mm: thp: kvm: fix memory corruption in KVM with THP enabled
[deliverable/linux.git] / include / linux / page-flags.h
1 /*
2 * Macros for manipulating and testing page->flags
3 */
4
5 #ifndef PAGE_FLAGS_H
6 #define PAGE_FLAGS_H
7
8 #include <linux/types.h>
9 #include <linux/bug.h>
10 #include <linux/mmdebug.h>
11 #ifndef __GENERATING_BOUNDS_H
12 #include <linux/mm_types.h>
13 #include <generated/bounds.h>
14 #endif /* !__GENERATING_BOUNDS_H */
15
16 /*
17 * Various page->flags bits:
18 *
19 * PG_reserved is set for special pages, which can never be swapped out. Some
20 * of them might not even exist (eg empty_bad_page)...
21 *
22 * The PG_private bitflag is set on pagecache pages if they contain filesystem
23 * specific data (which is normally at page->private). It can be used by
24 * private allocations for its own usage.
25 *
26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
28 * is set before writeback starts and cleared when it finishes.
29 *
30 * PG_locked also pins a page in pagecache, and blocks truncation of the file
31 * while it is held.
32 *
33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
34 * to become unlocked.
35 *
36 * PG_uptodate tells whether the page's contents is valid. When a read
37 * completes, the page becomes uptodate, unless a disk I/O error happened.
38 *
39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
40 * file-backed pagecache (see mm/vmscan.c).
41 *
42 * PG_error is set to indicate that an I/O error occurred on this page.
43 *
44 * PG_arch_1 is an architecture specific page state bit. The generic code
45 * guarantees that this bit is cleared for a page when it first is entered into
46 * the page cache.
47 *
48 * PG_highmem pages are not permanently mapped into the kernel virtual address
49 * space, they need to be kmapped separately for doing IO on the pages. The
50 * struct page (these bits with information) are always mapped into kernel
51 * address space...
52 *
53 * PG_hwpoison indicates that a page got corrupted in hardware and contains
54 * data with incorrect ECC bits that triggered a machine check. Accessing is
55 * not safe since it may cause another machine check. Don't touch!
56 */
57
58 /*
59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break
60 * locked- and dirty-page accounting.
61 *
62 * The page flags field is split into two parts, the main flags area
63 * which extends from the low bits upwards, and the fields area which
64 * extends from the high bits downwards.
65 *
66 * | FIELD | ... | FLAGS |
67 * N-1 ^ 0
68 * (NR_PAGEFLAGS)
69 *
70 * The fields area is reserved for fields mapping zone, node (for NUMA) and
71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
73 */
74 enum pageflags {
75 PG_locked, /* Page is locked. Don't touch. */
76 PG_error,
77 PG_referenced,
78 PG_uptodate,
79 PG_dirty,
80 PG_lru,
81 PG_active,
82 PG_slab,
83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
84 PG_arch_1,
85 PG_reserved,
86 PG_private, /* If pagecache, has fs-private data */
87 PG_private_2, /* If pagecache, has fs aux data */
88 PG_writeback, /* Page is under writeback */
89 PG_head, /* A head page */
90 PG_swapcache, /* Swap page: swp_entry_t in private */
91 PG_mappedtodisk, /* Has blocks allocated on-disk */
92 PG_reclaim, /* To be reclaimed asap */
93 PG_swapbacked, /* Page is backed by RAM/swap */
94 PG_unevictable, /* Page is "unevictable" */
95 #ifdef CONFIG_MMU
96 PG_mlocked, /* Page is vma mlocked */
97 #endif
98 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
99 PG_uncached, /* Page has been mapped as uncached */
100 #endif
101 #ifdef CONFIG_MEMORY_FAILURE
102 PG_hwpoison, /* hardware poisoned page. Don't touch */
103 #endif
104 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
105 PG_young,
106 PG_idle,
107 #endif
108 __NR_PAGEFLAGS,
109
110 /* Filesystems */
111 PG_checked = PG_owner_priv_1,
112
113 /* Two page bits are conscripted by FS-Cache to maintain local caching
114 * state. These bits are set on pages belonging to the netfs's inodes
115 * when those inodes are being locally cached.
116 */
117 PG_fscache = PG_private_2, /* page backed by cache */
118
119 /* XEN */
120 /* Pinned in Xen as a read-only pagetable page. */
121 PG_pinned = PG_owner_priv_1,
122 /* Pinned as part of domain save (see xen_mm_pin_all()). */
123 PG_savepinned = PG_dirty,
124 /* Has a grant mapping of another (foreign) domain's page. */
125 PG_foreign = PG_owner_priv_1,
126
127 /* SLOB */
128 PG_slob_free = PG_private,
129
130 /* Compound pages. Stored in first tail page's flags */
131 PG_double_map = PG_private_2,
132 };
133
134 #ifndef __GENERATING_BOUNDS_H
135
136 struct page; /* forward declaration */
137
138 static inline struct page *compound_head(struct page *page)
139 {
140 unsigned long head = READ_ONCE(page->compound_head);
141
142 if (unlikely(head & 1))
143 return (struct page *) (head - 1);
144 return page;
145 }
146
147 static __always_inline int PageTail(struct page *page)
148 {
149 return READ_ONCE(page->compound_head) & 1;
150 }
151
152 static __always_inline int PageCompound(struct page *page)
153 {
154 return test_bit(PG_head, &page->flags) || PageTail(page);
155 }
156
157 /*
158 * Page flags policies wrt compound pages
159 *
160 * PF_ANY:
161 * the page flag is relevant for small, head and tail pages.
162 *
163 * PF_HEAD:
164 * for compound page all operations related to the page flag applied to
165 * head page.
166 *
167 * PF_NO_TAIL:
168 * modifications of the page flag must be done on small or head pages,
169 * checks can be done on tail pages too.
170 *
171 * PF_NO_COMPOUND:
172 * the page flag is not relevant for compound pages.
173 */
174 #define PF_ANY(page, enforce) page
175 #define PF_HEAD(page, enforce) compound_head(page)
176 #define PF_NO_TAIL(page, enforce) ({ \
177 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
178 compound_head(page);})
179 #define PF_NO_COMPOUND(page, enforce) ({ \
180 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
181 page;})
182
183 /*
184 * Macros to create function definitions for page flags
185 */
186 #define TESTPAGEFLAG(uname, lname, policy) \
187 static __always_inline int Page##uname(struct page *page) \
188 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
189
190 #define SETPAGEFLAG(uname, lname, policy) \
191 static __always_inline void SetPage##uname(struct page *page) \
192 { set_bit(PG_##lname, &policy(page, 1)->flags); }
193
194 #define CLEARPAGEFLAG(uname, lname, policy) \
195 static __always_inline void ClearPage##uname(struct page *page) \
196 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
197
198 #define __SETPAGEFLAG(uname, lname, policy) \
199 static __always_inline void __SetPage##uname(struct page *page) \
200 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
201
202 #define __CLEARPAGEFLAG(uname, lname, policy) \
203 static __always_inline void __ClearPage##uname(struct page *page) \
204 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
205
206 #define TESTSETFLAG(uname, lname, policy) \
207 static __always_inline int TestSetPage##uname(struct page *page) \
208 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
209
210 #define TESTCLEARFLAG(uname, lname, policy) \
211 static __always_inline int TestClearPage##uname(struct page *page) \
212 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
213
214 #define PAGEFLAG(uname, lname, policy) \
215 TESTPAGEFLAG(uname, lname, policy) \
216 SETPAGEFLAG(uname, lname, policy) \
217 CLEARPAGEFLAG(uname, lname, policy)
218
219 #define __PAGEFLAG(uname, lname, policy) \
220 TESTPAGEFLAG(uname, lname, policy) \
221 __SETPAGEFLAG(uname, lname, policy) \
222 __CLEARPAGEFLAG(uname, lname, policy)
223
224 #define TESTSCFLAG(uname, lname, policy) \
225 TESTSETFLAG(uname, lname, policy) \
226 TESTCLEARFLAG(uname, lname, policy)
227
228 #define TESTPAGEFLAG_FALSE(uname) \
229 static inline int Page##uname(const struct page *page) { return 0; }
230
231 #define SETPAGEFLAG_NOOP(uname) \
232 static inline void SetPage##uname(struct page *page) { }
233
234 #define CLEARPAGEFLAG_NOOP(uname) \
235 static inline void ClearPage##uname(struct page *page) { }
236
237 #define __CLEARPAGEFLAG_NOOP(uname) \
238 static inline void __ClearPage##uname(struct page *page) { }
239
240 #define TESTSETFLAG_FALSE(uname) \
241 static inline int TestSetPage##uname(struct page *page) { return 0; }
242
243 #define TESTCLEARFLAG_FALSE(uname) \
244 static inline int TestClearPage##uname(struct page *page) { return 0; }
245
246 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
247 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
248
249 #define TESTSCFLAG_FALSE(uname) \
250 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
251
252 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
253 PAGEFLAG(Error, error, PF_NO_COMPOUND) TESTCLEARFLAG(Error, error, PF_NO_COMPOUND)
254 PAGEFLAG(Referenced, referenced, PF_HEAD)
255 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
256 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
257 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
258 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
259 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
260 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
261 TESTCLEARFLAG(Active, active, PF_HEAD)
262 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
263 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
264 PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
265
266 /* Xen */
267 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
268 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
269 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
270 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
271
272 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
273 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
274 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
275 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
276 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
277
278 /*
279 * Private page markings that may be used by the filesystem that owns the page
280 * for its own purposes.
281 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
282 */
283 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
284 __CLEARPAGEFLAG(Private, private, PF_ANY)
285 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
286 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
287 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
288
289 /*
290 * Only test-and-set exist for PG_writeback. The unconditional operators are
291 * risky: they bypass page accounting.
292 */
293 TESTPAGEFLAG(Writeback, writeback, PF_NO_COMPOUND)
294 TESTSCFLAG(Writeback, writeback, PF_NO_COMPOUND)
295 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_COMPOUND)
296
297 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
298 PAGEFLAG(Reclaim, reclaim, PF_NO_COMPOUND)
299 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_COMPOUND)
300 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
301 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
302
303 #ifdef CONFIG_HIGHMEM
304 /*
305 * Must use a macro here due to header dependency issues. page_zone() is not
306 * available at this point.
307 */
308 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
309 #else
310 PAGEFLAG_FALSE(HighMem)
311 #endif
312
313 #ifdef CONFIG_SWAP
314 PAGEFLAG(SwapCache, swapcache, PF_NO_COMPOUND)
315 #else
316 PAGEFLAG_FALSE(SwapCache)
317 #endif
318
319 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
320 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
321 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
322
323 #ifdef CONFIG_MMU
324 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
325 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
326 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
327 #else
328 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
329 TESTSCFLAG_FALSE(Mlocked)
330 #endif
331
332 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
333 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
334 #else
335 PAGEFLAG_FALSE(Uncached)
336 #endif
337
338 #ifdef CONFIG_MEMORY_FAILURE
339 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
340 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
341 #define __PG_HWPOISON (1UL << PG_hwpoison)
342 #else
343 PAGEFLAG_FALSE(HWPoison)
344 #define __PG_HWPOISON 0
345 #endif
346
347 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
348 TESTPAGEFLAG(Young, young, PF_ANY)
349 SETPAGEFLAG(Young, young, PF_ANY)
350 TESTCLEARFLAG(Young, young, PF_ANY)
351 PAGEFLAG(Idle, idle, PF_ANY)
352 #endif
353
354 /*
355 * On an anonymous page mapped into a user virtual memory area,
356 * page->mapping points to its anon_vma, not to a struct address_space;
357 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
358 *
359 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
360 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
361 * and then page->mapping points, not to an anon_vma, but to a private
362 * structure which KSM associates with that merged page. See ksm.h.
363 *
364 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
365 *
366 * Please note that, confusingly, "page_mapping" refers to the inode
367 * address_space which maps the page from disk; whereas "page_mapped"
368 * refers to user virtual address space into which the page is mapped.
369 */
370 #define PAGE_MAPPING_ANON 1
371 #define PAGE_MAPPING_KSM 2
372 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
373
374 static __always_inline int PageAnon(struct page *page)
375 {
376 page = compound_head(page);
377 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
378 }
379
380 #ifdef CONFIG_KSM
381 /*
382 * A KSM page is one of those write-protected "shared pages" or "merged pages"
383 * which KSM maps into multiple mms, wherever identical anonymous page content
384 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
385 * anon_vma, but to that page's node of the stable tree.
386 */
387 static __always_inline int PageKsm(struct page *page)
388 {
389 page = compound_head(page);
390 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
391 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
392 }
393 #else
394 TESTPAGEFLAG_FALSE(Ksm)
395 #endif
396
397 u64 stable_page_flags(struct page *page);
398
399 static inline int PageUptodate(struct page *page)
400 {
401 int ret;
402 page = compound_head(page);
403 ret = test_bit(PG_uptodate, &(page)->flags);
404 /*
405 * Must ensure that the data we read out of the page is loaded
406 * _after_ we've loaded page->flags to check for PageUptodate.
407 * We can skip the barrier if the page is not uptodate, because
408 * we wouldn't be reading anything from it.
409 *
410 * See SetPageUptodate() for the other side of the story.
411 */
412 if (ret)
413 smp_rmb();
414
415 return ret;
416 }
417
418 static __always_inline void __SetPageUptodate(struct page *page)
419 {
420 VM_BUG_ON_PAGE(PageTail(page), page);
421 smp_wmb();
422 __set_bit(PG_uptodate, &page->flags);
423 }
424
425 static __always_inline void SetPageUptodate(struct page *page)
426 {
427 VM_BUG_ON_PAGE(PageTail(page), page);
428 /*
429 * Memory barrier must be issued before setting the PG_uptodate bit,
430 * so that all previous stores issued in order to bring the page
431 * uptodate are actually visible before PageUptodate becomes true.
432 */
433 smp_wmb();
434 set_bit(PG_uptodate, &page->flags);
435 }
436
437 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
438
439 int test_clear_page_writeback(struct page *page);
440 int __test_set_page_writeback(struct page *page, bool keep_write);
441
442 #define test_set_page_writeback(page) \
443 __test_set_page_writeback(page, false)
444 #define test_set_page_writeback_keepwrite(page) \
445 __test_set_page_writeback(page, true)
446
447 static inline void set_page_writeback(struct page *page)
448 {
449 test_set_page_writeback(page);
450 }
451
452 static inline void set_page_writeback_keepwrite(struct page *page)
453 {
454 test_set_page_writeback_keepwrite(page);
455 }
456
457 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
458
459 static __always_inline void set_compound_head(struct page *page, struct page *head)
460 {
461 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
462 }
463
464 static __always_inline void clear_compound_head(struct page *page)
465 {
466 WRITE_ONCE(page->compound_head, 0);
467 }
468
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 static inline void ClearPageCompound(struct page *page)
471 {
472 BUG_ON(!PageHead(page));
473 ClearPageHead(page);
474 }
475 #endif
476
477 #define PG_head_mask ((1L << PG_head))
478
479 #ifdef CONFIG_HUGETLB_PAGE
480 int PageHuge(struct page *page);
481 int PageHeadHuge(struct page *page);
482 bool page_huge_active(struct page *page);
483 #else
484 TESTPAGEFLAG_FALSE(Huge)
485 TESTPAGEFLAG_FALSE(HeadHuge)
486
487 static inline bool page_huge_active(struct page *page)
488 {
489 return 0;
490 }
491 #endif
492
493
494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
495 /*
496 * PageHuge() only returns true for hugetlbfs pages, but not for
497 * normal or transparent huge pages.
498 *
499 * PageTransHuge() returns true for both transparent huge and
500 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
501 * called only in the core VM paths where hugetlbfs pages can't exist.
502 */
503 static inline int PageTransHuge(struct page *page)
504 {
505 VM_BUG_ON_PAGE(PageTail(page), page);
506 return PageHead(page);
507 }
508
509 /*
510 * PageTransCompound returns true for both transparent huge pages
511 * and hugetlbfs pages, so it should only be called when it's known
512 * that hugetlbfs pages aren't involved.
513 */
514 static inline int PageTransCompound(struct page *page)
515 {
516 return PageCompound(page);
517 }
518
519 /*
520 * PageTransCompoundMap is the same as PageTransCompound, but it also
521 * guarantees the primary MMU has the entire compound page mapped
522 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
523 * can also map the entire compound page. This allows the secondary
524 * MMUs to call get_user_pages() only once for each compound page and
525 * to immediately map the entire compound page with a single secondary
526 * MMU fault. If there will be a pmd split later, the secondary MMUs
527 * will get an update through the MMU notifier invalidation through
528 * split_huge_pmd().
529 *
530 * Unlike PageTransCompound, this is safe to be called only while
531 * split_huge_pmd() cannot run from under us, like if protected by the
532 * MMU notifier, otherwise it may result in page->_mapcount < 0 false
533 * positives.
534 */
535 static inline int PageTransCompoundMap(struct page *page)
536 {
537 return PageTransCompound(page) && atomic_read(&page->_mapcount) < 0;
538 }
539
540 /*
541 * PageTransTail returns true for both transparent huge pages
542 * and hugetlbfs pages, so it should only be called when it's known
543 * that hugetlbfs pages aren't involved.
544 */
545 static inline int PageTransTail(struct page *page)
546 {
547 return PageTail(page);
548 }
549
550 /*
551 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
552 * as PMDs.
553 *
554 * This is required for optimization of rmap operations for THP: we can postpone
555 * per small page mapcount accounting (and its overhead from atomic operations)
556 * until the first PMD split.
557 *
558 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
559 * by one. This reference will go away with last compound_mapcount.
560 *
561 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
562 */
563 static inline int PageDoubleMap(struct page *page)
564 {
565 return PageHead(page) && test_bit(PG_double_map, &page[1].flags);
566 }
567
568 static inline int TestSetPageDoubleMap(struct page *page)
569 {
570 VM_BUG_ON_PAGE(!PageHead(page), page);
571 return test_and_set_bit(PG_double_map, &page[1].flags);
572 }
573
574 static inline int TestClearPageDoubleMap(struct page *page)
575 {
576 VM_BUG_ON_PAGE(!PageHead(page), page);
577 return test_and_clear_bit(PG_double_map, &page[1].flags);
578 }
579
580 #else
581 TESTPAGEFLAG_FALSE(TransHuge)
582 TESTPAGEFLAG_FALSE(TransCompound)
583 TESTPAGEFLAG_FALSE(TransCompoundMap)
584 TESTPAGEFLAG_FALSE(TransTail)
585 TESTPAGEFLAG_FALSE(DoubleMap)
586 TESTSETFLAG_FALSE(DoubleMap)
587 TESTCLEARFLAG_FALSE(DoubleMap)
588 #endif
589
590 /*
591 * PageBuddy() indicate that the page is free and in the buddy system
592 * (see mm/page_alloc.c).
593 *
594 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
595 * -2 so that an underflow of the page_mapcount() won't be mistaken
596 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
597 * efficiently by most CPU architectures.
598 */
599 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
600
601 static inline int PageBuddy(struct page *page)
602 {
603 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
604 }
605
606 static inline void __SetPageBuddy(struct page *page)
607 {
608 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
609 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
610 }
611
612 static inline void __ClearPageBuddy(struct page *page)
613 {
614 VM_BUG_ON_PAGE(!PageBuddy(page), page);
615 atomic_set(&page->_mapcount, -1);
616 }
617
618 extern bool is_free_buddy_page(struct page *page);
619
620 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
621
622 static inline int PageBalloon(struct page *page)
623 {
624 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
625 }
626
627 static inline void __SetPageBalloon(struct page *page)
628 {
629 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
630 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
631 }
632
633 static inline void __ClearPageBalloon(struct page *page)
634 {
635 VM_BUG_ON_PAGE(!PageBalloon(page), page);
636 atomic_set(&page->_mapcount, -1);
637 }
638
639 /*
640 * If network-based swap is enabled, sl*b must keep track of whether pages
641 * were allocated from pfmemalloc reserves.
642 */
643 static inline int PageSlabPfmemalloc(struct page *page)
644 {
645 VM_BUG_ON_PAGE(!PageSlab(page), page);
646 return PageActive(page);
647 }
648
649 static inline void SetPageSlabPfmemalloc(struct page *page)
650 {
651 VM_BUG_ON_PAGE(!PageSlab(page), page);
652 SetPageActive(page);
653 }
654
655 static inline void __ClearPageSlabPfmemalloc(struct page *page)
656 {
657 VM_BUG_ON_PAGE(!PageSlab(page), page);
658 __ClearPageActive(page);
659 }
660
661 static inline void ClearPageSlabPfmemalloc(struct page *page)
662 {
663 VM_BUG_ON_PAGE(!PageSlab(page), page);
664 ClearPageActive(page);
665 }
666
667 #ifdef CONFIG_MMU
668 #define __PG_MLOCKED (1 << PG_mlocked)
669 #else
670 #define __PG_MLOCKED 0
671 #endif
672
673 /*
674 * Flags checked when a page is freed. Pages being freed should not have
675 * these flags set. It they are, there is a problem.
676 */
677 #define PAGE_FLAGS_CHECK_AT_FREE \
678 (1 << PG_lru | 1 << PG_locked | \
679 1 << PG_private | 1 << PG_private_2 | \
680 1 << PG_writeback | 1 << PG_reserved | \
681 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \
682 1 << PG_unevictable | __PG_MLOCKED)
683
684 /*
685 * Flags checked when a page is prepped for return by the page allocator.
686 * Pages being prepped should not have these flags set. It they are set,
687 * there has been a kernel bug or struct page corruption.
688 *
689 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
690 * alloc-free cycle to prevent from reusing the page.
691 */
692 #define PAGE_FLAGS_CHECK_AT_PREP \
693 (((1 << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
694
695 #define PAGE_FLAGS_PRIVATE \
696 (1 << PG_private | 1 << PG_private_2)
697 /**
698 * page_has_private - Determine if page has private stuff
699 * @page: The page to be checked
700 *
701 * Determine if a page has private stuff, indicating that release routines
702 * should be invoked upon it.
703 */
704 static inline int page_has_private(struct page *page)
705 {
706 return !!(page->flags & PAGE_FLAGS_PRIVATE);
707 }
708
709 #undef PF_ANY
710 #undef PF_HEAD
711 #undef PF_NO_TAIL
712 #undef PF_NO_COMPOUND
713 #endif /* !__GENERATING_BOUNDS_H */
714
715 #endif /* PAGE_FLAGS_H */
This page took 0.048829 seconds and 5 git commands to generate.