Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi...
[deliverable/linux.git] / fs / udf / super.c
1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC 0
68 #define VDS_POS_UNALLOC_SPACE_DESC 1
69 #define VDS_POS_LOGICAL_VOL_DESC 2
70 #define VDS_POS_PARTITION_DESC 3
71 #define VDS_POS_IMP_USE_VOL_DESC 4
72 #define VDS_POS_VOL_DESC_PTR 5
73 #define VDS_POS_TERMINATING_DESC 6
74 #define VDS_POS_LENGTH 7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET 32768
79 #define VSD_MAX_SECTOR_OFFSET 0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90 struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92 struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101 struct logicalVolIntegrityDesc *lvid;
102 unsigned int partnum;
103 unsigned int offset;
104
105 if (!UDF_SB(sb)->s_lvid_bh)
106 return NULL;
107 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108 partnum = le32_to_cpu(lvid->numOfPartitions);
109 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110 offsetof(struct logicalVolIntegrityDesc, impUse)) /
111 (2 * sizeof(uint32_t)) < partnum) {
112 udf_err(sb, "Logical volume integrity descriptor corrupted "
113 "(numOfPartitions = %u)!\n", partnum);
114 return NULL;
115 }
116 /* The offset is to skip freeSpaceTable and sizeTable arrays */
117 offset = partnum * 2 * sizeof(uint32_t);
118 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123 int flags, const char *dev_name, void *data)
124 {
125 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129 .owner = THIS_MODULE,
130 .name = "udf",
131 .mount = udf_mount,
132 .kill_sb = kill_block_super,
133 .fs_flags = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141 struct udf_inode_info *ei;
142 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143 if (!ei)
144 return NULL;
145
146 ei->i_unique = 0;
147 ei->i_lenExtents = 0;
148 ei->i_next_alloc_block = 0;
149 ei->i_next_alloc_goal = 0;
150 ei->i_strat4096 = 0;
151 init_rwsem(&ei->i_data_sem);
152 ei->cached_extent.lstart = -1;
153 spin_lock_init(&ei->i_extent_cache_lock);
154
155 return &ei->vfs_inode;
156 }
157
158 static void udf_i_callback(struct rcu_head *head)
159 {
160 struct inode *inode = container_of(head, struct inode, i_rcu);
161 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
164 static void udf_destroy_inode(struct inode *inode)
165 {
166 call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
169 static void init_once(void *foo)
170 {
171 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173 ei->i_ext.i_data = NULL;
174 inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180 sizeof(struct udf_inode_info),
181 0, (SLAB_RECLAIM_ACCOUNT |
182 SLAB_MEM_SPREAD |
183 SLAB_ACCOUNT),
184 init_once);
185 if (!udf_inode_cachep)
186 return -ENOMEM;
187 return 0;
188 }
189
190 static void destroy_inodecache(void)
191 {
192 /*
193 * Make sure all delayed rcu free inodes are flushed before we
194 * destroy cache.
195 */
196 rcu_barrier();
197 kmem_cache_destroy(udf_inode_cachep);
198 }
199
200 /* Superblock operations */
201 static const struct super_operations udf_sb_ops = {
202 .alloc_inode = udf_alloc_inode,
203 .destroy_inode = udf_destroy_inode,
204 .write_inode = udf_write_inode,
205 .evict_inode = udf_evict_inode,
206 .put_super = udf_put_super,
207 .sync_fs = udf_sync_fs,
208 .statfs = udf_statfs,
209 .remount_fs = udf_remount_fs,
210 .show_options = udf_show_options,
211 };
212
213 struct udf_options {
214 unsigned char novrs;
215 unsigned int blocksize;
216 unsigned int session;
217 unsigned int lastblock;
218 unsigned int anchor;
219 unsigned int volume;
220 unsigned short partition;
221 unsigned int fileset;
222 unsigned int rootdir;
223 unsigned int flags;
224 umode_t umask;
225 kgid_t gid;
226 kuid_t uid;
227 umode_t fmode;
228 umode_t dmode;
229 struct nls_table *nls_map;
230 };
231
232 static int __init init_udf_fs(void)
233 {
234 int err;
235
236 err = init_inodecache();
237 if (err)
238 goto out1;
239 err = register_filesystem(&udf_fstype);
240 if (err)
241 goto out;
242
243 return 0;
244
245 out:
246 destroy_inodecache();
247
248 out1:
249 return err;
250 }
251
252 static void __exit exit_udf_fs(void)
253 {
254 unregister_filesystem(&udf_fstype);
255 destroy_inodecache();
256 }
257
258 module_init(init_udf_fs)
259 module_exit(exit_udf_fs)
260
261 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
262 {
263 struct udf_sb_info *sbi = UDF_SB(sb);
264
265 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
266 GFP_KERNEL);
267 if (!sbi->s_partmaps) {
268 udf_err(sb, "Unable to allocate space for %d partition maps\n",
269 count);
270 sbi->s_partitions = 0;
271 return -ENOMEM;
272 }
273
274 sbi->s_partitions = count;
275 return 0;
276 }
277
278 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
279 {
280 int i;
281 int nr_groups = bitmap->s_nr_groups;
282
283 for (i = 0; i < nr_groups; i++)
284 if (bitmap->s_block_bitmap[i])
285 brelse(bitmap->s_block_bitmap[i]);
286
287 kvfree(bitmap);
288 }
289
290 static void udf_free_partition(struct udf_part_map *map)
291 {
292 int i;
293 struct udf_meta_data *mdata;
294
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
296 iput(map->s_uspace.s_table);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
298 iput(map->s_fspace.s_table);
299 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
300 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
301 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
302 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
303 if (map->s_partition_type == UDF_SPARABLE_MAP15)
304 for (i = 0; i < 4; i++)
305 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
306 else if (map->s_partition_type == UDF_METADATA_MAP25) {
307 mdata = &map->s_type_specific.s_metadata;
308 iput(mdata->s_metadata_fe);
309 mdata->s_metadata_fe = NULL;
310
311 iput(mdata->s_mirror_fe);
312 mdata->s_mirror_fe = NULL;
313
314 iput(mdata->s_bitmap_fe);
315 mdata->s_bitmap_fe = NULL;
316 }
317 }
318
319 static void udf_sb_free_partitions(struct super_block *sb)
320 {
321 struct udf_sb_info *sbi = UDF_SB(sb);
322 int i;
323 if (sbi->s_partmaps == NULL)
324 return;
325 for (i = 0; i < sbi->s_partitions; i++)
326 udf_free_partition(&sbi->s_partmaps[i]);
327 kfree(sbi->s_partmaps);
328 sbi->s_partmaps = NULL;
329 }
330
331 static int udf_show_options(struct seq_file *seq, struct dentry *root)
332 {
333 struct super_block *sb = root->d_sb;
334 struct udf_sb_info *sbi = UDF_SB(sb);
335
336 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
337 seq_puts(seq, ",nostrict");
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
339 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
341 seq_puts(seq, ",unhide");
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
343 seq_puts(seq, ",undelete");
344 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
345 seq_puts(seq, ",noadinicb");
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
347 seq_puts(seq, ",shortad");
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
349 seq_puts(seq, ",uid=forget");
350 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
351 seq_puts(seq, ",uid=ignore");
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
353 seq_puts(seq, ",gid=forget");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
355 seq_puts(seq, ",gid=ignore");
356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
357 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
359 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
360 if (sbi->s_umask != 0)
361 seq_printf(seq, ",umask=%ho", sbi->s_umask);
362 if (sbi->s_fmode != UDF_INVALID_MODE)
363 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
364 if (sbi->s_dmode != UDF_INVALID_MODE)
365 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
366 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
367 seq_printf(seq, ",session=%u", sbi->s_session);
368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
369 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
370 if (sbi->s_anchor != 0)
371 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
372 /*
373 * volume, partition, fileset and rootdir seem to be ignored
374 * currently
375 */
376 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
377 seq_puts(seq, ",utf8");
378 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
379 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
380
381 return 0;
382 }
383
384 /*
385 * udf_parse_options
386 *
387 * PURPOSE
388 * Parse mount options.
389 *
390 * DESCRIPTION
391 * The following mount options are supported:
392 *
393 * gid= Set the default group.
394 * umask= Set the default umask.
395 * mode= Set the default file permissions.
396 * dmode= Set the default directory permissions.
397 * uid= Set the default user.
398 * bs= Set the block size.
399 * unhide Show otherwise hidden files.
400 * undelete Show deleted files in lists.
401 * adinicb Embed data in the inode (default)
402 * noadinicb Don't embed data in the inode
403 * shortad Use short ad's
404 * longad Use long ad's (default)
405 * nostrict Unset strict conformance
406 * iocharset= Set the NLS character set
407 *
408 * The remaining are for debugging and disaster recovery:
409 *
410 * novrs Skip volume sequence recognition
411 *
412 * The following expect a offset from 0.
413 *
414 * session= Set the CDROM session (default= last session)
415 * anchor= Override standard anchor location. (default= 256)
416 * volume= Override the VolumeDesc location. (unused)
417 * partition= Override the PartitionDesc location. (unused)
418 * lastblock= Set the last block of the filesystem/
419 *
420 * The following expect a offset from the partition root.
421 *
422 * fileset= Override the fileset block location. (unused)
423 * rootdir= Override the root directory location. (unused)
424 * WARNING: overriding the rootdir to a non-directory may
425 * yield highly unpredictable results.
426 *
427 * PRE-CONDITIONS
428 * options Pointer to mount options string.
429 * uopts Pointer to mount options variable.
430 *
431 * POST-CONDITIONS
432 * <return> 1 Mount options parsed okay.
433 * <return> 0 Error parsing mount options.
434 *
435 * HISTORY
436 * July 1, 1997 - Andrew E. Mileski
437 * Written, tested, and released.
438 */
439
440 enum {
441 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
442 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
443 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
444 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
445 Opt_rootdir, Opt_utf8, Opt_iocharset,
446 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
447 Opt_fmode, Opt_dmode
448 };
449
450 static const match_table_t tokens = {
451 {Opt_novrs, "novrs"},
452 {Opt_nostrict, "nostrict"},
453 {Opt_bs, "bs=%u"},
454 {Opt_unhide, "unhide"},
455 {Opt_undelete, "undelete"},
456 {Opt_noadinicb, "noadinicb"},
457 {Opt_adinicb, "adinicb"},
458 {Opt_shortad, "shortad"},
459 {Opt_longad, "longad"},
460 {Opt_uforget, "uid=forget"},
461 {Opt_uignore, "uid=ignore"},
462 {Opt_gforget, "gid=forget"},
463 {Opt_gignore, "gid=ignore"},
464 {Opt_gid, "gid=%u"},
465 {Opt_uid, "uid=%u"},
466 {Opt_umask, "umask=%o"},
467 {Opt_session, "session=%u"},
468 {Opt_lastblock, "lastblock=%u"},
469 {Opt_anchor, "anchor=%u"},
470 {Opt_volume, "volume=%u"},
471 {Opt_partition, "partition=%u"},
472 {Opt_fileset, "fileset=%u"},
473 {Opt_rootdir, "rootdir=%u"},
474 {Opt_utf8, "utf8"},
475 {Opt_iocharset, "iocharset=%s"},
476 {Opt_fmode, "mode=%o"},
477 {Opt_dmode, "dmode=%o"},
478 {Opt_err, NULL}
479 };
480
481 static int udf_parse_options(char *options, struct udf_options *uopt,
482 bool remount)
483 {
484 char *p;
485 int option;
486
487 uopt->novrs = 0;
488 uopt->partition = 0xFFFF;
489 uopt->session = 0xFFFFFFFF;
490 uopt->lastblock = 0;
491 uopt->anchor = 0;
492 uopt->volume = 0xFFFFFFFF;
493 uopt->rootdir = 0xFFFFFFFF;
494 uopt->fileset = 0xFFFFFFFF;
495 uopt->nls_map = NULL;
496
497 if (!options)
498 return 1;
499
500 while ((p = strsep(&options, ",")) != NULL) {
501 substring_t args[MAX_OPT_ARGS];
502 int token;
503 unsigned n;
504 if (!*p)
505 continue;
506
507 token = match_token(p, tokens, args);
508 switch (token) {
509 case Opt_novrs:
510 uopt->novrs = 1;
511 break;
512 case Opt_bs:
513 if (match_int(&args[0], &option))
514 return 0;
515 n = option;
516 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
517 return 0;
518 uopt->blocksize = n;
519 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
520 break;
521 case Opt_unhide:
522 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
523 break;
524 case Opt_undelete:
525 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
526 break;
527 case Opt_noadinicb:
528 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
529 break;
530 case Opt_adinicb:
531 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
532 break;
533 case Opt_shortad:
534 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
535 break;
536 case Opt_longad:
537 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
538 break;
539 case Opt_gid:
540 if (match_int(args, &option))
541 return 0;
542 uopt->gid = make_kgid(current_user_ns(), option);
543 if (!gid_valid(uopt->gid))
544 return 0;
545 uopt->flags |= (1 << UDF_FLAG_GID_SET);
546 break;
547 case Opt_uid:
548 if (match_int(args, &option))
549 return 0;
550 uopt->uid = make_kuid(current_user_ns(), option);
551 if (!uid_valid(uopt->uid))
552 return 0;
553 uopt->flags |= (1 << UDF_FLAG_UID_SET);
554 break;
555 case Opt_umask:
556 if (match_octal(args, &option))
557 return 0;
558 uopt->umask = option;
559 break;
560 case Opt_nostrict:
561 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
562 break;
563 case Opt_session:
564 if (match_int(args, &option))
565 return 0;
566 uopt->session = option;
567 if (!remount)
568 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
569 break;
570 case Opt_lastblock:
571 if (match_int(args, &option))
572 return 0;
573 uopt->lastblock = option;
574 if (!remount)
575 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
576 break;
577 case Opt_anchor:
578 if (match_int(args, &option))
579 return 0;
580 uopt->anchor = option;
581 break;
582 case Opt_volume:
583 if (match_int(args, &option))
584 return 0;
585 uopt->volume = option;
586 break;
587 case Opt_partition:
588 if (match_int(args, &option))
589 return 0;
590 uopt->partition = option;
591 break;
592 case Opt_fileset:
593 if (match_int(args, &option))
594 return 0;
595 uopt->fileset = option;
596 break;
597 case Opt_rootdir:
598 if (match_int(args, &option))
599 return 0;
600 uopt->rootdir = option;
601 break;
602 case Opt_utf8:
603 uopt->flags |= (1 << UDF_FLAG_UTF8);
604 break;
605 #ifdef CONFIG_UDF_NLS
606 case Opt_iocharset:
607 uopt->nls_map = load_nls(args[0].from);
608 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
609 break;
610 #endif
611 case Opt_uignore:
612 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
613 break;
614 case Opt_uforget:
615 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
616 break;
617 case Opt_gignore:
618 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
619 break;
620 case Opt_gforget:
621 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
622 break;
623 case Opt_fmode:
624 if (match_octal(args, &option))
625 return 0;
626 uopt->fmode = option & 0777;
627 break;
628 case Opt_dmode:
629 if (match_octal(args, &option))
630 return 0;
631 uopt->dmode = option & 0777;
632 break;
633 default:
634 pr_err("bad mount option \"%s\" or missing value\n", p);
635 return 0;
636 }
637 }
638 return 1;
639 }
640
641 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
642 {
643 struct udf_options uopt;
644 struct udf_sb_info *sbi = UDF_SB(sb);
645 int error = 0;
646 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
647
648 sync_filesystem(sb);
649 if (lvidiu) {
650 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
651 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
652 return -EACCES;
653 }
654
655 uopt.flags = sbi->s_flags;
656 uopt.uid = sbi->s_uid;
657 uopt.gid = sbi->s_gid;
658 uopt.umask = sbi->s_umask;
659 uopt.fmode = sbi->s_fmode;
660 uopt.dmode = sbi->s_dmode;
661
662 if (!udf_parse_options(options, &uopt, true))
663 return -EINVAL;
664
665 write_lock(&sbi->s_cred_lock);
666 sbi->s_flags = uopt.flags;
667 sbi->s_uid = uopt.uid;
668 sbi->s_gid = uopt.gid;
669 sbi->s_umask = uopt.umask;
670 sbi->s_fmode = uopt.fmode;
671 sbi->s_dmode = uopt.dmode;
672 write_unlock(&sbi->s_cred_lock);
673
674 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
675 goto out_unlock;
676
677 if (*flags & MS_RDONLY)
678 udf_close_lvid(sb);
679 else
680 udf_open_lvid(sb);
681
682 out_unlock:
683 return error;
684 }
685
686 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
687 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
688 static loff_t udf_check_vsd(struct super_block *sb)
689 {
690 struct volStructDesc *vsd = NULL;
691 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
692 int sectorsize;
693 struct buffer_head *bh = NULL;
694 int nsr02 = 0;
695 int nsr03 = 0;
696 struct udf_sb_info *sbi;
697
698 sbi = UDF_SB(sb);
699 if (sb->s_blocksize < sizeof(struct volStructDesc))
700 sectorsize = sizeof(struct volStructDesc);
701 else
702 sectorsize = sb->s_blocksize;
703
704 sector += (sbi->s_session << sb->s_blocksize_bits);
705
706 udf_debug("Starting at sector %u (%ld byte sectors)\n",
707 (unsigned int)(sector >> sb->s_blocksize_bits),
708 sb->s_blocksize);
709 /* Process the sequence (if applicable). The hard limit on the sector
710 * offset is arbitrary, hopefully large enough so that all valid UDF
711 * filesystems will be recognised. There is no mention of an upper
712 * bound to the size of the volume recognition area in the standard.
713 * The limit will prevent the code to read all the sectors of a
714 * specially crafted image (like a bluray disc full of CD001 sectors),
715 * potentially causing minutes or even hours of uninterruptible I/O
716 * activity. This actually happened with uninitialised SSD partitions
717 * (all 0xFF) before the check for the limit and all valid IDs were
718 * added */
719 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
720 sector += sectorsize) {
721 /* Read a block */
722 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
723 if (!bh)
724 break;
725
726 /* Look for ISO descriptors */
727 vsd = (struct volStructDesc *)(bh->b_data +
728 (sector & (sb->s_blocksize - 1)));
729
730 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
731 VSD_STD_ID_LEN)) {
732 switch (vsd->structType) {
733 case 0:
734 udf_debug("ISO9660 Boot Record found\n");
735 break;
736 case 1:
737 udf_debug("ISO9660 Primary Volume Descriptor found\n");
738 break;
739 case 2:
740 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
741 break;
742 case 3:
743 udf_debug("ISO9660 Volume Partition Descriptor found\n");
744 break;
745 case 255:
746 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
747 break;
748 default:
749 udf_debug("ISO9660 VRS (%u) found\n",
750 vsd->structType);
751 break;
752 }
753 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
754 VSD_STD_ID_LEN))
755 ; /* nothing */
756 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
757 VSD_STD_ID_LEN)) {
758 brelse(bh);
759 break;
760 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
761 VSD_STD_ID_LEN))
762 nsr02 = sector;
763 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
764 VSD_STD_ID_LEN))
765 nsr03 = sector;
766 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
767 VSD_STD_ID_LEN))
768 ; /* nothing */
769 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
770 VSD_STD_ID_LEN))
771 ; /* nothing */
772 else {
773 /* invalid id : end of volume recognition area */
774 brelse(bh);
775 break;
776 }
777 brelse(bh);
778 }
779
780 if (nsr03)
781 return nsr03;
782 else if (nsr02)
783 return nsr02;
784 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
785 VSD_FIRST_SECTOR_OFFSET)
786 return -1;
787 else
788 return 0;
789 }
790
791 static int udf_find_fileset(struct super_block *sb,
792 struct kernel_lb_addr *fileset,
793 struct kernel_lb_addr *root)
794 {
795 struct buffer_head *bh = NULL;
796 long lastblock;
797 uint16_t ident;
798 struct udf_sb_info *sbi;
799
800 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
801 fileset->partitionReferenceNum != 0xFFFF) {
802 bh = udf_read_ptagged(sb, fileset, 0, &ident);
803
804 if (!bh) {
805 return 1;
806 } else if (ident != TAG_IDENT_FSD) {
807 brelse(bh);
808 return 1;
809 }
810
811 }
812
813 sbi = UDF_SB(sb);
814 if (!bh) {
815 /* Search backwards through the partitions */
816 struct kernel_lb_addr newfileset;
817
818 /* --> cvg: FIXME - is it reasonable? */
819 return 1;
820
821 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
822 (newfileset.partitionReferenceNum != 0xFFFF &&
823 fileset->logicalBlockNum == 0xFFFFFFFF &&
824 fileset->partitionReferenceNum == 0xFFFF);
825 newfileset.partitionReferenceNum--) {
826 lastblock = sbi->s_partmaps
827 [newfileset.partitionReferenceNum]
828 .s_partition_len;
829 newfileset.logicalBlockNum = 0;
830
831 do {
832 bh = udf_read_ptagged(sb, &newfileset, 0,
833 &ident);
834 if (!bh) {
835 newfileset.logicalBlockNum++;
836 continue;
837 }
838
839 switch (ident) {
840 case TAG_IDENT_SBD:
841 {
842 struct spaceBitmapDesc *sp;
843 sp = (struct spaceBitmapDesc *)
844 bh->b_data;
845 newfileset.logicalBlockNum += 1 +
846 ((le32_to_cpu(sp->numOfBytes) +
847 sizeof(struct spaceBitmapDesc)
848 - 1) >> sb->s_blocksize_bits);
849 brelse(bh);
850 break;
851 }
852 case TAG_IDENT_FSD:
853 *fileset = newfileset;
854 break;
855 default:
856 newfileset.logicalBlockNum++;
857 brelse(bh);
858 bh = NULL;
859 break;
860 }
861 } while (newfileset.logicalBlockNum < lastblock &&
862 fileset->logicalBlockNum == 0xFFFFFFFF &&
863 fileset->partitionReferenceNum == 0xFFFF);
864 }
865 }
866
867 if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
868 fileset->partitionReferenceNum != 0xFFFF) && bh) {
869 udf_debug("Fileset at block=%d, partition=%d\n",
870 fileset->logicalBlockNum,
871 fileset->partitionReferenceNum);
872
873 sbi->s_partition = fileset->partitionReferenceNum;
874 udf_load_fileset(sb, bh, root);
875 brelse(bh);
876 return 0;
877 }
878 return 1;
879 }
880
881 /*
882 * Load primary Volume Descriptor Sequence
883 *
884 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
885 * should be tried.
886 */
887 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
888 {
889 struct primaryVolDesc *pvoldesc;
890 uint8_t *outstr;
891 struct buffer_head *bh;
892 uint16_t ident;
893 int ret = -ENOMEM;
894
895 outstr = kmalloc(128, GFP_NOFS);
896 if (!outstr)
897 return -ENOMEM;
898
899 bh = udf_read_tagged(sb, block, block, &ident);
900 if (!bh) {
901 ret = -EAGAIN;
902 goto out2;
903 }
904
905 if (ident != TAG_IDENT_PVD) {
906 ret = -EIO;
907 goto out_bh;
908 }
909
910 pvoldesc = (struct primaryVolDesc *)bh->b_data;
911
912 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
913 pvoldesc->recordingDateAndTime)) {
914 #ifdef UDFFS_DEBUG
915 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
916 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
917 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
918 ts->minute, le16_to_cpu(ts->typeAndTimezone));
919 #endif
920 }
921
922 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
923 if (ret < 0)
924 goto out_bh;
925
926 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
927 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
928
929 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
930 if (ret < 0)
931 goto out_bh;
932
933 outstr[ret] = 0;
934 udf_debug("volSetIdent[] = '%s'\n", outstr);
935
936 ret = 0;
937 out_bh:
938 brelse(bh);
939 out2:
940 kfree(outstr);
941 return ret;
942 }
943
944 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
945 u32 meta_file_loc, u32 partition_num)
946 {
947 struct kernel_lb_addr addr;
948 struct inode *metadata_fe;
949
950 addr.logicalBlockNum = meta_file_loc;
951 addr.partitionReferenceNum = partition_num;
952
953 metadata_fe = udf_iget_special(sb, &addr);
954
955 if (IS_ERR(metadata_fe)) {
956 udf_warn(sb, "metadata inode efe not found\n");
957 return metadata_fe;
958 }
959 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
960 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
961 iput(metadata_fe);
962 return ERR_PTR(-EIO);
963 }
964
965 return metadata_fe;
966 }
967
968 static int udf_load_metadata_files(struct super_block *sb, int partition)
969 {
970 struct udf_sb_info *sbi = UDF_SB(sb);
971 struct udf_part_map *map;
972 struct udf_meta_data *mdata;
973 struct kernel_lb_addr addr;
974 struct inode *fe;
975
976 map = &sbi->s_partmaps[partition];
977 mdata = &map->s_type_specific.s_metadata;
978
979 /* metadata address */
980 udf_debug("Metadata file location: block = %d part = %d\n",
981 mdata->s_meta_file_loc, map->s_partition_num);
982
983 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
984 map->s_partition_num);
985 if (IS_ERR(fe)) {
986 /* mirror file entry */
987 udf_debug("Mirror metadata file location: block = %d part = %d\n",
988 mdata->s_mirror_file_loc, map->s_partition_num);
989
990 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
991 map->s_partition_num);
992
993 if (IS_ERR(fe)) {
994 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
995 return PTR_ERR(fe);
996 }
997 mdata->s_mirror_fe = fe;
998 } else
999 mdata->s_metadata_fe = fe;
1000
1001
1002 /*
1003 * bitmap file entry
1004 * Note:
1005 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1006 */
1007 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1008 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1009 addr.partitionReferenceNum = map->s_partition_num;
1010
1011 udf_debug("Bitmap file location: block = %d part = %d\n",
1012 addr.logicalBlockNum, addr.partitionReferenceNum);
1013
1014 fe = udf_iget_special(sb, &addr);
1015 if (IS_ERR(fe)) {
1016 if (sb->s_flags & MS_RDONLY)
1017 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1018 else {
1019 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1020 return PTR_ERR(fe);
1021 }
1022 } else
1023 mdata->s_bitmap_fe = fe;
1024 }
1025
1026 udf_debug("udf_load_metadata_files Ok\n");
1027 return 0;
1028 }
1029
1030 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1031 struct kernel_lb_addr *root)
1032 {
1033 struct fileSetDesc *fset;
1034
1035 fset = (struct fileSetDesc *)bh->b_data;
1036
1037 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1038
1039 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1040
1041 udf_debug("Rootdir at block=%d, partition=%d\n",
1042 root->logicalBlockNum, root->partitionReferenceNum);
1043 }
1044
1045 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1046 {
1047 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1048 return DIV_ROUND_UP(map->s_partition_len +
1049 (sizeof(struct spaceBitmapDesc) << 3),
1050 sb->s_blocksize * 8);
1051 }
1052
1053 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1054 {
1055 struct udf_bitmap *bitmap;
1056 int nr_groups;
1057 int size;
1058
1059 nr_groups = udf_compute_nr_groups(sb, index);
1060 size = sizeof(struct udf_bitmap) +
1061 (sizeof(struct buffer_head *) * nr_groups);
1062
1063 if (size <= PAGE_SIZE)
1064 bitmap = kzalloc(size, GFP_KERNEL);
1065 else
1066 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1067
1068 if (bitmap == NULL)
1069 return NULL;
1070
1071 bitmap->s_nr_groups = nr_groups;
1072 return bitmap;
1073 }
1074
1075 static int udf_fill_partdesc_info(struct super_block *sb,
1076 struct partitionDesc *p, int p_index)
1077 {
1078 struct udf_part_map *map;
1079 struct udf_sb_info *sbi = UDF_SB(sb);
1080 struct partitionHeaderDesc *phd;
1081
1082 map = &sbi->s_partmaps[p_index];
1083
1084 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1085 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1086
1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1088 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1090 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1092 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1094 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1095
1096 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1097 p_index, map->s_partition_type,
1098 map->s_partition_root, map->s_partition_len);
1099
1100 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1101 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1102 return 0;
1103
1104 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1105 if (phd->unallocSpaceTable.extLength) {
1106 struct kernel_lb_addr loc = {
1107 .logicalBlockNum = le32_to_cpu(
1108 phd->unallocSpaceTable.extPosition),
1109 .partitionReferenceNum = p_index,
1110 };
1111 struct inode *inode;
1112
1113 inode = udf_iget_special(sb, &loc);
1114 if (IS_ERR(inode)) {
1115 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1116 p_index);
1117 return PTR_ERR(inode);
1118 }
1119 map->s_uspace.s_table = inode;
1120 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1121 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1122 p_index, map->s_uspace.s_table->i_ino);
1123 }
1124
1125 if (phd->unallocSpaceBitmap.extLength) {
1126 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1127 if (!bitmap)
1128 return -ENOMEM;
1129 map->s_uspace.s_bitmap = bitmap;
1130 bitmap->s_extPosition = le32_to_cpu(
1131 phd->unallocSpaceBitmap.extPosition);
1132 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1133 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1134 p_index, bitmap->s_extPosition);
1135 }
1136
1137 if (phd->partitionIntegrityTable.extLength)
1138 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1139
1140 if (phd->freedSpaceTable.extLength) {
1141 struct kernel_lb_addr loc = {
1142 .logicalBlockNum = le32_to_cpu(
1143 phd->freedSpaceTable.extPosition),
1144 .partitionReferenceNum = p_index,
1145 };
1146 struct inode *inode;
1147
1148 inode = udf_iget_special(sb, &loc);
1149 if (IS_ERR(inode)) {
1150 udf_debug("cannot load freedSpaceTable (part %d)\n",
1151 p_index);
1152 return PTR_ERR(inode);
1153 }
1154 map->s_fspace.s_table = inode;
1155 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1156 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1157 p_index, map->s_fspace.s_table->i_ino);
1158 }
1159
1160 if (phd->freedSpaceBitmap.extLength) {
1161 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1162 if (!bitmap)
1163 return -ENOMEM;
1164 map->s_fspace.s_bitmap = bitmap;
1165 bitmap->s_extPosition = le32_to_cpu(
1166 phd->freedSpaceBitmap.extPosition);
1167 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1168 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1169 p_index, bitmap->s_extPosition);
1170 }
1171 return 0;
1172 }
1173
1174 static void udf_find_vat_block(struct super_block *sb, int p_index,
1175 int type1_index, sector_t start_block)
1176 {
1177 struct udf_sb_info *sbi = UDF_SB(sb);
1178 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1179 sector_t vat_block;
1180 struct kernel_lb_addr ino;
1181 struct inode *inode;
1182
1183 /*
1184 * VAT file entry is in the last recorded block. Some broken disks have
1185 * it a few blocks before so try a bit harder...
1186 */
1187 ino.partitionReferenceNum = type1_index;
1188 for (vat_block = start_block;
1189 vat_block >= map->s_partition_root &&
1190 vat_block >= start_block - 3; vat_block--) {
1191 ino.logicalBlockNum = vat_block - map->s_partition_root;
1192 inode = udf_iget_special(sb, &ino);
1193 if (!IS_ERR(inode)) {
1194 sbi->s_vat_inode = inode;
1195 break;
1196 }
1197 }
1198 }
1199
1200 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1201 {
1202 struct udf_sb_info *sbi = UDF_SB(sb);
1203 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1204 struct buffer_head *bh = NULL;
1205 struct udf_inode_info *vati;
1206 uint32_t pos;
1207 struct virtualAllocationTable20 *vat20;
1208 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1209
1210 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1211 if (!sbi->s_vat_inode &&
1212 sbi->s_last_block != blocks - 1) {
1213 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1214 (unsigned long)sbi->s_last_block,
1215 (unsigned long)blocks - 1);
1216 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1217 }
1218 if (!sbi->s_vat_inode)
1219 return -EIO;
1220
1221 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1222 map->s_type_specific.s_virtual.s_start_offset = 0;
1223 map->s_type_specific.s_virtual.s_num_entries =
1224 (sbi->s_vat_inode->i_size - 36) >> 2;
1225 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1226 vati = UDF_I(sbi->s_vat_inode);
1227 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1228 pos = udf_block_map(sbi->s_vat_inode, 0);
1229 bh = sb_bread(sb, pos);
1230 if (!bh)
1231 return -EIO;
1232 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1233 } else {
1234 vat20 = (struct virtualAllocationTable20 *)
1235 vati->i_ext.i_data;
1236 }
1237
1238 map->s_type_specific.s_virtual.s_start_offset =
1239 le16_to_cpu(vat20->lengthHeader);
1240 map->s_type_specific.s_virtual.s_num_entries =
1241 (sbi->s_vat_inode->i_size -
1242 map->s_type_specific.s_virtual.
1243 s_start_offset) >> 2;
1244 brelse(bh);
1245 }
1246 return 0;
1247 }
1248
1249 /*
1250 * Load partition descriptor block
1251 *
1252 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1253 * sequence.
1254 */
1255 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1256 {
1257 struct buffer_head *bh;
1258 struct partitionDesc *p;
1259 struct udf_part_map *map;
1260 struct udf_sb_info *sbi = UDF_SB(sb);
1261 int i, type1_idx;
1262 uint16_t partitionNumber;
1263 uint16_t ident;
1264 int ret;
1265
1266 bh = udf_read_tagged(sb, block, block, &ident);
1267 if (!bh)
1268 return -EAGAIN;
1269 if (ident != TAG_IDENT_PD) {
1270 ret = 0;
1271 goto out_bh;
1272 }
1273
1274 p = (struct partitionDesc *)bh->b_data;
1275 partitionNumber = le16_to_cpu(p->partitionNumber);
1276
1277 /* First scan for TYPE1, SPARABLE and METADATA partitions */
1278 for (i = 0; i < sbi->s_partitions; i++) {
1279 map = &sbi->s_partmaps[i];
1280 udf_debug("Searching map: (%d == %d)\n",
1281 map->s_partition_num, partitionNumber);
1282 if (map->s_partition_num == partitionNumber &&
1283 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1284 map->s_partition_type == UDF_SPARABLE_MAP15))
1285 break;
1286 }
1287
1288 if (i >= sbi->s_partitions) {
1289 udf_debug("Partition (%d) not found in partition map\n",
1290 partitionNumber);
1291 ret = 0;
1292 goto out_bh;
1293 }
1294
1295 ret = udf_fill_partdesc_info(sb, p, i);
1296 if (ret < 0)
1297 goto out_bh;
1298
1299 /*
1300 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1301 * PHYSICAL partitions are already set up
1302 */
1303 type1_idx = i;
1304 #ifdef UDFFS_DEBUG
1305 map = NULL; /* supress 'maybe used uninitialized' warning */
1306 #endif
1307 for (i = 0; i < sbi->s_partitions; i++) {
1308 map = &sbi->s_partmaps[i];
1309
1310 if (map->s_partition_num == partitionNumber &&
1311 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1312 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1313 map->s_partition_type == UDF_METADATA_MAP25))
1314 break;
1315 }
1316
1317 if (i >= sbi->s_partitions) {
1318 ret = 0;
1319 goto out_bh;
1320 }
1321
1322 ret = udf_fill_partdesc_info(sb, p, i);
1323 if (ret < 0)
1324 goto out_bh;
1325
1326 if (map->s_partition_type == UDF_METADATA_MAP25) {
1327 ret = udf_load_metadata_files(sb, i);
1328 if (ret < 0) {
1329 udf_err(sb, "error loading MetaData partition map %d\n",
1330 i);
1331 goto out_bh;
1332 }
1333 } else {
1334 /*
1335 * If we have a partition with virtual map, we don't handle
1336 * writing to it (we overwrite blocks instead of relocating
1337 * them).
1338 */
1339 if (!(sb->s_flags & MS_RDONLY)) {
1340 ret = -EACCES;
1341 goto out_bh;
1342 }
1343 ret = udf_load_vat(sb, i, type1_idx);
1344 if (ret < 0)
1345 goto out_bh;
1346 }
1347 ret = 0;
1348 out_bh:
1349 /* In case loading failed, we handle cleanup in udf_fill_super */
1350 brelse(bh);
1351 return ret;
1352 }
1353
1354 static int udf_load_sparable_map(struct super_block *sb,
1355 struct udf_part_map *map,
1356 struct sparablePartitionMap *spm)
1357 {
1358 uint32_t loc;
1359 uint16_t ident;
1360 struct sparingTable *st;
1361 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1362 int i;
1363 struct buffer_head *bh;
1364
1365 map->s_partition_type = UDF_SPARABLE_MAP15;
1366 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1367 if (!is_power_of_2(sdata->s_packet_len)) {
1368 udf_err(sb, "error loading logical volume descriptor: "
1369 "Invalid packet length %u\n",
1370 (unsigned)sdata->s_packet_len);
1371 return -EIO;
1372 }
1373 if (spm->numSparingTables > 4) {
1374 udf_err(sb, "error loading logical volume descriptor: "
1375 "Too many sparing tables (%d)\n",
1376 (int)spm->numSparingTables);
1377 return -EIO;
1378 }
1379
1380 for (i = 0; i < spm->numSparingTables; i++) {
1381 loc = le32_to_cpu(spm->locSparingTable[i]);
1382 bh = udf_read_tagged(sb, loc, loc, &ident);
1383 if (!bh)
1384 continue;
1385
1386 st = (struct sparingTable *)bh->b_data;
1387 if (ident != 0 ||
1388 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1389 strlen(UDF_ID_SPARING)) ||
1390 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1391 sb->s_blocksize) {
1392 brelse(bh);
1393 continue;
1394 }
1395
1396 sdata->s_spar_map[i] = bh;
1397 }
1398 map->s_partition_func = udf_get_pblock_spar15;
1399 return 0;
1400 }
1401
1402 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1403 struct kernel_lb_addr *fileset)
1404 {
1405 struct logicalVolDesc *lvd;
1406 int i, offset;
1407 uint8_t type;
1408 struct udf_sb_info *sbi = UDF_SB(sb);
1409 struct genericPartitionMap *gpm;
1410 uint16_t ident;
1411 struct buffer_head *bh;
1412 unsigned int table_len;
1413 int ret;
1414
1415 bh = udf_read_tagged(sb, block, block, &ident);
1416 if (!bh)
1417 return -EAGAIN;
1418 BUG_ON(ident != TAG_IDENT_LVD);
1419 lvd = (struct logicalVolDesc *)bh->b_data;
1420 table_len = le32_to_cpu(lvd->mapTableLength);
1421 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1422 udf_err(sb, "error loading logical volume descriptor: "
1423 "Partition table too long (%u > %lu)\n", table_len,
1424 sb->s_blocksize - sizeof(*lvd));
1425 ret = -EIO;
1426 goto out_bh;
1427 }
1428
1429 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1430 if (ret)
1431 goto out_bh;
1432
1433 for (i = 0, offset = 0;
1434 i < sbi->s_partitions && offset < table_len;
1435 i++, offset += gpm->partitionMapLength) {
1436 struct udf_part_map *map = &sbi->s_partmaps[i];
1437 gpm = (struct genericPartitionMap *)
1438 &(lvd->partitionMaps[offset]);
1439 type = gpm->partitionMapType;
1440 if (type == 1) {
1441 struct genericPartitionMap1 *gpm1 =
1442 (struct genericPartitionMap1 *)gpm;
1443 map->s_partition_type = UDF_TYPE1_MAP15;
1444 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1445 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1446 map->s_partition_func = NULL;
1447 } else if (type == 2) {
1448 struct udfPartitionMap2 *upm2 =
1449 (struct udfPartitionMap2 *)gpm;
1450 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1451 strlen(UDF_ID_VIRTUAL))) {
1452 u16 suf =
1453 le16_to_cpu(((__le16 *)upm2->partIdent.
1454 identSuffix)[0]);
1455 if (suf < 0x0200) {
1456 map->s_partition_type =
1457 UDF_VIRTUAL_MAP15;
1458 map->s_partition_func =
1459 udf_get_pblock_virt15;
1460 } else {
1461 map->s_partition_type =
1462 UDF_VIRTUAL_MAP20;
1463 map->s_partition_func =
1464 udf_get_pblock_virt20;
1465 }
1466 } else if (!strncmp(upm2->partIdent.ident,
1467 UDF_ID_SPARABLE,
1468 strlen(UDF_ID_SPARABLE))) {
1469 ret = udf_load_sparable_map(sb, map,
1470 (struct sparablePartitionMap *)gpm);
1471 if (ret < 0)
1472 goto out_bh;
1473 } else if (!strncmp(upm2->partIdent.ident,
1474 UDF_ID_METADATA,
1475 strlen(UDF_ID_METADATA))) {
1476 struct udf_meta_data *mdata =
1477 &map->s_type_specific.s_metadata;
1478 struct metadataPartitionMap *mdm =
1479 (struct metadataPartitionMap *)
1480 &(lvd->partitionMaps[offset]);
1481 udf_debug("Parsing Logical vol part %d type %d id=%s\n",
1482 i, type, UDF_ID_METADATA);
1483
1484 map->s_partition_type = UDF_METADATA_MAP25;
1485 map->s_partition_func = udf_get_pblock_meta25;
1486
1487 mdata->s_meta_file_loc =
1488 le32_to_cpu(mdm->metadataFileLoc);
1489 mdata->s_mirror_file_loc =
1490 le32_to_cpu(mdm->metadataMirrorFileLoc);
1491 mdata->s_bitmap_file_loc =
1492 le32_to_cpu(mdm->metadataBitmapFileLoc);
1493 mdata->s_alloc_unit_size =
1494 le32_to_cpu(mdm->allocUnitSize);
1495 mdata->s_align_unit_size =
1496 le16_to_cpu(mdm->alignUnitSize);
1497 if (mdm->flags & 0x01)
1498 mdata->s_flags |= MF_DUPLICATE_MD;
1499
1500 udf_debug("Metadata Ident suffix=0x%x\n",
1501 le16_to_cpu(*(__le16 *)
1502 mdm->partIdent.identSuffix));
1503 udf_debug("Metadata part num=%d\n",
1504 le16_to_cpu(mdm->partitionNum));
1505 udf_debug("Metadata part alloc unit size=%d\n",
1506 le32_to_cpu(mdm->allocUnitSize));
1507 udf_debug("Metadata file loc=%d\n",
1508 le32_to_cpu(mdm->metadataFileLoc));
1509 udf_debug("Mirror file loc=%d\n",
1510 le32_to_cpu(mdm->metadataMirrorFileLoc));
1511 udf_debug("Bitmap file loc=%d\n",
1512 le32_to_cpu(mdm->metadataBitmapFileLoc));
1513 udf_debug("Flags: %d %d\n",
1514 mdata->s_flags, mdm->flags);
1515 } else {
1516 udf_debug("Unknown ident: %s\n",
1517 upm2->partIdent.ident);
1518 continue;
1519 }
1520 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1521 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1522 }
1523 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1524 i, map->s_partition_num, type, map->s_volumeseqnum);
1525 }
1526
1527 if (fileset) {
1528 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1529
1530 *fileset = lelb_to_cpu(la->extLocation);
1531 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1532 fileset->logicalBlockNum,
1533 fileset->partitionReferenceNum);
1534 }
1535 if (lvd->integritySeqExt.extLength)
1536 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1537 ret = 0;
1538 out_bh:
1539 brelse(bh);
1540 return ret;
1541 }
1542
1543 /*
1544 * udf_load_logicalvolint
1545 *
1546 */
1547 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1548 {
1549 struct buffer_head *bh = NULL;
1550 uint16_t ident;
1551 struct udf_sb_info *sbi = UDF_SB(sb);
1552 struct logicalVolIntegrityDesc *lvid;
1553
1554 while (loc.extLength > 0 &&
1555 (bh = udf_read_tagged(sb, loc.extLocation,
1556 loc.extLocation, &ident)) &&
1557 ident == TAG_IDENT_LVID) {
1558 sbi->s_lvid_bh = bh;
1559 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1560
1561 if (lvid->nextIntegrityExt.extLength)
1562 udf_load_logicalvolint(sb,
1563 leea_to_cpu(lvid->nextIntegrityExt));
1564
1565 if (sbi->s_lvid_bh != bh)
1566 brelse(bh);
1567 loc.extLength -= sb->s_blocksize;
1568 loc.extLocation++;
1569 }
1570 if (sbi->s_lvid_bh != bh)
1571 brelse(bh);
1572 }
1573
1574 /*
1575 * Maximum number of Terminating Descriptor redirections. The chosen number is
1576 * arbitrary - just that we hopefully don't limit any real use of rewritten
1577 * inode on write-once media but avoid looping for too long on corrupted media.
1578 */
1579 #define UDF_MAX_TD_NESTING 64
1580
1581 /*
1582 * Process a main/reserve volume descriptor sequence.
1583 * @block First block of first extent of the sequence.
1584 * @lastblock Lastblock of first extent of the sequence.
1585 * @fileset There we store extent containing root fileset
1586 *
1587 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1588 * sequence
1589 */
1590 static noinline int udf_process_sequence(
1591 struct super_block *sb,
1592 sector_t block, sector_t lastblock,
1593 struct kernel_lb_addr *fileset)
1594 {
1595 struct buffer_head *bh = NULL;
1596 struct udf_vds_record vds[VDS_POS_LENGTH];
1597 struct udf_vds_record *curr;
1598 struct generic_desc *gd;
1599 struct volDescPtr *vdp;
1600 bool done = false;
1601 uint32_t vdsn;
1602 uint16_t ident;
1603 long next_s = 0, next_e = 0;
1604 int ret;
1605 unsigned int indirections = 0;
1606
1607 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1608
1609 /*
1610 * Read the main descriptor sequence and find which descriptors
1611 * are in it.
1612 */
1613 for (; (!done && block <= lastblock); block++) {
1614
1615 bh = udf_read_tagged(sb, block, block, &ident);
1616 if (!bh) {
1617 udf_err(sb,
1618 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1619 (unsigned long long)block);
1620 return -EAGAIN;
1621 }
1622
1623 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1624 gd = (struct generic_desc *)bh->b_data;
1625 vdsn = le32_to_cpu(gd->volDescSeqNum);
1626 switch (ident) {
1627 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1628 curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1629 if (vdsn >= curr->volDescSeqNum) {
1630 curr->volDescSeqNum = vdsn;
1631 curr->block = block;
1632 }
1633 break;
1634 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1635 curr = &vds[VDS_POS_VOL_DESC_PTR];
1636 if (vdsn >= curr->volDescSeqNum) {
1637 curr->volDescSeqNum = vdsn;
1638 curr->block = block;
1639
1640 vdp = (struct volDescPtr *)bh->b_data;
1641 next_s = le32_to_cpu(
1642 vdp->nextVolDescSeqExt.extLocation);
1643 next_e = le32_to_cpu(
1644 vdp->nextVolDescSeqExt.extLength);
1645 next_e = next_e >> sb->s_blocksize_bits;
1646 next_e += next_s;
1647 }
1648 break;
1649 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1650 curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1651 if (vdsn >= curr->volDescSeqNum) {
1652 curr->volDescSeqNum = vdsn;
1653 curr->block = block;
1654 }
1655 break;
1656 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1657 curr = &vds[VDS_POS_PARTITION_DESC];
1658 if (!curr->block)
1659 curr->block = block;
1660 break;
1661 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1662 curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1663 if (vdsn >= curr->volDescSeqNum) {
1664 curr->volDescSeqNum = vdsn;
1665 curr->block = block;
1666 }
1667 break;
1668 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1669 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1670 if (vdsn >= curr->volDescSeqNum) {
1671 curr->volDescSeqNum = vdsn;
1672 curr->block = block;
1673 }
1674 break;
1675 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1676 if (++indirections > UDF_MAX_TD_NESTING) {
1677 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1678 brelse(bh);
1679 return -EIO;
1680 }
1681
1682 vds[VDS_POS_TERMINATING_DESC].block = block;
1683 if (next_e) {
1684 block = next_s;
1685 lastblock = next_e;
1686 next_s = next_e = 0;
1687 } else
1688 done = true;
1689 break;
1690 }
1691 brelse(bh);
1692 }
1693 /*
1694 * Now read interesting descriptors again and process them
1695 * in a suitable order
1696 */
1697 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1698 udf_err(sb, "Primary Volume Descriptor not found!\n");
1699 return -EAGAIN;
1700 }
1701 ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1702 if (ret < 0)
1703 return ret;
1704
1705 if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1706 ret = udf_load_logicalvol(sb,
1707 vds[VDS_POS_LOGICAL_VOL_DESC].block,
1708 fileset);
1709 if (ret < 0)
1710 return ret;
1711 }
1712
1713 if (vds[VDS_POS_PARTITION_DESC].block) {
1714 /*
1715 * We rescan the whole descriptor sequence to find
1716 * partition descriptor blocks and process them.
1717 */
1718 for (block = vds[VDS_POS_PARTITION_DESC].block;
1719 block < vds[VDS_POS_TERMINATING_DESC].block;
1720 block++) {
1721 ret = udf_load_partdesc(sb, block);
1722 if (ret < 0)
1723 return ret;
1724 }
1725 }
1726
1727 return 0;
1728 }
1729
1730 /*
1731 * Load Volume Descriptor Sequence described by anchor in bh
1732 *
1733 * Returns <0 on error, 0 on success
1734 */
1735 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1736 struct kernel_lb_addr *fileset)
1737 {
1738 struct anchorVolDescPtr *anchor;
1739 sector_t main_s, main_e, reserve_s, reserve_e;
1740 int ret;
1741
1742 anchor = (struct anchorVolDescPtr *)bh->b_data;
1743
1744 /* Locate the main sequence */
1745 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1746 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1747 main_e = main_e >> sb->s_blocksize_bits;
1748 main_e += main_s;
1749
1750 /* Locate the reserve sequence */
1751 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1752 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1753 reserve_e = reserve_e >> sb->s_blocksize_bits;
1754 reserve_e += reserve_s;
1755
1756 /* Process the main & reserve sequences */
1757 /* responsible for finding the PartitionDesc(s) */
1758 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1759 if (ret != -EAGAIN)
1760 return ret;
1761 udf_sb_free_partitions(sb);
1762 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1763 if (ret < 0) {
1764 udf_sb_free_partitions(sb);
1765 /* No sequence was OK, return -EIO */
1766 if (ret == -EAGAIN)
1767 ret = -EIO;
1768 }
1769 return ret;
1770 }
1771
1772 /*
1773 * Check whether there is an anchor block in the given block and
1774 * load Volume Descriptor Sequence if so.
1775 *
1776 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1777 * block
1778 */
1779 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1780 struct kernel_lb_addr *fileset)
1781 {
1782 struct buffer_head *bh;
1783 uint16_t ident;
1784 int ret;
1785
1786 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1787 udf_fixed_to_variable(block) >=
1788 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1789 return -EAGAIN;
1790
1791 bh = udf_read_tagged(sb, block, block, &ident);
1792 if (!bh)
1793 return -EAGAIN;
1794 if (ident != TAG_IDENT_AVDP) {
1795 brelse(bh);
1796 return -EAGAIN;
1797 }
1798 ret = udf_load_sequence(sb, bh, fileset);
1799 brelse(bh);
1800 return ret;
1801 }
1802
1803 /*
1804 * Search for an anchor volume descriptor pointer.
1805 *
1806 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1807 * of anchors.
1808 */
1809 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1810 struct kernel_lb_addr *fileset)
1811 {
1812 sector_t last[6];
1813 int i;
1814 struct udf_sb_info *sbi = UDF_SB(sb);
1815 int last_count = 0;
1816 int ret;
1817
1818 /* First try user provided anchor */
1819 if (sbi->s_anchor) {
1820 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1821 if (ret != -EAGAIN)
1822 return ret;
1823 }
1824 /*
1825 * according to spec, anchor is in either:
1826 * block 256
1827 * lastblock-256
1828 * lastblock
1829 * however, if the disc isn't closed, it could be 512.
1830 */
1831 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1832 if (ret != -EAGAIN)
1833 return ret;
1834 /*
1835 * The trouble is which block is the last one. Drives often misreport
1836 * this so we try various possibilities.
1837 */
1838 last[last_count++] = *lastblock;
1839 if (*lastblock >= 1)
1840 last[last_count++] = *lastblock - 1;
1841 last[last_count++] = *lastblock + 1;
1842 if (*lastblock >= 2)
1843 last[last_count++] = *lastblock - 2;
1844 if (*lastblock >= 150)
1845 last[last_count++] = *lastblock - 150;
1846 if (*lastblock >= 152)
1847 last[last_count++] = *lastblock - 152;
1848
1849 for (i = 0; i < last_count; i++) {
1850 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1851 sb->s_blocksize_bits)
1852 continue;
1853 ret = udf_check_anchor_block(sb, last[i], fileset);
1854 if (ret != -EAGAIN) {
1855 if (!ret)
1856 *lastblock = last[i];
1857 return ret;
1858 }
1859 if (last[i] < 256)
1860 continue;
1861 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1862 if (ret != -EAGAIN) {
1863 if (!ret)
1864 *lastblock = last[i];
1865 return ret;
1866 }
1867 }
1868
1869 /* Finally try block 512 in case media is open */
1870 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1871 }
1872
1873 /*
1874 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1875 * area specified by it. The function expects sbi->s_lastblock to be the last
1876 * block on the media.
1877 *
1878 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1879 * was not found.
1880 */
1881 static int udf_find_anchor(struct super_block *sb,
1882 struct kernel_lb_addr *fileset)
1883 {
1884 struct udf_sb_info *sbi = UDF_SB(sb);
1885 sector_t lastblock = sbi->s_last_block;
1886 int ret;
1887
1888 ret = udf_scan_anchors(sb, &lastblock, fileset);
1889 if (ret != -EAGAIN)
1890 goto out;
1891
1892 /* No anchor found? Try VARCONV conversion of block numbers */
1893 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1894 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1895 /* Firstly, we try to not convert number of the last block */
1896 ret = udf_scan_anchors(sb, &lastblock, fileset);
1897 if (ret != -EAGAIN)
1898 goto out;
1899
1900 lastblock = sbi->s_last_block;
1901 /* Secondly, we try with converted number of the last block */
1902 ret = udf_scan_anchors(sb, &lastblock, fileset);
1903 if (ret < 0) {
1904 /* VARCONV didn't help. Clear it. */
1905 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1906 }
1907 out:
1908 if (ret == 0)
1909 sbi->s_last_block = lastblock;
1910 return ret;
1911 }
1912
1913 /*
1914 * Check Volume Structure Descriptor, find Anchor block and load Volume
1915 * Descriptor Sequence.
1916 *
1917 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1918 * block was not found.
1919 */
1920 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1921 int silent, struct kernel_lb_addr *fileset)
1922 {
1923 struct udf_sb_info *sbi = UDF_SB(sb);
1924 loff_t nsr_off;
1925 int ret;
1926
1927 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1928 if (!silent)
1929 udf_warn(sb, "Bad block size\n");
1930 return -EINVAL;
1931 }
1932 sbi->s_last_block = uopt->lastblock;
1933 if (!uopt->novrs) {
1934 /* Check that it is NSR02 compliant */
1935 nsr_off = udf_check_vsd(sb);
1936 if (!nsr_off) {
1937 if (!silent)
1938 udf_warn(sb, "No VRS found\n");
1939 return 0;
1940 }
1941 if (nsr_off == -1)
1942 udf_debug("Failed to read sector at offset %d. "
1943 "Assuming open disc. Skipping validity "
1944 "check\n", VSD_FIRST_SECTOR_OFFSET);
1945 if (!sbi->s_last_block)
1946 sbi->s_last_block = udf_get_last_block(sb);
1947 } else {
1948 udf_debug("Validity check skipped because of novrs option\n");
1949 }
1950
1951 /* Look for anchor block and load Volume Descriptor Sequence */
1952 sbi->s_anchor = uopt->anchor;
1953 ret = udf_find_anchor(sb, fileset);
1954 if (ret < 0) {
1955 if (!silent && ret == -EAGAIN)
1956 udf_warn(sb, "No anchor found\n");
1957 return ret;
1958 }
1959 return 0;
1960 }
1961
1962 static void udf_open_lvid(struct super_block *sb)
1963 {
1964 struct udf_sb_info *sbi = UDF_SB(sb);
1965 struct buffer_head *bh = sbi->s_lvid_bh;
1966 struct logicalVolIntegrityDesc *lvid;
1967 struct logicalVolIntegrityDescImpUse *lvidiu;
1968
1969 if (!bh)
1970 return;
1971 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1972 lvidiu = udf_sb_lvidiu(sb);
1973 if (!lvidiu)
1974 return;
1975
1976 mutex_lock(&sbi->s_alloc_mutex);
1977 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1978 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1979 udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1980 CURRENT_TIME);
1981 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1982
1983 lvid->descTag.descCRC = cpu_to_le16(
1984 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1985 le16_to_cpu(lvid->descTag.descCRCLength)));
1986
1987 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1988 mark_buffer_dirty(bh);
1989 sbi->s_lvid_dirty = 0;
1990 mutex_unlock(&sbi->s_alloc_mutex);
1991 /* Make opening of filesystem visible on the media immediately */
1992 sync_dirty_buffer(bh);
1993 }
1994
1995 static void udf_close_lvid(struct super_block *sb)
1996 {
1997 struct udf_sb_info *sbi = UDF_SB(sb);
1998 struct buffer_head *bh = sbi->s_lvid_bh;
1999 struct logicalVolIntegrityDesc *lvid;
2000 struct logicalVolIntegrityDescImpUse *lvidiu;
2001
2002 if (!bh)
2003 return;
2004 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2005 lvidiu = udf_sb_lvidiu(sb);
2006 if (!lvidiu)
2007 return;
2008
2009 mutex_lock(&sbi->s_alloc_mutex);
2010 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2011 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2012 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2013 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2014 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2015 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2016 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2017 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2018 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2019 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2020
2021 lvid->descTag.descCRC = cpu_to_le16(
2022 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023 le16_to_cpu(lvid->descTag.descCRCLength)));
2024
2025 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026 /*
2027 * We set buffer uptodate unconditionally here to avoid spurious
2028 * warnings from mark_buffer_dirty() when previous EIO has marked
2029 * the buffer as !uptodate
2030 */
2031 set_buffer_uptodate(bh);
2032 mark_buffer_dirty(bh);
2033 sbi->s_lvid_dirty = 0;
2034 mutex_unlock(&sbi->s_alloc_mutex);
2035 /* Make closing of filesystem visible on the media immediately */
2036 sync_dirty_buffer(bh);
2037 }
2038
2039 u64 lvid_get_unique_id(struct super_block *sb)
2040 {
2041 struct buffer_head *bh;
2042 struct udf_sb_info *sbi = UDF_SB(sb);
2043 struct logicalVolIntegrityDesc *lvid;
2044 struct logicalVolHeaderDesc *lvhd;
2045 u64 uniqueID;
2046 u64 ret;
2047
2048 bh = sbi->s_lvid_bh;
2049 if (!bh)
2050 return 0;
2051
2052 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2053 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2054
2055 mutex_lock(&sbi->s_alloc_mutex);
2056 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2057 if (!(++uniqueID & 0xFFFFFFFF))
2058 uniqueID += 16;
2059 lvhd->uniqueID = cpu_to_le64(uniqueID);
2060 mutex_unlock(&sbi->s_alloc_mutex);
2061 mark_buffer_dirty(bh);
2062
2063 return ret;
2064 }
2065
2066 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2067 {
2068 int ret = -EINVAL;
2069 struct inode *inode = NULL;
2070 struct udf_options uopt;
2071 struct kernel_lb_addr rootdir, fileset;
2072 struct udf_sb_info *sbi;
2073 bool lvid_open = false;
2074
2075 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2076 uopt.uid = INVALID_UID;
2077 uopt.gid = INVALID_GID;
2078 uopt.umask = 0;
2079 uopt.fmode = UDF_INVALID_MODE;
2080 uopt.dmode = UDF_INVALID_MODE;
2081
2082 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2083 if (!sbi)
2084 return -ENOMEM;
2085
2086 sb->s_fs_info = sbi;
2087
2088 mutex_init(&sbi->s_alloc_mutex);
2089
2090 if (!udf_parse_options((char *)options, &uopt, false))
2091 goto parse_options_failure;
2092
2093 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2094 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2095 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2096 goto parse_options_failure;
2097 }
2098 #ifdef CONFIG_UDF_NLS
2099 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2100 uopt.nls_map = load_nls_default();
2101 if (!uopt.nls_map)
2102 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2103 else
2104 udf_debug("Using default NLS map\n");
2105 }
2106 #endif
2107 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2108 uopt.flags |= (1 << UDF_FLAG_UTF8);
2109
2110 fileset.logicalBlockNum = 0xFFFFFFFF;
2111 fileset.partitionReferenceNum = 0xFFFF;
2112
2113 sbi->s_flags = uopt.flags;
2114 sbi->s_uid = uopt.uid;
2115 sbi->s_gid = uopt.gid;
2116 sbi->s_umask = uopt.umask;
2117 sbi->s_fmode = uopt.fmode;
2118 sbi->s_dmode = uopt.dmode;
2119 sbi->s_nls_map = uopt.nls_map;
2120 rwlock_init(&sbi->s_cred_lock);
2121
2122 if (uopt.session == 0xFFFFFFFF)
2123 sbi->s_session = udf_get_last_session(sb);
2124 else
2125 sbi->s_session = uopt.session;
2126
2127 udf_debug("Multi-session=%d\n", sbi->s_session);
2128
2129 /* Fill in the rest of the superblock */
2130 sb->s_op = &udf_sb_ops;
2131 sb->s_export_op = &udf_export_ops;
2132
2133 sb->s_magic = UDF_SUPER_MAGIC;
2134 sb->s_time_gran = 1000;
2135
2136 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2137 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2138 } else {
2139 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2140 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2141 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2142 if (!silent)
2143 pr_notice("Rescanning with blocksize %d\n",
2144 UDF_DEFAULT_BLOCKSIZE);
2145 brelse(sbi->s_lvid_bh);
2146 sbi->s_lvid_bh = NULL;
2147 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2148 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2149 }
2150 }
2151 if (ret < 0) {
2152 if (ret == -EAGAIN) {
2153 udf_warn(sb, "No partition found (1)\n");
2154 ret = -EINVAL;
2155 }
2156 goto error_out;
2157 }
2158
2159 udf_debug("Lastblock=%d\n", sbi->s_last_block);
2160
2161 if (sbi->s_lvid_bh) {
2162 struct logicalVolIntegrityDescImpUse *lvidiu =
2163 udf_sb_lvidiu(sb);
2164 uint16_t minUDFReadRev;
2165 uint16_t minUDFWriteRev;
2166
2167 if (!lvidiu) {
2168 ret = -EINVAL;
2169 goto error_out;
2170 }
2171 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2172 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2173 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2174 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2175 minUDFReadRev,
2176 UDF_MAX_READ_VERSION);
2177 ret = -EINVAL;
2178 goto error_out;
2179 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2180 !(sb->s_flags & MS_RDONLY)) {
2181 ret = -EACCES;
2182 goto error_out;
2183 }
2184
2185 sbi->s_udfrev = minUDFWriteRev;
2186
2187 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2188 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2189 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2190 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2191 }
2192
2193 if (!sbi->s_partitions) {
2194 udf_warn(sb, "No partition found (2)\n");
2195 ret = -EINVAL;
2196 goto error_out;
2197 }
2198
2199 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2200 UDF_PART_FLAG_READ_ONLY &&
2201 !(sb->s_flags & MS_RDONLY)) {
2202 ret = -EACCES;
2203 goto error_out;
2204 }
2205
2206 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2207 udf_warn(sb, "No fileset found\n");
2208 ret = -EINVAL;
2209 goto error_out;
2210 }
2211
2212 if (!silent) {
2213 struct timestamp ts;
2214 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2215 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2216 sbi->s_volume_ident,
2217 le16_to_cpu(ts.year), ts.month, ts.day,
2218 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2219 }
2220 if (!(sb->s_flags & MS_RDONLY)) {
2221 udf_open_lvid(sb);
2222 lvid_open = true;
2223 }
2224
2225 /* Assign the root inode */
2226 /* assign inodes by physical block number */
2227 /* perhaps it's not extensible enough, but for now ... */
2228 inode = udf_iget(sb, &rootdir);
2229 if (IS_ERR(inode)) {
2230 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2231 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2232 ret = PTR_ERR(inode);
2233 goto error_out;
2234 }
2235
2236 /* Allocate a dentry for the root inode */
2237 sb->s_root = d_make_root(inode);
2238 if (!sb->s_root) {
2239 udf_err(sb, "Couldn't allocate root dentry\n");
2240 ret = -ENOMEM;
2241 goto error_out;
2242 }
2243 sb->s_maxbytes = MAX_LFS_FILESIZE;
2244 sb->s_max_links = UDF_MAX_LINKS;
2245 return 0;
2246
2247 error_out:
2248 iput(sbi->s_vat_inode);
2249 parse_options_failure:
2250 #ifdef CONFIG_UDF_NLS
2251 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2252 unload_nls(sbi->s_nls_map);
2253 #endif
2254 if (lvid_open)
2255 udf_close_lvid(sb);
2256 brelse(sbi->s_lvid_bh);
2257 udf_sb_free_partitions(sb);
2258 kfree(sbi);
2259 sb->s_fs_info = NULL;
2260
2261 return ret;
2262 }
2263
2264 void _udf_err(struct super_block *sb, const char *function,
2265 const char *fmt, ...)
2266 {
2267 struct va_format vaf;
2268 va_list args;
2269
2270 va_start(args, fmt);
2271
2272 vaf.fmt = fmt;
2273 vaf.va = &args;
2274
2275 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2276
2277 va_end(args);
2278 }
2279
2280 void _udf_warn(struct super_block *sb, const char *function,
2281 const char *fmt, ...)
2282 {
2283 struct va_format vaf;
2284 va_list args;
2285
2286 va_start(args, fmt);
2287
2288 vaf.fmt = fmt;
2289 vaf.va = &args;
2290
2291 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2292
2293 va_end(args);
2294 }
2295
2296 static void udf_put_super(struct super_block *sb)
2297 {
2298 struct udf_sb_info *sbi;
2299
2300 sbi = UDF_SB(sb);
2301
2302 iput(sbi->s_vat_inode);
2303 #ifdef CONFIG_UDF_NLS
2304 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2305 unload_nls(sbi->s_nls_map);
2306 #endif
2307 if (!(sb->s_flags & MS_RDONLY))
2308 udf_close_lvid(sb);
2309 brelse(sbi->s_lvid_bh);
2310 udf_sb_free_partitions(sb);
2311 mutex_destroy(&sbi->s_alloc_mutex);
2312 kfree(sb->s_fs_info);
2313 sb->s_fs_info = NULL;
2314 }
2315
2316 static int udf_sync_fs(struct super_block *sb, int wait)
2317 {
2318 struct udf_sb_info *sbi = UDF_SB(sb);
2319
2320 mutex_lock(&sbi->s_alloc_mutex);
2321 if (sbi->s_lvid_dirty) {
2322 /*
2323 * Blockdevice will be synced later so we don't have to submit
2324 * the buffer for IO
2325 */
2326 mark_buffer_dirty(sbi->s_lvid_bh);
2327 sbi->s_lvid_dirty = 0;
2328 }
2329 mutex_unlock(&sbi->s_alloc_mutex);
2330
2331 return 0;
2332 }
2333
2334 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2335 {
2336 struct super_block *sb = dentry->d_sb;
2337 struct udf_sb_info *sbi = UDF_SB(sb);
2338 struct logicalVolIntegrityDescImpUse *lvidiu;
2339 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2340
2341 lvidiu = udf_sb_lvidiu(sb);
2342 buf->f_type = UDF_SUPER_MAGIC;
2343 buf->f_bsize = sb->s_blocksize;
2344 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2345 buf->f_bfree = udf_count_free(sb);
2346 buf->f_bavail = buf->f_bfree;
2347 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2348 le32_to_cpu(lvidiu->numDirs)) : 0)
2349 + buf->f_bfree;
2350 buf->f_ffree = buf->f_bfree;
2351 buf->f_namelen = UDF_NAME_LEN;
2352 buf->f_fsid.val[0] = (u32)id;
2353 buf->f_fsid.val[1] = (u32)(id >> 32);
2354
2355 return 0;
2356 }
2357
2358 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2359 struct udf_bitmap *bitmap)
2360 {
2361 struct buffer_head *bh = NULL;
2362 unsigned int accum = 0;
2363 int index;
2364 int block = 0, newblock;
2365 struct kernel_lb_addr loc;
2366 uint32_t bytes;
2367 uint8_t *ptr;
2368 uint16_t ident;
2369 struct spaceBitmapDesc *bm;
2370
2371 loc.logicalBlockNum = bitmap->s_extPosition;
2372 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2373 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2374
2375 if (!bh) {
2376 udf_err(sb, "udf_count_free failed\n");
2377 goto out;
2378 } else if (ident != TAG_IDENT_SBD) {
2379 brelse(bh);
2380 udf_err(sb, "udf_count_free failed\n");
2381 goto out;
2382 }
2383
2384 bm = (struct spaceBitmapDesc *)bh->b_data;
2385 bytes = le32_to_cpu(bm->numOfBytes);
2386 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2387 ptr = (uint8_t *)bh->b_data;
2388
2389 while (bytes > 0) {
2390 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2391 accum += bitmap_weight((const unsigned long *)(ptr + index),
2392 cur_bytes * 8);
2393 bytes -= cur_bytes;
2394 if (bytes) {
2395 brelse(bh);
2396 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2397 bh = udf_tread(sb, newblock);
2398 if (!bh) {
2399 udf_debug("read failed\n");
2400 goto out;
2401 }
2402 index = 0;
2403 ptr = (uint8_t *)bh->b_data;
2404 }
2405 }
2406 brelse(bh);
2407 out:
2408 return accum;
2409 }
2410
2411 static unsigned int udf_count_free_table(struct super_block *sb,
2412 struct inode *table)
2413 {
2414 unsigned int accum = 0;
2415 uint32_t elen;
2416 struct kernel_lb_addr eloc;
2417 int8_t etype;
2418 struct extent_position epos;
2419
2420 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2421 epos.block = UDF_I(table)->i_location;
2422 epos.offset = sizeof(struct unallocSpaceEntry);
2423 epos.bh = NULL;
2424
2425 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2426 accum += (elen >> table->i_sb->s_blocksize_bits);
2427
2428 brelse(epos.bh);
2429 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2430
2431 return accum;
2432 }
2433
2434 static unsigned int udf_count_free(struct super_block *sb)
2435 {
2436 unsigned int accum = 0;
2437 struct udf_sb_info *sbi;
2438 struct udf_part_map *map;
2439
2440 sbi = UDF_SB(sb);
2441 if (sbi->s_lvid_bh) {
2442 struct logicalVolIntegrityDesc *lvid =
2443 (struct logicalVolIntegrityDesc *)
2444 sbi->s_lvid_bh->b_data;
2445 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2446 accum = le32_to_cpu(
2447 lvid->freeSpaceTable[sbi->s_partition]);
2448 if (accum == 0xFFFFFFFF)
2449 accum = 0;
2450 }
2451 }
2452
2453 if (accum)
2454 return accum;
2455
2456 map = &sbi->s_partmaps[sbi->s_partition];
2457 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2458 accum += udf_count_free_bitmap(sb,
2459 map->s_uspace.s_bitmap);
2460 }
2461 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2462 accum += udf_count_free_bitmap(sb,
2463 map->s_fspace.s_bitmap);
2464 }
2465 if (accum)
2466 return accum;
2467
2468 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2469 accum += udf_count_free_table(sb,
2470 map->s_uspace.s_table);
2471 }
2472 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2473 accum += udf_count_free_table(sb,
2474 map->s_fspace.s_table);
2475 }
2476
2477 return accum;
2478 }
This page took 0.082293 seconds and 5 git commands to generate.