928c20f47af9c1e26906e7e3be7dfa7705e8ca15
[deliverable/linux.git] / fs / super.c
1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/blkdev.h>
26 #include <linux/mount.h>
27 #include <linux/security.h>
28 #include <linux/writeback.h> /* for the emergency remount stuff */
29 #include <linux/idr.h>
30 #include <linux/mutex.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rculist_bl.h>
33 #include <linux/cleancache.h>
34 #include <linux/fsnotify.h>
35 #include <linux/lockdep.h>
36 #include "internal.h"
37
38
39 static LIST_HEAD(super_blocks);
40 static DEFINE_SPINLOCK(sb_lock);
41
42 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43 "sb_writers",
44 "sb_pagefaults",
45 "sb_internal",
46 };
47
48 /*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55 static unsigned long super_cache_scan(struct shrinker *shrink,
56 struct shrink_control *sc)
57 {
58 struct super_block *sb;
59 long fs_objects = 0;
60 long total_objects;
61 long freed = 0;
62 long dentries;
63 long inodes;
64
65 sb = container_of(shrink, struct super_block, s_shrink);
66
67 /*
68 * Deadlock avoidance. We may hold various FS locks, and we don't want
69 * to recurse into the FS that called us in clear_inode() and friends..
70 */
71 if (!(sc->gfp_mask & __GFP_FS))
72 return SHRINK_STOP;
73
74 if (!trylock_super(sb))
75 return SHRINK_STOP;
76
77 if (sb->s_op->nr_cached_objects)
78 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79
80 inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81 dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82 total_objects = dentries + inodes + fs_objects + 1;
83 if (!total_objects)
84 total_objects = 1;
85
86 /* proportion the scan between the caches */
87 dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88 inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89 fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90
91 /*
92 * prune the dcache first as the icache is pinned by it, then
93 * prune the icache, followed by the filesystem specific caches
94 *
95 * Ensure that we always scan at least one object - memcg kmem
96 * accounting uses this to fully empty the caches.
97 */
98 sc->nr_to_scan = dentries + 1;
99 freed = prune_dcache_sb(sb, sc);
100 sc->nr_to_scan = inodes + 1;
101 freed += prune_icache_sb(sb, sc);
102
103 if (fs_objects) {
104 sc->nr_to_scan = fs_objects + 1;
105 freed += sb->s_op->free_cached_objects(sb, sc);
106 }
107
108 up_read(&sb->s_umount);
109 return freed;
110 }
111
112 static unsigned long super_cache_count(struct shrinker *shrink,
113 struct shrink_control *sc)
114 {
115 struct super_block *sb;
116 long total_objects = 0;
117
118 sb = container_of(shrink, struct super_block, s_shrink);
119
120 /*
121 * Don't call trylock_super as it is a potential
122 * scalability bottleneck. The counts could get updated
123 * between super_cache_count and super_cache_scan anyway.
124 * Call to super_cache_count with shrinker_rwsem held
125 * ensures the safety of call to list_lru_shrink_count() and
126 * s_op->nr_cached_objects().
127 */
128 if (sb->s_op && sb->s_op->nr_cached_objects)
129 total_objects = sb->s_op->nr_cached_objects(sb, sc);
130
131 total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132 total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133
134 total_objects = vfs_pressure_ratio(total_objects);
135 return total_objects;
136 }
137
138 /**
139 * destroy_super - frees a superblock
140 * @s: superblock to free
141 *
142 * Frees a superblock.
143 */
144 static void destroy_super(struct super_block *s)
145 {
146 int i;
147 list_lru_destroy(&s->s_dentry_lru);
148 list_lru_destroy(&s->s_inode_lru);
149 for (i = 0; i < SB_FREEZE_LEVELS; i++)
150 percpu_counter_destroy(&s->s_writers.counter[i]);
151 security_sb_free(s);
152 WARN_ON(!list_empty(&s->s_mounts));
153 kfree(s->s_subtype);
154 kfree(s->s_options);
155 kfree_rcu(s, rcu);
156 }
157
158 /**
159 * alloc_super - create new superblock
160 * @type: filesystem type superblock should belong to
161 * @flags: the mount flags
162 *
163 * Allocates and initializes a new &struct super_block. alloc_super()
164 * returns a pointer new superblock or %NULL if allocation had failed.
165 */
166 static struct super_block *alloc_super(struct file_system_type *type, int flags)
167 {
168 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
169 static const struct super_operations default_op;
170 int i;
171
172 if (!s)
173 return NULL;
174
175 INIT_LIST_HEAD(&s->s_mounts);
176
177 if (security_sb_alloc(s))
178 goto fail;
179
180 for (i = 0; i < SB_FREEZE_LEVELS; i++) {
181 if (percpu_counter_init(&s->s_writers.counter[i], 0,
182 GFP_KERNEL) < 0)
183 goto fail;
184 lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
185 &type->s_writers_key[i], 0);
186 }
187 init_waitqueue_head(&s->s_writers.wait);
188 init_waitqueue_head(&s->s_writers.wait_unfrozen);
189 s->s_bdi = &noop_backing_dev_info;
190 s->s_flags = flags;
191 INIT_HLIST_NODE(&s->s_instances);
192 INIT_HLIST_BL_HEAD(&s->s_anon);
193 INIT_LIST_HEAD(&s->s_inodes);
194
195 if (list_lru_init_memcg(&s->s_dentry_lru))
196 goto fail;
197 if (list_lru_init_memcg(&s->s_inode_lru))
198 goto fail;
199
200 init_rwsem(&s->s_umount);
201 lockdep_set_class(&s->s_umount, &type->s_umount_key);
202 /*
203 * sget() can have s_umount recursion.
204 *
205 * When it cannot find a suitable sb, it allocates a new
206 * one (this one), and tries again to find a suitable old
207 * one.
208 *
209 * In case that succeeds, it will acquire the s_umount
210 * lock of the old one. Since these are clearly distrinct
211 * locks, and this object isn't exposed yet, there's no
212 * risk of deadlocks.
213 *
214 * Annotate this by putting this lock in a different
215 * subclass.
216 */
217 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
218 s->s_count = 1;
219 atomic_set(&s->s_active, 1);
220 mutex_init(&s->s_vfs_rename_mutex);
221 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
222 mutex_init(&s->s_dquot.dqio_mutex);
223 mutex_init(&s->s_dquot.dqonoff_mutex);
224 s->s_maxbytes = MAX_NON_LFS;
225 s->s_op = &default_op;
226 s->s_time_gran = 1000000000;
227 s->cleancache_poolid = CLEANCACHE_NO_POOL;
228
229 s->s_shrink.seeks = DEFAULT_SEEKS;
230 s->s_shrink.scan_objects = super_cache_scan;
231 s->s_shrink.count_objects = super_cache_count;
232 s->s_shrink.batch = 1024;
233 s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
234 return s;
235
236 fail:
237 destroy_super(s);
238 return NULL;
239 }
240
241 /* Superblock refcounting */
242
243 /*
244 * Drop a superblock's refcount. The caller must hold sb_lock.
245 */
246 static void __put_super(struct super_block *sb)
247 {
248 if (!--sb->s_count) {
249 list_del_init(&sb->s_list);
250 destroy_super(sb);
251 }
252 }
253
254 /**
255 * put_super - drop a temporary reference to superblock
256 * @sb: superblock in question
257 *
258 * Drops a temporary reference, frees superblock if there's no
259 * references left.
260 */
261 static void put_super(struct super_block *sb)
262 {
263 spin_lock(&sb_lock);
264 __put_super(sb);
265 spin_unlock(&sb_lock);
266 }
267
268
269 /**
270 * deactivate_locked_super - drop an active reference to superblock
271 * @s: superblock to deactivate
272 *
273 * Drops an active reference to superblock, converting it into a temprory
274 * one if there is no other active references left. In that case we
275 * tell fs driver to shut it down and drop the temporary reference we
276 * had just acquired.
277 *
278 * Caller holds exclusive lock on superblock; that lock is released.
279 */
280 void deactivate_locked_super(struct super_block *s)
281 {
282 struct file_system_type *fs = s->s_type;
283 if (atomic_dec_and_test(&s->s_active)) {
284 cleancache_invalidate_fs(s);
285 unregister_shrinker(&s->s_shrink);
286 fs->kill_sb(s);
287
288 /*
289 * Since list_lru_destroy() may sleep, we cannot call it from
290 * put_super(), where we hold the sb_lock. Therefore we destroy
291 * the lru lists right now.
292 */
293 list_lru_destroy(&s->s_dentry_lru);
294 list_lru_destroy(&s->s_inode_lru);
295
296 put_filesystem(fs);
297 put_super(s);
298 } else {
299 up_write(&s->s_umount);
300 }
301 }
302
303 EXPORT_SYMBOL(deactivate_locked_super);
304
305 /**
306 * deactivate_super - drop an active reference to superblock
307 * @s: superblock to deactivate
308 *
309 * Variant of deactivate_locked_super(), except that superblock is *not*
310 * locked by caller. If we are going to drop the final active reference,
311 * lock will be acquired prior to that.
312 */
313 void deactivate_super(struct super_block *s)
314 {
315 if (!atomic_add_unless(&s->s_active, -1, 1)) {
316 down_write(&s->s_umount);
317 deactivate_locked_super(s);
318 }
319 }
320
321 EXPORT_SYMBOL(deactivate_super);
322
323 /**
324 * grab_super - acquire an active reference
325 * @s: reference we are trying to make active
326 *
327 * Tries to acquire an active reference. grab_super() is used when we
328 * had just found a superblock in super_blocks or fs_type->fs_supers
329 * and want to turn it into a full-blown active reference. grab_super()
330 * is called with sb_lock held and drops it. Returns 1 in case of
331 * success, 0 if we had failed (superblock contents was already dead or
332 * dying when grab_super() had been called). Note that this is only
333 * called for superblocks not in rundown mode (== ones still on ->fs_supers
334 * of their type), so increment of ->s_count is OK here.
335 */
336 static int grab_super(struct super_block *s) __releases(sb_lock)
337 {
338 s->s_count++;
339 spin_unlock(&sb_lock);
340 down_write(&s->s_umount);
341 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
342 put_super(s);
343 return 1;
344 }
345 up_write(&s->s_umount);
346 put_super(s);
347 return 0;
348 }
349
350 /*
351 * trylock_super - try to grab ->s_umount shared
352 * @sb: reference we are trying to grab
353 *
354 * Try to prevent fs shutdown. This is used in places where we
355 * cannot take an active reference but we need to ensure that the
356 * filesystem is not shut down while we are working on it. It returns
357 * false if we cannot acquire s_umount or if we lose the race and
358 * filesystem already got into shutdown, and returns true with the s_umount
359 * lock held in read mode in case of success. On successful return,
360 * the caller must drop the s_umount lock when done.
361 *
362 * Note that unlike get_super() et.al. this one does *not* bump ->s_count.
363 * The reason why it's safe is that we are OK with doing trylock instead
364 * of down_read(). There's a couple of places that are OK with that, but
365 * it's very much not a general-purpose interface.
366 */
367 bool trylock_super(struct super_block *sb)
368 {
369 if (down_read_trylock(&sb->s_umount)) {
370 if (!hlist_unhashed(&sb->s_instances) &&
371 sb->s_root && (sb->s_flags & MS_BORN))
372 return true;
373 up_read(&sb->s_umount);
374 }
375
376 return false;
377 }
378
379 /**
380 * generic_shutdown_super - common helper for ->kill_sb()
381 * @sb: superblock to kill
382 *
383 * generic_shutdown_super() does all fs-independent work on superblock
384 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
385 * that need destruction out of superblock, call generic_shutdown_super()
386 * and release aforementioned objects. Note: dentries and inodes _are_
387 * taken care of and do not need specific handling.
388 *
389 * Upon calling this function, the filesystem may no longer alter or
390 * rearrange the set of dentries belonging to this super_block, nor may it
391 * change the attachments of dentries to inodes.
392 */
393 void generic_shutdown_super(struct super_block *sb)
394 {
395 const struct super_operations *sop = sb->s_op;
396
397 if (sb->s_root) {
398 shrink_dcache_for_umount(sb);
399 sync_filesystem(sb);
400 sb->s_flags &= ~MS_ACTIVE;
401
402 fsnotify_unmount_inodes(&sb->s_inodes);
403
404 evict_inodes(sb);
405
406 if (sb->s_dio_done_wq) {
407 destroy_workqueue(sb->s_dio_done_wq);
408 sb->s_dio_done_wq = NULL;
409 }
410
411 if (sop->put_super)
412 sop->put_super(sb);
413
414 if (!list_empty(&sb->s_inodes)) {
415 printk("VFS: Busy inodes after unmount of %s. "
416 "Self-destruct in 5 seconds. Have a nice day...\n",
417 sb->s_id);
418 }
419 }
420 spin_lock(&sb_lock);
421 /* should be initialized for __put_super_and_need_restart() */
422 hlist_del_init(&sb->s_instances);
423 spin_unlock(&sb_lock);
424 up_write(&sb->s_umount);
425 }
426
427 EXPORT_SYMBOL(generic_shutdown_super);
428
429 /**
430 * sget - find or create a superblock
431 * @type: filesystem type superblock should belong to
432 * @test: comparison callback
433 * @set: setup callback
434 * @flags: mount flags
435 * @data: argument to each of them
436 */
437 struct super_block *sget(struct file_system_type *type,
438 int (*test)(struct super_block *,void *),
439 int (*set)(struct super_block *,void *),
440 int flags,
441 void *data)
442 {
443 struct super_block *s = NULL;
444 struct super_block *old;
445 int err;
446
447 retry:
448 spin_lock(&sb_lock);
449 if (test) {
450 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
451 if (!test(old, data))
452 continue;
453 if (!grab_super(old))
454 goto retry;
455 if (s) {
456 up_write(&s->s_umount);
457 destroy_super(s);
458 s = NULL;
459 }
460 return old;
461 }
462 }
463 if (!s) {
464 spin_unlock(&sb_lock);
465 s = alloc_super(type, flags);
466 if (!s)
467 return ERR_PTR(-ENOMEM);
468 goto retry;
469 }
470
471 err = set(s, data);
472 if (err) {
473 spin_unlock(&sb_lock);
474 up_write(&s->s_umount);
475 destroy_super(s);
476 return ERR_PTR(err);
477 }
478 s->s_type = type;
479 strlcpy(s->s_id, type->name, sizeof(s->s_id));
480 list_add_tail(&s->s_list, &super_blocks);
481 hlist_add_head(&s->s_instances, &type->fs_supers);
482 spin_unlock(&sb_lock);
483 get_filesystem(type);
484 register_shrinker(&s->s_shrink);
485 return s;
486 }
487
488 EXPORT_SYMBOL(sget);
489
490 void drop_super(struct super_block *sb)
491 {
492 up_read(&sb->s_umount);
493 put_super(sb);
494 }
495
496 EXPORT_SYMBOL(drop_super);
497
498 /**
499 * iterate_supers - call function for all active superblocks
500 * @f: function to call
501 * @arg: argument to pass to it
502 *
503 * Scans the superblock list and calls given function, passing it
504 * locked superblock and given argument.
505 */
506 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
507 {
508 struct super_block *sb, *p = NULL;
509
510 spin_lock(&sb_lock);
511 list_for_each_entry(sb, &super_blocks, s_list) {
512 if (hlist_unhashed(&sb->s_instances))
513 continue;
514 sb->s_count++;
515 spin_unlock(&sb_lock);
516
517 down_read(&sb->s_umount);
518 if (sb->s_root && (sb->s_flags & MS_BORN))
519 f(sb, arg);
520 up_read(&sb->s_umount);
521
522 spin_lock(&sb_lock);
523 if (p)
524 __put_super(p);
525 p = sb;
526 }
527 if (p)
528 __put_super(p);
529 spin_unlock(&sb_lock);
530 }
531
532 /**
533 * iterate_supers_type - call function for superblocks of given type
534 * @type: fs type
535 * @f: function to call
536 * @arg: argument to pass to it
537 *
538 * Scans the superblock list and calls given function, passing it
539 * locked superblock and given argument.
540 */
541 void iterate_supers_type(struct file_system_type *type,
542 void (*f)(struct super_block *, void *), void *arg)
543 {
544 struct super_block *sb, *p = NULL;
545
546 spin_lock(&sb_lock);
547 hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
548 sb->s_count++;
549 spin_unlock(&sb_lock);
550
551 down_read(&sb->s_umount);
552 if (sb->s_root && (sb->s_flags & MS_BORN))
553 f(sb, arg);
554 up_read(&sb->s_umount);
555
556 spin_lock(&sb_lock);
557 if (p)
558 __put_super(p);
559 p = sb;
560 }
561 if (p)
562 __put_super(p);
563 spin_unlock(&sb_lock);
564 }
565
566 EXPORT_SYMBOL(iterate_supers_type);
567
568 /**
569 * get_super - get the superblock of a device
570 * @bdev: device to get the superblock for
571 *
572 * Scans the superblock list and finds the superblock of the file system
573 * mounted on the device given. %NULL is returned if no match is found.
574 */
575
576 struct super_block *get_super(struct block_device *bdev)
577 {
578 struct super_block *sb;
579
580 if (!bdev)
581 return NULL;
582
583 spin_lock(&sb_lock);
584 rescan:
585 list_for_each_entry(sb, &super_blocks, s_list) {
586 if (hlist_unhashed(&sb->s_instances))
587 continue;
588 if (sb->s_bdev == bdev) {
589 sb->s_count++;
590 spin_unlock(&sb_lock);
591 down_read(&sb->s_umount);
592 /* still alive? */
593 if (sb->s_root && (sb->s_flags & MS_BORN))
594 return sb;
595 up_read(&sb->s_umount);
596 /* nope, got unmounted */
597 spin_lock(&sb_lock);
598 __put_super(sb);
599 goto rescan;
600 }
601 }
602 spin_unlock(&sb_lock);
603 return NULL;
604 }
605
606 EXPORT_SYMBOL(get_super);
607
608 /**
609 * get_super_thawed - get thawed superblock of a device
610 * @bdev: device to get the superblock for
611 *
612 * Scans the superblock list and finds the superblock of the file system
613 * mounted on the device. The superblock is returned once it is thawed
614 * (or immediately if it was not frozen). %NULL is returned if no match
615 * is found.
616 */
617 struct super_block *get_super_thawed(struct block_device *bdev)
618 {
619 while (1) {
620 struct super_block *s = get_super(bdev);
621 if (!s || s->s_writers.frozen == SB_UNFROZEN)
622 return s;
623 up_read(&s->s_umount);
624 wait_event(s->s_writers.wait_unfrozen,
625 s->s_writers.frozen == SB_UNFROZEN);
626 put_super(s);
627 }
628 }
629 EXPORT_SYMBOL(get_super_thawed);
630
631 /**
632 * get_active_super - get an active reference to the superblock of a device
633 * @bdev: device to get the superblock for
634 *
635 * Scans the superblock list and finds the superblock of the file system
636 * mounted on the device given. Returns the superblock with an active
637 * reference or %NULL if none was found.
638 */
639 struct super_block *get_active_super(struct block_device *bdev)
640 {
641 struct super_block *sb;
642
643 if (!bdev)
644 return NULL;
645
646 restart:
647 spin_lock(&sb_lock);
648 list_for_each_entry(sb, &super_blocks, s_list) {
649 if (hlist_unhashed(&sb->s_instances))
650 continue;
651 if (sb->s_bdev == bdev) {
652 if (!grab_super(sb))
653 goto restart;
654 up_write(&sb->s_umount);
655 return sb;
656 }
657 }
658 spin_unlock(&sb_lock);
659 return NULL;
660 }
661
662 struct super_block *user_get_super(dev_t dev)
663 {
664 struct super_block *sb;
665
666 spin_lock(&sb_lock);
667 rescan:
668 list_for_each_entry(sb, &super_blocks, s_list) {
669 if (hlist_unhashed(&sb->s_instances))
670 continue;
671 if (sb->s_dev == dev) {
672 sb->s_count++;
673 spin_unlock(&sb_lock);
674 down_read(&sb->s_umount);
675 /* still alive? */
676 if (sb->s_root && (sb->s_flags & MS_BORN))
677 return sb;
678 up_read(&sb->s_umount);
679 /* nope, got unmounted */
680 spin_lock(&sb_lock);
681 __put_super(sb);
682 goto rescan;
683 }
684 }
685 spin_unlock(&sb_lock);
686 return NULL;
687 }
688
689 /**
690 * do_remount_sb - asks filesystem to change mount options.
691 * @sb: superblock in question
692 * @flags: numeric part of options
693 * @data: the rest of options
694 * @force: whether or not to force the change
695 *
696 * Alters the mount options of a mounted file system.
697 */
698 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
699 {
700 int retval;
701 int remount_ro;
702
703 if (sb->s_writers.frozen != SB_UNFROZEN)
704 return -EBUSY;
705
706 #ifdef CONFIG_BLOCK
707 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
708 return -EACCES;
709 #endif
710
711 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
712
713 if (remount_ro) {
714 if (!hlist_empty(&sb->s_pins)) {
715 up_write(&sb->s_umount);
716 group_pin_kill(&sb->s_pins);
717 down_write(&sb->s_umount);
718 if (!sb->s_root)
719 return 0;
720 if (sb->s_writers.frozen != SB_UNFROZEN)
721 return -EBUSY;
722 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
723 }
724 }
725 shrink_dcache_sb(sb);
726
727 /* If we are remounting RDONLY and current sb is read/write,
728 make sure there are no rw files opened */
729 if (remount_ro) {
730 if (force) {
731 sb->s_readonly_remount = 1;
732 smp_wmb();
733 } else {
734 retval = sb_prepare_remount_readonly(sb);
735 if (retval)
736 return retval;
737 }
738 }
739
740 if (sb->s_op->remount_fs) {
741 retval = sb->s_op->remount_fs(sb, &flags, data);
742 if (retval) {
743 if (!force)
744 goto cancel_readonly;
745 /* If forced remount, go ahead despite any errors */
746 WARN(1, "forced remount of a %s fs returned %i\n",
747 sb->s_type->name, retval);
748 }
749 }
750 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
751 /* Needs to be ordered wrt mnt_is_readonly() */
752 smp_wmb();
753 sb->s_readonly_remount = 0;
754
755 /*
756 * Some filesystems modify their metadata via some other path than the
757 * bdev buffer cache (eg. use a private mapping, or directories in
758 * pagecache, etc). Also file data modifications go via their own
759 * mappings. So If we try to mount readonly then copy the filesystem
760 * from bdev, we could get stale data, so invalidate it to give a best
761 * effort at coherency.
762 */
763 if (remount_ro && sb->s_bdev)
764 invalidate_bdev(sb->s_bdev);
765 return 0;
766
767 cancel_readonly:
768 sb->s_readonly_remount = 0;
769 return retval;
770 }
771
772 static void do_emergency_remount(struct work_struct *work)
773 {
774 struct super_block *sb, *p = NULL;
775
776 spin_lock(&sb_lock);
777 list_for_each_entry(sb, &super_blocks, s_list) {
778 if (hlist_unhashed(&sb->s_instances))
779 continue;
780 sb->s_count++;
781 spin_unlock(&sb_lock);
782 down_write(&sb->s_umount);
783 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
784 !(sb->s_flags & MS_RDONLY)) {
785 /*
786 * What lock protects sb->s_flags??
787 */
788 do_remount_sb(sb, MS_RDONLY, NULL, 1);
789 }
790 up_write(&sb->s_umount);
791 spin_lock(&sb_lock);
792 if (p)
793 __put_super(p);
794 p = sb;
795 }
796 if (p)
797 __put_super(p);
798 spin_unlock(&sb_lock);
799 kfree(work);
800 printk("Emergency Remount complete\n");
801 }
802
803 void emergency_remount(void)
804 {
805 struct work_struct *work;
806
807 work = kmalloc(sizeof(*work), GFP_ATOMIC);
808 if (work) {
809 INIT_WORK(work, do_emergency_remount);
810 schedule_work(work);
811 }
812 }
813
814 /*
815 * Unnamed block devices are dummy devices used by virtual
816 * filesystems which don't use real block-devices. -- jrs
817 */
818
819 static DEFINE_IDA(unnamed_dev_ida);
820 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
821 /* Many userspace utilities consider an FSID of 0 invalid.
822 * Always return at least 1 from get_anon_bdev.
823 */
824 static int unnamed_dev_start = 1;
825
826 int get_anon_bdev(dev_t *p)
827 {
828 int dev;
829 int error;
830
831 retry:
832 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
833 return -ENOMEM;
834 spin_lock(&unnamed_dev_lock);
835 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
836 if (!error)
837 unnamed_dev_start = dev + 1;
838 spin_unlock(&unnamed_dev_lock);
839 if (error == -EAGAIN)
840 /* We raced and lost with another CPU. */
841 goto retry;
842 else if (error)
843 return -EAGAIN;
844
845 if (dev == (1 << MINORBITS)) {
846 spin_lock(&unnamed_dev_lock);
847 ida_remove(&unnamed_dev_ida, dev);
848 if (unnamed_dev_start > dev)
849 unnamed_dev_start = dev;
850 spin_unlock(&unnamed_dev_lock);
851 return -EMFILE;
852 }
853 *p = MKDEV(0, dev & MINORMASK);
854 return 0;
855 }
856 EXPORT_SYMBOL(get_anon_bdev);
857
858 void free_anon_bdev(dev_t dev)
859 {
860 int slot = MINOR(dev);
861 spin_lock(&unnamed_dev_lock);
862 ida_remove(&unnamed_dev_ida, slot);
863 if (slot < unnamed_dev_start)
864 unnamed_dev_start = slot;
865 spin_unlock(&unnamed_dev_lock);
866 }
867 EXPORT_SYMBOL(free_anon_bdev);
868
869 int set_anon_super(struct super_block *s, void *data)
870 {
871 return get_anon_bdev(&s->s_dev);
872 }
873
874 EXPORT_SYMBOL(set_anon_super);
875
876 void kill_anon_super(struct super_block *sb)
877 {
878 dev_t dev = sb->s_dev;
879 generic_shutdown_super(sb);
880 free_anon_bdev(dev);
881 }
882
883 EXPORT_SYMBOL(kill_anon_super);
884
885 void kill_litter_super(struct super_block *sb)
886 {
887 if (sb->s_root)
888 d_genocide(sb->s_root);
889 kill_anon_super(sb);
890 }
891
892 EXPORT_SYMBOL(kill_litter_super);
893
894 static int ns_test_super(struct super_block *sb, void *data)
895 {
896 return sb->s_fs_info == data;
897 }
898
899 static int ns_set_super(struct super_block *sb, void *data)
900 {
901 sb->s_fs_info = data;
902 return set_anon_super(sb, NULL);
903 }
904
905 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
906 void *data, int (*fill_super)(struct super_block *, void *, int))
907 {
908 struct super_block *sb;
909
910 sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
911 if (IS_ERR(sb))
912 return ERR_CAST(sb);
913
914 if (!sb->s_root) {
915 int err;
916 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
917 if (err) {
918 deactivate_locked_super(sb);
919 return ERR_PTR(err);
920 }
921
922 sb->s_flags |= MS_ACTIVE;
923 }
924
925 return dget(sb->s_root);
926 }
927
928 EXPORT_SYMBOL(mount_ns);
929
930 #ifdef CONFIG_BLOCK
931 static int set_bdev_super(struct super_block *s, void *data)
932 {
933 s->s_bdev = data;
934 s->s_dev = s->s_bdev->bd_dev;
935
936 /*
937 * We set the bdi here to the queue backing, file systems can
938 * overwrite this in ->fill_super()
939 */
940 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
941 return 0;
942 }
943
944 static int test_bdev_super(struct super_block *s, void *data)
945 {
946 return (void *)s->s_bdev == data;
947 }
948
949 struct dentry *mount_bdev(struct file_system_type *fs_type,
950 int flags, const char *dev_name, void *data,
951 int (*fill_super)(struct super_block *, void *, int))
952 {
953 struct block_device *bdev;
954 struct super_block *s;
955 fmode_t mode = FMODE_READ | FMODE_EXCL;
956 int error = 0;
957
958 if (!(flags & MS_RDONLY))
959 mode |= FMODE_WRITE;
960
961 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
962 if (IS_ERR(bdev))
963 return ERR_CAST(bdev);
964
965 /*
966 * once the super is inserted into the list by sget, s_umount
967 * will protect the lockfs code from trying to start a snapshot
968 * while we are mounting
969 */
970 mutex_lock(&bdev->bd_fsfreeze_mutex);
971 if (bdev->bd_fsfreeze_count > 0) {
972 mutex_unlock(&bdev->bd_fsfreeze_mutex);
973 error = -EBUSY;
974 goto error_bdev;
975 }
976 s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
977 bdev);
978 mutex_unlock(&bdev->bd_fsfreeze_mutex);
979 if (IS_ERR(s))
980 goto error_s;
981
982 if (s->s_root) {
983 if ((flags ^ s->s_flags) & MS_RDONLY) {
984 deactivate_locked_super(s);
985 error = -EBUSY;
986 goto error_bdev;
987 }
988
989 /*
990 * s_umount nests inside bd_mutex during
991 * __invalidate_device(). blkdev_put() acquires
992 * bd_mutex and can't be called under s_umount. Drop
993 * s_umount temporarily. This is safe as we're
994 * holding an active reference.
995 */
996 up_write(&s->s_umount);
997 blkdev_put(bdev, mode);
998 down_write(&s->s_umount);
999 } else {
1000 char b[BDEVNAME_SIZE];
1001
1002 s->s_mode = mode;
1003 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1004 sb_set_blocksize(s, block_size(bdev));
1005 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1006 if (error) {
1007 deactivate_locked_super(s);
1008 goto error;
1009 }
1010
1011 s->s_flags |= MS_ACTIVE;
1012 bdev->bd_super = s;
1013 }
1014
1015 return dget(s->s_root);
1016
1017 error_s:
1018 error = PTR_ERR(s);
1019 error_bdev:
1020 blkdev_put(bdev, mode);
1021 error:
1022 return ERR_PTR(error);
1023 }
1024 EXPORT_SYMBOL(mount_bdev);
1025
1026 void kill_block_super(struct super_block *sb)
1027 {
1028 struct block_device *bdev = sb->s_bdev;
1029 fmode_t mode = sb->s_mode;
1030
1031 bdev->bd_super = NULL;
1032 generic_shutdown_super(sb);
1033 sync_blockdev(bdev);
1034 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1035 blkdev_put(bdev, mode | FMODE_EXCL);
1036 }
1037
1038 EXPORT_SYMBOL(kill_block_super);
1039 #endif
1040
1041 struct dentry *mount_nodev(struct file_system_type *fs_type,
1042 int flags, void *data,
1043 int (*fill_super)(struct super_block *, void *, int))
1044 {
1045 int error;
1046 struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1047
1048 if (IS_ERR(s))
1049 return ERR_CAST(s);
1050
1051 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1052 if (error) {
1053 deactivate_locked_super(s);
1054 return ERR_PTR(error);
1055 }
1056 s->s_flags |= MS_ACTIVE;
1057 return dget(s->s_root);
1058 }
1059 EXPORT_SYMBOL(mount_nodev);
1060
1061 static int compare_single(struct super_block *s, void *p)
1062 {
1063 return 1;
1064 }
1065
1066 struct dentry *mount_single(struct file_system_type *fs_type,
1067 int flags, void *data,
1068 int (*fill_super)(struct super_block *, void *, int))
1069 {
1070 struct super_block *s;
1071 int error;
1072
1073 s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1074 if (IS_ERR(s))
1075 return ERR_CAST(s);
1076 if (!s->s_root) {
1077 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1078 if (error) {
1079 deactivate_locked_super(s);
1080 return ERR_PTR(error);
1081 }
1082 s->s_flags |= MS_ACTIVE;
1083 } else {
1084 do_remount_sb(s, flags, data, 0);
1085 }
1086 return dget(s->s_root);
1087 }
1088 EXPORT_SYMBOL(mount_single);
1089
1090 struct dentry *
1091 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1092 {
1093 struct dentry *root;
1094 struct super_block *sb;
1095 char *secdata = NULL;
1096 int error = -ENOMEM;
1097
1098 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1099 secdata = alloc_secdata();
1100 if (!secdata)
1101 goto out;
1102
1103 error = security_sb_copy_data(data, secdata);
1104 if (error)
1105 goto out_free_secdata;
1106 }
1107
1108 root = type->mount(type, flags, name, data);
1109 if (IS_ERR(root)) {
1110 error = PTR_ERR(root);
1111 goto out_free_secdata;
1112 }
1113 sb = root->d_sb;
1114 BUG_ON(!sb);
1115 WARN_ON(!sb->s_bdi);
1116 sb->s_flags |= MS_BORN;
1117
1118 error = security_sb_kern_mount(sb, flags, secdata);
1119 if (error)
1120 goto out_sb;
1121
1122 /*
1123 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1124 * but s_maxbytes was an unsigned long long for many releases. Throw
1125 * this warning for a little while to try and catch filesystems that
1126 * violate this rule.
1127 */
1128 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1129 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1130
1131 up_write(&sb->s_umount);
1132 free_secdata(secdata);
1133 return root;
1134 out_sb:
1135 dput(root);
1136 deactivate_locked_super(sb);
1137 out_free_secdata:
1138 free_secdata(secdata);
1139 out:
1140 return ERR_PTR(error);
1141 }
1142
1143 /*
1144 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1145 * instead.
1146 */
1147 void __sb_end_write(struct super_block *sb, int level)
1148 {
1149 percpu_counter_dec(&sb->s_writers.counter[level-1]);
1150 /*
1151 * Make sure s_writers are updated before we wake up waiters in
1152 * freeze_super().
1153 */
1154 smp_mb();
1155 if (waitqueue_active(&sb->s_writers.wait))
1156 wake_up(&sb->s_writers.wait);
1157 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1158 }
1159 EXPORT_SYMBOL(__sb_end_write);
1160
1161 #ifdef CONFIG_LOCKDEP
1162 /*
1163 * We want lockdep to tell us about possible deadlocks with freezing but
1164 * it's it bit tricky to properly instrument it. Getting a freeze protection
1165 * works as getting a read lock but there are subtle problems. XFS for example
1166 * gets freeze protection on internal level twice in some cases, which is OK
1167 * only because we already hold a freeze protection also on higher level. Due
1168 * to these cases we have to tell lockdep we are doing trylock when we
1169 * already hold a freeze protection for a higher freeze level.
1170 */
1171 static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1172 unsigned long ip)
1173 {
1174 int i;
1175
1176 if (!trylock) {
1177 for (i = 0; i < level - 1; i++)
1178 if (lock_is_held(&sb->s_writers.lock_map[i])) {
1179 trylock = true;
1180 break;
1181 }
1182 }
1183 rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1184 }
1185 #endif
1186
1187 /*
1188 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1189 * instead.
1190 */
1191 int __sb_start_write(struct super_block *sb, int level, bool wait)
1192 {
1193 retry:
1194 if (unlikely(sb->s_writers.frozen >= level)) {
1195 if (!wait)
1196 return 0;
1197 wait_event(sb->s_writers.wait_unfrozen,
1198 sb->s_writers.frozen < level);
1199 }
1200
1201 #ifdef CONFIG_LOCKDEP
1202 acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1203 #endif
1204 percpu_counter_inc(&sb->s_writers.counter[level-1]);
1205 /*
1206 * Make sure counter is updated before we check for frozen.
1207 * freeze_super() first sets frozen and then checks the counter.
1208 */
1209 smp_mb();
1210 if (unlikely(sb->s_writers.frozen >= level)) {
1211 __sb_end_write(sb, level);
1212 goto retry;
1213 }
1214 return 1;
1215 }
1216 EXPORT_SYMBOL(__sb_start_write);
1217
1218 /**
1219 * sb_wait_write - wait until all writers to given file system finish
1220 * @sb: the super for which we wait
1221 * @level: type of writers we wait for (normal vs page fault)
1222 *
1223 * This function waits until there are no writers of given type to given file
1224 * system. Caller of this function should make sure there can be no new writers
1225 * of type @level before calling this function. Otherwise this function can
1226 * livelock.
1227 */
1228 static void sb_wait_write(struct super_block *sb, int level)
1229 {
1230 s64 writers;
1231
1232 /*
1233 * We just cycle-through lockdep here so that it does not complain
1234 * about returning with lock to userspace
1235 */
1236 rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1237 rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1238
1239 do {
1240 DEFINE_WAIT(wait);
1241
1242 /*
1243 * We use a barrier in prepare_to_wait() to separate setting
1244 * of frozen and checking of the counter
1245 */
1246 prepare_to_wait(&sb->s_writers.wait, &wait,
1247 TASK_UNINTERRUPTIBLE);
1248
1249 writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1250 if (writers)
1251 schedule();
1252
1253 finish_wait(&sb->s_writers.wait, &wait);
1254 } while (writers);
1255 }
1256
1257 /**
1258 * freeze_super - lock the filesystem and force it into a consistent state
1259 * @sb: the super to lock
1260 *
1261 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1262 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1263 * -EBUSY.
1264 *
1265 * During this function, sb->s_writers.frozen goes through these values:
1266 *
1267 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1268 *
1269 * SB_FREEZE_WRITE: The file system is in the process of being frozen. New
1270 * writes should be blocked, though page faults are still allowed. We wait for
1271 * all writes to complete and then proceed to the next stage.
1272 *
1273 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1274 * but internal fs threads can still modify the filesystem (although they
1275 * should not dirty new pages or inodes), writeback can run etc. After waiting
1276 * for all running page faults we sync the filesystem which will clean all
1277 * dirty pages and inodes (no new dirty pages or inodes can be created when
1278 * sync is running).
1279 *
1280 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1281 * modification are blocked (e.g. XFS preallocation truncation on inode
1282 * reclaim). This is usually implemented by blocking new transactions for
1283 * filesystems that have them and need this additional guard. After all
1284 * internal writers are finished we call ->freeze_fs() to finish filesystem
1285 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1286 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1287 *
1288 * sb->s_writers.frozen is protected by sb->s_umount.
1289 */
1290 int freeze_super(struct super_block *sb)
1291 {
1292 int ret;
1293
1294 atomic_inc(&sb->s_active);
1295 down_write(&sb->s_umount);
1296 if (sb->s_writers.frozen != SB_UNFROZEN) {
1297 deactivate_locked_super(sb);
1298 return -EBUSY;
1299 }
1300
1301 if (!(sb->s_flags & MS_BORN)) {
1302 up_write(&sb->s_umount);
1303 return 0; /* sic - it's "nothing to do" */
1304 }
1305
1306 if (sb->s_flags & MS_RDONLY) {
1307 /* Nothing to do really... */
1308 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1309 up_write(&sb->s_umount);
1310 return 0;
1311 }
1312
1313 /* From now on, no new normal writers can start */
1314 sb->s_writers.frozen = SB_FREEZE_WRITE;
1315 smp_wmb();
1316
1317 /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1318 up_write(&sb->s_umount);
1319
1320 sb_wait_write(sb, SB_FREEZE_WRITE);
1321
1322 /* Now we go and block page faults... */
1323 down_write(&sb->s_umount);
1324 sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1325 smp_wmb();
1326
1327 sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1328
1329 /* All writers are done so after syncing there won't be dirty data */
1330 sync_filesystem(sb);
1331
1332 /* Now wait for internal filesystem counter */
1333 sb->s_writers.frozen = SB_FREEZE_FS;
1334 smp_wmb();
1335 sb_wait_write(sb, SB_FREEZE_FS);
1336
1337 if (sb->s_op->freeze_fs) {
1338 ret = sb->s_op->freeze_fs(sb);
1339 if (ret) {
1340 printk(KERN_ERR
1341 "VFS:Filesystem freeze failed\n");
1342 sb->s_writers.frozen = SB_UNFROZEN;
1343 smp_wmb();
1344 wake_up(&sb->s_writers.wait_unfrozen);
1345 deactivate_locked_super(sb);
1346 return ret;
1347 }
1348 }
1349 /*
1350 * This is just for debugging purposes so that fs can warn if it
1351 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1352 */
1353 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1354 up_write(&sb->s_umount);
1355 return 0;
1356 }
1357 EXPORT_SYMBOL(freeze_super);
1358
1359 /**
1360 * thaw_super -- unlock filesystem
1361 * @sb: the super to thaw
1362 *
1363 * Unlocks the filesystem and marks it writeable again after freeze_super().
1364 */
1365 int thaw_super(struct super_block *sb)
1366 {
1367 int error;
1368
1369 down_write(&sb->s_umount);
1370 if (sb->s_writers.frozen == SB_UNFROZEN) {
1371 up_write(&sb->s_umount);
1372 return -EINVAL;
1373 }
1374
1375 if (sb->s_flags & MS_RDONLY)
1376 goto out;
1377
1378 if (sb->s_op->unfreeze_fs) {
1379 error = sb->s_op->unfreeze_fs(sb);
1380 if (error) {
1381 printk(KERN_ERR
1382 "VFS:Filesystem thaw failed\n");
1383 up_write(&sb->s_umount);
1384 return error;
1385 }
1386 }
1387
1388 out:
1389 sb->s_writers.frozen = SB_UNFROZEN;
1390 smp_wmb();
1391 wake_up(&sb->s_writers.wait_unfrozen);
1392 deactivate_locked_super(sb);
1393
1394 return 0;
1395 }
1396 EXPORT_SYMBOL(thaw_super);
This page took 0.056372 seconds and 4 git commands to generate.