Merge remote-tracking branch 'char-misc/char-misc-next'
[deliverable/linux.git] / include / linux / hyperv.h
1 /*
2 *
3 * Copyright (c) 2011, Microsoft Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 *
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
22 *
23 */
24
25 #ifndef _HYPERV_H
26 #define _HYPERV_H
27
28 #include <uapi/linux/hyperv.h>
29 #include <uapi/asm/hyperv.h>
30
31 #include <linux/types.h>
32 #include <linux/scatterlist.h>
33 #include <linux/list.h>
34 #include <linux/timer.h>
35 #include <linux/workqueue.h>
36 #include <linux/completion.h>
37 #include <linux/device.h>
38 #include <linux/mod_devicetable.h>
39
40
41 #define MAX_PAGE_BUFFER_COUNT 32
42 #define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
43
44 #pragma pack(push, 1)
45
46 /* Single-page buffer */
47 struct hv_page_buffer {
48 u32 len;
49 u32 offset;
50 u64 pfn;
51 };
52
53 /* Multiple-page buffer */
54 struct hv_multipage_buffer {
55 /* Length and Offset determines the # of pfns in the array */
56 u32 len;
57 u32 offset;
58 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
59 };
60
61 /*
62 * Multiple-page buffer array; the pfn array is variable size:
63 * The number of entries in the PFN array is determined by
64 * "len" and "offset".
65 */
66 struct hv_mpb_array {
67 /* Length and Offset determines the # of pfns in the array */
68 u32 len;
69 u32 offset;
70 u64 pfn_array[];
71 };
72
73 /* 0x18 includes the proprietary packet header */
74 #define MAX_PAGE_BUFFER_PACKET (0x18 + \
75 (sizeof(struct hv_page_buffer) * \
76 MAX_PAGE_BUFFER_COUNT))
77 #define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
78 sizeof(struct hv_multipage_buffer))
79
80
81 #pragma pack(pop)
82
83 struct hv_ring_buffer {
84 /* Offset in bytes from the start of ring data below */
85 u32 write_index;
86
87 /* Offset in bytes from the start of ring data below */
88 u32 read_index;
89
90 u32 interrupt_mask;
91
92 /*
93 * Win8 uses some of the reserved bits to implement
94 * interrupt driven flow management. On the send side
95 * we can request that the receiver interrupt the sender
96 * when the ring transitions from being full to being able
97 * to handle a message of size "pending_send_sz".
98 *
99 * Add necessary state for this enhancement.
100 */
101 u32 pending_send_sz;
102
103 u32 reserved1[12];
104
105 union {
106 struct {
107 u32 feat_pending_send_sz:1;
108 };
109 u32 value;
110 } feature_bits;
111
112 /* Pad it to PAGE_SIZE so that data starts on page boundary */
113 u8 reserved2[4028];
114
115 /*
116 * Ring data starts here + RingDataStartOffset
117 * !!! DO NOT place any fields below this !!!
118 */
119 u8 buffer[0];
120 } __packed;
121
122 struct hv_ring_buffer_info {
123 struct hv_ring_buffer *ring_buffer;
124 u32 ring_size; /* Include the shared header */
125 spinlock_t ring_lock;
126
127 u32 ring_datasize; /* < ring_size */
128 u32 ring_data_startoffset;
129 u32 priv_write_index;
130 u32 priv_read_index;
131 };
132
133 /*
134 *
135 * hv_get_ringbuffer_availbytes()
136 *
137 * Get number of bytes available to read and to write to
138 * for the specified ring buffer
139 */
140 static inline void
141 hv_get_ringbuffer_availbytes(struct hv_ring_buffer_info *rbi,
142 u32 *read, u32 *write)
143 {
144 u32 read_loc, write_loc, dsize;
145
146 /* Capture the read/write indices before they changed */
147 read_loc = rbi->ring_buffer->read_index;
148 write_loc = rbi->ring_buffer->write_index;
149 dsize = rbi->ring_datasize;
150
151 *write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
152 read_loc - write_loc;
153 *read = dsize - *write;
154 }
155
156 static inline u32 hv_get_bytes_to_read(struct hv_ring_buffer_info *rbi)
157 {
158 u32 read_loc, write_loc, dsize, read;
159
160 dsize = rbi->ring_datasize;
161 read_loc = rbi->ring_buffer->read_index;
162 write_loc = READ_ONCE(rbi->ring_buffer->write_index);
163
164 read = write_loc >= read_loc ? (write_loc - read_loc) :
165 (dsize - read_loc) + write_loc;
166
167 return read;
168 }
169
170 static inline u32 hv_get_bytes_to_write(struct hv_ring_buffer_info *rbi)
171 {
172 u32 read_loc, write_loc, dsize, write;
173
174 dsize = rbi->ring_datasize;
175 read_loc = READ_ONCE(rbi->ring_buffer->read_index);
176 write_loc = rbi->ring_buffer->write_index;
177
178 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
179 read_loc - write_loc;
180 return write;
181 }
182
183 /*
184 * VMBUS version is 32 bit entity broken up into
185 * two 16 bit quantities: major_number. minor_number.
186 *
187 * 0 . 13 (Windows Server 2008)
188 * 1 . 1 (Windows 7)
189 * 2 . 4 (Windows 8)
190 * 3 . 0 (Windows 8 R2)
191 * 4 . 0 (Windows 10)
192 */
193
194 #define VERSION_WS2008 ((0 << 16) | (13))
195 #define VERSION_WIN7 ((1 << 16) | (1))
196 #define VERSION_WIN8 ((2 << 16) | (4))
197 #define VERSION_WIN8_1 ((3 << 16) | (0))
198 #define VERSION_WIN10 ((4 << 16) | (0))
199
200 #define VERSION_INVAL -1
201
202 #define VERSION_CURRENT VERSION_WIN10
203
204 /* Make maximum size of pipe payload of 16K */
205 #define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
206
207 /* Define PipeMode values. */
208 #define VMBUS_PIPE_TYPE_BYTE 0x00000000
209 #define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
210
211 /* The size of the user defined data buffer for non-pipe offers. */
212 #define MAX_USER_DEFINED_BYTES 120
213
214 /* The size of the user defined data buffer for pipe offers. */
215 #define MAX_PIPE_USER_DEFINED_BYTES 116
216
217 /*
218 * At the center of the Channel Management library is the Channel Offer. This
219 * struct contains the fundamental information about an offer.
220 */
221 struct vmbus_channel_offer {
222 uuid_le if_type;
223 uuid_le if_instance;
224
225 /*
226 * These two fields are not currently used.
227 */
228 u64 reserved1;
229 u64 reserved2;
230
231 u16 chn_flags;
232 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
233
234 union {
235 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
236 struct {
237 unsigned char user_def[MAX_USER_DEFINED_BYTES];
238 } std;
239
240 /*
241 * Pipes:
242 * The following sructure is an integrated pipe protocol, which
243 * is implemented on top of standard user-defined data. Pipe
244 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
245 * use.
246 */
247 struct {
248 u32 pipe_mode;
249 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
250 } pipe;
251 } u;
252 /*
253 * The sub_channel_index is defined in win8.
254 */
255 u16 sub_channel_index;
256 u16 reserved3;
257 } __packed;
258
259 /* Server Flags */
260 #define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
261 #define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
262 #define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
263 #define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
264 #define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
265 #define VMBUS_CHANNEL_PARENT_OFFER 0x200
266 #define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
267 #define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
268
269 struct vmpacket_descriptor {
270 u16 type;
271 u16 offset8;
272 u16 len8;
273 u16 flags;
274 u64 trans_id;
275 } __packed;
276
277 struct vmpacket_header {
278 u32 prev_pkt_start_offset;
279 struct vmpacket_descriptor descriptor;
280 } __packed;
281
282 struct vmtransfer_page_range {
283 u32 byte_count;
284 u32 byte_offset;
285 } __packed;
286
287 struct vmtransfer_page_packet_header {
288 struct vmpacket_descriptor d;
289 u16 xfer_pageset_id;
290 u8 sender_owns_set;
291 u8 reserved;
292 u32 range_cnt;
293 struct vmtransfer_page_range ranges[1];
294 } __packed;
295
296 struct vmgpadl_packet_header {
297 struct vmpacket_descriptor d;
298 u32 gpadl;
299 u32 reserved;
300 } __packed;
301
302 struct vmadd_remove_transfer_page_set {
303 struct vmpacket_descriptor d;
304 u32 gpadl;
305 u16 xfer_pageset_id;
306 u16 reserved;
307 } __packed;
308
309 /*
310 * This structure defines a range in guest physical space that can be made to
311 * look virtually contiguous.
312 */
313 struct gpa_range {
314 u32 byte_count;
315 u32 byte_offset;
316 u64 pfn_array[0];
317 };
318
319 /*
320 * This is the format for an Establish Gpadl packet, which contains a handle by
321 * which this GPADL will be known and a set of GPA ranges associated with it.
322 * This can be converted to a MDL by the guest OS. If there are multiple GPA
323 * ranges, then the resulting MDL will be "chained," representing multiple VA
324 * ranges.
325 */
326 struct vmestablish_gpadl {
327 struct vmpacket_descriptor d;
328 u32 gpadl;
329 u32 range_cnt;
330 struct gpa_range range[1];
331 } __packed;
332
333 /*
334 * This is the format for a Teardown Gpadl packet, which indicates that the
335 * GPADL handle in the Establish Gpadl packet will never be referenced again.
336 */
337 struct vmteardown_gpadl {
338 struct vmpacket_descriptor d;
339 u32 gpadl;
340 u32 reserved; /* for alignment to a 8-byte boundary */
341 } __packed;
342
343 /*
344 * This is the format for a GPA-Direct packet, which contains a set of GPA
345 * ranges, in addition to commands and/or data.
346 */
347 struct vmdata_gpa_direct {
348 struct vmpacket_descriptor d;
349 u32 reserved;
350 u32 range_cnt;
351 struct gpa_range range[1];
352 } __packed;
353
354 /* This is the format for a Additional Data Packet. */
355 struct vmadditional_data {
356 struct vmpacket_descriptor d;
357 u64 total_bytes;
358 u32 offset;
359 u32 byte_cnt;
360 unsigned char data[1];
361 } __packed;
362
363 union vmpacket_largest_possible_header {
364 struct vmpacket_descriptor simple_hdr;
365 struct vmtransfer_page_packet_header xfer_page_hdr;
366 struct vmgpadl_packet_header gpadl_hdr;
367 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
368 struct vmestablish_gpadl establish_gpadl_hdr;
369 struct vmteardown_gpadl teardown_gpadl_hdr;
370 struct vmdata_gpa_direct data_gpa_direct_hdr;
371 };
372
373 #define VMPACKET_DATA_START_ADDRESS(__packet) \
374 (void *)(((unsigned char *)__packet) + \
375 ((struct vmpacket_descriptor)__packet)->offset8 * 8)
376
377 #define VMPACKET_DATA_LENGTH(__packet) \
378 ((((struct vmpacket_descriptor)__packet)->len8 - \
379 ((struct vmpacket_descriptor)__packet)->offset8) * 8)
380
381 #define VMPACKET_TRANSFER_MODE(__packet) \
382 (((struct IMPACT)__packet)->type)
383
384 enum vmbus_packet_type {
385 VM_PKT_INVALID = 0x0,
386 VM_PKT_SYNCH = 0x1,
387 VM_PKT_ADD_XFER_PAGESET = 0x2,
388 VM_PKT_RM_XFER_PAGESET = 0x3,
389 VM_PKT_ESTABLISH_GPADL = 0x4,
390 VM_PKT_TEARDOWN_GPADL = 0x5,
391 VM_PKT_DATA_INBAND = 0x6,
392 VM_PKT_DATA_USING_XFER_PAGES = 0x7,
393 VM_PKT_DATA_USING_GPADL = 0x8,
394 VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
395 VM_PKT_CANCEL_REQUEST = 0xa,
396 VM_PKT_COMP = 0xb,
397 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
398 VM_PKT_ADDITIONAL_DATA = 0xd
399 };
400
401 #define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
402
403
404 /* Version 1 messages */
405 enum vmbus_channel_message_type {
406 CHANNELMSG_INVALID = 0,
407 CHANNELMSG_OFFERCHANNEL = 1,
408 CHANNELMSG_RESCIND_CHANNELOFFER = 2,
409 CHANNELMSG_REQUESTOFFERS = 3,
410 CHANNELMSG_ALLOFFERS_DELIVERED = 4,
411 CHANNELMSG_OPENCHANNEL = 5,
412 CHANNELMSG_OPENCHANNEL_RESULT = 6,
413 CHANNELMSG_CLOSECHANNEL = 7,
414 CHANNELMSG_GPADL_HEADER = 8,
415 CHANNELMSG_GPADL_BODY = 9,
416 CHANNELMSG_GPADL_CREATED = 10,
417 CHANNELMSG_GPADL_TEARDOWN = 11,
418 CHANNELMSG_GPADL_TORNDOWN = 12,
419 CHANNELMSG_RELID_RELEASED = 13,
420 CHANNELMSG_INITIATE_CONTACT = 14,
421 CHANNELMSG_VERSION_RESPONSE = 15,
422 CHANNELMSG_UNLOAD = 16,
423 CHANNELMSG_UNLOAD_RESPONSE = 17,
424 CHANNELMSG_18 = 18,
425 CHANNELMSG_19 = 19,
426 CHANNELMSG_20 = 20,
427 CHANNELMSG_TL_CONNECT_REQUEST = 21,
428 CHANNELMSG_COUNT
429 };
430
431 struct vmbus_channel_message_header {
432 enum vmbus_channel_message_type msgtype;
433 u32 padding;
434 } __packed;
435
436 /* Query VMBus Version parameters */
437 struct vmbus_channel_query_vmbus_version {
438 struct vmbus_channel_message_header header;
439 u32 version;
440 } __packed;
441
442 /* VMBus Version Supported parameters */
443 struct vmbus_channel_version_supported {
444 struct vmbus_channel_message_header header;
445 u8 version_supported;
446 } __packed;
447
448 /* Offer Channel parameters */
449 struct vmbus_channel_offer_channel {
450 struct vmbus_channel_message_header header;
451 struct vmbus_channel_offer offer;
452 u32 child_relid;
453 u8 monitorid;
454 /*
455 * win7 and beyond splits this field into a bit field.
456 */
457 u8 monitor_allocated:1;
458 u8 reserved:7;
459 /*
460 * These are new fields added in win7 and later.
461 * Do not access these fields without checking the
462 * negotiated protocol.
463 *
464 * If "is_dedicated_interrupt" is set, we must not set the
465 * associated bit in the channel bitmap while sending the
466 * interrupt to the host.
467 *
468 * connection_id is to be used in signaling the host.
469 */
470 u16 is_dedicated_interrupt:1;
471 u16 reserved1:15;
472 u32 connection_id;
473 } __packed;
474
475 /* Rescind Offer parameters */
476 struct vmbus_channel_rescind_offer {
477 struct vmbus_channel_message_header header;
478 u32 child_relid;
479 } __packed;
480
481 /*
482 * Request Offer -- no parameters, SynIC message contains the partition ID
483 * Set Snoop -- no parameters, SynIC message contains the partition ID
484 * Clear Snoop -- no parameters, SynIC message contains the partition ID
485 * All Offers Delivered -- no parameters, SynIC message contains the partition
486 * ID
487 * Flush Client -- no parameters, SynIC message contains the partition ID
488 */
489
490 /* Open Channel parameters */
491 struct vmbus_channel_open_channel {
492 struct vmbus_channel_message_header header;
493
494 /* Identifies the specific VMBus channel that is being opened. */
495 u32 child_relid;
496
497 /* ID making a particular open request at a channel offer unique. */
498 u32 openid;
499
500 /* GPADL for the channel's ring buffer. */
501 u32 ringbuffer_gpadlhandle;
502
503 /*
504 * Starting with win8, this field will be used to specify
505 * the target virtual processor on which to deliver the interrupt for
506 * the host to guest communication.
507 * Prior to win8, incoming channel interrupts would only
508 * be delivered on cpu 0. Setting this value to 0 would
509 * preserve the earlier behavior.
510 */
511 u32 target_vp;
512
513 /*
514 * The upstream ring buffer begins at offset zero in the memory
515 * described by RingBufferGpadlHandle. The downstream ring buffer
516 * follows it at this offset (in pages).
517 */
518 u32 downstream_ringbuffer_pageoffset;
519
520 /* User-specific data to be passed along to the server endpoint. */
521 unsigned char userdata[MAX_USER_DEFINED_BYTES];
522 } __packed;
523
524 /* Open Channel Result parameters */
525 struct vmbus_channel_open_result {
526 struct vmbus_channel_message_header header;
527 u32 child_relid;
528 u32 openid;
529 u32 status;
530 } __packed;
531
532 /* Close channel parameters; */
533 struct vmbus_channel_close_channel {
534 struct vmbus_channel_message_header header;
535 u32 child_relid;
536 } __packed;
537
538 /* Channel Message GPADL */
539 #define GPADL_TYPE_RING_BUFFER 1
540 #define GPADL_TYPE_SERVER_SAVE_AREA 2
541 #define GPADL_TYPE_TRANSACTION 8
542
543 /*
544 * The number of PFNs in a GPADL message is defined by the number of
545 * pages that would be spanned by ByteCount and ByteOffset. If the
546 * implied number of PFNs won't fit in this packet, there will be a
547 * follow-up packet that contains more.
548 */
549 struct vmbus_channel_gpadl_header {
550 struct vmbus_channel_message_header header;
551 u32 child_relid;
552 u32 gpadl;
553 u16 range_buflen;
554 u16 rangecount;
555 struct gpa_range range[0];
556 } __packed;
557
558 /* This is the followup packet that contains more PFNs. */
559 struct vmbus_channel_gpadl_body {
560 struct vmbus_channel_message_header header;
561 u32 msgnumber;
562 u32 gpadl;
563 u64 pfn[0];
564 } __packed;
565
566 struct vmbus_channel_gpadl_created {
567 struct vmbus_channel_message_header header;
568 u32 child_relid;
569 u32 gpadl;
570 u32 creation_status;
571 } __packed;
572
573 struct vmbus_channel_gpadl_teardown {
574 struct vmbus_channel_message_header header;
575 u32 child_relid;
576 u32 gpadl;
577 } __packed;
578
579 struct vmbus_channel_gpadl_torndown {
580 struct vmbus_channel_message_header header;
581 u32 gpadl;
582 } __packed;
583
584 struct vmbus_channel_relid_released {
585 struct vmbus_channel_message_header header;
586 u32 child_relid;
587 } __packed;
588
589 struct vmbus_channel_initiate_contact {
590 struct vmbus_channel_message_header header;
591 u32 vmbus_version_requested;
592 u32 target_vcpu; /* The VCPU the host should respond to */
593 u64 interrupt_page;
594 u64 monitor_page1;
595 u64 monitor_page2;
596 } __packed;
597
598 /* Hyper-V socket: guest's connect()-ing to host */
599 struct vmbus_channel_tl_connect_request {
600 struct vmbus_channel_message_header header;
601 uuid_le guest_endpoint_id;
602 uuid_le host_service_id;
603 } __packed;
604
605 struct vmbus_channel_version_response {
606 struct vmbus_channel_message_header header;
607 u8 version_supported;
608 } __packed;
609
610 enum vmbus_channel_state {
611 CHANNEL_OFFER_STATE,
612 CHANNEL_OPENING_STATE,
613 CHANNEL_OPEN_STATE,
614 CHANNEL_OPENED_STATE,
615 };
616
617 /*
618 * Represents each channel msg on the vmbus connection This is a
619 * variable-size data structure depending on the msg type itself
620 */
621 struct vmbus_channel_msginfo {
622 /* Bookkeeping stuff */
623 struct list_head msglistentry;
624
625 /* So far, this is only used to handle gpadl body message */
626 struct list_head submsglist;
627
628 /* Synchronize the request/response if needed */
629 struct completion waitevent;
630 union {
631 struct vmbus_channel_version_supported version_supported;
632 struct vmbus_channel_open_result open_result;
633 struct vmbus_channel_gpadl_torndown gpadl_torndown;
634 struct vmbus_channel_gpadl_created gpadl_created;
635 struct vmbus_channel_version_response version_response;
636 } response;
637
638 u32 msgsize;
639 /*
640 * The channel message that goes out on the "wire".
641 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
642 */
643 unsigned char msg[0];
644 };
645
646 struct vmbus_close_msg {
647 struct vmbus_channel_msginfo info;
648 struct vmbus_channel_close_channel msg;
649 };
650
651 /* Define connection identifier type. */
652 union hv_connection_id {
653 u32 asu32;
654 struct {
655 u32 id:24;
656 u32 reserved:8;
657 } u;
658 };
659
660 /* Definition of the hv_signal_event hypercall input structure. */
661 struct hv_input_signal_event {
662 union hv_connection_id connectionid;
663 u16 flag_number;
664 u16 rsvdz;
665 };
666
667 struct hv_input_signal_event_buffer {
668 u64 align8;
669 struct hv_input_signal_event event;
670 };
671
672 enum hv_signal_policy {
673 HV_SIGNAL_POLICY_DEFAULT = 0,
674 HV_SIGNAL_POLICY_EXPLICIT,
675 };
676
677 enum hv_numa_policy {
678 HV_BALANCED = 0,
679 HV_LOCALIZED,
680 };
681
682 enum vmbus_device_type {
683 HV_IDE = 0,
684 HV_SCSI,
685 HV_FC,
686 HV_NIC,
687 HV_ND,
688 HV_PCIE,
689 HV_FB,
690 HV_KBD,
691 HV_MOUSE,
692 HV_KVP,
693 HV_TS,
694 HV_HB,
695 HV_SHUTDOWN,
696 HV_FCOPY,
697 HV_BACKUP,
698 HV_DM,
699 HV_UNKOWN,
700 };
701
702 struct vmbus_device {
703 u16 dev_type;
704 uuid_le guid;
705 bool perf_device;
706 };
707
708 struct vmbus_channel {
709 /* Unique channel id */
710 int id;
711
712 struct list_head listentry;
713
714 struct hv_device *device_obj;
715
716 enum vmbus_channel_state state;
717
718 struct vmbus_channel_offer_channel offermsg;
719 /*
720 * These are based on the OfferMsg.MonitorId.
721 * Save it here for easy access.
722 */
723 u8 monitor_grp;
724 u8 monitor_bit;
725
726 bool rescind; /* got rescind msg */
727
728 u32 ringbuffer_gpadlhandle;
729
730 /* Allocated memory for ring buffer */
731 void *ringbuffer_pages;
732 u32 ringbuffer_pagecount;
733 struct hv_ring_buffer_info outbound; /* send to parent */
734 struct hv_ring_buffer_info inbound; /* receive from parent */
735 spinlock_t inbound_lock;
736
737 struct vmbus_close_msg close_msg;
738
739 /* Channel callback are invoked in this workqueue context */
740 /* HANDLE dataWorkQueue; */
741
742 void (*onchannel_callback)(void *context);
743 void *channel_callback_context;
744
745 /*
746 * A channel can be marked for efficient (batched)
747 * reading:
748 * If batched_reading is set to "true", we read until the
749 * channel is empty and hold off interrupts from the host
750 * during the entire read process.
751 * If batched_reading is set to "false", the client is not
752 * going to perform batched reading.
753 *
754 * By default we will enable batched reading; specific
755 * drivers that don't want this behavior can turn it off.
756 */
757
758 bool batched_reading;
759
760 bool is_dedicated_interrupt;
761 struct hv_input_signal_event_buffer sig_buf;
762 struct hv_input_signal_event *sig_event;
763
764 /*
765 * Starting with win8, this field will be used to specify
766 * the target virtual processor on which to deliver the interrupt for
767 * the host to guest communication.
768 * Prior to win8, incoming channel interrupts would only
769 * be delivered on cpu 0. Setting this value to 0 would
770 * preserve the earlier behavior.
771 */
772 u32 target_vp;
773 /* The corresponding CPUID in the guest */
774 u32 target_cpu;
775 /*
776 * State to manage the CPU affiliation of channels.
777 */
778 struct cpumask alloced_cpus_in_node;
779 int numa_node;
780 /*
781 * Support for sub-channels. For high performance devices,
782 * it will be useful to have multiple sub-channels to support
783 * a scalable communication infrastructure with the host.
784 * The support for sub-channels is implemented as an extention
785 * to the current infrastructure.
786 * The initial offer is considered the primary channel and this
787 * offer message will indicate if the host supports sub-channels.
788 * The guest is free to ask for sub-channels to be offerred and can
789 * open these sub-channels as a normal "primary" channel. However,
790 * all sub-channels will have the same type and instance guids as the
791 * primary channel. Requests sent on a given channel will result in a
792 * response on the same channel.
793 */
794
795 /*
796 * Sub-channel creation callback. This callback will be called in
797 * process context when a sub-channel offer is received from the host.
798 * The guest can open the sub-channel in the context of this callback.
799 */
800 void (*sc_creation_callback)(struct vmbus_channel *new_sc);
801
802 /*
803 * Channel rescind callback. Some channels (the hvsock ones), need to
804 * register a callback which is invoked in vmbus_onoffer_rescind().
805 */
806 void (*chn_rescind_callback)(struct vmbus_channel *channel);
807
808 /*
809 * The spinlock to protect the structure. It is being used to protect
810 * test-and-set access to various attributes of the structure as well
811 * as all sc_list operations.
812 */
813 spinlock_t lock;
814 /*
815 * All Sub-channels of a primary channel are linked here.
816 */
817 struct list_head sc_list;
818 /*
819 * Current number of sub-channels.
820 */
821 int num_sc;
822 /*
823 * Number of a sub-channel (position within sc_list) which is supposed
824 * to be used as the next outgoing channel.
825 */
826 int next_oc;
827 /*
828 * The primary channel this sub-channel belongs to.
829 * This will be NULL for the primary channel.
830 */
831 struct vmbus_channel *primary_channel;
832 /*
833 * Support per-channel state for use by vmbus drivers.
834 */
835 void *per_channel_state;
836 /*
837 * To support per-cpu lookup mapping of relid to channel,
838 * link up channels based on their CPU affinity.
839 */
840 struct list_head percpu_list;
841 /*
842 * Host signaling policy: The default policy will be
843 * based on the ring buffer state. We will also support
844 * a policy where the client driver can have explicit
845 * signaling control.
846 */
847 enum hv_signal_policy signal_policy;
848 /*
849 * On the channel send side, many of the VMBUS
850 * device drivers explicity serialize access to the
851 * outgoing ring buffer. Give more control to the
852 * VMBUS device drivers in terms how to serialize
853 * accesss to the outgoing ring buffer.
854 * The default behavior will be to aquire the
855 * ring lock to preserve the current behavior.
856 */
857 bool acquire_ring_lock;
858 /*
859 * For performance critical channels (storage, networking
860 * etc,), Hyper-V has a mechanism to enhance the throughput
861 * at the expense of latency:
862 * When the host is to be signaled, we just set a bit in a shared page
863 * and this bit will be inspected by the hypervisor within a certain
864 * window and if the bit is set, the host will be signaled. The window
865 * of time is the monitor latency - currently around 100 usecs. This
866 * mechanism improves throughput by:
867 *
868 * A) Making the host more efficient - each time it wakes up,
869 * potentially it will process morev number of packets. The
870 * monitor latency allows a batch to build up.
871 * B) By deferring the hypercall to signal, we will also minimize
872 * the interrupts.
873 *
874 * Clearly, these optimizations improve throughput at the expense of
875 * latency. Furthermore, since the channel is shared for both
876 * control and data messages, control messages currently suffer
877 * unnecessary latency adversley impacting performance and boot
878 * time. To fix this issue, permit tagging the channel as being
879 * in "low latency" mode. In this mode, we will bypass the monitor
880 * mechanism.
881 */
882 bool low_latency;
883
884 /*
885 * NUMA distribution policy:
886 * We support teo policies:
887 * 1) Balanced: Here all performance critical channels are
888 * distributed evenly amongst all the NUMA nodes.
889 * This policy will be the default policy.
890 * 2) Localized: All channels of a given instance of a
891 * performance critical service will be assigned CPUs
892 * within a selected NUMA node.
893 */
894 enum hv_numa_policy affinity_policy;
895
896 };
897
898 static inline void set_channel_lock_state(struct vmbus_channel *c, bool state)
899 {
900 c->acquire_ring_lock = state;
901 }
902
903 static inline bool is_hvsock_channel(const struct vmbus_channel *c)
904 {
905 return !!(c->offermsg.offer.chn_flags &
906 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
907 }
908
909 static inline void set_channel_signal_state(struct vmbus_channel *c,
910 enum hv_signal_policy policy)
911 {
912 c->signal_policy = policy;
913 }
914
915 static inline void set_channel_affinity_state(struct vmbus_channel *c,
916 enum hv_numa_policy policy)
917 {
918 c->affinity_policy = policy;
919 }
920
921 static inline void set_channel_read_state(struct vmbus_channel *c, bool state)
922 {
923 c->batched_reading = state;
924 }
925
926 static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
927 {
928 c->per_channel_state = s;
929 }
930
931 static inline void *get_per_channel_state(struct vmbus_channel *c)
932 {
933 return c->per_channel_state;
934 }
935
936 static inline void set_channel_pending_send_size(struct vmbus_channel *c,
937 u32 size)
938 {
939 c->outbound.ring_buffer->pending_send_sz = size;
940 }
941
942 static inline void set_low_latency_mode(struct vmbus_channel *c)
943 {
944 c->low_latency = true;
945 }
946
947 static inline void clear_low_latency_mode(struct vmbus_channel *c)
948 {
949 c->low_latency = false;
950 }
951
952 void vmbus_onmessage(void *context);
953
954 int vmbus_request_offers(void);
955
956 /*
957 * APIs for managing sub-channels.
958 */
959
960 void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
961 void (*sc_cr_cb)(struct vmbus_channel *new_sc));
962
963 void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
964 void (*chn_rescind_cb)(struct vmbus_channel *));
965
966 /*
967 * Retrieve the (sub) channel on which to send an outgoing request.
968 * When a primary channel has multiple sub-channels, we choose a
969 * channel whose VCPU binding is closest to the VCPU on which
970 * this call is being made.
971 */
972 struct vmbus_channel *vmbus_get_outgoing_channel(struct vmbus_channel *primary);
973
974 /*
975 * Check if sub-channels have already been offerred. This API will be useful
976 * when the driver is unloaded after establishing sub-channels. In this case,
977 * when the driver is re-loaded, the driver would have to check if the
978 * subchannels have already been established before attempting to request
979 * the creation of sub-channels.
980 * This function returns TRUE to indicate that subchannels have already been
981 * created.
982 * This function should be invoked after setting the callback function for
983 * sub-channel creation.
984 */
985 bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
986
987 /* The format must be the same as struct vmdata_gpa_direct */
988 struct vmbus_channel_packet_page_buffer {
989 u16 type;
990 u16 dataoffset8;
991 u16 length8;
992 u16 flags;
993 u64 transactionid;
994 u32 reserved;
995 u32 rangecount;
996 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
997 } __packed;
998
999 /* The format must be the same as struct vmdata_gpa_direct */
1000 struct vmbus_channel_packet_multipage_buffer {
1001 u16 type;
1002 u16 dataoffset8;
1003 u16 length8;
1004 u16 flags;
1005 u64 transactionid;
1006 u32 reserved;
1007 u32 rangecount; /* Always 1 in this case */
1008 struct hv_multipage_buffer range;
1009 } __packed;
1010
1011 /* The format must be the same as struct vmdata_gpa_direct */
1012 struct vmbus_packet_mpb_array {
1013 u16 type;
1014 u16 dataoffset8;
1015 u16 length8;
1016 u16 flags;
1017 u64 transactionid;
1018 u32 reserved;
1019 u32 rangecount; /* Always 1 in this case */
1020 struct hv_mpb_array range;
1021 } __packed;
1022
1023
1024 extern int vmbus_open(struct vmbus_channel *channel,
1025 u32 send_ringbuffersize,
1026 u32 recv_ringbuffersize,
1027 void *userdata,
1028 u32 userdatalen,
1029 void(*onchannel_callback)(void *context),
1030 void *context);
1031
1032 extern void vmbus_close(struct vmbus_channel *channel);
1033
1034 extern int vmbus_sendpacket(struct vmbus_channel *channel,
1035 void *buffer,
1036 u32 bufferLen,
1037 u64 requestid,
1038 enum vmbus_packet_type type,
1039 u32 flags);
1040
1041 extern int vmbus_sendpacket_ctl(struct vmbus_channel *channel,
1042 void *buffer,
1043 u32 bufferLen,
1044 u64 requestid,
1045 enum vmbus_packet_type type,
1046 u32 flags,
1047 bool kick_q);
1048
1049 extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
1050 struct hv_page_buffer pagebuffers[],
1051 u32 pagecount,
1052 void *buffer,
1053 u32 bufferlen,
1054 u64 requestid);
1055
1056 extern int vmbus_sendpacket_pagebuffer_ctl(struct vmbus_channel *channel,
1057 struct hv_page_buffer pagebuffers[],
1058 u32 pagecount,
1059 void *buffer,
1060 u32 bufferlen,
1061 u64 requestid,
1062 u32 flags,
1063 bool kick_q);
1064
1065 extern int vmbus_sendpacket_multipagebuffer(struct vmbus_channel *channel,
1066 struct hv_multipage_buffer *mpb,
1067 void *buffer,
1068 u32 bufferlen,
1069 u64 requestid);
1070
1071 extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
1072 struct vmbus_packet_mpb_array *mpb,
1073 u32 desc_size,
1074 void *buffer,
1075 u32 bufferlen,
1076 u64 requestid);
1077
1078 extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
1079 void *kbuffer,
1080 u32 size,
1081 u32 *gpadl_handle);
1082
1083 extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
1084 u32 gpadl_handle);
1085
1086 extern int vmbus_recvpacket(struct vmbus_channel *channel,
1087 void *buffer,
1088 u32 bufferlen,
1089 u32 *buffer_actual_len,
1090 u64 *requestid);
1091
1092 extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
1093 void *buffer,
1094 u32 bufferlen,
1095 u32 *buffer_actual_len,
1096 u64 *requestid);
1097
1098
1099 extern void vmbus_ontimer(unsigned long data);
1100
1101 /* Base driver object */
1102 struct hv_driver {
1103 const char *name;
1104
1105 /*
1106 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
1107 * channel flag, actually doesn't mean a synthetic device because the
1108 * offer's if_type/if_instance can change for every new hvsock
1109 * connection.
1110 *
1111 * However, to facilitate the notification of new-offer/rescind-offer
1112 * from vmbus driver to hvsock driver, we can handle hvsock offer as
1113 * a special vmbus device, and hence we need the below flag to
1114 * indicate if the driver is the hvsock driver or not: we need to
1115 * specially treat the hvosck offer & driver in vmbus_match().
1116 */
1117 bool hvsock;
1118
1119 /* the device type supported by this driver */
1120 uuid_le dev_type;
1121 const struct hv_vmbus_device_id *id_table;
1122
1123 struct device_driver driver;
1124
1125 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
1126 int (*remove)(struct hv_device *);
1127 void (*shutdown)(struct hv_device *);
1128
1129 };
1130
1131 /* Base device object */
1132 struct hv_device {
1133 /* the device type id of this device */
1134 uuid_le dev_type;
1135
1136 /* the device instance id of this device */
1137 uuid_le dev_instance;
1138 u16 vendor_id;
1139 u16 device_id;
1140
1141 struct device device;
1142
1143 struct vmbus_channel *channel;
1144 };
1145
1146
1147 static inline struct hv_device *device_to_hv_device(struct device *d)
1148 {
1149 return container_of(d, struct hv_device, device);
1150 }
1151
1152 static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
1153 {
1154 return container_of(d, struct hv_driver, driver);
1155 }
1156
1157 static inline void hv_set_drvdata(struct hv_device *dev, void *data)
1158 {
1159 dev_set_drvdata(&dev->device, data);
1160 }
1161
1162 static inline void *hv_get_drvdata(struct hv_device *dev)
1163 {
1164 return dev_get_drvdata(&dev->device);
1165 }
1166
1167 /* Vmbus interface */
1168 #define vmbus_driver_register(driver) \
1169 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
1170 int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
1171 struct module *owner,
1172 const char *mod_name);
1173 void vmbus_driver_unregister(struct hv_driver *hv_driver);
1174
1175 static inline const char *vmbus_dev_name(const struct hv_device *device_obj)
1176 {
1177 const struct kobject *kobj = &device_obj->device.kobj;
1178
1179 return kobj->name;
1180 }
1181
1182 void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
1183
1184 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
1185 resource_size_t min, resource_size_t max,
1186 resource_size_t size, resource_size_t align,
1187 bool fb_overlap_ok);
1188 void vmbus_free_mmio(resource_size_t start, resource_size_t size);
1189 int vmbus_cpu_number_to_vp_number(int cpu_number);
1190 u64 hv_do_hypercall(u64 control, void *input, void *output);
1191
1192 /*
1193 * GUID definitions of various offer types - services offered to the guest.
1194 */
1195
1196 /*
1197 * Network GUID
1198 * {f8615163-df3e-46c5-913f-f2d2f965ed0e}
1199 */
1200 #define HV_NIC_GUID \
1201 .guid = UUID_LE(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
1202 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
1203
1204 /*
1205 * IDE GUID
1206 * {32412632-86cb-44a2-9b5c-50d1417354f5}
1207 */
1208 #define HV_IDE_GUID \
1209 .guid = UUID_LE(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
1210 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
1211
1212 /*
1213 * SCSI GUID
1214 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
1215 */
1216 #define HV_SCSI_GUID \
1217 .guid = UUID_LE(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
1218 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
1219
1220 /*
1221 * Shutdown GUID
1222 * {0e0b6031-5213-4934-818b-38d90ced39db}
1223 */
1224 #define HV_SHUTDOWN_GUID \
1225 .guid = UUID_LE(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
1226 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
1227
1228 /*
1229 * Time Synch GUID
1230 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
1231 */
1232 #define HV_TS_GUID \
1233 .guid = UUID_LE(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
1234 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
1235
1236 /*
1237 * Heartbeat GUID
1238 * {57164f39-9115-4e78-ab55-382f3bd5422d}
1239 */
1240 #define HV_HEART_BEAT_GUID \
1241 .guid = UUID_LE(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
1242 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
1243
1244 /*
1245 * KVP GUID
1246 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
1247 */
1248 #define HV_KVP_GUID \
1249 .guid = UUID_LE(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
1250 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
1251
1252 /*
1253 * Dynamic memory GUID
1254 * {525074dc-8985-46e2-8057-a307dc18a502}
1255 */
1256 #define HV_DM_GUID \
1257 .guid = UUID_LE(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
1258 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
1259
1260 /*
1261 * Mouse GUID
1262 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
1263 */
1264 #define HV_MOUSE_GUID \
1265 .guid = UUID_LE(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
1266 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
1267
1268 /*
1269 * Keyboard GUID
1270 * {f912ad6d-2b17-48ea-bd65-f927a61c7684}
1271 */
1272 #define HV_KBD_GUID \
1273 .guid = UUID_LE(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
1274 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
1275
1276 /*
1277 * VSS (Backup/Restore) GUID
1278 */
1279 #define HV_VSS_GUID \
1280 .guid = UUID_LE(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
1281 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
1282 /*
1283 * Synthetic Video GUID
1284 * {DA0A7802-E377-4aac-8E77-0558EB1073F8}
1285 */
1286 #define HV_SYNTHVID_GUID \
1287 .guid = UUID_LE(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
1288 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
1289
1290 /*
1291 * Synthetic FC GUID
1292 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
1293 */
1294 #define HV_SYNTHFC_GUID \
1295 .guid = UUID_LE(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
1296 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
1297
1298 /*
1299 * Guest File Copy Service
1300 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
1301 */
1302
1303 #define HV_FCOPY_GUID \
1304 .guid = UUID_LE(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
1305 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
1306
1307 /*
1308 * NetworkDirect. This is the guest RDMA service.
1309 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
1310 */
1311 #define HV_ND_GUID \
1312 .guid = UUID_LE(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
1313 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
1314
1315 /*
1316 * PCI Express Pass Through
1317 * {44C4F61D-4444-4400-9D52-802E27EDE19F}
1318 */
1319
1320 #define HV_PCIE_GUID \
1321 .guid = UUID_LE(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
1322 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
1323
1324 /*
1325 * Linux doesn't support the 3 devices: the first two are for
1326 * Automatic Virtual Machine Activation, and the third is for
1327 * Remote Desktop Virtualization.
1328 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
1329 * {3375baf4-9e15-4b30-b765-67acb10d607b}
1330 * {276aacf4-ac15-426c-98dd-7521ad3f01fe}
1331 */
1332
1333 #define HV_AVMA1_GUID \
1334 .guid = UUID_LE(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
1335 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
1336
1337 #define HV_AVMA2_GUID \
1338 .guid = UUID_LE(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
1339 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
1340
1341 #define HV_RDV_GUID \
1342 .guid = UUID_LE(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
1343 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
1344
1345 /*
1346 * Common header for Hyper-V ICs
1347 */
1348
1349 #define ICMSGTYPE_NEGOTIATE 0
1350 #define ICMSGTYPE_HEARTBEAT 1
1351 #define ICMSGTYPE_KVPEXCHANGE 2
1352 #define ICMSGTYPE_SHUTDOWN 3
1353 #define ICMSGTYPE_TIMESYNC 4
1354 #define ICMSGTYPE_VSS 5
1355
1356 #define ICMSGHDRFLAG_TRANSACTION 1
1357 #define ICMSGHDRFLAG_REQUEST 2
1358 #define ICMSGHDRFLAG_RESPONSE 4
1359
1360
1361 /*
1362 * While we want to handle util services as regular devices,
1363 * there is only one instance of each of these services; so
1364 * we statically allocate the service specific state.
1365 */
1366
1367 struct hv_util_service {
1368 u8 *recv_buffer;
1369 void *channel;
1370 void (*util_cb)(void *);
1371 int (*util_init)(struct hv_util_service *);
1372 void (*util_deinit)(void);
1373 };
1374
1375 struct vmbuspipe_hdr {
1376 u32 flags;
1377 u32 msgsize;
1378 } __packed;
1379
1380 struct ic_version {
1381 u16 major;
1382 u16 minor;
1383 } __packed;
1384
1385 struct icmsg_hdr {
1386 struct ic_version icverframe;
1387 u16 icmsgtype;
1388 struct ic_version icvermsg;
1389 u16 icmsgsize;
1390 u32 status;
1391 u8 ictransaction_id;
1392 u8 icflags;
1393 u8 reserved[2];
1394 } __packed;
1395
1396 struct icmsg_negotiate {
1397 u16 icframe_vercnt;
1398 u16 icmsg_vercnt;
1399 u32 reserved;
1400 struct ic_version icversion_data[1]; /* any size array */
1401 } __packed;
1402
1403 struct shutdown_msg_data {
1404 u32 reason_code;
1405 u32 timeout_seconds;
1406 u32 flags;
1407 u8 display_message[2048];
1408 } __packed;
1409
1410 struct heartbeat_msg_data {
1411 u64 seq_num;
1412 u32 reserved[8];
1413 } __packed;
1414
1415 /* Time Sync IC defs */
1416 #define ICTIMESYNCFLAG_PROBE 0
1417 #define ICTIMESYNCFLAG_SYNC 1
1418 #define ICTIMESYNCFLAG_SAMPLE 2
1419
1420 #ifdef __x86_64__
1421 #define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
1422 #else
1423 #define WLTIMEDELTA 116444736000000000LL
1424 #endif
1425
1426 struct ictimesync_data {
1427 u64 parenttime;
1428 u64 childtime;
1429 u64 roundtriptime;
1430 u8 flags;
1431 } __packed;
1432
1433 struct ictimesync_ref_data {
1434 u64 parenttime;
1435 u64 vmreferencetime;
1436 u8 flags;
1437 char leapflags;
1438 char stratum;
1439 u8 reserved[3];
1440 } __packed;
1441
1442 struct hyperv_service_callback {
1443 u8 msg_type;
1444 char *log_msg;
1445 uuid_le data;
1446 struct vmbus_channel *channel;
1447 void (*callback) (void *context);
1448 };
1449
1450 #define MAX_SRV_VER 0x7ffffff
1451 extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *,
1452 struct icmsg_negotiate *, u8 *, int,
1453 int);
1454
1455 void hv_event_tasklet_disable(struct vmbus_channel *channel);
1456 void hv_event_tasklet_enable(struct vmbus_channel *channel);
1457
1458 void hv_process_channel_removal(struct vmbus_channel *channel, u32 relid);
1459
1460 /*
1461 * Negotiated version with the Host.
1462 */
1463
1464 extern __u32 vmbus_proto_version;
1465
1466 int vmbus_send_tl_connect_request(const uuid_le *shv_guest_servie_id,
1467 const uuid_le *shv_host_servie_id);
1468 void vmbus_set_event(struct vmbus_channel *channel);
1469
1470 /* Get the start of the ring buffer. */
1471 static inline void *
1472 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
1473 {
1474 return (void *)ring_info->ring_buffer->buffer;
1475 }
1476
1477 /*
1478 * To optimize the flow management on the send-side,
1479 * when the sender is blocked because of lack of
1480 * sufficient space in the ring buffer, potential the
1481 * consumer of the ring buffer can signal the producer.
1482 * This is controlled by the following parameters:
1483 *
1484 * 1. pending_send_sz: This is the size in bytes that the
1485 * producer is trying to send.
1486 * 2. The feature bit feat_pending_send_sz set to indicate if
1487 * the consumer of the ring will signal when the ring
1488 * state transitions from being full to a state where
1489 * there is room for the producer to send the pending packet.
1490 */
1491
1492 static inline bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi)
1493 {
1494 u32 cur_write_sz;
1495 u32 pending_sz;
1496
1497 /*
1498 * Issue a full memory barrier before making the signaling decision.
1499 * Here is the reason for having this barrier:
1500 * If the reading of the pend_sz (in this function)
1501 * were to be reordered and read before we commit the new read
1502 * index (in the calling function) we could
1503 * have a problem. If the host were to set the pending_sz after we
1504 * have sampled pending_sz and go to sleep before we commit the
1505 * read index, we could miss sending the interrupt. Issue a full
1506 * memory barrier to address this.
1507 */
1508 virt_mb();
1509
1510 pending_sz = READ_ONCE(rbi->ring_buffer->pending_send_sz);
1511 /* If the other end is not blocked on write don't bother. */
1512 if (pending_sz == 0)
1513 return false;
1514
1515 cur_write_sz = hv_get_bytes_to_write(rbi);
1516
1517 if (cur_write_sz >= pending_sz)
1518 return true;
1519
1520 return false;
1521 }
1522
1523 /*
1524 * An API to support in-place processing of incoming VMBUS packets.
1525 */
1526 #define VMBUS_PKT_TRAILER 8
1527
1528 static inline struct vmpacket_descriptor *
1529 get_next_pkt_raw(struct vmbus_channel *channel)
1530 {
1531 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1532 u32 read_loc = ring_info->priv_read_index;
1533 void *ring_buffer = hv_get_ring_buffer(ring_info);
1534 struct vmpacket_descriptor *cur_desc;
1535 u32 packetlen;
1536 u32 dsize = ring_info->ring_datasize;
1537 u32 delta = read_loc - ring_info->ring_buffer->read_index;
1538 u32 bytes_avail_toread = (hv_get_bytes_to_read(ring_info) - delta);
1539
1540 if (bytes_avail_toread < sizeof(struct vmpacket_descriptor))
1541 return NULL;
1542
1543 if ((read_loc + sizeof(*cur_desc)) > dsize)
1544 return NULL;
1545
1546 cur_desc = ring_buffer + read_loc;
1547 packetlen = cur_desc->len8 << 3;
1548
1549 /*
1550 * If the packet under consideration is wrapping around,
1551 * return failure.
1552 */
1553 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > (dsize - 1))
1554 return NULL;
1555
1556 return cur_desc;
1557 }
1558
1559 /*
1560 * A helper function to step through packets "in-place"
1561 * This API is to be called after each successful call
1562 * get_next_pkt_raw().
1563 */
1564 static inline void put_pkt_raw(struct vmbus_channel *channel,
1565 struct vmpacket_descriptor *desc)
1566 {
1567 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1568 u32 read_loc = ring_info->priv_read_index;
1569 u32 packetlen = desc->len8 << 3;
1570 u32 dsize = ring_info->ring_datasize;
1571
1572 if ((read_loc + packetlen + VMBUS_PKT_TRAILER) > dsize)
1573 BUG();
1574 /*
1575 * Include the packet trailer.
1576 */
1577 ring_info->priv_read_index += packetlen + VMBUS_PKT_TRAILER;
1578 }
1579
1580 /*
1581 * This call commits the read index and potentially signals the host.
1582 * Here is the pattern for using the "in-place" consumption APIs:
1583 *
1584 * while (get_next_pkt_raw() {
1585 * process the packet "in-place";
1586 * put_pkt_raw();
1587 * }
1588 * if (packets processed in place)
1589 * commit_rd_index();
1590 */
1591 static inline void commit_rd_index(struct vmbus_channel *channel)
1592 {
1593 struct hv_ring_buffer_info *ring_info = &channel->inbound;
1594 /*
1595 * Make sure all reads are done before we update the read index since
1596 * the writer may start writing to the read area once the read index
1597 * is updated.
1598 */
1599 virt_rmb();
1600 ring_info->ring_buffer->read_index = ring_info->priv_read_index;
1601
1602 if (hv_need_to_signal_on_read(ring_info))
1603 vmbus_set_event(channel);
1604 }
1605
1606
1607 #endif /* _HYPERV_H */
This page took 0.071405 seconds and 5 git commands to generate.