xen/evtchn: fix ring resize when binding new events
[deliverable/linux.git] / fs / namei.c
1 /*
2 * linux/fs/namei.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * Some corrections by tytso.
9 */
10
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <asm/uaccess.h>
39
40 #include "internal.h"
41 #include "mount.h"
42
43 /* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr. The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains). It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive. As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm. Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link(). Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent. The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics. See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 * inside the path - always follow.
96 * in the last component in creation/removal/renaming - never follow.
97 * if LOOKUP_FOLLOW passed - follow.
98 * if the pathname has trailing slashes - follow.
99 * otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108 /*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114 /* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
123
124 struct filename *
125 getname_flags(const char __user *filename, int flags, int *empty)
126 {
127 struct filename *result;
128 char *kname;
129 int len;
130
131 result = audit_reusename(filename);
132 if (result)
133 return result;
134
135 result = __getname();
136 if (unlikely(!result))
137 return ERR_PTR(-ENOMEM);
138
139 /*
140 * First, try to embed the struct filename inside the names_cache
141 * allocation
142 */
143 kname = (char *)result->iname;
144 result->name = kname;
145
146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147 if (unlikely(len < 0)) {
148 __putname(result);
149 return ERR_PTR(len);
150 }
151
152 /*
153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154 * separate struct filename so we can dedicate the entire
155 * names_cache allocation for the pathname, and re-do the copy from
156 * userland.
157 */
158 if (unlikely(len == EMBEDDED_NAME_MAX)) {
159 const size_t size = offsetof(struct filename, iname[1]);
160 kname = (char *)result;
161
162 /*
163 * size is chosen that way we to guarantee that
164 * result->iname[0] is within the same object and that
165 * kname can't be equal to result->iname, no matter what.
166 */
167 result = kzalloc(size, GFP_KERNEL);
168 if (unlikely(!result)) {
169 __putname(kname);
170 return ERR_PTR(-ENOMEM);
171 }
172 result->name = kname;
173 len = strncpy_from_user(kname, filename, PATH_MAX);
174 if (unlikely(len < 0)) {
175 __putname(kname);
176 kfree(result);
177 return ERR_PTR(len);
178 }
179 if (unlikely(len == PATH_MAX)) {
180 __putname(kname);
181 kfree(result);
182 return ERR_PTR(-ENAMETOOLONG);
183 }
184 }
185
186 result->refcnt = 1;
187 /* The empty path is special. */
188 if (unlikely(!len)) {
189 if (empty)
190 *empty = 1;
191 if (!(flags & LOOKUP_EMPTY)) {
192 putname(result);
193 return ERR_PTR(-ENOENT);
194 }
195 }
196
197 result->uptr = filename;
198 result->aname = NULL;
199 audit_getname(result);
200 return result;
201 }
202
203 struct filename *
204 getname(const char __user * filename)
205 {
206 return getname_flags(filename, 0, NULL);
207 }
208
209 struct filename *
210 getname_kernel(const char * filename)
211 {
212 struct filename *result;
213 int len = strlen(filename) + 1;
214
215 result = __getname();
216 if (unlikely(!result))
217 return ERR_PTR(-ENOMEM);
218
219 if (len <= EMBEDDED_NAME_MAX) {
220 result->name = (char *)result->iname;
221 } else if (len <= PATH_MAX) {
222 struct filename *tmp;
223
224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225 if (unlikely(!tmp)) {
226 __putname(result);
227 return ERR_PTR(-ENOMEM);
228 }
229 tmp->name = (char *)result;
230 result = tmp;
231 } else {
232 __putname(result);
233 return ERR_PTR(-ENAMETOOLONG);
234 }
235 memcpy((char *)result->name, filename, len);
236 result->uptr = NULL;
237 result->aname = NULL;
238 result->refcnt = 1;
239 audit_getname(result);
240
241 return result;
242 }
243
244 void putname(struct filename *name)
245 {
246 BUG_ON(name->refcnt <= 0);
247
248 if (--name->refcnt > 0)
249 return;
250
251 if (name->name != name->iname) {
252 __putname(name->name);
253 kfree(name);
254 } else
255 __putname(name);
256 }
257
258 static int check_acl(struct inode *inode, int mask)
259 {
260 #ifdef CONFIG_FS_POSIX_ACL
261 struct posix_acl *acl;
262
263 if (mask & MAY_NOT_BLOCK) {
264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265 if (!acl)
266 return -EAGAIN;
267 /* no ->get_acl() calls in RCU mode... */
268 if (acl == ACL_NOT_CACHED)
269 return -ECHILD;
270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271 }
272
273 acl = get_acl(inode, ACL_TYPE_ACCESS);
274 if (IS_ERR(acl))
275 return PTR_ERR(acl);
276 if (acl) {
277 int error = posix_acl_permission(inode, acl, mask);
278 posix_acl_release(acl);
279 return error;
280 }
281 #endif
282
283 return -EAGAIN;
284 }
285
286 /*
287 * This does the basic permission checking
288 */
289 static int acl_permission_check(struct inode *inode, int mask)
290 {
291 unsigned int mode = inode->i_mode;
292
293 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294 mode >>= 6;
295 else {
296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297 int error = check_acl(inode, mask);
298 if (error != -EAGAIN)
299 return error;
300 }
301
302 if (in_group_p(inode->i_gid))
303 mode >>= 3;
304 }
305
306 /*
307 * If the DACs are ok we don't need any capability check.
308 */
309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310 return 0;
311 return -EACCES;
312 }
313
314 /**
315 * generic_permission - check for access rights on a Posix-like filesystem
316 * @inode: inode to check access rights for
317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328 int generic_permission(struct inode *inode, int mask)
329 {
330 int ret;
331
332 /*
333 * Do the basic permission checks.
334 */
335 ret = acl_permission_check(inode, mask);
336 if (ret != -EACCES)
337 return ret;
338
339 if (S_ISDIR(inode->i_mode)) {
340 /* DACs are overridable for directories */
341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342 return 0;
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
346 return 0;
347 return -EACCES;
348 }
349 /*
350 * Read/write DACs are always overridable.
351 * Executable DACs are overridable when there is
352 * at least one exec bit set.
353 */
354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356 return 0;
357
358 /*
359 * Searching includes executable on directories, else just read.
360 */
361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362 if (mask == MAY_READ)
363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364 return 0;
365
366 return -EACCES;
367 }
368 EXPORT_SYMBOL(generic_permission);
369
370 /*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376 static inline int do_inode_permission(struct inode *inode, int mask)
377 {
378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379 if (likely(inode->i_op->permission))
380 return inode->i_op->permission(inode, mask);
381
382 /* This gets set once for the inode lifetime */
383 spin_lock(&inode->i_lock);
384 inode->i_opflags |= IOP_FASTPERM;
385 spin_unlock(&inode->i_lock);
386 }
387 return generic_permission(inode, mask);
388 }
389
390 /**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system. You probably want
400 * inode_permission().
401 */
402 int __inode_permission(struct inode *inode, int mask)
403 {
404 int retval;
405
406 if (unlikely(mask & MAY_WRITE)) {
407 /*
408 * Nobody gets write access to an immutable file.
409 */
410 if (IS_IMMUTABLE(inode))
411 return -EACCES;
412 }
413
414 retval = do_inode_permission(inode, mask);
415 if (retval)
416 return retval;
417
418 retval = devcgroup_inode_permission(inode, mask);
419 if (retval)
420 return retval;
421
422 return security_inode_permission(inode, mask);
423 }
424 EXPORT_SYMBOL(__inode_permission);
425
426 /**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435 {
436 if (unlikely(mask & MAY_WRITE)) {
437 umode_t mode = inode->i_mode;
438
439 /* Nobody gets write access to a read-only fs. */
440 if ((sb->s_flags & MS_RDONLY) &&
441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442 return -EROFS;
443 }
444 return 0;
445 }
446
447 /**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458 int inode_permission(struct inode *inode, int mask)
459 {
460 int retval;
461
462 retval = sb_permission(inode->i_sb, inode, mask);
463 if (retval)
464 return retval;
465 return __inode_permission(inode, mask);
466 }
467 EXPORT_SYMBOL(inode_permission);
468
469 /**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475 void path_get(const struct path *path)
476 {
477 mntget(path->mnt);
478 dget(path->dentry);
479 }
480 EXPORT_SYMBOL(path_get);
481
482 /**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488 void path_put(const struct path *path)
489 {
490 dput(path->dentry);
491 mntput(path->mnt);
492 }
493 EXPORT_SYMBOL(path_put);
494
495 #define EMBEDDED_LEVELS 2
496 struct nameidata {
497 struct path path;
498 struct qstr last;
499 struct path root;
500 struct inode *inode; /* path.dentry.d_inode */
501 unsigned int flags;
502 unsigned seq, m_seq;
503 int last_type;
504 unsigned depth;
505 int total_link_count;
506 struct saved {
507 struct path link;
508 struct delayed_call done;
509 const char *name;
510 unsigned seq;
511 } *stack, internal[EMBEDDED_LEVELS];
512 struct filename *name;
513 struct nameidata *saved;
514 struct inode *link_inode;
515 unsigned root_seq;
516 int dfd;
517 };
518
519 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
520 {
521 struct nameidata *old = current->nameidata;
522 p->stack = p->internal;
523 p->dfd = dfd;
524 p->name = name;
525 p->total_link_count = old ? old->total_link_count : 0;
526 p->saved = old;
527 current->nameidata = p;
528 }
529
530 static void restore_nameidata(void)
531 {
532 struct nameidata *now = current->nameidata, *old = now->saved;
533
534 current->nameidata = old;
535 if (old)
536 old->total_link_count = now->total_link_count;
537 if (now->stack != now->internal)
538 kfree(now->stack);
539 }
540
541 static int __nd_alloc_stack(struct nameidata *nd)
542 {
543 struct saved *p;
544
545 if (nd->flags & LOOKUP_RCU) {
546 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
547 GFP_ATOMIC);
548 if (unlikely(!p))
549 return -ECHILD;
550 } else {
551 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
552 GFP_KERNEL);
553 if (unlikely(!p))
554 return -ENOMEM;
555 }
556 memcpy(p, nd->internal, sizeof(nd->internal));
557 nd->stack = p;
558 return 0;
559 }
560
561 /**
562 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
563 * @path: nameidate to verify
564 *
565 * Rename can sometimes move a file or directory outside of a bind
566 * mount, path_connected allows those cases to be detected.
567 */
568 static bool path_connected(const struct path *path)
569 {
570 struct vfsmount *mnt = path->mnt;
571
572 /* Only bind mounts can have disconnected paths */
573 if (mnt->mnt_root == mnt->mnt_sb->s_root)
574 return true;
575
576 return is_subdir(path->dentry, mnt->mnt_root);
577 }
578
579 static inline int nd_alloc_stack(struct nameidata *nd)
580 {
581 if (likely(nd->depth != EMBEDDED_LEVELS))
582 return 0;
583 if (likely(nd->stack != nd->internal))
584 return 0;
585 return __nd_alloc_stack(nd);
586 }
587
588 static void drop_links(struct nameidata *nd)
589 {
590 int i = nd->depth;
591 while (i--) {
592 struct saved *last = nd->stack + i;
593 do_delayed_call(&last->done);
594 clear_delayed_call(&last->done);
595 }
596 }
597
598 static void terminate_walk(struct nameidata *nd)
599 {
600 drop_links(nd);
601 if (!(nd->flags & LOOKUP_RCU)) {
602 int i;
603 path_put(&nd->path);
604 for (i = 0; i < nd->depth; i++)
605 path_put(&nd->stack[i].link);
606 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
607 path_put(&nd->root);
608 nd->root.mnt = NULL;
609 }
610 } else {
611 nd->flags &= ~LOOKUP_RCU;
612 if (!(nd->flags & LOOKUP_ROOT))
613 nd->root.mnt = NULL;
614 rcu_read_unlock();
615 }
616 nd->depth = 0;
617 }
618
619 /* path_put is needed afterwards regardless of success or failure */
620 static bool legitimize_path(struct nameidata *nd,
621 struct path *path, unsigned seq)
622 {
623 int res = __legitimize_mnt(path->mnt, nd->m_seq);
624 if (unlikely(res)) {
625 if (res > 0)
626 path->mnt = NULL;
627 path->dentry = NULL;
628 return false;
629 }
630 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
631 path->dentry = NULL;
632 return false;
633 }
634 return !read_seqcount_retry(&path->dentry->d_seq, seq);
635 }
636
637 static bool legitimize_links(struct nameidata *nd)
638 {
639 int i;
640 for (i = 0; i < nd->depth; i++) {
641 struct saved *last = nd->stack + i;
642 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
643 drop_links(nd);
644 nd->depth = i + 1;
645 return false;
646 }
647 }
648 return true;
649 }
650
651 /*
652 * Path walking has 2 modes, rcu-walk and ref-walk (see
653 * Documentation/filesystems/path-lookup.txt). In situations when we can't
654 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
655 * normal reference counts on dentries and vfsmounts to transition to ref-walk
656 * mode. Refcounts are grabbed at the last known good point before rcu-walk
657 * got stuck, so ref-walk may continue from there. If this is not successful
658 * (eg. a seqcount has changed), then failure is returned and it's up to caller
659 * to restart the path walk from the beginning in ref-walk mode.
660 */
661
662 /**
663 * unlazy_walk - try to switch to ref-walk mode.
664 * @nd: nameidata pathwalk data
665 * @dentry: child of nd->path.dentry or NULL
666 * @seq: seq number to check dentry against
667 * Returns: 0 on success, -ECHILD on failure
668 *
669 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
670 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
671 * @nd or NULL. Must be called from rcu-walk context.
672 * Nothing should touch nameidata between unlazy_walk() failure and
673 * terminate_walk().
674 */
675 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
676 {
677 struct dentry *parent = nd->path.dentry;
678
679 BUG_ON(!(nd->flags & LOOKUP_RCU));
680
681 nd->flags &= ~LOOKUP_RCU;
682 if (unlikely(!legitimize_links(nd)))
683 goto out2;
684 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
685 goto out2;
686 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
687 goto out1;
688
689 /*
690 * For a negative lookup, the lookup sequence point is the parents
691 * sequence point, and it only needs to revalidate the parent dentry.
692 *
693 * For a positive lookup, we need to move both the parent and the
694 * dentry from the RCU domain to be properly refcounted. And the
695 * sequence number in the dentry validates *both* dentry counters,
696 * since we checked the sequence number of the parent after we got
697 * the child sequence number. So we know the parent must still
698 * be valid if the child sequence number is still valid.
699 */
700 if (!dentry) {
701 if (read_seqcount_retry(&parent->d_seq, nd->seq))
702 goto out;
703 BUG_ON(nd->inode != parent->d_inode);
704 } else {
705 if (!lockref_get_not_dead(&dentry->d_lockref))
706 goto out;
707 if (read_seqcount_retry(&dentry->d_seq, seq))
708 goto drop_dentry;
709 }
710
711 /*
712 * Sequence counts matched. Now make sure that the root is
713 * still valid and get it if required.
714 */
715 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
716 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
717 rcu_read_unlock();
718 dput(dentry);
719 return -ECHILD;
720 }
721 }
722
723 rcu_read_unlock();
724 return 0;
725
726 drop_dentry:
727 rcu_read_unlock();
728 dput(dentry);
729 goto drop_root_mnt;
730 out2:
731 nd->path.mnt = NULL;
732 out1:
733 nd->path.dentry = NULL;
734 out:
735 rcu_read_unlock();
736 drop_root_mnt:
737 if (!(nd->flags & LOOKUP_ROOT))
738 nd->root.mnt = NULL;
739 return -ECHILD;
740 }
741
742 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
743 {
744 if (unlikely(!legitimize_path(nd, link, seq))) {
745 drop_links(nd);
746 nd->depth = 0;
747 nd->flags &= ~LOOKUP_RCU;
748 nd->path.mnt = NULL;
749 nd->path.dentry = NULL;
750 if (!(nd->flags & LOOKUP_ROOT))
751 nd->root.mnt = NULL;
752 rcu_read_unlock();
753 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
754 return 0;
755 }
756 path_put(link);
757 return -ECHILD;
758 }
759
760 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
761 {
762 return dentry->d_op->d_revalidate(dentry, flags);
763 }
764
765 /**
766 * complete_walk - successful completion of path walk
767 * @nd: pointer nameidata
768 *
769 * If we had been in RCU mode, drop out of it and legitimize nd->path.
770 * Revalidate the final result, unless we'd already done that during
771 * the path walk or the filesystem doesn't ask for it. Return 0 on
772 * success, -error on failure. In case of failure caller does not
773 * need to drop nd->path.
774 */
775 static int complete_walk(struct nameidata *nd)
776 {
777 struct dentry *dentry = nd->path.dentry;
778 int status;
779
780 if (nd->flags & LOOKUP_RCU) {
781 if (!(nd->flags & LOOKUP_ROOT))
782 nd->root.mnt = NULL;
783 if (unlikely(unlazy_walk(nd, NULL, 0)))
784 return -ECHILD;
785 }
786
787 if (likely(!(nd->flags & LOOKUP_JUMPED)))
788 return 0;
789
790 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
791 return 0;
792
793 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
794 if (status > 0)
795 return 0;
796
797 if (!status)
798 status = -ESTALE;
799
800 return status;
801 }
802
803 static void set_root(struct nameidata *nd)
804 {
805 struct fs_struct *fs = current->fs;
806
807 if (nd->flags & LOOKUP_RCU) {
808 unsigned seq;
809
810 do {
811 seq = read_seqcount_begin(&fs->seq);
812 nd->root = fs->root;
813 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
814 } while (read_seqcount_retry(&fs->seq, seq));
815 } else {
816 get_fs_root(fs, &nd->root);
817 }
818 }
819
820 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 {
822 dput(path->dentry);
823 if (path->mnt != nd->path.mnt)
824 mntput(path->mnt);
825 }
826
827 static inline void path_to_nameidata(const struct path *path,
828 struct nameidata *nd)
829 {
830 if (!(nd->flags & LOOKUP_RCU)) {
831 dput(nd->path.dentry);
832 if (nd->path.mnt != path->mnt)
833 mntput(nd->path.mnt);
834 }
835 nd->path.mnt = path->mnt;
836 nd->path.dentry = path->dentry;
837 }
838
839 static int nd_jump_root(struct nameidata *nd)
840 {
841 if (nd->flags & LOOKUP_RCU) {
842 struct dentry *d;
843 nd->path = nd->root;
844 d = nd->path.dentry;
845 nd->inode = d->d_inode;
846 nd->seq = nd->root_seq;
847 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
848 return -ECHILD;
849 } else {
850 path_put(&nd->path);
851 nd->path = nd->root;
852 path_get(&nd->path);
853 nd->inode = nd->path.dentry->d_inode;
854 }
855 nd->flags |= LOOKUP_JUMPED;
856 return 0;
857 }
858
859 /*
860 * Helper to directly jump to a known parsed path from ->get_link,
861 * caller must have taken a reference to path beforehand.
862 */
863 void nd_jump_link(struct path *path)
864 {
865 struct nameidata *nd = current->nameidata;
866 path_put(&nd->path);
867
868 nd->path = *path;
869 nd->inode = nd->path.dentry->d_inode;
870 nd->flags |= LOOKUP_JUMPED;
871 }
872
873 static inline void put_link(struct nameidata *nd)
874 {
875 struct saved *last = nd->stack + --nd->depth;
876 do_delayed_call(&last->done);
877 if (!(nd->flags & LOOKUP_RCU))
878 path_put(&last->link);
879 }
880
881 int sysctl_protected_symlinks __read_mostly = 0;
882 int sysctl_protected_hardlinks __read_mostly = 0;
883
884 /**
885 * may_follow_link - Check symlink following for unsafe situations
886 * @nd: nameidata pathwalk data
887 *
888 * In the case of the sysctl_protected_symlinks sysctl being enabled,
889 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
890 * in a sticky world-writable directory. This is to protect privileged
891 * processes from failing races against path names that may change out
892 * from under them by way of other users creating malicious symlinks.
893 * It will permit symlinks to be followed only when outside a sticky
894 * world-writable directory, or when the uid of the symlink and follower
895 * match, or when the directory owner matches the symlink's owner.
896 *
897 * Returns 0 if following the symlink is allowed, -ve on error.
898 */
899 static inline int may_follow_link(struct nameidata *nd)
900 {
901 const struct inode *inode;
902 const struct inode *parent;
903
904 if (!sysctl_protected_symlinks)
905 return 0;
906
907 /* Allowed if owner and follower match. */
908 inode = nd->link_inode;
909 if (uid_eq(current_cred()->fsuid, inode->i_uid))
910 return 0;
911
912 /* Allowed if parent directory not sticky and world-writable. */
913 parent = nd->inode;
914 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
915 return 0;
916
917 /* Allowed if parent directory and link owner match. */
918 if (uid_eq(parent->i_uid, inode->i_uid))
919 return 0;
920
921 if (nd->flags & LOOKUP_RCU)
922 return -ECHILD;
923
924 audit_log_link_denied("follow_link", &nd->stack[0].link);
925 return -EACCES;
926 }
927
928 /**
929 * safe_hardlink_source - Check for safe hardlink conditions
930 * @inode: the source inode to hardlink from
931 *
932 * Return false if at least one of the following conditions:
933 * - inode is not a regular file
934 * - inode is setuid
935 * - inode is setgid and group-exec
936 * - access failure for read and write
937 *
938 * Otherwise returns true.
939 */
940 static bool safe_hardlink_source(struct inode *inode)
941 {
942 umode_t mode = inode->i_mode;
943
944 /* Special files should not get pinned to the filesystem. */
945 if (!S_ISREG(mode))
946 return false;
947
948 /* Setuid files should not get pinned to the filesystem. */
949 if (mode & S_ISUID)
950 return false;
951
952 /* Executable setgid files should not get pinned to the filesystem. */
953 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
954 return false;
955
956 /* Hardlinking to unreadable or unwritable sources is dangerous. */
957 if (inode_permission(inode, MAY_READ | MAY_WRITE))
958 return false;
959
960 return true;
961 }
962
963 /**
964 * may_linkat - Check permissions for creating a hardlink
965 * @link: the source to hardlink from
966 *
967 * Block hardlink when all of:
968 * - sysctl_protected_hardlinks enabled
969 * - fsuid does not match inode
970 * - hardlink source is unsafe (see safe_hardlink_source() above)
971 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
972 *
973 * Returns 0 if successful, -ve on error.
974 */
975 static int may_linkat(struct path *link)
976 {
977 struct inode *inode;
978
979 if (!sysctl_protected_hardlinks)
980 return 0;
981
982 inode = link->dentry->d_inode;
983
984 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
985 * otherwise, it must be a safe source.
986 */
987 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
988 return 0;
989
990 audit_log_link_denied("linkat", link);
991 return -EPERM;
992 }
993
994 static __always_inline
995 const char *get_link(struct nameidata *nd)
996 {
997 struct saved *last = nd->stack + nd->depth - 1;
998 struct dentry *dentry = last->link.dentry;
999 struct inode *inode = nd->link_inode;
1000 int error;
1001 const char *res;
1002
1003 if (!(nd->flags & LOOKUP_RCU)) {
1004 touch_atime(&last->link);
1005 cond_resched();
1006 } else if (atime_needs_update(&last->link, inode)) {
1007 if (unlikely(unlazy_walk(nd, NULL, 0)))
1008 return ERR_PTR(-ECHILD);
1009 touch_atime(&last->link);
1010 }
1011
1012 error = security_inode_follow_link(dentry, inode,
1013 nd->flags & LOOKUP_RCU);
1014 if (unlikely(error))
1015 return ERR_PTR(error);
1016
1017 nd->last_type = LAST_BIND;
1018 res = inode->i_link;
1019 if (!res) {
1020 const char * (*get)(struct dentry *, struct inode *,
1021 struct delayed_call *);
1022 get = inode->i_op->get_link;
1023 if (nd->flags & LOOKUP_RCU) {
1024 res = get(NULL, inode, &last->done);
1025 if (res == ERR_PTR(-ECHILD)) {
1026 if (unlikely(unlazy_walk(nd, NULL, 0)))
1027 return ERR_PTR(-ECHILD);
1028 res = get(dentry, inode, &last->done);
1029 }
1030 } else {
1031 res = get(dentry, inode, &last->done);
1032 }
1033 if (IS_ERR_OR_NULL(res))
1034 return res;
1035 }
1036 if (*res == '/') {
1037 if (!nd->root.mnt)
1038 set_root(nd);
1039 if (unlikely(nd_jump_root(nd)))
1040 return ERR_PTR(-ECHILD);
1041 while (unlikely(*++res == '/'))
1042 ;
1043 }
1044 if (!*res)
1045 res = NULL;
1046 return res;
1047 }
1048
1049 /*
1050 * follow_up - Find the mountpoint of path's vfsmount
1051 *
1052 * Given a path, find the mountpoint of its source file system.
1053 * Replace @path with the path of the mountpoint in the parent mount.
1054 * Up is towards /.
1055 *
1056 * Return 1 if we went up a level and 0 if we were already at the
1057 * root.
1058 */
1059 int follow_up(struct path *path)
1060 {
1061 struct mount *mnt = real_mount(path->mnt);
1062 struct mount *parent;
1063 struct dentry *mountpoint;
1064
1065 read_seqlock_excl(&mount_lock);
1066 parent = mnt->mnt_parent;
1067 if (parent == mnt) {
1068 read_sequnlock_excl(&mount_lock);
1069 return 0;
1070 }
1071 mntget(&parent->mnt);
1072 mountpoint = dget(mnt->mnt_mountpoint);
1073 read_sequnlock_excl(&mount_lock);
1074 dput(path->dentry);
1075 path->dentry = mountpoint;
1076 mntput(path->mnt);
1077 path->mnt = &parent->mnt;
1078 return 1;
1079 }
1080 EXPORT_SYMBOL(follow_up);
1081
1082 /*
1083 * Perform an automount
1084 * - return -EISDIR to tell follow_managed() to stop and return the path we
1085 * were called with.
1086 */
1087 static int follow_automount(struct path *path, struct nameidata *nd,
1088 bool *need_mntput)
1089 {
1090 struct vfsmount *mnt;
1091 int err;
1092
1093 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1094 return -EREMOTE;
1095
1096 /* We don't want to mount if someone's just doing a stat -
1097 * unless they're stat'ing a directory and appended a '/' to
1098 * the name.
1099 *
1100 * We do, however, want to mount if someone wants to open or
1101 * create a file of any type under the mountpoint, wants to
1102 * traverse through the mountpoint or wants to open the
1103 * mounted directory. Also, autofs may mark negative dentries
1104 * as being automount points. These will need the attentions
1105 * of the daemon to instantiate them before they can be used.
1106 */
1107 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1108 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1109 path->dentry->d_inode)
1110 return -EISDIR;
1111
1112 nd->total_link_count++;
1113 if (nd->total_link_count >= 40)
1114 return -ELOOP;
1115
1116 mnt = path->dentry->d_op->d_automount(path);
1117 if (IS_ERR(mnt)) {
1118 /*
1119 * The filesystem is allowed to return -EISDIR here to indicate
1120 * it doesn't want to automount. For instance, autofs would do
1121 * this so that its userspace daemon can mount on this dentry.
1122 *
1123 * However, we can only permit this if it's a terminal point in
1124 * the path being looked up; if it wasn't then the remainder of
1125 * the path is inaccessible and we should say so.
1126 */
1127 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1128 return -EREMOTE;
1129 return PTR_ERR(mnt);
1130 }
1131
1132 if (!mnt) /* mount collision */
1133 return 0;
1134
1135 if (!*need_mntput) {
1136 /* lock_mount() may release path->mnt on error */
1137 mntget(path->mnt);
1138 *need_mntput = true;
1139 }
1140 err = finish_automount(mnt, path);
1141
1142 switch (err) {
1143 case -EBUSY:
1144 /* Someone else made a mount here whilst we were busy */
1145 return 0;
1146 case 0:
1147 path_put(path);
1148 path->mnt = mnt;
1149 path->dentry = dget(mnt->mnt_root);
1150 return 0;
1151 default:
1152 return err;
1153 }
1154
1155 }
1156
1157 /*
1158 * Handle a dentry that is managed in some way.
1159 * - Flagged for transit management (autofs)
1160 * - Flagged as mountpoint
1161 * - Flagged as automount point
1162 *
1163 * This may only be called in refwalk mode.
1164 *
1165 * Serialization is taken care of in namespace.c
1166 */
1167 static int follow_managed(struct path *path, struct nameidata *nd)
1168 {
1169 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1170 unsigned managed;
1171 bool need_mntput = false;
1172 int ret = 0;
1173
1174 /* Given that we're not holding a lock here, we retain the value in a
1175 * local variable for each dentry as we look at it so that we don't see
1176 * the components of that value change under us */
1177 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1178 managed &= DCACHE_MANAGED_DENTRY,
1179 unlikely(managed != 0)) {
1180 /* Allow the filesystem to manage the transit without i_mutex
1181 * being held. */
1182 if (managed & DCACHE_MANAGE_TRANSIT) {
1183 BUG_ON(!path->dentry->d_op);
1184 BUG_ON(!path->dentry->d_op->d_manage);
1185 ret = path->dentry->d_op->d_manage(path->dentry, false);
1186 if (ret < 0)
1187 break;
1188 }
1189
1190 /* Transit to a mounted filesystem. */
1191 if (managed & DCACHE_MOUNTED) {
1192 struct vfsmount *mounted = lookup_mnt(path);
1193 if (mounted) {
1194 dput(path->dentry);
1195 if (need_mntput)
1196 mntput(path->mnt);
1197 path->mnt = mounted;
1198 path->dentry = dget(mounted->mnt_root);
1199 need_mntput = true;
1200 continue;
1201 }
1202
1203 /* Something is mounted on this dentry in another
1204 * namespace and/or whatever was mounted there in this
1205 * namespace got unmounted before lookup_mnt() could
1206 * get it */
1207 }
1208
1209 /* Handle an automount point */
1210 if (managed & DCACHE_NEED_AUTOMOUNT) {
1211 ret = follow_automount(path, nd, &need_mntput);
1212 if (ret < 0)
1213 break;
1214 continue;
1215 }
1216
1217 /* We didn't change the current path point */
1218 break;
1219 }
1220
1221 if (need_mntput && path->mnt == mnt)
1222 mntput(path->mnt);
1223 if (ret == -EISDIR || !ret)
1224 ret = 1;
1225 if (need_mntput)
1226 nd->flags |= LOOKUP_JUMPED;
1227 if (unlikely(ret < 0))
1228 path_put_conditional(path, nd);
1229 return ret;
1230 }
1231
1232 int follow_down_one(struct path *path)
1233 {
1234 struct vfsmount *mounted;
1235
1236 mounted = lookup_mnt(path);
1237 if (mounted) {
1238 dput(path->dentry);
1239 mntput(path->mnt);
1240 path->mnt = mounted;
1241 path->dentry = dget(mounted->mnt_root);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246 EXPORT_SYMBOL(follow_down_one);
1247
1248 static inline int managed_dentry_rcu(struct dentry *dentry)
1249 {
1250 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1251 dentry->d_op->d_manage(dentry, true) : 0;
1252 }
1253
1254 /*
1255 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1256 * we meet a managed dentry that would need blocking.
1257 */
1258 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1259 struct inode **inode, unsigned *seqp)
1260 {
1261 for (;;) {
1262 struct mount *mounted;
1263 /*
1264 * Don't forget we might have a non-mountpoint managed dentry
1265 * that wants to block transit.
1266 */
1267 switch (managed_dentry_rcu(path->dentry)) {
1268 case -ECHILD:
1269 default:
1270 return false;
1271 case -EISDIR:
1272 return true;
1273 case 0:
1274 break;
1275 }
1276
1277 if (!d_mountpoint(path->dentry))
1278 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1279
1280 mounted = __lookup_mnt(path->mnt, path->dentry);
1281 if (!mounted)
1282 break;
1283 path->mnt = &mounted->mnt;
1284 path->dentry = mounted->mnt.mnt_root;
1285 nd->flags |= LOOKUP_JUMPED;
1286 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1287 /*
1288 * Update the inode too. We don't need to re-check the
1289 * dentry sequence number here after this d_inode read,
1290 * because a mount-point is always pinned.
1291 */
1292 *inode = path->dentry->d_inode;
1293 }
1294 return !read_seqretry(&mount_lock, nd->m_seq) &&
1295 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1296 }
1297
1298 static int follow_dotdot_rcu(struct nameidata *nd)
1299 {
1300 struct inode *inode = nd->inode;
1301
1302 while (1) {
1303 if (path_equal(&nd->path, &nd->root))
1304 break;
1305 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1306 struct dentry *old = nd->path.dentry;
1307 struct dentry *parent = old->d_parent;
1308 unsigned seq;
1309
1310 inode = parent->d_inode;
1311 seq = read_seqcount_begin(&parent->d_seq);
1312 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1313 return -ECHILD;
1314 nd->path.dentry = parent;
1315 nd->seq = seq;
1316 if (unlikely(!path_connected(&nd->path)))
1317 return -ENOENT;
1318 break;
1319 } else {
1320 struct mount *mnt = real_mount(nd->path.mnt);
1321 struct mount *mparent = mnt->mnt_parent;
1322 struct dentry *mountpoint = mnt->mnt_mountpoint;
1323 struct inode *inode2 = mountpoint->d_inode;
1324 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1325 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1326 return -ECHILD;
1327 if (&mparent->mnt == nd->path.mnt)
1328 break;
1329 /* we know that mountpoint was pinned */
1330 nd->path.dentry = mountpoint;
1331 nd->path.mnt = &mparent->mnt;
1332 inode = inode2;
1333 nd->seq = seq;
1334 }
1335 }
1336 while (unlikely(d_mountpoint(nd->path.dentry))) {
1337 struct mount *mounted;
1338 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1339 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1340 return -ECHILD;
1341 if (!mounted)
1342 break;
1343 nd->path.mnt = &mounted->mnt;
1344 nd->path.dentry = mounted->mnt.mnt_root;
1345 inode = nd->path.dentry->d_inode;
1346 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1347 }
1348 nd->inode = inode;
1349 return 0;
1350 }
1351
1352 /*
1353 * Follow down to the covering mount currently visible to userspace. At each
1354 * point, the filesystem owning that dentry may be queried as to whether the
1355 * caller is permitted to proceed or not.
1356 */
1357 int follow_down(struct path *path)
1358 {
1359 unsigned managed;
1360 int ret;
1361
1362 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1363 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1364 /* Allow the filesystem to manage the transit without i_mutex
1365 * being held.
1366 *
1367 * We indicate to the filesystem if someone is trying to mount
1368 * something here. This gives autofs the chance to deny anyone
1369 * other than its daemon the right to mount on its
1370 * superstructure.
1371 *
1372 * The filesystem may sleep at this point.
1373 */
1374 if (managed & DCACHE_MANAGE_TRANSIT) {
1375 BUG_ON(!path->dentry->d_op);
1376 BUG_ON(!path->dentry->d_op->d_manage);
1377 ret = path->dentry->d_op->d_manage(
1378 path->dentry, false);
1379 if (ret < 0)
1380 return ret == -EISDIR ? 0 : ret;
1381 }
1382
1383 /* Transit to a mounted filesystem. */
1384 if (managed & DCACHE_MOUNTED) {
1385 struct vfsmount *mounted = lookup_mnt(path);
1386 if (!mounted)
1387 break;
1388 dput(path->dentry);
1389 mntput(path->mnt);
1390 path->mnt = mounted;
1391 path->dentry = dget(mounted->mnt_root);
1392 continue;
1393 }
1394
1395 /* Don't handle automount points here */
1396 break;
1397 }
1398 return 0;
1399 }
1400 EXPORT_SYMBOL(follow_down);
1401
1402 /*
1403 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1404 */
1405 static void follow_mount(struct path *path)
1406 {
1407 while (d_mountpoint(path->dentry)) {
1408 struct vfsmount *mounted = lookup_mnt(path);
1409 if (!mounted)
1410 break;
1411 dput(path->dentry);
1412 mntput(path->mnt);
1413 path->mnt = mounted;
1414 path->dentry = dget(mounted->mnt_root);
1415 }
1416 }
1417
1418 static int follow_dotdot(struct nameidata *nd)
1419 {
1420 while(1) {
1421 struct dentry *old = nd->path.dentry;
1422
1423 if (nd->path.dentry == nd->root.dentry &&
1424 nd->path.mnt == nd->root.mnt) {
1425 break;
1426 }
1427 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1428 /* rare case of legitimate dget_parent()... */
1429 nd->path.dentry = dget_parent(nd->path.dentry);
1430 dput(old);
1431 if (unlikely(!path_connected(&nd->path)))
1432 return -ENOENT;
1433 break;
1434 }
1435 if (!follow_up(&nd->path))
1436 break;
1437 }
1438 follow_mount(&nd->path);
1439 nd->inode = nd->path.dentry->d_inode;
1440 return 0;
1441 }
1442
1443 /*
1444 * This looks up the name in dcache, possibly revalidates the old dentry and
1445 * allocates a new one if not found or not valid. In the need_lookup argument
1446 * returns whether i_op->lookup is necessary.
1447 */
1448 static struct dentry *lookup_dcache(const struct qstr *name,
1449 struct dentry *dir,
1450 unsigned int flags)
1451 {
1452 struct dentry *dentry;
1453 int error;
1454
1455 dentry = d_lookup(dir, name);
1456 if (dentry) {
1457 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1458 error = d_revalidate(dentry, flags);
1459 if (unlikely(error <= 0)) {
1460 if (!error)
1461 d_invalidate(dentry);
1462 dput(dentry);
1463 return ERR_PTR(error);
1464 }
1465 }
1466 }
1467 return dentry;
1468 }
1469
1470 /*
1471 * Call i_op->lookup on the dentry. The dentry must be negative and
1472 * unhashed.
1473 *
1474 * dir->d_inode->i_mutex must be held
1475 */
1476 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1477 unsigned int flags)
1478 {
1479 struct dentry *old;
1480
1481 /* Don't create child dentry for a dead directory. */
1482 if (unlikely(IS_DEADDIR(dir))) {
1483 dput(dentry);
1484 return ERR_PTR(-ENOENT);
1485 }
1486
1487 old = dir->i_op->lookup(dir, dentry, flags);
1488 if (unlikely(old)) {
1489 dput(dentry);
1490 dentry = old;
1491 }
1492 return dentry;
1493 }
1494
1495 static struct dentry *__lookup_hash(const struct qstr *name,
1496 struct dentry *base, unsigned int flags)
1497 {
1498 struct dentry *dentry = lookup_dcache(name, base, flags);
1499
1500 if (dentry)
1501 return dentry;
1502
1503 dentry = d_alloc(base, name);
1504 if (unlikely(!dentry))
1505 return ERR_PTR(-ENOMEM);
1506
1507 return lookup_real(base->d_inode, dentry, flags);
1508 }
1509
1510 static int lookup_fast(struct nameidata *nd,
1511 struct path *path, struct inode **inode,
1512 unsigned *seqp)
1513 {
1514 struct vfsmount *mnt = nd->path.mnt;
1515 struct dentry *dentry, *parent = nd->path.dentry;
1516 int status = 1;
1517 int err;
1518
1519 /*
1520 * Rename seqlock is not required here because in the off chance
1521 * of a false negative due to a concurrent rename, the caller is
1522 * going to fall back to non-racy lookup.
1523 */
1524 if (nd->flags & LOOKUP_RCU) {
1525 unsigned seq;
1526 bool negative;
1527 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1528 if (unlikely(!dentry)) {
1529 if (unlazy_walk(nd, NULL, 0))
1530 return -ECHILD;
1531 return 0;
1532 }
1533
1534 /*
1535 * This sequence count validates that the inode matches
1536 * the dentry name information from lookup.
1537 */
1538 *inode = d_backing_inode(dentry);
1539 negative = d_is_negative(dentry);
1540 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1541 return -ECHILD;
1542
1543 /*
1544 * This sequence count validates that the parent had no
1545 * changes while we did the lookup of the dentry above.
1546 *
1547 * The memory barrier in read_seqcount_begin of child is
1548 * enough, we can use __read_seqcount_retry here.
1549 */
1550 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1551 return -ECHILD;
1552
1553 *seqp = seq;
1554 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1555 status = d_revalidate(dentry, nd->flags);
1556 if (unlikely(status <= 0)) {
1557 if (unlazy_walk(nd, dentry, seq))
1558 return -ECHILD;
1559 if (status == -ECHILD)
1560 status = d_revalidate(dentry, nd->flags);
1561 } else {
1562 /*
1563 * Note: do negative dentry check after revalidation in
1564 * case that drops it.
1565 */
1566 if (unlikely(negative))
1567 return -ENOENT;
1568 path->mnt = mnt;
1569 path->dentry = dentry;
1570 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1571 return 1;
1572 if (unlazy_walk(nd, dentry, seq))
1573 return -ECHILD;
1574 }
1575 } else {
1576 dentry = __d_lookup(parent, &nd->last);
1577 if (unlikely(!dentry))
1578 return 0;
1579 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1580 status = d_revalidate(dentry, nd->flags);
1581 }
1582 if (unlikely(status <= 0)) {
1583 if (!status)
1584 d_invalidate(dentry);
1585 dput(dentry);
1586 return status;
1587 }
1588 if (unlikely(d_is_negative(dentry))) {
1589 dput(dentry);
1590 return -ENOENT;
1591 }
1592
1593 path->mnt = mnt;
1594 path->dentry = dentry;
1595 err = follow_managed(path, nd);
1596 if (likely(err > 0))
1597 *inode = d_backing_inode(path->dentry);
1598 return err;
1599 }
1600
1601 /* Fast lookup failed, do it the slow way */
1602 static struct dentry *lookup_slow(const struct qstr *name,
1603 struct dentry *dir,
1604 unsigned int flags)
1605 {
1606 struct dentry *dentry;
1607 inode_lock(dir->d_inode);
1608 dentry = d_lookup(dir, name);
1609 if (unlikely(dentry)) {
1610 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1611 !(flags & LOOKUP_NO_REVAL)) {
1612 int error = d_revalidate(dentry, flags);
1613 if (unlikely(error <= 0)) {
1614 if (!error)
1615 d_invalidate(dentry);
1616 dput(dentry);
1617 dentry = ERR_PTR(error);
1618 }
1619 }
1620 if (dentry) {
1621 inode_unlock(dir->d_inode);
1622 return dentry;
1623 }
1624 }
1625 dentry = d_alloc(dir, name);
1626 if (unlikely(!dentry)) {
1627 inode_unlock(dir->d_inode);
1628 return ERR_PTR(-ENOMEM);
1629 }
1630 dentry = lookup_real(dir->d_inode, dentry, flags);
1631 inode_unlock(dir->d_inode);
1632 return dentry;
1633 }
1634
1635 static inline int may_lookup(struct nameidata *nd)
1636 {
1637 if (nd->flags & LOOKUP_RCU) {
1638 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1639 if (err != -ECHILD)
1640 return err;
1641 if (unlazy_walk(nd, NULL, 0))
1642 return -ECHILD;
1643 }
1644 return inode_permission(nd->inode, MAY_EXEC);
1645 }
1646
1647 static inline int handle_dots(struct nameidata *nd, int type)
1648 {
1649 if (type == LAST_DOTDOT) {
1650 if (!nd->root.mnt)
1651 set_root(nd);
1652 if (nd->flags & LOOKUP_RCU) {
1653 return follow_dotdot_rcu(nd);
1654 } else
1655 return follow_dotdot(nd);
1656 }
1657 return 0;
1658 }
1659
1660 static int pick_link(struct nameidata *nd, struct path *link,
1661 struct inode *inode, unsigned seq)
1662 {
1663 int error;
1664 struct saved *last;
1665 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1666 path_to_nameidata(link, nd);
1667 return -ELOOP;
1668 }
1669 if (!(nd->flags & LOOKUP_RCU)) {
1670 if (link->mnt == nd->path.mnt)
1671 mntget(link->mnt);
1672 }
1673 error = nd_alloc_stack(nd);
1674 if (unlikely(error)) {
1675 if (error == -ECHILD) {
1676 if (unlikely(unlazy_link(nd, link, seq)))
1677 return -ECHILD;
1678 error = nd_alloc_stack(nd);
1679 }
1680 if (error) {
1681 path_put(link);
1682 return error;
1683 }
1684 }
1685
1686 last = nd->stack + nd->depth++;
1687 last->link = *link;
1688 clear_delayed_call(&last->done);
1689 nd->link_inode = inode;
1690 last->seq = seq;
1691 return 1;
1692 }
1693
1694 /*
1695 * Do we need to follow links? We _really_ want to be able
1696 * to do this check without having to look at inode->i_op,
1697 * so we keep a cache of "no, this doesn't need follow_link"
1698 * for the common case.
1699 */
1700 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1701 int follow,
1702 struct inode *inode, unsigned seq)
1703 {
1704 if (likely(!d_is_symlink(link->dentry)))
1705 return 0;
1706 if (!follow)
1707 return 0;
1708 /* make sure that d_is_symlink above matches inode */
1709 if (nd->flags & LOOKUP_RCU) {
1710 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1711 return -ECHILD;
1712 }
1713 return pick_link(nd, link, inode, seq);
1714 }
1715
1716 enum {WALK_GET = 1, WALK_PUT = 2};
1717
1718 static int walk_component(struct nameidata *nd, int flags)
1719 {
1720 struct path path;
1721 struct inode *inode;
1722 unsigned seq;
1723 int err;
1724 /*
1725 * "." and ".." are special - ".." especially so because it has
1726 * to be able to know about the current root directory and
1727 * parent relationships.
1728 */
1729 if (unlikely(nd->last_type != LAST_NORM)) {
1730 err = handle_dots(nd, nd->last_type);
1731 if (flags & WALK_PUT)
1732 put_link(nd);
1733 return err;
1734 }
1735 err = lookup_fast(nd, &path, &inode, &seq);
1736 if (unlikely(err <= 0)) {
1737 if (err < 0)
1738 return err;
1739 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1740 nd->flags);
1741 if (IS_ERR(path.dentry))
1742 return PTR_ERR(path.dentry);
1743 if (unlikely(d_is_negative(path.dentry))) {
1744 dput(path.dentry);
1745 return -ENOENT;
1746 }
1747 path.mnt = nd->path.mnt;
1748 err = follow_managed(&path, nd);
1749 if (unlikely(err < 0))
1750 return err;
1751
1752 seq = 0; /* we are already out of RCU mode */
1753 inode = d_backing_inode(path.dentry);
1754 }
1755
1756 if (flags & WALK_PUT)
1757 put_link(nd);
1758 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1759 if (unlikely(err))
1760 return err;
1761 path_to_nameidata(&path, nd);
1762 nd->inode = inode;
1763 nd->seq = seq;
1764 return 0;
1765 }
1766
1767 /*
1768 * We can do the critical dentry name comparison and hashing
1769 * operations one word at a time, but we are limited to:
1770 *
1771 * - Architectures with fast unaligned word accesses. We could
1772 * do a "get_unaligned()" if this helps and is sufficiently
1773 * fast.
1774 *
1775 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1776 * do not trap on the (extremely unlikely) case of a page
1777 * crossing operation.
1778 *
1779 * - Furthermore, we need an efficient 64-bit compile for the
1780 * 64-bit case in order to generate the "number of bytes in
1781 * the final mask". Again, that could be replaced with a
1782 * efficient population count instruction or similar.
1783 */
1784 #ifdef CONFIG_DCACHE_WORD_ACCESS
1785
1786 #include <asm/word-at-a-time.h>
1787
1788 #ifdef CONFIG_64BIT
1789
1790 static inline unsigned int fold_hash(unsigned long hash)
1791 {
1792 return hash_64(hash, 32);
1793 }
1794
1795 #else /* 32-bit case */
1796
1797 #define fold_hash(x) (x)
1798
1799 #endif
1800
1801 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1802 {
1803 unsigned long a, mask;
1804 unsigned long hash = 0;
1805
1806 for (;;) {
1807 a = load_unaligned_zeropad(name);
1808 if (len < sizeof(unsigned long))
1809 break;
1810 hash += a;
1811 hash *= 9;
1812 name += sizeof(unsigned long);
1813 len -= sizeof(unsigned long);
1814 if (!len)
1815 goto done;
1816 }
1817 mask = bytemask_from_count(len);
1818 hash += mask & a;
1819 done:
1820 return fold_hash(hash);
1821 }
1822 EXPORT_SYMBOL(full_name_hash);
1823
1824 /*
1825 * Calculate the length and hash of the path component, and
1826 * return the "hash_len" as the result.
1827 */
1828 static inline u64 hash_name(const char *name)
1829 {
1830 unsigned long a, b, adata, bdata, mask, hash, len;
1831 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1832
1833 hash = a = 0;
1834 len = -sizeof(unsigned long);
1835 do {
1836 hash = (hash + a) * 9;
1837 len += sizeof(unsigned long);
1838 a = load_unaligned_zeropad(name+len);
1839 b = a ^ REPEAT_BYTE('/');
1840 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1841
1842 adata = prep_zero_mask(a, adata, &constants);
1843 bdata = prep_zero_mask(b, bdata, &constants);
1844
1845 mask = create_zero_mask(adata | bdata);
1846
1847 hash += a & zero_bytemask(mask);
1848 len += find_zero(mask);
1849 return hashlen_create(fold_hash(hash), len);
1850 }
1851
1852 #else
1853
1854 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1855 {
1856 unsigned long hash = init_name_hash();
1857 while (len--)
1858 hash = partial_name_hash(*name++, hash);
1859 return end_name_hash(hash);
1860 }
1861 EXPORT_SYMBOL(full_name_hash);
1862
1863 /*
1864 * We know there's a real path component here of at least
1865 * one character.
1866 */
1867 static inline u64 hash_name(const char *name)
1868 {
1869 unsigned long hash = init_name_hash();
1870 unsigned long len = 0, c;
1871
1872 c = (unsigned char)*name;
1873 do {
1874 len++;
1875 hash = partial_name_hash(c, hash);
1876 c = (unsigned char)name[len];
1877 } while (c && c != '/');
1878 return hashlen_create(end_name_hash(hash), len);
1879 }
1880
1881 #endif
1882
1883 /*
1884 * Name resolution.
1885 * This is the basic name resolution function, turning a pathname into
1886 * the final dentry. We expect 'base' to be positive and a directory.
1887 *
1888 * Returns 0 and nd will have valid dentry and mnt on success.
1889 * Returns error and drops reference to input namei data on failure.
1890 */
1891 static int link_path_walk(const char *name, struct nameidata *nd)
1892 {
1893 int err;
1894
1895 while (*name=='/')
1896 name++;
1897 if (!*name)
1898 return 0;
1899
1900 /* At this point we know we have a real path component. */
1901 for(;;) {
1902 u64 hash_len;
1903 int type;
1904
1905 err = may_lookup(nd);
1906 if (err)
1907 return err;
1908
1909 hash_len = hash_name(name);
1910
1911 type = LAST_NORM;
1912 if (name[0] == '.') switch (hashlen_len(hash_len)) {
1913 case 2:
1914 if (name[1] == '.') {
1915 type = LAST_DOTDOT;
1916 nd->flags |= LOOKUP_JUMPED;
1917 }
1918 break;
1919 case 1:
1920 type = LAST_DOT;
1921 }
1922 if (likely(type == LAST_NORM)) {
1923 struct dentry *parent = nd->path.dentry;
1924 nd->flags &= ~LOOKUP_JUMPED;
1925 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1926 struct qstr this = { { .hash_len = hash_len }, .name = name };
1927 err = parent->d_op->d_hash(parent, &this);
1928 if (err < 0)
1929 return err;
1930 hash_len = this.hash_len;
1931 name = this.name;
1932 }
1933 }
1934
1935 nd->last.hash_len = hash_len;
1936 nd->last.name = name;
1937 nd->last_type = type;
1938
1939 name += hashlen_len(hash_len);
1940 if (!*name)
1941 goto OK;
1942 /*
1943 * If it wasn't NUL, we know it was '/'. Skip that
1944 * slash, and continue until no more slashes.
1945 */
1946 do {
1947 name++;
1948 } while (unlikely(*name == '/'));
1949 if (unlikely(!*name)) {
1950 OK:
1951 /* pathname body, done */
1952 if (!nd->depth)
1953 return 0;
1954 name = nd->stack[nd->depth - 1].name;
1955 /* trailing symlink, done */
1956 if (!name)
1957 return 0;
1958 /* last component of nested symlink */
1959 err = walk_component(nd, WALK_GET | WALK_PUT);
1960 } else {
1961 err = walk_component(nd, WALK_GET);
1962 }
1963 if (err < 0)
1964 return err;
1965
1966 if (err) {
1967 const char *s = get_link(nd);
1968
1969 if (IS_ERR(s))
1970 return PTR_ERR(s);
1971 err = 0;
1972 if (unlikely(!s)) {
1973 /* jumped */
1974 put_link(nd);
1975 } else {
1976 nd->stack[nd->depth - 1].name = name;
1977 name = s;
1978 continue;
1979 }
1980 }
1981 if (unlikely(!d_can_lookup(nd->path.dentry))) {
1982 if (nd->flags & LOOKUP_RCU) {
1983 if (unlazy_walk(nd, NULL, 0))
1984 return -ECHILD;
1985 }
1986 return -ENOTDIR;
1987 }
1988 }
1989 }
1990
1991 static const char *path_init(struct nameidata *nd, unsigned flags)
1992 {
1993 int retval = 0;
1994 const char *s = nd->name->name;
1995
1996 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1997 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1998 nd->depth = 0;
1999 if (flags & LOOKUP_ROOT) {
2000 struct dentry *root = nd->root.dentry;
2001 struct inode *inode = root->d_inode;
2002 if (*s) {
2003 if (!d_can_lookup(root))
2004 return ERR_PTR(-ENOTDIR);
2005 retval = inode_permission(inode, MAY_EXEC);
2006 if (retval)
2007 return ERR_PTR(retval);
2008 }
2009 nd->path = nd->root;
2010 nd->inode = inode;
2011 if (flags & LOOKUP_RCU) {
2012 rcu_read_lock();
2013 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2014 nd->root_seq = nd->seq;
2015 nd->m_seq = read_seqbegin(&mount_lock);
2016 } else {
2017 path_get(&nd->path);
2018 }
2019 return s;
2020 }
2021
2022 nd->root.mnt = NULL;
2023 nd->path.mnt = NULL;
2024 nd->path.dentry = NULL;
2025
2026 nd->m_seq = read_seqbegin(&mount_lock);
2027 if (*s == '/') {
2028 if (flags & LOOKUP_RCU)
2029 rcu_read_lock();
2030 set_root(nd);
2031 if (likely(!nd_jump_root(nd)))
2032 return s;
2033 nd->root.mnt = NULL;
2034 rcu_read_unlock();
2035 return ERR_PTR(-ECHILD);
2036 } else if (nd->dfd == AT_FDCWD) {
2037 if (flags & LOOKUP_RCU) {
2038 struct fs_struct *fs = current->fs;
2039 unsigned seq;
2040
2041 rcu_read_lock();
2042
2043 do {
2044 seq = read_seqcount_begin(&fs->seq);
2045 nd->path = fs->pwd;
2046 nd->inode = nd->path.dentry->d_inode;
2047 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2048 } while (read_seqcount_retry(&fs->seq, seq));
2049 } else {
2050 get_fs_pwd(current->fs, &nd->path);
2051 nd->inode = nd->path.dentry->d_inode;
2052 }
2053 return s;
2054 } else {
2055 /* Caller must check execute permissions on the starting path component */
2056 struct fd f = fdget_raw(nd->dfd);
2057 struct dentry *dentry;
2058
2059 if (!f.file)
2060 return ERR_PTR(-EBADF);
2061
2062 dentry = f.file->f_path.dentry;
2063
2064 if (*s) {
2065 if (!d_can_lookup(dentry)) {
2066 fdput(f);
2067 return ERR_PTR(-ENOTDIR);
2068 }
2069 }
2070
2071 nd->path = f.file->f_path;
2072 if (flags & LOOKUP_RCU) {
2073 rcu_read_lock();
2074 nd->inode = nd->path.dentry->d_inode;
2075 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2076 } else {
2077 path_get(&nd->path);
2078 nd->inode = nd->path.dentry->d_inode;
2079 }
2080 fdput(f);
2081 return s;
2082 }
2083 }
2084
2085 static const char *trailing_symlink(struct nameidata *nd)
2086 {
2087 const char *s;
2088 int error = may_follow_link(nd);
2089 if (unlikely(error))
2090 return ERR_PTR(error);
2091 nd->flags |= LOOKUP_PARENT;
2092 nd->stack[0].name = NULL;
2093 s = get_link(nd);
2094 return s ? s : "";
2095 }
2096
2097 static inline int lookup_last(struct nameidata *nd)
2098 {
2099 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2100 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2101
2102 nd->flags &= ~LOOKUP_PARENT;
2103 return walk_component(nd,
2104 nd->flags & LOOKUP_FOLLOW
2105 ? nd->depth
2106 ? WALK_PUT | WALK_GET
2107 : WALK_GET
2108 : 0);
2109 }
2110
2111 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2112 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2113 {
2114 const char *s = path_init(nd, flags);
2115 int err;
2116
2117 if (IS_ERR(s))
2118 return PTR_ERR(s);
2119 while (!(err = link_path_walk(s, nd))
2120 && ((err = lookup_last(nd)) > 0)) {
2121 s = trailing_symlink(nd);
2122 if (IS_ERR(s)) {
2123 err = PTR_ERR(s);
2124 break;
2125 }
2126 }
2127 if (!err)
2128 err = complete_walk(nd);
2129
2130 if (!err && nd->flags & LOOKUP_DIRECTORY)
2131 if (!d_can_lookup(nd->path.dentry))
2132 err = -ENOTDIR;
2133 if (!err) {
2134 *path = nd->path;
2135 nd->path.mnt = NULL;
2136 nd->path.dentry = NULL;
2137 }
2138 terminate_walk(nd);
2139 return err;
2140 }
2141
2142 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2143 struct path *path, struct path *root)
2144 {
2145 int retval;
2146 struct nameidata nd;
2147 if (IS_ERR(name))
2148 return PTR_ERR(name);
2149 if (unlikely(root)) {
2150 nd.root = *root;
2151 flags |= LOOKUP_ROOT;
2152 }
2153 set_nameidata(&nd, dfd, name);
2154 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2155 if (unlikely(retval == -ECHILD))
2156 retval = path_lookupat(&nd, flags, path);
2157 if (unlikely(retval == -ESTALE))
2158 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2159
2160 if (likely(!retval))
2161 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2162 restore_nameidata();
2163 putname(name);
2164 return retval;
2165 }
2166
2167 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2168 static int path_parentat(struct nameidata *nd, unsigned flags,
2169 struct path *parent)
2170 {
2171 const char *s = path_init(nd, flags);
2172 int err;
2173 if (IS_ERR(s))
2174 return PTR_ERR(s);
2175 err = link_path_walk(s, nd);
2176 if (!err)
2177 err = complete_walk(nd);
2178 if (!err) {
2179 *parent = nd->path;
2180 nd->path.mnt = NULL;
2181 nd->path.dentry = NULL;
2182 }
2183 terminate_walk(nd);
2184 return err;
2185 }
2186
2187 static struct filename *filename_parentat(int dfd, struct filename *name,
2188 unsigned int flags, struct path *parent,
2189 struct qstr *last, int *type)
2190 {
2191 int retval;
2192 struct nameidata nd;
2193
2194 if (IS_ERR(name))
2195 return name;
2196 set_nameidata(&nd, dfd, name);
2197 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2198 if (unlikely(retval == -ECHILD))
2199 retval = path_parentat(&nd, flags, parent);
2200 if (unlikely(retval == -ESTALE))
2201 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2202 if (likely(!retval)) {
2203 *last = nd.last;
2204 *type = nd.last_type;
2205 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2206 } else {
2207 putname(name);
2208 name = ERR_PTR(retval);
2209 }
2210 restore_nameidata();
2211 return name;
2212 }
2213
2214 /* does lookup, returns the object with parent locked */
2215 struct dentry *kern_path_locked(const char *name, struct path *path)
2216 {
2217 struct filename *filename;
2218 struct dentry *d;
2219 struct qstr last;
2220 int type;
2221
2222 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2223 &last, &type);
2224 if (IS_ERR(filename))
2225 return ERR_CAST(filename);
2226 if (unlikely(type != LAST_NORM)) {
2227 path_put(path);
2228 putname(filename);
2229 return ERR_PTR(-EINVAL);
2230 }
2231 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2232 d = __lookup_hash(&last, path->dentry, 0);
2233 if (IS_ERR(d)) {
2234 inode_unlock(path->dentry->d_inode);
2235 path_put(path);
2236 }
2237 putname(filename);
2238 return d;
2239 }
2240
2241 int kern_path(const char *name, unsigned int flags, struct path *path)
2242 {
2243 return filename_lookup(AT_FDCWD, getname_kernel(name),
2244 flags, path, NULL);
2245 }
2246 EXPORT_SYMBOL(kern_path);
2247
2248 /**
2249 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2250 * @dentry: pointer to dentry of the base directory
2251 * @mnt: pointer to vfs mount of the base directory
2252 * @name: pointer to file name
2253 * @flags: lookup flags
2254 * @path: pointer to struct path to fill
2255 */
2256 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2257 const char *name, unsigned int flags,
2258 struct path *path)
2259 {
2260 struct path root = {.mnt = mnt, .dentry = dentry};
2261 /* the first argument of filename_lookup() is ignored with root */
2262 return filename_lookup(AT_FDCWD, getname_kernel(name),
2263 flags , path, &root);
2264 }
2265 EXPORT_SYMBOL(vfs_path_lookup);
2266
2267 /**
2268 * lookup_one_len - filesystem helper to lookup single pathname component
2269 * @name: pathname component to lookup
2270 * @base: base directory to lookup from
2271 * @len: maximum length @len should be interpreted to
2272 *
2273 * Note that this routine is purely a helper for filesystem usage and should
2274 * not be called by generic code.
2275 *
2276 * The caller must hold base->i_mutex.
2277 */
2278 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2279 {
2280 struct qstr this;
2281 unsigned int c;
2282 int err;
2283
2284 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2285
2286 this.name = name;
2287 this.len = len;
2288 this.hash = full_name_hash(name, len);
2289 if (!len)
2290 return ERR_PTR(-EACCES);
2291
2292 if (unlikely(name[0] == '.')) {
2293 if (len < 2 || (len == 2 && name[1] == '.'))
2294 return ERR_PTR(-EACCES);
2295 }
2296
2297 while (len--) {
2298 c = *(const unsigned char *)name++;
2299 if (c == '/' || c == '\0')
2300 return ERR_PTR(-EACCES);
2301 }
2302 /*
2303 * See if the low-level filesystem might want
2304 * to use its own hash..
2305 */
2306 if (base->d_flags & DCACHE_OP_HASH) {
2307 int err = base->d_op->d_hash(base, &this);
2308 if (err < 0)
2309 return ERR_PTR(err);
2310 }
2311
2312 err = inode_permission(base->d_inode, MAY_EXEC);
2313 if (err)
2314 return ERR_PTR(err);
2315
2316 return __lookup_hash(&this, base, 0);
2317 }
2318 EXPORT_SYMBOL(lookup_one_len);
2319
2320 /**
2321 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2322 * @name: pathname component to lookup
2323 * @base: base directory to lookup from
2324 * @len: maximum length @len should be interpreted to
2325 *
2326 * Note that this routine is purely a helper for filesystem usage and should
2327 * not be called by generic code.
2328 *
2329 * Unlike lookup_one_len, it should be called without the parent
2330 * i_mutex held, and will take the i_mutex itself if necessary.
2331 */
2332 struct dentry *lookup_one_len_unlocked(const char *name,
2333 struct dentry *base, int len)
2334 {
2335 struct qstr this;
2336 unsigned int c;
2337 int err;
2338 struct dentry *ret;
2339
2340 this.name = name;
2341 this.len = len;
2342 this.hash = full_name_hash(name, len);
2343 if (!len)
2344 return ERR_PTR(-EACCES);
2345
2346 if (unlikely(name[0] == '.')) {
2347 if (len < 2 || (len == 2 && name[1] == '.'))
2348 return ERR_PTR(-EACCES);
2349 }
2350
2351 while (len--) {
2352 c = *(const unsigned char *)name++;
2353 if (c == '/' || c == '\0')
2354 return ERR_PTR(-EACCES);
2355 }
2356 /*
2357 * See if the low-level filesystem might want
2358 * to use its own hash..
2359 */
2360 if (base->d_flags & DCACHE_OP_HASH) {
2361 int err = base->d_op->d_hash(base, &this);
2362 if (err < 0)
2363 return ERR_PTR(err);
2364 }
2365
2366 err = inode_permission(base->d_inode, MAY_EXEC);
2367 if (err)
2368 return ERR_PTR(err);
2369
2370 ret = lookup_dcache(&this, base, 0);
2371 if (!ret)
2372 ret = lookup_slow(&this, base, 0);
2373 return ret;
2374 }
2375 EXPORT_SYMBOL(lookup_one_len_unlocked);
2376
2377 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2378 struct path *path, int *empty)
2379 {
2380 return filename_lookup(dfd, getname_flags(name, flags, empty),
2381 flags, path, NULL);
2382 }
2383 EXPORT_SYMBOL(user_path_at_empty);
2384
2385 /*
2386 * NB: most callers don't do anything directly with the reference to the
2387 * to struct filename, but the nd->last pointer points into the name string
2388 * allocated by getname. So we must hold the reference to it until all
2389 * path-walking is complete.
2390 */
2391 static inline struct filename *
2392 user_path_parent(int dfd, const char __user *path,
2393 struct path *parent,
2394 struct qstr *last,
2395 int *type,
2396 unsigned int flags)
2397 {
2398 /* only LOOKUP_REVAL is allowed in extra flags */
2399 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2400 parent, last, type);
2401 }
2402
2403 /**
2404 * mountpoint_last - look up last component for umount
2405 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2406 * @path: pointer to container for result
2407 *
2408 * This is a special lookup_last function just for umount. In this case, we
2409 * need to resolve the path without doing any revalidation.
2410 *
2411 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2412 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2413 * in almost all cases, this lookup will be served out of the dcache. The only
2414 * cases where it won't are if nd->last refers to a symlink or the path is
2415 * bogus and it doesn't exist.
2416 *
2417 * Returns:
2418 * -error: if there was an error during lookup. This includes -ENOENT if the
2419 * lookup found a negative dentry. The nd->path reference will also be
2420 * put in this case.
2421 *
2422 * 0: if we successfully resolved nd->path and found it to not to be a
2423 * symlink that needs to be followed. "path" will also be populated.
2424 * The nd->path reference will also be put.
2425 *
2426 * 1: if we successfully resolved nd->last and found it to be a symlink
2427 * that needs to be followed. "path" will be populated with the path
2428 * to the link, and nd->path will *not* be put.
2429 */
2430 static int
2431 mountpoint_last(struct nameidata *nd, struct path *path)
2432 {
2433 int error = 0;
2434 struct dentry *dentry;
2435 struct dentry *dir = nd->path.dentry;
2436
2437 /* If we're in rcuwalk, drop out of it to handle last component */
2438 if (nd->flags & LOOKUP_RCU) {
2439 if (unlazy_walk(nd, NULL, 0))
2440 return -ECHILD;
2441 }
2442
2443 nd->flags &= ~LOOKUP_PARENT;
2444
2445 if (unlikely(nd->last_type != LAST_NORM)) {
2446 error = handle_dots(nd, nd->last_type);
2447 if (error)
2448 return error;
2449 dentry = dget(nd->path.dentry);
2450 } else {
2451 dentry = d_lookup(dir, &nd->last);
2452 if (!dentry) {
2453 /*
2454 * No cached dentry. Mounted dentries are pinned in the
2455 * cache, so that means that this dentry is probably
2456 * a symlink or the path doesn't actually point
2457 * to a mounted dentry.
2458 */
2459 dentry = lookup_slow(&nd->last, dir,
2460 nd->flags | LOOKUP_NO_REVAL);
2461 if (IS_ERR(dentry))
2462 return PTR_ERR(dentry);
2463 }
2464 }
2465 if (d_is_negative(dentry)) {
2466 dput(dentry);
2467 return -ENOENT;
2468 }
2469 if (nd->depth)
2470 put_link(nd);
2471 path->dentry = dentry;
2472 path->mnt = nd->path.mnt;
2473 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2474 d_backing_inode(dentry), 0);
2475 if (unlikely(error))
2476 return error;
2477 mntget(path->mnt);
2478 follow_mount(path);
2479 return 0;
2480 }
2481
2482 /**
2483 * path_mountpoint - look up a path to be umounted
2484 * @nd: lookup context
2485 * @flags: lookup flags
2486 * @path: pointer to container for result
2487 *
2488 * Look up the given name, but don't attempt to revalidate the last component.
2489 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2490 */
2491 static int
2492 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2493 {
2494 const char *s = path_init(nd, flags);
2495 int err;
2496 if (IS_ERR(s))
2497 return PTR_ERR(s);
2498 while (!(err = link_path_walk(s, nd)) &&
2499 (err = mountpoint_last(nd, path)) > 0) {
2500 s = trailing_symlink(nd);
2501 if (IS_ERR(s)) {
2502 err = PTR_ERR(s);
2503 break;
2504 }
2505 }
2506 terminate_walk(nd);
2507 return err;
2508 }
2509
2510 static int
2511 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2512 unsigned int flags)
2513 {
2514 struct nameidata nd;
2515 int error;
2516 if (IS_ERR(name))
2517 return PTR_ERR(name);
2518 set_nameidata(&nd, dfd, name);
2519 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2520 if (unlikely(error == -ECHILD))
2521 error = path_mountpoint(&nd, flags, path);
2522 if (unlikely(error == -ESTALE))
2523 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2524 if (likely(!error))
2525 audit_inode(name, path->dentry, 0);
2526 restore_nameidata();
2527 putname(name);
2528 return error;
2529 }
2530
2531 /**
2532 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2533 * @dfd: directory file descriptor
2534 * @name: pathname from userland
2535 * @flags: lookup flags
2536 * @path: pointer to container to hold result
2537 *
2538 * A umount is a special case for path walking. We're not actually interested
2539 * in the inode in this situation, and ESTALE errors can be a problem. We
2540 * simply want track down the dentry and vfsmount attached at the mountpoint
2541 * and avoid revalidating the last component.
2542 *
2543 * Returns 0 and populates "path" on success.
2544 */
2545 int
2546 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2547 struct path *path)
2548 {
2549 return filename_mountpoint(dfd, getname(name), path, flags);
2550 }
2551
2552 int
2553 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2554 unsigned int flags)
2555 {
2556 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2557 }
2558 EXPORT_SYMBOL(kern_path_mountpoint);
2559
2560 int __check_sticky(struct inode *dir, struct inode *inode)
2561 {
2562 kuid_t fsuid = current_fsuid();
2563
2564 if (uid_eq(inode->i_uid, fsuid))
2565 return 0;
2566 if (uid_eq(dir->i_uid, fsuid))
2567 return 0;
2568 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2569 }
2570 EXPORT_SYMBOL(__check_sticky);
2571
2572 /*
2573 * Check whether we can remove a link victim from directory dir, check
2574 * whether the type of victim is right.
2575 * 1. We can't do it if dir is read-only (done in permission())
2576 * 2. We should have write and exec permissions on dir
2577 * 3. We can't remove anything from append-only dir
2578 * 4. We can't do anything with immutable dir (done in permission())
2579 * 5. If the sticky bit on dir is set we should either
2580 * a. be owner of dir, or
2581 * b. be owner of victim, or
2582 * c. have CAP_FOWNER capability
2583 * 6. If the victim is append-only or immutable we can't do antyhing with
2584 * links pointing to it.
2585 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2586 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2587 * 9. We can't remove a root or mountpoint.
2588 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2589 * nfs_async_unlink().
2590 */
2591 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2592 {
2593 struct inode *inode = d_backing_inode(victim);
2594 int error;
2595
2596 if (d_is_negative(victim))
2597 return -ENOENT;
2598 BUG_ON(!inode);
2599
2600 BUG_ON(victim->d_parent->d_inode != dir);
2601 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2602
2603 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2604 if (error)
2605 return error;
2606 if (IS_APPEND(dir))
2607 return -EPERM;
2608
2609 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2610 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2611 return -EPERM;
2612 if (isdir) {
2613 if (!d_is_dir(victim))
2614 return -ENOTDIR;
2615 if (IS_ROOT(victim))
2616 return -EBUSY;
2617 } else if (d_is_dir(victim))
2618 return -EISDIR;
2619 if (IS_DEADDIR(dir))
2620 return -ENOENT;
2621 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2622 return -EBUSY;
2623 return 0;
2624 }
2625
2626 /* Check whether we can create an object with dentry child in directory
2627 * dir.
2628 * 1. We can't do it if child already exists (open has special treatment for
2629 * this case, but since we are inlined it's OK)
2630 * 2. We can't do it if dir is read-only (done in permission())
2631 * 3. We should have write and exec permissions on dir
2632 * 4. We can't do it if dir is immutable (done in permission())
2633 */
2634 static inline int may_create(struct inode *dir, struct dentry *child)
2635 {
2636 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2637 if (child->d_inode)
2638 return -EEXIST;
2639 if (IS_DEADDIR(dir))
2640 return -ENOENT;
2641 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2642 }
2643
2644 /*
2645 * p1 and p2 should be directories on the same fs.
2646 */
2647 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2648 {
2649 struct dentry *p;
2650
2651 if (p1 == p2) {
2652 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2653 return NULL;
2654 }
2655
2656 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2657
2658 p = d_ancestor(p2, p1);
2659 if (p) {
2660 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2661 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2662 return p;
2663 }
2664
2665 p = d_ancestor(p1, p2);
2666 if (p) {
2667 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2668 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2669 return p;
2670 }
2671
2672 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2673 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2674 return NULL;
2675 }
2676 EXPORT_SYMBOL(lock_rename);
2677
2678 void unlock_rename(struct dentry *p1, struct dentry *p2)
2679 {
2680 inode_unlock(p1->d_inode);
2681 if (p1 != p2) {
2682 inode_unlock(p2->d_inode);
2683 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2684 }
2685 }
2686 EXPORT_SYMBOL(unlock_rename);
2687
2688 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2689 bool want_excl)
2690 {
2691 int error = may_create(dir, dentry);
2692 if (error)
2693 return error;
2694
2695 if (!dir->i_op->create)
2696 return -EACCES; /* shouldn't it be ENOSYS? */
2697 mode &= S_IALLUGO;
2698 mode |= S_IFREG;
2699 error = security_inode_create(dir, dentry, mode);
2700 if (error)
2701 return error;
2702 error = dir->i_op->create(dir, dentry, mode, want_excl);
2703 if (!error)
2704 fsnotify_create(dir, dentry);
2705 return error;
2706 }
2707 EXPORT_SYMBOL(vfs_create);
2708
2709 static int may_open(struct path *path, int acc_mode, int flag)
2710 {
2711 struct dentry *dentry = path->dentry;
2712 struct inode *inode = dentry->d_inode;
2713 int error;
2714
2715 if (!inode)
2716 return -ENOENT;
2717
2718 switch (inode->i_mode & S_IFMT) {
2719 case S_IFLNK:
2720 return -ELOOP;
2721 case S_IFDIR:
2722 if (acc_mode & MAY_WRITE)
2723 return -EISDIR;
2724 break;
2725 case S_IFBLK:
2726 case S_IFCHR:
2727 if (path->mnt->mnt_flags & MNT_NODEV)
2728 return -EACCES;
2729 /*FALLTHRU*/
2730 case S_IFIFO:
2731 case S_IFSOCK:
2732 flag &= ~O_TRUNC;
2733 break;
2734 }
2735
2736 error = inode_permission(inode, MAY_OPEN | acc_mode);
2737 if (error)
2738 return error;
2739
2740 /*
2741 * An append-only file must be opened in append mode for writing.
2742 */
2743 if (IS_APPEND(inode)) {
2744 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2745 return -EPERM;
2746 if (flag & O_TRUNC)
2747 return -EPERM;
2748 }
2749
2750 /* O_NOATIME can only be set by the owner or superuser */
2751 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2752 return -EPERM;
2753
2754 return 0;
2755 }
2756
2757 static int handle_truncate(struct file *filp)
2758 {
2759 struct path *path = &filp->f_path;
2760 struct inode *inode = path->dentry->d_inode;
2761 int error = get_write_access(inode);
2762 if (error)
2763 return error;
2764 /*
2765 * Refuse to truncate files with mandatory locks held on them.
2766 */
2767 error = locks_verify_locked(filp);
2768 if (!error)
2769 error = security_path_truncate(path);
2770 if (!error) {
2771 error = do_truncate(path->dentry, 0,
2772 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2773 filp);
2774 }
2775 put_write_access(inode);
2776 return error;
2777 }
2778
2779 static inline int open_to_namei_flags(int flag)
2780 {
2781 if ((flag & O_ACCMODE) == 3)
2782 flag--;
2783 return flag;
2784 }
2785
2786 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2787 {
2788 int error = security_path_mknod(dir, dentry, mode, 0);
2789 if (error)
2790 return error;
2791
2792 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2793 if (error)
2794 return error;
2795
2796 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2797 }
2798
2799 /*
2800 * Attempt to atomically look up, create and open a file from a negative
2801 * dentry.
2802 *
2803 * Returns 0 if successful. The file will have been created and attached to
2804 * @file by the filesystem calling finish_open().
2805 *
2806 * Returns 1 if the file was looked up only or didn't need creating. The
2807 * caller will need to perform the open themselves. @path will have been
2808 * updated to point to the new dentry. This may be negative.
2809 *
2810 * Returns an error code otherwise.
2811 */
2812 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2813 struct path *path, struct file *file,
2814 const struct open_flags *op,
2815 bool got_write, bool need_lookup,
2816 int *opened)
2817 {
2818 struct inode *dir = nd->path.dentry->d_inode;
2819 unsigned open_flag = open_to_namei_flags(op->open_flag);
2820 umode_t mode;
2821 int error;
2822 int acc_mode;
2823 int create_error = 0;
2824 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2825 bool excl;
2826
2827 BUG_ON(dentry->d_inode);
2828
2829 /* Don't create child dentry for a dead directory. */
2830 if (unlikely(IS_DEADDIR(dir))) {
2831 error = -ENOENT;
2832 goto out;
2833 }
2834
2835 mode = op->mode;
2836 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2837 mode &= ~current_umask();
2838
2839 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2840 if (excl)
2841 open_flag &= ~O_TRUNC;
2842
2843 /*
2844 * Checking write permission is tricky, bacuse we don't know if we are
2845 * going to actually need it: O_CREAT opens should work as long as the
2846 * file exists. But checking existence breaks atomicity. The trick is
2847 * to check access and if not granted clear O_CREAT from the flags.
2848 *
2849 * Another problem is returing the "right" error value (e.g. for an
2850 * O_EXCL open we want to return EEXIST not EROFS).
2851 */
2852 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2853 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2854 if (!(open_flag & O_CREAT)) {
2855 /*
2856 * No O_CREATE -> atomicity not a requirement -> fall
2857 * back to lookup + open
2858 */
2859 goto no_open;
2860 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2861 /* Fall back and fail with the right error */
2862 create_error = -EROFS;
2863 goto no_open;
2864 } else {
2865 /* No side effects, safe to clear O_CREAT */
2866 create_error = -EROFS;
2867 open_flag &= ~O_CREAT;
2868 }
2869 }
2870
2871 if (open_flag & O_CREAT) {
2872 error = may_o_create(&nd->path, dentry, mode);
2873 if (error) {
2874 create_error = error;
2875 if (open_flag & O_EXCL)
2876 goto no_open;
2877 open_flag &= ~O_CREAT;
2878 }
2879 }
2880
2881 if (nd->flags & LOOKUP_DIRECTORY)
2882 open_flag |= O_DIRECTORY;
2883
2884 file->f_path.dentry = DENTRY_NOT_SET;
2885 file->f_path.mnt = nd->path.mnt;
2886 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2887 opened);
2888 if (error < 0) {
2889 if (create_error && error == -ENOENT)
2890 error = create_error;
2891 goto out;
2892 }
2893
2894 if (error) { /* returned 1, that is */
2895 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2896 error = -EIO;
2897 goto out;
2898 }
2899 if (file->f_path.dentry) {
2900 dput(dentry);
2901 dentry = file->f_path.dentry;
2902 }
2903 if (*opened & FILE_CREATED)
2904 fsnotify_create(dir, dentry);
2905 if (!dentry->d_inode) {
2906 WARN_ON(*opened & FILE_CREATED);
2907 if (create_error) {
2908 error = create_error;
2909 goto out;
2910 }
2911 } else {
2912 if (excl && !(*opened & FILE_CREATED)) {
2913 error = -EEXIST;
2914 goto out;
2915 }
2916 }
2917 goto looked_up;
2918 }
2919
2920 /*
2921 * We didn't have the inode before the open, so check open permission
2922 * here.
2923 */
2924 acc_mode = op->acc_mode;
2925 if (*opened & FILE_CREATED) {
2926 WARN_ON(!(open_flag & O_CREAT));
2927 fsnotify_create(dir, dentry);
2928 acc_mode = 0;
2929 }
2930 error = may_open(&file->f_path, acc_mode, open_flag);
2931 if (error)
2932 fput(file);
2933
2934 out:
2935 dput(dentry);
2936 return error;
2937
2938 no_open:
2939 if (need_lookup) {
2940 dentry = lookup_real(dir, dentry, nd->flags);
2941 if (IS_ERR(dentry))
2942 return PTR_ERR(dentry);
2943
2944 if (create_error) {
2945 int open_flag = op->open_flag;
2946
2947 error = create_error;
2948 if ((open_flag & O_EXCL)) {
2949 if (!dentry->d_inode)
2950 goto out;
2951 } else if (!dentry->d_inode) {
2952 goto out;
2953 } else if ((open_flag & O_TRUNC) &&
2954 d_is_reg(dentry)) {
2955 goto out;
2956 }
2957 /* will fail later, go on to get the right error */
2958 }
2959 }
2960 looked_up:
2961 path->dentry = dentry;
2962 path->mnt = nd->path.mnt;
2963 return 1;
2964 }
2965
2966 /*
2967 * Look up and maybe create and open the last component.
2968 *
2969 * Must be called with i_mutex held on parent.
2970 *
2971 * Returns 0 if the file was successfully atomically created (if necessary) and
2972 * opened. In this case the file will be returned attached to @file.
2973 *
2974 * Returns 1 if the file was not completely opened at this time, though lookups
2975 * and creations will have been performed and the dentry returned in @path will
2976 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2977 * specified then a negative dentry may be returned.
2978 *
2979 * An error code is returned otherwise.
2980 *
2981 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2982 * cleared otherwise prior to returning.
2983 */
2984 static int lookup_open(struct nameidata *nd, struct path *path,
2985 struct file *file,
2986 const struct open_flags *op,
2987 bool got_write, int *opened)
2988 {
2989 struct dentry *dir = nd->path.dentry;
2990 struct inode *dir_inode = dir->d_inode;
2991 struct dentry *dentry;
2992 int error;
2993 bool need_lookup = false;
2994
2995 *opened &= ~FILE_CREATED;
2996 dentry = lookup_dcache(&nd->last, dir, nd->flags);
2997 if (IS_ERR(dentry))
2998 return PTR_ERR(dentry);
2999
3000 if (!dentry) {
3001 dentry = d_alloc(dir, &nd->last);
3002 if (unlikely(!dentry))
3003 return -ENOMEM;
3004 need_lookup = true;
3005 } else if (dentry->d_inode) {
3006 /* Cached positive dentry: will open in f_op->open */
3007 goto out_no_open;
3008 }
3009
3010 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
3011 return atomic_open(nd, dentry, path, file, op, got_write,
3012 need_lookup, opened);
3013 }
3014
3015 if (need_lookup) {
3016 BUG_ON(dentry->d_inode);
3017
3018 dentry = lookup_real(dir_inode, dentry, nd->flags);
3019 if (IS_ERR(dentry))
3020 return PTR_ERR(dentry);
3021 }
3022
3023 /* Negative dentry, just create the file */
3024 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
3025 umode_t mode = op->mode;
3026 if (!IS_POSIXACL(dir->d_inode))
3027 mode &= ~current_umask();
3028 /*
3029 * This write is needed to ensure that a
3030 * rw->ro transition does not occur between
3031 * the time when the file is created and when
3032 * a permanent write count is taken through
3033 * the 'struct file' in finish_open().
3034 */
3035 if (!got_write) {
3036 error = -EROFS;
3037 goto out_dput;
3038 }
3039 *opened |= FILE_CREATED;
3040 error = security_path_mknod(&nd->path, dentry, mode, 0);
3041 if (error)
3042 goto out_dput;
3043 error = vfs_create(dir->d_inode, dentry, mode,
3044 nd->flags & LOOKUP_EXCL);
3045 if (error)
3046 goto out_dput;
3047 }
3048 out_no_open:
3049 path->dentry = dentry;
3050 path->mnt = nd->path.mnt;
3051 return 1;
3052
3053 out_dput:
3054 dput(dentry);
3055 return error;
3056 }
3057
3058 /*
3059 * Handle the last step of open()
3060 */
3061 static int do_last(struct nameidata *nd,
3062 struct file *file, const struct open_flags *op,
3063 int *opened)
3064 {
3065 struct dentry *dir = nd->path.dentry;
3066 int open_flag = op->open_flag;
3067 bool will_truncate = (open_flag & O_TRUNC) != 0;
3068 bool got_write = false;
3069 int acc_mode = op->acc_mode;
3070 unsigned seq;
3071 struct inode *inode;
3072 struct path save_parent = { .dentry = NULL, .mnt = NULL };
3073 struct path path;
3074 bool retried = false;
3075 int error;
3076
3077 nd->flags &= ~LOOKUP_PARENT;
3078 nd->flags |= op->intent;
3079
3080 if (nd->last_type != LAST_NORM) {
3081 error = handle_dots(nd, nd->last_type);
3082 if (unlikely(error))
3083 return error;
3084 goto finish_open;
3085 }
3086
3087 if (!(open_flag & O_CREAT)) {
3088 if (nd->last.name[nd->last.len])
3089 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3090 /* we _can_ be in RCU mode here */
3091 error = lookup_fast(nd, &path, &inode, &seq);
3092 if (likely(error > 0))
3093 goto finish_lookup;
3094
3095 if (error < 0)
3096 return error;
3097
3098 BUG_ON(nd->inode != dir->d_inode);
3099 BUG_ON(nd->flags & LOOKUP_RCU);
3100 } else {
3101 /* create side of things */
3102 /*
3103 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3104 * has been cleared when we got to the last component we are
3105 * about to look up
3106 */
3107 error = complete_walk(nd);
3108 if (error)
3109 return error;
3110
3111 audit_inode(nd->name, dir, LOOKUP_PARENT);
3112 /* trailing slashes? */
3113 if (unlikely(nd->last.name[nd->last.len]))
3114 return -EISDIR;
3115 }
3116
3117 retry_lookup:
3118 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3119 error = mnt_want_write(nd->path.mnt);
3120 if (!error)
3121 got_write = true;
3122 /*
3123 * do _not_ fail yet - we might not need that or fail with
3124 * a different error; let lookup_open() decide; we'll be
3125 * dropping this one anyway.
3126 */
3127 }
3128 inode_lock(dir->d_inode);
3129 error = lookup_open(nd, &path, file, op, got_write, opened);
3130 inode_unlock(dir->d_inode);
3131
3132 if (error <= 0) {
3133 if (error)
3134 goto out;
3135
3136 if ((*opened & FILE_CREATED) ||
3137 !S_ISREG(file_inode(file)->i_mode))
3138 will_truncate = false;
3139
3140 audit_inode(nd->name, file->f_path.dentry, 0);
3141 goto opened;
3142 }
3143
3144 if (*opened & FILE_CREATED) {
3145 /* Don't check for write permission, don't truncate */
3146 open_flag &= ~O_TRUNC;
3147 will_truncate = false;
3148 acc_mode = 0;
3149 path_to_nameidata(&path, nd);
3150 goto finish_open_created;
3151 }
3152
3153 /*
3154 * If atomic_open() acquired write access it is dropped now due to
3155 * possible mount and symlink following (this might be optimized away if
3156 * necessary...)
3157 */
3158 if (got_write) {
3159 mnt_drop_write(nd->path.mnt);
3160 got_write = false;
3161 }
3162
3163 if (unlikely(d_is_negative(path.dentry))) {
3164 path_to_nameidata(&path, nd);
3165 return -ENOENT;
3166 }
3167
3168 /*
3169 * create/update audit record if it already exists.
3170 */
3171 audit_inode(nd->name, path.dentry, 0);
3172
3173 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3174 path_to_nameidata(&path, nd);
3175 return -EEXIST;
3176 }
3177
3178 error = follow_managed(&path, nd);
3179 if (unlikely(error < 0))
3180 return error;
3181
3182 seq = 0; /* out of RCU mode, so the value doesn't matter */
3183 inode = d_backing_inode(path.dentry);
3184 finish_lookup:
3185 if (nd->depth)
3186 put_link(nd);
3187 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3188 inode, seq);
3189 if (unlikely(error))
3190 return error;
3191
3192 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path.mnt) {
3193 path_to_nameidata(&path, nd);
3194 } else {
3195 save_parent.dentry = nd->path.dentry;
3196 save_parent.mnt = mntget(path.mnt);
3197 nd->path.dentry = path.dentry;
3198
3199 }
3200 nd->inode = inode;
3201 nd->seq = seq;
3202 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3203 finish_open:
3204 error = complete_walk(nd);
3205 if (error) {
3206 path_put(&save_parent);
3207 return error;
3208 }
3209 audit_inode(nd->name, nd->path.dentry, 0);
3210 if (unlikely(d_is_symlink(nd->path.dentry)) && !(open_flag & O_PATH)) {
3211 error = -ELOOP;
3212 goto out;
3213 }
3214 error = -EISDIR;
3215 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3216 goto out;
3217 error = -ENOTDIR;
3218 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3219 goto out;
3220 if (!d_is_reg(nd->path.dentry))
3221 will_truncate = false;
3222
3223 if (will_truncate) {
3224 error = mnt_want_write(nd->path.mnt);
3225 if (error)
3226 goto out;
3227 got_write = true;
3228 }
3229 finish_open_created:
3230 if (likely(!(open_flag & O_PATH))) {
3231 error = may_open(&nd->path, acc_mode, open_flag);
3232 if (error)
3233 goto out;
3234 }
3235 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3236 error = vfs_open(&nd->path, file, current_cred());
3237 if (!error) {
3238 *opened |= FILE_OPENED;
3239 } else {
3240 if (error == -EOPENSTALE)
3241 goto stale_open;
3242 goto out;
3243 }
3244 opened:
3245 error = open_check_o_direct(file);
3246 if (error)
3247 goto exit_fput;
3248 error = ima_file_check(file, op->acc_mode, *opened);
3249 if (error)
3250 goto exit_fput;
3251
3252 if (will_truncate) {
3253 error = handle_truncate(file);
3254 if (error)
3255 goto exit_fput;
3256 }
3257 out:
3258 if (unlikely(error > 0)) {
3259 WARN_ON(1);
3260 error = -EINVAL;
3261 }
3262 if (got_write)
3263 mnt_drop_write(nd->path.mnt);
3264 path_put(&save_parent);
3265 return error;
3266
3267 exit_fput:
3268 fput(file);
3269 goto out;
3270
3271 stale_open:
3272 /* If no saved parent or already retried then can't retry */
3273 if (!save_parent.dentry || retried)
3274 goto out;
3275
3276 BUG_ON(save_parent.dentry != dir);
3277 path_put(&nd->path);
3278 nd->path = save_parent;
3279 nd->inode = dir->d_inode;
3280 save_parent.mnt = NULL;
3281 save_parent.dentry = NULL;
3282 if (got_write) {
3283 mnt_drop_write(nd->path.mnt);
3284 got_write = false;
3285 }
3286 retried = true;
3287 goto retry_lookup;
3288 }
3289
3290 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3291 const struct open_flags *op,
3292 struct file *file, int *opened)
3293 {
3294 static const struct qstr name = QSTR_INIT("/", 1);
3295 struct dentry *child;
3296 struct inode *dir;
3297 struct path path;
3298 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3299 if (unlikely(error))
3300 return error;
3301 error = mnt_want_write(path.mnt);
3302 if (unlikely(error))
3303 goto out;
3304 dir = path.dentry->d_inode;
3305 /* we want directory to be writable */
3306 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3307 if (error)
3308 goto out2;
3309 if (!dir->i_op->tmpfile) {
3310 error = -EOPNOTSUPP;
3311 goto out2;
3312 }
3313 child = d_alloc(path.dentry, &name);
3314 if (unlikely(!child)) {
3315 error = -ENOMEM;
3316 goto out2;
3317 }
3318 dput(path.dentry);
3319 path.dentry = child;
3320 error = dir->i_op->tmpfile(dir, child, op->mode);
3321 if (error)
3322 goto out2;
3323 audit_inode(nd->name, child, 0);
3324 /* Don't check for other permissions, the inode was just created */
3325 error = may_open(&path, 0, op->open_flag);
3326 if (error)
3327 goto out2;
3328 file->f_path.mnt = path.mnt;
3329 error = finish_open(file, child, NULL, opened);
3330 if (error)
3331 goto out2;
3332 error = open_check_o_direct(file);
3333 if (error) {
3334 fput(file);
3335 } else if (!(op->open_flag & O_EXCL)) {
3336 struct inode *inode = file_inode(file);
3337 spin_lock(&inode->i_lock);
3338 inode->i_state |= I_LINKABLE;
3339 spin_unlock(&inode->i_lock);
3340 }
3341 out2:
3342 mnt_drop_write(path.mnt);
3343 out:
3344 path_put(&path);
3345 return error;
3346 }
3347
3348 static struct file *path_openat(struct nameidata *nd,
3349 const struct open_flags *op, unsigned flags)
3350 {
3351 const char *s;
3352 struct file *file;
3353 int opened = 0;
3354 int error;
3355
3356 file = get_empty_filp();
3357 if (IS_ERR(file))
3358 return file;
3359
3360 file->f_flags = op->open_flag;
3361
3362 if (unlikely(file->f_flags & __O_TMPFILE)) {
3363 error = do_tmpfile(nd, flags, op, file, &opened);
3364 goto out2;
3365 }
3366
3367 s = path_init(nd, flags);
3368 if (IS_ERR(s)) {
3369 put_filp(file);
3370 return ERR_CAST(s);
3371 }
3372 while (!(error = link_path_walk(s, nd)) &&
3373 (error = do_last(nd, file, op, &opened)) > 0) {
3374 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3375 s = trailing_symlink(nd);
3376 if (IS_ERR(s)) {
3377 error = PTR_ERR(s);
3378 break;
3379 }
3380 }
3381 terminate_walk(nd);
3382 out2:
3383 if (!(opened & FILE_OPENED)) {
3384 BUG_ON(!error);
3385 put_filp(file);
3386 }
3387 if (unlikely(error)) {
3388 if (error == -EOPENSTALE) {
3389 if (flags & LOOKUP_RCU)
3390 error = -ECHILD;
3391 else
3392 error = -ESTALE;
3393 }
3394 file = ERR_PTR(error);
3395 }
3396 return file;
3397 }
3398
3399 struct file *do_filp_open(int dfd, struct filename *pathname,
3400 const struct open_flags *op)
3401 {
3402 struct nameidata nd;
3403 int flags = op->lookup_flags;
3404 struct file *filp;
3405
3406 set_nameidata(&nd, dfd, pathname);
3407 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3408 if (unlikely(filp == ERR_PTR(-ECHILD)))
3409 filp = path_openat(&nd, op, flags);
3410 if (unlikely(filp == ERR_PTR(-ESTALE)))
3411 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3412 restore_nameidata();
3413 return filp;
3414 }
3415
3416 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3417 const char *name, const struct open_flags *op)
3418 {
3419 struct nameidata nd;
3420 struct file *file;
3421 struct filename *filename;
3422 int flags = op->lookup_flags | LOOKUP_ROOT;
3423
3424 nd.root.mnt = mnt;
3425 nd.root.dentry = dentry;
3426
3427 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3428 return ERR_PTR(-ELOOP);
3429
3430 filename = getname_kernel(name);
3431 if (IS_ERR(filename))
3432 return ERR_CAST(filename);
3433
3434 set_nameidata(&nd, -1, filename);
3435 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3436 if (unlikely(file == ERR_PTR(-ECHILD)))
3437 file = path_openat(&nd, op, flags);
3438 if (unlikely(file == ERR_PTR(-ESTALE)))
3439 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3440 restore_nameidata();
3441 putname(filename);
3442 return file;
3443 }
3444
3445 static struct dentry *filename_create(int dfd, struct filename *name,
3446 struct path *path, unsigned int lookup_flags)
3447 {
3448 struct dentry *dentry = ERR_PTR(-EEXIST);
3449 struct qstr last;
3450 int type;
3451 int err2;
3452 int error;
3453 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3454
3455 /*
3456 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3457 * other flags passed in are ignored!
3458 */
3459 lookup_flags &= LOOKUP_REVAL;
3460
3461 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3462 if (IS_ERR(name))
3463 return ERR_CAST(name);
3464
3465 /*
3466 * Yucky last component or no last component at all?
3467 * (foo/., foo/.., /////)
3468 */
3469 if (unlikely(type != LAST_NORM))
3470 goto out;
3471
3472 /* don't fail immediately if it's r/o, at least try to report other errors */
3473 err2 = mnt_want_write(path->mnt);
3474 /*
3475 * Do the final lookup.
3476 */
3477 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3478 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3479 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3480 if (IS_ERR(dentry))
3481 goto unlock;
3482
3483 error = -EEXIST;
3484 if (d_is_positive(dentry))
3485 goto fail;
3486
3487 /*
3488 * Special case - lookup gave negative, but... we had foo/bar/
3489 * From the vfs_mknod() POV we just have a negative dentry -
3490 * all is fine. Let's be bastards - you had / on the end, you've
3491 * been asking for (non-existent) directory. -ENOENT for you.
3492 */
3493 if (unlikely(!is_dir && last.name[last.len])) {
3494 error = -ENOENT;
3495 goto fail;
3496 }
3497 if (unlikely(err2)) {
3498 error = err2;
3499 goto fail;
3500 }
3501 putname(name);
3502 return dentry;
3503 fail:
3504 dput(dentry);
3505 dentry = ERR_PTR(error);
3506 unlock:
3507 inode_unlock(path->dentry->d_inode);
3508 if (!err2)
3509 mnt_drop_write(path->mnt);
3510 out:
3511 path_put(path);
3512 putname(name);
3513 return dentry;
3514 }
3515
3516 struct dentry *kern_path_create(int dfd, const char *pathname,
3517 struct path *path, unsigned int lookup_flags)
3518 {
3519 return filename_create(dfd, getname_kernel(pathname),
3520 path, lookup_flags);
3521 }
3522 EXPORT_SYMBOL(kern_path_create);
3523
3524 void done_path_create(struct path *path, struct dentry *dentry)
3525 {
3526 dput(dentry);
3527 inode_unlock(path->dentry->d_inode);
3528 mnt_drop_write(path->mnt);
3529 path_put(path);
3530 }
3531 EXPORT_SYMBOL(done_path_create);
3532
3533 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3534 struct path *path, unsigned int lookup_flags)
3535 {
3536 return filename_create(dfd, getname(pathname), path, lookup_flags);
3537 }
3538 EXPORT_SYMBOL(user_path_create);
3539
3540 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3541 {
3542 int error = may_create(dir, dentry);
3543
3544 if (error)
3545 return error;
3546
3547 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3548 return -EPERM;
3549
3550 if (!dir->i_op->mknod)
3551 return -EPERM;
3552
3553 error = devcgroup_inode_mknod(mode, dev);
3554 if (error)
3555 return error;
3556
3557 error = security_inode_mknod(dir, dentry, mode, dev);
3558 if (error)
3559 return error;
3560
3561 error = dir->i_op->mknod(dir, dentry, mode, dev);
3562 if (!error)
3563 fsnotify_create(dir, dentry);
3564 return error;
3565 }
3566 EXPORT_SYMBOL(vfs_mknod);
3567
3568 static int may_mknod(umode_t mode)
3569 {
3570 switch (mode & S_IFMT) {
3571 case S_IFREG:
3572 case S_IFCHR:
3573 case S_IFBLK:
3574 case S_IFIFO:
3575 case S_IFSOCK:
3576 case 0: /* zero mode translates to S_IFREG */
3577 return 0;
3578 case S_IFDIR:
3579 return -EPERM;
3580 default:
3581 return -EINVAL;
3582 }
3583 }
3584
3585 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3586 unsigned, dev)
3587 {
3588 struct dentry *dentry;
3589 struct path path;
3590 int error;
3591 unsigned int lookup_flags = 0;
3592
3593 error = may_mknod(mode);
3594 if (error)
3595 return error;
3596 retry:
3597 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3598 if (IS_ERR(dentry))
3599 return PTR_ERR(dentry);
3600
3601 if (!IS_POSIXACL(path.dentry->d_inode))
3602 mode &= ~current_umask();
3603 error = security_path_mknod(&path, dentry, mode, dev);
3604 if (error)
3605 goto out;
3606 switch (mode & S_IFMT) {
3607 case 0: case S_IFREG:
3608 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3609 break;
3610 case S_IFCHR: case S_IFBLK:
3611 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3612 new_decode_dev(dev));
3613 break;
3614 case S_IFIFO: case S_IFSOCK:
3615 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3616 break;
3617 }
3618 out:
3619 done_path_create(&path, dentry);
3620 if (retry_estale(error, lookup_flags)) {
3621 lookup_flags |= LOOKUP_REVAL;
3622 goto retry;
3623 }
3624 return error;
3625 }
3626
3627 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3628 {
3629 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3630 }
3631
3632 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3633 {
3634 int error = may_create(dir, dentry);
3635 unsigned max_links = dir->i_sb->s_max_links;
3636
3637 if (error)
3638 return error;
3639
3640 if (!dir->i_op->mkdir)
3641 return -EPERM;
3642
3643 mode &= (S_IRWXUGO|S_ISVTX);
3644 error = security_inode_mkdir(dir, dentry, mode);
3645 if (error)
3646 return error;
3647
3648 if (max_links && dir->i_nlink >= max_links)
3649 return -EMLINK;
3650
3651 error = dir->i_op->mkdir(dir, dentry, mode);
3652 if (!error)
3653 fsnotify_mkdir(dir, dentry);
3654 return error;
3655 }
3656 EXPORT_SYMBOL(vfs_mkdir);
3657
3658 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3659 {
3660 struct dentry *dentry;
3661 struct path path;
3662 int error;
3663 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3664
3665 retry:
3666 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3667 if (IS_ERR(dentry))
3668 return PTR_ERR(dentry);
3669
3670 if (!IS_POSIXACL(path.dentry->d_inode))
3671 mode &= ~current_umask();
3672 error = security_path_mkdir(&path, dentry, mode);
3673 if (!error)
3674 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3675 done_path_create(&path, dentry);
3676 if (retry_estale(error, lookup_flags)) {
3677 lookup_flags |= LOOKUP_REVAL;
3678 goto retry;
3679 }
3680 return error;
3681 }
3682
3683 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3684 {
3685 return sys_mkdirat(AT_FDCWD, pathname, mode);
3686 }
3687
3688 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3689 {
3690 int error = may_delete(dir, dentry, 1);
3691
3692 if (error)
3693 return error;
3694
3695 if (!dir->i_op->rmdir)
3696 return -EPERM;
3697
3698 dget(dentry);
3699 inode_lock(dentry->d_inode);
3700
3701 error = -EBUSY;
3702 if (is_local_mountpoint(dentry))
3703 goto out;
3704
3705 error = security_inode_rmdir(dir, dentry);
3706 if (error)
3707 goto out;
3708
3709 shrink_dcache_parent(dentry);
3710 error = dir->i_op->rmdir(dir, dentry);
3711 if (error)
3712 goto out;
3713
3714 dentry->d_inode->i_flags |= S_DEAD;
3715 dont_mount(dentry);
3716 detach_mounts(dentry);
3717
3718 out:
3719 inode_unlock(dentry->d_inode);
3720 dput(dentry);
3721 if (!error)
3722 d_delete(dentry);
3723 return error;
3724 }
3725 EXPORT_SYMBOL(vfs_rmdir);
3726
3727 static long do_rmdir(int dfd, const char __user *pathname)
3728 {
3729 int error = 0;
3730 struct filename *name;
3731 struct dentry *dentry;
3732 struct path path;
3733 struct qstr last;
3734 int type;
3735 unsigned int lookup_flags = 0;
3736 retry:
3737 name = user_path_parent(dfd, pathname,
3738 &path, &last, &type, lookup_flags);
3739 if (IS_ERR(name))
3740 return PTR_ERR(name);
3741
3742 switch (type) {
3743 case LAST_DOTDOT:
3744 error = -ENOTEMPTY;
3745 goto exit1;
3746 case LAST_DOT:
3747 error = -EINVAL;
3748 goto exit1;
3749 case LAST_ROOT:
3750 error = -EBUSY;
3751 goto exit1;
3752 }
3753
3754 error = mnt_want_write(path.mnt);
3755 if (error)
3756 goto exit1;
3757
3758 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3759 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3760 error = PTR_ERR(dentry);
3761 if (IS_ERR(dentry))
3762 goto exit2;
3763 if (!dentry->d_inode) {
3764 error = -ENOENT;
3765 goto exit3;
3766 }
3767 error = security_path_rmdir(&path, dentry);
3768 if (error)
3769 goto exit3;
3770 error = vfs_rmdir(path.dentry->d_inode, dentry);
3771 exit3:
3772 dput(dentry);
3773 exit2:
3774 inode_unlock(path.dentry->d_inode);
3775 mnt_drop_write(path.mnt);
3776 exit1:
3777 path_put(&path);
3778 putname(name);
3779 if (retry_estale(error, lookup_flags)) {
3780 lookup_flags |= LOOKUP_REVAL;
3781 goto retry;
3782 }
3783 return error;
3784 }
3785
3786 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3787 {
3788 return do_rmdir(AT_FDCWD, pathname);
3789 }
3790
3791 /**
3792 * vfs_unlink - unlink a filesystem object
3793 * @dir: parent directory
3794 * @dentry: victim
3795 * @delegated_inode: returns victim inode, if the inode is delegated.
3796 *
3797 * The caller must hold dir->i_mutex.
3798 *
3799 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3800 * return a reference to the inode in delegated_inode. The caller
3801 * should then break the delegation on that inode and retry. Because
3802 * breaking a delegation may take a long time, the caller should drop
3803 * dir->i_mutex before doing so.
3804 *
3805 * Alternatively, a caller may pass NULL for delegated_inode. This may
3806 * be appropriate for callers that expect the underlying filesystem not
3807 * to be NFS exported.
3808 */
3809 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3810 {
3811 struct inode *target = dentry->d_inode;
3812 int error = may_delete(dir, dentry, 0);
3813
3814 if (error)
3815 return error;
3816
3817 if (!dir->i_op->unlink)
3818 return -EPERM;
3819
3820 inode_lock(target);
3821 if (is_local_mountpoint(dentry))
3822 error = -EBUSY;
3823 else {
3824 error = security_inode_unlink(dir, dentry);
3825 if (!error) {
3826 error = try_break_deleg(target, delegated_inode);
3827 if (error)
3828 goto out;
3829 error = dir->i_op->unlink(dir, dentry);
3830 if (!error) {
3831 dont_mount(dentry);
3832 detach_mounts(dentry);
3833 }
3834 }
3835 }
3836 out:
3837 inode_unlock(target);
3838
3839 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3840 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3841 fsnotify_link_count(target);
3842 d_delete(dentry);
3843 }
3844
3845 return error;
3846 }
3847 EXPORT_SYMBOL(vfs_unlink);
3848
3849 /*
3850 * Make sure that the actual truncation of the file will occur outside its
3851 * directory's i_mutex. Truncate can take a long time if there is a lot of
3852 * writeout happening, and we don't want to prevent access to the directory
3853 * while waiting on the I/O.
3854 */
3855 static long do_unlinkat(int dfd, const char __user *pathname)
3856 {
3857 int error;
3858 struct filename *name;
3859 struct dentry *dentry;
3860 struct path path;
3861 struct qstr last;
3862 int type;
3863 struct inode *inode = NULL;
3864 struct inode *delegated_inode = NULL;
3865 unsigned int lookup_flags = 0;
3866 retry:
3867 name = user_path_parent(dfd, pathname,
3868 &path, &last, &type, lookup_flags);
3869 if (IS_ERR(name))
3870 return PTR_ERR(name);
3871
3872 error = -EISDIR;
3873 if (type != LAST_NORM)
3874 goto exit1;
3875
3876 error = mnt_want_write(path.mnt);
3877 if (error)
3878 goto exit1;
3879 retry_deleg:
3880 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3881 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3882 error = PTR_ERR(dentry);
3883 if (!IS_ERR(dentry)) {
3884 /* Why not before? Because we want correct error value */
3885 if (last.name[last.len])
3886 goto slashes;
3887 inode = dentry->d_inode;
3888 if (d_is_negative(dentry))
3889 goto slashes;
3890 ihold(inode);
3891 error = security_path_unlink(&path, dentry);
3892 if (error)
3893 goto exit2;
3894 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
3895 exit2:
3896 dput(dentry);
3897 }
3898 inode_unlock(path.dentry->d_inode);
3899 if (inode)
3900 iput(inode); /* truncate the inode here */
3901 inode = NULL;
3902 if (delegated_inode) {
3903 error = break_deleg_wait(&delegated_inode);
3904 if (!error)
3905 goto retry_deleg;
3906 }
3907 mnt_drop_write(path.mnt);
3908 exit1:
3909 path_put(&path);
3910 putname(name);
3911 if (retry_estale(error, lookup_flags)) {
3912 lookup_flags |= LOOKUP_REVAL;
3913 inode = NULL;
3914 goto retry;
3915 }
3916 return error;
3917
3918 slashes:
3919 if (d_is_negative(dentry))
3920 error = -ENOENT;
3921 else if (d_is_dir(dentry))
3922 error = -EISDIR;
3923 else
3924 error = -ENOTDIR;
3925 goto exit2;
3926 }
3927
3928 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3929 {
3930 if ((flag & ~AT_REMOVEDIR) != 0)
3931 return -EINVAL;
3932
3933 if (flag & AT_REMOVEDIR)
3934 return do_rmdir(dfd, pathname);
3935
3936 return do_unlinkat(dfd, pathname);
3937 }
3938
3939 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3940 {
3941 return do_unlinkat(AT_FDCWD, pathname);
3942 }
3943
3944 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3945 {
3946 int error = may_create(dir, dentry);
3947
3948 if (error)
3949 return error;
3950
3951 if (!dir->i_op->symlink)
3952 return -EPERM;
3953
3954 error = security_inode_symlink(dir, dentry, oldname);
3955 if (error)
3956 return error;
3957
3958 error = dir->i_op->symlink(dir, dentry, oldname);
3959 if (!error)
3960 fsnotify_create(dir, dentry);
3961 return error;
3962 }
3963 EXPORT_SYMBOL(vfs_symlink);
3964
3965 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3966 int, newdfd, const char __user *, newname)
3967 {
3968 int error;
3969 struct filename *from;
3970 struct dentry *dentry;
3971 struct path path;
3972 unsigned int lookup_flags = 0;
3973
3974 from = getname(oldname);
3975 if (IS_ERR(from))
3976 return PTR_ERR(from);
3977 retry:
3978 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3979 error = PTR_ERR(dentry);
3980 if (IS_ERR(dentry))
3981 goto out_putname;
3982
3983 error = security_path_symlink(&path, dentry, from->name);
3984 if (!error)
3985 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3986 done_path_create(&path, dentry);
3987 if (retry_estale(error, lookup_flags)) {
3988 lookup_flags |= LOOKUP_REVAL;
3989 goto retry;
3990 }
3991 out_putname:
3992 putname(from);
3993 return error;
3994 }
3995
3996 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3997 {
3998 return sys_symlinkat(oldname, AT_FDCWD, newname);
3999 }
4000
4001 /**
4002 * vfs_link - create a new link
4003 * @old_dentry: object to be linked
4004 * @dir: new parent
4005 * @new_dentry: where to create the new link
4006 * @delegated_inode: returns inode needing a delegation break
4007 *
4008 * The caller must hold dir->i_mutex
4009 *
4010 * If vfs_link discovers a delegation on the to-be-linked file in need
4011 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4012 * inode in delegated_inode. The caller should then break the delegation
4013 * and retry. Because breaking a delegation may take a long time, the
4014 * caller should drop the i_mutex before doing so.
4015 *
4016 * Alternatively, a caller may pass NULL for delegated_inode. This may
4017 * be appropriate for callers that expect the underlying filesystem not
4018 * to be NFS exported.
4019 */
4020 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4021 {
4022 struct inode *inode = old_dentry->d_inode;
4023 unsigned max_links = dir->i_sb->s_max_links;
4024 int error;
4025
4026 if (!inode)
4027 return -ENOENT;
4028
4029 error = may_create(dir, new_dentry);
4030 if (error)
4031 return error;
4032
4033 if (dir->i_sb != inode->i_sb)
4034 return -EXDEV;
4035
4036 /*
4037 * A link to an append-only or immutable file cannot be created.
4038 */
4039 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4040 return -EPERM;
4041 if (!dir->i_op->link)
4042 return -EPERM;
4043 if (S_ISDIR(inode->i_mode))
4044 return -EPERM;
4045
4046 error = security_inode_link(old_dentry, dir, new_dentry);
4047 if (error)
4048 return error;
4049
4050 inode_lock(inode);
4051 /* Make sure we don't allow creating hardlink to an unlinked file */
4052 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4053 error = -ENOENT;
4054 else if (max_links && inode->i_nlink >= max_links)
4055 error = -EMLINK;
4056 else {
4057 error = try_break_deleg(inode, delegated_inode);
4058 if (!error)
4059 error = dir->i_op->link(old_dentry, dir, new_dentry);
4060 }
4061
4062 if (!error && (inode->i_state & I_LINKABLE)) {
4063 spin_lock(&inode->i_lock);
4064 inode->i_state &= ~I_LINKABLE;
4065 spin_unlock(&inode->i_lock);
4066 }
4067 inode_unlock(inode);
4068 if (!error)
4069 fsnotify_link(dir, inode, new_dentry);
4070 return error;
4071 }
4072 EXPORT_SYMBOL(vfs_link);
4073
4074 /*
4075 * Hardlinks are often used in delicate situations. We avoid
4076 * security-related surprises by not following symlinks on the
4077 * newname. --KAB
4078 *
4079 * We don't follow them on the oldname either to be compatible
4080 * with linux 2.0, and to avoid hard-linking to directories
4081 * and other special files. --ADM
4082 */
4083 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4084 int, newdfd, const char __user *, newname, int, flags)
4085 {
4086 struct dentry *new_dentry;
4087 struct path old_path, new_path;
4088 struct inode *delegated_inode = NULL;
4089 int how = 0;
4090 int error;
4091
4092 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4093 return -EINVAL;
4094 /*
4095 * To use null names we require CAP_DAC_READ_SEARCH
4096 * This ensures that not everyone will be able to create
4097 * handlink using the passed filedescriptor.
4098 */
4099 if (flags & AT_EMPTY_PATH) {
4100 if (!capable(CAP_DAC_READ_SEARCH))
4101 return -ENOENT;
4102 how = LOOKUP_EMPTY;
4103 }
4104
4105 if (flags & AT_SYMLINK_FOLLOW)
4106 how |= LOOKUP_FOLLOW;
4107 retry:
4108 error = user_path_at(olddfd, oldname, how, &old_path);
4109 if (error)
4110 return error;
4111
4112 new_dentry = user_path_create(newdfd, newname, &new_path,
4113 (how & LOOKUP_REVAL));
4114 error = PTR_ERR(new_dentry);
4115 if (IS_ERR(new_dentry))
4116 goto out;
4117
4118 error = -EXDEV;
4119 if (old_path.mnt != new_path.mnt)
4120 goto out_dput;
4121 error = may_linkat(&old_path);
4122 if (unlikely(error))
4123 goto out_dput;
4124 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4125 if (error)
4126 goto out_dput;
4127 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4128 out_dput:
4129 done_path_create(&new_path, new_dentry);
4130 if (delegated_inode) {
4131 error = break_deleg_wait(&delegated_inode);
4132 if (!error) {
4133 path_put(&old_path);
4134 goto retry;
4135 }
4136 }
4137 if (retry_estale(error, how)) {
4138 path_put(&old_path);
4139 how |= LOOKUP_REVAL;
4140 goto retry;
4141 }
4142 out:
4143 path_put(&old_path);
4144
4145 return error;
4146 }
4147
4148 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4149 {
4150 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4151 }
4152
4153 /**
4154 * vfs_rename - rename a filesystem object
4155 * @old_dir: parent of source
4156 * @old_dentry: source
4157 * @new_dir: parent of destination
4158 * @new_dentry: destination
4159 * @delegated_inode: returns an inode needing a delegation break
4160 * @flags: rename flags
4161 *
4162 * The caller must hold multiple mutexes--see lock_rename()).
4163 *
4164 * If vfs_rename discovers a delegation in need of breaking at either
4165 * the source or destination, it will return -EWOULDBLOCK and return a
4166 * reference to the inode in delegated_inode. The caller should then
4167 * break the delegation and retry. Because breaking a delegation may
4168 * take a long time, the caller should drop all locks before doing
4169 * so.
4170 *
4171 * Alternatively, a caller may pass NULL for delegated_inode. This may
4172 * be appropriate for callers that expect the underlying filesystem not
4173 * to be NFS exported.
4174 *
4175 * The worst of all namespace operations - renaming directory. "Perverted"
4176 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4177 * Problems:
4178 * a) we can get into loop creation.
4179 * b) race potential - two innocent renames can create a loop together.
4180 * That's where 4.4 screws up. Current fix: serialization on
4181 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4182 * story.
4183 * c) we have to lock _four_ objects - parents and victim (if it exists),
4184 * and source (if it is not a directory).
4185 * And that - after we got ->i_mutex on parents (until then we don't know
4186 * whether the target exists). Solution: try to be smart with locking
4187 * order for inodes. We rely on the fact that tree topology may change
4188 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4189 * move will be locked. Thus we can rank directories by the tree
4190 * (ancestors first) and rank all non-directories after them.
4191 * That works since everybody except rename does "lock parent, lookup,
4192 * lock child" and rename is under ->s_vfs_rename_mutex.
4193 * HOWEVER, it relies on the assumption that any object with ->lookup()
4194 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4195 * we'd better make sure that there's no link(2) for them.
4196 * d) conversion from fhandle to dentry may come in the wrong moment - when
4197 * we are removing the target. Solution: we will have to grab ->i_mutex
4198 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4199 * ->i_mutex on parents, which works but leads to some truly excessive
4200 * locking].
4201 */
4202 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4203 struct inode *new_dir, struct dentry *new_dentry,
4204 struct inode **delegated_inode, unsigned int flags)
4205 {
4206 int error;
4207 bool is_dir = d_is_dir(old_dentry);
4208 const unsigned char *old_name;
4209 struct inode *source = old_dentry->d_inode;
4210 struct inode *target = new_dentry->d_inode;
4211 bool new_is_dir = false;
4212 unsigned max_links = new_dir->i_sb->s_max_links;
4213
4214 if (source == target)
4215 return 0;
4216
4217 error = may_delete(old_dir, old_dentry, is_dir);
4218 if (error)
4219 return error;
4220
4221 if (!target) {
4222 error = may_create(new_dir, new_dentry);
4223 } else {
4224 new_is_dir = d_is_dir(new_dentry);
4225
4226 if (!(flags & RENAME_EXCHANGE))
4227 error = may_delete(new_dir, new_dentry, is_dir);
4228 else
4229 error = may_delete(new_dir, new_dentry, new_is_dir);
4230 }
4231 if (error)
4232 return error;
4233
4234 if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4235 return -EPERM;
4236
4237 if (flags && !old_dir->i_op->rename2)
4238 return -EINVAL;
4239
4240 /*
4241 * If we are going to change the parent - check write permissions,
4242 * we'll need to flip '..'.
4243 */
4244 if (new_dir != old_dir) {
4245 if (is_dir) {
4246 error = inode_permission(source, MAY_WRITE);
4247 if (error)
4248 return error;
4249 }
4250 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4251 error = inode_permission(target, MAY_WRITE);
4252 if (error)
4253 return error;
4254 }
4255 }
4256
4257 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4258 flags);
4259 if (error)
4260 return error;
4261
4262 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4263 dget(new_dentry);
4264 if (!is_dir || (flags & RENAME_EXCHANGE))
4265 lock_two_nondirectories(source, target);
4266 else if (target)
4267 inode_lock(target);
4268
4269 error = -EBUSY;
4270 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4271 goto out;
4272
4273 if (max_links && new_dir != old_dir) {
4274 error = -EMLINK;
4275 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4276 goto out;
4277 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4278 old_dir->i_nlink >= max_links)
4279 goto out;
4280 }
4281 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4282 shrink_dcache_parent(new_dentry);
4283 if (!is_dir) {
4284 error = try_break_deleg(source, delegated_inode);
4285 if (error)
4286 goto out;
4287 }
4288 if (target && !new_is_dir) {
4289 error = try_break_deleg(target, delegated_inode);
4290 if (error)
4291 goto out;
4292 }
4293 if (!old_dir->i_op->rename2) {
4294 error = old_dir->i_op->rename(old_dir, old_dentry,
4295 new_dir, new_dentry);
4296 } else {
4297 WARN_ON(old_dir->i_op->rename != NULL);
4298 error = old_dir->i_op->rename2(old_dir, old_dentry,
4299 new_dir, new_dentry, flags);
4300 }
4301 if (error)
4302 goto out;
4303
4304 if (!(flags & RENAME_EXCHANGE) && target) {
4305 if (is_dir)
4306 target->i_flags |= S_DEAD;
4307 dont_mount(new_dentry);
4308 detach_mounts(new_dentry);
4309 }
4310 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4311 if (!(flags & RENAME_EXCHANGE))
4312 d_move(old_dentry, new_dentry);
4313 else
4314 d_exchange(old_dentry, new_dentry);
4315 }
4316 out:
4317 if (!is_dir || (flags & RENAME_EXCHANGE))
4318 unlock_two_nondirectories(source, target);
4319 else if (target)
4320 inode_unlock(target);
4321 dput(new_dentry);
4322 if (!error) {
4323 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4324 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4325 if (flags & RENAME_EXCHANGE) {
4326 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4327 new_is_dir, NULL, new_dentry);
4328 }
4329 }
4330 fsnotify_oldname_free(old_name);
4331
4332 return error;
4333 }
4334 EXPORT_SYMBOL(vfs_rename);
4335
4336 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4337 int, newdfd, const char __user *, newname, unsigned int, flags)
4338 {
4339 struct dentry *old_dentry, *new_dentry;
4340 struct dentry *trap;
4341 struct path old_path, new_path;
4342 struct qstr old_last, new_last;
4343 int old_type, new_type;
4344 struct inode *delegated_inode = NULL;
4345 struct filename *from;
4346 struct filename *to;
4347 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4348 bool should_retry = false;
4349 int error;
4350
4351 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4352 return -EINVAL;
4353
4354 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4355 (flags & RENAME_EXCHANGE))
4356 return -EINVAL;
4357
4358 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4359 return -EPERM;
4360
4361 if (flags & RENAME_EXCHANGE)
4362 target_flags = 0;
4363
4364 retry:
4365 from = user_path_parent(olddfd, oldname,
4366 &old_path, &old_last, &old_type, lookup_flags);
4367 if (IS_ERR(from)) {
4368 error = PTR_ERR(from);
4369 goto exit;
4370 }
4371
4372 to = user_path_parent(newdfd, newname,
4373 &new_path, &new_last, &new_type, lookup_flags);
4374 if (IS_ERR(to)) {
4375 error = PTR_ERR(to);
4376 goto exit1;
4377 }
4378
4379 error = -EXDEV;
4380 if (old_path.mnt != new_path.mnt)
4381 goto exit2;
4382
4383 error = -EBUSY;
4384 if (old_type != LAST_NORM)
4385 goto exit2;
4386
4387 if (flags & RENAME_NOREPLACE)
4388 error = -EEXIST;
4389 if (new_type != LAST_NORM)
4390 goto exit2;
4391
4392 error = mnt_want_write(old_path.mnt);
4393 if (error)
4394 goto exit2;
4395
4396 retry_deleg:
4397 trap = lock_rename(new_path.dentry, old_path.dentry);
4398
4399 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4400 error = PTR_ERR(old_dentry);
4401 if (IS_ERR(old_dentry))
4402 goto exit3;
4403 /* source must exist */
4404 error = -ENOENT;
4405 if (d_is_negative(old_dentry))
4406 goto exit4;
4407 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4408 error = PTR_ERR(new_dentry);
4409 if (IS_ERR(new_dentry))
4410 goto exit4;
4411 error = -EEXIST;
4412 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4413 goto exit5;
4414 if (flags & RENAME_EXCHANGE) {
4415 error = -ENOENT;
4416 if (d_is_negative(new_dentry))
4417 goto exit5;
4418
4419 if (!d_is_dir(new_dentry)) {
4420 error = -ENOTDIR;
4421 if (new_last.name[new_last.len])
4422 goto exit5;
4423 }
4424 }
4425 /* unless the source is a directory trailing slashes give -ENOTDIR */
4426 if (!d_is_dir(old_dentry)) {
4427 error = -ENOTDIR;
4428 if (old_last.name[old_last.len])
4429 goto exit5;
4430 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4431 goto exit5;
4432 }
4433 /* source should not be ancestor of target */
4434 error = -EINVAL;
4435 if (old_dentry == trap)
4436 goto exit5;
4437 /* target should not be an ancestor of source */
4438 if (!(flags & RENAME_EXCHANGE))
4439 error = -ENOTEMPTY;
4440 if (new_dentry == trap)
4441 goto exit5;
4442
4443 error = security_path_rename(&old_path, old_dentry,
4444 &new_path, new_dentry, flags);
4445 if (error)
4446 goto exit5;
4447 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4448 new_path.dentry->d_inode, new_dentry,
4449 &delegated_inode, flags);
4450 exit5:
4451 dput(new_dentry);
4452 exit4:
4453 dput(old_dentry);
4454 exit3:
4455 unlock_rename(new_path.dentry, old_path.dentry);
4456 if (delegated_inode) {
4457 error = break_deleg_wait(&delegated_inode);
4458 if (!error)
4459 goto retry_deleg;
4460 }
4461 mnt_drop_write(old_path.mnt);
4462 exit2:
4463 if (retry_estale(error, lookup_flags))
4464 should_retry = true;
4465 path_put(&new_path);
4466 putname(to);
4467 exit1:
4468 path_put(&old_path);
4469 putname(from);
4470 if (should_retry) {
4471 should_retry = false;
4472 lookup_flags |= LOOKUP_REVAL;
4473 goto retry;
4474 }
4475 exit:
4476 return error;
4477 }
4478
4479 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4480 int, newdfd, const char __user *, newname)
4481 {
4482 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4483 }
4484
4485 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4486 {
4487 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4488 }
4489
4490 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4491 {
4492 int error = may_create(dir, dentry);
4493 if (error)
4494 return error;
4495
4496 if (!dir->i_op->mknod)
4497 return -EPERM;
4498
4499 return dir->i_op->mknod(dir, dentry,
4500 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4501 }
4502 EXPORT_SYMBOL(vfs_whiteout);
4503
4504 int readlink_copy(char __user *buffer, int buflen, const char *link)
4505 {
4506 int len = PTR_ERR(link);
4507 if (IS_ERR(link))
4508 goto out;
4509
4510 len = strlen(link);
4511 if (len > (unsigned) buflen)
4512 len = buflen;
4513 if (copy_to_user(buffer, link, len))
4514 len = -EFAULT;
4515 out:
4516 return len;
4517 }
4518 EXPORT_SYMBOL(readlink_copy);
4519
4520 /*
4521 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4522 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4523 * for any given inode is up to filesystem.
4524 */
4525 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4526 {
4527 DEFINE_DELAYED_CALL(done);
4528 struct inode *inode = d_inode(dentry);
4529 const char *link = inode->i_link;
4530 int res;
4531
4532 if (!link) {
4533 link = inode->i_op->get_link(dentry, inode, &done);
4534 if (IS_ERR(link))
4535 return PTR_ERR(link);
4536 }
4537 res = readlink_copy(buffer, buflen, link);
4538 do_delayed_call(&done);
4539 return res;
4540 }
4541 EXPORT_SYMBOL(generic_readlink);
4542
4543 /* get the link contents into pagecache */
4544 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4545 struct delayed_call *callback)
4546 {
4547 char *kaddr;
4548 struct page *page;
4549 struct address_space *mapping = inode->i_mapping;
4550
4551 if (!dentry) {
4552 page = find_get_page(mapping, 0);
4553 if (!page)
4554 return ERR_PTR(-ECHILD);
4555 if (!PageUptodate(page)) {
4556 put_page(page);
4557 return ERR_PTR(-ECHILD);
4558 }
4559 } else {
4560 page = read_mapping_page(mapping, 0, NULL);
4561 if (IS_ERR(page))
4562 return (char*)page;
4563 }
4564 set_delayed_call(callback, page_put_link, page);
4565 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4566 kaddr = page_address(page);
4567 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4568 return kaddr;
4569 }
4570
4571 EXPORT_SYMBOL(page_get_link);
4572
4573 void page_put_link(void *arg)
4574 {
4575 put_page(arg);
4576 }
4577 EXPORT_SYMBOL(page_put_link);
4578
4579 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4580 {
4581 DEFINE_DELAYED_CALL(done);
4582 int res = readlink_copy(buffer, buflen,
4583 page_get_link(dentry, d_inode(dentry),
4584 &done));
4585 do_delayed_call(&done);
4586 return res;
4587 }
4588 EXPORT_SYMBOL(page_readlink);
4589
4590 /*
4591 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4592 */
4593 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4594 {
4595 struct address_space *mapping = inode->i_mapping;
4596 struct page *page;
4597 void *fsdata;
4598 int err;
4599 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4600 if (nofs)
4601 flags |= AOP_FLAG_NOFS;
4602
4603 retry:
4604 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4605 flags, &page, &fsdata);
4606 if (err)
4607 goto fail;
4608
4609 memcpy(page_address(page), symname, len-1);
4610
4611 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4612 page, fsdata);
4613 if (err < 0)
4614 goto fail;
4615 if (err < len-1)
4616 goto retry;
4617
4618 mark_inode_dirty(inode);
4619 return 0;
4620 fail:
4621 return err;
4622 }
4623 EXPORT_SYMBOL(__page_symlink);
4624
4625 int page_symlink(struct inode *inode, const char *symname, int len)
4626 {
4627 return __page_symlink(inode, symname, len,
4628 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4629 }
4630 EXPORT_SYMBOL(page_symlink);
4631
4632 const struct inode_operations page_symlink_inode_operations = {
4633 .readlink = generic_readlink,
4634 .get_link = page_get_link,
4635 };
4636 EXPORT_SYMBOL(page_symlink_inode_operations);
This page took 0.154751 seconds and 5 git commands to generate.