6f2b45a9b6bc425b7df6231f474516e1bd4c1344
[deliverable/linux.git] / include / asm-generic / pgtable.h
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
3
4 #ifndef __ASSEMBLY__
5 #ifdef CONFIG_MMU
6
7 #include <linux/mm_types.h>
8 #include <linux/bug.h>
9
10 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
11 extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
14 #endif
15
16 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
20 #endif
21
22 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
23 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
25 pte_t *ptep)
26 {
27 pte_t pte = *ptep;
28 int r = 1;
29 if (!pte_young(pte))
30 r = 0;
31 else
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33 return r;
34 }
35 #endif
36
37 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
39 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pmd_t *pmdp)
42 {
43 pmd_t pmd = *pmdp;
44 int r = 1;
45 if (!pmd_young(pmd))
46 r = 0;
47 else
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49 return r;
50 }
51 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
52 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
54 pmd_t *pmdp)
55 {
56 BUG();
57 return 0;
58 }
59 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
60 #endif
61
62 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
63 int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
65 #endif
66
67 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68 int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
70 #endif
71
72 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
73 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
75 pte_t *ptep)
76 {
77 pte_t pte = *ptep;
78 pte_clear(mm, address, ptep);
79 return pte;
80 }
81 #endif
82
83 #ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
85 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
87 pmd_t *pmdp)
88 {
89 pmd_t pmd = *pmdp;
90 pmd_clear(mm, address, pmdp);
91 return pmd;
92 }
93 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
94 #endif
95
96 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
97 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
99 int full)
100 {
101 pte_t pte;
102 pte = ptep_get_and_clear(mm, address, ptep);
103 return pte;
104 }
105 #endif
106
107 /*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113 static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
115 pte_t *ptep,
116 int full)
117 {
118 pte_clear(mm, address, ptep);
119 }
120 #endif
121
122 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
125 pte_t *ptep);
126 #endif
127
128 #ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
131 pmd_t *pmdp);
132 #endif
133
134 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
135 struct mm_struct;
136 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137 {
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140 }
141 #endif
142
143 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
147 {
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150 }
151 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
152 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
154 {
155 BUG();
156 }
157 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 #endif
159
160 #ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address, pmd_t *pmdp);
163 #endif
164
165 #ifndef __HAVE_ARCH_PTE_SAME
166 static inline int pte_same(pte_t pte_a, pte_t pte_b)
167 {
168 return pte_val(pte_a) == pte_val(pte_b);
169 }
170 #endif
171
172 #ifndef __HAVE_ARCH_PMD_SAME
173 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
174 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
175 {
176 return pmd_val(pmd_a) == pmd_val(pmd_b);
177 }
178 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
179 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
180 {
181 BUG();
182 return 0;
183 }
184 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185 #endif
186
187 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
188 #define page_test_and_clear_dirty(pfn, mapped) (0)
189 #endif
190
191 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
192 #define pte_maybe_dirty(pte) pte_dirty(pte)
193 #else
194 #define pte_maybe_dirty(pte) (1)
195 #endif
196
197 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
198 #define page_test_and_clear_young(pfn) (0)
199 #endif
200
201 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
202 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
203 #endif
204
205 #ifndef __HAVE_ARCH_MOVE_PTE
206 #define move_pte(pte, prot, old_addr, new_addr) (pte)
207 #endif
208
209 #ifndef flush_tlb_fix_spurious_fault
210 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
211 #endif
212
213 #ifndef pgprot_noncached
214 #define pgprot_noncached(prot) (prot)
215 #endif
216
217 #ifndef pgprot_writecombine
218 #define pgprot_writecombine pgprot_noncached
219 #endif
220
221 /*
222 * When walking page tables, get the address of the next boundary,
223 * or the end address of the range if that comes earlier. Although no
224 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
225 */
226
227 #define pgd_addr_end(addr, end) \
228 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
229 (__boundary - 1 < (end) - 1)? __boundary: (end); \
230 })
231
232 #ifndef pud_addr_end
233 #define pud_addr_end(addr, end) \
234 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
235 (__boundary - 1 < (end) - 1)? __boundary: (end); \
236 })
237 #endif
238
239 #ifndef pmd_addr_end
240 #define pmd_addr_end(addr, end) \
241 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
242 (__boundary - 1 < (end) - 1)? __boundary: (end); \
243 })
244 #endif
245
246 /*
247 * When walking page tables, we usually want to skip any p?d_none entries;
248 * and any p?d_bad entries - reporting the error before resetting to none.
249 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
250 */
251 void pgd_clear_bad(pgd_t *);
252 void pud_clear_bad(pud_t *);
253 void pmd_clear_bad(pmd_t *);
254
255 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
256 {
257 if (pgd_none(*pgd))
258 return 1;
259 if (unlikely(pgd_bad(*pgd))) {
260 pgd_clear_bad(pgd);
261 return 1;
262 }
263 return 0;
264 }
265
266 static inline int pud_none_or_clear_bad(pud_t *pud)
267 {
268 if (pud_none(*pud))
269 return 1;
270 if (unlikely(pud_bad(*pud))) {
271 pud_clear_bad(pud);
272 return 1;
273 }
274 return 0;
275 }
276
277 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
278 {
279 if (pmd_none(*pmd))
280 return 1;
281 if (unlikely(pmd_bad(*pmd))) {
282 pmd_clear_bad(pmd);
283 return 1;
284 }
285 return 0;
286 }
287
288 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
289 unsigned long addr,
290 pte_t *ptep)
291 {
292 /*
293 * Get the current pte state, but zero it out to make it
294 * non-present, preventing the hardware from asynchronously
295 * updating it.
296 */
297 return ptep_get_and_clear(mm, addr, ptep);
298 }
299
300 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
301 unsigned long addr,
302 pte_t *ptep, pte_t pte)
303 {
304 /*
305 * The pte is non-present, so there's no hardware state to
306 * preserve.
307 */
308 set_pte_at(mm, addr, ptep, pte);
309 }
310
311 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
312 /*
313 * Start a pte protection read-modify-write transaction, which
314 * protects against asynchronous hardware modifications to the pte.
315 * The intention is not to prevent the hardware from making pte
316 * updates, but to prevent any updates it may make from being lost.
317 *
318 * This does not protect against other software modifications of the
319 * pte; the appropriate pte lock must be held over the transation.
320 *
321 * Note that this interface is intended to be batchable, meaning that
322 * ptep_modify_prot_commit may not actually update the pte, but merely
323 * queue the update to be done at some later time. The update must be
324 * actually committed before the pte lock is released, however.
325 */
326 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
327 unsigned long addr,
328 pte_t *ptep)
329 {
330 return __ptep_modify_prot_start(mm, addr, ptep);
331 }
332
333 /*
334 * Commit an update to a pte, leaving any hardware-controlled bits in
335 * the PTE unmodified.
336 */
337 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
338 unsigned long addr,
339 pte_t *ptep, pte_t pte)
340 {
341 __ptep_modify_prot_commit(mm, addr, ptep, pte);
342 }
343 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
344 #endif /* CONFIG_MMU */
345
346 /*
347 * A facility to provide lazy MMU batching. This allows PTE updates and
348 * page invalidations to be delayed until a call to leave lazy MMU mode
349 * is issued. Some architectures may benefit from doing this, and it is
350 * beneficial for both shadow and direct mode hypervisors, which may batch
351 * the PTE updates which happen during this window. Note that using this
352 * interface requires that read hazards be removed from the code. A read
353 * hazard could result in the direct mode hypervisor case, since the actual
354 * write to the page tables may not yet have taken place, so reads though
355 * a raw PTE pointer after it has been modified are not guaranteed to be
356 * up to date. This mode can only be entered and left under the protection of
357 * the page table locks for all page tables which may be modified. In the UP
358 * case, this is required so that preemption is disabled, and in the SMP case,
359 * it must synchronize the delayed page table writes properly on other CPUs.
360 */
361 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
362 #define arch_enter_lazy_mmu_mode() do {} while (0)
363 #define arch_leave_lazy_mmu_mode() do {} while (0)
364 #define arch_flush_lazy_mmu_mode() do {} while (0)
365 #endif
366
367 /*
368 * A facility to provide batching of the reload of page tables and
369 * other process state with the actual context switch code for
370 * paravirtualized guests. By convention, only one of the batched
371 * update (lazy) modes (CPU, MMU) should be active at any given time,
372 * entry should never be nested, and entry and exits should always be
373 * paired. This is for sanity of maintaining and reasoning about the
374 * kernel code. In this case, the exit (end of the context switch) is
375 * in architecture-specific code, and so doesn't need a generic
376 * definition.
377 */
378 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
379 #define arch_start_context_switch(prev) do {} while (0)
380 #endif
381
382 #ifndef __HAVE_PFNMAP_TRACKING
383 /*
384 * Interface that can be used by architecture code to keep track of
385 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
386 *
387 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
388 * for physical range indicated by pfn and size.
389 */
390 static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
391 unsigned long pfn, unsigned long size)
392 {
393 return 0;
394 }
395
396 /*
397 * Interface that can be used by architecture code to keep track of
398 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
399 *
400 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
401 * copied through copy_page_range().
402 */
403 static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
404 {
405 return 0;
406 }
407
408 /*
409 * Interface that can be used by architecture code to keep track of
410 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
411 *
412 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
413 * untrack can be called for a specific region indicated by pfn and size or
414 * can be for the entire vma (in which case size can be zero).
415 */
416 static inline void untrack_pfn_vma(struct vm_area_struct *vma,
417 unsigned long pfn, unsigned long size)
418 {
419 }
420 #else
421 extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
422 unsigned long pfn, unsigned long size);
423 extern int track_pfn_vma_copy(struct vm_area_struct *vma);
424 extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
425 unsigned long size);
426 #endif
427
428 #ifdef CONFIG_MMU
429
430 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
431 static inline int pmd_trans_huge(pmd_t pmd)
432 {
433 return 0;
434 }
435 static inline int pmd_trans_splitting(pmd_t pmd)
436 {
437 return 0;
438 }
439 #ifndef __HAVE_ARCH_PMD_WRITE
440 static inline int pmd_write(pmd_t pmd)
441 {
442 BUG();
443 return 0;
444 }
445 #endif /* __HAVE_ARCH_PMD_WRITE */
446 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
447
448 #ifndef pmd_read_atomic
449 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
450 {
451 /*
452 * Depend on compiler for an atomic pmd read. NOTE: this is
453 * only going to work, if the pmdval_t isn't larger than
454 * an unsigned long.
455 */
456 return *pmdp;
457 }
458 #endif
459
460 /*
461 * This function is meant to be used by sites walking pagetables with
462 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
463 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
464 * into a null pmd and the transhuge page fault can convert a null pmd
465 * into an hugepmd or into a regular pmd (if the hugepage allocation
466 * fails). While holding the mmap_sem in read mode the pmd becomes
467 * stable and stops changing under us only if it's not null and not a
468 * transhuge pmd. When those races occurs and this function makes a
469 * difference vs the standard pmd_none_or_clear_bad, the result is
470 * undefined so behaving like if the pmd was none is safe (because it
471 * can return none anyway). The compiler level barrier() is critically
472 * important to compute the two checks atomically on the same pmdval.
473 *
474 * For 32bit kernels with a 64bit large pmd_t this automatically takes
475 * care of reading the pmd atomically to avoid SMP race conditions
476 * against pmd_populate() when the mmap_sem is hold for reading by the
477 * caller (a special atomic read not done by "gcc" as in the generic
478 * version above, is also needed when THP is disabled because the page
479 * fault can populate the pmd from under us).
480 */
481 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
482 {
483 pmd_t pmdval = pmd_read_atomic(pmd);
484 /*
485 * The barrier will stabilize the pmdval in a register or on
486 * the stack so that it will stop changing under the code.
487 */
488 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
489 barrier();
490 #endif
491 if (pmd_none(pmdval))
492 return 1;
493 if (unlikely(pmd_bad(pmdval))) {
494 if (!pmd_trans_huge(pmdval))
495 pmd_clear_bad(pmd);
496 return 1;
497 }
498 return 0;
499 }
500
501 /*
502 * This is a noop if Transparent Hugepage Support is not built into
503 * the kernel. Otherwise it is equivalent to
504 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
505 * places that already verified the pmd is not none and they want to
506 * walk ptes while holding the mmap sem in read mode (write mode don't
507 * need this). If THP is not enabled, the pmd can't go away under the
508 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
509 * run a pmd_trans_unstable before walking the ptes after
510 * split_huge_page_pmd returns (because it may have run when the pmd
511 * become null, but then a page fault can map in a THP and not a
512 * regular page).
513 */
514 static inline int pmd_trans_unstable(pmd_t *pmd)
515 {
516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 return pmd_none_or_trans_huge_or_clear_bad(pmd);
518 #else
519 return 0;
520 #endif
521 }
522
523 #endif /* CONFIG_MMU */
524
525 #endif /* !__ASSEMBLY__ */
526
527 #endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.042505 seconds and 4 git commands to generate.