Merge branch 'akpm-current/current'
[deliverable/linux.git] / fs / proc / task_mmu.c
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/elf.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
22 #include "internal.h"
23
24 void task_mem(struct seq_file *m, struct mm_struct *mm)
25 {
26 unsigned long text, lib, swap, ptes, pmds, anon, file, shmem;
27 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28
29 anon = get_mm_counter(mm, MM_ANONPAGES);
30 file = get_mm_counter(mm, MM_FILEPAGES);
31 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
32
33 /*
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
39 */
40 hiwater_vm = total_vm = mm->total_vm;
41 if (hiwater_vm < mm->hiwater_vm)
42 hiwater_vm = mm->hiwater_vm;
43 hiwater_rss = total_rss = anon + file + shmem;
44 if (hiwater_rss < mm->hiwater_rss)
45 hiwater_rss = mm->hiwater_rss;
46
47 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
48 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
49 swap = get_mm_counter(mm, MM_SWAPENTS);
50 ptes = PTRS_PER_PTE * sizeof(pte_t) * atomic_long_read(&mm->nr_ptes);
51 pmds = PTRS_PER_PMD * sizeof(pmd_t) * mm_nr_pmds(mm);
52 seq_printf(m,
53 "VmPeak:\t%8lu kB\n"
54 "VmSize:\t%8lu kB\n"
55 "VmLck:\t%8lu kB\n"
56 "VmPin:\t%8lu kB\n"
57 "VmHWM:\t%8lu kB\n"
58 "VmRSS:\t%8lu kB\n"
59 "RssAnon:\t%8lu kB\n"
60 "RssFile:\t%8lu kB\n"
61 "RssShmem:\t%8lu kB\n"
62 "VmData:\t%8lu kB\n"
63 "VmStk:\t%8lu kB\n"
64 "VmExe:\t%8lu kB\n"
65 "VmLib:\t%8lu kB\n"
66 "VmPTE:\t%8lu kB\n"
67 "VmPMD:\t%8lu kB\n"
68 "VmSwap:\t%8lu kB\n",
69 hiwater_vm << (PAGE_SHIFT-10),
70 total_vm << (PAGE_SHIFT-10),
71 mm->locked_vm << (PAGE_SHIFT-10),
72 mm->pinned_vm << (PAGE_SHIFT-10),
73 hiwater_rss << (PAGE_SHIFT-10),
74 total_rss << (PAGE_SHIFT-10),
75 anon << (PAGE_SHIFT-10),
76 file << (PAGE_SHIFT-10),
77 shmem << (PAGE_SHIFT-10),
78 mm->data_vm << (PAGE_SHIFT-10),
79 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80 ptes >> 10,
81 pmds >> 10,
82 swap << (PAGE_SHIFT-10));
83 hugetlb_report_usage(m, mm);
84 }
85
86 unsigned long task_vsize(struct mm_struct *mm)
87 {
88 return PAGE_SIZE * mm->total_vm;
89 }
90
91 unsigned long task_statm(struct mm_struct *mm,
92 unsigned long *shared, unsigned long *text,
93 unsigned long *data, unsigned long *resident)
94 {
95 *shared = get_mm_counter(mm, MM_FILEPAGES) +
96 get_mm_counter(mm, MM_SHMEMPAGES);
97 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
98 >> PAGE_SHIFT;
99 *data = mm->data_vm + mm->stack_vm;
100 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101 return mm->total_vm;
102 }
103
104 #ifdef CONFIG_NUMA
105 /*
106 * Save get_task_policy() for show_numa_map().
107 */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110 struct task_struct *task = priv->task;
111
112 task_lock(task);
113 priv->task_mempolicy = get_task_policy(task);
114 mpol_get(priv->task_mempolicy);
115 task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119 mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129
130 static void vma_stop(struct proc_maps_private *priv)
131 {
132 struct mm_struct *mm = priv->mm;
133
134 release_task_mempolicy(priv);
135 up_read(&mm->mmap_sem);
136 mmput(mm);
137 }
138
139 static struct vm_area_struct *
140 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
141 {
142 if (vma == priv->tail_vma)
143 return NULL;
144 return vma->vm_next ?: priv->tail_vma;
145 }
146
147 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
148 {
149 if (m->count < m->size) /* vma is copied successfully */
150 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
151 }
152
153 static void *m_start(struct seq_file *m, loff_t *ppos)
154 {
155 struct proc_maps_private *priv = m->private;
156 unsigned long last_addr = m->version;
157 struct mm_struct *mm;
158 struct vm_area_struct *vma;
159 unsigned int pos = *ppos;
160
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr == -1UL)
163 return NULL;
164
165 priv->task = get_proc_task(priv->inode);
166 if (!priv->task)
167 return ERR_PTR(-ESRCH);
168
169 mm = priv->mm;
170 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
171 return NULL;
172
173 down_read(&mm->mmap_sem);
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr);
179 if (vma && (vma = m_next_vma(priv, vma)))
180 return vma;
181 }
182
183 m->version = 0;
184 if (pos < mm->map_count) {
185 for (vma = mm->mmap; pos; pos--) {
186 m->version = vma->vm_start;
187 vma = vma->vm_next;
188 }
189 return vma;
190 }
191
192 /* we do not bother to update m->version in this case */
193 if (pos == mm->map_count && priv->tail_vma)
194 return priv->tail_vma;
195
196 vma_stop(priv);
197 return NULL;
198 }
199
200 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
201 {
202 struct proc_maps_private *priv = m->private;
203 struct vm_area_struct *next;
204
205 (*pos)++;
206 next = m_next_vma(priv, v);
207 if (!next)
208 vma_stop(priv);
209 return next;
210 }
211
212 static void m_stop(struct seq_file *m, void *v)
213 {
214 struct proc_maps_private *priv = m->private;
215
216 if (!IS_ERR_OR_NULL(v))
217 vma_stop(priv);
218 if (priv->task) {
219 put_task_struct(priv->task);
220 priv->task = NULL;
221 }
222 }
223
224 static int proc_maps_open(struct inode *inode, struct file *file,
225 const struct seq_operations *ops, int psize)
226 {
227 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
228
229 if (!priv)
230 return -ENOMEM;
231
232 priv->inode = inode;
233 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
234 if (IS_ERR(priv->mm)) {
235 int err = PTR_ERR(priv->mm);
236
237 seq_release_private(inode, file);
238 return err;
239 }
240
241 return 0;
242 }
243
244 static int proc_map_release(struct inode *inode, struct file *file)
245 {
246 struct seq_file *seq = file->private_data;
247 struct proc_maps_private *priv = seq->private;
248
249 if (priv->mm)
250 mmdrop(priv->mm);
251
252 return seq_release_private(inode, file);
253 }
254
255 static int do_maps_open(struct inode *inode, struct file *file,
256 const struct seq_operations *ops)
257 {
258 return proc_maps_open(inode, file, ops,
259 sizeof(struct proc_maps_private));
260 }
261
262 /*
263 * Indicate if the VMA is a stack for the given task; for
264 * /proc/PID/maps that is the stack of the main task.
265 */
266 static int is_stack(struct proc_maps_private *priv,
267 struct vm_area_struct *vma, int is_pid)
268 {
269 int stack = 0;
270
271 if (is_pid) {
272 stack = vma->vm_start <= vma->vm_mm->start_stack &&
273 vma->vm_end >= vma->vm_mm->start_stack;
274 } else {
275 struct inode *inode = priv->inode;
276 struct task_struct *task;
277
278 rcu_read_lock();
279 task = pid_task(proc_pid(inode), PIDTYPE_PID);
280 if (task)
281 stack = vma_is_stack_for_task(vma, task);
282 rcu_read_unlock();
283 }
284 return stack;
285 }
286
287 static void
288 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
289 {
290 struct mm_struct *mm = vma->vm_mm;
291 struct file *file = vma->vm_file;
292 struct proc_maps_private *priv = m->private;
293 vm_flags_t flags = vma->vm_flags;
294 unsigned long ino = 0;
295 unsigned long long pgoff = 0;
296 unsigned long start, end;
297 dev_t dev = 0;
298 const char *name = NULL;
299
300 if (file) {
301 struct inode *inode = file_inode(vma->vm_file);
302 dev = inode->i_sb->s_dev;
303 ino = inode->i_ino;
304 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
305 }
306
307 /* We don't show the stack guard page in /proc/maps */
308 start = vma->vm_start;
309 if (stack_guard_page_start(vma, start))
310 start += PAGE_SIZE;
311 end = vma->vm_end;
312 if (stack_guard_page_end(vma, end))
313 end -= PAGE_SIZE;
314
315 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
316 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
317 start,
318 end,
319 flags & VM_READ ? 'r' : '-',
320 flags & VM_WRITE ? 'w' : '-',
321 flags & VM_EXEC ? 'x' : '-',
322 flags & VM_MAYSHARE ? 's' : 'p',
323 pgoff,
324 MAJOR(dev), MINOR(dev), ino);
325
326 /*
327 * Print the dentry name for named mappings, and a
328 * special [heap] marker for the heap:
329 */
330 if (file) {
331 seq_pad(m, ' ');
332 seq_file_path(m, file, "\n");
333 goto done;
334 }
335
336 if (vma->vm_ops && vma->vm_ops->name) {
337 name = vma->vm_ops->name(vma);
338 if (name)
339 goto done;
340 }
341
342 name = arch_vma_name(vma);
343 if (!name) {
344 if (!mm) {
345 name = "[vdso]";
346 goto done;
347 }
348
349 if (vma->vm_start <= mm->brk &&
350 vma->vm_end >= mm->start_brk) {
351 name = "[heap]";
352 goto done;
353 }
354
355 if (is_stack(priv, vma, is_pid))
356 name = "[stack]";
357 }
358
359 done:
360 if (name) {
361 seq_pad(m, ' ');
362 seq_puts(m, name);
363 }
364 seq_putc(m, '\n');
365 }
366
367 static int show_map(struct seq_file *m, void *v, int is_pid)
368 {
369 show_map_vma(m, v, is_pid);
370 m_cache_vma(m, v);
371 return 0;
372 }
373
374 static int show_pid_map(struct seq_file *m, void *v)
375 {
376 return show_map(m, v, 1);
377 }
378
379 static int show_tid_map(struct seq_file *m, void *v)
380 {
381 return show_map(m, v, 0);
382 }
383
384 static const struct seq_operations proc_pid_maps_op = {
385 .start = m_start,
386 .next = m_next,
387 .stop = m_stop,
388 .show = show_pid_map
389 };
390
391 static const struct seq_operations proc_tid_maps_op = {
392 .start = m_start,
393 .next = m_next,
394 .stop = m_stop,
395 .show = show_tid_map
396 };
397
398 static int pid_maps_open(struct inode *inode, struct file *file)
399 {
400 return do_maps_open(inode, file, &proc_pid_maps_op);
401 }
402
403 static int tid_maps_open(struct inode *inode, struct file *file)
404 {
405 return do_maps_open(inode, file, &proc_tid_maps_op);
406 }
407
408 const struct file_operations proc_pid_maps_operations = {
409 .open = pid_maps_open,
410 .read = seq_read,
411 .llseek = seq_lseek,
412 .release = proc_map_release,
413 };
414
415 const struct file_operations proc_tid_maps_operations = {
416 .open = tid_maps_open,
417 .read = seq_read,
418 .llseek = seq_lseek,
419 .release = proc_map_release,
420 };
421
422 /*
423 * Proportional Set Size(PSS): my share of RSS.
424 *
425 * PSS of a process is the count of pages it has in memory, where each
426 * page is divided by the number of processes sharing it. So if a
427 * process has 1000 pages all to itself, and 1000 shared with one other
428 * process, its PSS will be 1500.
429 *
430 * To keep (accumulated) division errors low, we adopt a 64bit
431 * fixed-point pss counter to minimize division errors. So (pss >>
432 * PSS_SHIFT) would be the real byte count.
433 *
434 * A shift of 12 before division means (assuming 4K page size):
435 * - 1M 3-user-pages add up to 8KB errors;
436 * - supports mapcount up to 2^24, or 16M;
437 * - supports PSS up to 2^52 bytes, or 4PB.
438 */
439 #define PSS_SHIFT 12
440
441 #ifdef CONFIG_PROC_PAGE_MONITOR
442 struct mem_size_stats {
443 unsigned long resident;
444 unsigned long shared_clean;
445 unsigned long shared_dirty;
446 unsigned long private_clean;
447 unsigned long private_dirty;
448 unsigned long referenced;
449 unsigned long anonymous;
450 unsigned long anonymous_thp;
451 unsigned long shmem_thp;
452 unsigned long swap;
453 unsigned long shared_hugetlb;
454 unsigned long private_hugetlb;
455 u64 pss;
456 u64 swap_pss;
457 bool check_shmem_swap;
458 };
459
460 static void smaps_account(struct mem_size_stats *mss, struct page *page,
461 bool compound, bool young, bool dirty)
462 {
463 int i, nr = compound ? 1 << compound_order(page) : 1;
464 unsigned long size = nr * PAGE_SIZE;
465
466 if (PageAnon(page))
467 mss->anonymous += size;
468
469 mss->resident += size;
470 /* Accumulate the size in pages that have been accessed. */
471 if (young || page_is_young(page) || PageReferenced(page))
472 mss->referenced += size;
473
474 /*
475 * page_count(page) == 1 guarantees the page is mapped exactly once.
476 * If any subpage of the compound page mapped with PTE it would elevate
477 * page_count().
478 */
479 if (page_count(page) == 1) {
480 if (dirty || PageDirty(page))
481 mss->private_dirty += size;
482 else
483 mss->private_clean += size;
484 mss->pss += (u64)size << PSS_SHIFT;
485 return;
486 }
487
488 for (i = 0; i < nr; i++, page++) {
489 int mapcount = page_mapcount(page);
490
491 if (mapcount >= 2) {
492 if (dirty || PageDirty(page))
493 mss->shared_dirty += PAGE_SIZE;
494 else
495 mss->shared_clean += PAGE_SIZE;
496 mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
497 } else {
498 if (dirty || PageDirty(page))
499 mss->private_dirty += PAGE_SIZE;
500 else
501 mss->private_clean += PAGE_SIZE;
502 mss->pss += PAGE_SIZE << PSS_SHIFT;
503 }
504 }
505 }
506
507 #ifdef CONFIG_SHMEM
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509 struct mm_walk *walk)
510 {
511 struct mem_size_stats *mss = walk->private;
512
513 mss->swap += shmem_partial_swap_usage(
514 walk->vma->vm_file->f_mapping, addr, end);
515
516 return 0;
517 }
518 #endif
519
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521 struct mm_walk *walk)
522 {
523 struct mem_size_stats *mss = walk->private;
524 struct vm_area_struct *vma = walk->vma;
525 struct page *page = NULL;
526
527 if (pte_present(*pte)) {
528 page = vm_normal_page(vma, addr, *pte);
529 } else if (is_swap_pte(*pte)) {
530 swp_entry_t swpent = pte_to_swp_entry(*pte);
531
532 if (!non_swap_entry(swpent)) {
533 int mapcount;
534
535 mss->swap += PAGE_SIZE;
536 mapcount = swp_swapcount(swpent);
537 if (mapcount >= 2) {
538 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
539
540 do_div(pss_delta, mapcount);
541 mss->swap_pss += pss_delta;
542 } else {
543 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
544 }
545 } else if (is_migration_entry(swpent))
546 page = migration_entry_to_page(swpent);
547 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
548 && pte_none(*pte))) {
549 page = find_get_entry(vma->vm_file->f_mapping,
550 linear_page_index(vma, addr));
551 if (!page)
552 return;
553
554 if (radix_tree_exceptional_entry(page))
555 mss->swap += PAGE_SIZE;
556 else
557 put_page(page);
558
559 return;
560 }
561
562 if (!page)
563 return;
564
565 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
566 }
567
568 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
569 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
570 struct mm_walk *walk)
571 {
572 struct mem_size_stats *mss = walk->private;
573 struct vm_area_struct *vma = walk->vma;
574 struct page *page;
575
576 /* FOLL_DUMP will return -EFAULT on huge zero page */
577 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
578 if (IS_ERR_OR_NULL(page))
579 return;
580 if (PageAnon(page))
581 mss->anonymous_thp += HPAGE_PMD_SIZE;
582 else if (PageSwapBacked(page))
583 mss->shmem_thp += HPAGE_PMD_SIZE;
584 else if (is_zone_device_page(page))
585 /* pass */;
586 else
587 VM_BUG_ON_PAGE(1, page);
588 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
589 }
590 #else
591 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
592 struct mm_walk *walk)
593 {
594 }
595 #endif
596
597 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
598 struct mm_walk *walk)
599 {
600 struct vm_area_struct *vma = walk->vma;
601 pte_t *pte;
602 spinlock_t *ptl;
603
604 ptl = pmd_trans_huge_lock(pmd, vma);
605 if (ptl) {
606 smaps_pmd_entry(pmd, addr, walk);
607 spin_unlock(ptl);
608 return 0;
609 }
610
611 if (pmd_trans_unstable(pmd))
612 return 0;
613 /*
614 * The mmap_sem held all the way back in m_start() is what
615 * keeps khugepaged out of here and from collapsing things
616 * in here.
617 */
618 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
619 for (; addr != end; pte++, addr += PAGE_SIZE)
620 smaps_pte_entry(pte, addr, walk);
621 pte_unmap_unlock(pte - 1, ptl);
622 cond_resched();
623 return 0;
624 }
625
626 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
627 {
628 /*
629 * Don't forget to update Documentation/ on changes.
630 */
631 static const char mnemonics[BITS_PER_LONG][2] = {
632 /*
633 * In case if we meet a flag we don't know about.
634 */
635 [0 ... (BITS_PER_LONG-1)] = "??",
636
637 [ilog2(VM_READ)] = "rd",
638 [ilog2(VM_WRITE)] = "wr",
639 [ilog2(VM_EXEC)] = "ex",
640 [ilog2(VM_SHARED)] = "sh",
641 [ilog2(VM_MAYREAD)] = "mr",
642 [ilog2(VM_MAYWRITE)] = "mw",
643 [ilog2(VM_MAYEXEC)] = "me",
644 [ilog2(VM_MAYSHARE)] = "ms",
645 [ilog2(VM_GROWSDOWN)] = "gd",
646 [ilog2(VM_PFNMAP)] = "pf",
647 [ilog2(VM_DENYWRITE)] = "dw",
648 #ifdef CONFIG_X86_INTEL_MPX
649 [ilog2(VM_MPX)] = "mp",
650 #endif
651 [ilog2(VM_LOCKED)] = "lo",
652 [ilog2(VM_IO)] = "io",
653 [ilog2(VM_SEQ_READ)] = "sr",
654 [ilog2(VM_RAND_READ)] = "rr",
655 [ilog2(VM_DONTCOPY)] = "dc",
656 [ilog2(VM_DONTEXPAND)] = "de",
657 [ilog2(VM_ACCOUNT)] = "ac",
658 [ilog2(VM_NORESERVE)] = "nr",
659 [ilog2(VM_HUGETLB)] = "ht",
660 [ilog2(VM_ARCH_1)] = "ar",
661 [ilog2(VM_DONTDUMP)] = "dd",
662 #ifdef CONFIG_MEM_SOFT_DIRTY
663 [ilog2(VM_SOFTDIRTY)] = "sd",
664 #endif
665 [ilog2(VM_MIXEDMAP)] = "mm",
666 [ilog2(VM_HUGEPAGE)] = "hg",
667 [ilog2(VM_NOHUGEPAGE)] = "nh",
668 [ilog2(VM_MERGEABLE)] = "mg",
669 [ilog2(VM_UFFD_MISSING)]= "um",
670 [ilog2(VM_UFFD_WP)] = "uw",
671 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
672 /* These come out via ProtectionKey: */
673 [ilog2(VM_PKEY_BIT0)] = "",
674 [ilog2(VM_PKEY_BIT1)] = "",
675 [ilog2(VM_PKEY_BIT2)] = "",
676 [ilog2(VM_PKEY_BIT3)] = "",
677 #endif
678 };
679 size_t i;
680
681 seq_puts(m, "VmFlags: ");
682 for (i = 0; i < BITS_PER_LONG; i++) {
683 if (!mnemonics[i][0])
684 continue;
685 if (vma->vm_flags & (1UL << i)) {
686 seq_printf(m, "%c%c ",
687 mnemonics[i][0], mnemonics[i][1]);
688 }
689 }
690 seq_putc(m, '\n');
691 }
692
693 #ifdef CONFIG_HUGETLB_PAGE
694 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
695 unsigned long addr, unsigned long end,
696 struct mm_walk *walk)
697 {
698 struct mem_size_stats *mss = walk->private;
699 struct vm_area_struct *vma = walk->vma;
700 struct page *page = NULL;
701
702 if (pte_present(*pte)) {
703 page = vm_normal_page(vma, addr, *pte);
704 } else if (is_swap_pte(*pte)) {
705 swp_entry_t swpent = pte_to_swp_entry(*pte);
706
707 if (is_migration_entry(swpent))
708 page = migration_entry_to_page(swpent);
709 }
710 if (page) {
711 int mapcount = page_mapcount(page);
712
713 if (mapcount >= 2)
714 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
715 else
716 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
717 }
718 return 0;
719 }
720 #endif /* HUGETLB_PAGE */
721
722 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
723 {
724 }
725
726 static int show_smap(struct seq_file *m, void *v, int is_pid)
727 {
728 struct vm_area_struct *vma = v;
729 struct mem_size_stats mss;
730 struct mm_walk smaps_walk = {
731 .pmd_entry = smaps_pte_range,
732 #ifdef CONFIG_HUGETLB_PAGE
733 .hugetlb_entry = smaps_hugetlb_range,
734 #endif
735 .mm = vma->vm_mm,
736 .private = &mss,
737 };
738
739 memset(&mss, 0, sizeof mss);
740
741 #ifdef CONFIG_SHMEM
742 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
743 /*
744 * For shared or readonly shmem mappings we know that all
745 * swapped out pages belong to the shmem object, and we can
746 * obtain the swap value much more efficiently. For private
747 * writable mappings, we might have COW pages that are
748 * not affected by the parent swapped out pages of the shmem
749 * object, so we have to distinguish them during the page walk.
750 * Unless we know that the shmem object (or the part mapped by
751 * our VMA) has no swapped out pages at all.
752 */
753 unsigned long shmem_swapped = shmem_swap_usage(vma);
754
755 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
756 !(vma->vm_flags & VM_WRITE)) {
757 mss.swap = shmem_swapped;
758 } else {
759 mss.check_shmem_swap = true;
760 smaps_walk.pte_hole = smaps_pte_hole;
761 }
762 }
763 #endif
764
765 /* mmap_sem is held in m_start */
766 walk_page_vma(vma, &smaps_walk);
767
768 show_map_vma(m, vma, is_pid);
769
770 seq_printf(m,
771 "Size: %8lu kB\n"
772 "Rss: %8lu kB\n"
773 "Pss: %8lu kB\n"
774 "Shared_Clean: %8lu kB\n"
775 "Shared_Dirty: %8lu kB\n"
776 "Private_Clean: %8lu kB\n"
777 "Private_Dirty: %8lu kB\n"
778 "Referenced: %8lu kB\n"
779 "Anonymous: %8lu kB\n"
780 "AnonHugePages: %8lu kB\n"
781 "ShmemPmdMapped: %8lu kB\n"
782 "Shared_Hugetlb: %8lu kB\n"
783 "Private_Hugetlb: %7lu kB\n"
784 "Swap: %8lu kB\n"
785 "SwapPss: %8lu kB\n"
786 "KernelPageSize: %8lu kB\n"
787 "MMUPageSize: %8lu kB\n"
788 "Locked: %8lu kB\n",
789 (vma->vm_end - vma->vm_start) >> 10,
790 mss.resident >> 10,
791 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
792 mss.shared_clean >> 10,
793 mss.shared_dirty >> 10,
794 mss.private_clean >> 10,
795 mss.private_dirty >> 10,
796 mss.referenced >> 10,
797 mss.anonymous >> 10,
798 mss.anonymous_thp >> 10,
799 mss.shmem_thp >> 10,
800 mss.shared_hugetlb >> 10,
801 mss.private_hugetlb >> 10,
802 mss.swap >> 10,
803 (unsigned long)(mss.swap_pss >> (10 + PSS_SHIFT)),
804 vma_kernel_pagesize(vma) >> 10,
805 vma_mmu_pagesize(vma) >> 10,
806 (vma->vm_flags & VM_LOCKED) ?
807 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
808
809 arch_show_smap(m, vma);
810 show_smap_vma_flags(m, vma);
811 m_cache_vma(m, vma);
812 return 0;
813 }
814
815 static int show_pid_smap(struct seq_file *m, void *v)
816 {
817 return show_smap(m, v, 1);
818 }
819
820 static int show_tid_smap(struct seq_file *m, void *v)
821 {
822 return show_smap(m, v, 0);
823 }
824
825 static const struct seq_operations proc_pid_smaps_op = {
826 .start = m_start,
827 .next = m_next,
828 .stop = m_stop,
829 .show = show_pid_smap
830 };
831
832 static const struct seq_operations proc_tid_smaps_op = {
833 .start = m_start,
834 .next = m_next,
835 .stop = m_stop,
836 .show = show_tid_smap
837 };
838
839 static int pid_smaps_open(struct inode *inode, struct file *file)
840 {
841 return do_maps_open(inode, file, &proc_pid_smaps_op);
842 }
843
844 static int tid_smaps_open(struct inode *inode, struct file *file)
845 {
846 return do_maps_open(inode, file, &proc_tid_smaps_op);
847 }
848
849 const struct file_operations proc_pid_smaps_operations = {
850 .open = pid_smaps_open,
851 .read = seq_read,
852 .llseek = seq_lseek,
853 .release = proc_map_release,
854 };
855
856 const struct file_operations proc_tid_smaps_operations = {
857 .open = tid_smaps_open,
858 .read = seq_read,
859 .llseek = seq_lseek,
860 .release = proc_map_release,
861 };
862
863 enum clear_refs_types {
864 CLEAR_REFS_ALL = 1,
865 CLEAR_REFS_ANON,
866 CLEAR_REFS_MAPPED,
867 CLEAR_REFS_SOFT_DIRTY,
868 CLEAR_REFS_MM_HIWATER_RSS,
869 CLEAR_REFS_LAST,
870 };
871
872 struct clear_refs_private {
873 enum clear_refs_types type;
874 };
875
876 #ifdef CONFIG_MEM_SOFT_DIRTY
877 static inline void clear_soft_dirty(struct vm_area_struct *vma,
878 unsigned long addr, pte_t *pte)
879 {
880 /*
881 * The soft-dirty tracker uses #PF-s to catch writes
882 * to pages, so write-protect the pte as well. See the
883 * Documentation/vm/soft-dirty.txt for full description
884 * of how soft-dirty works.
885 */
886 pte_t ptent = *pte;
887
888 if (pte_present(ptent)) {
889 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
890 ptent = pte_wrprotect(ptent);
891 ptent = pte_clear_soft_dirty(ptent);
892 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
893 } else if (is_swap_pte(ptent)) {
894 ptent = pte_swp_clear_soft_dirty(ptent);
895 set_pte_at(vma->vm_mm, addr, pte, ptent);
896 }
897 }
898 #else
899 static inline void clear_soft_dirty(struct vm_area_struct *vma,
900 unsigned long addr, pte_t *pte)
901 {
902 }
903 #endif
904
905 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
906 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
907 unsigned long addr, pmd_t *pmdp)
908 {
909 pmd_t pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
910
911 pmd = pmd_wrprotect(pmd);
912 pmd = pmd_clear_soft_dirty(pmd);
913
914 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
915 }
916 #else
917 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
918 unsigned long addr, pmd_t *pmdp)
919 {
920 }
921 #endif
922
923 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
924 unsigned long end, struct mm_walk *walk)
925 {
926 struct clear_refs_private *cp = walk->private;
927 struct vm_area_struct *vma = walk->vma;
928 pte_t *pte, ptent;
929 spinlock_t *ptl;
930 struct page *page;
931
932 ptl = pmd_trans_huge_lock(pmd, vma);
933 if (ptl) {
934 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
935 clear_soft_dirty_pmd(vma, addr, pmd);
936 goto out;
937 }
938
939 page = pmd_page(*pmd);
940
941 /* Clear accessed and referenced bits. */
942 pmdp_test_and_clear_young(vma, addr, pmd);
943 test_and_clear_page_young(page);
944 ClearPageReferenced(page);
945 out:
946 spin_unlock(ptl);
947 return 0;
948 }
949
950 if (pmd_trans_unstable(pmd))
951 return 0;
952
953 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
954 for (; addr != end; pte++, addr += PAGE_SIZE) {
955 ptent = *pte;
956
957 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
958 clear_soft_dirty(vma, addr, pte);
959 continue;
960 }
961
962 if (!pte_present(ptent))
963 continue;
964
965 page = vm_normal_page(vma, addr, ptent);
966 if (!page)
967 continue;
968
969 /* Clear accessed and referenced bits. */
970 ptep_test_and_clear_young(vma, addr, pte);
971 test_and_clear_page_young(page);
972 ClearPageReferenced(page);
973 }
974 pte_unmap_unlock(pte - 1, ptl);
975 cond_resched();
976 return 0;
977 }
978
979 static int clear_refs_test_walk(unsigned long start, unsigned long end,
980 struct mm_walk *walk)
981 {
982 struct clear_refs_private *cp = walk->private;
983 struct vm_area_struct *vma = walk->vma;
984
985 if (vma->vm_flags & VM_PFNMAP)
986 return 1;
987
988 /*
989 * Writing 1 to /proc/pid/clear_refs affects all pages.
990 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
991 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
992 * Writing 4 to /proc/pid/clear_refs affects all pages.
993 */
994 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
995 return 1;
996 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
997 return 1;
998 return 0;
999 }
1000
1001 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1002 size_t count, loff_t *ppos)
1003 {
1004 struct task_struct *task;
1005 char buffer[PROC_NUMBUF];
1006 struct mm_struct *mm;
1007 struct vm_area_struct *vma;
1008 enum clear_refs_types type;
1009 int itype;
1010 int rv;
1011
1012 memset(buffer, 0, sizeof(buffer));
1013 if (count > sizeof(buffer) - 1)
1014 count = sizeof(buffer) - 1;
1015 if (copy_from_user(buffer, buf, count))
1016 return -EFAULT;
1017 rv = kstrtoint(strstrip(buffer), 10, &itype);
1018 if (rv < 0)
1019 return rv;
1020 type = (enum clear_refs_types)itype;
1021 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1022 return -EINVAL;
1023
1024 task = get_proc_task(file_inode(file));
1025 if (!task)
1026 return -ESRCH;
1027 mm = get_task_mm(task);
1028 if (mm) {
1029 struct clear_refs_private cp = {
1030 .type = type,
1031 };
1032 struct mm_walk clear_refs_walk = {
1033 .pmd_entry = clear_refs_pte_range,
1034 .test_walk = clear_refs_test_walk,
1035 .mm = mm,
1036 .private = &cp,
1037 };
1038
1039 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1040 if (down_write_killable(&mm->mmap_sem)) {
1041 count = -EINTR;
1042 goto out_mm;
1043 }
1044
1045 /*
1046 * Writing 5 to /proc/pid/clear_refs resets the peak
1047 * resident set size to this mm's current rss value.
1048 */
1049 reset_mm_hiwater_rss(mm);
1050 up_write(&mm->mmap_sem);
1051 goto out_mm;
1052 }
1053
1054 down_read(&mm->mmap_sem);
1055 if (type == CLEAR_REFS_SOFT_DIRTY) {
1056 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1057 if (!(vma->vm_flags & VM_SOFTDIRTY))
1058 continue;
1059 up_read(&mm->mmap_sem);
1060 if (down_write_killable(&mm->mmap_sem)) {
1061 count = -EINTR;
1062 goto out_mm;
1063 }
1064 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1065 vma->vm_flags &= ~VM_SOFTDIRTY;
1066 vma_set_page_prot(vma);
1067 }
1068 downgrade_write(&mm->mmap_sem);
1069 break;
1070 }
1071 mmu_notifier_invalidate_range_start(mm, 0, -1);
1072 }
1073 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1074 if (type == CLEAR_REFS_SOFT_DIRTY)
1075 mmu_notifier_invalidate_range_end(mm, 0, -1);
1076 flush_tlb_mm(mm);
1077 up_read(&mm->mmap_sem);
1078 out_mm:
1079 mmput(mm);
1080 }
1081 put_task_struct(task);
1082
1083 return count;
1084 }
1085
1086 const struct file_operations proc_clear_refs_operations = {
1087 .write = clear_refs_write,
1088 .llseek = noop_llseek,
1089 };
1090
1091 typedef struct {
1092 u64 pme;
1093 } pagemap_entry_t;
1094
1095 struct pagemapread {
1096 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1097 pagemap_entry_t *buffer;
1098 bool show_pfn;
1099 };
1100
1101 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1102 #define PAGEMAP_WALK_MASK (PMD_MASK)
1103
1104 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1105 #define PM_PFRAME_BITS 55
1106 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1107 #define PM_SOFT_DIRTY BIT_ULL(55)
1108 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1109 #define PM_FILE BIT_ULL(61)
1110 #define PM_SWAP BIT_ULL(62)
1111 #define PM_PRESENT BIT_ULL(63)
1112
1113 #define PM_END_OF_BUFFER 1
1114
1115 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1116 {
1117 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1118 }
1119
1120 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1121 struct pagemapread *pm)
1122 {
1123 pm->buffer[pm->pos++] = *pme;
1124 if (pm->pos >= pm->len)
1125 return PM_END_OF_BUFFER;
1126 return 0;
1127 }
1128
1129 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1130 struct mm_walk *walk)
1131 {
1132 struct pagemapread *pm = walk->private;
1133 unsigned long addr = start;
1134 int err = 0;
1135
1136 while (addr < end) {
1137 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1138 pagemap_entry_t pme = make_pme(0, 0);
1139 /* End of address space hole, which we mark as non-present. */
1140 unsigned long hole_end;
1141
1142 if (vma)
1143 hole_end = min(end, vma->vm_start);
1144 else
1145 hole_end = end;
1146
1147 for (; addr < hole_end; addr += PAGE_SIZE) {
1148 err = add_to_pagemap(addr, &pme, pm);
1149 if (err)
1150 goto out;
1151 }
1152
1153 if (!vma)
1154 break;
1155
1156 /* Addresses in the VMA. */
1157 if (vma->vm_flags & VM_SOFTDIRTY)
1158 pme = make_pme(0, PM_SOFT_DIRTY);
1159 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1160 err = add_to_pagemap(addr, &pme, pm);
1161 if (err)
1162 goto out;
1163 }
1164 }
1165 out:
1166 return err;
1167 }
1168
1169 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1170 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1171 {
1172 u64 frame = 0, flags = 0;
1173 struct page *page = NULL;
1174
1175 if (pte_present(pte)) {
1176 if (pm->show_pfn)
1177 frame = pte_pfn(pte);
1178 flags |= PM_PRESENT;
1179 page = vm_normal_page(vma, addr, pte);
1180 if (pte_soft_dirty(pte))
1181 flags |= PM_SOFT_DIRTY;
1182 } else if (is_swap_pte(pte)) {
1183 swp_entry_t entry;
1184 if (pte_swp_soft_dirty(pte))
1185 flags |= PM_SOFT_DIRTY;
1186 entry = pte_to_swp_entry(pte);
1187 frame = swp_type(entry) |
1188 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1189 flags |= PM_SWAP;
1190 if (is_migration_entry(entry))
1191 page = migration_entry_to_page(entry);
1192 }
1193
1194 if (page && !PageAnon(page))
1195 flags |= PM_FILE;
1196 if (page && page_mapcount(page) == 1)
1197 flags |= PM_MMAP_EXCLUSIVE;
1198 if (vma->vm_flags & VM_SOFTDIRTY)
1199 flags |= PM_SOFT_DIRTY;
1200
1201 return make_pme(frame, flags);
1202 }
1203
1204 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1205 struct mm_walk *walk)
1206 {
1207 struct vm_area_struct *vma = walk->vma;
1208 struct pagemapread *pm = walk->private;
1209 spinlock_t *ptl;
1210 pte_t *pte, *orig_pte;
1211 int err = 0;
1212
1213 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1214 ptl = pmd_trans_huge_lock(pmdp, vma);
1215 if (ptl) {
1216 u64 flags = 0, frame = 0;
1217 pmd_t pmd = *pmdp;
1218
1219 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(pmd))
1220 flags |= PM_SOFT_DIRTY;
1221
1222 /*
1223 * Currently pmd for thp is always present because thp
1224 * can not be swapped-out, migrated, or HWPOISONed
1225 * (split in such cases instead.)
1226 * This if-check is just to prepare for future implementation.
1227 */
1228 if (pmd_present(pmd)) {
1229 struct page *page = pmd_page(pmd);
1230
1231 if (page_mapcount(page) == 1)
1232 flags |= PM_MMAP_EXCLUSIVE;
1233
1234 flags |= PM_PRESENT;
1235 if (pm->show_pfn)
1236 frame = pmd_pfn(pmd) +
1237 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1238 }
1239
1240 for (; addr != end; addr += PAGE_SIZE) {
1241 pagemap_entry_t pme = make_pme(frame, flags);
1242
1243 err = add_to_pagemap(addr, &pme, pm);
1244 if (err)
1245 break;
1246 if (pm->show_pfn && (flags & PM_PRESENT))
1247 frame++;
1248 }
1249 spin_unlock(ptl);
1250 return err;
1251 }
1252
1253 if (pmd_trans_unstable(pmdp))
1254 return 0;
1255 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1256
1257 /*
1258 * We can assume that @vma always points to a valid one and @end never
1259 * goes beyond vma->vm_end.
1260 */
1261 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1262 for (; addr < end; pte++, addr += PAGE_SIZE) {
1263 pagemap_entry_t pme;
1264
1265 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1266 err = add_to_pagemap(addr, &pme, pm);
1267 if (err)
1268 break;
1269 }
1270 pte_unmap_unlock(orig_pte, ptl);
1271
1272 cond_resched();
1273
1274 return err;
1275 }
1276
1277 #ifdef CONFIG_HUGETLB_PAGE
1278 /* This function walks within one hugetlb entry in the single call */
1279 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1280 unsigned long addr, unsigned long end,
1281 struct mm_walk *walk)
1282 {
1283 struct pagemapread *pm = walk->private;
1284 struct vm_area_struct *vma = walk->vma;
1285 u64 flags = 0, frame = 0;
1286 int err = 0;
1287 pte_t pte;
1288
1289 if (vma->vm_flags & VM_SOFTDIRTY)
1290 flags |= PM_SOFT_DIRTY;
1291
1292 pte = huge_ptep_get(ptep);
1293 if (pte_present(pte)) {
1294 struct page *page = pte_page(pte);
1295
1296 if (!PageAnon(page))
1297 flags |= PM_FILE;
1298
1299 if (page_mapcount(page) == 1)
1300 flags |= PM_MMAP_EXCLUSIVE;
1301
1302 flags |= PM_PRESENT;
1303 if (pm->show_pfn)
1304 frame = pte_pfn(pte) +
1305 ((addr & ~hmask) >> PAGE_SHIFT);
1306 }
1307
1308 for (; addr != end; addr += PAGE_SIZE) {
1309 pagemap_entry_t pme = make_pme(frame, flags);
1310
1311 err = add_to_pagemap(addr, &pme, pm);
1312 if (err)
1313 return err;
1314 if (pm->show_pfn && (flags & PM_PRESENT))
1315 frame++;
1316 }
1317
1318 cond_resched();
1319
1320 return err;
1321 }
1322 #endif /* HUGETLB_PAGE */
1323
1324 /*
1325 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1326 *
1327 * For each page in the address space, this file contains one 64-bit entry
1328 * consisting of the following:
1329 *
1330 * Bits 0-54 page frame number (PFN) if present
1331 * Bits 0-4 swap type if swapped
1332 * Bits 5-54 swap offset if swapped
1333 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1334 * Bit 56 page exclusively mapped
1335 * Bits 57-60 zero
1336 * Bit 61 page is file-page or shared-anon
1337 * Bit 62 page swapped
1338 * Bit 63 page present
1339 *
1340 * If the page is not present but in swap, then the PFN contains an
1341 * encoding of the swap file number and the page's offset into the
1342 * swap. Unmapped pages return a null PFN. This allows determining
1343 * precisely which pages are mapped (or in swap) and comparing mapped
1344 * pages between processes.
1345 *
1346 * Efficient users of this interface will use /proc/pid/maps to
1347 * determine which areas of memory are actually mapped and llseek to
1348 * skip over unmapped regions.
1349 */
1350 static ssize_t pagemap_read(struct file *file, char __user *buf,
1351 size_t count, loff_t *ppos)
1352 {
1353 struct mm_struct *mm = file->private_data;
1354 struct pagemapread pm;
1355 struct mm_walk pagemap_walk = {};
1356 unsigned long src;
1357 unsigned long svpfn;
1358 unsigned long start_vaddr;
1359 unsigned long end_vaddr;
1360 int ret = 0, copied = 0;
1361
1362 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
1363 goto out;
1364
1365 ret = -EINVAL;
1366 /* file position must be aligned */
1367 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1368 goto out_mm;
1369
1370 ret = 0;
1371 if (!count)
1372 goto out_mm;
1373
1374 /* do not disclose physical addresses: attack vector */
1375 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1376
1377 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1378 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1379 ret = -ENOMEM;
1380 if (!pm.buffer)
1381 goto out_mm;
1382
1383 pagemap_walk.pmd_entry = pagemap_pmd_range;
1384 pagemap_walk.pte_hole = pagemap_pte_hole;
1385 #ifdef CONFIG_HUGETLB_PAGE
1386 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1387 #endif
1388 pagemap_walk.mm = mm;
1389 pagemap_walk.private = &pm;
1390
1391 src = *ppos;
1392 svpfn = src / PM_ENTRY_BYTES;
1393 start_vaddr = svpfn << PAGE_SHIFT;
1394 end_vaddr = mm->task_size;
1395
1396 /* watch out for wraparound */
1397 if (svpfn > mm->task_size >> PAGE_SHIFT)
1398 start_vaddr = end_vaddr;
1399
1400 /*
1401 * The odds are that this will stop walking way
1402 * before end_vaddr, because the length of the
1403 * user buffer is tracked in "pm", and the walk
1404 * will stop when we hit the end of the buffer.
1405 */
1406 ret = 0;
1407 while (count && (start_vaddr < end_vaddr)) {
1408 int len;
1409 unsigned long end;
1410
1411 pm.pos = 0;
1412 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1413 /* overflow ? */
1414 if (end < start_vaddr || end > end_vaddr)
1415 end = end_vaddr;
1416 down_read(&mm->mmap_sem);
1417 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1418 up_read(&mm->mmap_sem);
1419 start_vaddr = end;
1420
1421 len = min(count, PM_ENTRY_BYTES * pm.pos);
1422 if (copy_to_user(buf, pm.buffer, len)) {
1423 ret = -EFAULT;
1424 goto out_free;
1425 }
1426 copied += len;
1427 buf += len;
1428 count -= len;
1429 }
1430 *ppos += copied;
1431 if (!ret || ret == PM_END_OF_BUFFER)
1432 ret = copied;
1433
1434 out_free:
1435 kfree(pm.buffer);
1436 out_mm:
1437 mmput(mm);
1438 out:
1439 return ret;
1440 }
1441
1442 static int pagemap_open(struct inode *inode, struct file *file)
1443 {
1444 struct mm_struct *mm;
1445
1446 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1447 if (IS_ERR(mm))
1448 return PTR_ERR(mm);
1449 file->private_data = mm;
1450 return 0;
1451 }
1452
1453 static int pagemap_release(struct inode *inode, struct file *file)
1454 {
1455 struct mm_struct *mm = file->private_data;
1456
1457 if (mm)
1458 mmdrop(mm);
1459 return 0;
1460 }
1461
1462 const struct file_operations proc_pagemap_operations = {
1463 .llseek = mem_lseek, /* borrow this */
1464 .read = pagemap_read,
1465 .open = pagemap_open,
1466 .release = pagemap_release,
1467 };
1468 #endif /* CONFIG_PROC_PAGE_MONITOR */
1469
1470 #ifdef CONFIG_NUMA
1471
1472 struct numa_maps {
1473 unsigned long pages;
1474 unsigned long anon;
1475 unsigned long active;
1476 unsigned long writeback;
1477 unsigned long mapcount_max;
1478 unsigned long dirty;
1479 unsigned long swapcache;
1480 unsigned long node[MAX_NUMNODES];
1481 };
1482
1483 struct numa_maps_private {
1484 struct proc_maps_private proc_maps;
1485 struct numa_maps md;
1486 };
1487
1488 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1489 unsigned long nr_pages)
1490 {
1491 int count = page_mapcount(page);
1492
1493 md->pages += nr_pages;
1494 if (pte_dirty || PageDirty(page))
1495 md->dirty += nr_pages;
1496
1497 if (PageSwapCache(page))
1498 md->swapcache += nr_pages;
1499
1500 if (PageActive(page) || PageUnevictable(page))
1501 md->active += nr_pages;
1502
1503 if (PageWriteback(page))
1504 md->writeback += nr_pages;
1505
1506 if (PageAnon(page))
1507 md->anon += nr_pages;
1508
1509 if (count > md->mapcount_max)
1510 md->mapcount_max = count;
1511
1512 md->node[page_to_nid(page)] += nr_pages;
1513 }
1514
1515 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1516 unsigned long addr)
1517 {
1518 struct page *page;
1519 int nid;
1520
1521 if (!pte_present(pte))
1522 return NULL;
1523
1524 page = vm_normal_page(vma, addr, pte);
1525 if (!page)
1526 return NULL;
1527
1528 if (PageReserved(page))
1529 return NULL;
1530
1531 nid = page_to_nid(page);
1532 if (!node_isset(nid, node_states[N_MEMORY]))
1533 return NULL;
1534
1535 return page;
1536 }
1537
1538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1539 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1540 struct vm_area_struct *vma,
1541 unsigned long addr)
1542 {
1543 struct page *page;
1544 int nid;
1545
1546 if (!pmd_present(pmd))
1547 return NULL;
1548
1549 page = vm_normal_page_pmd(vma, addr, pmd);
1550 if (!page)
1551 return NULL;
1552
1553 if (PageReserved(page))
1554 return NULL;
1555
1556 nid = page_to_nid(page);
1557 if (!node_isset(nid, node_states[N_MEMORY]))
1558 return NULL;
1559
1560 return page;
1561 }
1562 #endif
1563
1564 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1565 unsigned long end, struct mm_walk *walk)
1566 {
1567 struct numa_maps *md = walk->private;
1568 struct vm_area_struct *vma = walk->vma;
1569 spinlock_t *ptl;
1570 pte_t *orig_pte;
1571 pte_t *pte;
1572
1573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1574 ptl = pmd_trans_huge_lock(pmd, vma);
1575 if (ptl) {
1576 struct page *page;
1577
1578 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1579 if (page)
1580 gather_stats(page, md, pmd_dirty(*pmd),
1581 HPAGE_PMD_SIZE/PAGE_SIZE);
1582 spin_unlock(ptl);
1583 return 0;
1584 }
1585
1586 if (pmd_trans_unstable(pmd))
1587 return 0;
1588 #endif
1589 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1590 do {
1591 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1592 if (!page)
1593 continue;
1594 gather_stats(page, md, pte_dirty(*pte), 1);
1595
1596 } while (pte++, addr += PAGE_SIZE, addr != end);
1597 pte_unmap_unlock(orig_pte, ptl);
1598 return 0;
1599 }
1600 #ifdef CONFIG_HUGETLB_PAGE
1601 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1602 unsigned long addr, unsigned long end, struct mm_walk *walk)
1603 {
1604 pte_t huge_pte = huge_ptep_get(pte);
1605 struct numa_maps *md;
1606 struct page *page;
1607
1608 if (!pte_present(huge_pte))
1609 return 0;
1610
1611 page = pte_page(huge_pte);
1612 if (!page)
1613 return 0;
1614
1615 md = walk->private;
1616 gather_stats(page, md, pte_dirty(huge_pte), 1);
1617 return 0;
1618 }
1619
1620 #else
1621 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1622 unsigned long addr, unsigned long end, struct mm_walk *walk)
1623 {
1624 return 0;
1625 }
1626 #endif
1627
1628 /*
1629 * Display pages allocated per node and memory policy via /proc.
1630 */
1631 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1632 {
1633 struct numa_maps_private *numa_priv = m->private;
1634 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1635 struct vm_area_struct *vma = v;
1636 struct numa_maps *md = &numa_priv->md;
1637 struct file *file = vma->vm_file;
1638 struct mm_struct *mm = vma->vm_mm;
1639 struct mm_walk walk = {
1640 .hugetlb_entry = gather_hugetlb_stats,
1641 .pmd_entry = gather_pte_stats,
1642 .private = md,
1643 .mm = mm,
1644 };
1645 struct mempolicy *pol;
1646 char buffer[64];
1647 int nid;
1648
1649 if (!mm)
1650 return 0;
1651
1652 /* Ensure we start with an empty set of numa_maps statistics. */
1653 memset(md, 0, sizeof(*md));
1654
1655 pol = __get_vma_policy(vma, vma->vm_start);
1656 if (pol) {
1657 mpol_to_str(buffer, sizeof(buffer), pol);
1658 mpol_cond_put(pol);
1659 } else {
1660 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1661 }
1662
1663 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1664
1665 if (file) {
1666 seq_puts(m, " file=");
1667 seq_file_path(m, file, "\n\t= ");
1668 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1669 seq_puts(m, " heap");
1670 } else if (is_stack(proc_priv, vma, is_pid)) {
1671 seq_puts(m, " stack");
1672 }
1673
1674 if (is_vm_hugetlb_page(vma))
1675 seq_puts(m, " huge");
1676
1677 /* mmap_sem is held by m_start */
1678 walk_page_vma(vma, &walk);
1679
1680 if (!md->pages)
1681 goto out;
1682
1683 if (md->anon)
1684 seq_printf(m, " anon=%lu", md->anon);
1685
1686 if (md->dirty)
1687 seq_printf(m, " dirty=%lu", md->dirty);
1688
1689 if (md->pages != md->anon && md->pages != md->dirty)
1690 seq_printf(m, " mapped=%lu", md->pages);
1691
1692 if (md->mapcount_max > 1)
1693 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1694
1695 if (md->swapcache)
1696 seq_printf(m, " swapcache=%lu", md->swapcache);
1697
1698 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1699 seq_printf(m, " active=%lu", md->active);
1700
1701 if (md->writeback)
1702 seq_printf(m, " writeback=%lu", md->writeback);
1703
1704 for_each_node_state(nid, N_MEMORY)
1705 if (md->node[nid])
1706 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1707
1708 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1709 out:
1710 seq_putc(m, '\n');
1711 m_cache_vma(m, vma);
1712 return 0;
1713 }
1714
1715 static int show_pid_numa_map(struct seq_file *m, void *v)
1716 {
1717 return show_numa_map(m, v, 1);
1718 }
1719
1720 static int show_tid_numa_map(struct seq_file *m, void *v)
1721 {
1722 return show_numa_map(m, v, 0);
1723 }
1724
1725 static const struct seq_operations proc_pid_numa_maps_op = {
1726 .start = m_start,
1727 .next = m_next,
1728 .stop = m_stop,
1729 .show = show_pid_numa_map,
1730 };
1731
1732 static const struct seq_operations proc_tid_numa_maps_op = {
1733 .start = m_start,
1734 .next = m_next,
1735 .stop = m_stop,
1736 .show = show_tid_numa_map,
1737 };
1738
1739 static int numa_maps_open(struct inode *inode, struct file *file,
1740 const struct seq_operations *ops)
1741 {
1742 return proc_maps_open(inode, file, ops,
1743 sizeof(struct numa_maps_private));
1744 }
1745
1746 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1747 {
1748 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1749 }
1750
1751 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1752 {
1753 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1754 }
1755
1756 const struct file_operations proc_pid_numa_maps_operations = {
1757 .open = pid_numa_maps_open,
1758 .read = seq_read,
1759 .llseek = seq_lseek,
1760 .release = proc_map_release,
1761 };
1762
1763 const struct file_operations proc_tid_numa_maps_operations = {
1764 .open = tid_numa_maps_open,
1765 .read = seq_read,
1766 .llseek = seq_lseek,
1767 .release = proc_map_release,
1768 };
1769 #endif /* CONFIG_NUMA */
This page took 0.068707 seconds and 5 git commands to generate.