
1201 }
1202
1203 /* Something is mounted on this dentry in another
1204 * namespace and/or whatever was mounted there in this
1205 * namespace got unmounted before lookup_mnt() could
1206 * get it */
1207 }
1208
1209 /* Handle an automount point */
1210 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 ret = follow_automount(path, nd, &need_mntput);
1212 if (ret < 0)
1213 break;
1214 continue;
1215 }
1216
1217 /* We didn't change the current path point */
1218 break;
1219 }
1220
1221 if (need_mntput && path->mnt == mnt)
1222 mntput(path->mnt);
1223 if (ret == -EISDIR || !ret)
1224 ret = 1;
1225 if (need_mntput)
1226 nd->flags |= LOOKUP_JUMPED;
1227 if (unlikely(ret < 0))
1228 path_put_conditional(path, nd);
1229 return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234 struct vfsmount *mounted;
1235
1236 mounted = lookup_mnt(path);
1237 if (mounted) {
1238 dput(path->dentry);
1239 mntput(path->mnt);
1240 path->mnt = mounted;
1241 path->dentry = dget(mounted->mnt_root);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 struct inode **inode, unsigned *seqp)
1260 {
1261 for (;;) {
1262 struct mount *mounted;
1263 /*
1264 * Don't forget we might have a non-mountpoint managed dentry
1265 * that wants to block transit.
1266 */
1267 switch (managed_dentry_rcu(path->dentry)) {
1268 case -ECHILD:
1269 default:
1270 return false;
1271 case -EISDIR:
1272 return true;
1273 case 0:
1274 break;
1275 }
1276
1277 if (!d_mountpoint(path->dentry))
1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280 mounted = __lookup_mnt(path->mnt, path->dentry);
1281 if (!mounted)
1282 break;
1283 path->mnt = &mounted->mnt;
1284 path->dentry = mounted->mnt.mnt_root;
1285 nd->flags |= LOOKUP_JUMPED;
1286 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 /*
1288 * Update the inode too. We don't need to re-check the
1289 * dentry sequence number here after this d_inode read,
1290 * because a mount-point is always pinned.
1291 */
1292 *inode = path->dentry->d_inode;
1293 }
1294 return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 struct inode *inode = nd->inode;
1301
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1309
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1334 }
1335 }
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 }
1348 nd->inode = inode;
1349 return 0;
1350 }
1351
1352 /*
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357 int follow_down(struct path *path)
1358 {
1359 unsigned managed;
1360 int ret;
1361
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1366 *
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1371 *
1372 * The filesystem may sleep at this point.
1373 */
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1381 }
1382
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1393 }
1394
1395 /* Don't handle automount points here */
1396 break;
1397 }
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405 static void follow_mount(struct path *path)
1406 {
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1415 }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 while(1) {
1421 struct dentry *old = nd->path.dentry;
1422
1423 if (nd->path.dentry == nd->root.dentry &&
1424 nd->path.mnt == nd->root.mnt) {
1425 break;
1426 }
1427 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 /* rare case of legitimate dget_parent()... */
1429 nd->path.dentry = dget_parent(nd->path.dentry);
1430 dput(old);
1431 if (unlikely(!path_connected(&nd->path)))
1432 return -ENOENT;
1433 break;
1434 }
1435 if (!follow_up(&nd->path))
1436 break;
1437 }
1438 follow_mount(&nd->path);
1439 nd->inode = nd->path.dentry->d_inode;
1440 return 0;
1441 }
1442
1443 /*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid. In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449 struct dentry *dir,
1450 unsigned int flags)
1451 {
1452 struct dentry *dentry;
1453 int error;
1454
1455 dentry = d_lookup(dir, name);
1456 if (dentry) {
1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458 error = d_revalidate(dentry, flags);
1459 if (unlikely(error <= 0)) {
1460 if (!error)
1461 d_invalidate(dentry);
1462 dput(dentry);
1463 return ERR_PTR(error);
1464 }
1465 }
1466 }
1467 return dentry;
1468 }
1469
1470 /*
1471 * Call i_op->lookup on the dentry. The dentry must be negative and
1472 * unhashed.
1473 *
1474 * dir->d_inode->i_mutex must be held
1475 */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477 unsigned int flags)
1478 {
1479 struct dentry *old;
1480
1481 /* Don't create child dentry for a dead directory. */
1482 if (unlikely(IS_DEADDIR(dir))) {
1483 dput(dentry);
1484 return ERR_PTR(-ENOENT);
1485 }
1486
1487 old = dir->i_op->lookup(dir, dentry, flags);
1488 if (unlikely(old)) {
1489 dput(dentry);
1490 dentry = old;
1491 }
1492 return dentry;
1493 }
1494
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496 struct dentry *base, unsigned int flags)
1497 {
1498 struct dentry *dentry = lookup_dcache(name, base, flags);
1499
1500 if (dentry)
1501 return dentry;
1502
1503 dentry = d_alloc(base, name);
1504 if (unlikely(!dentry))
1505 return ERR_PTR(-ENOMEM);
1506
1507 return lookup_real(base->d_inode, dentry, flags);
1508 }
1509
1510 static int lookup_fast(struct nameidata *nd,
1511 struct path *path, struct inode **inode,
1512 unsigned *seqp)
1513 {
1514 struct vfsmount *mnt = nd->path.mnt;
1515 struct dentry *dentry, *parent = nd->path.dentry;
1516 int status = 1;
1517 int err;
1518
1519 /*
1520 * Rename seqlock is not required here because in the off chance
1521 * of a false negative due to a concurrent rename, the caller is
1522 * going to fall back to non-racy lookup.
1523 */
1524 if (nd->flags & LOOKUP_RCU) {
1525 unsigned seq;
1526 bool negative;
1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 if (unlikely(!dentry)) {
1529 if (unlazy_walk(nd, NULL, 0))
1530 return -ECHILD;
1531 return 0;
1532 }
1533
1534 /*
1535 * This sequence count validates that the inode matches
1536 * the dentry name information from lookup.
1537 */
1538 *inode = d_backing_inode(dentry);
1539 negative = d_is_negative(dentry);
1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541 return -ECHILD;
1542
1543 /*
1544 * This sequence count validates that the parent had no
1545 * changes while we did the lookup of the dentry above.
1546 *
1547 * The memory barrier in read_seqcount_begin of child is
1548 * enough, we can use __read_seqcount_retry here.
1549 */
1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551 return -ECHILD;
1552
1553 *seqp = seq;
1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555 status = d_revalidate(dentry, nd->flags);
1556 if (unlikely(status <= 0)) {
1557 if (unlazy_walk(nd, dentry, seq))
1558 return -ECHILD;
1559 if (status == -ECHILD)
1560 status = d_revalidate(dentry, nd->flags);
1561 } else {
1562 /*
1563 * Note: do negative dentry check after revalidation in
1564 * case that drops it.
1565 */
1566 if (unlikely(negative))
1567 return -ENOENT;
1568 path->mnt = mnt;
1569 path->dentry = dentry;
1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 return 1;
1572 if (unlazy_walk(nd, dentry, seq))
1573 return -ECHILD;
1574 }
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580 status = d_revalidate(dentry, nd->flags);
1581 }
1582 if (unlikely(status <= 0)) {
1583 if (!status)
1584 d_invalidate(dentry);
1585 dput(dentry);
1586 return status;
1587 }
1588 if (unlikely(d_is_negative(dentry))) {
1589 dput(dentry);
1590 return -ENOENT;
1591 }
1592
1593 path->mnt = mnt;
1594 path->dentry = dentry;
1595 err = follow_managed(path, nd);
1596 if (likely(err > 0))
1597 *inode = d_backing_inode(path->dentry);
1598 return err;
1599 }
1600
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603 struct dentry *dir,
1604 unsigned int flags)
1605 {
1606 struct dentry *dentry;
1607 inode_lock(dir->d_inode);
1608 dentry = d_lookup(dir, name);
1609 if (unlikely(dentry)) {
1610 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1611 !(flags & LOOKUP_NO_REVAL)) {
1612 int error = d_revalidate(dentry, flags);
1613 if (unlikely(error <= 0)) {
1614 if (!error)
1615 d_invalidate(dentry);
1616 dput(dentry);
1617 dentry = ERR_PTR(error);
1618 }
1619 }
1620 if (dentry) {
1621 inode_unlock(dir->d_inode);
1622 return dentry;
1623 }
1624 }
1625 dentry = d_alloc(dir, name);
1626 if (unlikely(!dentry)) {
1627 inode_unlock(dir->d_inode);
1628 return ERR_PTR(-ENOMEM);
1629 }
1630 dentry = lookup_real(dir->d_inode, dentry, flags);
1631 inode_unlock(dir->d_inode);
1632 return dentry;
1633 }
1634
1635 static inline int may_lookup(struct nameidata *nd)
1636 {
1637 if (nd->flags & LOOKUP_RCU) {
1638 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1639 if (err != -ECHILD)
1640 return err;
1641 if (unlazy_walk(nd, NULL, 0))
1642 return -ECHILD;
1643 }
1644 return inode_permission(nd->inode, MAY_EXEC);
1645 }
1646
1647 static inline int handle_dots(struct nameidata *nd, int type)
1648 {
1649 if (type == LAST_DOTDOT) {
1650 if (!nd->root.mnt)
1651 set_root(nd);
1652 if (nd->flags & LOOKUP_RCU) {
1653 return follow_dotdot_rcu(nd);
1654 } else
1655 return follow_dotdot(nd);
1656 }
1657 return 0;
1658 }
1659
1660 static int pick_link(struct nameidata *nd, struct path *link,
1661 struct inode *inode, unsigned seq)
1662 {
1663 int error;
1664 struct saved *last;
1665 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1666 path_to_nameidata(link, nd);
1667 return -ELOOP;
1668 }
1669 if (!(nd->flags & LOOKUP_RCU)) {
1670 if (link->mnt == nd->path.mnt)
1671 mntget(link->mnt);
1672 }
1673 error = nd_alloc_stack(nd);
1674 if (unlikely(error)) {
1675 if (error == -ECHILD) {
1676 if (unlikely(unlazy_link(nd, link, seq)))
1677 return -ECHILD;
1678 error = nd_alloc_stack(nd);
1679 }
1680 if (error) {
1681 path_put(link);
1682 return error;
1683 }
1684 }
1685
1686 last = nd->stack + nd->depth++;
1687 last->link = *link;
1688 clear_delayed_call(&last->done);
1689 nd->link_inode = inode;
1690 last->seq = seq;
1691 return 1;
1692 }
1693
1694 /*
1695 * Do we need to follow links? We _really_ want to be able
1696 * to do this check without having to look at inode->i_op,
1697 * so we keep a cache of "no, this doesn't need follow_link"
1698 * for the common case.
1699 */
1700 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1701 int follow,
1702 struct inode *inode, unsigned seq)
1703 {
1704 if (likely(!d_is_symlink(link->dentry)))
1705 return 0;
1706 if (!follow)
1707 return 0;
1708 /* make sure that d_is_symlink above matches inode */
1709 if (nd->flags & LOOKUP_RCU) {
1710 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1711 return -ECHILD;
1712 }
1713 return pick_link(nd, link, inode, seq);
1714 }
1715
1716 enum {WALK_GET = 1, WALK_PUT = 2};
1717
1718 static int walk_component(struct nameidata *nd, int flags)
1719 {
1720 struct path path;
1721 struct inode *inode;
1722 unsigned seq;
1723 int err;
1724 /*
1725 * "." and ".." are special - ".." especially so because it has
1726 * to be able to know about the current root directory and
1727 * parent relationships.
1728 */
1729 if (unlikely(nd->last_type != LAST_NORM)) {
1730 err = handle_dots(nd, nd->last_type);
1731 if (flags & WALK_PUT)
1732 put_link(nd);
1733 return err;
1734 }
1735 err = lookup_fast(nd, &path, &inode, &seq);
1736 if (unlikely(err <= 0)) {
1737 if (err < 0)
1738 return err;
1739 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1740 nd->flags);
1741 if (IS_ERR(path.dentry))
1742 return PTR_ERR(path.dentry);
1743
1744 path.mnt = nd->path.mnt;
1745 err = follow_managed(&path, nd);
1746 if (unlikely(err < 0))
1747 return err;
1748
1749 if (unlikely(d_is_negative(path.dentry))) {
1750 path_to_nameidata(&path, nd);
1751 return -ENOENT;
1752 }
1753
1754 seq = 0; /* we are already out of RCU mode */
1755 inode = d_backing_inode(path.dentry);
1756 }
1757
1758 if (flags & WALK_PUT)
1759 put_link(nd);
1760 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1761 if (unlikely(err))
1762 return err;
1763 path_to_nameidata(&path, nd);
1764 nd->inode = inode;
1765 nd->seq = seq;
1766 return 0;
1767 }
1768
1769 /*
1770 * We can do the critical dentry name comparison and hashing
1771 * operations one word at a time, but we are limited to:
1772 *
1773 * - Architectures with fast unaligned word accesses. We could
1774 * do a "get_unaligned()" if this helps and is sufficiently
1775 * fast.
1776 *
1777 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1778 * do not trap on the (extremely unlikely) case of a page
1779 * crossing operation.
1780 *
1781 * - Furthermore, we need an efficient 64-bit compile for the
1782 * 64-bit case in order to generate the "number of bytes in
1783 * the final mask". Again, that could be replaced with a
1784 * efficient population count instruction or similar.
1785 */
1786 #ifdef CONFIG_DCACHE_WORD_ACCESS
1787
1788 #include <asm/word-at-a-time.h>
1789
1790 #ifdef CONFIG_64BIT
1791
1792 static inline unsigned int fold_hash(unsigned long hash)
1793 {
1794 return hash_64(hash, 32);
1795 }
1796
1797 #else /* 32-bit case */
1798
1799 #define fold_hash(x) (x)
1800
1801 #endif
1802
1803 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1804 {
1805 unsigned long a, mask;
1806 unsigned long hash = 0;
1807
1808 for (;;) {
1809 a = load_unaligned_zeropad(name);
1810 if (len < sizeof(unsigned long))
1811 break;
1812 hash += a;
1813 hash *= 9;
1814 name += sizeof(unsigned long);
1815 len -= sizeof(unsigned long);
1816 if (!len)
1817 goto done;
1818 }
1819 mask = bytemask_from_count(len);
1820 hash += mask & a;
1821 done:
1822 return fold_hash(hash);
1823 }
1824 EXPORT_SYMBOL(full_name_hash);
1825
1826 /*
1827 * Calculate the length and hash of the path component, and
1828 * return the "hash_len" as the result.
1829 */
1830 static inline u64 hash_name(const char *name)
1831 {
1832 unsigned long a, b, adata, bdata, mask, hash, len;
1833 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1834
1835 hash = a = 0;
1836 len = -sizeof(unsigned long);
1837 do {
1838 hash = (hash + a) * 9;
1839 len += sizeof(unsigned long);
1840 a = load_unaligned_zeropad(name+len);
1841 b = a ^ REPEAT_BYTE('/');
1842 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1843
1844 adata = prep_zero_mask(a, adata, &constants);
1845 bdata = prep_zero_mask(b, bdata, &constants);
1846
1847 mask = create_zero_mask(adata | bdata);
1848
1849 hash += a & zero_bytemask(mask);
1850 len += find_zero(mask);
1851 return hashlen_create(fold_hash(hash), len);
1852 }
1853
1854 #else
1855
1856 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1857 {
1858 unsigned long hash = init_name_hash();
1859 while (len--)
1860 hash = partial_name_hash(*name++, hash);
1861 return end_name_hash(hash);
1862 }
1863 EXPORT_SYMBOL(full_name_hash);
1864
1865 /*
1866 * We know there's a real path component here of at least
1867 * one character.
1868 */
1869 static inline u64 hash_name(const char *name)
1870 {
1871 unsigned long hash = init_name_hash();
1872 unsigned long len = 0, c;
1873
1874 c = (unsigned char)*name;
1875 do {
1876 len++;
1877 hash = partial_name_hash(c, hash);
1878 c = (unsigned char)name[len];
1879 } while (c && c != '/');
1880 return hashlen_create(end_name_hash(hash), len);
1881 }
1882
1883 #endif
1884
1885 /*
1886 * Name resolution.
1887 * This is the basic name resolution function, turning a pathname into
1888 * the final dentry. We expect 'base' to be positive and a directory.
1889 *
1890 * Returns 0 and nd will have valid dentry and mnt on success.
1891 * Returns error and drops reference to input namei data on failure.
1892 */
1893 static int link_path_walk(const char *name, struct nameidata *nd)
1894 {
1895 int err;
1896
1897 while (*name=='/')
1898 name++;
1899 if (!*name)
1900 return 0;
1901
1902 /* At this point we know we have a real path component. */
1903 for(;;) {
1904 u64 hash_len;
1905 int type;
1906
1907 err = may_lookup(nd);
1908 if (err)
1909 return err;
1910
1911 hash_len = hash_name(name);
1912
1913 type = LAST_NORM;
1914 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1915 case 2:
1916 if (name[1] == '.') {
1917 type = LAST_DOTDOT;
1918 nd->flags |= LOOKUP_JUMPED;
1919 }
1920 break;
1921 case 1:
1922 type = LAST_DOT;
1923 }
1924 if (likely(type == LAST_NORM)) {
1925 struct dentry *parent = nd->path.dentry;
1926 nd->flags &= ~LOOKUP_JUMPED;
1927 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1928 struct qstr this = { { .hash_len = hash_len }, .name = name };
1929 err = parent->d_op->d_hash(parent, &this);
1930 if (err < 0)
1931 return err;
1932 hash_len = this.hash_len;
1933 name = this.name;
1934 }
1935 }
1936
1937 nd->last.hash_len = hash_len;
1938 nd->last.name = name;
1939 nd->last_type = type;
1940
1941 name += hashlen_len(hash_len);
1942 if (!*name)
1943 goto OK;
1944 /*
1945 * If it wasn't NUL, we know it was '/'. Skip that
1946 * slash, and continue until no more slashes.
1947 */
1948 do {
1949 name++;
1950 } while (unlikely(*name == '/'));
1951 if (unlikely(!*name)) {
1952 OK:
1953 /* pathname body, done */
1954 if (!nd->depth)
1955 return 0;
1956 name = nd->stack[nd->depth - 1].name;
1957 /* trailing symlink, done */
1958 if (!name)
1959 return 0;
1960 /* last component of nested symlink */
1961 err = walk_component(nd, WALK_GET | WALK_PUT);
1962 } else {
1963 err = walk_component(nd, WALK_GET);
1964 }
1965 if (err < 0)
1966 return err;
1967
1968 if (err) {
1969 const char *s = get_link(nd);
1970
1971 if (IS_ERR(s))
1972 return PTR_ERR(s);
1973 err = 0;
1974 if (unlikely(!s)) {
1975 /* jumped */
1976 put_link(nd);
1977 } else {
1978 nd->stack[nd->depth - 1].name = name;
1979 name = s;
1980 continue;
1981 }
1982 }
1983 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1984 if (nd->flags & LOOKUP_RCU) {
1985 if (unlazy_walk(nd, NULL, 0))
1986 return -ECHILD;
1987 }
1988 return -ENOTDIR;
1989 }
1990 }
1991 }
1992
1993 static const char *path_init(struct nameidata *nd, unsigned flags)
1994 {
1995 int retval = 0;
1996 const char *s = nd->name->name;
1997
1998 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1999 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2000 nd->depth = 0;
2001 if (flags & LOOKUP_ROOT) {
2002 struct dentry *root = nd->root.dentry;
2003 struct inode *inode = root->d_inode;
2004 if (*s) {
2005 if (!d_can_lookup(root))
2006 return ERR_PTR(-ENOTDIR);
2007 retval = inode_permission(inode, MAY_EXEC);
2008 if (retval)
2009 return ERR_PTR(retval);
2010 }
2011 nd->path = nd->root;
2012 nd->inode = inode;
2013 if (flags & LOOKUP_RCU) {
2014 rcu_read_lock();
2015 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2016 nd->root_seq = nd->seq;
2017 nd->m_seq = read_seqbegin(&mount_lock);
2018 } else {
2019 path_get(&nd->path);
2020 }
2021 return s;
2022 }
2023
2024 nd->root.mnt = NULL;
2025 nd->path.mnt = NULL;
2026 nd->path.dentry = NULL;
2027
2028 nd->m_seq = read_seqbegin(&mount_lock);
2029 if (*s == '/') {
2030 if (flags & LOOKUP_RCU)
2031 rcu_read_lock();
2032 set_root(nd);
2033 if (likely(!nd_jump_root(nd)))
2034 return s;
2035 nd->root.mnt = NULL;
2036 rcu_read_unlock();
2037 return ERR_PTR(-ECHILD);
2038 } else if (nd->dfd == AT_FDCWD) {
2039 if (flags & LOOKUP_RCU) {
2040 struct fs_struct *fs = current->fs;
2041 unsigned seq;
2042
2043 rcu_read_lock();
2044
2045 do {
2046 seq = read_seqcount_begin(&fs->seq);
2047 nd->path = fs->pwd;
2048 nd->inode = nd->path.dentry->d_inode;
2049 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2050 } while (read_seqcount_retry(&fs->seq, seq));
2051 } else {
2052 get_fs_pwd(current->fs, &nd->path);
2053 nd->inode = nd->path.dentry->d_inode;
2054 }
2055 return s;
2056 } else {
2057 /* Caller must check execute permissions on the starting path component */
2058 struct fd f = fdget_raw(nd->dfd);
2059 struct dentry *dentry;
2060
2061 if (!f.file)
2062 return ERR_PTR(-EBADF);
2063
2064 dentry = f.file->f_path.dentry;
2065
2066 if (*s) {
2067 if (!d_can_lookup(dentry)) {
2068 fdput(f);
2069 return ERR_PTR(-ENOTDIR);
2070 }
2071 }
2072
2073 nd->path = f.file->f_path;
2074 if (flags & LOOKUP_RCU) {
2075 rcu_read_lock();
2076 nd->inode = nd->path.dentry->d_inode;
2077 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2078 } else {
2079 path_get(&nd->path);
2080 nd->inode = nd->path.dentry->d_inode;
2081 }
2082 fdput(f);
2083 return s;
2084 }
2085 }
2086
2087 static const char *trailing_symlink(struct nameidata *nd)
2088 {
2089 const char *s;
2090 int error = may_follow_link(nd);
2091 if (unlikely(error))
2092 return ERR_PTR(error);
2093 nd->flags |= LOOKUP_PARENT;
2094 nd->stack[0].name = NULL;
2095 s = get_link(nd);
2096 return s ? s : "";
2097 }
2098
2099 static inline int lookup_last(struct nameidata *nd)
2100 {
2101 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2102 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2103
2104 nd->flags &= ~LOOKUP_PARENT;
2105 return walk_component(nd,
2106 nd->flags & LOOKUP_FOLLOW
2107 ? nd->depth
2108 ? WALK_PUT | WALK_GET
2109 : WALK_GET
2110 : 0);
2111 }
2112
2113 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2114 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2115 {
2116 const char *s = path_init(nd, flags);
2117 int err;
2118
2119 if (IS_ERR(s))
2120 return PTR_ERR(s);
2121 while (!(err = link_path_walk(s, nd))
2122 && ((err = lookup_last(nd)) > 0)) {
2123 s = trailing_symlink(nd);
2124 if (IS_ERR(s)) {
2125 err = PTR_ERR(s);
2126 break;
2127 }
2128 }
2129 if (!err)
2130 err = complete_walk(nd);
2131
2132 if (!err && nd->flags & LOOKUP_DIRECTORY)
2133 if (!d_can_lookup(nd->path.dentry))
2134 err = -ENOTDIR;
2135 if (!err) {
2136 *path = nd->path;
2137 nd->path.mnt = NULL;
2138 nd->path.dentry = NULL;
2139 }
2140 terminate_walk(nd);
2141 return err;
2142 }
2143
2144 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2145 struct path *path, struct path *root)
2146 {
2147 int retval;
2148 struct nameidata nd;
2149 if (IS_ERR(name))
2150 return PTR_ERR(name);
2151 if (unlikely(root)) {
2152 nd.root = *root;
2153 flags |= LOOKUP_ROOT;
2154 }
2155 set_nameidata(&nd, dfd, name);
2156 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2157 if (unlikely(retval == -ECHILD))
2158 retval = path_lookupat(&nd, flags, path);
2159 if (unlikely(retval == -ESTALE))
2160 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2161
2162 if (likely(!retval))
2163 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2164 restore_nameidata();
2165 putname(name);
2166 return retval;
2167 }
2168
2169 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2170 static int path_parentat(struct nameidata *nd, unsigned flags,
2171 struct path *parent)
2172 {
2173 const char *s = path_init(nd, flags);
2174 int err;
2175 if (IS_ERR(s))
2176 return PTR_ERR(s);
2177 err = link_path_walk(s, nd);
2178 if (!err)
2179 err = complete_walk(nd);
2180 if (!err) {
2181 *parent = nd->path;
2182 nd->path.mnt = NULL;
2183 nd->path.dentry = NULL;
2184 }
2185 terminate_walk(nd);
2186 return err;
2187 }
2188
2189 static struct filename *filename_parentat(int dfd, struct filename *name,
2190 unsigned int flags, struct path *parent,
2191 struct qstr *last, int *type)
2192 {
2193 int retval;
2194 struct nameidata nd;
2195
2196 if (IS_ERR(name))
2197 return name;
2198 set_nameidata(&nd, dfd, name);
2199 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2200 if (unlikely(retval == -ECHILD))
2201 retval = path_parentat(&nd, flags, parent);
2202 if (unlikely(retval == -ESTALE))
2203 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2204 if (likely(!retval)) {
2205 *last = nd.last;
2206 *type = nd.last_type;
2207 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2208 } else {
2209 putname(name);
2210 name = ERR_PTR(retval);
2211 }
2212 restore_nameidata();
2213 return name;
2214 }
2215
2216 /* does lookup, returns the object with parent locked */
2217 struct dentry *kern_path_locked(const char *name, struct path *path)
2218 {
2219 struct filename *filename;
2220 struct dentry *d;
2221 struct qstr last;
2222 int type;
2223
2224 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2225 &last, &type);
2226 if (IS_ERR(filename))
2227 return ERR_CAST(filename);
2228 if (unlikely(type != LAST_NORM)) {
2229 path_put(path);
2230 putname(filename);
2231 return ERR_PTR(-EINVAL);
2232 }
2233 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2234 d = __lookup_hash(&last, path->dentry, 0);
2235 if (IS_ERR(d)) {
2236 inode_unlock(path->dentry->d_inode);
2237 path_put(path);
2238 }
2239 putname(filename);
2240 return d;
2241 }
2242
2243 int kern_path(const char *name, unsigned int flags, struct path *path)
2244 {
2245 return filename_lookup(AT_FDCWD, getname_kernel(name),
2246 flags, path, NULL);
2247 }
2248 EXPORT_SYMBOL(kern_path);
2249
2250 /**
2251 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2252 * @dentry: pointer to dentry of the base directory
2253 * @mnt: pointer to vfs mount of the base directory
2254 * @name: pointer to file name
2255 * @flags: lookup flags
2256 * @path: pointer to struct path to fill
2257 */
2258 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2259 const char *name, unsigned int flags,
2260 struct path *path)
2261 {
2262 struct path root = {.mnt = mnt, .dentry = dentry};
2263 /* the first argument of filename_lookup() is ignored with root */
2264 return filename_lookup(AT_FDCWD, getname_kernel(name),
2265 flags , path, &root);
2266 }
2267 EXPORT_SYMBOL(vfs_path_lookup);
2268
2269 /**
2270 * lookup_one_len - filesystem helper to lookup single pathname component
2271 * @name: pathname component to lookup
2272 * @base: base directory to lookup from
2273 * @len: maximum length @len should be interpreted to
2274 *
2275 * Note that this routine is purely a helper for filesystem usage and should
2276 * not be called by generic code.
2277 *
2278 * The caller must hold base->i_mutex.
2279 */
2280 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2281 {
2282 struct qstr this;
2283 unsigned int c;
2284 int err;
2285
2286 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2287
2288 this.name = name;
2289 this.len = len;
2290 this.hash = full_name_hash(name, len);
2291 if (!len)
2292 return ERR_PTR(-EACCES);
2293
2294 if (unlikely(name[0] == '.')) {
2295 if (len < 2 || (len == 2 && name[1] == '.'))
2296 return ERR_PTR(-EACCES);
2297 }
2298
2299 while (len--) {
2300 c = *(const unsigned char *)name++;
2301 if (c == '/' || c == '\0')
2302 return ERR_PTR(-EACCES);
2303 }
2304 /*
2305 * See if the low-level filesystem might want
2306 * to use its own hash..
2307 */
2308 if (base->d_flags & DCACHE_OP_HASH) {
2309 int err = base->d_op->d_hash(base, &this);
2310 if (err < 0)
2311 return ERR_PTR(err);
2312 }
2313
2314 err = inode_permission(base->d_inode, MAY_EXEC);
2315 if (err)
2316 return ERR_PTR(err);
2317
2318 return __lookup_hash(&this, base, 0);
2319 }
2320 EXPORT_SYMBOL(lookup_one_len);
2321
2322 /**
2323 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2324 * @name: pathname component to lookup
2325 * @base: base directory to lookup from
2326 * @len: maximum length @len should be interpreted to
2327 *
2328 * Note that this routine is purely a helper for filesystem usage and should
2329 * not be called by generic code.
2330 *
2331 * Unlike lookup_one_len, it should be called without the parent
2332 * i_mutex held, and will take the i_mutex itself if necessary.
2333 */
2334 struct dentry *lookup_one_len_unlocked(const char *name,
2335 struct dentry *base, int len)
2336 {
2337 struct qstr this;
2338 unsigned int c;
2339 int err;
2340 struct dentry *ret;
2341
2342 this.name = name;
2343 this.len = len;
2344 this.hash = full_name_hash(name, len);
2345 if (!len)
2346 return ERR_PTR(-EACCES);
2347
2348 if (unlikely(name[0] == '.')) {
2349 if (len < 2 || (len == 2 && name[1] == '.'))
2350 return ERR_PTR(-EACCES);
2351 }
2352
2353 while (len--) {
2354 c = *(const unsigned char *)name++;
2355 if (c == '/' || c == '\0')
2356 return ERR_PTR(-EACCES);
2357 }
2358 /*
2359 * See if the low-level filesystem might want
2360 * to use its own hash..
2361 */
2362 if (base->d_flags & DCACHE_OP_HASH) {
2363 int err = base->d_op->d_hash(base, &this);
2364 if (err < 0)
2365 return ERR_PTR(err);
2366 }
2367
2368 err = inode_permission(base->d_inode, MAY_EXEC);
2369 if (err)
2370 return ERR_PTR(err);
2371
2372 ret = lookup_dcache(&this, base, 0);
2373 if (!ret)
2374 ret = lookup_slow(&this, base, 0);
2375 return ret;
2376 }
2377 EXPORT_SYMBOL(lookup_one_len_unlocked);
2378
2379 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2380 struct path *path, int *empty)
2381 {
2382 return filename_lookup(dfd, getname_flags(name, flags, empty),
2383 flags, path, NULL);
2384 }
2385 EXPORT_SYMBOL(user_path_at_empty);
2386
2387 /*
2388 * NB: most callers don't do anything directly with the reference to the
2389 * to struct filename, but the nd->last pointer points into the name string
2390 * allocated by getname. So we must hold the reference to it until all
2391 * path-walking is complete.
2392 */
2393 static inline struct filename *
2394 user_path_parent(int dfd, const char __user *path,
2395 struct path *parent,
2396 struct qstr *last,
2397 int *type,
2398 unsigned int flags)
2399 {
2400 /* only LOOKUP_REVAL is allowed in extra flags */
2401 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2402 parent, last, type);
2403 }
2404
2405 /**
2406 * mountpoint_last - look up last component for umount
2407 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2408 * @path: pointer to container for result
2409 *
2410 * This is a special lookup_last function just for umount. In this case, we
2411 * need to resolve the path without doing any revalidation.
2412 *
2413 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2414 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2415 * in almost all cases, this lookup will be served out of the dcache. The only
2416 * cases where it won't are if nd->last refers to a symlink or the path is
2417 * bogus and it doesn't exist.
2418 *
2419 * Returns:
2420 * -error: if there was an error during lookup. This includes -ENOENT if the
2421 * lookup found a negative dentry. The nd->path reference will also be
2422 * put in this case.
2423 *
2424 * 0: if we successfully resolved nd->path and found it to not to be a
2425 * symlink that needs to be followed. "path" will also be populated.
2426 * The nd->path reference will also be put.
2427 *
2428 * 1: if we successfully resolved nd->last and found it to be a symlink
2429 * that needs to be followed. "path" will be populated with the path
2430 * to the link, and nd->path will *not* be put.
2431 */
2432 static int
2433 mountpoint_last(struct nameidata *nd, struct path *path)
2434 {
2435 int error = 0;
2436 struct dentry *dentry;
2437 struct dentry *dir = nd->path.dentry;
2438
2439 /* If we're in rcuwalk, drop out of it to handle last component */
2440 if (nd->flags & LOOKUP_RCU) {
2441 if (unlazy_walk(nd, NULL, 0))
2442 return -ECHILD;
2443 }
2444
2445 nd->flags &= ~LOOKUP_PARENT;
2446
2447 if (unlikely(nd->last_type != LAST_NORM)) {
2448 error = handle_dots(nd, nd->last_type);
2449 if (error)
2450 return error;
2451 dentry = dget(nd->path.dentry);
2452 } else {
2453 dentry = d_lookup(dir, &nd->last);
2454 if (!dentry) {
2455 /*
2456 * No cached dentry. Mounted dentries are pinned in the
2457 * cache, so that means that this dentry is probably
2458 * a symlink or the path doesn't actually point
2459 * to a mounted dentry.
2460 */
2461 dentry = lookup_slow(&nd->last, dir,
2462 nd->flags | LOOKUP_NO_REVAL);
2463 if (IS_ERR(dentry))
2464 return PTR_ERR(dentry);
2465 }
2466 }
2467 if (d_is_negative(dentry)) {
2468 dput(dentry);
2469 return -ENOENT;
2470 }
2471 if (nd->depth)
2472 put_link(nd);
2473 path->dentry = dentry;
2474 path->mnt = nd->path.mnt;
2475 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2476 d_backing_inode(dentry), 0);
2477 if (unlikely(error))
2478 return error;
2479 mntget(path->mnt);
2480 follow_mount(path);
2481 return 0;
2482 }
2483
2484 /**
2485 * path_mountpoint - look up a path to be umounted
2486 * @nd: lookup context
2487 * @flags: lookup flags
2488 * @path: pointer to container for result
2489 *
2490 * Look up the given name, but don't attempt to revalidate the last component.
2491 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2492 */
2493 static int
2494 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2495 {
2496 const char *s = path_init(nd, flags);
2497 int err;
2498 if (IS_ERR(s))
2499 return PTR_ERR(s);
2500 while (!(err = link_path_walk(s, nd)) &&
2501 (err = mountpoint_last(nd, path)) > 0) {
2502 s = trailing_symlink(nd);
2503 if (IS_ERR(s)) {
2504 err = PTR_ERR(s);
2505 break;
2506 }
2507 }
2508 terminate_walk(nd);
2509 return err;
2510 }
2511
2512 static int
2513 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2514 unsigned int flags)
2515 {
2516 struct nameidata nd;
2517 int error;
2518 if (IS_ERR(name))
2519 return PTR_ERR(name);
2520 set_nameidata(&nd, dfd, name);
2521 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2522 if (unlikely(error == -ECHILD))
2523 error = path_mountpoint(&nd, flags, path);
2524 if (unlikely(error == -ESTALE))
2525 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2526 if (likely(!error))
2527 audit_inode(name, path->dentry, 0);
2528 restore_nameidata();
2529 putname(name);
2530 return error;
2531 }
2532
2533 /**
2534 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2535 * @dfd: directory file descriptor
2536 * @name: pathname from userland
2537 * @flags: lookup flags
2538 * @path: pointer to container to hold result
2539 *
2540 * A umount is a special case for path walking. We're not actually interested
2541 * in the inode in this situation, and ESTALE errors can be a problem. We
2542 * simply want track down the dentry and vfsmount attached at the mountpoint
2543 * and avoid revalidating the last component.
2544 *
2545 * Returns 0 and populates "path" on success.
2546 */
2547 int
2548 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2549 struct path *path)
2550 {
2551 return filename_mountpoint(dfd, getname(name), path, flags);
2552 }
2553
2554 int
2555 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2556 unsigned int flags)
2557 {
2558 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2559 }
2560 EXPORT_SYMBOL(kern_path_mountpoint);
2561
2562 int __check_sticky(struct inode *dir, struct inode *inode)
2563 {
2564 kuid_t fsuid = current_fsuid();
2565
2566 if (uid_eq(inode->i_uid, fsuid))
2567 return 0;
2568 if (uid_eq(dir->i_uid, fsuid))
2569 return 0;
2570 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2571 }
2572 EXPORT_SYMBOL(__check_sticky);
2573
2574 /*
2575 * Check whether we can remove a link victim from directory dir, check
2576 * whether the type of victim is right.
2577 * 1. We can't do it if dir is read-only (done in permission())
2578 * 2. We should have write and exec permissions on dir
2579 * 3. We can't remove anything from append-only dir
2580 * 4. We can't do anything with immutable dir (done in permission())
2581 * 5. If the sticky bit on dir is set we should either
2582 * a. be owner of dir, or
2583 * b. be owner of victim, or
2584 * c. have CAP_FOWNER capability
2585 * 6. If the victim is append-only or immutable we can't do antyhing with
2586 * links pointing to it.
2587 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2588 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2589 * 9. We can't remove a root or mountpoint.
2590 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2591 * nfs_async_unlink().
2592 */
2593 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2594 {
2595 struct inode *inode = d_backing_inode(victim);
2596 int error;
2597
2598 if (d_is_negative(victim))
2599 return -ENOENT;
2600 BUG_ON(!inode);
2601
2602 BUG_ON(victim->d_parent->d_inode != dir);
2603 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2604
2605 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2606 if (error)
2607 return error;
2608 if (IS_APPEND(dir))
2609 return -EPERM;
2610
2611 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2612 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2613 return -EPERM;
2614 if (isdir) {
2615 if (!d_is_dir(victim))
2616 return -ENOTDIR;
2617 if (IS_ROOT(victim))
2618 return -EBUSY;
2619 } else if (d_is_dir(victim))
2620 return -EISDIR;
2621 if (IS_DEADDIR(dir))
2622 return -ENOENT;
2623 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2624 return -EBUSY;
2625 return 0;
2626 }
2627
2628 /* Check whether we can create an object with dentry child in directory
2629 * dir.
2630 * 1. We can't do it if child already exists (open has special treatment for
2631 * this case, but since we are inlined it's OK)
2632 * 2. We can't do it if dir is read-only (done in permission())
2633 * 3. We should have write and exec permissions on dir
2634 * 4. We can't do it if dir is immutable (done in permission())
2635 */
2636 static inline int may_create(struct inode *dir, struct dentry *child)
2637 {
2638 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2639 if (child->d_inode)
2640 return -EEXIST;
2641 if (IS_DEADDIR(dir))
2642 return -ENOENT;
2643 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2644 }
2645
2646 /*
2647 * p1 and p2 should be directories on the same fs.
2648 */
2649 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2650 {
2651 struct dentry *p;
2652
2653 if (p1 == p2) {
2654 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2655 return NULL;
2656 }
2657
2658 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2659
2660 p = d_ancestor(p2, p1);
2661 if (p) {
2662 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2663 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2664 return p;
2665 }
2666
2667 p = d_ancestor(p1, p2);
2668 if (p) {
2669 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2670 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2671 return p;
2672 }
2673
2674 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2675 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2676 return NULL;
2677 }
2678 EXPORT_SYMBOL(lock_rename);
2679
2680 void unlock_rename(struct dentry *p1, struct dentry *p2)
2681 {
2682 inode_unlock(p1->d_inode);
2683 if (p1 != p2) {
2684 inode_unlock(p2->d_inode);
2685 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2686 }
2687 }
2688 EXPORT_SYMBOL(unlock_rename);
2689
2690 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2691 bool want_excl)
2692 {
2693 int error = may_create(dir, dentry);
2694 if (error)
2695 return error;
2696
2697 if (!dir->i_op->create)
2698 return -EACCES; /* shouldn't it be ENOSYS? */
2699 mode &= S_IALLUGO;
2700 mode |= S_IFREG;
2701 error = security_inode_create(dir, dentry, mode);
2702 if (error)
2703 return error;
2704 error = dir->i_op->create(dir, dentry, mode, want_excl);
2705 if (!error)
2706 fsnotify_create(dir, dentry);
2707 return error;
2708 }
2709 EXPORT_SYMBOL(vfs_create);
2710
2711 static int may_open(struct path *path, int acc_mode, int flag)
2712 {
2713 struct dentry *dentry = path->dentry;
2714 struct inode *inode = dentry->d_inode;
2715 int error;
2716
2717 if (!inode)
2718 return -ENOENT;
2719
2720 switch (inode->i_mode & S_IFMT) {
2721 case S_IFLNK:
2722 return -ELOOP;
2723 case S_IFDIR:
2724 if (acc_mode & MAY_WRITE)
2725 return -EISDIR;
2726 break;
2727 case S_IFBLK:
2728 case S_IFCHR:
2729 if (path->mnt->mnt_flags & MNT_NODEV)
2730 return -EACCES;
2731 /*FALLTHRU*/
2732 case S_IFIFO:
2733 case S_IFSOCK:
2734 flag &= ~O_TRUNC;
2735 break;
2736 }
2737
2738 error = inode_permission(inode, MAY_OPEN | acc_mode);
2739 if (error)
2740 return error;
2741
2742 /*
2743 * An append-only file must be opened in append mode for writing.
2744 */
2745 if (IS_APPEND(inode)) {
2746 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2747 return -EPERM;
2748 if (flag & O_TRUNC)
2749 return -EPERM;
2750 }
2751
2752 /* O_NOATIME can only be set by the owner or superuser */
2753 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2754 return -EPERM;
2755
2756 return 0;
2757 }
2758
2759 static int handle_truncate(struct file *filp)
2760 {
2761 struct path *path = &filp->f_path;
2762 struct inode *inode = path->dentry->d_inode;
2763 int error = get_write_access(inode);
2764 if (error)
2765 return error;
2766 /*
2767 * Refuse to truncate files with mandatory locks held on them.
2768 */
2769 error = locks_verify_locked(filp);
2770 if (!error)
2771 error = security_path_truncate(path);
2772 if (!error) {
2773 error = do_truncate(path->dentry, 0,
2774 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2775 filp);
2776 }
2777 put_write_access(inode);
2778 return error;
2779 }
2780
2781 static inline int open_to_namei_flags(int flag)
2782 {
2783 if ((flag & O_ACCMODE) == 3)
2784 flag--;
2785 return flag;
2786 }
2787
2788 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2789 {
2790 int error = security_path_mknod(dir, dentry, mode, 0);
2791 if (error)
2792 return error;
2793
2794 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2795 if (error)
2796 return error;
2797
2798 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2799 }
2800
2801 /*
2802 * Attempt to atomically look up, create and open a file from a negative
2803 * dentry.
2804 *
2805 * Returns 0 if successful. The file will have been created and attached to
2806 * @file by the filesystem calling finish_open().
2807 *
2808 * Returns 1 if the file was looked up only or didn't need creating. The
2809 * caller will need to perform the open themselves. @path will have been
2810 * updated to point to the new dentry. This may be negative.
2811 *
2812 * Returns an error code otherwise.
2813 */
2814 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2815 struct path *path, struct file *file,
2816 const struct open_flags *op,
2817 bool got_write, bool need_lookup,
2818 int *opened)
2819 {
2820 struct inode *dir = nd->path.dentry->d_inode;
2821 unsigned open_flag = open_to_namei_flags(op->open_flag);
2822 umode_t mode;
2823 int error;
2824 int acc_mode;
2825 int create_error = 0;
2826 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2827 bool excl;
2828
2829 BUG_ON(dentry->d_inode);
2830
2831 /* Don't create child dentry for a dead directory. */
2832 if (unlikely(IS_DEADDIR(dir))) {
2833 error = -ENOENT;
2834 goto out;
2835 }
2836
2837 mode = op->mode;
2838 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2839 mode &= ~current_umask();
2840
2841 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2842 if (excl)
2843 open_flag &= ~O_TRUNC;
2844
2845 /*
2846 * Checking write permission is tricky, bacuse we don't know if we are
2847 * going to actually need it: O_CREAT opens should work as long as the
2848 * file exists. But checking existence breaks atomicity. The trick is
2849 * to check access and if not granted clear O_CREAT from the flags.
2850 *
2851 * Another problem is returing the "right" error value (e.g. for an
2852 * O_EXCL open we want to return EEXIST not EROFS).
2853 */
2854 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2855 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2856 if (!(open_flag & O_CREAT)) {
2857 /*
2858 * No O_CREATE -> atomicity not a requirement -> fall
2859 * back to lookup + open
2860 */
2861 goto no_open;
2862 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2863 /* Fall back and fail with the right error */
2864 create_error = -EROFS;
2865 goto no_open;
2866 } else {
2867 /* No side effects, safe to clear O_CREAT */
2868 create_error = -EROFS;
2869 open_flag &= ~O_CREAT;
2870 }
2871 }
2872
2873 if (open_flag & O_CREAT) {
2874 error = may_o_create(&nd->path, dentry, mode);
2875 if (error) {
2876 create_error = error;
2877 if (open_flag & O_EXCL)
2878 goto no_open;
2879 open_flag &= ~O_CREAT;
2880 }
2881 }
2882
2883 if (nd->flags & LOOKUP_DIRECTORY)
2884 open_flag |= O_DIRECTORY;
2885
2886 file->f_path.dentry = DENTRY_NOT_SET;
2887 file->f_path.mnt = nd->path.mnt;
2888 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2889 opened);
2890 if (error < 0) {
2891 if (create_error && error == -ENOENT)
2892 error = create_error;
2893 goto out;
2894 }
2895
2896 if (error) { /* returned 1, that is */
2897 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2898 error = -EIO;
2899 goto out;
2900 }
2901 if (file->f_path.dentry) {
2902 dput(dentry);
2903 dentry = file->f_path.dentry;
2904 }
2905 if (*opened & FILE_CREATED)
2906 fsnotify_create(dir, dentry);
2907 if (!dentry->d_inode) {
2908 WARN_ON(*opened & FILE_CREATED);
2909 if (create_error) {
2910 error = create_error;
2911 goto out;
2912 }
2913 } else {
2914 if (excl && !(*opened & FILE_CREATED)) {
2915 error = -EEXIST;
2916 goto out;
2917 }
2918 }
2919 goto looked_up;
2920 }
2921
2922 /*
2923 * We didn't have the inode before the open, so check open permission
2924 * here.
2925 */
2926 acc_mode = op->acc_mode;
2927 if (*opened & FILE_CREATED) {
2928 WARN_ON(!(open_flag & O_CREAT));
2929 fsnotify_create(dir, dentry);
2930 acc_mode = 0;
2931 }
2932 error = may_open(&file->f_path, acc_mode, open_flag);
2933 if (error)
2934 fput(file);
2935
2936 out:
2937 dput(dentry);
2938 return error;
2939
2940 no_open:
2941 if (need_lookup) {
2942 dentry = lookup_real(dir, dentry, nd->flags);
2943 if (IS_ERR(dentry))
2944 return PTR_ERR(dentry);
2945
2946 if (create_error) {
2947 int open_flag = op->open_flag;
2948
2949 error = create_error;
2950 if ((open_flag & O_EXCL)) {
2951 if (!dentry->d_inode)
2952 goto out;
2953 } else if (!dentry->d_inode) {
2954 goto out;
2955 } else if ((open_flag & O_TRUNC) &&
2956 d_is_reg(dentry)) {
2957 goto out;
2958 }
2959 /* will fail later, go on to get the right error */
2960 }
2961 }
2962 looked_up:
2963 path->dentry = dentry;
2964 path->mnt = nd->path.mnt;
2965 return 1;
2966 }
2967
2968 /*
2969 * Look up and maybe create and open the last component.
2970 *
2971 * Must be called with i_mutex held on parent.
2972 *
2973 * Returns 0 if the file was successfully atomically created (if necessary) and
2974 * opened. In this case the file will be returned attached to @file.
2975 *
2976 * Returns 1 if the file was not completely opened at this time, though lookups
2977 * and creations will have been performed and the dentry returned in @path will
2978 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2979 * specified then a negative dentry may be returned.
2980 *
2981 * An error code is returned otherwise.
2982 *
2983 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2984 * cleared otherwise prior to returning.
2985 */
2986 static int lookup_open(struct nameidata *nd, struct path *path,
2987 struct file *file,
2988 const struct open_flags *op,
2989 bool got_write, int *opened)
2990 {
2991 struct dentry *dir = nd->path.dentry;
2992 struct inode *dir_inode = dir->d_inode;
2993 struct dentry *dentry;
2994 int error;
2995 bool need_lookup = false;
2996
2997 *opened &= ~FILE_CREATED;
2998 dentry = lookup_dcache(&nd->last, dir, nd->flags);
2999 if (IS_ERR(dentry))
3000 return PTR_ERR(dentry);
3001
3002 if (!dentry) {
3003 dentry = d_alloc(dir, &nd->last);
3004 if (unlikely(!dentry))
3005 return -ENOMEM;
3006 need_lookup = true;
3007 } else if (dentry->d_inode) {
3008 /* Cached positive dentry: will open in f_op->open */
3009 goto out_no_open;
3010 }
3011
3012 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3013 return atomic_open(nd, dentry, path, file, op, got_write,
3014 need_lookup, opened);
3015 }
3016
3017 if (need_lookup) {
3018 BUG_ON(dentry->d_inode);
3019
3020 dentry = lookup_real(dir_inode, dentry, nd->flags);
3021 if (IS_ERR(dentry))
3022 return PTR_ERR(dentry);
3023 }
3024
3025 /* Negative dentry, just create the file */
3026 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3027 umode_t mode = op->mode;
3028 if (!IS_POSIXACL(dir->d_inode))
3029 mode &= ~current_umask();
3030 /*
3031 * This write is needed to ensure that a
3032 * rw->ro transition does not occur between
3033 * the time when the file is created and when
3034 * a permanent write count is taken through
3035 * the 'struct file' in finish_open().
3036 */
3037 if (!got_write) {
3038 error = -EROFS;
3039 goto out_dput;
3040 }
3041 *opened |= FILE_CREATED;
3042 error = security_path_mknod(&nd->path, dentry, mode, 0);
3043 if (error)
3044 goto out_dput;
3045 error = vfs_create(dir->d_inode, dentry, mode,
3046 nd->flags & LOOKUP_EXCL);
3047 if (error)
3048 goto out_dput;
3049 }
3050 out_no_open:
3051 path->dentry = dentry;
3052 path->mnt = nd->path.mnt;
3053 return 1;
3054
3055 out_dput:
3056 dput(dentry);
3057 return error;
3058 }
3059
3060 /*
3061 * Handle the last step of open()
3062 */
3063 static int do_last(struct nameidata *nd,
3064 struct file *file, const struct open_flags *op,
3065 int *opened)
3066 {
3067 struct dentry *dir = nd->path.dentry;
3068 int open_flag = op->open_flag;
3069 bool will_truncate = (open_flag & O_TRUNC) != 0;
3070 bool got_write = false;
3071 int acc_mode = op->acc_mode;
3072 unsigned seq;
3073 struct inode *inode;
3074 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3075 struct path path;
3076 bool retried = false;
3077 int error;
3078
3079 nd->flags &= ~LOOKUP_PARENT;
3080 nd->flags |= op->intent;
3081
3082 if (nd->last_type != LAST_NORM) {
3083 error = handle_dots(nd, nd->last_type);
3084 if (unlikely(error))
3085 return error;
3086 goto finish_open;
3087 }
3088
3089 if (!(open_flag & O_CREAT)) {
3090 if (nd->last.name[nd->last.len])
3091 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3092 /* we _can_ be in RCU mode here */
3093 error = lookup_fast(nd, &path, &inode, &seq);
3094 if (likely(error > 0))
3095 goto finish_lookup;
3096
3097 if (error < 0)
3098 return error;
3099
3100 BUG_ON(nd->inode != dir->d_inode);
3101 BUG_ON(nd->flags & LOOKUP_RCU);
3102 } else {
3103 /* create side of things */
3104 /*
3105 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3106 * has been cleared when we got to the last component we are
3107 * about to look up
3108 */
3109 error = complete_walk(nd);
3110 if (error)
3111 return error;
3112
3113 audit_inode(nd->name, dir, LOOKUP_PARENT);
3114 /* trailing slashes? */
3115 if (unlikely(nd->last.name[nd->last.len]))
3116 return -EISDIR;
3117 }
3118
3119 retry_lookup:
3120 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3121 error = mnt_want_write(nd->path.mnt);
3122 if (!error)
3123 got_write = true;
3124 /*
3125 * do _not_ fail yet - we might not need that or fail with
3126 * a different error; let lookup_open() decide; we'll be
3127 * dropping this one anyway.
3128 */
3129 }
3130 inode_lock(dir->d_inode);
3131 error = lookup_open(nd, &path, file, op, got_write, opened);
3132 inode_unlock(dir->d_inode);
3133
3134 if (error <= 0) {
3135 if (error)
3136 goto out;
3137
3138 if ((*opened & FILE_CREATED) ||
3139 !S_ISREG(file_inode(file)->i_mode))
3140 will_truncate = false;
3141
3142 audit_inode(nd->name, file->f_path.dentry, 0);
3143 goto opened;
3144 }
3145
3146 if (*opened & FILE_CREATED) {
3147 /* Don't check for write permission, don't truncate */
3148 open_flag &= ~O_TRUNC;
3149 will_truncate = false;
3150 acc_mode = 0;
3151 path_to_nameidata(&path, nd);
3152 goto finish_open_created;
3153 }
3154
3155 /*
3156 * If atomic_open() acquired write access it is dropped now due to
3157 * possible mount and symlink following (this might be optimized away if
3158 * necessary...)
3159 */
3160 if (got_write) {
3161 mnt_drop_write(nd->path.mnt);
3162 got_write = false;
3163 }
3164
3165 if (unlikely(d_is_negative(path.dentry))) {
3166 path_to_nameidata(&path, nd);
3167 return -ENOENT;
3168 }
3169
3170 /*
3171 * create/update audit record if it already exists.
3172 */
3173 audit_inode(nd->name, path.dentry, 0);
3174
3175 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3176 path_to_nameidata(&path, nd);
3177 return -EEXIST;
3178 }
3179
3180 error = follow_managed(&path, nd);
3181 if (unlikely(error < 0))
3182 return error;
3183
3184 seq = 0; /* out of RCU mode, so the value doesn't matter */
3185 inode = d_backing_inode(path.dentry);
3186 finish_lookup:
3187 if (nd->depth)
3188 put_link(nd);
3189 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3190 inode, seq);
3191 if (unlikely(error))
3192 return error;
3193
3194 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3195 path_to_nameidata(&path, nd);
3196 } else {
3197 save_parent.dentry = nd->path.dentry;
3198 save_parent.mnt = mntget(path.mnt);
3199 nd->path.dentry = path.dentry;
3200
3201 }
3202 nd->inode = inode;
3203 nd->seq = seq;
3204 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3205 finish_open:
3206 error = complete_walk(nd);
3207 if (error) {
3208 path_put(&save_parent);
3209 return error;
3210 }
3211 audit_inode(nd->name, nd->path.dentry, 0);
3212 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3213 error = -ELOOP;
3214 goto out;
3215 }
3216 error = -EISDIR;
3217 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3218 goto out;
3219 error = -ENOTDIR;
3220 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3221 goto out;
3222 if (!d_is_reg(nd->path.dentry))
3223 will_truncate = false;
3224
3225 if (will_truncate) {
3226 error = mnt_want_write(nd->path.mnt);
3227 if (error)
3228 goto out;
3229 got_write = true;
3230 }
3231 finish_open_created:
3232 if (likely(!(open_flag & O_PATH))) {
3233 error = may_open(&nd->path, acc_mode, open_flag);
3234 if (error)
3235 goto out;
3236 }
3237 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3238 error = vfs_open(&nd->path, file, current_cred());
3239 if (!error) {
3240 *opened |= FILE_OPENED;
3241 } else {
3242 if (error == -EOPENSTALE)
3243 goto stale_open;
3244 goto out;
3245 }
3246 opened:
3247 error = open_check_o_direct(file);
3248 if (error)
3249 goto exit_fput;
3250 error = ima_file_check(file, op->acc_mode, *opened);
3251 if (error)
3252 goto exit_fput;
3253
3254 if (will_truncate) {
3255 error = handle_truncate(file);
3256 if (error)
3257 goto exit_fput;
3258 }
3259 out:
3260 if (unlikely(error > 0)) {
3261 WARN_ON(1);
3262 error = -EINVAL;
3263 }
3264 if (got_write)
3265 mnt_drop_write(nd->path.mnt);
3266 path_put(&save_parent);
3267 return error;
3268
3269 exit_fput:
3270 fput(file);
3271 goto out;
3272
3273 stale_open:
3274 /* If no saved parent or already retried then can't retry */
3275 if (!save_parent.dentry || retried)
3276 goto out;
3277
3278 BUG_ON(save_parent.dentry != dir);
3279 path_put(&nd->path);
3280 nd->path = save_parent;
3281 nd->inode = dir->d_inode;
3282 save_parent.mnt = NULL;
3283 save_parent.dentry = NULL;
3284 if (got_write) {
3285 mnt_drop_write(nd->path.mnt);
3286 got_write = false;
3287 }
3288 retried = true;
3289 goto retry_lookup;
3290 }
3291
3292 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3293 const struct open_flags *op,
3294 struct file *file, int *opened)
3295 {
3296 static const struct qstr name = QSTR_INIT("/", 1);
3297 struct dentry *child;
3298 struct inode *dir;
3299 struct path path;
3300 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3301 if (unlikely(error))
3302 return error;
3303 error = mnt_want_write(path.mnt);
3304 if (unlikely(error))
3305 goto out;
3306 dir = path.dentry->d_inode;
3307 /* we want directory to be writable */
3308 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3309 if (error)
3310 goto out2;
3311 if (!dir->i_op->tmpfile) {
3312 error = -EOPNOTSUPP;
3313 goto out2;
3314 }
3315 child = d_alloc(path.dentry, &name);
3316 if (unlikely(!child)) {
3317 error = -ENOMEM;
3318 goto out2;
3319 }
3320 dput(path.dentry);
3321 path.dentry = child;
3322 error = dir->i_op->tmpfile(dir, child, op->mode);
3323 if (error)
3324 goto out2;
3325 audit_inode(nd->name, child, 0);
3326 /* Don't check for other permissions, the inode was just created */
3327 error = may_open(&path, 0, op->open_flag);
3328 if (error)
3329 goto out2;
3330 file->f_path.mnt = path.mnt;
3331 error = finish_open(file, child, NULL, opened);
3332 if (error)
3333 goto out2;
3334 error = open_check_o_direct(file);
3335 if (error) {
3336 fput(file);
3337 } else if (!(op->open_flag & O_EXCL)) {
3338 struct inode *inode = file_inode(file);
3339 spin_lock(&inode->i_lock);
3340 inode->i_state |= I_LINKABLE;
3341 spin_unlock(&inode->i_lock);
3342 }
3343 out2:
3344 mnt_drop_write(path.mnt);
3345 out:
3346 path_put(&path);
3347 return error;
3348 }
3349
3350 static struct file *path_openat(struct nameidata *nd,
3351 const struct open_flags *op, unsigned flags)
3352 {
3353 const char *s;
3354 struct file *file;
3355 int opened = 0;
3356 int error;
3357
3358 file = get_empty_filp();
3359 if (IS_ERR(file))
3360 return file;
3361
3362 file->f_flags = op->open_flag;
3363
3364 if (unlikely(file->f_flags & __O_TMPFILE)) {
3365 error = do_tmpfile(nd, flags, op, file, &opened);
3366 goto out2;
3367 }
3368
3369 s = path_init(nd, flags);
3370 if (IS_ERR(s)) {
3371 put_filp(file);
3372 return ERR_CAST(s);
3373 }
3374 while (!(error = link_path_walk(s, nd)) &&
3375 (error = do_last(nd, file, op, &opened)) > 0) {
3376 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3377 s = trailing_symlink(nd);
3378 if (IS_ERR(s)) {
3379 error = PTR_ERR(s);
3380 break;
3381 }
3382 }
3383 terminate_walk(nd);
3384 out2:
3385 if (!(opened & FILE_OPENED)) {
3386 BUG_ON(!error);
3387 put_filp(file);
3388 }
3389 if (unlikely(error)) {
3390 if (error == -EOPENSTALE) {
3391 if (flags & LOOKUP_RCU)
3392 error = -ECHILD;
3393 else
3394 error = -ESTALE;
3395 }
3396 file = ERR_PTR(error);
3397 }
3398 return file;
3399 }
3400
3401 struct file *do_filp_open(int dfd, struct filename *pathname,
3402 const struct open_flags *op)
3403 {
3404 struct nameidata nd;
3405 int flags = op->lookup_flags;
3406 struct file *filp;
3407
3408 set_nameidata(&nd, dfd, pathname);
3409 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3410 if (unlikely(filp == ERR_PTR(-ECHILD)))
3411 filp = path_openat(&nd, op, flags);
3412 if (unlikely(filp == ERR_PTR(-ESTALE)))
3413 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3414 restore_nameidata();
3415 return filp;
3416 }
3417
3418 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3419 const char *name, const struct open_flags *op)
3420 {
3421 struct nameidata nd;
3422 struct file *file;
3423 struct filename *filename;
3424 int flags = op->lookup_flags | LOOKUP_ROOT;
3425
3426 nd.root.mnt = mnt;
3427 nd.root.dentry = dentry;
3428
3429 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3430 return ERR_PTR(-ELOOP);
3431
3432 filename = getname_kernel(name);
3433 if (IS_ERR(filename))
3434 return ERR_CAST(filename);
3435
3436 set_nameidata(&nd, -1, filename);
3437 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3438 if (unlikely(file == ERR_PTR(-ECHILD)))
3439 file = path_openat(&nd, op, flags);
3440 if (unlikely(file == ERR_PTR(-ESTALE)))
3441 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3442 restore_nameidata();
3443 putname(filename);
3444 return file;
3445 }
3446
3447 static struct dentry *filename_create(int dfd, struct filename *name,
3448 struct path *path, unsigned int lookup_flags)
3449 {
3450 struct dentry *dentry = ERR_PTR(-EEXIST);
3451 struct qstr last;
3452 int type;
3453 int err2;
3454 int error;
3455 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3456
3457 /*
3458 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3459 * other flags passed in are ignored!
3460 */
3461 lookup_flags &= LOOKUP_REVAL;
3462
3463 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3464 if (IS_ERR(name))
3465 return ERR_CAST(name);
3466
3467 /*
3468 * Yucky last component or no last component at all?
3469 * (foo/., foo/.., /////)
3470 */
3471 if (unlikely(type != LAST_NORM))
3472 goto out;
3473
3474 /* don't fail immediately if it's r/o, at least try to report other errors */
3475 err2 = mnt_want_write(path->mnt);
3476 /*
3477 * Do the final lookup.
3478 */
3479 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3480 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3481 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3482 if (IS_ERR(dentry))
3483 goto unlock;
3484
3485 error = -EEXIST;
3486 if (d_is_positive(dentry))
3487 goto fail;
3488
3489 /*
3490 * Special case - lookup gave negative, but... we had foo/bar/
3491 * From the vfs_mknod() POV we just have a negative dentry -
3492 * all is fine. Let's be bastards - you had / on the end, you've
3493 * been asking for (non-existent) directory. -ENOENT for you.
3494 */
3495 if (unlikely(!is_dir && last.name[last.len])) {
3496 error = -ENOENT;
3497 goto fail;
3498 }
3499 if (unlikely(err2)) {
3500 error = err2;
3501 goto fail;
3502 }
3503 putname(name);
3504 return dentry;
3505 fail:
3506 dput(dentry);
3507 dentry = ERR_PTR(error);
3508 unlock:
3509 inode_unlock(path->dentry->d_inode);
3510 if (!err2)
3511 mnt_drop_write(path->mnt);
3512 out:
3513 path_put(path);
3514 putname(name);
3515 return dentry;
3516 }
3517
3518 struct dentry *kern_path_create(int dfd, const char *pathname,
3519 struct path *path, unsigned int lookup_flags)
3520 {
3521 return filename_create(dfd, getname_kernel(pathname),
3522 path, lookup_flags);
3523 }
3524 EXPORT_SYMBOL(kern_path_create);
3525
3526 void done_path_create(struct path *path, struct dentry *dentry)
3527 {
3528 dput(dentry);
3529 inode_unlock(path->dentry->d_inode);
3530 mnt_drop_write(path->mnt);
3531 path_put(path);
3532 }
3533 EXPORT_SYMBOL(done_path_create);
3534
3535 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3536 struct path *path, unsigned int lookup_flags)
3537 {
3538 return filename_create(dfd, getname(pathname), path, lookup_flags);
3539 }
3540 EXPORT_SYMBOL(user_path_create);
3541
3542 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3543 {
3544 int error = may_create(dir, dentry);
3545
3546 if (error)
3547 return error;
3548
3549 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3550 return -EPERM;
3551
3552 if (!dir->i_op->mknod)
3553 return -EPERM;
3554
3555 error = devcgroup_inode_mknod(mode, dev);
3556 if (error)
3557 return error;
3558
3559 error = security_inode_mknod(dir, dentry, mode, dev);
3560 if (error)
3561 return error;
3562
3563 error = dir->i_op->mknod(dir, dentry, mode, dev);
3564 if (!error)
3565 fsnotify_create(dir, dentry);
3566 return error;
3567 }
3568 EXPORT_SYMBOL(vfs_mknod);
3569
3570 static int may_mknod(umode_t mode)
3571 {
3572 switch (mode & S_IFMT) {
3573 case S_IFREG:
3574 case S_IFCHR:
3575 case S_IFBLK:
3576 case S_IFIFO:
3577 case S_IFSOCK:
3578 case 0: /* zero mode translates to S_IFREG */
3579 return 0;
3580 case S_IFDIR:
3581 return -EPERM;
3582 default:
3583 return -EINVAL;
3584 }
3585 }
3586
3587 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3588 unsigned, dev)
3589 {
3590 struct dentry *dentry;
3591 struct path path;
3592 int error;
3593 unsigned int lookup_flags = 0;
3594
3595 error = may_mknod(mode);
3596 if (error)
3597 return error;
3598 retry:
3599 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3600 if (IS_ERR(dentry))
3601 return PTR_ERR(dentry);
3602
3603 if (!IS_POSIXACL(path.dentry->d_inode))
3604 mode &= ~current_umask();
3605 error = security_path_mknod(&path, dentry, mode, dev);
3606 if (error)
3607 goto out;
3608 switch (mode & S_IFMT) {
3609 case 0: case S_IFREG:
3610 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3611 break;
3612 case S_IFCHR: case S_IFBLK:
3613 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3614 new_decode_dev(dev));
3615 break;
3616 case S_IFIFO: case S_IFSOCK:
3617 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3618 break;
3619 }
3620 out:
3621 done_path_create(&path, dentry);
3622 if (retry_estale(error, lookup_flags)) {
3623 lookup_flags |= LOOKUP_REVAL;
3624 goto retry;
3625 }
3626 return error;
3627 }
3628
3629 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3630 {
3631 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3632 }
3633
3634 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3635 {
3636 int error = may_create(dir, dentry);
3637 unsigned max_links = dir->i_sb->s_max_links;
3638
3639 if (error)
3640 return error;
3641
3642 if (!dir->i_op->mkdir)
3643 return -EPERM;
3644
3645 mode &= (S_IRWXUGO|S_ISVTX);
3646 error = security_inode_mkdir(dir, dentry, mode);
3647 if (error)
3648 return error;
3649
3650 if (max_links && dir->i_nlink >= max_links)
3651 return -EMLINK;
3652
3653 error = dir->i_op->mkdir(dir, dentry, mode);
3654 if (!error)
3655 fsnotify_mkdir(dir, dentry);
3656 return error;
3657 }
3658 EXPORT_SYMBOL(vfs_mkdir);
3659
3660 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3661 {
3662 struct dentry *dentry;
3663 struct path path;
3664 int error;
3665 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3666
3667 retry:
3668 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3669 if (IS_ERR(dentry))
3670 return PTR_ERR(dentry);
3671
3672 if (!IS_POSIXACL(path.dentry->d_inode))
3673 mode &= ~current_umask();
3674 error = security_path_mkdir(&path, dentry, mode);
3675 if (!error)
3676 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3677 done_path_create(&path, dentry);
3678 if (retry_estale(error, lookup_flags)) {
3679 lookup_flags |= LOOKUP_REVAL;
3680 goto retry;
3681 }
3682 return error;
3683 }
3684
3685 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3686 {
3687 return sys_mkdirat(AT_FDCWD, pathname, mode);
3688 }
3689
3690 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3691 {
3692 int error = may_delete(dir, dentry, 1);
3693
3694 if (error)
3695 return error;
3696
3697 if (!dir->i_op->rmdir)
3698 return -EPERM;
3699
3700 dget(dentry);
3701 inode_lock(dentry->d_inode);
3702
3703 error = -EBUSY;
3704 if (is_local_mountpoint(dentry))
3705 goto out;
3706
3707 error = security_inode_rmdir(dir, dentry);
3708 if (error)
3709 goto out;
3710
3711 shrink_dcache_parent(dentry);
3712 error = dir->i_op->rmdir(dir, dentry);
3713 if (error)
3714 goto out;
3715
3716 dentry->d_inode->i_flags |= S_DEAD;
3717 dont_mount(dentry);
3718 detach_mounts(dentry);
3719
3720 out:
3721 inode_unlock(dentry->d_inode);
3722 dput(dentry);
3723 if (!error)
3724 d_delete(dentry);
3725 return error;
3726 }
3727 EXPORT_SYMBOL(vfs_rmdir);
3728
3729 static long do_rmdir(int dfd, const char __user *pathname)
3730 {
3731 int error = 0;
3732 struct filename *name;
3733 struct dentry *dentry;
3734 struct path path;
3735 struct qstr last;
3736 int type;
3737 unsigned int lookup_flags = 0;
3738 retry:
3739 name = user_path_parent(dfd, pathname,
3740 &path, &last, &type, lookup_flags);
3741 if (IS_ERR(name))
3742 return PTR_ERR(name);
3743
3744 switch (type) {
3745 case LAST_DOTDOT:
3746 error = -ENOTEMPTY;
3747 goto exit1;
3748 case LAST_DOT:
3749 error = -EINVAL;
3750 goto exit1;
3751 case LAST_ROOT:
3752 error = -EBUSY;
3753 goto exit1;
3754 }
3755
3756 error = mnt_want_write(path.mnt);
3757 if (error)
3758 goto exit1;
3759
3760 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3761 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3762 error = PTR_ERR(dentry);
3763 if (IS_ERR(dentry))
3764 goto exit2;
3765 if (!dentry->d_inode) {
3766 error = -ENOENT;
3767 goto exit3;
3768 }
3769 error = security_path_rmdir(&path, dentry);
3770 if (error)
3771 goto exit3;
3772 error = vfs_rmdir(path.dentry->d_inode, dentry);
3773 exit3:
3774 dput(dentry);
3775 exit2:
3776 inode_unlock(path.dentry->d_inode);
3777 mnt_drop_write(path.mnt);
3778 exit1:
3779 path_put(&path);
3780 putname(name);
3781 if (retry_estale(error, lookup_flags)) {
3782 lookup_flags |= LOOKUP_REVAL;
3783 goto retry;
3784 }
3785 return error;
3786 }
3787
3788 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3789 {
3790 return do_rmdir(AT_FDCWD, pathname);
3791 }
3792
3793 /**
3794 * vfs_unlink - unlink a filesystem object
3795 * @dir: parent directory
3796 * @dentry: victim
3797 * @delegated_inode: returns victim inode, if the inode is delegated.
3798 *
3799 * The caller must hold dir->i_mutex.
3800 *
3801 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3802 * return a reference to the inode in delegated_inode. The caller
3803 * should then break the delegation on that inode and retry. Because
3804 * breaking a delegation may take a long time, the caller should drop
3805 * dir->i_mutex before doing so.
3806 *
3807 * Alternatively, a caller may pass NULL for delegated_inode. This may
3808 * be appropriate for callers that expect the underlying filesystem not
3809 * to be NFS exported.
3810 */
3811 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3812 {
3813 struct inode *target = dentry->d_inode;
3814 int error = may_delete(dir, dentry, 0);
3815
3816 if (error)
3817 return error;
3818
3819 if (!dir->i_op->unlink)
3820 return -EPERM;
3821
3822 inode_lock(target);
3823 if (is_local_mountpoint(dentry))
3824 error = -EBUSY;
3825 else {
3826 error = security_inode_unlink(dir, dentry);
3827 if (!error) {
3828 error = try_break_deleg(target, delegated_inode);
3829 if (error)
3830 goto out;
3831 error = dir->i_op->unlink(dir, dentry);
3832 if (!error) {
3833 dont_mount(dentry);
3834 detach_mounts(dentry);
3835 }
3836 }
3837 }
3838 out:
3839 inode_unlock(target);
3840
3841 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3842 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3843 fsnotify_link_count(target);
3844 d_delete(dentry);
3845 }
3846
3847 return error;
3848 }
3849 EXPORT_SYMBOL(vfs_unlink);
3850
3851 /*
3852 * Make sure that the actual truncation of the file will occur outside its
3853 * directory's i_mutex. Truncate can take a long time if there is a lot of
3854 * writeout happening, and we don't want to prevent access to the directory
3855 * while waiting on the I/O.
3856 */
3857 static long do_unlinkat(int dfd, const char __user *pathname)
3858 {
3859 int error;
3860 struct filename *name;
3861 struct dentry *dentry;
3862 struct path path;
3863 struct qstr last;
3864 int type;
3865 struct inode *inode = NULL;
3866 struct inode *delegated_inode = NULL;
3867 unsigned int lookup_flags = 0;
3868 retry:
3869 name = user_path_parent(dfd, pathname,
3870 &path, &last, &type, lookup_flags);
3871 if (IS_ERR(name))
3872 return PTR_ERR(name);
3873
3874 error = -EISDIR;
3875 if (type != LAST_NORM)
3876 goto exit1;
3877
3878 error = mnt_want_write(path.mnt);
3879 if (error)
3880 goto exit1;
3881 retry_deleg:
3882 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3883 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3884 error = PTR_ERR(dentry);
3885 if (!IS_ERR(dentry)) {
3886 /* Why not before? Because we want correct error value */
3887 if (last.name[last.len])
3888 goto slashes;
3889 inode = dentry->d_inode;
3890 if (d_is_negative(dentry))
3891 goto slashes;
3892 ihold(inode);
3893 error = security_path_unlink(&path, dentry);
3894 if (error)
3895 goto exit2;
3896 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3897 exit2:
3898 dput(dentry);
3899 }
3900 inode_unlock(path.dentry->d_inode);
3901 if (inode)
3902 iput(inode); /* truncate the inode here */
3903 inode = NULL;
3904 if (delegated_inode) {
3905 error = break_deleg_wait(&delegated_inode);
3906 if (!error)
3907 goto retry_deleg;
3908 }
3909 mnt_drop_write(path.mnt);
3910 exit1:
3911 path_put(&path);
3912 putname(name);
3913 if (retry_estale(error, lookup_flags)) {
3914 lookup_flags |= LOOKUP_REVAL;
3915 inode = NULL;
3916 goto retry;
3917 }
3918 return error;
3919
3920 slashes:
3921 if (d_is_negative(dentry))
3922 error = -ENOENT;
3923 else if (d_is_dir(dentry))
3924 error = -EISDIR;
3925 else
3926 error = -ENOTDIR;
3927 goto exit2;
3928 }
3929
3930 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3931 {
3932 if ((flag & ~AT_REMOVEDIR) != 0)
3933 return -EINVAL;
3934
3935 if (flag & AT_REMOVEDIR)
3936 return do_rmdir(dfd, pathname);
3937
3938 return do_unlinkat(dfd, pathname);
3939 }
3940
3941 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3942 {
3943 return do_unlinkat(AT_FDCWD, pathname);
3944 }
3945
3946 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3947 {
3948 int error = may_create(dir, dentry);
3949
3950 if (error)
3951 return error;
3952
3953 if (!dir->i_op->symlink)
3954 return -EPERM;
3955
3956 error = security_inode_symlink(dir, dentry, oldname);
3957 if (error)
3958 return error;
3959
3960 error = dir->i_op->symlink(dir, dentry, oldname);
3961 if (!error)
3962 fsnotify_create(dir, dentry);
3963 return error;
3964 }
3965 EXPORT_SYMBOL(vfs_symlink);
3966
3967 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3968 int, newdfd, const char __user *, newname)
3969 {
3970 int error;
3971 struct filename *from;
3972 struct dentry *dentry;
3973 struct path path;
3974 unsigned int lookup_flags = 0;
3975
3976 from = getname(oldname);
3977 if (IS_ERR(from))
3978 return PTR_ERR(from);
3979 retry:
3980 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3981 error = PTR_ERR(dentry);
3982 if (IS_ERR(dentry))
3983 goto out_putname;
3984
3985 error = security_path_symlink(&path, dentry, from->name);
3986 if (!error)
3987 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3988 done_path_create(&path, dentry);
3989 if (retry_estale(error, lookup_flags)) {
3990 lookup_flags |= LOOKUP_REVAL;
3991 goto retry;
3992 }
3993 out_putname:
3994 putname(from);
3995 return error;
3996 }
3997
3998 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3999 {
4000 return sys_symlinkat(oldname, AT_FDCWD, newname);
4001 }
4002
4003 /**
4004 * vfs_link - create a new link
4005 * @old_dentry: object to be linked
4006 * @dir: new parent
4007 * @new_dentry: where to create the new link
4008 * @delegated_inode: returns inode needing a delegation break
4009 *
4010 * The caller must hold dir->i_mutex
4011 *
4012 * If vfs_link discovers a delegation on the to-be-linked file in need
4013 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4014 * inode in delegated_inode. The caller should then break the delegation
4015 * and retry. Because breaking a delegation may take a long time, the
4016 * caller should drop the i_mutex before doing so.
4017 *
4018 * Alternatively, a caller may pass NULL for delegated_inode. This may
4019 * be appropriate for callers that expect the underlying filesystem not
4020 * to be NFS exported.
4021 */
4022 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4023 {
4024 struct inode *inode = old_dentry->d_inode;
4025 unsigned max_links = dir->i_sb->s_max_links;
4026 int error;
4027
4028 if (!inode)
4029 return -ENOENT;
4030
4031 error = may_create(dir, new_dentry);
4032 if (error)
4033 return error;
4034
4035 if (dir->i_sb != inode->i_sb)
4036 return -EXDEV;
4037
4038 /*
4039 * A link to an append-only or immutable file cannot be created.
4040 */
4041 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4042 return -EPERM;
4043 if (!dir->i_op->link)
4044 return -EPERM;
4045 if (S_ISDIR(inode->i_mode))
4046 return -EPERM;
4047
4048 error = security_inode_link(old_dentry, dir, new_dentry);
4049 if (error)
4050 return error;
4051
4052 inode_lock(inode);
4053 /* Make sure we don't allow creating hardlink to an unlinked file */
4054 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4055 error = -ENOENT;
4056 else if (max_links && inode->i_nlink >= max_links)
4057 error = -EMLINK;
4058 else {
4059 error = try_break_deleg(inode, delegated_inode);
4060 if (!error)
4061 error = dir->i_op->link(old_dentry, dir, new_dentry);
4062 }
4063
4064 if (!error && (inode->i_state & I_LINKABLE)) {
4065 spin_lock(&inode->i_lock);
4066 inode->i_state &= ~I_LINKABLE;
4067 spin_unlock(&inode->i_lock);
4068 }
4069 inode_unlock(inode);
4070 if (!error)
4071 fsnotify_link(dir, inode, new_dentry);
4072 return error;
4073 }
4074 EXPORT_SYMBOL(vfs_link);
4075
4076 /*
4077 * Hardlinks are often used in delicate situations. We avoid
4078 * security-related surprises by not following symlinks on the
4079 * newname. --KAB
4080 *
4081 * We don't follow them on the oldname either to be compatible
4082 * with linux 2.0, and to avoid hard-linking to directories
4083 * and other special files. --ADM
4084 */
4085 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4086 int, newdfd, const char __user *, newname, int, flags)
4087 {
4088 struct dentry *new_dentry;
4089 struct path old_path, new_path;
4090 struct inode *delegated_inode = NULL;
4091 int how = 0;
4092 int error;
4093
4094 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4095 return -EINVAL;
4096 /*
4097 * To use null names we require CAP_DAC_READ_SEARCH
4098 * This ensures that not everyone will be able to create
4099 * handlink using the passed filedescriptor.
4100 */
4101 if (flags & AT_EMPTY_PATH) {
4102 if (!capable(CAP_DAC_READ_SEARCH))
4103 return -ENOENT;
4104 how = LOOKUP_EMPTY;
4105 }
4106
4107 if (flags & AT_SYMLINK_FOLLOW)
4108 how |= LOOKUP_FOLLOW;
4109 retry:
4110 error = user_path_at(olddfd, oldname, how, &old_path);
4111 if (error)
4112 return error;
4113
4114 new_dentry = user_path_create(newdfd, newname, &new_path,
4115 (how & LOOKUP_REVAL));
4116 error = PTR_ERR(new_dentry);
4117 if (IS_ERR(new_dentry))
4118 goto out;
4119
4120 error = -EXDEV;
4121 if (old_path.mnt != new_path.mnt)
4122 goto out_dput;
4123 error = may_linkat(&old_path);
4124 if (unlikely(error))
4125 goto out_dput;
4126 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4127 if (error)
4128 goto out_dput;
4129 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4130 out_dput:
4131 done_path_create(&new_path, new_dentry);
4132 if (delegated_inode) {
4133 error = break_deleg_wait(&delegated_inode);
4134 if (!error) {
4135 path_put(&old_path);
4136 goto retry;
4137 }
4138 }
4139 if (retry_estale(error, how)) {
4140 path_put(&old_path);
4141 how |= LOOKUP_REVAL;
4142 goto retry;
4143 }
4144 out:
4145 path_put(&old_path);
4146
4147 return error;
4148 }
4149
4150 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4151 {
4152 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4153 }
4154
4155 /**
4156 * vfs_rename - rename a filesystem object
4157 * @old_dir: parent of source
4158 * @old_dentry: source
4159 * @new_dir: parent of destination
4160 * @new_dentry: destination
4161 * @delegated_inode: returns an inode needing a delegation break
4162 * @flags: rename flags
4163 *
4164 * The caller must hold multiple mutexes--see lock_rename()).
4165 *
4166 * If vfs_rename discovers a delegation in need of breaking at either
4167 * the source or destination, it will return -EWOULDBLOCK and return a
4168 * reference to the inode in delegated_inode. The caller should then
4169 * break the delegation and retry. Because breaking a delegation may
4170 * take a long time, the caller should drop all locks before doing
4171 * so.
4172 *
4173 * Alternatively, a caller may pass NULL for delegated_inode. This may
4174 * be appropriate for callers that expect the underlying filesystem not
4175 * to be NFS exported.
4176 *
4177 * The worst of all namespace operations - renaming directory. "Perverted"
4178 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4179 * Problems:
4180 * a) we can get into loop creation.
4181 * b) race potential - two innocent renames can create a loop together.
4182 * That's where 4.4 screws up. Current fix: serialization on
4183 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4184 * story.
4185 * c) we have to lock _four_ objects - parents and victim (if it exists),
4186 * and source (if it is not a directory).
4187 * And that - after we got ->i_mutex on parents (until then we don't know
4188 * whether the target exists). Solution: try to be smart with locking
4189 * order for inodes. We rely on the fact that tree topology may change
4190 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4191 * move will be locked. Thus we can rank directories by the tree
4192 * (ancestors first) and rank all non-directories after them.
4193 * That works since everybody except rename does "lock parent, lookup,
4194 * lock child" and rename is under ->s_vfs_rename_mutex.
4195 * HOWEVER, it relies on the assumption that any object with ->lookup()
4196 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4197 * we'd better make sure that there's no link(2) for them.
4198 * d) conversion from fhandle to dentry may come in the wrong moment - when
4199 * we are removing the target. Solution: we will have to grab ->i_mutex
4200 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4201 * ->i_mutex on parents, which works but leads to some truly excessive
4202 * locking].
4203 */
4204 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4205 struct inode *new_dir, struct dentry *new_dentry,
4206 struct inode **delegated_inode, unsigned int flags)
4207 {
4208 int error;
4209 bool is_dir = d_is_dir(old_dentry);
4210 const unsigned char *old_name;
4211 struct inode *source = old_dentry->d_inode;
4212 struct inode *target = new_dentry->d_inode;
4213 bool new_is_dir = false;
4214 unsigned max_links = new_dir->i_sb->s_max_links;
4215
4216 if (source == target)
4217 return 0;
4218
4219 error = may_delete(old_dir, old_dentry, is_dir);
4220 if (error)
4221 return error;
4222
4223 if (!target) {
4224 error = may_create(new_dir, new_dentry);
4225 } else {
4226 new_is_dir = d_is_dir(new_dentry);
4227
4228 if (!(flags & RENAME_EXCHANGE))
4229 error = may_delete(new_dir, new_dentry, is_dir);
4230 else
4231 error = may_delete(new_dir, new_dentry, new_is_dir);
4232 }
4233 if (error)
4234 return error;
4235
4236 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4237 return -EPERM;
4238
4239 if (flags && !old_dir->i_op->rename2)
4240 return -EINVAL;
4241
4242 /*
4243 * If we are going to change the parent - check write permissions,
4244 * we'll need to flip '..'.
4245 */
4246 if (new_dir != old_dir) {
4247 if (is_dir) {
4248 error = inode_permission(source, MAY_WRITE);
4249 if (error)
4250 return error;
4251 }
4252 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4253 error = inode_permission(target, MAY_WRITE);
4254 if (error)
4255 return error;
4256 }
4257 }
4258
4259 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4260 flags);
4261 if (error)
4262 return error;
4263
4264 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4265 dget(new_dentry);
4266 if (!is_dir || (flags & RENAME_EXCHANGE))
4267 lock_two_nondirectories(source, target);
4268 else if (target)
4269 inode_lock(target);
4270
4271 error = -EBUSY;
4272 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4273 goto out;
4274
4275 if (max_links && new_dir != old_dir) {
4276 error = -EMLINK;
4277 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4278 goto out;
4279 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4280 old_dir->i_nlink >= max_links)
4281 goto out;
4282 }
4283 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4284 shrink_dcache_parent(new_dentry);
4285 if (!is_dir) {
4286 error = try_break_deleg(source, delegated_inode);
4287 if (error)
4288 goto out;
4289 }
4290 if (target && !new_is_dir) {
4291 error = try_break_deleg(target, delegated_inode);
4292 if (error)
4293 goto out;
4294 }
4295 if (!old_dir->i_op->rename2) {
4296 error = old_dir->i_op->rename(old_dir, old_dentry,
4297 new_dir, new_dentry);
4298 } else {
4299 WARN_ON(old_dir->i_op->rename != NULL);
4300 error = old_dir->i_op->rename2(old_dir, old_dentry,
4301 new_dir, new_dentry, flags);
4302 }
4303 if (error)
4304 goto out;
4305
4306 if (!(flags & RENAME_EXCHANGE) && target) {
4307 if (is_dir)
4308 target->i_flags |= S_DEAD;
4309 dont_mount(new_dentry);
4310 detach_mounts(new_dentry);
4311 }
4312 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4313 if (!(flags & RENAME_EXCHANGE))
4314 d_move(old_dentry, new_dentry);
4315 else
4316 d_exchange(old_dentry, new_dentry);
4317 }
4318 out:
4319 if (!is_dir || (flags & RENAME_EXCHANGE))
4320 unlock_two_nondirectories(source, target);
4321 else if (target)
4322 inode_unlock(target);
4323 dput(new_dentry);
4324 if (!error) {
4325 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4326 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4327 if (flags & RENAME_EXCHANGE) {
4328 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4329 new_is_dir, NULL, new_dentry);
4330 }
4331 }
4332 fsnotify_oldname_free(old_name);
4333
4334 return error;
4335 }
4336 EXPORT_SYMBOL(vfs_rename);
4337
4338 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4339 int, newdfd, const char __user *, newname, unsigned int, flags)
4340 {
4341 struct dentry *old_dentry, *new_dentry;
4342 struct dentry *trap;
4343 struct path old_path, new_path;
4344 struct qstr old_last, new_last;
4345 int old_type, new_type;
4346 struct inode *delegated_inode = NULL;
4347 struct filename *from;
4348 struct filename *to;
4349 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4350 bool should_retry = false;
4351 int error;
4352
4353 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4354 return -EINVAL;
4355
4356 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4357 (flags & RENAME_EXCHANGE))
4358 return -EINVAL;
4359
4360 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4361 return -EPERM;
4362
4363 if (flags & RENAME_EXCHANGE)
4364 target_flags = 0;
4365
4366 retry:
4367 from = user_path_parent(olddfd, oldname,
4368 &old_path, &old_last, &old_type, lookup_flags);
4369 if (IS_ERR(from)) {
4370 error = PTR_ERR(from);
4371 goto exit;
4372 }
4373
4374 to = user_path_parent(newdfd, newname,
4375 &new_path, &new_last, &new_type, lookup_flags);
4376 if (IS_ERR(to)) {
4377 error = PTR_ERR(to);
4378 goto exit1;
4379 }
4380
4381 error = -EXDEV;
4382 if (old_path.mnt != new_path.mnt)
4383 goto exit2;
4384
4385 error = -EBUSY;
4386 if (old_type != LAST_NORM)
4387 goto exit2;
4388
4389 if (flags & RENAME_NOREPLACE)
4390 error = -EEXIST;
4391 if (new_type != LAST_NORM)
4392 goto exit2;
4393
4394 error = mnt_want_write(old_path.mnt);
4395 if (error)
4396 goto exit2;
4397
4398 retry_deleg:
4399 trap = lock_rename(new_path.dentry, old_path.dentry);
4400
4401 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4402 error = PTR_ERR(old_dentry);
4403 if (IS_ERR(old_dentry))
4404 goto exit3;
4405 /* source must exist */
4406 error = -ENOENT;
4407 if (d_is_negative(old_dentry))
4408 goto exit4;
4409 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4410 error = PTR_ERR(new_dentry);
4411 if (IS_ERR(new_dentry))
4412 goto exit4;
4413 error = -EEXIST;
4414 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4415 goto exit5;
4416 if (flags & RENAME_EXCHANGE) {
4417 error = -ENOENT;
4418 if (d_is_negative(new_dentry))
4419 goto exit5;
4420
4421 if (!d_is_dir(new_dentry)) {
4422 error = -ENOTDIR;
4423 if (new_last.name[new_last.len])
4424 goto exit5;
4425 }
4426 }
4427 /* unless the source is a directory trailing slashes give -ENOTDIR */
4428 if (!d_is_dir(old_dentry)) {
4429 error = -ENOTDIR;
4430 if (old_last.name[old_last.len])
4431 goto exit5;
4432 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4433 goto exit5;
4434 }
4435 /* source should not be ancestor of target */
4436 error = -EINVAL;
4437 if (old_dentry == trap)
4438 goto exit5;
4439 /* target should not be an ancestor of source */
4440 if (!(flags & RENAME_EXCHANGE))
4441 error = -ENOTEMPTY;
4442 if (new_dentry == trap)
4443 goto exit5;
4444
4445 error = security_path_rename(&old_path, old_dentry,
4446 &new_path, new_dentry, flags);
4447 if (error)
4448 goto exit5;
4449 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4450 new_path.dentry->d_inode, new_dentry,
4451 &delegated_inode, flags);
4452 exit5:
4453 dput(new_dentry);
4454 exit4:
4455 dput(old_dentry);
4456 exit3:
4457 unlock_rename(new_path.dentry, old_path.dentry);
4458 if (delegated_inode) {
4459 error = break_deleg_wait(&delegated_inode);
4460 if (!error)
4461 goto retry_deleg;
4462 }
4463 mnt_drop_write(old_path.mnt);
4464 exit2:
4465 if (retry_estale(error, lookup_flags))
4466 should_retry = true;
4467 path_put(&new_path);
4468 putname(to);
4469 exit1:
4470 path_put(&old_path);
4471 putname(from);
4472 if (should_retry) {
4473 should_retry = false;
4474 lookup_flags |= LOOKUP_REVAL;
4475 goto retry;
4476 }
4477 exit:
4478 return error;
4479 }
4480
4481 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4482 int, newdfd, const char __user *, newname)
4483 {
4484 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4485 }
4486
4487 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4488 {
4489 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4490 }
4491
4492 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4493 {
4494 int error = may_create(dir, dentry);
4495 if (error)
4496 return error;
4497
4498 if (!dir->i_op->mknod)
4499 return -EPERM;
4500
4501 return dir->i_op->mknod(dir, dentry,
4502 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4503 }
4504 EXPORT_SYMBOL(vfs_whiteout);
4505
4506 int readlink_copy(char __user *buffer, int buflen, const char *link)
4507 {
4508 int len = PTR_ERR(link);
4509 if (IS_ERR(link))
4510 goto out;
4511
4512 len = strlen(link);
4513 if (len > (unsigned) buflen)
4514 len = buflen;
4515 if (copy_to_user(buffer, link, len))
4516 len = -EFAULT;
4517 out:
4518 return len;
4519 }
4520 EXPORT_SYMBOL(readlink_copy);
4521
4522 /*
4523 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4524 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4525 * for any given inode is up to filesystem.
4526 */
4527 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4528 {
4529 DEFINE_DELAYED_CALL(done);
4530 struct inode *inode = d_inode(dentry);
4531 const char *link = inode->i_link;
4532 int res;
4533
4534 if (!link) {
4535 link = inode->i_op->get_link(dentry, inode, &done);
4536 if (IS_ERR(link))
4537 return PTR_ERR(link);
4538 }
4539 res = readlink_copy(buffer, buflen, link);
4540 do_delayed_call(&done);
4541 return res;
4542 }
4543 EXPORT_SYMBOL(generic_readlink);
4544
4545 /* get the link contents into pagecache */
4546 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4547 struct delayed_call *callback)
4548 {
4549 char *kaddr;
4550 struct page *page;
4551 struct address_space *mapping = inode->i_mapping;
4552
4553 if (!dentry) {
4554 page = find_get_page(mapping, 0);
4555 if (!page)
4556 return ERR_PTR(-ECHILD);
4557 if (!PageUptodate(page)) {
4558 put_page(page);
4559 return ERR_PTR(-ECHILD);
4560 }
4561 } else {
4562 page = read_mapping_page(mapping, 0, NULL);
4563 if (IS_ERR(page))
4564 return (char*)page;
4565 }
4566 set_delayed_call(callback, page_put_link, page);
4567 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4568 kaddr = page_address(page);
4569 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4570 return kaddr;
4571 }
4572
4573 EXPORT_SYMBOL(page_get_link);
4574
4575 void page_put_link(void *arg)
4576 {
4577 put_page(arg);
4578 }
4579 EXPORT_SYMBOL(page_put_link);
4580
4581 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4582 {
4583 DEFINE_DELAYED_CALL(done);
4584 int res = readlink_copy(buffer, buflen,
4585 page_get_link(dentry, d_inode(dentry),
4586 &done));
4587 do_delayed_call(&done);
4588 return res;
4589 }
4590 EXPORT_SYMBOL(page_readlink);
4591
4592 /*
4593 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4594 */
4595 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4596 {
4597 struct address_space *mapping = inode->i_mapping;
4598 struct page *page;
4599 void *fsdata;
4600 int err;
4601 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4602 if (nofs)
4603 flags |= AOP_FLAG_NOFS;
4604
4605 retry:
4606 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4607 flags, &page, &fsdata);
4608 if (err)
4609 goto fail;
4610
4611 memcpy(page_address(page), symname, len-1);
4612
4613 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4614 page, fsdata);
4615 if (err < 0)
4616 goto fail;
4617 if (err < len-1)
4618 goto retry;
4619
4620 mark_inode_dirty(inode);
4621 return 0;
4622 fail:
4623 return err;
4624 }
4625 EXPORT_SYMBOL(__page_symlink);
4626
4627 int page_symlink(struct inode *inode, const char *symname, int len)
4628 {
4629 return __page_symlink(inode, symname, len,
4630 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4631 }
4632 EXPORT_SYMBOL(page_symlink);
4633
4634 const struct inode_operations page_symlink_inode_operations = {
4635 .readlink = generic_readlink,
4636 .get_link = page_get_link,
4637 };
4638 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.122794 seconds and 5 git commands to generate.