sched: encapsulate priority changes in a sched_set_prio static function
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/kcov.h>
55 #include <linux/task_io_accounting.h>
56 #include <linux/latencytop.h>
57 #include <linux/cred.h>
58 #include <linux/llist.h>
59 #include <linux/uidgid.h>
60 #include <linux/gfp.h>
61 #include <linux/magic.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <asm/processor.h>
65
66 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
67
68 /*
69 * Extended scheduling parameters data structure.
70 *
71 * This is needed because the original struct sched_param can not be
72 * altered without introducing ABI issues with legacy applications
73 * (e.g., in sched_getparam()).
74 *
75 * However, the possibility of specifying more than just a priority for
76 * the tasks may be useful for a wide variety of application fields, e.g.,
77 * multimedia, streaming, automation and control, and many others.
78 *
79 * This variant (sched_attr) is meant at describing a so-called
80 * sporadic time-constrained task. In such model a task is specified by:
81 * - the activation period or minimum instance inter-arrival time;
82 * - the maximum (or average, depending on the actual scheduling
83 * discipline) computation time of all instances, a.k.a. runtime;
84 * - the deadline (relative to the actual activation time) of each
85 * instance.
86 * Very briefly, a periodic (sporadic) task asks for the execution of
87 * some specific computation --which is typically called an instance--
88 * (at most) every period. Moreover, each instance typically lasts no more
89 * than the runtime and must be completed by time instant t equal to
90 * the instance activation time + the deadline.
91 *
92 * This is reflected by the actual fields of the sched_attr structure:
93 *
94 * @size size of the structure, for fwd/bwd compat.
95 *
96 * @sched_policy task's scheduling policy
97 * @sched_flags for customizing the scheduler behaviour
98 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
99 * @sched_priority task's static priority (SCHED_FIFO/RR)
100 * @sched_deadline representative of the task's deadline
101 * @sched_runtime representative of the task's runtime
102 * @sched_period representative of the task's period
103 *
104 * Given this task model, there are a multiplicity of scheduling algorithms
105 * and policies, that can be used to ensure all the tasks will make their
106 * timing constraints.
107 *
108 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109 * only user of this new interface. More information about the algorithm
110 * available in the scheduling class file or in Documentation/.
111 */
112 struct sched_attr {
113 u32 size;
114
115 u32 sched_policy;
116 u64 sched_flags;
117
118 /* SCHED_NORMAL, SCHED_BATCH */
119 s32 sched_nice;
120
121 /* SCHED_FIFO, SCHED_RR */
122 u32 sched_priority;
123
124 /* SCHED_DEADLINE */
125 u64 sched_runtime;
126 u64 sched_deadline;
127 u64 sched_period;
128 };
129
130 struct futex_pi_state;
131 struct robust_list_head;
132 struct bio_list;
133 struct fs_struct;
134 struct perf_event_context;
135 struct blk_plug;
136 struct filename;
137 struct nameidata;
138
139 #define VMACACHE_BITS 2
140 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
141 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
142
143 /*
144 * These are the constant used to fake the fixed-point load-average
145 * counting. Some notes:
146 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
147 * a load-average precision of 10 bits integer + 11 bits fractional
148 * - if you want to count load-averages more often, you need more
149 * precision, or rounding will get you. With 2-second counting freq,
150 * the EXP_n values would be 1981, 2034 and 2043 if still using only
151 * 11 bit fractions.
152 */
153 extern unsigned long avenrun[]; /* Load averages */
154 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
155
156 #define FSHIFT 11 /* nr of bits of precision */
157 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
158 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
159 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
160 #define EXP_5 2014 /* 1/exp(5sec/5min) */
161 #define EXP_15 2037 /* 1/exp(5sec/15min) */
162
163 #define CALC_LOAD(load,exp,n) \
164 load *= exp; \
165 load += n*(FIXED_1-exp); \
166 load >>= FSHIFT;
167
168 extern unsigned long total_forks;
169 extern int nr_threads;
170 DECLARE_PER_CPU(unsigned long, process_counts);
171 extern int nr_processes(void);
172 extern unsigned long nr_running(void);
173 extern bool single_task_running(void);
174 extern unsigned long nr_iowait(void);
175 extern unsigned long nr_iowait_cpu(int cpu);
176 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
177
178 extern void calc_global_load(unsigned long ticks);
179
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 extern void update_cpu_load_nohz(int active);
182 #else
183 static inline void update_cpu_load_nohz(int active) { }
184 #endif
185
186 extern void dump_cpu_task(int cpu);
187
188 struct seq_file;
189 struct cfs_rq;
190 struct task_group;
191 #ifdef CONFIG_SCHED_DEBUG
192 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193 extern void proc_sched_set_task(struct task_struct *p);
194 #endif
195
196 /*
197 * Task state bitmask. NOTE! These bits are also
198 * encoded in fs/proc/array.c: get_task_state().
199 *
200 * We have two separate sets of flags: task->state
201 * is about runnability, while task->exit_state are
202 * about the task exiting. Confusing, but this way
203 * modifying one set can't modify the other one by
204 * mistake.
205 */
206 #define TASK_RUNNING 0
207 #define TASK_INTERRUPTIBLE 1
208 #define TASK_UNINTERRUPTIBLE 2
209 #define __TASK_STOPPED 4
210 #define __TASK_TRACED 8
211 /* in tsk->exit_state */
212 #define EXIT_DEAD 16
213 #define EXIT_ZOMBIE 32
214 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
215 /* in tsk->state again */
216 #define TASK_DEAD 64
217 #define TASK_WAKEKILL 128
218 #define TASK_WAKING 256
219 #define TASK_PARKED 512
220 #define TASK_NOLOAD 1024
221 #define TASK_STATE_MAX 2048
222
223 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
224
225 extern char ___assert_task_state[1 - 2*!!(
226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
227
228 /* Convenience macros for the sake of set_task_state */
229 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
231 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
232
233 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
234
235 /* Convenience macros for the sake of wake_up */
236 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
237 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
238
239 /* get_task_state() */
240 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
241 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
242 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
243
244 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
245 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
246 #define task_is_stopped_or_traced(task) \
247 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
248 #define task_contributes_to_load(task) \
249 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
250 (task->flags & PF_FROZEN) == 0 && \
251 (task->state & TASK_NOLOAD) == 0)
252
253 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
254
255 #define __set_task_state(tsk, state_value) \
256 do { \
257 (tsk)->task_state_change = _THIS_IP_; \
258 (tsk)->state = (state_value); \
259 } while (0)
260 #define set_task_state(tsk, state_value) \
261 do { \
262 (tsk)->task_state_change = _THIS_IP_; \
263 smp_store_mb((tsk)->state, (state_value)); \
264 } while (0)
265
266 /*
267 * set_current_state() includes a barrier so that the write of current->state
268 * is correctly serialised wrt the caller's subsequent test of whether to
269 * actually sleep:
270 *
271 * set_current_state(TASK_UNINTERRUPTIBLE);
272 * if (do_i_need_to_sleep())
273 * schedule();
274 *
275 * If the caller does not need such serialisation then use __set_current_state()
276 */
277 #define __set_current_state(state_value) \
278 do { \
279 current->task_state_change = _THIS_IP_; \
280 current->state = (state_value); \
281 } while (0)
282 #define set_current_state(state_value) \
283 do { \
284 current->task_state_change = _THIS_IP_; \
285 smp_store_mb(current->state, (state_value)); \
286 } while (0)
287
288 #else
289
290 #define __set_task_state(tsk, state_value) \
291 do { (tsk)->state = (state_value); } while (0)
292 #define set_task_state(tsk, state_value) \
293 smp_store_mb((tsk)->state, (state_value))
294
295 /*
296 * set_current_state() includes a barrier so that the write of current->state
297 * is correctly serialised wrt the caller's subsequent test of whether to
298 * actually sleep:
299 *
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (do_i_need_to_sleep())
302 * schedule();
303 *
304 * If the caller does not need such serialisation then use __set_current_state()
305 */
306 #define __set_current_state(state_value) \
307 do { current->state = (state_value); } while (0)
308 #define set_current_state(state_value) \
309 smp_store_mb(current->state, (state_value))
310
311 #endif
312
313 /* Task command name length */
314 #define TASK_COMM_LEN 16
315
316 #include <linux/spinlock.h>
317
318 /*
319 * This serializes "schedule()" and also protects
320 * the run-queue from deletions/modifications (but
321 * _adding_ to the beginning of the run-queue has
322 * a separate lock).
323 */
324 extern rwlock_t tasklist_lock;
325 extern spinlock_t mmlist_lock;
326
327 struct task_struct;
328
329 #ifdef CONFIG_PROVE_RCU
330 extern int lockdep_tasklist_lock_is_held(void);
331 #endif /* #ifdef CONFIG_PROVE_RCU */
332
333 extern void sched_init(void);
334 extern void sched_init_smp(void);
335 extern asmlinkage void schedule_tail(struct task_struct *prev);
336 extern void init_idle(struct task_struct *idle, int cpu);
337 extern void init_idle_bootup_task(struct task_struct *idle);
338
339 extern cpumask_var_t cpu_isolated_map;
340
341 extern int runqueue_is_locked(int cpu);
342
343 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
344 extern void nohz_balance_enter_idle(int cpu);
345 extern void set_cpu_sd_state_idle(void);
346 extern int get_nohz_timer_target(void);
347 #else
348 static inline void nohz_balance_enter_idle(int cpu) { }
349 static inline void set_cpu_sd_state_idle(void) { }
350 #endif
351
352 /*
353 * Only dump TASK_* tasks. (0 for all tasks)
354 */
355 extern void show_state_filter(unsigned long state_filter);
356
357 static inline void show_state(void)
358 {
359 show_state_filter(0);
360 }
361
362 extern void show_regs(struct pt_regs *);
363
364 /*
365 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
366 * task), SP is the stack pointer of the first frame that should be shown in the back
367 * trace (or NULL if the entire call-chain of the task should be shown).
368 */
369 extern void show_stack(struct task_struct *task, unsigned long *sp);
370
371 extern void cpu_init (void);
372 extern void trap_init(void);
373 extern void update_process_times(int user);
374 extern void scheduler_tick(void);
375
376 extern void sched_show_task(struct task_struct *p);
377
378 #ifdef CONFIG_LOCKUP_DETECTOR
379 extern void touch_softlockup_watchdog_sched(void);
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386 extern unsigned int softlockup_panic;
387 extern unsigned int hardlockup_panic;
388 void lockup_detector_init(void);
389 #else
390 static inline void touch_softlockup_watchdog_sched(void)
391 {
392 }
393 static inline void touch_softlockup_watchdog(void)
394 {
395 }
396 static inline void touch_softlockup_watchdog_sync(void)
397 {
398 }
399 static inline void touch_all_softlockup_watchdogs(void)
400 {
401 }
402 static inline void lockup_detector_init(void)
403 {
404 }
405 #endif
406
407 #ifdef CONFIG_DETECT_HUNG_TASK
408 void reset_hung_task_detector(void);
409 #else
410 static inline void reset_hung_task_detector(void)
411 {
412 }
413 #endif
414
415 /* Attach to any functions which should be ignored in wchan output. */
416 #define __sched __attribute__((__section__(".sched.text")))
417
418 /* Linker adds these: start and end of __sched functions */
419 extern char __sched_text_start[], __sched_text_end[];
420
421 /* Is this address in the __sched functions? */
422 extern int in_sched_functions(unsigned long addr);
423
424 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
425 extern signed long schedule_timeout(signed long timeout);
426 extern signed long schedule_timeout_interruptible(signed long timeout);
427 extern signed long schedule_timeout_killable(signed long timeout);
428 extern signed long schedule_timeout_uninterruptible(signed long timeout);
429 extern signed long schedule_timeout_idle(signed long timeout);
430 asmlinkage void schedule(void);
431 extern void schedule_preempt_disabled(void);
432
433 extern long io_schedule_timeout(long timeout);
434
435 static inline void io_schedule(void)
436 {
437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
438 }
439
440 struct nsproxy;
441 struct user_namespace;
442
443 #ifdef CONFIG_MMU
444 extern void arch_pick_mmap_layout(struct mm_struct *mm);
445 extern unsigned long
446 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
447 unsigned long, unsigned long);
448 extern unsigned long
449 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
450 unsigned long len, unsigned long pgoff,
451 unsigned long flags);
452 #else
453 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
454 #endif
455
456 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
457 #define SUID_DUMP_USER 1 /* Dump as user of process */
458 #define SUID_DUMP_ROOT 2 /* Dump as root */
459
460 /* mm flags */
461
462 /* for SUID_DUMP_* above */
463 #define MMF_DUMPABLE_BITS 2
464 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
465
466 extern void set_dumpable(struct mm_struct *mm, int value);
467 /*
468 * This returns the actual value of the suid_dumpable flag. For things
469 * that are using this for checking for privilege transitions, it must
470 * test against SUID_DUMP_USER rather than treating it as a boolean
471 * value.
472 */
473 static inline int __get_dumpable(unsigned long mm_flags)
474 {
475 return mm_flags & MMF_DUMPABLE_MASK;
476 }
477
478 static inline int get_dumpable(struct mm_struct *mm)
479 {
480 return __get_dumpable(mm->flags);
481 }
482
483 /* coredump filter bits */
484 #define MMF_DUMP_ANON_PRIVATE 2
485 #define MMF_DUMP_ANON_SHARED 3
486 #define MMF_DUMP_MAPPED_PRIVATE 4
487 #define MMF_DUMP_MAPPED_SHARED 5
488 #define MMF_DUMP_ELF_HEADERS 6
489 #define MMF_DUMP_HUGETLB_PRIVATE 7
490 #define MMF_DUMP_HUGETLB_SHARED 8
491 #define MMF_DUMP_DAX_PRIVATE 9
492 #define MMF_DUMP_DAX_SHARED 10
493
494 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
495 #define MMF_DUMP_FILTER_BITS 9
496 #define MMF_DUMP_FILTER_MASK \
497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
498 #define MMF_DUMP_FILTER_DEFAULT \
499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
501
502 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
503 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
504 #else
505 # define MMF_DUMP_MASK_DEFAULT_ELF 0
506 #endif
507 /* leave room for more dump flags */
508 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
509 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
510 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
511
512 #define MMF_HAS_UPROBES 19 /* has uprobes */
513 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
514
515 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
516
517 struct sighand_struct {
518 atomic_t count;
519 struct k_sigaction action[_NSIG];
520 spinlock_t siglock;
521 wait_queue_head_t signalfd_wqh;
522 };
523
524 struct pacct_struct {
525 int ac_flag;
526 long ac_exitcode;
527 unsigned long ac_mem;
528 cputime_t ac_utime, ac_stime;
529 unsigned long ac_minflt, ac_majflt;
530 };
531
532 struct cpu_itimer {
533 cputime_t expires;
534 cputime_t incr;
535 u32 error;
536 u32 incr_error;
537 };
538
539 /**
540 * struct prev_cputime - snaphsot of system and user cputime
541 * @utime: time spent in user mode
542 * @stime: time spent in system mode
543 * @lock: protects the above two fields
544 *
545 * Stores previous user/system time values such that we can guarantee
546 * monotonicity.
547 */
548 struct prev_cputime {
549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
550 cputime_t utime;
551 cputime_t stime;
552 raw_spinlock_t lock;
553 #endif
554 };
555
556 static inline void prev_cputime_init(struct prev_cputime *prev)
557 {
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 prev->utime = prev->stime = 0;
560 raw_spin_lock_init(&prev->lock);
561 #endif
562 }
563
564 /**
565 * struct task_cputime - collected CPU time counts
566 * @utime: time spent in user mode, in &cputime_t units
567 * @stime: time spent in kernel mode, in &cputime_t units
568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
569 *
570 * This structure groups together three kinds of CPU time that are tracked for
571 * threads and thread groups. Most things considering CPU time want to group
572 * these counts together and treat all three of them in parallel.
573 */
574 struct task_cputime {
575 cputime_t utime;
576 cputime_t stime;
577 unsigned long long sum_exec_runtime;
578 };
579
580 /* Alternate field names when used to cache expirations. */
581 #define virt_exp utime
582 #define prof_exp stime
583 #define sched_exp sum_exec_runtime
584
585 #define INIT_CPUTIME \
586 (struct task_cputime) { \
587 .utime = 0, \
588 .stime = 0, \
589 .sum_exec_runtime = 0, \
590 }
591
592 /*
593 * This is the atomic variant of task_cputime, which can be used for
594 * storing and updating task_cputime statistics without locking.
595 */
596 struct task_cputime_atomic {
597 atomic64_t utime;
598 atomic64_t stime;
599 atomic64_t sum_exec_runtime;
600 };
601
602 #define INIT_CPUTIME_ATOMIC \
603 (struct task_cputime_atomic) { \
604 .utime = ATOMIC64_INIT(0), \
605 .stime = ATOMIC64_INIT(0), \
606 .sum_exec_runtime = ATOMIC64_INIT(0), \
607 }
608
609 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
610
611 /*
612 * Disable preemption until the scheduler is running -- use an unconditional
613 * value so that it also works on !PREEMPT_COUNT kernels.
614 *
615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
616 */
617 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
618
619 /*
620 * Initial preempt_count value; reflects the preempt_count schedule invariant
621 * which states that during context switches:
622 *
623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
624 *
625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
626 * Note: See finish_task_switch().
627 */
628 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
629
630 /**
631 * struct thread_group_cputimer - thread group interval timer counts
632 * @cputime_atomic: atomic thread group interval timers.
633 * @running: true when there are timers running and
634 * @cputime_atomic receives updates.
635 * @checking_timer: true when a thread in the group is in the
636 * process of checking for thread group timers.
637 *
638 * This structure contains the version of task_cputime, above, that is
639 * used for thread group CPU timer calculations.
640 */
641 struct thread_group_cputimer {
642 struct task_cputime_atomic cputime_atomic;
643 bool running;
644 bool checking_timer;
645 };
646
647 #include <linux/rwsem.h>
648 struct autogroup;
649
650 /*
651 * NOTE! "signal_struct" does not have its own
652 * locking, because a shared signal_struct always
653 * implies a shared sighand_struct, so locking
654 * sighand_struct is always a proper superset of
655 * the locking of signal_struct.
656 */
657 struct signal_struct {
658 atomic_t sigcnt;
659 atomic_t live;
660 int nr_threads;
661 struct list_head thread_head;
662
663 wait_queue_head_t wait_chldexit; /* for wait4() */
664
665 /* current thread group signal load-balancing target: */
666 struct task_struct *curr_target;
667
668 /* shared signal handling: */
669 struct sigpending shared_pending;
670
671 /* thread group exit support */
672 int group_exit_code;
673 /* overloaded:
674 * - notify group_exit_task when ->count is equal to notify_count
675 * - everyone except group_exit_task is stopped during signal delivery
676 * of fatal signals, group_exit_task processes the signal.
677 */
678 int notify_count;
679 struct task_struct *group_exit_task;
680
681 /* thread group stop support, overloads group_exit_code too */
682 int group_stop_count;
683 unsigned int flags; /* see SIGNAL_* flags below */
684
685 /*
686 * PR_SET_CHILD_SUBREAPER marks a process, like a service
687 * manager, to re-parent orphan (double-forking) child processes
688 * to this process instead of 'init'. The service manager is
689 * able to receive SIGCHLD signals and is able to investigate
690 * the process until it calls wait(). All children of this
691 * process will inherit a flag if they should look for a
692 * child_subreaper process at exit.
693 */
694 unsigned int is_child_subreaper:1;
695 unsigned int has_child_subreaper:1;
696
697 /* POSIX.1b Interval Timers */
698 int posix_timer_id;
699 struct list_head posix_timers;
700
701 /* ITIMER_REAL timer for the process */
702 struct hrtimer real_timer;
703 struct pid *leader_pid;
704 ktime_t it_real_incr;
705
706 /*
707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
709 * values are defined to 0 and 1 respectively
710 */
711 struct cpu_itimer it[2];
712
713 /*
714 * Thread group totals for process CPU timers.
715 * See thread_group_cputimer(), et al, for details.
716 */
717 struct thread_group_cputimer cputimer;
718
719 /* Earliest-expiration cache. */
720 struct task_cputime cputime_expires;
721
722 #ifdef CONFIG_NO_HZ_FULL
723 atomic_t tick_dep_mask;
724 #endif
725
726 struct list_head cpu_timers[3];
727
728 struct pid *tty_old_pgrp;
729
730 /* boolean value for session group leader */
731 int leader;
732
733 struct tty_struct *tty; /* NULL if no tty */
734
735 #ifdef CONFIG_SCHED_AUTOGROUP
736 struct autogroup *autogroup;
737 #endif
738 /*
739 * Cumulative resource counters for dead threads in the group,
740 * and for reaped dead child processes forked by this group.
741 * Live threads maintain their own counters and add to these
742 * in __exit_signal, except for the group leader.
743 */
744 seqlock_t stats_lock;
745 cputime_t utime, stime, cutime, cstime;
746 cputime_t gtime;
747 cputime_t cgtime;
748 struct prev_cputime prev_cputime;
749 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
750 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
751 unsigned long inblock, oublock, cinblock, coublock;
752 unsigned long maxrss, cmaxrss;
753 struct task_io_accounting ioac;
754
755 /*
756 * Cumulative ns of schedule CPU time fo dead threads in the
757 * group, not including a zombie group leader, (This only differs
758 * from jiffies_to_ns(utime + stime) if sched_clock uses something
759 * other than jiffies.)
760 */
761 unsigned long long sum_sched_runtime;
762
763 /*
764 * We don't bother to synchronize most readers of this at all,
765 * because there is no reader checking a limit that actually needs
766 * to get both rlim_cur and rlim_max atomically, and either one
767 * alone is a single word that can safely be read normally.
768 * getrlimit/setrlimit use task_lock(current->group_leader) to
769 * protect this instead of the siglock, because they really
770 * have no need to disable irqs.
771 */
772 struct rlimit rlim[RLIM_NLIMITS];
773
774 #ifdef CONFIG_BSD_PROCESS_ACCT
775 struct pacct_struct pacct; /* per-process accounting information */
776 #endif
777 #ifdef CONFIG_TASKSTATS
778 struct taskstats *stats;
779 #endif
780 #ifdef CONFIG_AUDIT
781 unsigned audit_tty;
782 struct tty_audit_buf *tty_audit_buf;
783 #endif
784
785 oom_flags_t oom_flags;
786 short oom_score_adj; /* OOM kill score adjustment */
787 short oom_score_adj_min; /* OOM kill score adjustment min value.
788 * Only settable by CAP_SYS_RESOURCE. */
789
790 struct mutex cred_guard_mutex; /* guard against foreign influences on
791 * credential calculations
792 * (notably. ptrace) */
793 };
794
795 /*
796 * Bits in flags field of signal_struct.
797 */
798 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
799 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
800 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
801 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
802 /*
803 * Pending notifications to parent.
804 */
805 #define SIGNAL_CLD_STOPPED 0x00000010
806 #define SIGNAL_CLD_CONTINUED 0x00000020
807 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
808
809 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
810
811 /* If true, all threads except ->group_exit_task have pending SIGKILL */
812 static inline int signal_group_exit(const struct signal_struct *sig)
813 {
814 return (sig->flags & SIGNAL_GROUP_EXIT) ||
815 (sig->group_exit_task != NULL);
816 }
817
818 /*
819 * Some day this will be a full-fledged user tracking system..
820 */
821 struct user_struct {
822 atomic_t __count; /* reference count */
823 atomic_t processes; /* How many processes does this user have? */
824 atomic_t sigpending; /* How many pending signals does this user have? */
825 #ifdef CONFIG_INOTIFY_USER
826 atomic_t inotify_watches; /* How many inotify watches does this user have? */
827 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
828 #endif
829 #ifdef CONFIG_FANOTIFY
830 atomic_t fanotify_listeners;
831 #endif
832 #ifdef CONFIG_EPOLL
833 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
834 #endif
835 #ifdef CONFIG_POSIX_MQUEUE
836 /* protected by mq_lock */
837 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
838 #endif
839 unsigned long locked_shm; /* How many pages of mlocked shm ? */
840 unsigned long unix_inflight; /* How many files in flight in unix sockets */
841 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
842
843 #ifdef CONFIG_KEYS
844 struct key *uid_keyring; /* UID specific keyring */
845 struct key *session_keyring; /* UID's default session keyring */
846 #endif
847
848 /* Hash table maintenance information */
849 struct hlist_node uidhash_node;
850 kuid_t uid;
851
852 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
853 atomic_long_t locked_vm;
854 #endif
855 };
856
857 extern int uids_sysfs_init(void);
858
859 extern struct user_struct *find_user(kuid_t);
860
861 extern struct user_struct root_user;
862 #define INIT_USER (&root_user)
863
864
865 struct backing_dev_info;
866 struct reclaim_state;
867
868 #ifdef CONFIG_SCHED_INFO
869 struct sched_info {
870 /* cumulative counters */
871 unsigned long pcount; /* # of times run on this cpu */
872 unsigned long long run_delay; /* time spent waiting on a runqueue */
873
874 /* timestamps */
875 unsigned long long last_arrival,/* when we last ran on a cpu */
876 last_queued; /* when we were last queued to run */
877 };
878 #endif /* CONFIG_SCHED_INFO */
879
880 #ifdef CONFIG_TASK_DELAY_ACCT
881 struct task_delay_info {
882 spinlock_t lock;
883 unsigned int flags; /* Private per-task flags */
884
885 /* For each stat XXX, add following, aligned appropriately
886 *
887 * struct timespec XXX_start, XXX_end;
888 * u64 XXX_delay;
889 * u32 XXX_count;
890 *
891 * Atomicity of updates to XXX_delay, XXX_count protected by
892 * single lock above (split into XXX_lock if contention is an issue).
893 */
894
895 /*
896 * XXX_count is incremented on every XXX operation, the delay
897 * associated with the operation is added to XXX_delay.
898 * XXX_delay contains the accumulated delay time in nanoseconds.
899 */
900 u64 blkio_start; /* Shared by blkio, swapin */
901 u64 blkio_delay; /* wait for sync block io completion */
902 u64 swapin_delay; /* wait for swapin block io completion */
903 u32 blkio_count; /* total count of the number of sync block */
904 /* io operations performed */
905 u32 swapin_count; /* total count of the number of swapin block */
906 /* io operations performed */
907
908 u64 freepages_start;
909 u64 freepages_delay; /* wait for memory reclaim */
910 u32 freepages_count; /* total count of memory reclaim */
911 };
912 #endif /* CONFIG_TASK_DELAY_ACCT */
913
914 static inline int sched_info_on(void)
915 {
916 #ifdef CONFIG_SCHEDSTATS
917 return 1;
918 #elif defined(CONFIG_TASK_DELAY_ACCT)
919 extern int delayacct_on;
920 return delayacct_on;
921 #else
922 return 0;
923 #endif
924 }
925
926 #ifdef CONFIG_SCHEDSTATS
927 void force_schedstat_enabled(void);
928 #endif
929
930 enum cpu_idle_type {
931 CPU_IDLE,
932 CPU_NOT_IDLE,
933 CPU_NEWLY_IDLE,
934 CPU_MAX_IDLE_TYPES
935 };
936
937 /*
938 * Increase resolution of cpu_capacity calculations
939 */
940 #define SCHED_CAPACITY_SHIFT 10
941 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
942
943 /*
944 * Wake-queues are lists of tasks with a pending wakeup, whose
945 * callers have already marked the task as woken internally,
946 * and can thus carry on. A common use case is being able to
947 * do the wakeups once the corresponding user lock as been
948 * released.
949 *
950 * We hold reference to each task in the list across the wakeup,
951 * thus guaranteeing that the memory is still valid by the time
952 * the actual wakeups are performed in wake_up_q().
953 *
954 * One per task suffices, because there's never a need for a task to be
955 * in two wake queues simultaneously; it is forbidden to abandon a task
956 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
957 * already in a wake queue, the wakeup will happen soon and the second
958 * waker can just skip it.
959 *
960 * The WAKE_Q macro declares and initializes the list head.
961 * wake_up_q() does NOT reinitialize the list; it's expected to be
962 * called near the end of a function, where the fact that the queue is
963 * not used again will be easy to see by inspection.
964 *
965 * Note that this can cause spurious wakeups. schedule() callers
966 * must ensure the call is done inside a loop, confirming that the
967 * wakeup condition has in fact occurred.
968 */
969 struct wake_q_node {
970 struct wake_q_node *next;
971 };
972
973 struct wake_q_head {
974 struct wake_q_node *first;
975 struct wake_q_node **lastp;
976 };
977
978 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
979
980 #define WAKE_Q(name) \
981 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
982
983 extern void wake_q_add(struct wake_q_head *head,
984 struct task_struct *task);
985 extern void wake_up_q(struct wake_q_head *head);
986
987 /*
988 * sched-domains (multiprocessor balancing) declarations:
989 */
990 #ifdef CONFIG_SMP
991 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
992 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
993 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
994 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
995 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
996 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
997 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
998 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
999 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1000 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1001 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1002 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1003 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1004 #define SD_NUMA 0x4000 /* cross-node balancing */
1005
1006 #ifdef CONFIG_SCHED_SMT
1007 static inline int cpu_smt_flags(void)
1008 {
1009 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1010 }
1011 #endif
1012
1013 #ifdef CONFIG_SCHED_MC
1014 static inline int cpu_core_flags(void)
1015 {
1016 return SD_SHARE_PKG_RESOURCES;
1017 }
1018 #endif
1019
1020 #ifdef CONFIG_NUMA
1021 static inline int cpu_numa_flags(void)
1022 {
1023 return SD_NUMA;
1024 }
1025 #endif
1026
1027 struct sched_domain_attr {
1028 int relax_domain_level;
1029 };
1030
1031 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1032 .relax_domain_level = -1, \
1033 }
1034
1035 extern int sched_domain_level_max;
1036
1037 struct sched_group;
1038
1039 struct sched_domain {
1040 /* These fields must be setup */
1041 struct sched_domain *parent; /* top domain must be null terminated */
1042 struct sched_domain *child; /* bottom domain must be null terminated */
1043 struct sched_group *groups; /* the balancing groups of the domain */
1044 unsigned long min_interval; /* Minimum balance interval ms */
1045 unsigned long max_interval; /* Maximum balance interval ms */
1046 unsigned int busy_factor; /* less balancing by factor if busy */
1047 unsigned int imbalance_pct; /* No balance until over watermark */
1048 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1049 unsigned int busy_idx;
1050 unsigned int idle_idx;
1051 unsigned int newidle_idx;
1052 unsigned int wake_idx;
1053 unsigned int forkexec_idx;
1054 unsigned int smt_gain;
1055
1056 int nohz_idle; /* NOHZ IDLE status */
1057 int flags; /* See SD_* */
1058 int level;
1059
1060 /* Runtime fields. */
1061 unsigned long last_balance; /* init to jiffies. units in jiffies */
1062 unsigned int balance_interval; /* initialise to 1. units in ms. */
1063 unsigned int nr_balance_failed; /* initialise to 0 */
1064
1065 /* idle_balance() stats */
1066 u64 max_newidle_lb_cost;
1067 unsigned long next_decay_max_lb_cost;
1068
1069 #ifdef CONFIG_SCHEDSTATS
1070 /* load_balance() stats */
1071 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1076 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1077 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1078 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1079
1080 /* Active load balancing */
1081 unsigned int alb_count;
1082 unsigned int alb_failed;
1083 unsigned int alb_pushed;
1084
1085 /* SD_BALANCE_EXEC stats */
1086 unsigned int sbe_count;
1087 unsigned int sbe_balanced;
1088 unsigned int sbe_pushed;
1089
1090 /* SD_BALANCE_FORK stats */
1091 unsigned int sbf_count;
1092 unsigned int sbf_balanced;
1093 unsigned int sbf_pushed;
1094
1095 /* try_to_wake_up() stats */
1096 unsigned int ttwu_wake_remote;
1097 unsigned int ttwu_move_affine;
1098 unsigned int ttwu_move_balance;
1099 #endif
1100 #ifdef CONFIG_SCHED_DEBUG
1101 char *name;
1102 #endif
1103 union {
1104 void *private; /* used during construction */
1105 struct rcu_head rcu; /* used during destruction */
1106 };
1107
1108 unsigned int span_weight;
1109 /*
1110 * Span of all CPUs in this domain.
1111 *
1112 * NOTE: this field is variable length. (Allocated dynamically
1113 * by attaching extra space to the end of the structure,
1114 * depending on how many CPUs the kernel has booted up with)
1115 */
1116 unsigned long span[0];
1117 };
1118
1119 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1120 {
1121 return to_cpumask(sd->span);
1122 }
1123
1124 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1125 struct sched_domain_attr *dattr_new);
1126
1127 /* Allocate an array of sched domains, for partition_sched_domains(). */
1128 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1129 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1130
1131 bool cpus_share_cache(int this_cpu, int that_cpu);
1132
1133 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1134 typedef int (*sched_domain_flags_f)(void);
1135
1136 #define SDTL_OVERLAP 0x01
1137
1138 struct sd_data {
1139 struct sched_domain **__percpu sd;
1140 struct sched_group **__percpu sg;
1141 struct sched_group_capacity **__percpu sgc;
1142 };
1143
1144 struct sched_domain_topology_level {
1145 sched_domain_mask_f mask;
1146 sched_domain_flags_f sd_flags;
1147 int flags;
1148 int numa_level;
1149 struct sd_data data;
1150 #ifdef CONFIG_SCHED_DEBUG
1151 char *name;
1152 #endif
1153 };
1154
1155 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1156 extern void wake_up_if_idle(int cpu);
1157
1158 #ifdef CONFIG_SCHED_DEBUG
1159 # define SD_INIT_NAME(type) .name = #type
1160 #else
1161 # define SD_INIT_NAME(type)
1162 #endif
1163
1164 #else /* CONFIG_SMP */
1165
1166 struct sched_domain_attr;
1167
1168 static inline void
1169 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1170 struct sched_domain_attr *dattr_new)
1171 {
1172 }
1173
1174 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1175 {
1176 return true;
1177 }
1178
1179 #endif /* !CONFIG_SMP */
1180
1181
1182 struct io_context; /* See blkdev.h */
1183
1184
1185 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1186 extern void prefetch_stack(struct task_struct *t);
1187 #else
1188 static inline void prefetch_stack(struct task_struct *t) { }
1189 #endif
1190
1191 struct audit_context; /* See audit.c */
1192 struct mempolicy;
1193 struct pipe_inode_info;
1194 struct uts_namespace;
1195
1196 struct load_weight {
1197 unsigned long weight;
1198 u32 inv_weight;
1199 };
1200
1201 /*
1202 * The load_avg/util_avg accumulates an infinite geometric series.
1203 * 1) load_avg factors frequency scaling into the amount of time that a
1204 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1205 * aggregated such weights of all runnable and blocked sched_entities.
1206 * 2) util_avg factors frequency and cpu scaling into the amount of time
1207 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1208 * For cfs_rq, it is the aggregated such times of all runnable and
1209 * blocked sched_entities.
1210 * The 64 bit load_sum can:
1211 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1212 * the highest weight (=88761) always runnable, we should not overflow
1213 * 2) for entity, support any load.weight always runnable
1214 */
1215 struct sched_avg {
1216 u64 last_update_time, load_sum;
1217 u32 util_sum, period_contrib;
1218 unsigned long load_avg, util_avg;
1219 };
1220
1221 #ifdef CONFIG_SCHEDSTATS
1222 struct sched_statistics {
1223 u64 wait_start;
1224 u64 wait_max;
1225 u64 wait_count;
1226 u64 wait_sum;
1227 u64 iowait_count;
1228 u64 iowait_sum;
1229
1230 u64 sleep_start;
1231 u64 sleep_max;
1232 s64 sum_sleep_runtime;
1233
1234 u64 block_start;
1235 u64 block_max;
1236 u64 exec_max;
1237 u64 slice_max;
1238
1239 u64 nr_migrations_cold;
1240 u64 nr_failed_migrations_affine;
1241 u64 nr_failed_migrations_running;
1242 u64 nr_failed_migrations_hot;
1243 u64 nr_forced_migrations;
1244
1245 u64 nr_wakeups;
1246 u64 nr_wakeups_sync;
1247 u64 nr_wakeups_migrate;
1248 u64 nr_wakeups_local;
1249 u64 nr_wakeups_remote;
1250 u64 nr_wakeups_affine;
1251 u64 nr_wakeups_affine_attempts;
1252 u64 nr_wakeups_passive;
1253 u64 nr_wakeups_idle;
1254 };
1255 #endif
1256
1257 struct sched_entity {
1258 struct load_weight load; /* for load-balancing */
1259 struct rb_node run_node;
1260 struct list_head group_node;
1261 unsigned int on_rq;
1262
1263 u64 exec_start;
1264 u64 sum_exec_runtime;
1265 u64 vruntime;
1266 u64 prev_sum_exec_runtime;
1267
1268 u64 nr_migrations;
1269
1270 #ifdef CONFIG_SCHEDSTATS
1271 struct sched_statistics statistics;
1272 #endif
1273
1274 #ifdef CONFIG_FAIR_GROUP_SCHED
1275 int depth;
1276 struct sched_entity *parent;
1277 /* rq on which this entity is (to be) queued: */
1278 struct cfs_rq *cfs_rq;
1279 /* rq "owned" by this entity/group: */
1280 struct cfs_rq *my_q;
1281 #endif
1282
1283 #ifdef CONFIG_SMP
1284 /*
1285 * Per entity load average tracking.
1286 *
1287 * Put into separate cache line so it does not
1288 * collide with read-mostly values above.
1289 */
1290 struct sched_avg avg ____cacheline_aligned_in_smp;
1291 #endif
1292 };
1293
1294 struct sched_rt_entity {
1295 struct list_head run_list;
1296 unsigned long timeout;
1297 unsigned long watchdog_stamp;
1298 unsigned int time_slice;
1299 unsigned short on_rq;
1300 unsigned short on_list;
1301
1302 struct sched_rt_entity *back;
1303 #ifdef CONFIG_RT_GROUP_SCHED
1304 struct sched_rt_entity *parent;
1305 /* rq on which this entity is (to be) queued: */
1306 struct rt_rq *rt_rq;
1307 /* rq "owned" by this entity/group: */
1308 struct rt_rq *my_q;
1309 #endif
1310 };
1311
1312 struct sched_dl_entity {
1313 struct rb_node rb_node;
1314
1315 /*
1316 * Original scheduling parameters. Copied here from sched_attr
1317 * during sched_setattr(), they will remain the same until
1318 * the next sched_setattr().
1319 */
1320 u64 dl_runtime; /* maximum runtime for each instance */
1321 u64 dl_deadline; /* relative deadline of each instance */
1322 u64 dl_period; /* separation of two instances (period) */
1323 u64 dl_bw; /* dl_runtime / dl_deadline */
1324
1325 /*
1326 * Actual scheduling parameters. Initialized with the values above,
1327 * they are continously updated during task execution. Note that
1328 * the remaining runtime could be < 0 in case we are in overrun.
1329 */
1330 s64 runtime; /* remaining runtime for this instance */
1331 u64 deadline; /* absolute deadline for this instance */
1332 unsigned int flags; /* specifying the scheduler behaviour */
1333
1334 /*
1335 * Some bool flags:
1336 *
1337 * @dl_throttled tells if we exhausted the runtime. If so, the
1338 * task has to wait for a replenishment to be performed at the
1339 * next firing of dl_timer.
1340 *
1341 * @dl_boosted tells if we are boosted due to DI. If so we are
1342 * outside bandwidth enforcement mechanism (but only until we
1343 * exit the critical section);
1344 *
1345 * @dl_yielded tells if task gave up the cpu before consuming
1346 * all its available runtime during the last job.
1347 */
1348 int dl_throttled, dl_boosted, dl_yielded;
1349
1350 /*
1351 * Bandwidth enforcement timer. Each -deadline task has its
1352 * own bandwidth to be enforced, thus we need one timer per task.
1353 */
1354 struct hrtimer dl_timer;
1355 };
1356
1357 union rcu_special {
1358 struct {
1359 u8 blocked;
1360 u8 need_qs;
1361 u8 exp_need_qs;
1362 u8 pad; /* Otherwise the compiler can store garbage here. */
1363 } b; /* Bits. */
1364 u32 s; /* Set of bits. */
1365 };
1366 struct rcu_node;
1367
1368 enum perf_event_task_context {
1369 perf_invalid_context = -1,
1370 perf_hw_context = 0,
1371 perf_sw_context,
1372 perf_nr_task_contexts,
1373 };
1374
1375 /* Track pages that require TLB flushes */
1376 struct tlbflush_unmap_batch {
1377 /*
1378 * Each bit set is a CPU that potentially has a TLB entry for one of
1379 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1380 */
1381 struct cpumask cpumask;
1382
1383 /* True if any bit in cpumask is set */
1384 bool flush_required;
1385
1386 /*
1387 * If true then the PTE was dirty when unmapped. The entry must be
1388 * flushed before IO is initiated or a stale TLB entry potentially
1389 * allows an update without redirtying the page.
1390 */
1391 bool writable;
1392 };
1393
1394 struct task_struct {
1395 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1396 void *stack;
1397 atomic_t usage;
1398 unsigned int flags; /* per process flags, defined below */
1399 unsigned int ptrace;
1400
1401 #ifdef CONFIG_SMP
1402 struct llist_node wake_entry;
1403 int on_cpu;
1404 unsigned int wakee_flips;
1405 unsigned long wakee_flip_decay_ts;
1406 struct task_struct *last_wakee;
1407
1408 int wake_cpu;
1409 #endif
1410 int on_rq;
1411
1412 int prio; /* Updated through sched_set_prio() */
1413 int static_prio, normal_prio;
1414 unsigned int rt_priority;
1415 const struct sched_class *sched_class;
1416 struct sched_entity se;
1417 struct sched_rt_entity rt;
1418 #ifdef CONFIG_CGROUP_SCHED
1419 struct task_group *sched_task_group;
1420 #endif
1421 struct sched_dl_entity dl;
1422
1423 #ifdef CONFIG_PREEMPT_NOTIFIERS
1424 /* list of struct preempt_notifier: */
1425 struct hlist_head preempt_notifiers;
1426 #endif
1427
1428 #ifdef CONFIG_BLK_DEV_IO_TRACE
1429 unsigned int btrace_seq;
1430 #endif
1431
1432 unsigned int policy;
1433 int nr_cpus_allowed;
1434 cpumask_t cpus_allowed;
1435
1436 #ifdef CONFIG_PREEMPT_RCU
1437 int rcu_read_lock_nesting;
1438 union rcu_special rcu_read_unlock_special;
1439 struct list_head rcu_node_entry;
1440 struct rcu_node *rcu_blocked_node;
1441 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1442 #ifdef CONFIG_TASKS_RCU
1443 unsigned long rcu_tasks_nvcsw;
1444 bool rcu_tasks_holdout;
1445 struct list_head rcu_tasks_holdout_list;
1446 int rcu_tasks_idle_cpu;
1447 #endif /* #ifdef CONFIG_TASKS_RCU */
1448
1449 #ifdef CONFIG_SCHED_INFO
1450 struct sched_info sched_info;
1451 #endif
1452
1453 struct list_head tasks;
1454 #ifdef CONFIG_SMP
1455 struct plist_node pushable_tasks;
1456 struct rb_node pushable_dl_tasks;
1457 #endif
1458
1459 struct mm_struct *mm, *active_mm;
1460 /* per-thread vma caching */
1461 u32 vmacache_seqnum;
1462 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1463 #if defined(SPLIT_RSS_COUNTING)
1464 struct task_rss_stat rss_stat;
1465 #endif
1466 /* task state */
1467 int exit_state;
1468 int exit_code, exit_signal;
1469 int pdeath_signal; /* The signal sent when the parent dies */
1470 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1471
1472 /* Used for emulating ABI behavior of previous Linux versions */
1473 unsigned int personality;
1474
1475 /* scheduler bits, serialized by scheduler locks */
1476 unsigned sched_reset_on_fork:1;
1477 unsigned sched_contributes_to_load:1;
1478 unsigned sched_migrated:1;
1479 unsigned :0; /* force alignment to the next boundary */
1480
1481 /* unserialized, strictly 'current' */
1482 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1483 unsigned in_iowait:1;
1484 #ifdef CONFIG_MEMCG
1485 unsigned memcg_may_oom:1;
1486 #ifndef CONFIG_SLOB
1487 unsigned memcg_kmem_skip_account:1;
1488 #endif
1489 #endif
1490 #ifdef CONFIG_COMPAT_BRK
1491 unsigned brk_randomized:1;
1492 #endif
1493
1494 unsigned long atomic_flags; /* Flags needing atomic access. */
1495
1496 struct restart_block restart_block;
1497
1498 pid_t pid;
1499 pid_t tgid;
1500
1501 #ifdef CONFIG_CC_STACKPROTECTOR
1502 /* Canary value for the -fstack-protector gcc feature */
1503 unsigned long stack_canary;
1504 #endif
1505 /*
1506 * pointers to (original) parent process, youngest child, younger sibling,
1507 * older sibling, respectively. (p->father can be replaced with
1508 * p->real_parent->pid)
1509 */
1510 struct task_struct __rcu *real_parent; /* real parent process */
1511 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1512 /*
1513 * children/sibling forms the list of my natural children
1514 */
1515 struct list_head children; /* list of my children */
1516 struct list_head sibling; /* linkage in my parent's children list */
1517 struct task_struct *group_leader; /* threadgroup leader */
1518
1519 /*
1520 * ptraced is the list of tasks this task is using ptrace on.
1521 * This includes both natural children and PTRACE_ATTACH targets.
1522 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1523 */
1524 struct list_head ptraced;
1525 struct list_head ptrace_entry;
1526
1527 /* PID/PID hash table linkage. */
1528 struct pid_link pids[PIDTYPE_MAX];
1529 struct list_head thread_group;
1530 struct list_head thread_node;
1531
1532 struct completion *vfork_done; /* for vfork() */
1533 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1534 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1535
1536 cputime_t utime, stime, utimescaled, stimescaled;
1537 cputime_t gtime;
1538 struct prev_cputime prev_cputime;
1539 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1540 seqcount_t vtime_seqcount;
1541 unsigned long long vtime_snap;
1542 enum {
1543 /* Task is sleeping or running in a CPU with VTIME inactive */
1544 VTIME_INACTIVE = 0,
1545 /* Task runs in userspace in a CPU with VTIME active */
1546 VTIME_USER,
1547 /* Task runs in kernelspace in a CPU with VTIME active */
1548 VTIME_SYS,
1549 } vtime_snap_whence;
1550 #endif
1551
1552 #ifdef CONFIG_NO_HZ_FULL
1553 atomic_t tick_dep_mask;
1554 #endif
1555 unsigned long nvcsw, nivcsw; /* context switch counts */
1556 u64 start_time; /* monotonic time in nsec */
1557 u64 real_start_time; /* boot based time in nsec */
1558 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1559 unsigned long min_flt, maj_flt;
1560
1561 struct task_cputime cputime_expires;
1562 struct list_head cpu_timers[3];
1563
1564 /* process credentials */
1565 const struct cred __rcu *real_cred; /* objective and real subjective task
1566 * credentials (COW) */
1567 const struct cred __rcu *cred; /* effective (overridable) subjective task
1568 * credentials (COW) */
1569 char comm[TASK_COMM_LEN]; /* executable name excluding path
1570 - access with [gs]et_task_comm (which lock
1571 it with task_lock())
1572 - initialized normally by setup_new_exec */
1573 /* file system info */
1574 struct nameidata *nameidata;
1575 #ifdef CONFIG_SYSVIPC
1576 /* ipc stuff */
1577 struct sysv_sem sysvsem;
1578 struct sysv_shm sysvshm;
1579 #endif
1580 #ifdef CONFIG_DETECT_HUNG_TASK
1581 /* hung task detection */
1582 unsigned long last_switch_count;
1583 #endif
1584 /* filesystem information */
1585 struct fs_struct *fs;
1586 /* open file information */
1587 struct files_struct *files;
1588 /* namespaces */
1589 struct nsproxy *nsproxy;
1590 /* signal handlers */
1591 struct signal_struct *signal;
1592 struct sighand_struct *sighand;
1593
1594 sigset_t blocked, real_blocked;
1595 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1596 struct sigpending pending;
1597
1598 unsigned long sas_ss_sp;
1599 size_t sas_ss_size;
1600
1601 struct callback_head *task_works;
1602
1603 struct audit_context *audit_context;
1604 #ifdef CONFIG_AUDITSYSCALL
1605 kuid_t loginuid;
1606 unsigned int sessionid;
1607 #endif
1608 struct seccomp seccomp;
1609
1610 /* Thread group tracking */
1611 u32 parent_exec_id;
1612 u32 self_exec_id;
1613 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1614 * mempolicy */
1615 spinlock_t alloc_lock;
1616
1617 /* Protection of the PI data structures: */
1618 raw_spinlock_t pi_lock;
1619
1620 struct wake_q_node wake_q;
1621
1622 #ifdef CONFIG_RT_MUTEXES
1623 /* PI waiters blocked on a rt_mutex held by this task */
1624 struct rb_root pi_waiters;
1625 struct rb_node *pi_waiters_leftmost;
1626 /* Deadlock detection and priority inheritance handling */
1627 struct rt_mutex_waiter *pi_blocked_on;
1628 #endif
1629
1630 #ifdef CONFIG_DEBUG_MUTEXES
1631 /* mutex deadlock detection */
1632 struct mutex_waiter *blocked_on;
1633 #endif
1634 #ifdef CONFIG_TRACE_IRQFLAGS
1635 unsigned int irq_events;
1636 unsigned long hardirq_enable_ip;
1637 unsigned long hardirq_disable_ip;
1638 unsigned int hardirq_enable_event;
1639 unsigned int hardirq_disable_event;
1640 int hardirqs_enabled;
1641 int hardirq_context;
1642 unsigned long softirq_disable_ip;
1643 unsigned long softirq_enable_ip;
1644 unsigned int softirq_disable_event;
1645 unsigned int softirq_enable_event;
1646 int softirqs_enabled;
1647 int softirq_context;
1648 #endif
1649 #ifdef CONFIG_LOCKDEP
1650 # define MAX_LOCK_DEPTH 48UL
1651 u64 curr_chain_key;
1652 int lockdep_depth;
1653 unsigned int lockdep_recursion;
1654 struct held_lock held_locks[MAX_LOCK_DEPTH];
1655 gfp_t lockdep_reclaim_gfp;
1656 #endif
1657 #ifdef CONFIG_UBSAN
1658 unsigned int in_ubsan;
1659 #endif
1660
1661 /* journalling filesystem info */
1662 void *journal_info;
1663
1664 /* stacked block device info */
1665 struct bio_list *bio_list;
1666
1667 #ifdef CONFIG_BLOCK
1668 /* stack plugging */
1669 struct blk_plug *plug;
1670 #endif
1671
1672 /* VM state */
1673 struct reclaim_state *reclaim_state;
1674
1675 struct backing_dev_info *backing_dev_info;
1676
1677 struct io_context *io_context;
1678
1679 unsigned long ptrace_message;
1680 siginfo_t *last_siginfo; /* For ptrace use. */
1681 struct task_io_accounting ioac;
1682 #if defined(CONFIG_TASK_XACCT)
1683 u64 acct_rss_mem1; /* accumulated rss usage */
1684 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1685 cputime_t acct_timexpd; /* stime + utime since last update */
1686 #endif
1687 #ifdef CONFIG_CPUSETS
1688 nodemask_t mems_allowed; /* Protected by alloc_lock */
1689 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1690 int cpuset_mem_spread_rotor;
1691 int cpuset_slab_spread_rotor;
1692 #endif
1693 #ifdef CONFIG_CGROUPS
1694 /* Control Group info protected by css_set_lock */
1695 struct css_set __rcu *cgroups;
1696 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1697 struct list_head cg_list;
1698 #endif
1699 #ifdef CONFIG_FUTEX
1700 struct robust_list_head __user *robust_list;
1701 #ifdef CONFIG_COMPAT
1702 struct compat_robust_list_head __user *compat_robust_list;
1703 #endif
1704 struct list_head pi_state_list;
1705 struct futex_pi_state *pi_state_cache;
1706 #endif
1707 #ifdef CONFIG_PERF_EVENTS
1708 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1709 struct mutex perf_event_mutex;
1710 struct list_head perf_event_list;
1711 #endif
1712 #ifdef CONFIG_DEBUG_PREEMPT
1713 unsigned long preempt_disable_ip;
1714 #endif
1715 #ifdef CONFIG_NUMA
1716 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1717 short il_next;
1718 short pref_node_fork;
1719 #endif
1720 #ifdef CONFIG_NUMA_BALANCING
1721 int numa_scan_seq;
1722 unsigned int numa_scan_period;
1723 unsigned int numa_scan_period_max;
1724 int numa_preferred_nid;
1725 unsigned long numa_migrate_retry;
1726 u64 node_stamp; /* migration stamp */
1727 u64 last_task_numa_placement;
1728 u64 last_sum_exec_runtime;
1729 struct callback_head numa_work;
1730
1731 struct list_head numa_entry;
1732 struct numa_group *numa_group;
1733
1734 /*
1735 * numa_faults is an array split into four regions:
1736 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1737 * in this precise order.
1738 *
1739 * faults_memory: Exponential decaying average of faults on a per-node
1740 * basis. Scheduling placement decisions are made based on these
1741 * counts. The values remain static for the duration of a PTE scan.
1742 * faults_cpu: Track the nodes the process was running on when a NUMA
1743 * hinting fault was incurred.
1744 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1745 * during the current scan window. When the scan completes, the counts
1746 * in faults_memory and faults_cpu decay and these values are copied.
1747 */
1748 unsigned long *numa_faults;
1749 unsigned long total_numa_faults;
1750
1751 /*
1752 * numa_faults_locality tracks if faults recorded during the last
1753 * scan window were remote/local or failed to migrate. The task scan
1754 * period is adapted based on the locality of the faults with different
1755 * weights depending on whether they were shared or private faults
1756 */
1757 unsigned long numa_faults_locality[3];
1758
1759 unsigned long numa_pages_migrated;
1760 #endif /* CONFIG_NUMA_BALANCING */
1761
1762 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1763 struct tlbflush_unmap_batch tlb_ubc;
1764 #endif
1765
1766 struct rcu_head rcu;
1767
1768 /*
1769 * cache last used pipe for splice
1770 */
1771 struct pipe_inode_info *splice_pipe;
1772
1773 struct page_frag task_frag;
1774
1775 #ifdef CONFIG_TASK_DELAY_ACCT
1776 struct task_delay_info *delays;
1777 #endif
1778 #ifdef CONFIG_FAULT_INJECTION
1779 int make_it_fail;
1780 #endif
1781 /*
1782 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1783 * balance_dirty_pages() for some dirty throttling pause
1784 */
1785 int nr_dirtied;
1786 int nr_dirtied_pause;
1787 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1788
1789 #ifdef CONFIG_LATENCYTOP
1790 int latency_record_count;
1791 struct latency_record latency_record[LT_SAVECOUNT];
1792 #endif
1793 /*
1794 * time slack values; these are used to round up poll() and
1795 * select() etc timeout values. These are in nanoseconds.
1796 */
1797 u64 timer_slack_ns;
1798 u64 default_timer_slack_ns;
1799
1800 #ifdef CONFIG_KASAN
1801 unsigned int kasan_depth;
1802 #endif
1803 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1804 /* Index of current stored address in ret_stack */
1805 int curr_ret_stack;
1806 /* Stack of return addresses for return function tracing */
1807 struct ftrace_ret_stack *ret_stack;
1808 /* time stamp for last schedule */
1809 unsigned long long ftrace_timestamp;
1810 /*
1811 * Number of functions that haven't been traced
1812 * because of depth overrun.
1813 */
1814 atomic_t trace_overrun;
1815 /* Pause for the tracing */
1816 atomic_t tracing_graph_pause;
1817 #endif
1818 #ifdef CONFIG_TRACING
1819 /* state flags for use by tracers */
1820 unsigned long trace;
1821 /* bitmask and counter of trace recursion */
1822 unsigned long trace_recursion;
1823 #endif /* CONFIG_TRACING */
1824 #ifdef CONFIG_KCOV
1825 /* Coverage collection mode enabled for this task (0 if disabled). */
1826 enum kcov_mode kcov_mode;
1827 /* Size of the kcov_area. */
1828 unsigned kcov_size;
1829 /* Buffer for coverage collection. */
1830 void *kcov_area;
1831 /* kcov desciptor wired with this task or NULL. */
1832 struct kcov *kcov;
1833 #endif
1834 #ifdef CONFIG_MEMCG
1835 struct mem_cgroup *memcg_in_oom;
1836 gfp_t memcg_oom_gfp_mask;
1837 int memcg_oom_order;
1838
1839 /* number of pages to reclaim on returning to userland */
1840 unsigned int memcg_nr_pages_over_high;
1841 #endif
1842 #ifdef CONFIG_UPROBES
1843 struct uprobe_task *utask;
1844 #endif
1845 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1846 unsigned int sequential_io;
1847 unsigned int sequential_io_avg;
1848 #endif
1849 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1850 unsigned long task_state_change;
1851 #endif
1852 int pagefault_disabled;
1853 #ifdef CONFIG_MMU
1854 struct task_struct *oom_reaper_list;
1855 #endif
1856 /* CPU-specific state of this task */
1857 struct thread_struct thread;
1858 /*
1859 * WARNING: on x86, 'thread_struct' contains a variable-sized
1860 * structure. It *MUST* be at the end of 'task_struct'.
1861 *
1862 * Do not put anything below here!
1863 */
1864 };
1865
1866 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1867 extern int arch_task_struct_size __read_mostly;
1868 #else
1869 # define arch_task_struct_size (sizeof(struct task_struct))
1870 #endif
1871
1872 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1873 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1874
1875 #define TNF_MIGRATED 0x01
1876 #define TNF_NO_GROUP 0x02
1877 #define TNF_SHARED 0x04
1878 #define TNF_FAULT_LOCAL 0x08
1879 #define TNF_MIGRATE_FAIL 0x10
1880
1881 #ifdef CONFIG_NUMA_BALANCING
1882 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1883 extern pid_t task_numa_group_id(struct task_struct *p);
1884 extern void set_numabalancing_state(bool enabled);
1885 extern void task_numa_free(struct task_struct *p);
1886 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1887 int src_nid, int dst_cpu);
1888 #else
1889 static inline void task_numa_fault(int last_node, int node, int pages,
1890 int flags)
1891 {
1892 }
1893 static inline pid_t task_numa_group_id(struct task_struct *p)
1894 {
1895 return 0;
1896 }
1897 static inline void set_numabalancing_state(bool enabled)
1898 {
1899 }
1900 static inline void task_numa_free(struct task_struct *p)
1901 {
1902 }
1903 static inline bool should_numa_migrate_memory(struct task_struct *p,
1904 struct page *page, int src_nid, int dst_cpu)
1905 {
1906 return true;
1907 }
1908 #endif
1909
1910 static inline struct pid *task_pid(struct task_struct *task)
1911 {
1912 return task->pids[PIDTYPE_PID].pid;
1913 }
1914
1915 static inline struct pid *task_tgid(struct task_struct *task)
1916 {
1917 return task->group_leader->pids[PIDTYPE_PID].pid;
1918 }
1919
1920 /*
1921 * Without tasklist or rcu lock it is not safe to dereference
1922 * the result of task_pgrp/task_session even if task == current,
1923 * we can race with another thread doing sys_setsid/sys_setpgid.
1924 */
1925 static inline struct pid *task_pgrp(struct task_struct *task)
1926 {
1927 return task->group_leader->pids[PIDTYPE_PGID].pid;
1928 }
1929
1930 static inline struct pid *task_session(struct task_struct *task)
1931 {
1932 return task->group_leader->pids[PIDTYPE_SID].pid;
1933 }
1934
1935 struct pid_namespace;
1936
1937 /*
1938 * the helpers to get the task's different pids as they are seen
1939 * from various namespaces
1940 *
1941 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1942 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1943 * current.
1944 * task_xid_nr_ns() : id seen from the ns specified;
1945 *
1946 * set_task_vxid() : assigns a virtual id to a task;
1947 *
1948 * see also pid_nr() etc in include/linux/pid.h
1949 */
1950 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1951 struct pid_namespace *ns);
1952
1953 static inline pid_t task_pid_nr(struct task_struct *tsk)
1954 {
1955 return tsk->pid;
1956 }
1957
1958 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1959 struct pid_namespace *ns)
1960 {
1961 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1962 }
1963
1964 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1965 {
1966 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1967 }
1968
1969
1970 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1971 {
1972 return tsk->tgid;
1973 }
1974
1975 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1976
1977 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1978 {
1979 return pid_vnr(task_tgid(tsk));
1980 }
1981
1982
1983 static inline int pid_alive(const struct task_struct *p);
1984 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1985 {
1986 pid_t pid = 0;
1987
1988 rcu_read_lock();
1989 if (pid_alive(tsk))
1990 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1991 rcu_read_unlock();
1992
1993 return pid;
1994 }
1995
1996 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1997 {
1998 return task_ppid_nr_ns(tsk, &init_pid_ns);
1999 }
2000
2001 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2002 struct pid_namespace *ns)
2003 {
2004 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2005 }
2006
2007 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2008 {
2009 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2010 }
2011
2012
2013 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2014 struct pid_namespace *ns)
2015 {
2016 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2017 }
2018
2019 static inline pid_t task_session_vnr(struct task_struct *tsk)
2020 {
2021 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2022 }
2023
2024 /* obsolete, do not use */
2025 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2026 {
2027 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2028 }
2029
2030 /**
2031 * pid_alive - check that a task structure is not stale
2032 * @p: Task structure to be checked.
2033 *
2034 * Test if a process is not yet dead (at most zombie state)
2035 * If pid_alive fails, then pointers within the task structure
2036 * can be stale and must not be dereferenced.
2037 *
2038 * Return: 1 if the process is alive. 0 otherwise.
2039 */
2040 static inline int pid_alive(const struct task_struct *p)
2041 {
2042 return p->pids[PIDTYPE_PID].pid != NULL;
2043 }
2044
2045 /**
2046 * is_global_init - check if a task structure is init. Since init
2047 * is free to have sub-threads we need to check tgid.
2048 * @tsk: Task structure to be checked.
2049 *
2050 * Check if a task structure is the first user space task the kernel created.
2051 *
2052 * Return: 1 if the task structure is init. 0 otherwise.
2053 */
2054 static inline int is_global_init(struct task_struct *tsk)
2055 {
2056 return task_tgid_nr(tsk) == 1;
2057 }
2058
2059 extern struct pid *cad_pid;
2060
2061 extern void free_task(struct task_struct *tsk);
2062 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2063
2064 extern void __put_task_struct(struct task_struct *t);
2065
2066 static inline void put_task_struct(struct task_struct *t)
2067 {
2068 if (atomic_dec_and_test(&t->usage))
2069 __put_task_struct(t);
2070 }
2071
2072 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2073 extern void task_cputime(struct task_struct *t,
2074 cputime_t *utime, cputime_t *stime);
2075 extern void task_cputime_scaled(struct task_struct *t,
2076 cputime_t *utimescaled, cputime_t *stimescaled);
2077 extern cputime_t task_gtime(struct task_struct *t);
2078 #else
2079 static inline void task_cputime(struct task_struct *t,
2080 cputime_t *utime, cputime_t *stime)
2081 {
2082 if (utime)
2083 *utime = t->utime;
2084 if (stime)
2085 *stime = t->stime;
2086 }
2087
2088 static inline void task_cputime_scaled(struct task_struct *t,
2089 cputime_t *utimescaled,
2090 cputime_t *stimescaled)
2091 {
2092 if (utimescaled)
2093 *utimescaled = t->utimescaled;
2094 if (stimescaled)
2095 *stimescaled = t->stimescaled;
2096 }
2097
2098 static inline cputime_t task_gtime(struct task_struct *t)
2099 {
2100 return t->gtime;
2101 }
2102 #endif
2103 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2104 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2105
2106 /*
2107 * Per process flags
2108 */
2109 #define PF_EXITING 0x00000004 /* getting shut down */
2110 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2111 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2112 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2113 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2114 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2115 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2116 #define PF_DUMPCORE 0x00000200 /* dumped core */
2117 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2118 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2119 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2120 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2121 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2122 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2123 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2124 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2125 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2126 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2127 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2128 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2129 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2130 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2131 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2132 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2133 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2134 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2135 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2136
2137 /*
2138 * Only the _current_ task can read/write to tsk->flags, but other
2139 * tasks can access tsk->flags in readonly mode for example
2140 * with tsk_used_math (like during threaded core dumping).
2141 * There is however an exception to this rule during ptrace
2142 * or during fork: the ptracer task is allowed to write to the
2143 * child->flags of its traced child (same goes for fork, the parent
2144 * can write to the child->flags), because we're guaranteed the
2145 * child is not running and in turn not changing child->flags
2146 * at the same time the parent does it.
2147 */
2148 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2149 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2150 #define clear_used_math() clear_stopped_child_used_math(current)
2151 #define set_used_math() set_stopped_child_used_math(current)
2152 #define conditional_stopped_child_used_math(condition, child) \
2153 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2154 #define conditional_used_math(condition) \
2155 conditional_stopped_child_used_math(condition, current)
2156 #define copy_to_stopped_child_used_math(child) \
2157 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2158 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2159 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2160 #define used_math() tsk_used_math(current)
2161
2162 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2163 * __GFP_FS is also cleared as it implies __GFP_IO.
2164 */
2165 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2166 {
2167 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2168 flags &= ~(__GFP_IO | __GFP_FS);
2169 return flags;
2170 }
2171
2172 static inline unsigned int memalloc_noio_save(void)
2173 {
2174 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2175 current->flags |= PF_MEMALLOC_NOIO;
2176 return flags;
2177 }
2178
2179 static inline void memalloc_noio_restore(unsigned int flags)
2180 {
2181 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2182 }
2183
2184 /* Per-process atomic flags. */
2185 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2186 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2187 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2188
2189
2190 #define TASK_PFA_TEST(name, func) \
2191 static inline bool task_##func(struct task_struct *p) \
2192 { return test_bit(PFA_##name, &p->atomic_flags); }
2193 #define TASK_PFA_SET(name, func) \
2194 static inline void task_set_##func(struct task_struct *p) \
2195 { set_bit(PFA_##name, &p->atomic_flags); }
2196 #define TASK_PFA_CLEAR(name, func) \
2197 static inline void task_clear_##func(struct task_struct *p) \
2198 { clear_bit(PFA_##name, &p->atomic_flags); }
2199
2200 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2201 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2202
2203 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2204 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2205 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2206
2207 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2208 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2209 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2210
2211 /*
2212 * task->jobctl flags
2213 */
2214 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2215
2216 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2217 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2218 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2219 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2220 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2221 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2222 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2223
2224 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2225 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2226 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2227 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2228 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2229 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2230 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2231
2232 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2233 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2234
2235 extern bool task_set_jobctl_pending(struct task_struct *task,
2236 unsigned long mask);
2237 extern void task_clear_jobctl_trapping(struct task_struct *task);
2238 extern void task_clear_jobctl_pending(struct task_struct *task,
2239 unsigned long mask);
2240
2241 static inline void rcu_copy_process(struct task_struct *p)
2242 {
2243 #ifdef CONFIG_PREEMPT_RCU
2244 p->rcu_read_lock_nesting = 0;
2245 p->rcu_read_unlock_special.s = 0;
2246 p->rcu_blocked_node = NULL;
2247 INIT_LIST_HEAD(&p->rcu_node_entry);
2248 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2249 #ifdef CONFIG_TASKS_RCU
2250 p->rcu_tasks_holdout = false;
2251 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2252 p->rcu_tasks_idle_cpu = -1;
2253 #endif /* #ifdef CONFIG_TASKS_RCU */
2254 }
2255
2256 static inline void tsk_restore_flags(struct task_struct *task,
2257 unsigned long orig_flags, unsigned long flags)
2258 {
2259 task->flags &= ~flags;
2260 task->flags |= orig_flags & flags;
2261 }
2262
2263 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2264 const struct cpumask *trial);
2265 extern int task_can_attach(struct task_struct *p,
2266 const struct cpumask *cs_cpus_allowed);
2267 #ifdef CONFIG_SMP
2268 extern void do_set_cpus_allowed(struct task_struct *p,
2269 const struct cpumask *new_mask);
2270
2271 extern int set_cpus_allowed_ptr(struct task_struct *p,
2272 const struct cpumask *new_mask);
2273 #else
2274 static inline void do_set_cpus_allowed(struct task_struct *p,
2275 const struct cpumask *new_mask)
2276 {
2277 }
2278 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2279 const struct cpumask *new_mask)
2280 {
2281 if (!cpumask_test_cpu(0, new_mask))
2282 return -EINVAL;
2283 return 0;
2284 }
2285 #endif
2286
2287 #ifdef CONFIG_NO_HZ_COMMON
2288 void calc_load_enter_idle(void);
2289 void calc_load_exit_idle(void);
2290 #else
2291 static inline void calc_load_enter_idle(void) { }
2292 static inline void calc_load_exit_idle(void) { }
2293 #endif /* CONFIG_NO_HZ_COMMON */
2294
2295 /*
2296 * Do not use outside of architecture code which knows its limitations.
2297 *
2298 * sched_clock() has no promise of monotonicity or bounded drift between
2299 * CPUs, use (which you should not) requires disabling IRQs.
2300 *
2301 * Please use one of the three interfaces below.
2302 */
2303 extern unsigned long long notrace sched_clock(void);
2304 /*
2305 * See the comment in kernel/sched/clock.c
2306 */
2307 extern u64 cpu_clock(int cpu);
2308 extern u64 local_clock(void);
2309 extern u64 running_clock(void);
2310 extern u64 sched_clock_cpu(int cpu);
2311
2312
2313 extern void sched_clock_init(void);
2314
2315 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2316 static inline void sched_clock_tick(void)
2317 {
2318 }
2319
2320 static inline void sched_clock_idle_sleep_event(void)
2321 {
2322 }
2323
2324 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2325 {
2326 }
2327 #else
2328 /*
2329 * Architectures can set this to 1 if they have specified
2330 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2331 * but then during bootup it turns out that sched_clock()
2332 * is reliable after all:
2333 */
2334 extern int sched_clock_stable(void);
2335 extern void set_sched_clock_stable(void);
2336 extern void clear_sched_clock_stable(void);
2337
2338 extern void sched_clock_tick(void);
2339 extern void sched_clock_idle_sleep_event(void);
2340 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2341 #endif
2342
2343 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2344 /*
2345 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2346 * The reason for this explicit opt-in is not to have perf penalty with
2347 * slow sched_clocks.
2348 */
2349 extern void enable_sched_clock_irqtime(void);
2350 extern void disable_sched_clock_irqtime(void);
2351 #else
2352 static inline void enable_sched_clock_irqtime(void) {}
2353 static inline void disable_sched_clock_irqtime(void) {}
2354 #endif
2355
2356 extern unsigned long long
2357 task_sched_runtime(struct task_struct *task);
2358
2359 /* sched_exec is called by processes performing an exec */
2360 #ifdef CONFIG_SMP
2361 extern void sched_exec(void);
2362 #else
2363 #define sched_exec() {}
2364 #endif
2365
2366 extern void sched_clock_idle_sleep_event(void);
2367 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2368
2369 #ifdef CONFIG_HOTPLUG_CPU
2370 extern void idle_task_exit(void);
2371 #else
2372 static inline void idle_task_exit(void) {}
2373 #endif
2374
2375 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2376 extern void wake_up_nohz_cpu(int cpu);
2377 #else
2378 static inline void wake_up_nohz_cpu(int cpu) { }
2379 #endif
2380
2381 #ifdef CONFIG_NO_HZ_FULL
2382 extern u64 scheduler_tick_max_deferment(void);
2383 #endif
2384
2385 #ifdef CONFIG_SCHED_AUTOGROUP
2386 extern void sched_autogroup_create_attach(struct task_struct *p);
2387 extern void sched_autogroup_detach(struct task_struct *p);
2388 extern void sched_autogroup_fork(struct signal_struct *sig);
2389 extern void sched_autogroup_exit(struct signal_struct *sig);
2390 #ifdef CONFIG_PROC_FS
2391 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2392 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2393 #endif
2394 #else
2395 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2396 static inline void sched_autogroup_detach(struct task_struct *p) { }
2397 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2398 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2399 #endif
2400
2401 extern int yield_to(struct task_struct *p, bool preempt);
2402 extern void set_user_nice(struct task_struct *p, long nice);
2403 extern int task_prio(const struct task_struct *p);
2404 /**
2405 * task_nice - return the nice value of a given task.
2406 * @p: the task in question.
2407 *
2408 * Return: The nice value [ -20 ... 0 ... 19 ].
2409 */
2410 static inline int task_nice(const struct task_struct *p)
2411 {
2412 return PRIO_TO_NICE((p)->static_prio);
2413 }
2414 extern int can_nice(const struct task_struct *p, const int nice);
2415 extern int task_curr(const struct task_struct *p);
2416 extern int idle_cpu(int cpu);
2417 extern int sched_setscheduler(struct task_struct *, int,
2418 const struct sched_param *);
2419 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2420 const struct sched_param *);
2421 extern int sched_setattr(struct task_struct *,
2422 const struct sched_attr *);
2423 extern struct task_struct *idle_task(int cpu);
2424 /**
2425 * is_idle_task - is the specified task an idle task?
2426 * @p: the task in question.
2427 *
2428 * Return: 1 if @p is an idle task. 0 otherwise.
2429 */
2430 static inline bool is_idle_task(const struct task_struct *p)
2431 {
2432 return p->pid == 0;
2433 }
2434 extern struct task_struct *curr_task(int cpu);
2435 extern void set_curr_task(int cpu, struct task_struct *p);
2436
2437 void yield(void);
2438
2439 union thread_union {
2440 struct thread_info thread_info;
2441 unsigned long stack[THREAD_SIZE/sizeof(long)];
2442 };
2443
2444 #ifndef __HAVE_ARCH_KSTACK_END
2445 static inline int kstack_end(void *addr)
2446 {
2447 /* Reliable end of stack detection:
2448 * Some APM bios versions misalign the stack
2449 */
2450 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2451 }
2452 #endif
2453
2454 extern union thread_union init_thread_union;
2455 extern struct task_struct init_task;
2456
2457 extern struct mm_struct init_mm;
2458
2459 extern struct pid_namespace init_pid_ns;
2460
2461 /*
2462 * find a task by one of its numerical ids
2463 *
2464 * find_task_by_pid_ns():
2465 * finds a task by its pid in the specified namespace
2466 * find_task_by_vpid():
2467 * finds a task by its virtual pid
2468 *
2469 * see also find_vpid() etc in include/linux/pid.h
2470 */
2471
2472 extern struct task_struct *find_task_by_vpid(pid_t nr);
2473 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2474 struct pid_namespace *ns);
2475
2476 /* per-UID process charging. */
2477 extern struct user_struct * alloc_uid(kuid_t);
2478 static inline struct user_struct *get_uid(struct user_struct *u)
2479 {
2480 atomic_inc(&u->__count);
2481 return u;
2482 }
2483 extern void free_uid(struct user_struct *);
2484
2485 #include <asm/current.h>
2486
2487 extern void xtime_update(unsigned long ticks);
2488
2489 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2490 extern int wake_up_process(struct task_struct *tsk);
2491 extern void wake_up_new_task(struct task_struct *tsk);
2492 #ifdef CONFIG_SMP
2493 extern void kick_process(struct task_struct *tsk);
2494 #else
2495 static inline void kick_process(struct task_struct *tsk) { }
2496 #endif
2497 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2498 extern void sched_dead(struct task_struct *p);
2499
2500 extern void proc_caches_init(void);
2501 extern void flush_signals(struct task_struct *);
2502 extern void ignore_signals(struct task_struct *);
2503 extern void flush_signal_handlers(struct task_struct *, int force_default);
2504 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2505
2506 static inline int kernel_dequeue_signal(siginfo_t *info)
2507 {
2508 struct task_struct *tsk = current;
2509 siginfo_t __info;
2510 int ret;
2511
2512 spin_lock_irq(&tsk->sighand->siglock);
2513 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2514 spin_unlock_irq(&tsk->sighand->siglock);
2515
2516 return ret;
2517 }
2518
2519 static inline void kernel_signal_stop(void)
2520 {
2521 spin_lock_irq(&current->sighand->siglock);
2522 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2523 __set_current_state(TASK_STOPPED);
2524 spin_unlock_irq(&current->sighand->siglock);
2525
2526 schedule();
2527 }
2528
2529 extern void release_task(struct task_struct * p);
2530 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2531 extern int force_sigsegv(int, struct task_struct *);
2532 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2533 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2534 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2535 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2536 const struct cred *, u32);
2537 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2538 extern int kill_pid(struct pid *pid, int sig, int priv);
2539 extern int kill_proc_info(int, struct siginfo *, pid_t);
2540 extern __must_check bool do_notify_parent(struct task_struct *, int);
2541 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2542 extern void force_sig(int, struct task_struct *);
2543 extern int send_sig(int, struct task_struct *, int);
2544 extern int zap_other_threads(struct task_struct *p);
2545 extern struct sigqueue *sigqueue_alloc(void);
2546 extern void sigqueue_free(struct sigqueue *);
2547 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2548 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2549
2550 static inline void restore_saved_sigmask(void)
2551 {
2552 if (test_and_clear_restore_sigmask())
2553 __set_current_blocked(&current->saved_sigmask);
2554 }
2555
2556 static inline sigset_t *sigmask_to_save(void)
2557 {
2558 sigset_t *res = &current->blocked;
2559 if (unlikely(test_restore_sigmask()))
2560 res = &current->saved_sigmask;
2561 return res;
2562 }
2563
2564 static inline int kill_cad_pid(int sig, int priv)
2565 {
2566 return kill_pid(cad_pid, sig, priv);
2567 }
2568
2569 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2570 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2571 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2572 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2573
2574 /*
2575 * True if we are on the alternate signal stack.
2576 */
2577 static inline int on_sig_stack(unsigned long sp)
2578 {
2579 #ifdef CONFIG_STACK_GROWSUP
2580 return sp >= current->sas_ss_sp &&
2581 sp - current->sas_ss_sp < current->sas_ss_size;
2582 #else
2583 return sp > current->sas_ss_sp &&
2584 sp - current->sas_ss_sp <= current->sas_ss_size;
2585 #endif
2586 }
2587
2588 static inline int sas_ss_flags(unsigned long sp)
2589 {
2590 if (!current->sas_ss_size)
2591 return SS_DISABLE;
2592
2593 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2594 }
2595
2596 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2597 {
2598 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2599 #ifdef CONFIG_STACK_GROWSUP
2600 return current->sas_ss_sp;
2601 #else
2602 return current->sas_ss_sp + current->sas_ss_size;
2603 #endif
2604 return sp;
2605 }
2606
2607 /*
2608 * Routines for handling mm_structs
2609 */
2610 extern struct mm_struct * mm_alloc(void);
2611
2612 /* mmdrop drops the mm and the page tables */
2613 extern void __mmdrop(struct mm_struct *);
2614 static inline void mmdrop(struct mm_struct * mm)
2615 {
2616 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2617 __mmdrop(mm);
2618 }
2619
2620 /* mmput gets rid of the mappings and all user-space */
2621 extern void mmput(struct mm_struct *);
2622 /* Grab a reference to a task's mm, if it is not already going away */
2623 extern struct mm_struct *get_task_mm(struct task_struct *task);
2624 /*
2625 * Grab a reference to a task's mm, if it is not already going away
2626 * and ptrace_may_access with the mode parameter passed to it
2627 * succeeds.
2628 */
2629 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2630 /* Remove the current tasks stale references to the old mm_struct */
2631 extern void mm_release(struct task_struct *, struct mm_struct *);
2632
2633 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2634 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2635 struct task_struct *, unsigned long);
2636 #else
2637 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2638 struct task_struct *);
2639
2640 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2641 * via pt_regs, so ignore the tls argument passed via C. */
2642 static inline int copy_thread_tls(
2643 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2644 struct task_struct *p, unsigned long tls)
2645 {
2646 return copy_thread(clone_flags, sp, arg, p);
2647 }
2648 #endif
2649 extern void flush_thread(void);
2650 extern void exit_thread(void);
2651
2652 extern void exit_files(struct task_struct *);
2653 extern void __cleanup_sighand(struct sighand_struct *);
2654
2655 extern void exit_itimers(struct signal_struct *);
2656 extern void flush_itimer_signals(void);
2657
2658 extern void do_group_exit(int);
2659
2660 extern int do_execve(struct filename *,
2661 const char __user * const __user *,
2662 const char __user * const __user *);
2663 extern int do_execveat(int, struct filename *,
2664 const char __user * const __user *,
2665 const char __user * const __user *,
2666 int);
2667 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2668 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2669 struct task_struct *fork_idle(int);
2670 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2671
2672 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2673 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2674 {
2675 __set_task_comm(tsk, from, false);
2676 }
2677 extern char *get_task_comm(char *to, struct task_struct *tsk);
2678
2679 #ifdef CONFIG_SMP
2680 void scheduler_ipi(void);
2681 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2682 #else
2683 static inline void scheduler_ipi(void) { }
2684 static inline unsigned long wait_task_inactive(struct task_struct *p,
2685 long match_state)
2686 {
2687 return 1;
2688 }
2689 #endif
2690
2691 #define tasklist_empty() \
2692 list_empty(&init_task.tasks)
2693
2694 #define next_task(p) \
2695 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2696
2697 #define for_each_process(p) \
2698 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2699
2700 extern bool current_is_single_threaded(void);
2701
2702 /*
2703 * Careful: do_each_thread/while_each_thread is a double loop so
2704 * 'break' will not work as expected - use goto instead.
2705 */
2706 #define do_each_thread(g, t) \
2707 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2708
2709 #define while_each_thread(g, t) \
2710 while ((t = next_thread(t)) != g)
2711
2712 #define __for_each_thread(signal, t) \
2713 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2714
2715 #define for_each_thread(p, t) \
2716 __for_each_thread((p)->signal, t)
2717
2718 /* Careful: this is a double loop, 'break' won't work as expected. */
2719 #define for_each_process_thread(p, t) \
2720 for_each_process(p) for_each_thread(p, t)
2721
2722 static inline int get_nr_threads(struct task_struct *tsk)
2723 {
2724 return tsk->signal->nr_threads;
2725 }
2726
2727 static inline bool thread_group_leader(struct task_struct *p)
2728 {
2729 return p->exit_signal >= 0;
2730 }
2731
2732 /* Do to the insanities of de_thread it is possible for a process
2733 * to have the pid of the thread group leader without actually being
2734 * the thread group leader. For iteration through the pids in proc
2735 * all we care about is that we have a task with the appropriate
2736 * pid, we don't actually care if we have the right task.
2737 */
2738 static inline bool has_group_leader_pid(struct task_struct *p)
2739 {
2740 return task_pid(p) == p->signal->leader_pid;
2741 }
2742
2743 static inline
2744 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2745 {
2746 return p1->signal == p2->signal;
2747 }
2748
2749 static inline struct task_struct *next_thread(const struct task_struct *p)
2750 {
2751 return list_entry_rcu(p->thread_group.next,
2752 struct task_struct, thread_group);
2753 }
2754
2755 static inline int thread_group_empty(struct task_struct *p)
2756 {
2757 return list_empty(&p->thread_group);
2758 }
2759
2760 #define delay_group_leader(p) \
2761 (thread_group_leader(p) && !thread_group_empty(p))
2762
2763 /*
2764 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2765 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2766 * pins the final release of task.io_context. Also protects ->cpuset and
2767 * ->cgroup.subsys[]. And ->vfork_done.
2768 *
2769 * Nests both inside and outside of read_lock(&tasklist_lock).
2770 * It must not be nested with write_lock_irq(&tasklist_lock),
2771 * neither inside nor outside.
2772 */
2773 static inline void task_lock(struct task_struct *p)
2774 {
2775 spin_lock(&p->alloc_lock);
2776 }
2777
2778 static inline void task_unlock(struct task_struct *p)
2779 {
2780 spin_unlock(&p->alloc_lock);
2781 }
2782
2783 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2784 unsigned long *flags);
2785
2786 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2787 unsigned long *flags)
2788 {
2789 struct sighand_struct *ret;
2790
2791 ret = __lock_task_sighand(tsk, flags);
2792 (void)__cond_lock(&tsk->sighand->siglock, ret);
2793 return ret;
2794 }
2795
2796 static inline void unlock_task_sighand(struct task_struct *tsk,
2797 unsigned long *flags)
2798 {
2799 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2800 }
2801
2802 /**
2803 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2804 * @tsk: task causing the changes
2805 *
2806 * All operations which modify a threadgroup - a new thread joining the
2807 * group, death of a member thread (the assertion of PF_EXITING) and
2808 * exec(2) dethreading the process and replacing the leader - are wrapped
2809 * by threadgroup_change_{begin|end}(). This is to provide a place which
2810 * subsystems needing threadgroup stability can hook into for
2811 * synchronization.
2812 */
2813 static inline void threadgroup_change_begin(struct task_struct *tsk)
2814 {
2815 might_sleep();
2816 cgroup_threadgroup_change_begin(tsk);
2817 }
2818
2819 /**
2820 * threadgroup_change_end - mark the end of changes to a threadgroup
2821 * @tsk: task causing the changes
2822 *
2823 * See threadgroup_change_begin().
2824 */
2825 static inline void threadgroup_change_end(struct task_struct *tsk)
2826 {
2827 cgroup_threadgroup_change_end(tsk);
2828 }
2829
2830 #ifndef __HAVE_THREAD_FUNCTIONS
2831
2832 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2833 #define task_stack_page(task) ((task)->stack)
2834
2835 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2836 {
2837 *task_thread_info(p) = *task_thread_info(org);
2838 task_thread_info(p)->task = p;
2839 }
2840
2841 /*
2842 * Return the address of the last usable long on the stack.
2843 *
2844 * When the stack grows down, this is just above the thread
2845 * info struct. Going any lower will corrupt the threadinfo.
2846 *
2847 * When the stack grows up, this is the highest address.
2848 * Beyond that position, we corrupt data on the next page.
2849 */
2850 static inline unsigned long *end_of_stack(struct task_struct *p)
2851 {
2852 #ifdef CONFIG_STACK_GROWSUP
2853 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2854 #else
2855 return (unsigned long *)(task_thread_info(p) + 1);
2856 #endif
2857 }
2858
2859 #endif
2860 #define task_stack_end_corrupted(task) \
2861 (*(end_of_stack(task)) != STACK_END_MAGIC)
2862
2863 static inline int object_is_on_stack(void *obj)
2864 {
2865 void *stack = task_stack_page(current);
2866
2867 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2868 }
2869
2870 extern void thread_info_cache_init(void);
2871
2872 #ifdef CONFIG_DEBUG_STACK_USAGE
2873 static inline unsigned long stack_not_used(struct task_struct *p)
2874 {
2875 unsigned long *n = end_of_stack(p);
2876
2877 do { /* Skip over canary */
2878 # ifdef CONFIG_STACK_GROWSUP
2879 n--;
2880 # else
2881 n++;
2882 # endif
2883 } while (!*n);
2884
2885 # ifdef CONFIG_STACK_GROWSUP
2886 return (unsigned long)end_of_stack(p) - (unsigned long)n;
2887 # else
2888 return (unsigned long)n - (unsigned long)end_of_stack(p);
2889 # endif
2890 }
2891 #endif
2892 extern void set_task_stack_end_magic(struct task_struct *tsk);
2893
2894 /* set thread flags in other task's structures
2895 * - see asm/thread_info.h for TIF_xxxx flags available
2896 */
2897 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2898 {
2899 set_ti_thread_flag(task_thread_info(tsk), flag);
2900 }
2901
2902 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2903 {
2904 clear_ti_thread_flag(task_thread_info(tsk), flag);
2905 }
2906
2907 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2908 {
2909 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2910 }
2911
2912 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2913 {
2914 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2915 }
2916
2917 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2918 {
2919 return test_ti_thread_flag(task_thread_info(tsk), flag);
2920 }
2921
2922 static inline void set_tsk_need_resched(struct task_struct *tsk)
2923 {
2924 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2925 }
2926
2927 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2928 {
2929 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2930 }
2931
2932 static inline int test_tsk_need_resched(struct task_struct *tsk)
2933 {
2934 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2935 }
2936
2937 static inline int restart_syscall(void)
2938 {
2939 set_tsk_thread_flag(current, TIF_SIGPENDING);
2940 return -ERESTARTNOINTR;
2941 }
2942
2943 static inline int signal_pending(struct task_struct *p)
2944 {
2945 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2946 }
2947
2948 static inline int __fatal_signal_pending(struct task_struct *p)
2949 {
2950 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2951 }
2952
2953 static inline int fatal_signal_pending(struct task_struct *p)
2954 {
2955 return signal_pending(p) && __fatal_signal_pending(p);
2956 }
2957
2958 static inline int signal_pending_state(long state, struct task_struct *p)
2959 {
2960 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2961 return 0;
2962 if (!signal_pending(p))
2963 return 0;
2964
2965 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2966 }
2967
2968 /*
2969 * cond_resched() and cond_resched_lock(): latency reduction via
2970 * explicit rescheduling in places that are safe. The return
2971 * value indicates whether a reschedule was done in fact.
2972 * cond_resched_lock() will drop the spinlock before scheduling,
2973 * cond_resched_softirq() will enable bhs before scheduling.
2974 */
2975 extern int _cond_resched(void);
2976
2977 #define cond_resched() ({ \
2978 ___might_sleep(__FILE__, __LINE__, 0); \
2979 _cond_resched(); \
2980 })
2981
2982 extern int __cond_resched_lock(spinlock_t *lock);
2983
2984 #define cond_resched_lock(lock) ({ \
2985 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2986 __cond_resched_lock(lock); \
2987 })
2988
2989 extern int __cond_resched_softirq(void);
2990
2991 #define cond_resched_softirq() ({ \
2992 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2993 __cond_resched_softirq(); \
2994 })
2995
2996 static inline void cond_resched_rcu(void)
2997 {
2998 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2999 rcu_read_unlock();
3000 cond_resched();
3001 rcu_read_lock();
3002 #endif
3003 }
3004
3005 /*
3006 * Does a critical section need to be broken due to another
3007 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3008 * but a general need for low latency)
3009 */
3010 static inline int spin_needbreak(spinlock_t *lock)
3011 {
3012 #ifdef CONFIG_PREEMPT
3013 return spin_is_contended(lock);
3014 #else
3015 return 0;
3016 #endif
3017 }
3018
3019 /*
3020 * Idle thread specific functions to determine the need_resched
3021 * polling state.
3022 */
3023 #ifdef TIF_POLLING_NRFLAG
3024 static inline int tsk_is_polling(struct task_struct *p)
3025 {
3026 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3027 }
3028
3029 static inline void __current_set_polling(void)
3030 {
3031 set_thread_flag(TIF_POLLING_NRFLAG);
3032 }
3033
3034 static inline bool __must_check current_set_polling_and_test(void)
3035 {
3036 __current_set_polling();
3037
3038 /*
3039 * Polling state must be visible before we test NEED_RESCHED,
3040 * paired by resched_curr()
3041 */
3042 smp_mb__after_atomic();
3043
3044 return unlikely(tif_need_resched());
3045 }
3046
3047 static inline void __current_clr_polling(void)
3048 {
3049 clear_thread_flag(TIF_POLLING_NRFLAG);
3050 }
3051
3052 static inline bool __must_check current_clr_polling_and_test(void)
3053 {
3054 __current_clr_polling();
3055
3056 /*
3057 * Polling state must be visible before we test NEED_RESCHED,
3058 * paired by resched_curr()
3059 */
3060 smp_mb__after_atomic();
3061
3062 return unlikely(tif_need_resched());
3063 }
3064
3065 #else
3066 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3067 static inline void __current_set_polling(void) { }
3068 static inline void __current_clr_polling(void) { }
3069
3070 static inline bool __must_check current_set_polling_and_test(void)
3071 {
3072 return unlikely(tif_need_resched());
3073 }
3074 static inline bool __must_check current_clr_polling_and_test(void)
3075 {
3076 return unlikely(tif_need_resched());
3077 }
3078 #endif
3079
3080 static inline void current_clr_polling(void)
3081 {
3082 __current_clr_polling();
3083
3084 /*
3085 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3086 * Once the bit is cleared, we'll get IPIs with every new
3087 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3088 * fold.
3089 */
3090 smp_mb(); /* paired with resched_curr() */
3091
3092 preempt_fold_need_resched();
3093 }
3094
3095 static __always_inline bool need_resched(void)
3096 {
3097 return unlikely(tif_need_resched());
3098 }
3099
3100 /*
3101 * Thread group CPU time accounting.
3102 */
3103 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3104 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3105
3106 /*
3107 * Reevaluate whether the task has signals pending delivery.
3108 * Wake the task if so.
3109 * This is required every time the blocked sigset_t changes.
3110 * callers must hold sighand->siglock.
3111 */
3112 extern void recalc_sigpending_and_wake(struct task_struct *t);
3113 extern void recalc_sigpending(void);
3114
3115 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3116
3117 static inline void signal_wake_up(struct task_struct *t, bool resume)
3118 {
3119 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3120 }
3121 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3122 {
3123 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3124 }
3125
3126 /*
3127 * Wrappers for p->thread_info->cpu access. No-op on UP.
3128 */
3129 #ifdef CONFIG_SMP
3130
3131 static inline unsigned int task_cpu(const struct task_struct *p)
3132 {
3133 return task_thread_info(p)->cpu;
3134 }
3135
3136 static inline int task_node(const struct task_struct *p)
3137 {
3138 return cpu_to_node(task_cpu(p));
3139 }
3140
3141 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3142
3143 #else
3144
3145 static inline unsigned int task_cpu(const struct task_struct *p)
3146 {
3147 return 0;
3148 }
3149
3150 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3151 {
3152 }
3153
3154 #endif /* CONFIG_SMP */
3155
3156 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3157 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3158
3159 #ifdef CONFIG_CGROUP_SCHED
3160 extern struct task_group root_task_group;
3161 #endif /* CONFIG_CGROUP_SCHED */
3162
3163 extern int task_can_switch_user(struct user_struct *up,
3164 struct task_struct *tsk);
3165
3166 #ifdef CONFIG_TASK_XACCT
3167 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3168 {
3169 tsk->ioac.rchar += amt;
3170 }
3171
3172 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3173 {
3174 tsk->ioac.wchar += amt;
3175 }
3176
3177 static inline void inc_syscr(struct task_struct *tsk)
3178 {
3179 tsk->ioac.syscr++;
3180 }
3181
3182 static inline void inc_syscw(struct task_struct *tsk)
3183 {
3184 tsk->ioac.syscw++;
3185 }
3186 #else
3187 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3188 {
3189 }
3190
3191 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3192 {
3193 }
3194
3195 static inline void inc_syscr(struct task_struct *tsk)
3196 {
3197 }
3198
3199 static inline void inc_syscw(struct task_struct *tsk)
3200 {
3201 }
3202 #endif
3203
3204 #ifndef TASK_SIZE_OF
3205 #define TASK_SIZE_OF(tsk) TASK_SIZE
3206 #endif
3207
3208 #ifdef CONFIG_MEMCG
3209 extern void mm_update_next_owner(struct mm_struct *mm);
3210 #else
3211 static inline void mm_update_next_owner(struct mm_struct *mm)
3212 {
3213 }
3214 #endif /* CONFIG_MEMCG */
3215
3216 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3217 unsigned int limit)
3218 {
3219 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3220 }
3221
3222 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3223 unsigned int limit)
3224 {
3225 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3226 }
3227
3228 static inline unsigned long rlimit(unsigned int limit)
3229 {
3230 return task_rlimit(current, limit);
3231 }
3232
3233 static inline unsigned long rlimit_max(unsigned int limit)
3234 {
3235 return task_rlimit_max(current, limit);
3236 }
3237
3238 #ifdef CONFIG_CPU_FREQ
3239 struct update_util_data {
3240 void (*func)(struct update_util_data *data,
3241 u64 time, unsigned long util, unsigned long max);
3242 };
3243
3244 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3245 #endif /* CONFIG_CPU_FREQ */
3246
3247 #endif
This page took 0.180923 seconds and 5 git commands to generate.