mm: vmscan: invoke slab shrinkers from shrink_zone()
[deliverable/linux.git] / include / linux / mm.h
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3
4 #include <linux/errno.h>
5
6 #ifdef __KERNEL__
7
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30
31 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
32 extern unsigned long max_mapnr;
33
34 static inline void set_max_mapnr(unsigned long limit)
35 {
36 max_mapnr = limit;
37 }
38 #else
39 static inline void set_max_mapnr(unsigned long limit) { }
40 #endif
41
42 extern unsigned long totalram_pages;
43 extern void * high_memory;
44 extern int page_cluster;
45
46 #ifdef CONFIG_SYSCTL
47 extern int sysctl_legacy_va_layout;
48 #else
49 #define sysctl_legacy_va_layout 0
50 #endif
51
52 #include <asm/page.h>
53 #include <asm/pgtable.h>
54 #include <asm/processor.h>
55
56 #ifndef __pa_symbol
57 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58 #endif
59
60 /*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67 #ifndef mm_forbids_zeropage
68 #define mm_forbids_zeropage(X) (0)
69 #endif
70
71 extern unsigned long sysctl_user_reserve_kbytes;
72 extern unsigned long sysctl_admin_reserve_kbytes;
73
74 extern int sysctl_overcommit_memory;
75 extern int sysctl_overcommit_ratio;
76 extern unsigned long sysctl_overcommit_kbytes;
77
78 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
83 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85 /* to align the pointer to the (next) page boundary */
86 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91 /*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100 extern struct kmem_cache *vm_area_cachep;
101
102 #ifndef CONFIG_MMU
103 extern struct rb_root nommu_region_tree;
104 extern struct rw_semaphore nommu_region_sem;
105
106 extern unsigned int kobjsize(const void *objp);
107 #endif
108
109 /*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112 #define VM_NONE 0x00000000
113
114 #define VM_READ 0x00000001 /* currently active flags */
115 #define VM_WRITE 0x00000002
116 #define VM_EXEC 0x00000004
117 #define VM_SHARED 0x00000008
118
119 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121 #define VM_MAYWRITE 0x00000020
122 #define VM_MAYEXEC 0x00000040
123 #define VM_MAYSHARE 0x00000080
124
125 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
127 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
129 #define VM_LOCKED 0x00002000
130 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
138 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
139 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
140 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
142 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
143 #define VM_ARCH_2 0x02000000
144 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
145
146 #ifdef CONFIG_MEM_SOFT_DIRTY
147 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148 #else
149 # define VM_SOFTDIRTY 0
150 #endif
151
152 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
153 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
155 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
156
157 #if defined(CONFIG_X86)
158 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159 #elif defined(CONFIG_PPC)
160 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161 #elif defined(CONFIG_PARISC)
162 # define VM_GROWSUP VM_ARCH_1
163 #elif defined(CONFIG_METAG)
164 # define VM_GROWSUP VM_ARCH_1
165 #elif defined(CONFIG_IA64)
166 # define VM_GROWSUP VM_ARCH_1
167 #elif !defined(CONFIG_MMU)
168 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169 #endif
170
171 #if defined(CONFIG_X86)
172 /* MPX specific bounds table or bounds directory */
173 # define VM_MPX VM_ARCH_2
174 #endif
175
176 #ifndef VM_GROWSUP
177 # define VM_GROWSUP VM_NONE
178 #endif
179
180 /* Bits set in the VMA until the stack is in its final location */
181 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
183 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185 #endif
186
187 #ifdef CONFIG_STACK_GROWSUP
188 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189 #else
190 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191 #endif
192
193 /*
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
196 */
197 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
198
199 /* This mask defines which mm->def_flags a process can inherit its parent */
200 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
202 /*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206 extern pgprot_t protection_map[16];
207
208 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
209 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
210 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
211 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
212 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
213 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
214 #define FAULT_FLAG_TRIED 0x40 /* second try */
215 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
216
217 /*
218 * vm_fault is filled by the the pagefault handler and passed to the vma's
219 * ->fault function. The vma's ->fault is responsible for returning a bitmask
220 * of VM_FAULT_xxx flags that give details about how the fault was handled.
221 *
222 * pgoff should be used in favour of virtual_address, if possible. If pgoff
223 * is used, one may implement ->remap_pages to get nonlinear mapping support.
224 */
225 struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
230 struct page *page; /* ->fault handlers should return a
231 * page here, unless VM_FAULT_NOPAGE
232 * is set (which is also implied by
233 * VM_FAULT_ERROR).
234 */
235 /* for ->map_pages() only */
236 pgoff_t max_pgoff; /* map pages for offset from pgoff till
237 * max_pgoff inclusive */
238 pte_t *pte; /* pte entry associated with ->pgoff */
239 };
240
241 /*
242 * These are the virtual MM functions - opening of an area, closing and
243 * unmapping it (needed to keep files on disk up-to-date etc), pointer
244 * to the functions called when a no-page or a wp-page exception occurs.
245 */
246 struct vm_operations_struct {
247 void (*open)(struct vm_area_struct * area);
248 void (*close)(struct vm_area_struct * area);
249 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
250 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
251
252 /* notification that a previously read-only page is about to become
253 * writable, if an error is returned it will cause a SIGBUS */
254 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
255
256 /* called by access_process_vm when get_user_pages() fails, typically
257 * for use by special VMAs that can switch between memory and hardware
258 */
259 int (*access)(struct vm_area_struct *vma, unsigned long addr,
260 void *buf, int len, int write);
261
262 /* Called by the /proc/PID/maps code to ask the vma whether it
263 * has a special name. Returning non-NULL will also cause this
264 * vma to be dumped unconditionally. */
265 const char *(*name)(struct vm_area_struct *vma);
266
267 #ifdef CONFIG_NUMA
268 /*
269 * set_policy() op must add a reference to any non-NULL @new mempolicy
270 * to hold the policy upon return. Caller should pass NULL @new to
271 * remove a policy and fall back to surrounding context--i.e. do not
272 * install a MPOL_DEFAULT policy, nor the task or system default
273 * mempolicy.
274 */
275 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
276
277 /*
278 * get_policy() op must add reference [mpol_get()] to any policy at
279 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
280 * in mm/mempolicy.c will do this automatically.
281 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
282 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
283 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
284 * must return NULL--i.e., do not "fallback" to task or system default
285 * policy.
286 */
287 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
288 unsigned long addr);
289 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
290 const nodemask_t *to, unsigned long flags);
291 #endif
292 /* called by sys_remap_file_pages() to populate non-linear mapping */
293 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
294 unsigned long size, pgoff_t pgoff);
295 };
296
297 struct mmu_gather;
298 struct inode;
299
300 #define page_private(page) ((page)->private)
301 #define set_page_private(page, v) ((page)->private = (v))
302
303 /* It's valid only if the page is free path or free_list */
304 static inline void set_freepage_migratetype(struct page *page, int migratetype)
305 {
306 page->index = migratetype;
307 }
308
309 /* It's valid only if the page is free path or free_list */
310 static inline int get_freepage_migratetype(struct page *page)
311 {
312 return page->index;
313 }
314
315 /*
316 * FIXME: take this include out, include page-flags.h in
317 * files which need it (119 of them)
318 */
319 #include <linux/page-flags.h>
320 #include <linux/huge_mm.h>
321
322 /*
323 * Methods to modify the page usage count.
324 *
325 * What counts for a page usage:
326 * - cache mapping (page->mapping)
327 * - private data (page->private)
328 * - page mapped in a task's page tables, each mapping
329 * is counted separately
330 *
331 * Also, many kernel routines increase the page count before a critical
332 * routine so they can be sure the page doesn't go away from under them.
333 */
334
335 /*
336 * Drop a ref, return true if the refcount fell to zero (the page has no users)
337 */
338 static inline int put_page_testzero(struct page *page)
339 {
340 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
341 return atomic_dec_and_test(&page->_count);
342 }
343
344 /*
345 * Try to grab a ref unless the page has a refcount of zero, return false if
346 * that is the case.
347 * This can be called when MMU is off so it must not access
348 * any of the virtual mappings.
349 */
350 static inline int get_page_unless_zero(struct page *page)
351 {
352 return atomic_inc_not_zero(&page->_count);
353 }
354
355 /*
356 * Try to drop a ref unless the page has a refcount of one, return false if
357 * that is the case.
358 * This is to make sure that the refcount won't become zero after this drop.
359 * This can be called when MMU is off so it must not access
360 * any of the virtual mappings.
361 */
362 static inline int put_page_unless_one(struct page *page)
363 {
364 return atomic_add_unless(&page->_count, -1, 1);
365 }
366
367 extern int page_is_ram(unsigned long pfn);
368 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
369
370 /* Support for virtually mapped pages */
371 struct page *vmalloc_to_page(const void *addr);
372 unsigned long vmalloc_to_pfn(const void *addr);
373
374 /*
375 * Determine if an address is within the vmalloc range
376 *
377 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
378 * is no special casing required.
379 */
380 static inline int is_vmalloc_addr(const void *x)
381 {
382 #ifdef CONFIG_MMU
383 unsigned long addr = (unsigned long)x;
384
385 return addr >= VMALLOC_START && addr < VMALLOC_END;
386 #else
387 return 0;
388 #endif
389 }
390 #ifdef CONFIG_MMU
391 extern int is_vmalloc_or_module_addr(const void *x);
392 #else
393 static inline int is_vmalloc_or_module_addr(const void *x)
394 {
395 return 0;
396 }
397 #endif
398
399 extern void kvfree(const void *addr);
400
401 static inline void compound_lock(struct page *page)
402 {
403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
404 VM_BUG_ON_PAGE(PageSlab(page), page);
405 bit_spin_lock(PG_compound_lock, &page->flags);
406 #endif
407 }
408
409 static inline void compound_unlock(struct page *page)
410 {
411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
412 VM_BUG_ON_PAGE(PageSlab(page), page);
413 bit_spin_unlock(PG_compound_lock, &page->flags);
414 #endif
415 }
416
417 static inline unsigned long compound_lock_irqsave(struct page *page)
418 {
419 unsigned long uninitialized_var(flags);
420 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
421 local_irq_save(flags);
422 compound_lock(page);
423 #endif
424 return flags;
425 }
426
427 static inline void compound_unlock_irqrestore(struct page *page,
428 unsigned long flags)
429 {
430 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
431 compound_unlock(page);
432 local_irq_restore(flags);
433 #endif
434 }
435
436 static inline struct page *compound_head_by_tail(struct page *tail)
437 {
438 struct page *head = tail->first_page;
439
440 /*
441 * page->first_page may be a dangling pointer to an old
442 * compound page, so recheck that it is still a tail
443 * page before returning.
444 */
445 smp_rmb();
446 if (likely(PageTail(tail)))
447 return head;
448 return tail;
449 }
450
451 static inline struct page *compound_head(struct page *page)
452 {
453 if (unlikely(PageTail(page)))
454 return compound_head_by_tail(page);
455 return page;
456 }
457
458 /*
459 * The atomic page->_mapcount, starts from -1: so that transitions
460 * both from it and to it can be tracked, using atomic_inc_and_test
461 * and atomic_add_negative(-1).
462 */
463 static inline void page_mapcount_reset(struct page *page)
464 {
465 atomic_set(&(page)->_mapcount, -1);
466 }
467
468 static inline int page_mapcount(struct page *page)
469 {
470 return atomic_read(&(page)->_mapcount) + 1;
471 }
472
473 static inline int page_count(struct page *page)
474 {
475 return atomic_read(&compound_head(page)->_count);
476 }
477
478 #ifdef CONFIG_HUGETLB_PAGE
479 extern int PageHeadHuge(struct page *page_head);
480 #else /* CONFIG_HUGETLB_PAGE */
481 static inline int PageHeadHuge(struct page *page_head)
482 {
483 return 0;
484 }
485 #endif /* CONFIG_HUGETLB_PAGE */
486
487 static inline bool __compound_tail_refcounted(struct page *page)
488 {
489 return !PageSlab(page) && !PageHeadHuge(page);
490 }
491
492 /*
493 * This takes a head page as parameter and tells if the
494 * tail page reference counting can be skipped.
495 *
496 * For this to be safe, PageSlab and PageHeadHuge must remain true on
497 * any given page where they return true here, until all tail pins
498 * have been released.
499 */
500 static inline bool compound_tail_refcounted(struct page *page)
501 {
502 VM_BUG_ON_PAGE(!PageHead(page), page);
503 return __compound_tail_refcounted(page);
504 }
505
506 static inline void get_huge_page_tail(struct page *page)
507 {
508 /*
509 * __split_huge_page_refcount() cannot run from under us.
510 */
511 VM_BUG_ON_PAGE(!PageTail(page), page);
512 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
513 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
514 if (compound_tail_refcounted(page->first_page))
515 atomic_inc(&page->_mapcount);
516 }
517
518 extern bool __get_page_tail(struct page *page);
519
520 static inline void get_page(struct page *page)
521 {
522 if (unlikely(PageTail(page)))
523 if (likely(__get_page_tail(page)))
524 return;
525 /*
526 * Getting a normal page or the head of a compound page
527 * requires to already have an elevated page->_count.
528 */
529 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
530 atomic_inc(&page->_count);
531 }
532
533 static inline struct page *virt_to_head_page(const void *x)
534 {
535 struct page *page = virt_to_page(x);
536 return compound_head(page);
537 }
538
539 /*
540 * Setup the page count before being freed into the page allocator for
541 * the first time (boot or memory hotplug)
542 */
543 static inline void init_page_count(struct page *page)
544 {
545 atomic_set(&page->_count, 1);
546 }
547
548 /*
549 * PageBuddy() indicate that the page is free and in the buddy system
550 * (see mm/page_alloc.c).
551 *
552 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
553 * -2 so that an underflow of the page_mapcount() won't be mistaken
554 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
555 * efficiently by most CPU architectures.
556 */
557 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
558
559 static inline int PageBuddy(struct page *page)
560 {
561 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
562 }
563
564 static inline void __SetPageBuddy(struct page *page)
565 {
566 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
567 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
568 }
569
570 static inline void __ClearPageBuddy(struct page *page)
571 {
572 VM_BUG_ON_PAGE(!PageBuddy(page), page);
573 atomic_set(&page->_mapcount, -1);
574 }
575
576 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
577
578 static inline int PageBalloon(struct page *page)
579 {
580 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
581 }
582
583 static inline void __SetPageBalloon(struct page *page)
584 {
585 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
586 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
587 }
588
589 static inline void __ClearPageBalloon(struct page *page)
590 {
591 VM_BUG_ON_PAGE(!PageBalloon(page), page);
592 atomic_set(&page->_mapcount, -1);
593 }
594
595 void put_page(struct page *page);
596 void put_pages_list(struct list_head *pages);
597
598 void split_page(struct page *page, unsigned int order);
599 int split_free_page(struct page *page);
600
601 /*
602 * Compound pages have a destructor function. Provide a
603 * prototype for that function and accessor functions.
604 * These are _only_ valid on the head of a PG_compound page.
605 */
606 typedef void compound_page_dtor(struct page *);
607
608 static inline void set_compound_page_dtor(struct page *page,
609 compound_page_dtor *dtor)
610 {
611 page[1].lru.next = (void *)dtor;
612 }
613
614 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
615 {
616 return (compound_page_dtor *)page[1].lru.next;
617 }
618
619 static inline int compound_order(struct page *page)
620 {
621 if (!PageHead(page))
622 return 0;
623 return (unsigned long)page[1].lru.prev;
624 }
625
626 static inline void set_compound_order(struct page *page, unsigned long order)
627 {
628 page[1].lru.prev = (void *)order;
629 }
630
631 #ifdef CONFIG_MMU
632 /*
633 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
634 * servicing faults for write access. In the normal case, do always want
635 * pte_mkwrite. But get_user_pages can cause write faults for mappings
636 * that do not have writing enabled, when used by access_process_vm.
637 */
638 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
639 {
640 if (likely(vma->vm_flags & VM_WRITE))
641 pte = pte_mkwrite(pte);
642 return pte;
643 }
644
645 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
646 struct page *page, pte_t *pte, bool write, bool anon);
647 #endif
648
649 /*
650 * Multiple processes may "see" the same page. E.g. for untouched
651 * mappings of /dev/null, all processes see the same page full of
652 * zeroes, and text pages of executables and shared libraries have
653 * only one copy in memory, at most, normally.
654 *
655 * For the non-reserved pages, page_count(page) denotes a reference count.
656 * page_count() == 0 means the page is free. page->lru is then used for
657 * freelist management in the buddy allocator.
658 * page_count() > 0 means the page has been allocated.
659 *
660 * Pages are allocated by the slab allocator in order to provide memory
661 * to kmalloc and kmem_cache_alloc. In this case, the management of the
662 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
663 * unless a particular usage is carefully commented. (the responsibility of
664 * freeing the kmalloc memory is the caller's, of course).
665 *
666 * A page may be used by anyone else who does a __get_free_page().
667 * In this case, page_count still tracks the references, and should only
668 * be used through the normal accessor functions. The top bits of page->flags
669 * and page->virtual store page management information, but all other fields
670 * are unused and could be used privately, carefully. The management of this
671 * page is the responsibility of the one who allocated it, and those who have
672 * subsequently been given references to it.
673 *
674 * The other pages (we may call them "pagecache pages") are completely
675 * managed by the Linux memory manager: I/O, buffers, swapping etc.
676 * The following discussion applies only to them.
677 *
678 * A pagecache page contains an opaque `private' member, which belongs to the
679 * page's address_space. Usually, this is the address of a circular list of
680 * the page's disk buffers. PG_private must be set to tell the VM to call
681 * into the filesystem to release these pages.
682 *
683 * A page may belong to an inode's memory mapping. In this case, page->mapping
684 * is the pointer to the inode, and page->index is the file offset of the page,
685 * in units of PAGE_CACHE_SIZE.
686 *
687 * If pagecache pages are not associated with an inode, they are said to be
688 * anonymous pages. These may become associated with the swapcache, and in that
689 * case PG_swapcache is set, and page->private is an offset into the swapcache.
690 *
691 * In either case (swapcache or inode backed), the pagecache itself holds one
692 * reference to the page. Setting PG_private should also increment the
693 * refcount. The each user mapping also has a reference to the page.
694 *
695 * The pagecache pages are stored in a per-mapping radix tree, which is
696 * rooted at mapping->page_tree, and indexed by offset.
697 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
698 * lists, we instead now tag pages as dirty/writeback in the radix tree.
699 *
700 * All pagecache pages may be subject to I/O:
701 * - inode pages may need to be read from disk,
702 * - inode pages which have been modified and are MAP_SHARED may need
703 * to be written back to the inode on disk,
704 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
705 * modified may need to be swapped out to swap space and (later) to be read
706 * back into memory.
707 */
708
709 /*
710 * The zone field is never updated after free_area_init_core()
711 * sets it, so none of the operations on it need to be atomic.
712 */
713
714 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
715 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
716 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
717 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
718 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
719
720 /*
721 * Define the bit shifts to access each section. For non-existent
722 * sections we define the shift as 0; that plus a 0 mask ensures
723 * the compiler will optimise away reference to them.
724 */
725 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
726 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
727 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
728 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
729
730 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
731 #ifdef NODE_NOT_IN_PAGE_FLAGS
732 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
733 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
734 SECTIONS_PGOFF : ZONES_PGOFF)
735 #else
736 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
737 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
738 NODES_PGOFF : ZONES_PGOFF)
739 #endif
740
741 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
742
743 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
744 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
745 #endif
746
747 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
748 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
749 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
750 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
751 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
752
753 static inline enum zone_type page_zonenum(const struct page *page)
754 {
755 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
756 }
757
758 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
759 #define SECTION_IN_PAGE_FLAGS
760 #endif
761
762 /*
763 * The identification function is mainly used by the buddy allocator for
764 * determining if two pages could be buddies. We are not really identifying
765 * the zone since we could be using the section number id if we do not have
766 * node id available in page flags.
767 * We only guarantee that it will return the same value for two combinable
768 * pages in a zone.
769 */
770 static inline int page_zone_id(struct page *page)
771 {
772 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
773 }
774
775 static inline int zone_to_nid(struct zone *zone)
776 {
777 #ifdef CONFIG_NUMA
778 return zone->node;
779 #else
780 return 0;
781 #endif
782 }
783
784 #ifdef NODE_NOT_IN_PAGE_FLAGS
785 extern int page_to_nid(const struct page *page);
786 #else
787 static inline int page_to_nid(const struct page *page)
788 {
789 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
790 }
791 #endif
792
793 #ifdef CONFIG_NUMA_BALANCING
794 static inline int cpu_pid_to_cpupid(int cpu, int pid)
795 {
796 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
797 }
798
799 static inline int cpupid_to_pid(int cpupid)
800 {
801 return cpupid & LAST__PID_MASK;
802 }
803
804 static inline int cpupid_to_cpu(int cpupid)
805 {
806 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
807 }
808
809 static inline int cpupid_to_nid(int cpupid)
810 {
811 return cpu_to_node(cpupid_to_cpu(cpupid));
812 }
813
814 static inline bool cpupid_pid_unset(int cpupid)
815 {
816 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
817 }
818
819 static inline bool cpupid_cpu_unset(int cpupid)
820 {
821 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
822 }
823
824 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
825 {
826 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
827 }
828
829 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
830 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
831 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
832 {
833 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
834 }
835
836 static inline int page_cpupid_last(struct page *page)
837 {
838 return page->_last_cpupid;
839 }
840 static inline void page_cpupid_reset_last(struct page *page)
841 {
842 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
843 }
844 #else
845 static inline int page_cpupid_last(struct page *page)
846 {
847 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
848 }
849
850 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
851
852 static inline void page_cpupid_reset_last(struct page *page)
853 {
854 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
855
856 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
857 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
858 }
859 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
860 #else /* !CONFIG_NUMA_BALANCING */
861 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
862 {
863 return page_to_nid(page); /* XXX */
864 }
865
866 static inline int page_cpupid_last(struct page *page)
867 {
868 return page_to_nid(page); /* XXX */
869 }
870
871 static inline int cpupid_to_nid(int cpupid)
872 {
873 return -1;
874 }
875
876 static inline int cpupid_to_pid(int cpupid)
877 {
878 return -1;
879 }
880
881 static inline int cpupid_to_cpu(int cpupid)
882 {
883 return -1;
884 }
885
886 static inline int cpu_pid_to_cpupid(int nid, int pid)
887 {
888 return -1;
889 }
890
891 static inline bool cpupid_pid_unset(int cpupid)
892 {
893 return 1;
894 }
895
896 static inline void page_cpupid_reset_last(struct page *page)
897 {
898 }
899
900 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
901 {
902 return false;
903 }
904 #endif /* CONFIG_NUMA_BALANCING */
905
906 static inline struct zone *page_zone(const struct page *page)
907 {
908 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
909 }
910
911 #ifdef SECTION_IN_PAGE_FLAGS
912 static inline void set_page_section(struct page *page, unsigned long section)
913 {
914 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
915 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
916 }
917
918 static inline unsigned long page_to_section(const struct page *page)
919 {
920 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
921 }
922 #endif
923
924 static inline void set_page_zone(struct page *page, enum zone_type zone)
925 {
926 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
927 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
928 }
929
930 static inline void set_page_node(struct page *page, unsigned long node)
931 {
932 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
933 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
934 }
935
936 static inline void set_page_links(struct page *page, enum zone_type zone,
937 unsigned long node, unsigned long pfn)
938 {
939 set_page_zone(page, zone);
940 set_page_node(page, node);
941 #ifdef SECTION_IN_PAGE_FLAGS
942 set_page_section(page, pfn_to_section_nr(pfn));
943 #endif
944 }
945
946 /*
947 * Some inline functions in vmstat.h depend on page_zone()
948 */
949 #include <linux/vmstat.h>
950
951 static __always_inline void *lowmem_page_address(const struct page *page)
952 {
953 return __va(PFN_PHYS(page_to_pfn(page)));
954 }
955
956 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
957 #define HASHED_PAGE_VIRTUAL
958 #endif
959
960 #if defined(WANT_PAGE_VIRTUAL)
961 static inline void *page_address(const struct page *page)
962 {
963 return page->virtual;
964 }
965 static inline void set_page_address(struct page *page, void *address)
966 {
967 page->virtual = address;
968 }
969 #define page_address_init() do { } while(0)
970 #endif
971
972 #if defined(HASHED_PAGE_VIRTUAL)
973 void *page_address(const struct page *page);
974 void set_page_address(struct page *page, void *virtual);
975 void page_address_init(void);
976 #endif
977
978 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
979 #define page_address(page) lowmem_page_address(page)
980 #define set_page_address(page, address) do { } while(0)
981 #define page_address_init() do { } while(0)
982 #endif
983
984 /*
985 * On an anonymous page mapped into a user virtual memory area,
986 * page->mapping points to its anon_vma, not to a struct address_space;
987 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
988 *
989 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
990 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
991 * and then page->mapping points, not to an anon_vma, but to a private
992 * structure which KSM associates with that merged page. See ksm.h.
993 *
994 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
995 *
996 * Please note that, confusingly, "page_mapping" refers to the inode
997 * address_space which maps the page from disk; whereas "page_mapped"
998 * refers to user virtual address space into which the page is mapped.
999 */
1000 #define PAGE_MAPPING_ANON 1
1001 #define PAGE_MAPPING_KSM 2
1002 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1003
1004 extern struct address_space *page_mapping(struct page *page);
1005
1006 /* Neutral page->mapping pointer to address_space or anon_vma or other */
1007 static inline void *page_rmapping(struct page *page)
1008 {
1009 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1010 }
1011
1012 extern struct address_space *__page_file_mapping(struct page *);
1013
1014 static inline
1015 struct address_space *page_file_mapping(struct page *page)
1016 {
1017 if (unlikely(PageSwapCache(page)))
1018 return __page_file_mapping(page);
1019
1020 return page->mapping;
1021 }
1022
1023 static inline int PageAnon(struct page *page)
1024 {
1025 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1026 }
1027
1028 /*
1029 * Return the pagecache index of the passed page. Regular pagecache pages
1030 * use ->index whereas swapcache pages use ->private
1031 */
1032 static inline pgoff_t page_index(struct page *page)
1033 {
1034 if (unlikely(PageSwapCache(page)))
1035 return page_private(page);
1036 return page->index;
1037 }
1038
1039 extern pgoff_t __page_file_index(struct page *page);
1040
1041 /*
1042 * Return the file index of the page. Regular pagecache pages use ->index
1043 * whereas swapcache pages use swp_offset(->private)
1044 */
1045 static inline pgoff_t page_file_index(struct page *page)
1046 {
1047 if (unlikely(PageSwapCache(page)))
1048 return __page_file_index(page);
1049
1050 return page->index;
1051 }
1052
1053 /*
1054 * Return true if this page is mapped into pagetables.
1055 */
1056 static inline int page_mapped(struct page *page)
1057 {
1058 return atomic_read(&(page)->_mapcount) >= 0;
1059 }
1060
1061 /*
1062 * Different kinds of faults, as returned by handle_mm_fault().
1063 * Used to decide whether a process gets delivered SIGBUS or
1064 * just gets major/minor fault counters bumped up.
1065 */
1066
1067 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1068
1069 #define VM_FAULT_OOM 0x0001
1070 #define VM_FAULT_SIGBUS 0x0002
1071 #define VM_FAULT_MAJOR 0x0004
1072 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1073 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1074 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1075
1076 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1077 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1078 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1079 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1080
1081 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1082
1083 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1084 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1085
1086 /* Encode hstate index for a hwpoisoned large page */
1087 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1088 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1089
1090 /*
1091 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1092 */
1093 extern void pagefault_out_of_memory(void);
1094
1095 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1096
1097 /*
1098 * Flags passed to show_mem() and show_free_areas() to suppress output in
1099 * various contexts.
1100 */
1101 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1102
1103 extern void show_free_areas(unsigned int flags);
1104 extern bool skip_free_areas_node(unsigned int flags, int nid);
1105
1106 int shmem_zero_setup(struct vm_area_struct *);
1107 #ifdef CONFIG_SHMEM
1108 bool shmem_mapping(struct address_space *mapping);
1109 #else
1110 static inline bool shmem_mapping(struct address_space *mapping)
1111 {
1112 return false;
1113 }
1114 #endif
1115
1116 extern int can_do_mlock(void);
1117 extern int user_shm_lock(size_t, struct user_struct *);
1118 extern void user_shm_unlock(size_t, struct user_struct *);
1119
1120 /*
1121 * Parameter block passed down to zap_pte_range in exceptional cases.
1122 */
1123 struct zap_details {
1124 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1125 struct address_space *check_mapping; /* Check page->mapping if set */
1126 pgoff_t first_index; /* Lowest page->index to unmap */
1127 pgoff_t last_index; /* Highest page->index to unmap */
1128 };
1129
1130 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1131 pte_t pte);
1132
1133 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1134 unsigned long size);
1135 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1136 unsigned long size, struct zap_details *);
1137 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1138 unsigned long start, unsigned long end);
1139
1140 /**
1141 * mm_walk - callbacks for walk_page_range
1142 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1143 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1144 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1145 * this handler is required to be able to handle
1146 * pmd_trans_huge() pmds. They may simply choose to
1147 * split_huge_page() instead of handling it explicitly.
1148 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1149 * @pte_hole: if set, called for each hole at all levels
1150 * @hugetlb_entry: if set, called for each hugetlb entry
1151 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1152 * is used.
1153 *
1154 * (see walk_page_range for more details)
1155 */
1156 struct mm_walk {
1157 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1158 unsigned long next, struct mm_walk *walk);
1159 int (*pud_entry)(pud_t *pud, unsigned long addr,
1160 unsigned long next, struct mm_walk *walk);
1161 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1162 unsigned long next, struct mm_walk *walk);
1163 int (*pte_entry)(pte_t *pte, unsigned long addr,
1164 unsigned long next, struct mm_walk *walk);
1165 int (*pte_hole)(unsigned long addr, unsigned long next,
1166 struct mm_walk *walk);
1167 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1168 unsigned long addr, unsigned long next,
1169 struct mm_walk *walk);
1170 struct mm_struct *mm;
1171 void *private;
1172 };
1173
1174 int walk_page_range(unsigned long addr, unsigned long end,
1175 struct mm_walk *walk);
1176 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1177 unsigned long end, unsigned long floor, unsigned long ceiling);
1178 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1179 struct vm_area_struct *vma);
1180 void unmap_mapping_range(struct address_space *mapping,
1181 loff_t const holebegin, loff_t const holelen, int even_cows);
1182 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1183 unsigned long *pfn);
1184 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1185 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1186 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1187 void *buf, int len, int write);
1188
1189 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1190 loff_t const holebegin, loff_t const holelen)
1191 {
1192 unmap_mapping_range(mapping, holebegin, holelen, 0);
1193 }
1194
1195 extern void truncate_pagecache(struct inode *inode, loff_t new);
1196 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1197 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1198 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1199 int truncate_inode_page(struct address_space *mapping, struct page *page);
1200 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1201 int invalidate_inode_page(struct page *page);
1202
1203 #ifdef CONFIG_MMU
1204 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1205 unsigned long address, unsigned int flags);
1206 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1207 unsigned long address, unsigned int fault_flags);
1208 #else
1209 static inline int handle_mm_fault(struct mm_struct *mm,
1210 struct vm_area_struct *vma, unsigned long address,
1211 unsigned int flags)
1212 {
1213 /* should never happen if there's no MMU */
1214 BUG();
1215 return VM_FAULT_SIGBUS;
1216 }
1217 static inline int fixup_user_fault(struct task_struct *tsk,
1218 struct mm_struct *mm, unsigned long address,
1219 unsigned int fault_flags)
1220 {
1221 /* should never happen if there's no MMU */
1222 BUG();
1223 return -EFAULT;
1224 }
1225 #endif
1226
1227 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1228 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1229 void *buf, int len, int write);
1230
1231 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1232 unsigned long start, unsigned long nr_pages,
1233 unsigned int foll_flags, struct page **pages,
1234 struct vm_area_struct **vmas, int *nonblocking);
1235 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1236 unsigned long start, unsigned long nr_pages,
1237 int write, int force, struct page **pages,
1238 struct vm_area_struct **vmas);
1239 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1240 struct page **pages);
1241 struct kvec;
1242 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1243 struct page **pages);
1244 int get_kernel_page(unsigned long start, int write, struct page **pages);
1245 struct page *get_dump_page(unsigned long addr);
1246
1247 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1248 extern void do_invalidatepage(struct page *page, unsigned int offset,
1249 unsigned int length);
1250
1251 int __set_page_dirty_nobuffers(struct page *page);
1252 int __set_page_dirty_no_writeback(struct page *page);
1253 int redirty_page_for_writepage(struct writeback_control *wbc,
1254 struct page *page);
1255 void account_page_dirtied(struct page *page, struct address_space *mapping);
1256 int set_page_dirty(struct page *page);
1257 int set_page_dirty_lock(struct page *page);
1258 int clear_page_dirty_for_io(struct page *page);
1259 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1260
1261 /* Is the vma a continuation of the stack vma above it? */
1262 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1263 {
1264 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1265 }
1266
1267 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1268 unsigned long addr)
1269 {
1270 return (vma->vm_flags & VM_GROWSDOWN) &&
1271 (vma->vm_start == addr) &&
1272 !vma_growsdown(vma->vm_prev, addr);
1273 }
1274
1275 /* Is the vma a continuation of the stack vma below it? */
1276 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1277 {
1278 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1279 }
1280
1281 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1282 unsigned long addr)
1283 {
1284 return (vma->vm_flags & VM_GROWSUP) &&
1285 (vma->vm_end == addr) &&
1286 !vma_growsup(vma->vm_next, addr);
1287 }
1288
1289 extern struct task_struct *task_of_stack(struct task_struct *task,
1290 struct vm_area_struct *vma, bool in_group);
1291
1292 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1293 unsigned long old_addr, struct vm_area_struct *new_vma,
1294 unsigned long new_addr, unsigned long len,
1295 bool need_rmap_locks);
1296 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1297 unsigned long end, pgprot_t newprot,
1298 int dirty_accountable, int prot_numa);
1299 extern int mprotect_fixup(struct vm_area_struct *vma,
1300 struct vm_area_struct **pprev, unsigned long start,
1301 unsigned long end, unsigned long newflags);
1302
1303 /*
1304 * doesn't attempt to fault and will return short.
1305 */
1306 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1307 struct page **pages);
1308 /*
1309 * per-process(per-mm_struct) statistics.
1310 */
1311 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1312 {
1313 long val = atomic_long_read(&mm->rss_stat.count[member]);
1314
1315 #ifdef SPLIT_RSS_COUNTING
1316 /*
1317 * counter is updated in asynchronous manner and may go to minus.
1318 * But it's never be expected number for users.
1319 */
1320 if (val < 0)
1321 val = 0;
1322 #endif
1323 return (unsigned long)val;
1324 }
1325
1326 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1327 {
1328 atomic_long_add(value, &mm->rss_stat.count[member]);
1329 }
1330
1331 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1332 {
1333 atomic_long_inc(&mm->rss_stat.count[member]);
1334 }
1335
1336 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1337 {
1338 atomic_long_dec(&mm->rss_stat.count[member]);
1339 }
1340
1341 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1342 {
1343 return get_mm_counter(mm, MM_FILEPAGES) +
1344 get_mm_counter(mm, MM_ANONPAGES);
1345 }
1346
1347 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1348 {
1349 return max(mm->hiwater_rss, get_mm_rss(mm));
1350 }
1351
1352 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1353 {
1354 return max(mm->hiwater_vm, mm->total_vm);
1355 }
1356
1357 static inline void update_hiwater_rss(struct mm_struct *mm)
1358 {
1359 unsigned long _rss = get_mm_rss(mm);
1360
1361 if ((mm)->hiwater_rss < _rss)
1362 (mm)->hiwater_rss = _rss;
1363 }
1364
1365 static inline void update_hiwater_vm(struct mm_struct *mm)
1366 {
1367 if (mm->hiwater_vm < mm->total_vm)
1368 mm->hiwater_vm = mm->total_vm;
1369 }
1370
1371 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1372 struct mm_struct *mm)
1373 {
1374 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1375
1376 if (*maxrss < hiwater_rss)
1377 *maxrss = hiwater_rss;
1378 }
1379
1380 #if defined(SPLIT_RSS_COUNTING)
1381 void sync_mm_rss(struct mm_struct *mm);
1382 #else
1383 static inline void sync_mm_rss(struct mm_struct *mm)
1384 {
1385 }
1386 #endif
1387
1388 int vma_wants_writenotify(struct vm_area_struct *vma);
1389
1390 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1391 spinlock_t **ptl);
1392 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393 spinlock_t **ptl)
1394 {
1395 pte_t *ptep;
1396 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1397 return ptep;
1398 }
1399
1400 #ifdef __PAGETABLE_PUD_FOLDED
1401 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1402 unsigned long address)
1403 {
1404 return 0;
1405 }
1406 #else
1407 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1408 #endif
1409
1410 #ifdef __PAGETABLE_PMD_FOLDED
1411 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1412 unsigned long address)
1413 {
1414 return 0;
1415 }
1416 #else
1417 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1418 #endif
1419
1420 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1421 pmd_t *pmd, unsigned long address);
1422 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1423
1424 /*
1425 * The following ifdef needed to get the 4level-fixup.h header to work.
1426 * Remove it when 4level-fixup.h has been removed.
1427 */
1428 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1429 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1430 {
1431 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1432 NULL: pud_offset(pgd, address);
1433 }
1434
1435 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1436 {
1437 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1438 NULL: pmd_offset(pud, address);
1439 }
1440 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1441
1442 #if USE_SPLIT_PTE_PTLOCKS
1443 #if ALLOC_SPLIT_PTLOCKS
1444 void __init ptlock_cache_init(void);
1445 extern bool ptlock_alloc(struct page *page);
1446 extern void ptlock_free(struct page *page);
1447
1448 static inline spinlock_t *ptlock_ptr(struct page *page)
1449 {
1450 return page->ptl;
1451 }
1452 #else /* ALLOC_SPLIT_PTLOCKS */
1453 static inline void ptlock_cache_init(void)
1454 {
1455 }
1456
1457 static inline bool ptlock_alloc(struct page *page)
1458 {
1459 return true;
1460 }
1461
1462 static inline void ptlock_free(struct page *page)
1463 {
1464 }
1465
1466 static inline spinlock_t *ptlock_ptr(struct page *page)
1467 {
1468 return &page->ptl;
1469 }
1470 #endif /* ALLOC_SPLIT_PTLOCKS */
1471
1472 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1473 {
1474 return ptlock_ptr(pmd_page(*pmd));
1475 }
1476
1477 static inline bool ptlock_init(struct page *page)
1478 {
1479 /*
1480 * prep_new_page() initialize page->private (and therefore page->ptl)
1481 * with 0. Make sure nobody took it in use in between.
1482 *
1483 * It can happen if arch try to use slab for page table allocation:
1484 * slab code uses page->slab_cache and page->first_page (for tail
1485 * pages), which share storage with page->ptl.
1486 */
1487 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1488 if (!ptlock_alloc(page))
1489 return false;
1490 spin_lock_init(ptlock_ptr(page));
1491 return true;
1492 }
1493
1494 /* Reset page->mapping so free_pages_check won't complain. */
1495 static inline void pte_lock_deinit(struct page *page)
1496 {
1497 page->mapping = NULL;
1498 ptlock_free(page);
1499 }
1500
1501 #else /* !USE_SPLIT_PTE_PTLOCKS */
1502 /*
1503 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1504 */
1505 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1506 {
1507 return &mm->page_table_lock;
1508 }
1509 static inline void ptlock_cache_init(void) {}
1510 static inline bool ptlock_init(struct page *page) { return true; }
1511 static inline void pte_lock_deinit(struct page *page) {}
1512 #endif /* USE_SPLIT_PTE_PTLOCKS */
1513
1514 static inline void pgtable_init(void)
1515 {
1516 ptlock_cache_init();
1517 pgtable_cache_init();
1518 }
1519
1520 static inline bool pgtable_page_ctor(struct page *page)
1521 {
1522 inc_zone_page_state(page, NR_PAGETABLE);
1523 return ptlock_init(page);
1524 }
1525
1526 static inline void pgtable_page_dtor(struct page *page)
1527 {
1528 pte_lock_deinit(page);
1529 dec_zone_page_state(page, NR_PAGETABLE);
1530 }
1531
1532 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
1533 ({ \
1534 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1535 pte_t *__pte = pte_offset_map(pmd, address); \
1536 *(ptlp) = __ptl; \
1537 spin_lock(__ptl); \
1538 __pte; \
1539 })
1540
1541 #define pte_unmap_unlock(pte, ptl) do { \
1542 spin_unlock(ptl); \
1543 pte_unmap(pte); \
1544 } while (0)
1545
1546 #define pte_alloc_map(mm, vma, pmd, address) \
1547 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1548 pmd, address))? \
1549 NULL: pte_offset_map(pmd, address))
1550
1551 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1552 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1553 pmd, address))? \
1554 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1555
1556 #define pte_alloc_kernel(pmd, address) \
1557 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1558 NULL: pte_offset_kernel(pmd, address))
1559
1560 #if USE_SPLIT_PMD_PTLOCKS
1561
1562 static struct page *pmd_to_page(pmd_t *pmd)
1563 {
1564 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1565 return virt_to_page((void *)((unsigned long) pmd & mask));
1566 }
1567
1568 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1569 {
1570 return ptlock_ptr(pmd_to_page(pmd));
1571 }
1572
1573 static inline bool pgtable_pmd_page_ctor(struct page *page)
1574 {
1575 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1576 page->pmd_huge_pte = NULL;
1577 #endif
1578 return ptlock_init(page);
1579 }
1580
1581 static inline void pgtable_pmd_page_dtor(struct page *page)
1582 {
1583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1584 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1585 #endif
1586 ptlock_free(page);
1587 }
1588
1589 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1590
1591 #else
1592
1593 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1594 {
1595 return &mm->page_table_lock;
1596 }
1597
1598 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1599 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1600
1601 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1602
1603 #endif
1604
1605 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1606 {
1607 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1608 spin_lock(ptl);
1609 return ptl;
1610 }
1611
1612 extern void free_area_init(unsigned long * zones_size);
1613 extern void free_area_init_node(int nid, unsigned long * zones_size,
1614 unsigned long zone_start_pfn, unsigned long *zholes_size);
1615 extern void free_initmem(void);
1616
1617 /*
1618 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1619 * into the buddy system. The freed pages will be poisoned with pattern
1620 * "poison" if it's within range [0, UCHAR_MAX].
1621 * Return pages freed into the buddy system.
1622 */
1623 extern unsigned long free_reserved_area(void *start, void *end,
1624 int poison, char *s);
1625
1626 #ifdef CONFIG_HIGHMEM
1627 /*
1628 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1629 * and totalram_pages.
1630 */
1631 extern void free_highmem_page(struct page *page);
1632 #endif
1633
1634 extern void adjust_managed_page_count(struct page *page, long count);
1635 extern void mem_init_print_info(const char *str);
1636
1637 /* Free the reserved page into the buddy system, so it gets managed. */
1638 static inline void __free_reserved_page(struct page *page)
1639 {
1640 ClearPageReserved(page);
1641 init_page_count(page);
1642 __free_page(page);
1643 }
1644
1645 static inline void free_reserved_page(struct page *page)
1646 {
1647 __free_reserved_page(page);
1648 adjust_managed_page_count(page, 1);
1649 }
1650
1651 static inline void mark_page_reserved(struct page *page)
1652 {
1653 SetPageReserved(page);
1654 adjust_managed_page_count(page, -1);
1655 }
1656
1657 /*
1658 * Default method to free all the __init memory into the buddy system.
1659 * The freed pages will be poisoned with pattern "poison" if it's within
1660 * range [0, UCHAR_MAX].
1661 * Return pages freed into the buddy system.
1662 */
1663 static inline unsigned long free_initmem_default(int poison)
1664 {
1665 extern char __init_begin[], __init_end[];
1666
1667 return free_reserved_area(&__init_begin, &__init_end,
1668 poison, "unused kernel");
1669 }
1670
1671 static inline unsigned long get_num_physpages(void)
1672 {
1673 int nid;
1674 unsigned long phys_pages = 0;
1675
1676 for_each_online_node(nid)
1677 phys_pages += node_present_pages(nid);
1678
1679 return phys_pages;
1680 }
1681
1682 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1683 /*
1684 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1685 * zones, allocate the backing mem_map and account for memory holes in a more
1686 * architecture independent manner. This is a substitute for creating the
1687 * zone_sizes[] and zholes_size[] arrays and passing them to
1688 * free_area_init_node()
1689 *
1690 * An architecture is expected to register range of page frames backed by
1691 * physical memory with memblock_add[_node]() before calling
1692 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1693 * usage, an architecture is expected to do something like
1694 *
1695 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1696 * max_highmem_pfn};
1697 * for_each_valid_physical_page_range()
1698 * memblock_add_node(base, size, nid)
1699 * free_area_init_nodes(max_zone_pfns);
1700 *
1701 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1702 * registered physical page range. Similarly
1703 * sparse_memory_present_with_active_regions() calls memory_present() for
1704 * each range when SPARSEMEM is enabled.
1705 *
1706 * See mm/page_alloc.c for more information on each function exposed by
1707 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1708 */
1709 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1710 unsigned long node_map_pfn_alignment(void);
1711 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1712 unsigned long end_pfn);
1713 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1714 unsigned long end_pfn);
1715 extern void get_pfn_range_for_nid(unsigned int nid,
1716 unsigned long *start_pfn, unsigned long *end_pfn);
1717 extern unsigned long find_min_pfn_with_active_regions(void);
1718 extern void free_bootmem_with_active_regions(int nid,
1719 unsigned long max_low_pfn);
1720 extern void sparse_memory_present_with_active_regions(int nid);
1721
1722 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1723
1724 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1725 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1726 static inline int __early_pfn_to_nid(unsigned long pfn)
1727 {
1728 return 0;
1729 }
1730 #else
1731 /* please see mm/page_alloc.c */
1732 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1733 /* there is a per-arch backend function. */
1734 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1735 #endif
1736
1737 extern void set_dma_reserve(unsigned long new_dma_reserve);
1738 extern void memmap_init_zone(unsigned long, int, unsigned long,
1739 unsigned long, enum memmap_context);
1740 extern void setup_per_zone_wmarks(void);
1741 extern int __meminit init_per_zone_wmark_min(void);
1742 extern void mem_init(void);
1743 extern void __init mmap_init(void);
1744 extern void show_mem(unsigned int flags);
1745 extern void si_meminfo(struct sysinfo * val);
1746 extern void si_meminfo_node(struct sysinfo *val, int nid);
1747
1748 extern __printf(3, 4)
1749 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1750
1751 extern void setup_per_cpu_pageset(void);
1752
1753 extern void zone_pcp_update(struct zone *zone);
1754 extern void zone_pcp_reset(struct zone *zone);
1755
1756 /* page_alloc.c */
1757 extern int min_free_kbytes;
1758
1759 /* nommu.c */
1760 extern atomic_long_t mmap_pages_allocated;
1761 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1762
1763 /* interval_tree.c */
1764 void vma_interval_tree_insert(struct vm_area_struct *node,
1765 struct rb_root *root);
1766 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1767 struct vm_area_struct *prev,
1768 struct rb_root *root);
1769 void vma_interval_tree_remove(struct vm_area_struct *node,
1770 struct rb_root *root);
1771 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1772 unsigned long start, unsigned long last);
1773 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1774 unsigned long start, unsigned long last);
1775
1776 #define vma_interval_tree_foreach(vma, root, start, last) \
1777 for (vma = vma_interval_tree_iter_first(root, start, last); \
1778 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1779
1780 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1781 struct list_head *list)
1782 {
1783 list_add_tail(&vma->shared.nonlinear, list);
1784 }
1785
1786 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1787 struct rb_root *root);
1788 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1789 struct rb_root *root);
1790 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1791 struct rb_root *root, unsigned long start, unsigned long last);
1792 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1793 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1794 #ifdef CONFIG_DEBUG_VM_RB
1795 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1796 #endif
1797
1798 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
1799 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1800 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1801
1802 /* mmap.c */
1803 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1804 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1805 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1806 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1807 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1808 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1809 struct mempolicy *);
1810 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1811 extern int split_vma(struct mm_struct *,
1812 struct vm_area_struct *, unsigned long addr, int new_below);
1813 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1814 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1815 struct rb_node **, struct rb_node *);
1816 extern void unlink_file_vma(struct vm_area_struct *);
1817 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1818 unsigned long addr, unsigned long len, pgoff_t pgoff,
1819 bool *need_rmap_locks);
1820 extern void exit_mmap(struct mm_struct *);
1821
1822 static inline int check_data_rlimit(unsigned long rlim,
1823 unsigned long new,
1824 unsigned long start,
1825 unsigned long end_data,
1826 unsigned long start_data)
1827 {
1828 if (rlim < RLIM_INFINITY) {
1829 if (((new - start) + (end_data - start_data)) > rlim)
1830 return -ENOSPC;
1831 }
1832
1833 return 0;
1834 }
1835
1836 extern int mm_take_all_locks(struct mm_struct *mm);
1837 extern void mm_drop_all_locks(struct mm_struct *mm);
1838
1839 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1840 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1841
1842 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1843 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1844 unsigned long addr, unsigned long len,
1845 unsigned long flags,
1846 const struct vm_special_mapping *spec);
1847 /* This is an obsolete alternative to _install_special_mapping. */
1848 extern int install_special_mapping(struct mm_struct *mm,
1849 unsigned long addr, unsigned long len,
1850 unsigned long flags, struct page **pages);
1851
1852 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1853
1854 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1855 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1856 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1857 unsigned long len, unsigned long prot, unsigned long flags,
1858 unsigned long pgoff, unsigned long *populate);
1859 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1860
1861 #ifdef CONFIG_MMU
1862 extern int __mm_populate(unsigned long addr, unsigned long len,
1863 int ignore_errors);
1864 static inline void mm_populate(unsigned long addr, unsigned long len)
1865 {
1866 /* Ignore errors */
1867 (void) __mm_populate(addr, len, 1);
1868 }
1869 #else
1870 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1871 #endif
1872
1873 /* These take the mm semaphore themselves */
1874 extern unsigned long vm_brk(unsigned long, unsigned long);
1875 extern int vm_munmap(unsigned long, size_t);
1876 extern unsigned long vm_mmap(struct file *, unsigned long,
1877 unsigned long, unsigned long,
1878 unsigned long, unsigned long);
1879
1880 struct vm_unmapped_area_info {
1881 #define VM_UNMAPPED_AREA_TOPDOWN 1
1882 unsigned long flags;
1883 unsigned long length;
1884 unsigned long low_limit;
1885 unsigned long high_limit;
1886 unsigned long align_mask;
1887 unsigned long align_offset;
1888 };
1889
1890 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1891 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1892
1893 /*
1894 * Search for an unmapped address range.
1895 *
1896 * We are looking for a range that:
1897 * - does not intersect with any VMA;
1898 * - is contained within the [low_limit, high_limit) interval;
1899 * - is at least the desired size.
1900 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1901 */
1902 static inline unsigned long
1903 vm_unmapped_area(struct vm_unmapped_area_info *info)
1904 {
1905 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1906 return unmapped_area(info);
1907 else
1908 return unmapped_area_topdown(info);
1909 }
1910
1911 /* truncate.c */
1912 extern void truncate_inode_pages(struct address_space *, loff_t);
1913 extern void truncate_inode_pages_range(struct address_space *,
1914 loff_t lstart, loff_t lend);
1915 extern void truncate_inode_pages_final(struct address_space *);
1916
1917 /* generic vm_area_ops exported for stackable file systems */
1918 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1919 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1920 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1921
1922 /* mm/page-writeback.c */
1923 int write_one_page(struct page *page, int wait);
1924 void task_dirty_inc(struct task_struct *tsk);
1925
1926 /* readahead.c */
1927 #define VM_MAX_READAHEAD 128 /* kbytes */
1928 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1929
1930 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1931 pgoff_t offset, unsigned long nr_to_read);
1932
1933 void page_cache_sync_readahead(struct address_space *mapping,
1934 struct file_ra_state *ra,
1935 struct file *filp,
1936 pgoff_t offset,
1937 unsigned long size);
1938
1939 void page_cache_async_readahead(struct address_space *mapping,
1940 struct file_ra_state *ra,
1941 struct file *filp,
1942 struct page *pg,
1943 pgoff_t offset,
1944 unsigned long size);
1945
1946 unsigned long max_sane_readahead(unsigned long nr);
1947
1948 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1949 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1950
1951 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1952 extern int expand_downwards(struct vm_area_struct *vma,
1953 unsigned long address);
1954 #if VM_GROWSUP
1955 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1956 #else
1957 #define expand_upwards(vma, address) do { } while (0)
1958 #endif
1959
1960 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1961 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1962 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1963 struct vm_area_struct **pprev);
1964
1965 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1966 NULL if none. Assume start_addr < end_addr. */
1967 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1968 {
1969 struct vm_area_struct * vma = find_vma(mm,start_addr);
1970
1971 if (vma && end_addr <= vma->vm_start)
1972 vma = NULL;
1973 return vma;
1974 }
1975
1976 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1977 {
1978 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1979 }
1980
1981 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1982 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1983 unsigned long vm_start, unsigned long vm_end)
1984 {
1985 struct vm_area_struct *vma = find_vma(mm, vm_start);
1986
1987 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1988 vma = NULL;
1989
1990 return vma;
1991 }
1992
1993 #ifdef CONFIG_MMU
1994 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1995 void vma_set_page_prot(struct vm_area_struct *vma);
1996 #else
1997 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1998 {
1999 return __pgprot(0);
2000 }
2001 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2002 {
2003 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2004 }
2005 #endif
2006
2007 #ifdef CONFIG_NUMA_BALANCING
2008 unsigned long change_prot_numa(struct vm_area_struct *vma,
2009 unsigned long start, unsigned long end);
2010 #endif
2011
2012 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2013 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2014 unsigned long pfn, unsigned long size, pgprot_t);
2015 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2016 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2017 unsigned long pfn);
2018 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2019 unsigned long pfn);
2020 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2021
2022
2023 struct page *follow_page_mask(struct vm_area_struct *vma,
2024 unsigned long address, unsigned int foll_flags,
2025 unsigned int *page_mask);
2026
2027 static inline struct page *follow_page(struct vm_area_struct *vma,
2028 unsigned long address, unsigned int foll_flags)
2029 {
2030 unsigned int unused_page_mask;
2031 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2032 }
2033
2034 #define FOLL_WRITE 0x01 /* check pte is writable */
2035 #define FOLL_TOUCH 0x02 /* mark page accessed */
2036 #define FOLL_GET 0x04 /* do get_page on page */
2037 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2038 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2039 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2040 * and return without waiting upon it */
2041 #define FOLL_MLOCK 0x40 /* mark page as mlocked */
2042 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2043 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2044 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2045 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2046 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2047
2048 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2049 void *data);
2050 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2051 unsigned long size, pte_fn_t fn, void *data);
2052
2053 #ifdef CONFIG_PROC_FS
2054 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2055 #else
2056 static inline void vm_stat_account(struct mm_struct *mm,
2057 unsigned long flags, struct file *file, long pages)
2058 {
2059 mm->total_vm += pages;
2060 }
2061 #endif /* CONFIG_PROC_FS */
2062
2063 #ifdef CONFIG_DEBUG_PAGEALLOC
2064 extern bool _debug_pagealloc_enabled;
2065 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2066
2067 static inline bool debug_pagealloc_enabled(void)
2068 {
2069 return _debug_pagealloc_enabled;
2070 }
2071
2072 static inline void
2073 kernel_map_pages(struct page *page, int numpages, int enable)
2074 {
2075 if (!debug_pagealloc_enabled())
2076 return;
2077
2078 __kernel_map_pages(page, numpages, enable);
2079 }
2080 #ifdef CONFIG_HIBERNATION
2081 extern bool kernel_page_present(struct page *page);
2082 #endif /* CONFIG_HIBERNATION */
2083 #else
2084 static inline void
2085 kernel_map_pages(struct page *page, int numpages, int enable) {}
2086 #ifdef CONFIG_HIBERNATION
2087 static inline bool kernel_page_present(struct page *page) { return true; }
2088 #endif /* CONFIG_HIBERNATION */
2089 #endif
2090
2091 #ifdef __HAVE_ARCH_GATE_AREA
2092 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2093 extern int in_gate_area_no_mm(unsigned long addr);
2094 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2095 #else
2096 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2097 {
2098 return NULL;
2099 }
2100 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2101 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2102 {
2103 return 0;
2104 }
2105 #endif /* __HAVE_ARCH_GATE_AREA */
2106
2107 #ifdef CONFIG_SYSCTL
2108 extern int sysctl_drop_caches;
2109 int drop_caches_sysctl_handler(struct ctl_table *, int,
2110 void __user *, size_t *, loff_t *);
2111 #endif
2112
2113 unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2114 unsigned long nr_scanned,
2115 unsigned long nr_eligible);
2116
2117 #ifndef CONFIG_MMU
2118 #define randomize_va_space 0
2119 #else
2120 extern int randomize_va_space;
2121 #endif
2122
2123 const char * arch_vma_name(struct vm_area_struct *vma);
2124 void print_vma_addr(char *prefix, unsigned long rip);
2125
2126 void sparse_mem_maps_populate_node(struct page **map_map,
2127 unsigned long pnum_begin,
2128 unsigned long pnum_end,
2129 unsigned long map_count,
2130 int nodeid);
2131
2132 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2133 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2134 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2135 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2136 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2137 void *vmemmap_alloc_block(unsigned long size, int node);
2138 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2139 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2140 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2141 int node);
2142 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2143 void vmemmap_populate_print_last(void);
2144 #ifdef CONFIG_MEMORY_HOTPLUG
2145 void vmemmap_free(unsigned long start, unsigned long end);
2146 #endif
2147 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2148 unsigned long size);
2149
2150 enum mf_flags {
2151 MF_COUNT_INCREASED = 1 << 0,
2152 MF_ACTION_REQUIRED = 1 << 1,
2153 MF_MUST_KILL = 1 << 2,
2154 MF_SOFT_OFFLINE = 1 << 3,
2155 };
2156 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2157 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2158 extern int unpoison_memory(unsigned long pfn);
2159 extern int sysctl_memory_failure_early_kill;
2160 extern int sysctl_memory_failure_recovery;
2161 extern void shake_page(struct page *p, int access);
2162 extern atomic_long_t num_poisoned_pages;
2163 extern int soft_offline_page(struct page *page, int flags);
2164
2165 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2166 extern void clear_huge_page(struct page *page,
2167 unsigned long addr,
2168 unsigned int pages_per_huge_page);
2169 extern void copy_user_huge_page(struct page *dst, struct page *src,
2170 unsigned long addr, struct vm_area_struct *vma,
2171 unsigned int pages_per_huge_page);
2172 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2173
2174 extern struct page_ext_operations debug_guardpage_ops;
2175 extern struct page_ext_operations page_poisoning_ops;
2176
2177 #ifdef CONFIG_DEBUG_PAGEALLOC
2178 extern unsigned int _debug_guardpage_minorder;
2179 extern bool _debug_guardpage_enabled;
2180
2181 static inline unsigned int debug_guardpage_minorder(void)
2182 {
2183 return _debug_guardpage_minorder;
2184 }
2185
2186 static inline bool debug_guardpage_enabled(void)
2187 {
2188 return _debug_guardpage_enabled;
2189 }
2190
2191 static inline bool page_is_guard(struct page *page)
2192 {
2193 struct page_ext *page_ext;
2194
2195 if (!debug_guardpage_enabled())
2196 return false;
2197
2198 page_ext = lookup_page_ext(page);
2199 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2200 }
2201 #else
2202 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2203 static inline bool debug_guardpage_enabled(void) { return false; }
2204 static inline bool page_is_guard(struct page *page) { return false; }
2205 #endif /* CONFIG_DEBUG_PAGEALLOC */
2206
2207 #if MAX_NUMNODES > 1
2208 void __init setup_nr_node_ids(void);
2209 #else
2210 static inline void setup_nr_node_ids(void) {}
2211 #endif
2212
2213 #endif /* __KERNEL__ */
2214 #endif /* _LINUX_MM_H */
This page took 0.07494 seconds and 5 git commands to generate.