Merge remote-tracking branch 'kspp/for-next/kspp'
[deliverable/linux.git] / fs / namespace.c
1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
34
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
37 {
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
42 }
43 __setup("mhash_entries=", set_mhash_entries);
44
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
47 {
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52 }
53 __setup("mphash_entries=", set_mphash_entries);
54
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
61
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
66
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
70
71 /*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82 {
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
87 }
88
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
90 {
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
94 }
95
96 /*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100 static int mnt_alloc_id(struct mount *mnt)
101 {
102 int res;
103
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
113
114 return res;
115 }
116
117 static void mnt_free_id(struct mount *mnt)
118 {
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
125 }
126
127 /*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132 static int mnt_alloc_group_id(struct mount *mnt)
133 {
134 int res;
135
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
138
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
144
145 return res;
146 }
147
148 /*
149 * Release a peer group ID
150 */
151 void mnt_release_group_id(struct mount *mnt)
152 {
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
158 }
159
160 /*
161 * vfsmount lock must be held for read
162 */
163 static inline void mnt_add_count(struct mount *mnt, int n)
164 {
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
172 }
173
174 /*
175 * vfsmount lock must be held for write
176 */
177 unsigned int mnt_get_count(struct mount *mnt)
178 {
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
182
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185 }
186
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
191 }
192
193 static void drop_mountpoint(struct fs_pin *p)
194 {
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
199 }
200
201 static struct mount *alloc_vfsmnt(const char *name)
202 {
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
205 int err;
206
207 err = mnt_alloc_id(mnt);
208 if (err)
209 goto out_free_cache;
210
211 if (name) {
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
214 goto out_free_id;
215 }
216
217 #ifdef CONFIG_SMP
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
220 goto out_free_devname;
221
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
226 #endif
227
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241 }
242 return mnt;
243
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
253 }
254
255 /*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263 /*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274 int __mnt_is_readonly(struct vfsmount *mnt)
275 {
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
281 }
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284 static inline void mnt_inc_writers(struct mount *mnt)
285 {
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
291 }
292
293 static inline void mnt_dec_writers(struct mount *mnt)
294 {
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
300 }
301
302 static unsigned int mnt_get_writers(struct mount *mnt)
303 {
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
307
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310 }
311
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
316 }
317
318 static int mnt_is_readonly(struct vfsmount *mnt)
319 {
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325 }
326
327 /*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333 /**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343 int __mnt_want_write(struct vfsmount *m)
344 {
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
347
348 preempt_disable();
349 mnt_inc_writers(mnt);
350 /*
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
367 }
368 preempt_enable();
369
370 return ret;
371 }
372
373 /**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382 int mnt_want_write(struct vfsmount *m)
383 {
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
391 }
392 EXPORT_SYMBOL_GPL(mnt_want_write);
393
394 /**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406 int mnt_clone_write(struct vfsmount *mnt)
407 {
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418 /**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425 int __mnt_want_write_file(struct file *file)
426 {
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
431 }
432
433 /**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440 int mnt_want_write_file(struct file *file)
441 {
442 int ret;
443
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
449 }
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
452 /**
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
459 */
460 void __mnt_drop_write(struct vfsmount *mnt)
461 {
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
465 }
466
467 /**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
474 */
475 void mnt_drop_write(struct vfsmount *mnt)
476 {
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
479 }
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482 void __mnt_drop_write_file(struct file *file)
483 {
484 __mnt_drop_write(file->f_path.mnt);
485 }
486
487 void mnt_drop_write_file(struct file *file)
488 {
489 mnt_drop_write(file->f_path.mnt);
490 }
491 EXPORT_SYMBOL(mnt_drop_write_file);
492
493 static int mnt_make_readonly(struct mount *mnt)
494 {
495 int ret = 0;
496
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499 /*
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
502 */
503 smp_mb();
504
505 /*
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
510 *
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
520 */
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
525 /*
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
528 */
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
533 }
534
535 static void __mnt_unmake_readonly(struct mount *mnt)
536 {
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
540 }
541
542 int sb_prepare_remount_readonly(struct super_block *sb)
543 {
544 struct mount *mnt;
545 int err = 0;
546
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
550
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
559 }
560 }
561 }
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
564
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
568 }
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572 }
573 unlock_mount_hash();
574
575 return err;
576 }
577
578 static void free_vfsmnt(struct mount *mnt)
579 {
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
585 }
586
587 static void delayed_free_vfsmnt(struct rcu_head *head)
588 {
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 }
591
592 /* call under rcu_read_lock */
593 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 {
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return 1;
598 if (bastard == NULL)
599 return 0;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return 0;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return 1;
607 }
608 return -1;
609 }
610
611 /* call under rcu_read_lock */
612 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 {
614 int res = __legitimize_mnt(bastard, seq);
615 if (likely(!res))
616 return true;
617 if (unlikely(res < 0)) {
618 rcu_read_unlock();
619 mntput(bastard);
620 rcu_read_lock();
621 }
622 return false;
623 }
624
625 /*
626 * find the first mount at @dentry on vfsmount @mnt.
627 * call under rcu_read_lock()
628 */
629 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
630 {
631 struct hlist_head *head = m_hash(mnt, dentry);
632 struct mount *p;
633
634 hlist_for_each_entry_rcu(p, head, mnt_hash)
635 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
636 return p;
637 return NULL;
638 }
639
640 /*
641 * find the last mount at @dentry on vfsmount @mnt.
642 * mount_lock must be held.
643 */
644 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
645 {
646 struct mount *p, *res = NULL;
647 p = __lookup_mnt(mnt, dentry);
648 if (!p)
649 goto out;
650 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
651 res = p;
652 hlist_for_each_entry_continue(p, mnt_hash) {
653 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
654 break;
655 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
656 res = p;
657 }
658 out:
659 return res;
660 }
661
662 /*
663 * lookup_mnt - Return the first child mount mounted at path
664 *
665 * "First" means first mounted chronologically. If you create the
666 * following mounts:
667 *
668 * mount /dev/sda1 /mnt
669 * mount /dev/sda2 /mnt
670 * mount /dev/sda3 /mnt
671 *
672 * Then lookup_mnt() on the base /mnt dentry in the root mount will
673 * return successively the root dentry and vfsmount of /dev/sda1, then
674 * /dev/sda2, then /dev/sda3, then NULL.
675 *
676 * lookup_mnt takes a reference to the found vfsmount.
677 */
678 struct vfsmount *lookup_mnt(struct path *path)
679 {
680 struct mount *child_mnt;
681 struct vfsmount *m;
682 unsigned seq;
683
684 rcu_read_lock();
685 do {
686 seq = read_seqbegin(&mount_lock);
687 child_mnt = __lookup_mnt(path->mnt, path->dentry);
688 m = child_mnt ? &child_mnt->mnt : NULL;
689 } while (!legitimize_mnt(m, seq));
690 rcu_read_unlock();
691 return m;
692 }
693
694 /*
695 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
696 * current mount namespace.
697 *
698 * The common case is dentries are not mountpoints at all and that
699 * test is handled inline. For the slow case when we are actually
700 * dealing with a mountpoint of some kind, walk through all of the
701 * mounts in the current mount namespace and test to see if the dentry
702 * is a mountpoint.
703 *
704 * The mount_hashtable is not usable in the context because we
705 * need to identify all mounts that may be in the current mount
706 * namespace not just a mount that happens to have some specified
707 * parent mount.
708 */
709 bool __is_local_mountpoint(struct dentry *dentry)
710 {
711 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
712 struct mount *mnt;
713 bool is_covered = false;
714
715 if (!d_mountpoint(dentry))
716 goto out;
717
718 down_read(&namespace_sem);
719 list_for_each_entry(mnt, &ns->list, mnt_list) {
720 is_covered = (mnt->mnt_mountpoint == dentry);
721 if (is_covered)
722 break;
723 }
724 up_read(&namespace_sem);
725 out:
726 return is_covered;
727 }
728
729 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
730 {
731 struct hlist_head *chain = mp_hash(dentry);
732 struct mountpoint *mp;
733
734 hlist_for_each_entry(mp, chain, m_hash) {
735 if (mp->m_dentry == dentry) {
736 /* might be worth a WARN_ON() */
737 if (d_unlinked(dentry))
738 return ERR_PTR(-ENOENT);
739 mp->m_count++;
740 return mp;
741 }
742 }
743 return NULL;
744 }
745
746 static struct mountpoint *new_mountpoint(struct dentry *dentry)
747 {
748 struct hlist_head *chain = mp_hash(dentry);
749 struct mountpoint *mp;
750 int ret;
751
752 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
753 if (!mp)
754 return ERR_PTR(-ENOMEM);
755
756 ret = d_set_mounted(dentry);
757 if (ret) {
758 kfree(mp);
759 return ERR_PTR(ret);
760 }
761
762 mp->m_dentry = dentry;
763 mp->m_count = 1;
764 hlist_add_head(&mp->m_hash, chain);
765 INIT_HLIST_HEAD(&mp->m_list);
766 return mp;
767 }
768
769 static void put_mountpoint(struct mountpoint *mp)
770 {
771 if (!--mp->m_count) {
772 struct dentry *dentry = mp->m_dentry;
773 BUG_ON(!hlist_empty(&mp->m_list));
774 spin_lock(&dentry->d_lock);
775 dentry->d_flags &= ~DCACHE_MOUNTED;
776 spin_unlock(&dentry->d_lock);
777 hlist_del(&mp->m_hash);
778 kfree(mp);
779 }
780 }
781
782 static inline int check_mnt(struct mount *mnt)
783 {
784 return mnt->mnt_ns == current->nsproxy->mnt_ns;
785 }
786
787 /*
788 * vfsmount lock must be held for write
789 */
790 static void touch_mnt_namespace(struct mnt_namespace *ns)
791 {
792 if (ns) {
793 ns->event = ++event;
794 wake_up_interruptible(&ns->poll);
795 }
796 }
797
798 /*
799 * vfsmount lock must be held for write
800 */
801 static void __touch_mnt_namespace(struct mnt_namespace *ns)
802 {
803 if (ns && ns->event != event) {
804 ns->event = event;
805 wake_up_interruptible(&ns->poll);
806 }
807 }
808
809 /*
810 * vfsmount lock must be held for write
811 */
812 static void unhash_mnt(struct mount *mnt)
813 {
814 mnt->mnt_parent = mnt;
815 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
816 list_del_init(&mnt->mnt_child);
817 hlist_del_init_rcu(&mnt->mnt_hash);
818 hlist_del_init(&mnt->mnt_mp_list);
819 put_mountpoint(mnt->mnt_mp);
820 mnt->mnt_mp = NULL;
821 }
822
823 /*
824 * vfsmount lock must be held for write
825 */
826 static void detach_mnt(struct mount *mnt, struct path *old_path)
827 {
828 old_path->dentry = mnt->mnt_mountpoint;
829 old_path->mnt = &mnt->mnt_parent->mnt;
830 unhash_mnt(mnt);
831 }
832
833 /*
834 * vfsmount lock must be held for write
835 */
836 static void umount_mnt(struct mount *mnt)
837 {
838 /* old mountpoint will be dropped when we can do that */
839 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
840 unhash_mnt(mnt);
841 }
842
843 /*
844 * vfsmount lock must be held for write
845 */
846 void mnt_set_mountpoint(struct mount *mnt,
847 struct mountpoint *mp,
848 struct mount *child_mnt)
849 {
850 mp->m_count++;
851 mnt_add_count(mnt, 1); /* essentially, that's mntget */
852 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
853 child_mnt->mnt_parent = mnt;
854 child_mnt->mnt_mp = mp;
855 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
856 }
857
858 /*
859 * vfsmount lock must be held for write
860 */
861 static void attach_mnt(struct mount *mnt,
862 struct mount *parent,
863 struct mountpoint *mp)
864 {
865 mnt_set_mountpoint(parent, mp, mnt);
866 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
867 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
868 }
869
870 static void attach_shadowed(struct mount *mnt,
871 struct mount *parent,
872 struct mount *shadows)
873 {
874 if (shadows) {
875 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
876 list_add(&mnt->mnt_child, &shadows->mnt_child);
877 } else {
878 hlist_add_head_rcu(&mnt->mnt_hash,
879 m_hash(&parent->mnt, mnt->mnt_mountpoint));
880 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
881 }
882 }
883
884 /*
885 * vfsmount lock must be held for write
886 */
887 static void commit_tree(struct mount *mnt, struct mount *shadows)
888 {
889 struct mount *parent = mnt->mnt_parent;
890 struct mount *m;
891 LIST_HEAD(head);
892 struct mnt_namespace *n = parent->mnt_ns;
893
894 BUG_ON(parent == mnt);
895
896 list_add_tail(&head, &mnt->mnt_list);
897 list_for_each_entry(m, &head, mnt_list)
898 m->mnt_ns = n;
899
900 list_splice(&head, n->list.prev);
901
902 attach_shadowed(mnt, parent, shadows);
903 touch_mnt_namespace(n);
904 }
905
906 static struct mount *next_mnt(struct mount *p, struct mount *root)
907 {
908 struct list_head *next = p->mnt_mounts.next;
909 if (next == &p->mnt_mounts) {
910 while (1) {
911 if (p == root)
912 return NULL;
913 next = p->mnt_child.next;
914 if (next != &p->mnt_parent->mnt_mounts)
915 break;
916 p = p->mnt_parent;
917 }
918 }
919 return list_entry(next, struct mount, mnt_child);
920 }
921
922 static struct mount *skip_mnt_tree(struct mount *p)
923 {
924 struct list_head *prev = p->mnt_mounts.prev;
925 while (prev != &p->mnt_mounts) {
926 p = list_entry(prev, struct mount, mnt_child);
927 prev = p->mnt_mounts.prev;
928 }
929 return p;
930 }
931
932 struct vfsmount *
933 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
934 {
935 struct mount *mnt;
936 struct dentry *root;
937
938 if (!type)
939 return ERR_PTR(-ENODEV);
940
941 mnt = alloc_vfsmnt(name);
942 if (!mnt)
943 return ERR_PTR(-ENOMEM);
944
945 if (flags & MS_KERNMOUNT)
946 mnt->mnt.mnt_flags = MNT_INTERNAL;
947
948 root = mount_fs(type, flags, name, data);
949 if (IS_ERR(root)) {
950 mnt_free_id(mnt);
951 free_vfsmnt(mnt);
952 return ERR_CAST(root);
953 }
954
955 mnt->mnt.mnt_root = root;
956 mnt->mnt.mnt_sb = root->d_sb;
957 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
958 mnt->mnt_parent = mnt;
959 lock_mount_hash();
960 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
961 unlock_mount_hash();
962 return &mnt->mnt;
963 }
964 EXPORT_SYMBOL_GPL(vfs_kern_mount);
965
966 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
967 int flag)
968 {
969 struct super_block *sb = old->mnt.mnt_sb;
970 struct mount *mnt;
971 int err;
972
973 mnt = alloc_vfsmnt(old->mnt_devname);
974 if (!mnt)
975 return ERR_PTR(-ENOMEM);
976
977 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
978 mnt->mnt_group_id = 0; /* not a peer of original */
979 else
980 mnt->mnt_group_id = old->mnt_group_id;
981
982 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
983 err = mnt_alloc_group_id(mnt);
984 if (err)
985 goto out_free;
986 }
987
988 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
989 /* Don't allow unprivileged users to change mount flags */
990 if (flag & CL_UNPRIVILEGED) {
991 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
992
993 if (mnt->mnt.mnt_flags & MNT_READONLY)
994 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
995
996 if (mnt->mnt.mnt_flags & MNT_NODEV)
997 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
998
999 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1000 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1001
1002 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1003 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1004 }
1005
1006 /* Don't allow unprivileged users to reveal what is under a mount */
1007 if ((flag & CL_UNPRIVILEGED) &&
1008 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1009 mnt->mnt.mnt_flags |= MNT_LOCKED;
1010
1011 atomic_inc(&sb->s_active);
1012 mnt->mnt.mnt_sb = sb;
1013 mnt->mnt.mnt_root = dget(root);
1014 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1015 mnt->mnt_parent = mnt;
1016 lock_mount_hash();
1017 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1018 unlock_mount_hash();
1019
1020 if ((flag & CL_SLAVE) ||
1021 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1022 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1023 mnt->mnt_master = old;
1024 CLEAR_MNT_SHARED(mnt);
1025 } else if (!(flag & CL_PRIVATE)) {
1026 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1027 list_add(&mnt->mnt_share, &old->mnt_share);
1028 if (IS_MNT_SLAVE(old))
1029 list_add(&mnt->mnt_slave, &old->mnt_slave);
1030 mnt->mnt_master = old->mnt_master;
1031 }
1032 if (flag & CL_MAKE_SHARED)
1033 set_mnt_shared(mnt);
1034
1035 /* stick the duplicate mount on the same expiry list
1036 * as the original if that was on one */
1037 if (flag & CL_EXPIRE) {
1038 if (!list_empty(&old->mnt_expire))
1039 list_add(&mnt->mnt_expire, &old->mnt_expire);
1040 }
1041
1042 return mnt;
1043
1044 out_free:
1045 mnt_free_id(mnt);
1046 free_vfsmnt(mnt);
1047 return ERR_PTR(err);
1048 }
1049
1050 static void cleanup_mnt(struct mount *mnt)
1051 {
1052 /*
1053 * This probably indicates that somebody messed
1054 * up a mnt_want/drop_write() pair. If this
1055 * happens, the filesystem was probably unable
1056 * to make r/w->r/o transitions.
1057 */
1058 /*
1059 * The locking used to deal with mnt_count decrement provides barriers,
1060 * so mnt_get_writers() below is safe.
1061 */
1062 WARN_ON(mnt_get_writers(mnt));
1063 if (unlikely(mnt->mnt_pins.first))
1064 mnt_pin_kill(mnt);
1065 fsnotify_vfsmount_delete(&mnt->mnt);
1066 dput(mnt->mnt.mnt_root);
1067 deactivate_super(mnt->mnt.mnt_sb);
1068 mnt_free_id(mnt);
1069 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1070 }
1071
1072 static void __cleanup_mnt(struct rcu_head *head)
1073 {
1074 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1075 }
1076
1077 static LLIST_HEAD(delayed_mntput_list);
1078 static void delayed_mntput(struct work_struct *unused)
1079 {
1080 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1081 struct llist_node *next;
1082
1083 for (; node; node = next) {
1084 next = llist_next(node);
1085 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1086 }
1087 }
1088 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1089
1090 static void mntput_no_expire(struct mount *mnt)
1091 {
1092 rcu_read_lock();
1093 mnt_add_count(mnt, -1);
1094 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1095 rcu_read_unlock();
1096 return;
1097 }
1098 lock_mount_hash();
1099 if (mnt_get_count(mnt)) {
1100 rcu_read_unlock();
1101 unlock_mount_hash();
1102 return;
1103 }
1104 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1105 rcu_read_unlock();
1106 unlock_mount_hash();
1107 return;
1108 }
1109 mnt->mnt.mnt_flags |= MNT_DOOMED;
1110 rcu_read_unlock();
1111
1112 list_del(&mnt->mnt_instance);
1113
1114 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1115 struct mount *p, *tmp;
1116 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1117 umount_mnt(p);
1118 }
1119 }
1120 unlock_mount_hash();
1121
1122 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1123 struct task_struct *task = current;
1124 if (likely(!(task->flags & PF_KTHREAD))) {
1125 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1126 if (!task_work_add(task, &mnt->mnt_rcu, true))
1127 return;
1128 }
1129 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1130 schedule_delayed_work(&delayed_mntput_work, 1);
1131 return;
1132 }
1133 cleanup_mnt(mnt);
1134 }
1135
1136 void mntput(struct vfsmount *mnt)
1137 {
1138 if (mnt) {
1139 struct mount *m = real_mount(mnt);
1140 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1141 if (unlikely(m->mnt_expiry_mark))
1142 m->mnt_expiry_mark = 0;
1143 mntput_no_expire(m);
1144 }
1145 }
1146 EXPORT_SYMBOL(mntput);
1147
1148 struct vfsmount *mntget(struct vfsmount *mnt)
1149 {
1150 if (mnt)
1151 mnt_add_count(real_mount(mnt), 1);
1152 return mnt;
1153 }
1154 EXPORT_SYMBOL(mntget);
1155
1156 struct vfsmount *mnt_clone_internal(struct path *path)
1157 {
1158 struct mount *p;
1159 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1160 if (IS_ERR(p))
1161 return ERR_CAST(p);
1162 p->mnt.mnt_flags |= MNT_INTERNAL;
1163 return &p->mnt;
1164 }
1165
1166 static inline void mangle(struct seq_file *m, const char *s)
1167 {
1168 seq_escape(m, s, " \t\n\\");
1169 }
1170
1171 /*
1172 * Simple .show_options callback for filesystems which don't want to
1173 * implement more complex mount option showing.
1174 *
1175 * See also save_mount_options().
1176 */
1177 int generic_show_options(struct seq_file *m, struct dentry *root)
1178 {
1179 const char *options;
1180
1181 rcu_read_lock();
1182 options = rcu_dereference(root->d_sb->s_options);
1183
1184 if (options != NULL && options[0]) {
1185 seq_putc(m, ',');
1186 mangle(m, options);
1187 }
1188 rcu_read_unlock();
1189
1190 return 0;
1191 }
1192 EXPORT_SYMBOL(generic_show_options);
1193
1194 /*
1195 * If filesystem uses generic_show_options(), this function should be
1196 * called from the fill_super() callback.
1197 *
1198 * The .remount_fs callback usually needs to be handled in a special
1199 * way, to make sure, that previous options are not overwritten if the
1200 * remount fails.
1201 *
1202 * Also note, that if the filesystem's .remount_fs function doesn't
1203 * reset all options to their default value, but changes only newly
1204 * given options, then the displayed options will not reflect reality
1205 * any more.
1206 */
1207 void save_mount_options(struct super_block *sb, char *options)
1208 {
1209 BUG_ON(sb->s_options);
1210 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1211 }
1212 EXPORT_SYMBOL(save_mount_options);
1213
1214 void replace_mount_options(struct super_block *sb, char *options)
1215 {
1216 char *old = sb->s_options;
1217 rcu_assign_pointer(sb->s_options, options);
1218 if (old) {
1219 synchronize_rcu();
1220 kfree(old);
1221 }
1222 }
1223 EXPORT_SYMBOL(replace_mount_options);
1224
1225 #ifdef CONFIG_PROC_FS
1226 /* iterator; we want it to have access to namespace_sem, thus here... */
1227 static void *m_start(struct seq_file *m, loff_t *pos)
1228 {
1229 struct proc_mounts *p = m->private;
1230
1231 down_read(&namespace_sem);
1232 if (p->cached_event == p->ns->event) {
1233 void *v = p->cached_mount;
1234 if (*pos == p->cached_index)
1235 return v;
1236 if (*pos == p->cached_index + 1) {
1237 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1238 return p->cached_mount = v;
1239 }
1240 }
1241
1242 p->cached_event = p->ns->event;
1243 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1244 p->cached_index = *pos;
1245 return p->cached_mount;
1246 }
1247
1248 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1249 {
1250 struct proc_mounts *p = m->private;
1251
1252 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1253 p->cached_index = *pos;
1254 return p->cached_mount;
1255 }
1256
1257 static void m_stop(struct seq_file *m, void *v)
1258 {
1259 up_read(&namespace_sem);
1260 }
1261
1262 static int m_show(struct seq_file *m, void *v)
1263 {
1264 struct proc_mounts *p = m->private;
1265 struct mount *r = list_entry(v, struct mount, mnt_list);
1266 return p->show(m, &r->mnt);
1267 }
1268
1269 const struct seq_operations mounts_op = {
1270 .start = m_start,
1271 .next = m_next,
1272 .stop = m_stop,
1273 .show = m_show,
1274 };
1275 #endif /* CONFIG_PROC_FS */
1276
1277 /**
1278 * may_umount_tree - check if a mount tree is busy
1279 * @mnt: root of mount tree
1280 *
1281 * This is called to check if a tree of mounts has any
1282 * open files, pwds, chroots or sub mounts that are
1283 * busy.
1284 */
1285 int may_umount_tree(struct vfsmount *m)
1286 {
1287 struct mount *mnt = real_mount(m);
1288 int actual_refs = 0;
1289 int minimum_refs = 0;
1290 struct mount *p;
1291 BUG_ON(!m);
1292
1293 /* write lock needed for mnt_get_count */
1294 lock_mount_hash();
1295 for (p = mnt; p; p = next_mnt(p, mnt)) {
1296 actual_refs += mnt_get_count(p);
1297 minimum_refs += 2;
1298 }
1299 unlock_mount_hash();
1300
1301 if (actual_refs > minimum_refs)
1302 return 0;
1303
1304 return 1;
1305 }
1306
1307 EXPORT_SYMBOL(may_umount_tree);
1308
1309 /**
1310 * may_umount - check if a mount point is busy
1311 * @mnt: root of mount
1312 *
1313 * This is called to check if a mount point has any
1314 * open files, pwds, chroots or sub mounts. If the
1315 * mount has sub mounts this will return busy
1316 * regardless of whether the sub mounts are busy.
1317 *
1318 * Doesn't take quota and stuff into account. IOW, in some cases it will
1319 * give false negatives. The main reason why it's here is that we need
1320 * a non-destructive way to look for easily umountable filesystems.
1321 */
1322 int may_umount(struct vfsmount *mnt)
1323 {
1324 int ret = 1;
1325 down_read(&namespace_sem);
1326 lock_mount_hash();
1327 if (propagate_mount_busy(real_mount(mnt), 2))
1328 ret = 0;
1329 unlock_mount_hash();
1330 up_read(&namespace_sem);
1331 return ret;
1332 }
1333
1334 EXPORT_SYMBOL(may_umount);
1335
1336 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1337
1338 static void namespace_unlock(void)
1339 {
1340 struct hlist_head head;
1341
1342 hlist_move_list(&unmounted, &head);
1343
1344 up_write(&namespace_sem);
1345
1346 if (likely(hlist_empty(&head)))
1347 return;
1348
1349 synchronize_rcu();
1350
1351 group_pin_kill(&head);
1352 }
1353
1354 static inline void namespace_lock(void)
1355 {
1356 down_write(&namespace_sem);
1357 }
1358
1359 enum umount_tree_flags {
1360 UMOUNT_SYNC = 1,
1361 UMOUNT_PROPAGATE = 2,
1362 UMOUNT_CONNECTED = 4,
1363 };
1364
1365 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1366 {
1367 /* Leaving mounts connected is only valid for lazy umounts */
1368 if (how & UMOUNT_SYNC)
1369 return true;
1370
1371 /* A mount without a parent has nothing to be connected to */
1372 if (!mnt_has_parent(mnt))
1373 return true;
1374
1375 /* Because the reference counting rules change when mounts are
1376 * unmounted and connected, umounted mounts may not be
1377 * connected to mounted mounts.
1378 */
1379 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1380 return true;
1381
1382 /* Has it been requested that the mount remain connected? */
1383 if (how & UMOUNT_CONNECTED)
1384 return false;
1385
1386 /* Is the mount locked such that it needs to remain connected? */
1387 if (IS_MNT_LOCKED(mnt))
1388 return false;
1389
1390 /* By default disconnect the mount */
1391 return true;
1392 }
1393
1394 /*
1395 * mount_lock must be held
1396 * namespace_sem must be held for write
1397 */
1398 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1399 {
1400 LIST_HEAD(tmp_list);
1401 struct mount *p;
1402
1403 if (how & UMOUNT_PROPAGATE)
1404 propagate_mount_unlock(mnt);
1405
1406 /* Gather the mounts to umount */
1407 for (p = mnt; p; p = next_mnt(p, mnt)) {
1408 p->mnt.mnt_flags |= MNT_UMOUNT;
1409 list_move(&p->mnt_list, &tmp_list);
1410 }
1411
1412 /* Hide the mounts from mnt_mounts */
1413 list_for_each_entry(p, &tmp_list, mnt_list) {
1414 list_del_init(&p->mnt_child);
1415 }
1416
1417 /* Add propogated mounts to the tmp_list */
1418 if (how & UMOUNT_PROPAGATE)
1419 propagate_umount(&tmp_list);
1420
1421 while (!list_empty(&tmp_list)) {
1422 bool disconnect;
1423 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1424 list_del_init(&p->mnt_expire);
1425 list_del_init(&p->mnt_list);
1426 __touch_mnt_namespace(p->mnt_ns);
1427 p->mnt_ns = NULL;
1428 if (how & UMOUNT_SYNC)
1429 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1430
1431 disconnect = disconnect_mount(p, how);
1432
1433 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1434 disconnect ? &unmounted : NULL);
1435 if (mnt_has_parent(p)) {
1436 mnt_add_count(p->mnt_parent, -1);
1437 if (!disconnect) {
1438 /* Don't forget about p */
1439 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1440 } else {
1441 umount_mnt(p);
1442 }
1443 }
1444 change_mnt_propagation(p, MS_PRIVATE);
1445 }
1446 }
1447
1448 static void shrink_submounts(struct mount *mnt);
1449
1450 static int do_umount(struct mount *mnt, int flags)
1451 {
1452 struct super_block *sb = mnt->mnt.mnt_sb;
1453 int retval;
1454
1455 retval = security_sb_umount(&mnt->mnt, flags);
1456 if (retval)
1457 return retval;
1458
1459 /*
1460 * Allow userspace to request a mountpoint be expired rather than
1461 * unmounting unconditionally. Unmount only happens if:
1462 * (1) the mark is already set (the mark is cleared by mntput())
1463 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1464 */
1465 if (flags & MNT_EXPIRE) {
1466 if (&mnt->mnt == current->fs->root.mnt ||
1467 flags & (MNT_FORCE | MNT_DETACH))
1468 return -EINVAL;
1469
1470 /*
1471 * probably don't strictly need the lock here if we examined
1472 * all race cases, but it's a slowpath.
1473 */
1474 lock_mount_hash();
1475 if (mnt_get_count(mnt) != 2) {
1476 unlock_mount_hash();
1477 return -EBUSY;
1478 }
1479 unlock_mount_hash();
1480
1481 if (!xchg(&mnt->mnt_expiry_mark, 1))
1482 return -EAGAIN;
1483 }
1484
1485 /*
1486 * If we may have to abort operations to get out of this
1487 * mount, and they will themselves hold resources we must
1488 * allow the fs to do things. In the Unix tradition of
1489 * 'Gee thats tricky lets do it in userspace' the umount_begin
1490 * might fail to complete on the first run through as other tasks
1491 * must return, and the like. Thats for the mount program to worry
1492 * about for the moment.
1493 */
1494
1495 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1496 sb->s_op->umount_begin(sb);
1497 }
1498
1499 /*
1500 * No sense to grab the lock for this test, but test itself looks
1501 * somewhat bogus. Suggestions for better replacement?
1502 * Ho-hum... In principle, we might treat that as umount + switch
1503 * to rootfs. GC would eventually take care of the old vfsmount.
1504 * Actually it makes sense, especially if rootfs would contain a
1505 * /reboot - static binary that would close all descriptors and
1506 * call reboot(9). Then init(8) could umount root and exec /reboot.
1507 */
1508 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1509 /*
1510 * Special case for "unmounting" root ...
1511 * we just try to remount it readonly.
1512 */
1513 if (!capable(CAP_SYS_ADMIN))
1514 return -EPERM;
1515 down_write(&sb->s_umount);
1516 if (!(sb->s_flags & MS_RDONLY))
1517 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1518 up_write(&sb->s_umount);
1519 return retval;
1520 }
1521
1522 namespace_lock();
1523 lock_mount_hash();
1524 event++;
1525
1526 if (flags & MNT_DETACH) {
1527 if (!list_empty(&mnt->mnt_list))
1528 umount_tree(mnt, UMOUNT_PROPAGATE);
1529 retval = 0;
1530 } else {
1531 shrink_submounts(mnt);
1532 retval = -EBUSY;
1533 if (!propagate_mount_busy(mnt, 2)) {
1534 if (!list_empty(&mnt->mnt_list))
1535 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1536 retval = 0;
1537 }
1538 }
1539 unlock_mount_hash();
1540 namespace_unlock();
1541 return retval;
1542 }
1543
1544 /*
1545 * __detach_mounts - lazily unmount all mounts on the specified dentry
1546 *
1547 * During unlink, rmdir, and d_drop it is possible to loose the path
1548 * to an existing mountpoint, and wind up leaking the mount.
1549 * detach_mounts allows lazily unmounting those mounts instead of
1550 * leaking them.
1551 *
1552 * The caller may hold dentry->d_inode->i_mutex.
1553 */
1554 void __detach_mounts(struct dentry *dentry)
1555 {
1556 struct mountpoint *mp;
1557 struct mount *mnt;
1558
1559 namespace_lock();
1560 mp = lookup_mountpoint(dentry);
1561 if (IS_ERR_OR_NULL(mp))
1562 goto out_unlock;
1563
1564 lock_mount_hash();
1565 event++;
1566 while (!hlist_empty(&mp->m_list)) {
1567 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1568 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1569 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1570 umount_mnt(mnt);
1571 }
1572 else umount_tree(mnt, UMOUNT_CONNECTED);
1573 }
1574 unlock_mount_hash();
1575 put_mountpoint(mp);
1576 out_unlock:
1577 namespace_unlock();
1578 }
1579
1580 /*
1581 * Is the caller allowed to modify his namespace?
1582 */
1583 static inline bool may_mount(void)
1584 {
1585 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1586 }
1587
1588 static inline bool may_mandlock(void)
1589 {
1590 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1591 return false;
1592 #endif
1593 return capable(CAP_SYS_ADMIN);
1594 }
1595
1596 /*
1597 * Now umount can handle mount points as well as block devices.
1598 * This is important for filesystems which use unnamed block devices.
1599 *
1600 * We now support a flag for forced unmount like the other 'big iron'
1601 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1602 */
1603
1604 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1605 {
1606 struct path path;
1607 struct mount *mnt;
1608 int retval;
1609 int lookup_flags = 0;
1610
1611 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1612 return -EINVAL;
1613
1614 if (!may_mount())
1615 return -EPERM;
1616
1617 if (!(flags & UMOUNT_NOFOLLOW))
1618 lookup_flags |= LOOKUP_FOLLOW;
1619
1620 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1621 if (retval)
1622 goto out;
1623 mnt = real_mount(path.mnt);
1624 retval = -EINVAL;
1625 if (path.dentry != path.mnt->mnt_root)
1626 goto dput_and_out;
1627 if (!check_mnt(mnt))
1628 goto dput_and_out;
1629 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1630 goto dput_and_out;
1631 retval = -EPERM;
1632 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1633 goto dput_and_out;
1634
1635 retval = do_umount(mnt, flags);
1636 dput_and_out:
1637 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1638 dput(path.dentry);
1639 mntput_no_expire(mnt);
1640 out:
1641 return retval;
1642 }
1643
1644 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1645
1646 /*
1647 * The 2.0 compatible umount. No flags.
1648 */
1649 SYSCALL_DEFINE1(oldumount, char __user *, name)
1650 {
1651 return sys_umount(name, 0);
1652 }
1653
1654 #endif
1655
1656 static bool is_mnt_ns_file(struct dentry *dentry)
1657 {
1658 /* Is this a proxy for a mount namespace? */
1659 return dentry->d_op == &ns_dentry_operations &&
1660 dentry->d_fsdata == &mntns_operations;
1661 }
1662
1663 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1664 {
1665 return container_of(ns, struct mnt_namespace, ns);
1666 }
1667
1668 static bool mnt_ns_loop(struct dentry *dentry)
1669 {
1670 /* Could bind mounting the mount namespace inode cause a
1671 * mount namespace loop?
1672 */
1673 struct mnt_namespace *mnt_ns;
1674 if (!is_mnt_ns_file(dentry))
1675 return false;
1676
1677 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1678 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1679 }
1680
1681 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1682 int flag)
1683 {
1684 struct mount *res, *p, *q, *r, *parent;
1685
1686 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1687 return ERR_PTR(-EINVAL);
1688
1689 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1690 return ERR_PTR(-EINVAL);
1691
1692 res = q = clone_mnt(mnt, dentry, flag);
1693 if (IS_ERR(q))
1694 return q;
1695
1696 q->mnt_mountpoint = mnt->mnt_mountpoint;
1697
1698 p = mnt;
1699 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1700 struct mount *s;
1701 if (!is_subdir(r->mnt_mountpoint, dentry))
1702 continue;
1703
1704 for (s = r; s; s = next_mnt(s, r)) {
1705 struct mount *t = NULL;
1706 if (!(flag & CL_COPY_UNBINDABLE) &&
1707 IS_MNT_UNBINDABLE(s)) {
1708 s = skip_mnt_tree(s);
1709 continue;
1710 }
1711 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1712 is_mnt_ns_file(s->mnt.mnt_root)) {
1713 s = skip_mnt_tree(s);
1714 continue;
1715 }
1716 while (p != s->mnt_parent) {
1717 p = p->mnt_parent;
1718 q = q->mnt_parent;
1719 }
1720 p = s;
1721 parent = q;
1722 q = clone_mnt(p, p->mnt.mnt_root, flag);
1723 if (IS_ERR(q))
1724 goto out;
1725 lock_mount_hash();
1726 list_add_tail(&q->mnt_list, &res->mnt_list);
1727 mnt_set_mountpoint(parent, p->mnt_mp, q);
1728 if (!list_empty(&parent->mnt_mounts)) {
1729 t = list_last_entry(&parent->mnt_mounts,
1730 struct mount, mnt_child);
1731 if (t->mnt_mp != p->mnt_mp)
1732 t = NULL;
1733 }
1734 attach_shadowed(q, parent, t);
1735 unlock_mount_hash();
1736 }
1737 }
1738 return res;
1739 out:
1740 if (res) {
1741 lock_mount_hash();
1742 umount_tree(res, UMOUNT_SYNC);
1743 unlock_mount_hash();
1744 }
1745 return q;
1746 }
1747
1748 /* Caller should check returned pointer for errors */
1749
1750 struct vfsmount *collect_mounts(struct path *path)
1751 {
1752 struct mount *tree;
1753 namespace_lock();
1754 if (!check_mnt(real_mount(path->mnt)))
1755 tree = ERR_PTR(-EINVAL);
1756 else
1757 tree = copy_tree(real_mount(path->mnt), path->dentry,
1758 CL_COPY_ALL | CL_PRIVATE);
1759 namespace_unlock();
1760 if (IS_ERR(tree))
1761 return ERR_CAST(tree);
1762 return &tree->mnt;
1763 }
1764
1765 void drop_collected_mounts(struct vfsmount *mnt)
1766 {
1767 namespace_lock();
1768 lock_mount_hash();
1769 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1770 unlock_mount_hash();
1771 namespace_unlock();
1772 }
1773
1774 /**
1775 * clone_private_mount - create a private clone of a path
1776 *
1777 * This creates a new vfsmount, which will be the clone of @path. The new will
1778 * not be attached anywhere in the namespace and will be private (i.e. changes
1779 * to the originating mount won't be propagated into this).
1780 *
1781 * Release with mntput().
1782 */
1783 struct vfsmount *clone_private_mount(struct path *path)
1784 {
1785 struct mount *old_mnt = real_mount(path->mnt);
1786 struct mount *new_mnt;
1787
1788 if (IS_MNT_UNBINDABLE(old_mnt))
1789 return ERR_PTR(-EINVAL);
1790
1791 down_read(&namespace_sem);
1792 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1793 up_read(&namespace_sem);
1794 if (IS_ERR(new_mnt))
1795 return ERR_CAST(new_mnt);
1796
1797 return &new_mnt->mnt;
1798 }
1799 EXPORT_SYMBOL_GPL(clone_private_mount);
1800
1801 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1802 struct vfsmount *root)
1803 {
1804 struct mount *mnt;
1805 int res = f(root, arg);
1806 if (res)
1807 return res;
1808 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1809 res = f(&mnt->mnt, arg);
1810 if (res)
1811 return res;
1812 }
1813 return 0;
1814 }
1815
1816 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1817 {
1818 struct mount *p;
1819
1820 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1821 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1822 mnt_release_group_id(p);
1823 }
1824 }
1825
1826 static int invent_group_ids(struct mount *mnt, bool recurse)
1827 {
1828 struct mount *p;
1829
1830 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1831 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1832 int err = mnt_alloc_group_id(p);
1833 if (err) {
1834 cleanup_group_ids(mnt, p);
1835 return err;
1836 }
1837 }
1838 }
1839
1840 return 0;
1841 }
1842
1843 /*
1844 * @source_mnt : mount tree to be attached
1845 * @nd : place the mount tree @source_mnt is attached
1846 * @parent_nd : if non-null, detach the source_mnt from its parent and
1847 * store the parent mount and mountpoint dentry.
1848 * (done when source_mnt is moved)
1849 *
1850 * NOTE: in the table below explains the semantics when a source mount
1851 * of a given type is attached to a destination mount of a given type.
1852 * ---------------------------------------------------------------------------
1853 * | BIND MOUNT OPERATION |
1854 * |**************************************************************************
1855 * | source-->| shared | private | slave | unbindable |
1856 * | dest | | | | |
1857 * | | | | | | |
1858 * | v | | | | |
1859 * |**************************************************************************
1860 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1861 * | | | | | |
1862 * |non-shared| shared (+) | private | slave (*) | invalid |
1863 * ***************************************************************************
1864 * A bind operation clones the source mount and mounts the clone on the
1865 * destination mount.
1866 *
1867 * (++) the cloned mount is propagated to all the mounts in the propagation
1868 * tree of the destination mount and the cloned mount is added to
1869 * the peer group of the source mount.
1870 * (+) the cloned mount is created under the destination mount and is marked
1871 * as shared. The cloned mount is added to the peer group of the source
1872 * mount.
1873 * (+++) the mount is propagated to all the mounts in the propagation tree
1874 * of the destination mount and the cloned mount is made slave
1875 * of the same master as that of the source mount. The cloned mount
1876 * is marked as 'shared and slave'.
1877 * (*) the cloned mount is made a slave of the same master as that of the
1878 * source mount.
1879 *
1880 * ---------------------------------------------------------------------------
1881 * | MOVE MOUNT OPERATION |
1882 * |**************************************************************************
1883 * | source-->| shared | private | slave | unbindable |
1884 * | dest | | | | |
1885 * | | | | | | |
1886 * | v | | | | |
1887 * |**************************************************************************
1888 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1889 * | | | | | |
1890 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1891 * ***************************************************************************
1892 *
1893 * (+) the mount is moved to the destination. And is then propagated to
1894 * all the mounts in the propagation tree of the destination mount.
1895 * (+*) the mount is moved to the destination.
1896 * (+++) the mount is moved to the destination and is then propagated to
1897 * all the mounts belonging to the destination mount's propagation tree.
1898 * the mount is marked as 'shared and slave'.
1899 * (*) the mount continues to be a slave at the new location.
1900 *
1901 * if the source mount is a tree, the operations explained above is
1902 * applied to each mount in the tree.
1903 * Must be called without spinlocks held, since this function can sleep
1904 * in allocations.
1905 */
1906 static int attach_recursive_mnt(struct mount *source_mnt,
1907 struct mount *dest_mnt,
1908 struct mountpoint *dest_mp,
1909 struct path *parent_path)
1910 {
1911 HLIST_HEAD(tree_list);
1912 struct mount *child, *p;
1913 struct hlist_node *n;
1914 int err;
1915
1916 if (IS_MNT_SHARED(dest_mnt)) {
1917 err = invent_group_ids(source_mnt, true);
1918 if (err)
1919 goto out;
1920 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1921 lock_mount_hash();
1922 if (err)
1923 goto out_cleanup_ids;
1924 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1925 set_mnt_shared(p);
1926 } else {
1927 lock_mount_hash();
1928 }
1929 if (parent_path) {
1930 detach_mnt(source_mnt, parent_path);
1931 attach_mnt(source_mnt, dest_mnt, dest_mp);
1932 touch_mnt_namespace(source_mnt->mnt_ns);
1933 } else {
1934 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1935 commit_tree(source_mnt, NULL);
1936 }
1937
1938 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1939 struct mount *q;
1940 hlist_del_init(&child->mnt_hash);
1941 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1942 child->mnt_mountpoint);
1943 commit_tree(child, q);
1944 }
1945 unlock_mount_hash();
1946
1947 return 0;
1948
1949 out_cleanup_ids:
1950 while (!hlist_empty(&tree_list)) {
1951 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1952 umount_tree(child, UMOUNT_SYNC);
1953 }
1954 unlock_mount_hash();
1955 cleanup_group_ids(source_mnt, NULL);
1956 out:
1957 return err;
1958 }
1959
1960 static struct mountpoint *lock_mount(struct path *path)
1961 {
1962 struct vfsmount *mnt;
1963 struct dentry *dentry = path->dentry;
1964 retry:
1965 inode_lock(dentry->d_inode);
1966 if (unlikely(cant_mount(dentry))) {
1967 inode_unlock(dentry->d_inode);
1968 return ERR_PTR(-ENOENT);
1969 }
1970 namespace_lock();
1971 mnt = lookup_mnt(path);
1972 if (likely(!mnt)) {
1973 struct mountpoint *mp = lookup_mountpoint(dentry);
1974 if (!mp)
1975 mp = new_mountpoint(dentry);
1976 if (IS_ERR(mp)) {
1977 namespace_unlock();
1978 inode_unlock(dentry->d_inode);
1979 return mp;
1980 }
1981 return mp;
1982 }
1983 namespace_unlock();
1984 inode_unlock(path->dentry->d_inode);
1985 path_put(path);
1986 path->mnt = mnt;
1987 dentry = path->dentry = dget(mnt->mnt_root);
1988 goto retry;
1989 }
1990
1991 static void unlock_mount(struct mountpoint *where)
1992 {
1993 struct dentry *dentry = where->m_dentry;
1994 put_mountpoint(where);
1995 namespace_unlock();
1996 inode_unlock(dentry->d_inode);
1997 }
1998
1999 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2000 {
2001 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2002 return -EINVAL;
2003
2004 if (d_is_dir(mp->m_dentry) !=
2005 d_is_dir(mnt->mnt.mnt_root))
2006 return -ENOTDIR;
2007
2008 return attach_recursive_mnt(mnt, p, mp, NULL);
2009 }
2010
2011 /*
2012 * Sanity check the flags to change_mnt_propagation.
2013 */
2014
2015 static int flags_to_propagation_type(int flags)
2016 {
2017 int type = flags & ~(MS_REC | MS_SILENT);
2018
2019 /* Fail if any non-propagation flags are set */
2020 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2021 return 0;
2022 /* Only one propagation flag should be set */
2023 if (!is_power_of_2(type))
2024 return 0;
2025 return type;
2026 }
2027
2028 /*
2029 * recursively change the type of the mountpoint.
2030 */
2031 static int do_change_type(struct path *path, int flag)
2032 {
2033 struct mount *m;
2034 struct mount *mnt = real_mount(path->mnt);
2035 int recurse = flag & MS_REC;
2036 int type;
2037 int err = 0;
2038
2039 if (path->dentry != path->mnt->mnt_root)
2040 return -EINVAL;
2041
2042 type = flags_to_propagation_type(flag);
2043 if (!type)
2044 return -EINVAL;
2045
2046 namespace_lock();
2047 if (type == MS_SHARED) {
2048 err = invent_group_ids(mnt, recurse);
2049 if (err)
2050 goto out_unlock;
2051 }
2052
2053 lock_mount_hash();
2054 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2055 change_mnt_propagation(m, type);
2056 unlock_mount_hash();
2057
2058 out_unlock:
2059 namespace_unlock();
2060 return err;
2061 }
2062
2063 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2064 {
2065 struct mount *child;
2066 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2067 if (!is_subdir(child->mnt_mountpoint, dentry))
2068 continue;
2069
2070 if (child->mnt.mnt_flags & MNT_LOCKED)
2071 return true;
2072 }
2073 return false;
2074 }
2075
2076 /*
2077 * do loopback mount.
2078 */
2079 static int do_loopback(struct path *path, const char *old_name,
2080 int recurse)
2081 {
2082 struct path old_path;
2083 struct mount *mnt = NULL, *old, *parent;
2084 struct mountpoint *mp;
2085 int err;
2086 if (!old_name || !*old_name)
2087 return -EINVAL;
2088 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2089 if (err)
2090 return err;
2091
2092 err = -EINVAL;
2093 if (mnt_ns_loop(old_path.dentry))
2094 goto out;
2095
2096 mp = lock_mount(path);
2097 err = PTR_ERR(mp);
2098 if (IS_ERR(mp))
2099 goto out;
2100
2101 old = real_mount(old_path.mnt);
2102 parent = real_mount(path->mnt);
2103
2104 err = -EINVAL;
2105 if (IS_MNT_UNBINDABLE(old))
2106 goto out2;
2107
2108 if (!check_mnt(parent))
2109 goto out2;
2110
2111 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2112 goto out2;
2113
2114 if (!recurse && has_locked_children(old, old_path.dentry))
2115 goto out2;
2116
2117 if (recurse)
2118 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2119 else
2120 mnt = clone_mnt(old, old_path.dentry, 0);
2121
2122 if (IS_ERR(mnt)) {
2123 err = PTR_ERR(mnt);
2124 goto out2;
2125 }
2126
2127 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2128
2129 err = graft_tree(mnt, parent, mp);
2130 if (err) {
2131 lock_mount_hash();
2132 umount_tree(mnt, UMOUNT_SYNC);
2133 unlock_mount_hash();
2134 }
2135 out2:
2136 unlock_mount(mp);
2137 out:
2138 path_put(&old_path);
2139 return err;
2140 }
2141
2142 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2143 {
2144 int error = 0;
2145 int readonly_request = 0;
2146
2147 if (ms_flags & MS_RDONLY)
2148 readonly_request = 1;
2149 if (readonly_request == __mnt_is_readonly(mnt))
2150 return 0;
2151
2152 if (readonly_request)
2153 error = mnt_make_readonly(real_mount(mnt));
2154 else
2155 __mnt_unmake_readonly(real_mount(mnt));
2156 return error;
2157 }
2158
2159 /*
2160 * change filesystem flags. dir should be a physical root of filesystem.
2161 * If you've mounted a non-root directory somewhere and want to do remount
2162 * on it - tough luck.
2163 */
2164 static int do_remount(struct path *path, int flags, int mnt_flags,
2165 void *data)
2166 {
2167 int err;
2168 struct super_block *sb = path->mnt->mnt_sb;
2169 struct mount *mnt = real_mount(path->mnt);
2170
2171 if (!check_mnt(mnt))
2172 return -EINVAL;
2173
2174 if (path->dentry != path->mnt->mnt_root)
2175 return -EINVAL;
2176
2177 /* Don't allow changing of locked mnt flags.
2178 *
2179 * No locks need to be held here while testing the various
2180 * MNT_LOCK flags because those flags can never be cleared
2181 * once they are set.
2182 */
2183 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2184 !(mnt_flags & MNT_READONLY)) {
2185 return -EPERM;
2186 }
2187 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2188 !(mnt_flags & MNT_NODEV)) {
2189 return -EPERM;
2190 }
2191 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2192 !(mnt_flags & MNT_NOSUID)) {
2193 return -EPERM;
2194 }
2195 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2196 !(mnt_flags & MNT_NOEXEC)) {
2197 return -EPERM;
2198 }
2199 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2200 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2201 return -EPERM;
2202 }
2203
2204 err = security_sb_remount(sb, data);
2205 if (err)
2206 return err;
2207
2208 down_write(&sb->s_umount);
2209 if (flags & MS_BIND)
2210 err = change_mount_flags(path->mnt, flags);
2211 else if (!capable(CAP_SYS_ADMIN))
2212 err = -EPERM;
2213 else
2214 err = do_remount_sb(sb, flags, data, 0);
2215 if (!err) {
2216 lock_mount_hash();
2217 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2218 mnt->mnt.mnt_flags = mnt_flags;
2219 touch_mnt_namespace(mnt->mnt_ns);
2220 unlock_mount_hash();
2221 }
2222 up_write(&sb->s_umount);
2223 return err;
2224 }
2225
2226 static inline int tree_contains_unbindable(struct mount *mnt)
2227 {
2228 struct mount *p;
2229 for (p = mnt; p; p = next_mnt(p, mnt)) {
2230 if (IS_MNT_UNBINDABLE(p))
2231 return 1;
2232 }
2233 return 0;
2234 }
2235
2236 static int do_move_mount(struct path *path, const char *old_name)
2237 {
2238 struct path old_path, parent_path;
2239 struct mount *p;
2240 struct mount *old;
2241 struct mountpoint *mp;
2242 int err;
2243 if (!old_name || !*old_name)
2244 return -EINVAL;
2245 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2246 if (err)
2247 return err;
2248
2249 mp = lock_mount(path);
2250 err = PTR_ERR(mp);
2251 if (IS_ERR(mp))
2252 goto out;
2253
2254 old = real_mount(old_path.mnt);
2255 p = real_mount(path->mnt);
2256
2257 err = -EINVAL;
2258 if (!check_mnt(p) || !check_mnt(old))
2259 goto out1;
2260
2261 if (old->mnt.mnt_flags & MNT_LOCKED)
2262 goto out1;
2263
2264 err = -EINVAL;
2265 if (old_path.dentry != old_path.mnt->mnt_root)
2266 goto out1;
2267
2268 if (!mnt_has_parent(old))
2269 goto out1;
2270
2271 if (d_is_dir(path->dentry) !=
2272 d_is_dir(old_path.dentry))
2273 goto out1;
2274 /*
2275 * Don't move a mount residing in a shared parent.
2276 */
2277 if (IS_MNT_SHARED(old->mnt_parent))
2278 goto out1;
2279 /*
2280 * Don't move a mount tree containing unbindable mounts to a destination
2281 * mount which is shared.
2282 */
2283 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2284 goto out1;
2285 err = -ELOOP;
2286 for (; mnt_has_parent(p); p = p->mnt_parent)
2287 if (p == old)
2288 goto out1;
2289
2290 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2291 if (err)
2292 goto out1;
2293
2294 /* if the mount is moved, it should no longer be expire
2295 * automatically */
2296 list_del_init(&old->mnt_expire);
2297 out1:
2298 unlock_mount(mp);
2299 out:
2300 if (!err)
2301 path_put(&parent_path);
2302 path_put(&old_path);
2303 return err;
2304 }
2305
2306 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2307 {
2308 int err;
2309 const char *subtype = strchr(fstype, '.');
2310 if (subtype) {
2311 subtype++;
2312 err = -EINVAL;
2313 if (!subtype[0])
2314 goto err;
2315 } else
2316 subtype = "";
2317
2318 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2319 err = -ENOMEM;
2320 if (!mnt->mnt_sb->s_subtype)
2321 goto err;
2322 return mnt;
2323
2324 err:
2325 mntput(mnt);
2326 return ERR_PTR(err);
2327 }
2328
2329 /*
2330 * add a mount into a namespace's mount tree
2331 */
2332 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2333 {
2334 struct mountpoint *mp;
2335 struct mount *parent;
2336 int err;
2337
2338 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2339
2340 mp = lock_mount(path);
2341 if (IS_ERR(mp))
2342 return PTR_ERR(mp);
2343
2344 parent = real_mount(path->mnt);
2345 err = -EINVAL;
2346 if (unlikely(!check_mnt(parent))) {
2347 /* that's acceptable only for automounts done in private ns */
2348 if (!(mnt_flags & MNT_SHRINKABLE))
2349 goto unlock;
2350 /* ... and for those we'd better have mountpoint still alive */
2351 if (!parent->mnt_ns)
2352 goto unlock;
2353 }
2354
2355 /* Refuse the same filesystem on the same mount point */
2356 err = -EBUSY;
2357 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2358 path->mnt->mnt_root == path->dentry)
2359 goto unlock;
2360
2361 err = -EINVAL;
2362 if (d_is_symlink(newmnt->mnt.mnt_root))
2363 goto unlock;
2364
2365 newmnt->mnt.mnt_flags = mnt_flags;
2366 err = graft_tree(newmnt, parent, mp);
2367
2368 unlock:
2369 unlock_mount(mp);
2370 return err;
2371 }
2372
2373 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2374
2375 /*
2376 * create a new mount for userspace and request it to be added into the
2377 * namespace's tree
2378 */
2379 static int do_new_mount(struct path *path, const char *fstype, int flags,
2380 int mnt_flags, const char *name, void *data)
2381 {
2382 struct file_system_type *type;
2383 struct vfsmount *mnt;
2384 int err;
2385
2386 if (!fstype)
2387 return -EINVAL;
2388
2389 type = get_fs_type(fstype);
2390 if (!type)
2391 return -ENODEV;
2392
2393 mnt = vfs_kern_mount(type, flags, name, data);
2394 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2395 !mnt->mnt_sb->s_subtype)
2396 mnt = fs_set_subtype(mnt, fstype);
2397
2398 put_filesystem(type);
2399 if (IS_ERR(mnt))
2400 return PTR_ERR(mnt);
2401
2402 if (mount_too_revealing(mnt, &mnt_flags)) {
2403 mntput(mnt);
2404 return -EPERM;
2405 }
2406
2407 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2408 if (err)
2409 mntput(mnt);
2410 return err;
2411 }
2412
2413 int finish_automount(struct vfsmount *m, struct path *path)
2414 {
2415 struct mount *mnt = real_mount(m);
2416 int err;
2417 /* The new mount record should have at least 2 refs to prevent it being
2418 * expired before we get a chance to add it
2419 */
2420 BUG_ON(mnt_get_count(mnt) < 2);
2421
2422 if (m->mnt_sb == path->mnt->mnt_sb &&
2423 m->mnt_root == path->dentry) {
2424 err = -ELOOP;
2425 goto fail;
2426 }
2427
2428 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2429 if (!err)
2430 return 0;
2431 fail:
2432 /* remove m from any expiration list it may be on */
2433 if (!list_empty(&mnt->mnt_expire)) {
2434 namespace_lock();
2435 list_del_init(&mnt->mnt_expire);
2436 namespace_unlock();
2437 }
2438 mntput(m);
2439 mntput(m);
2440 return err;
2441 }
2442
2443 /**
2444 * mnt_set_expiry - Put a mount on an expiration list
2445 * @mnt: The mount to list.
2446 * @expiry_list: The list to add the mount to.
2447 */
2448 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2449 {
2450 namespace_lock();
2451
2452 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2453
2454 namespace_unlock();
2455 }
2456 EXPORT_SYMBOL(mnt_set_expiry);
2457
2458 /*
2459 * process a list of expirable mountpoints with the intent of discarding any
2460 * mountpoints that aren't in use and haven't been touched since last we came
2461 * here
2462 */
2463 void mark_mounts_for_expiry(struct list_head *mounts)
2464 {
2465 struct mount *mnt, *next;
2466 LIST_HEAD(graveyard);
2467
2468 if (list_empty(mounts))
2469 return;
2470
2471 namespace_lock();
2472 lock_mount_hash();
2473
2474 /* extract from the expiration list every vfsmount that matches the
2475 * following criteria:
2476 * - only referenced by its parent vfsmount
2477 * - still marked for expiry (marked on the last call here; marks are
2478 * cleared by mntput())
2479 */
2480 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2481 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2482 propagate_mount_busy(mnt, 1))
2483 continue;
2484 list_move(&mnt->mnt_expire, &graveyard);
2485 }
2486 while (!list_empty(&graveyard)) {
2487 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2488 touch_mnt_namespace(mnt->mnt_ns);
2489 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2490 }
2491 unlock_mount_hash();
2492 namespace_unlock();
2493 }
2494
2495 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2496
2497 /*
2498 * Ripoff of 'select_parent()'
2499 *
2500 * search the list of submounts for a given mountpoint, and move any
2501 * shrinkable submounts to the 'graveyard' list.
2502 */
2503 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2504 {
2505 struct mount *this_parent = parent;
2506 struct list_head *next;
2507 int found = 0;
2508
2509 repeat:
2510 next = this_parent->mnt_mounts.next;
2511 resume:
2512 while (next != &this_parent->mnt_mounts) {
2513 struct list_head *tmp = next;
2514 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2515
2516 next = tmp->next;
2517 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2518 continue;
2519 /*
2520 * Descend a level if the d_mounts list is non-empty.
2521 */
2522 if (!list_empty(&mnt->mnt_mounts)) {
2523 this_parent = mnt;
2524 goto repeat;
2525 }
2526
2527 if (!propagate_mount_busy(mnt, 1)) {
2528 list_move_tail(&mnt->mnt_expire, graveyard);
2529 found++;
2530 }
2531 }
2532 /*
2533 * All done at this level ... ascend and resume the search
2534 */
2535 if (this_parent != parent) {
2536 next = this_parent->mnt_child.next;
2537 this_parent = this_parent->mnt_parent;
2538 goto resume;
2539 }
2540 return found;
2541 }
2542
2543 /*
2544 * process a list of expirable mountpoints with the intent of discarding any
2545 * submounts of a specific parent mountpoint
2546 *
2547 * mount_lock must be held for write
2548 */
2549 static void shrink_submounts(struct mount *mnt)
2550 {
2551 LIST_HEAD(graveyard);
2552 struct mount *m;
2553
2554 /* extract submounts of 'mountpoint' from the expiration list */
2555 while (select_submounts(mnt, &graveyard)) {
2556 while (!list_empty(&graveyard)) {
2557 m = list_first_entry(&graveyard, struct mount,
2558 mnt_expire);
2559 touch_mnt_namespace(m->mnt_ns);
2560 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2561 }
2562 }
2563 }
2564
2565 /*
2566 * Some copy_from_user() implementations do not return the exact number of
2567 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2568 * Note that this function differs from copy_from_user() in that it will oops
2569 * on bad values of `to', rather than returning a short copy.
2570 */
2571 static long exact_copy_from_user(void *to, const void __user * from,
2572 unsigned long n)
2573 {
2574 char *t = to;
2575 const char __user *f = from;
2576 char c;
2577
2578 if (!access_ok(VERIFY_READ, from, n))
2579 return n;
2580
2581 while (n) {
2582 if (__get_user(c, f)) {
2583 memset(t, 0, n);
2584 break;
2585 }
2586 *t++ = c;
2587 f++;
2588 n--;
2589 }
2590 return n;
2591 }
2592
2593 void *copy_mount_options(const void __user * data)
2594 {
2595 int i;
2596 unsigned long size;
2597 char *copy;
2598
2599 if (!data)
2600 return NULL;
2601
2602 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2603 if (!copy)
2604 return ERR_PTR(-ENOMEM);
2605
2606 /* We only care that *some* data at the address the user
2607 * gave us is valid. Just in case, we'll zero
2608 * the remainder of the page.
2609 */
2610 /* copy_from_user cannot cross TASK_SIZE ! */
2611 size = TASK_SIZE - (unsigned long)data;
2612 if (size > PAGE_SIZE)
2613 size = PAGE_SIZE;
2614
2615 i = size - exact_copy_from_user(copy, data, size);
2616 if (!i) {
2617 kfree(copy);
2618 return ERR_PTR(-EFAULT);
2619 }
2620 if (i != PAGE_SIZE)
2621 memset(copy + i, 0, PAGE_SIZE - i);
2622 return copy;
2623 }
2624
2625 char *copy_mount_string(const void __user *data)
2626 {
2627 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2628 }
2629
2630 /*
2631 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2632 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2633 *
2634 * data is a (void *) that can point to any structure up to
2635 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2636 * information (or be NULL).
2637 *
2638 * Pre-0.97 versions of mount() didn't have a flags word.
2639 * When the flags word was introduced its top half was required
2640 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2641 * Therefore, if this magic number is present, it carries no information
2642 * and must be discarded.
2643 */
2644 long do_mount(const char *dev_name, const char __user *dir_name,
2645 const char *type_page, unsigned long flags, void *data_page)
2646 {
2647 struct path path;
2648 int retval = 0;
2649 int mnt_flags = 0;
2650
2651 /* Discard magic */
2652 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2653 flags &= ~MS_MGC_MSK;
2654
2655 /* Basic sanity checks */
2656 if (data_page)
2657 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2658
2659 /* ... and get the mountpoint */
2660 retval = user_path(dir_name, &path);
2661 if (retval)
2662 return retval;
2663
2664 retval = security_sb_mount(dev_name, &path,
2665 type_page, flags, data_page);
2666 if (!retval && !may_mount())
2667 retval = -EPERM;
2668 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2669 retval = -EPERM;
2670 if (retval)
2671 goto dput_out;
2672
2673 /* Default to relatime unless overriden */
2674 if (!(flags & MS_NOATIME))
2675 mnt_flags |= MNT_RELATIME;
2676
2677 /* Separate the per-mountpoint flags */
2678 if (flags & MS_NOSUID)
2679 mnt_flags |= MNT_NOSUID;
2680 if (flags & MS_NODEV)
2681 mnt_flags |= MNT_NODEV;
2682 if (flags & MS_NOEXEC)
2683 mnt_flags |= MNT_NOEXEC;
2684 if (flags & MS_NOATIME)
2685 mnt_flags |= MNT_NOATIME;
2686 if (flags & MS_NODIRATIME)
2687 mnt_flags |= MNT_NODIRATIME;
2688 if (flags & MS_STRICTATIME)
2689 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2690 if (flags & MS_RDONLY)
2691 mnt_flags |= MNT_READONLY;
2692
2693 /* The default atime for remount is preservation */
2694 if ((flags & MS_REMOUNT) &&
2695 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2696 MS_STRICTATIME)) == 0)) {
2697 mnt_flags &= ~MNT_ATIME_MASK;
2698 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2699 }
2700
2701 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2702 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2703 MS_STRICTATIME | MS_NOREMOTELOCK);
2704
2705 if (flags & MS_REMOUNT)
2706 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2707 data_page);
2708 else if (flags & MS_BIND)
2709 retval = do_loopback(&path, dev_name, flags & MS_REC);
2710 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2711 retval = do_change_type(&path, flags);
2712 else if (flags & MS_MOVE)
2713 retval = do_move_mount(&path, dev_name);
2714 else
2715 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2716 dev_name, data_page);
2717 dput_out:
2718 path_put(&path);
2719 return retval;
2720 }
2721
2722 static void free_mnt_ns(struct mnt_namespace *ns)
2723 {
2724 ns_free_inum(&ns->ns);
2725 put_user_ns(ns->user_ns);
2726 kfree(ns);
2727 }
2728
2729 /*
2730 * Assign a sequence number so we can detect when we attempt to bind
2731 * mount a reference to an older mount namespace into the current
2732 * mount namespace, preventing reference counting loops. A 64bit
2733 * number incrementing at 10Ghz will take 12,427 years to wrap which
2734 * is effectively never, so we can ignore the possibility.
2735 */
2736 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2737
2738 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2739 {
2740 struct mnt_namespace *new_ns;
2741 int ret;
2742
2743 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2744 if (!new_ns)
2745 return ERR_PTR(-ENOMEM);
2746 ret = ns_alloc_inum(&new_ns->ns);
2747 if (ret) {
2748 kfree(new_ns);
2749 return ERR_PTR(ret);
2750 }
2751 new_ns->ns.ops = &mntns_operations;
2752 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2753 atomic_set(&new_ns->count, 1);
2754 new_ns->root = NULL;
2755 INIT_LIST_HEAD(&new_ns->list);
2756 init_waitqueue_head(&new_ns->poll);
2757 new_ns->event = 0;
2758 new_ns->user_ns = get_user_ns(user_ns);
2759 return new_ns;
2760 }
2761
2762 __latent_entropy
2763 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2764 struct user_namespace *user_ns, struct fs_struct *new_fs)
2765 {
2766 struct mnt_namespace *new_ns;
2767 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2768 struct mount *p, *q;
2769 struct mount *old;
2770 struct mount *new;
2771 int copy_flags;
2772
2773 BUG_ON(!ns);
2774
2775 if (likely(!(flags & CLONE_NEWNS))) {
2776 get_mnt_ns(ns);
2777 return ns;
2778 }
2779
2780 old = ns->root;
2781
2782 new_ns = alloc_mnt_ns(user_ns);
2783 if (IS_ERR(new_ns))
2784 return new_ns;
2785
2786 namespace_lock();
2787 /* First pass: copy the tree topology */
2788 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2789 if (user_ns != ns->user_ns)
2790 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2791 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2792 if (IS_ERR(new)) {
2793 namespace_unlock();
2794 free_mnt_ns(new_ns);
2795 return ERR_CAST(new);
2796 }
2797 new_ns->root = new;
2798 list_add_tail(&new_ns->list, &new->mnt_list);
2799
2800 /*
2801 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2802 * as belonging to new namespace. We have already acquired a private
2803 * fs_struct, so tsk->fs->lock is not needed.
2804 */
2805 p = old;
2806 q = new;
2807 while (p) {
2808 q->mnt_ns = new_ns;
2809 if (new_fs) {
2810 if (&p->mnt == new_fs->root.mnt) {
2811 new_fs->root.mnt = mntget(&q->mnt);
2812 rootmnt = &p->mnt;
2813 }
2814 if (&p->mnt == new_fs->pwd.mnt) {
2815 new_fs->pwd.mnt = mntget(&q->mnt);
2816 pwdmnt = &p->mnt;
2817 }
2818 }
2819 p = next_mnt(p, old);
2820 q = next_mnt(q, new);
2821 if (!q)
2822 break;
2823 while (p->mnt.mnt_root != q->mnt.mnt_root)
2824 p = next_mnt(p, old);
2825 }
2826 namespace_unlock();
2827
2828 if (rootmnt)
2829 mntput(rootmnt);
2830 if (pwdmnt)
2831 mntput(pwdmnt);
2832
2833 return new_ns;
2834 }
2835
2836 /**
2837 * create_mnt_ns - creates a private namespace and adds a root filesystem
2838 * @mnt: pointer to the new root filesystem mountpoint
2839 */
2840 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2841 {
2842 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2843 if (!IS_ERR(new_ns)) {
2844 struct mount *mnt = real_mount(m);
2845 mnt->mnt_ns = new_ns;
2846 new_ns->root = mnt;
2847 list_add(&mnt->mnt_list, &new_ns->list);
2848 } else {
2849 mntput(m);
2850 }
2851 return new_ns;
2852 }
2853
2854 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2855 {
2856 struct mnt_namespace *ns;
2857 struct super_block *s;
2858 struct path path;
2859 int err;
2860
2861 ns = create_mnt_ns(mnt);
2862 if (IS_ERR(ns))
2863 return ERR_CAST(ns);
2864
2865 err = vfs_path_lookup(mnt->mnt_root, mnt,
2866 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2867
2868 put_mnt_ns(ns);
2869
2870 if (err)
2871 return ERR_PTR(err);
2872
2873 /* trade a vfsmount reference for active sb one */
2874 s = path.mnt->mnt_sb;
2875 atomic_inc(&s->s_active);
2876 mntput(path.mnt);
2877 /* lock the sucker */
2878 down_write(&s->s_umount);
2879 /* ... and return the root of (sub)tree on it */
2880 return path.dentry;
2881 }
2882 EXPORT_SYMBOL(mount_subtree);
2883
2884 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2885 char __user *, type, unsigned long, flags, void __user *, data)
2886 {
2887 int ret;
2888 char *kernel_type;
2889 char *kernel_dev;
2890 void *options;
2891
2892 kernel_type = copy_mount_string(type);
2893 ret = PTR_ERR(kernel_type);
2894 if (IS_ERR(kernel_type))
2895 goto out_type;
2896
2897 kernel_dev = copy_mount_string(dev_name);
2898 ret = PTR_ERR(kernel_dev);
2899 if (IS_ERR(kernel_dev))
2900 goto out_dev;
2901
2902 options = copy_mount_options(data);
2903 ret = PTR_ERR(options);
2904 if (IS_ERR(options))
2905 goto out_data;
2906
2907 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
2908
2909 kfree(options);
2910 out_data:
2911 kfree(kernel_dev);
2912 out_dev:
2913 kfree(kernel_type);
2914 out_type:
2915 return ret;
2916 }
2917
2918 /*
2919 * Return true if path is reachable from root
2920 *
2921 * namespace_sem or mount_lock is held
2922 */
2923 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2924 const struct path *root)
2925 {
2926 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2927 dentry = mnt->mnt_mountpoint;
2928 mnt = mnt->mnt_parent;
2929 }
2930 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2931 }
2932
2933 bool path_is_under(struct path *path1, struct path *path2)
2934 {
2935 bool res;
2936 read_seqlock_excl(&mount_lock);
2937 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2938 read_sequnlock_excl(&mount_lock);
2939 return res;
2940 }
2941 EXPORT_SYMBOL(path_is_under);
2942
2943 /*
2944 * pivot_root Semantics:
2945 * Moves the root file system of the current process to the directory put_old,
2946 * makes new_root as the new root file system of the current process, and sets
2947 * root/cwd of all processes which had them on the current root to new_root.
2948 *
2949 * Restrictions:
2950 * The new_root and put_old must be directories, and must not be on the
2951 * same file system as the current process root. The put_old must be
2952 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2953 * pointed to by put_old must yield the same directory as new_root. No other
2954 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2955 *
2956 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2957 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2958 * in this situation.
2959 *
2960 * Notes:
2961 * - we don't move root/cwd if they are not at the root (reason: if something
2962 * cared enough to change them, it's probably wrong to force them elsewhere)
2963 * - it's okay to pick a root that isn't the root of a file system, e.g.
2964 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2965 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2966 * first.
2967 */
2968 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2969 const char __user *, put_old)
2970 {
2971 struct path new, old, parent_path, root_parent, root;
2972 struct mount *new_mnt, *root_mnt, *old_mnt;
2973 struct mountpoint *old_mp, *root_mp;
2974 int error;
2975
2976 if (!may_mount())
2977 return -EPERM;
2978
2979 error = user_path_dir(new_root, &new);
2980 if (error)
2981 goto out0;
2982
2983 error = user_path_dir(put_old, &old);
2984 if (error)
2985 goto out1;
2986
2987 error = security_sb_pivotroot(&old, &new);
2988 if (error)
2989 goto out2;
2990
2991 get_fs_root(current->fs, &root);
2992 old_mp = lock_mount(&old);
2993 error = PTR_ERR(old_mp);
2994 if (IS_ERR(old_mp))
2995 goto out3;
2996
2997 error = -EINVAL;
2998 new_mnt = real_mount(new.mnt);
2999 root_mnt = real_mount(root.mnt);
3000 old_mnt = real_mount(old.mnt);
3001 if (IS_MNT_SHARED(old_mnt) ||
3002 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3003 IS_MNT_SHARED(root_mnt->mnt_parent))
3004 goto out4;
3005 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3006 goto out4;
3007 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3008 goto out4;
3009 error = -ENOENT;
3010 if (d_unlinked(new.dentry))
3011 goto out4;
3012 error = -EBUSY;
3013 if (new_mnt == root_mnt || old_mnt == root_mnt)
3014 goto out4; /* loop, on the same file system */
3015 error = -EINVAL;
3016 if (root.mnt->mnt_root != root.dentry)
3017 goto out4; /* not a mountpoint */
3018 if (!mnt_has_parent(root_mnt))
3019 goto out4; /* not attached */
3020 root_mp = root_mnt->mnt_mp;
3021 if (new.mnt->mnt_root != new.dentry)
3022 goto out4; /* not a mountpoint */
3023 if (!mnt_has_parent(new_mnt))
3024 goto out4; /* not attached */
3025 /* make sure we can reach put_old from new_root */
3026 if (!is_path_reachable(old_mnt, old.dentry, &new))
3027 goto out4;
3028 /* make certain new is below the root */
3029 if (!is_path_reachable(new_mnt, new.dentry, &root))
3030 goto out4;
3031 root_mp->m_count++; /* pin it so it won't go away */
3032 lock_mount_hash();
3033 detach_mnt(new_mnt, &parent_path);
3034 detach_mnt(root_mnt, &root_parent);
3035 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3036 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3037 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3038 }
3039 /* mount old root on put_old */
3040 attach_mnt(root_mnt, old_mnt, old_mp);
3041 /* mount new_root on / */
3042 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3043 touch_mnt_namespace(current->nsproxy->mnt_ns);
3044 /* A moved mount should not expire automatically */
3045 list_del_init(&new_mnt->mnt_expire);
3046 unlock_mount_hash();
3047 chroot_fs_refs(&root, &new);
3048 put_mountpoint(root_mp);
3049 error = 0;
3050 out4:
3051 unlock_mount(old_mp);
3052 if (!error) {
3053 path_put(&root_parent);
3054 path_put(&parent_path);
3055 }
3056 out3:
3057 path_put(&root);
3058 out2:
3059 path_put(&old);
3060 out1:
3061 path_put(&new);
3062 out0:
3063 return error;
3064 }
3065
3066 static void __init init_mount_tree(void)
3067 {
3068 struct vfsmount *mnt;
3069 struct mnt_namespace *ns;
3070 struct path root;
3071 struct file_system_type *type;
3072
3073 type = get_fs_type("rootfs");
3074 if (!type)
3075 panic("Can't find rootfs type");
3076 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3077 put_filesystem(type);
3078 if (IS_ERR(mnt))
3079 panic("Can't create rootfs");
3080
3081 ns = create_mnt_ns(mnt);
3082 if (IS_ERR(ns))
3083 panic("Can't allocate initial namespace");
3084
3085 init_task.nsproxy->mnt_ns = ns;
3086 get_mnt_ns(ns);
3087
3088 root.mnt = mnt;
3089 root.dentry = mnt->mnt_root;
3090 mnt->mnt_flags |= MNT_LOCKED;
3091
3092 set_fs_pwd(current->fs, &root);
3093 set_fs_root(current->fs, &root);
3094 }
3095
3096 void __init mnt_init(void)
3097 {
3098 unsigned u;
3099 int err;
3100
3101 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3102 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3103
3104 mount_hashtable = alloc_large_system_hash("Mount-cache",
3105 sizeof(struct hlist_head),
3106 mhash_entries, 19,
3107 0,
3108 &m_hash_shift, &m_hash_mask, 0, 0);
3109 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3110 sizeof(struct hlist_head),
3111 mphash_entries, 19,
3112 0,
3113 &mp_hash_shift, &mp_hash_mask, 0, 0);
3114
3115 if (!mount_hashtable || !mountpoint_hashtable)
3116 panic("Failed to allocate mount hash table\n");
3117
3118 for (u = 0; u <= m_hash_mask; u++)
3119 INIT_HLIST_HEAD(&mount_hashtable[u]);
3120 for (u = 0; u <= mp_hash_mask; u++)
3121 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3122
3123 kernfs_init();
3124
3125 err = sysfs_init();
3126 if (err)
3127 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3128 __func__, err);
3129 fs_kobj = kobject_create_and_add("fs", NULL);
3130 if (!fs_kobj)
3131 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3132 init_rootfs();
3133 init_mount_tree();
3134 }
3135
3136 void put_mnt_ns(struct mnt_namespace *ns)
3137 {
3138 if (!atomic_dec_and_test(&ns->count))
3139 return;
3140 drop_collected_mounts(&ns->root->mnt);
3141 free_mnt_ns(ns);
3142 }
3143
3144 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3145 {
3146 struct vfsmount *mnt;
3147 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3148 if (!IS_ERR(mnt)) {
3149 /*
3150 * it is a longterm mount, don't release mnt until
3151 * we unmount before file sys is unregistered
3152 */
3153 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3154 }
3155 return mnt;
3156 }
3157 EXPORT_SYMBOL_GPL(kern_mount_data);
3158
3159 void kern_unmount(struct vfsmount *mnt)
3160 {
3161 /* release long term mount so mount point can be released */
3162 if (!IS_ERR_OR_NULL(mnt)) {
3163 real_mount(mnt)->mnt_ns = NULL;
3164 synchronize_rcu(); /* yecchhh... */
3165 mntput(mnt);
3166 }
3167 }
3168 EXPORT_SYMBOL(kern_unmount);
3169
3170 bool our_mnt(struct vfsmount *mnt)
3171 {
3172 return check_mnt(real_mount(mnt));
3173 }
3174
3175 bool current_chrooted(void)
3176 {
3177 /* Does the current process have a non-standard root */
3178 struct path ns_root;
3179 struct path fs_root;
3180 bool chrooted;
3181
3182 /* Find the namespace root */
3183 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3184 ns_root.dentry = ns_root.mnt->mnt_root;
3185 path_get(&ns_root);
3186 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3187 ;
3188
3189 get_fs_root(current->fs, &fs_root);
3190
3191 chrooted = !path_equal(&fs_root, &ns_root);
3192
3193 path_put(&fs_root);
3194 path_put(&ns_root);
3195
3196 return chrooted;
3197 }
3198
3199 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3200 int *new_mnt_flags)
3201 {
3202 int new_flags = *new_mnt_flags;
3203 struct mount *mnt;
3204 bool visible = false;
3205
3206 down_read(&namespace_sem);
3207 list_for_each_entry(mnt, &ns->list, mnt_list) {
3208 struct mount *child;
3209 int mnt_flags;
3210
3211 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3212 continue;
3213
3214 /* This mount is not fully visible if it's root directory
3215 * is not the root directory of the filesystem.
3216 */
3217 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3218 continue;
3219
3220 /* A local view of the mount flags */
3221 mnt_flags = mnt->mnt.mnt_flags;
3222
3223 /* Don't miss readonly hidden in the superblock flags */
3224 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3225 mnt_flags |= MNT_LOCK_READONLY;
3226
3227 /* Verify the mount flags are equal to or more permissive
3228 * than the proposed new mount.
3229 */
3230 if ((mnt_flags & MNT_LOCK_READONLY) &&
3231 !(new_flags & MNT_READONLY))
3232 continue;
3233 if ((mnt_flags & MNT_LOCK_ATIME) &&
3234 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3235 continue;
3236
3237 /* This mount is not fully visible if there are any
3238 * locked child mounts that cover anything except for
3239 * empty directories.
3240 */
3241 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3242 struct inode *inode = child->mnt_mountpoint->d_inode;
3243 /* Only worry about locked mounts */
3244 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3245 continue;
3246 /* Is the directory permanetly empty? */
3247 if (!is_empty_dir_inode(inode))
3248 goto next;
3249 }
3250 /* Preserve the locked attributes */
3251 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3252 MNT_LOCK_ATIME);
3253 visible = true;
3254 goto found;
3255 next: ;
3256 }
3257 found:
3258 up_read(&namespace_sem);
3259 return visible;
3260 }
3261
3262 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3263 {
3264 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3265 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3266 unsigned long s_iflags;
3267
3268 if (ns->user_ns == &init_user_ns)
3269 return false;
3270
3271 /* Can this filesystem be too revealing? */
3272 s_iflags = mnt->mnt_sb->s_iflags;
3273 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3274 return false;
3275
3276 if ((s_iflags & required_iflags) != required_iflags) {
3277 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3278 required_iflags);
3279 return true;
3280 }
3281
3282 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3283 }
3284
3285 bool mnt_may_suid(struct vfsmount *mnt)
3286 {
3287 /*
3288 * Foreign mounts (accessed via fchdir or through /proc
3289 * symlinks) are always treated as if they are nosuid. This
3290 * prevents namespaces from trusting potentially unsafe
3291 * suid/sgid bits, file caps, or security labels that originate
3292 * in other namespaces.
3293 */
3294 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3295 current_in_userns(mnt->mnt_sb->s_user_ns);
3296 }
3297
3298 static struct ns_common *mntns_get(struct task_struct *task)
3299 {
3300 struct ns_common *ns = NULL;
3301 struct nsproxy *nsproxy;
3302
3303 task_lock(task);
3304 nsproxy = task->nsproxy;
3305 if (nsproxy) {
3306 ns = &nsproxy->mnt_ns->ns;
3307 get_mnt_ns(to_mnt_ns(ns));
3308 }
3309 task_unlock(task);
3310
3311 return ns;
3312 }
3313
3314 static void mntns_put(struct ns_common *ns)
3315 {
3316 put_mnt_ns(to_mnt_ns(ns));
3317 }
3318
3319 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3320 {
3321 struct fs_struct *fs = current->fs;
3322 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3323 struct path root;
3324
3325 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3326 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3327 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3328 return -EPERM;
3329
3330 if (fs->users != 1)
3331 return -EINVAL;
3332
3333 get_mnt_ns(mnt_ns);
3334 put_mnt_ns(nsproxy->mnt_ns);
3335 nsproxy->mnt_ns = mnt_ns;
3336
3337 /* Find the root */
3338 root.mnt = &mnt_ns->root->mnt;
3339 root.dentry = mnt_ns->root->mnt.mnt_root;
3340 path_get(&root);
3341 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3342 ;
3343
3344 /* Update the pwd and root */
3345 set_fs_pwd(fs, &root);
3346 set_fs_root(fs, &root);
3347
3348 path_put(&root);
3349 return 0;
3350 }
3351
3352 const struct proc_ns_operations mntns_operations = {
3353 .name = "mnt",
3354 .type = CLONE_NEWNS,
3355 .get = mntns_get,
3356 .put = mntns_put,
3357 .install = mntns_install,
3358 };
This page took 0.09931 seconds and 5 git commands to generate.