52c4847b05e2882a72d04c3c75fc4d55c2b4a6b9
[deliverable/linux.git] / include / linux / sched.h
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
3
4 #include <uapi/linux/sched.h>
5
6 #include <linux/sched/prio.h>
7
8
9 struct sched_param {
10 int sched_priority;
11 };
12
13 #include <asm/param.h> /* for HZ */
14
15 #include <linux/capability.h>
16 #include <linux/threads.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/timex.h>
20 #include <linux/jiffies.h>
21 #include <linux/plist.h>
22 #include <linux/rbtree.h>
23 #include <linux/thread_info.h>
24 #include <linux/cpumask.h>
25 #include <linux/errno.h>
26 #include <linux/nodemask.h>
27 #include <linux/mm_types.h>
28 #include <linux/preempt.h>
29
30 #include <asm/page.h>
31 #include <asm/ptrace.h>
32 #include <linux/cputime.h>
33
34 #include <linux/smp.h>
35 #include <linux/sem.h>
36 #include <linux/shm.h>
37 #include <linux/signal.h>
38 #include <linux/compiler.h>
39 #include <linux/completion.h>
40 #include <linux/pid.h>
41 #include <linux/percpu.h>
42 #include <linux/topology.h>
43 #include <linux/proportions.h>
44 #include <linux/seccomp.h>
45 #include <linux/rcupdate.h>
46 #include <linux/rculist.h>
47 #include <linux/rtmutex.h>
48
49 #include <linux/time.h>
50 #include <linux/param.h>
51 #include <linux/resource.h>
52 #include <linux/timer.h>
53 #include <linux/hrtimer.h>
54 #include <linux/kcov.h>
55 #include <linux/task_io_accounting.h>
56 #include <linux/latencytop.h>
57 #include <linux/cred.h>
58 #include <linux/llist.h>
59 #include <linux/uidgid.h>
60 #include <linux/gfp.h>
61 #include <linux/magic.h>
62 #include <linux/cgroup-defs.h>
63
64 #include <asm/processor.h>
65
66 #define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */
67
68 /*
69 * Extended scheduling parameters data structure.
70 *
71 * This is needed because the original struct sched_param can not be
72 * altered without introducing ABI issues with legacy applications
73 * (e.g., in sched_getparam()).
74 *
75 * However, the possibility of specifying more than just a priority for
76 * the tasks may be useful for a wide variety of application fields, e.g.,
77 * multimedia, streaming, automation and control, and many others.
78 *
79 * This variant (sched_attr) is meant at describing a so-called
80 * sporadic time-constrained task. In such model a task is specified by:
81 * - the activation period or minimum instance inter-arrival time;
82 * - the maximum (or average, depending on the actual scheduling
83 * discipline) computation time of all instances, a.k.a. runtime;
84 * - the deadline (relative to the actual activation time) of each
85 * instance.
86 * Very briefly, a periodic (sporadic) task asks for the execution of
87 * some specific computation --which is typically called an instance--
88 * (at most) every period. Moreover, each instance typically lasts no more
89 * than the runtime and must be completed by time instant t equal to
90 * the instance activation time + the deadline.
91 *
92 * This is reflected by the actual fields of the sched_attr structure:
93 *
94 * @size size of the structure, for fwd/bwd compat.
95 *
96 * @sched_policy task's scheduling policy
97 * @sched_flags for customizing the scheduler behaviour
98 * @sched_nice task's nice value (SCHED_NORMAL/BATCH)
99 * @sched_priority task's static priority (SCHED_FIFO/RR)
100 * @sched_deadline representative of the task's deadline
101 * @sched_runtime representative of the task's runtime
102 * @sched_period representative of the task's period
103 *
104 * Given this task model, there are a multiplicity of scheduling algorithms
105 * and policies, that can be used to ensure all the tasks will make their
106 * timing constraints.
107 *
108 * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the
109 * only user of this new interface. More information about the algorithm
110 * available in the scheduling class file or in Documentation/.
111 */
112 struct sched_attr {
113 u32 size;
114
115 u32 sched_policy;
116 u64 sched_flags;
117
118 /* SCHED_NORMAL, SCHED_BATCH */
119 s32 sched_nice;
120
121 /* SCHED_FIFO, SCHED_RR */
122 u32 sched_priority;
123
124 /* SCHED_DEADLINE */
125 u64 sched_runtime;
126 u64 sched_deadline;
127 u64 sched_period;
128 };
129
130 struct futex_pi_state;
131 struct robust_list_head;
132 struct bio_list;
133 struct fs_struct;
134 struct perf_event_context;
135 struct blk_plug;
136 struct filename;
137 struct nameidata;
138
139 #define VMACACHE_BITS 2
140 #define VMACACHE_SIZE (1U << VMACACHE_BITS)
141 #define VMACACHE_MASK (VMACACHE_SIZE - 1)
142
143 /*
144 * These are the constant used to fake the fixed-point load-average
145 * counting. Some notes:
146 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
147 * a load-average precision of 10 bits integer + 11 bits fractional
148 * - if you want to count load-averages more often, you need more
149 * precision, or rounding will get you. With 2-second counting freq,
150 * the EXP_n values would be 1981, 2034 and 2043 if still using only
151 * 11 bit fractions.
152 */
153 extern unsigned long avenrun[]; /* Load averages */
154 extern void get_avenrun(unsigned long *loads, unsigned long offset, int shift);
155
156 #define FSHIFT 11 /* nr of bits of precision */
157 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
158 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
159 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
160 #define EXP_5 2014 /* 1/exp(5sec/5min) */
161 #define EXP_15 2037 /* 1/exp(5sec/15min) */
162
163 #define CALC_LOAD(load,exp,n) \
164 load *= exp; \
165 load += n*(FIXED_1-exp); \
166 load >>= FSHIFT;
167
168 extern unsigned long total_forks;
169 extern int nr_threads;
170 DECLARE_PER_CPU(unsigned long, process_counts);
171 extern int nr_processes(void);
172 extern unsigned long nr_running(void);
173 extern bool single_task_running(void);
174 extern unsigned long nr_iowait(void);
175 extern unsigned long nr_iowait_cpu(int cpu);
176 extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load);
177
178 extern void calc_global_load(unsigned long ticks);
179
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 extern void update_cpu_load_nohz(int active);
182 #else
183 static inline void update_cpu_load_nohz(int active) { }
184 #endif
185
186 extern void dump_cpu_task(int cpu);
187
188 struct seq_file;
189 struct cfs_rq;
190 struct task_group;
191 #ifdef CONFIG_SCHED_DEBUG
192 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
193 extern void proc_sched_set_task(struct task_struct *p);
194 #endif
195
196 /*
197 * Task state bitmask. NOTE! These bits are also
198 * encoded in fs/proc/array.c: get_task_state().
199 *
200 * We have two separate sets of flags: task->state
201 * is about runnability, while task->exit_state are
202 * about the task exiting. Confusing, but this way
203 * modifying one set can't modify the other one by
204 * mistake.
205 */
206 #define TASK_RUNNING 0
207 #define TASK_INTERRUPTIBLE 1
208 #define TASK_UNINTERRUPTIBLE 2
209 #define __TASK_STOPPED 4
210 #define __TASK_TRACED 8
211 /* in tsk->exit_state */
212 #define EXIT_DEAD 16
213 #define EXIT_ZOMBIE 32
214 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
215 /* in tsk->state again */
216 #define TASK_DEAD 64
217 #define TASK_WAKEKILL 128
218 #define TASK_WAKING 256
219 #define TASK_PARKED 512
220 #define TASK_NOLOAD 1024
221 #define TASK_STATE_MAX 2048
222
223 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPN"
224
225 extern char ___assert_task_state[1 - 2*!!(
226 sizeof(TASK_STATE_TO_CHAR_STR)-1 != ilog2(TASK_STATE_MAX)+1)];
227
228 /* Convenience macros for the sake of set_task_state */
229 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
230 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
231 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
232
233 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
234
235 /* Convenience macros for the sake of wake_up */
236 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
237 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
238
239 /* get_task_state() */
240 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
241 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
242 __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD)
243
244 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
245 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
246 #define task_is_stopped_or_traced(task) \
247 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
248 #define task_contributes_to_load(task) \
249 ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
250 (task->flags & PF_FROZEN) == 0 && \
251 (task->state & TASK_NOLOAD) == 0)
252
253 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
254
255 #define __set_task_state(tsk, state_value) \
256 do { \
257 (tsk)->task_state_change = _THIS_IP_; \
258 (tsk)->state = (state_value); \
259 } while (0)
260 #define set_task_state(tsk, state_value) \
261 do { \
262 (tsk)->task_state_change = _THIS_IP_; \
263 smp_store_mb((tsk)->state, (state_value)); \
264 } while (0)
265
266 /*
267 * set_current_state() includes a barrier so that the write of current->state
268 * is correctly serialised wrt the caller's subsequent test of whether to
269 * actually sleep:
270 *
271 * set_current_state(TASK_UNINTERRUPTIBLE);
272 * if (do_i_need_to_sleep())
273 * schedule();
274 *
275 * If the caller does not need such serialisation then use __set_current_state()
276 */
277 #define __set_current_state(state_value) \
278 do { \
279 current->task_state_change = _THIS_IP_; \
280 current->state = (state_value); \
281 } while (0)
282 #define set_current_state(state_value) \
283 do { \
284 current->task_state_change = _THIS_IP_; \
285 smp_store_mb(current->state, (state_value)); \
286 } while (0)
287
288 #else
289
290 #define __set_task_state(tsk, state_value) \
291 do { (tsk)->state = (state_value); } while (0)
292 #define set_task_state(tsk, state_value) \
293 smp_store_mb((tsk)->state, (state_value))
294
295 /*
296 * set_current_state() includes a barrier so that the write of current->state
297 * is correctly serialised wrt the caller's subsequent test of whether to
298 * actually sleep:
299 *
300 * set_current_state(TASK_UNINTERRUPTIBLE);
301 * if (do_i_need_to_sleep())
302 * schedule();
303 *
304 * If the caller does not need such serialisation then use __set_current_state()
305 */
306 #define __set_current_state(state_value) \
307 do { current->state = (state_value); } while (0)
308 #define set_current_state(state_value) \
309 smp_store_mb(current->state, (state_value))
310
311 #endif
312
313 /* Task command name length */
314 #define TASK_COMM_LEN 16
315
316 #include <linux/spinlock.h>
317
318 /*
319 * This serializes "schedule()" and also protects
320 * the run-queue from deletions/modifications (but
321 * _adding_ to the beginning of the run-queue has
322 * a separate lock).
323 */
324 extern rwlock_t tasklist_lock;
325 extern spinlock_t mmlist_lock;
326
327 struct task_struct;
328
329 #ifdef CONFIG_PROVE_RCU
330 extern int lockdep_tasklist_lock_is_held(void);
331 #endif /* #ifdef CONFIG_PROVE_RCU */
332
333 extern void sched_init(void);
334 extern void sched_init_smp(void);
335 extern asmlinkage void schedule_tail(struct task_struct *prev);
336 extern void init_idle(struct task_struct *idle, int cpu);
337 extern void init_idle_bootup_task(struct task_struct *idle);
338
339 extern cpumask_var_t cpu_isolated_map;
340
341 extern int runqueue_is_locked(int cpu);
342
343 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
344 extern void nohz_balance_enter_idle(int cpu);
345 extern void set_cpu_sd_state_idle(void);
346 extern int get_nohz_timer_target(void);
347 #else
348 static inline void nohz_balance_enter_idle(int cpu) { }
349 static inline void set_cpu_sd_state_idle(void) { }
350 #endif
351
352 /*
353 * Only dump TASK_* tasks. (0 for all tasks)
354 */
355 extern void show_state_filter(unsigned long state_filter);
356
357 static inline void show_state(void)
358 {
359 show_state_filter(0);
360 }
361
362 extern void show_regs(struct pt_regs *);
363
364 /*
365 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
366 * task), SP is the stack pointer of the first frame that should be shown in the back
367 * trace (or NULL if the entire call-chain of the task should be shown).
368 */
369 extern void show_stack(struct task_struct *task, unsigned long *sp);
370
371 extern void cpu_init (void);
372 extern void trap_init(void);
373 extern void update_process_times(int user);
374 extern void scheduler_tick(void);
375
376 extern void sched_show_task(struct task_struct *p);
377
378 #ifdef CONFIG_LOCKUP_DETECTOR
379 extern void touch_softlockup_watchdog_sched(void);
380 extern void touch_softlockup_watchdog(void);
381 extern void touch_softlockup_watchdog_sync(void);
382 extern void touch_all_softlockup_watchdogs(void);
383 extern int proc_dowatchdog_thresh(struct ctl_table *table, int write,
384 void __user *buffer,
385 size_t *lenp, loff_t *ppos);
386 extern unsigned int softlockup_panic;
387 extern unsigned int hardlockup_panic;
388 void lockup_detector_init(void);
389 #else
390 static inline void touch_softlockup_watchdog_sched(void)
391 {
392 }
393 static inline void touch_softlockup_watchdog(void)
394 {
395 }
396 static inline void touch_softlockup_watchdog_sync(void)
397 {
398 }
399 static inline void touch_all_softlockup_watchdogs(void)
400 {
401 }
402 static inline void lockup_detector_init(void)
403 {
404 }
405 #endif
406
407 #ifdef CONFIG_DETECT_HUNG_TASK
408 void reset_hung_task_detector(void);
409 #else
410 static inline void reset_hung_task_detector(void)
411 {
412 }
413 #endif
414
415 /* Attach to any functions which should be ignored in wchan output. */
416 #define __sched __attribute__((__section__(".sched.text")))
417
418 /* Linker adds these: start and end of __sched functions */
419 extern char __sched_text_start[], __sched_text_end[];
420
421 /* Is this address in the __sched functions? */
422 extern int in_sched_functions(unsigned long addr);
423
424 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
425 extern signed long schedule_timeout(signed long timeout);
426 extern signed long schedule_timeout_interruptible(signed long timeout);
427 extern signed long schedule_timeout_killable(signed long timeout);
428 extern signed long schedule_timeout_uninterruptible(signed long timeout);
429 extern signed long schedule_timeout_idle(signed long timeout);
430 asmlinkage void schedule(void);
431 extern void schedule_preempt_disabled(void);
432
433 extern long io_schedule_timeout(long timeout);
434
435 static inline void io_schedule(void)
436 {
437 io_schedule_timeout(MAX_SCHEDULE_TIMEOUT);
438 }
439
440 struct nsproxy;
441 struct user_namespace;
442
443 #ifdef CONFIG_MMU
444 extern void arch_pick_mmap_layout(struct mm_struct *mm);
445 extern unsigned long
446 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
447 unsigned long, unsigned long);
448 extern unsigned long
449 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
450 unsigned long len, unsigned long pgoff,
451 unsigned long flags);
452 #else
453 static inline void arch_pick_mmap_layout(struct mm_struct *mm) {}
454 #endif
455
456 #define SUID_DUMP_DISABLE 0 /* No setuid dumping */
457 #define SUID_DUMP_USER 1 /* Dump as user of process */
458 #define SUID_DUMP_ROOT 2 /* Dump as root */
459
460 /* mm flags */
461
462 /* for SUID_DUMP_* above */
463 #define MMF_DUMPABLE_BITS 2
464 #define MMF_DUMPABLE_MASK ((1 << MMF_DUMPABLE_BITS) - 1)
465
466 extern void set_dumpable(struct mm_struct *mm, int value);
467 /*
468 * This returns the actual value of the suid_dumpable flag. For things
469 * that are using this for checking for privilege transitions, it must
470 * test against SUID_DUMP_USER rather than treating it as a boolean
471 * value.
472 */
473 static inline int __get_dumpable(unsigned long mm_flags)
474 {
475 return mm_flags & MMF_DUMPABLE_MASK;
476 }
477
478 static inline int get_dumpable(struct mm_struct *mm)
479 {
480 return __get_dumpable(mm->flags);
481 }
482
483 /* coredump filter bits */
484 #define MMF_DUMP_ANON_PRIVATE 2
485 #define MMF_DUMP_ANON_SHARED 3
486 #define MMF_DUMP_MAPPED_PRIVATE 4
487 #define MMF_DUMP_MAPPED_SHARED 5
488 #define MMF_DUMP_ELF_HEADERS 6
489 #define MMF_DUMP_HUGETLB_PRIVATE 7
490 #define MMF_DUMP_HUGETLB_SHARED 8
491 #define MMF_DUMP_DAX_PRIVATE 9
492 #define MMF_DUMP_DAX_SHARED 10
493
494 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
495 #define MMF_DUMP_FILTER_BITS 9
496 #define MMF_DUMP_FILTER_MASK \
497 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
498 #define MMF_DUMP_FILTER_DEFAULT \
499 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED) |\
500 (1 << MMF_DUMP_HUGETLB_PRIVATE) | MMF_DUMP_MASK_DEFAULT_ELF)
501
502 #ifdef CONFIG_CORE_DUMP_DEFAULT_ELF_HEADERS
503 # define MMF_DUMP_MASK_DEFAULT_ELF (1 << MMF_DUMP_ELF_HEADERS)
504 #else
505 # define MMF_DUMP_MASK_DEFAULT_ELF 0
506 #endif
507 /* leave room for more dump flags */
508 #define MMF_VM_MERGEABLE 16 /* KSM may merge identical pages */
509 #define MMF_VM_HUGEPAGE 17 /* set when VM_HUGEPAGE is set on vma */
510 #define MMF_EXE_FILE_CHANGED 18 /* see prctl_set_mm_exe_file() */
511
512 #define MMF_HAS_UPROBES 19 /* has uprobes */
513 #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */
514
515 #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK)
516
517 struct sighand_struct {
518 atomic_t count;
519 struct k_sigaction action[_NSIG];
520 spinlock_t siglock;
521 wait_queue_head_t signalfd_wqh;
522 };
523
524 struct pacct_struct {
525 int ac_flag;
526 long ac_exitcode;
527 unsigned long ac_mem;
528 cputime_t ac_utime, ac_stime;
529 unsigned long ac_minflt, ac_majflt;
530 };
531
532 struct cpu_itimer {
533 cputime_t expires;
534 cputime_t incr;
535 u32 error;
536 u32 incr_error;
537 };
538
539 /**
540 * struct prev_cputime - snaphsot of system and user cputime
541 * @utime: time spent in user mode
542 * @stime: time spent in system mode
543 * @lock: protects the above two fields
544 *
545 * Stores previous user/system time values such that we can guarantee
546 * monotonicity.
547 */
548 struct prev_cputime {
549 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
550 cputime_t utime;
551 cputime_t stime;
552 raw_spinlock_t lock;
553 #endif
554 };
555
556 static inline void prev_cputime_init(struct prev_cputime *prev)
557 {
558 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
559 prev->utime = prev->stime = 0;
560 raw_spin_lock_init(&prev->lock);
561 #endif
562 }
563
564 /**
565 * struct task_cputime - collected CPU time counts
566 * @utime: time spent in user mode, in &cputime_t units
567 * @stime: time spent in kernel mode, in &cputime_t units
568 * @sum_exec_runtime: total time spent on the CPU, in nanoseconds
569 *
570 * This structure groups together three kinds of CPU time that are tracked for
571 * threads and thread groups. Most things considering CPU time want to group
572 * these counts together and treat all three of them in parallel.
573 */
574 struct task_cputime {
575 cputime_t utime;
576 cputime_t stime;
577 unsigned long long sum_exec_runtime;
578 };
579
580 /* Alternate field names when used to cache expirations. */
581 #define virt_exp utime
582 #define prof_exp stime
583 #define sched_exp sum_exec_runtime
584
585 #define INIT_CPUTIME \
586 (struct task_cputime) { \
587 .utime = 0, \
588 .stime = 0, \
589 .sum_exec_runtime = 0, \
590 }
591
592 /*
593 * This is the atomic variant of task_cputime, which can be used for
594 * storing and updating task_cputime statistics without locking.
595 */
596 struct task_cputime_atomic {
597 atomic64_t utime;
598 atomic64_t stime;
599 atomic64_t sum_exec_runtime;
600 };
601
602 #define INIT_CPUTIME_ATOMIC \
603 (struct task_cputime_atomic) { \
604 .utime = ATOMIC64_INIT(0), \
605 .stime = ATOMIC64_INIT(0), \
606 .sum_exec_runtime = ATOMIC64_INIT(0), \
607 }
608
609 #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
610
611 /*
612 * Disable preemption until the scheduler is running -- use an unconditional
613 * value so that it also works on !PREEMPT_COUNT kernels.
614 *
615 * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
616 */
617 #define INIT_PREEMPT_COUNT PREEMPT_OFFSET
618
619 /*
620 * Initial preempt_count value; reflects the preempt_count schedule invariant
621 * which states that during context switches:
622 *
623 * preempt_count() == 2*PREEMPT_DISABLE_OFFSET
624 *
625 * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
626 * Note: See finish_task_switch().
627 */
628 #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
629
630 /**
631 * struct thread_group_cputimer - thread group interval timer counts
632 * @cputime_atomic: atomic thread group interval timers.
633 * @running: true when there are timers running and
634 * @cputime_atomic receives updates.
635 * @checking_timer: true when a thread in the group is in the
636 * process of checking for thread group timers.
637 *
638 * This structure contains the version of task_cputime, above, that is
639 * used for thread group CPU timer calculations.
640 */
641 struct thread_group_cputimer {
642 struct task_cputime_atomic cputime_atomic;
643 bool running;
644 bool checking_timer;
645 };
646
647 #include <linux/rwsem.h>
648 struct autogroup;
649
650 /*
651 * NOTE! "signal_struct" does not have its own
652 * locking, because a shared signal_struct always
653 * implies a shared sighand_struct, so locking
654 * sighand_struct is always a proper superset of
655 * the locking of signal_struct.
656 */
657 struct signal_struct {
658 atomic_t sigcnt;
659 atomic_t live;
660 int nr_threads;
661 struct list_head thread_head;
662
663 wait_queue_head_t wait_chldexit; /* for wait4() */
664
665 /* current thread group signal load-balancing target: */
666 struct task_struct *curr_target;
667
668 /* shared signal handling: */
669 struct sigpending shared_pending;
670
671 /* thread group exit support */
672 int group_exit_code;
673 /* overloaded:
674 * - notify group_exit_task when ->count is equal to notify_count
675 * - everyone except group_exit_task is stopped during signal delivery
676 * of fatal signals, group_exit_task processes the signal.
677 */
678 int notify_count;
679 struct task_struct *group_exit_task;
680
681 /* thread group stop support, overloads group_exit_code too */
682 int group_stop_count;
683 unsigned int flags; /* see SIGNAL_* flags below */
684
685 /*
686 * PR_SET_CHILD_SUBREAPER marks a process, like a service
687 * manager, to re-parent orphan (double-forking) child processes
688 * to this process instead of 'init'. The service manager is
689 * able to receive SIGCHLD signals and is able to investigate
690 * the process until it calls wait(). All children of this
691 * process will inherit a flag if they should look for a
692 * child_subreaper process at exit.
693 */
694 unsigned int is_child_subreaper:1;
695 unsigned int has_child_subreaper:1;
696
697 /* POSIX.1b Interval Timers */
698 int posix_timer_id;
699 struct list_head posix_timers;
700
701 /* ITIMER_REAL timer for the process */
702 struct hrtimer real_timer;
703 struct pid *leader_pid;
704 ktime_t it_real_incr;
705
706 /*
707 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
708 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
709 * values are defined to 0 and 1 respectively
710 */
711 struct cpu_itimer it[2];
712
713 /*
714 * Thread group totals for process CPU timers.
715 * See thread_group_cputimer(), et al, for details.
716 */
717 struct thread_group_cputimer cputimer;
718
719 /* Earliest-expiration cache. */
720 struct task_cputime cputime_expires;
721
722 #ifdef CONFIG_NO_HZ_FULL
723 atomic_t tick_dep_mask;
724 #endif
725
726 struct list_head cpu_timers[3];
727
728 struct pid *tty_old_pgrp;
729
730 /* boolean value for session group leader */
731 int leader;
732
733 struct tty_struct *tty; /* NULL if no tty */
734
735 #ifdef CONFIG_SCHED_AUTOGROUP
736 struct autogroup *autogroup;
737 #endif
738 /*
739 * Cumulative resource counters for dead threads in the group,
740 * and for reaped dead child processes forked by this group.
741 * Live threads maintain their own counters and add to these
742 * in __exit_signal, except for the group leader.
743 */
744 seqlock_t stats_lock;
745 cputime_t utime, stime, cutime, cstime;
746 cputime_t gtime;
747 cputime_t cgtime;
748 struct prev_cputime prev_cputime;
749 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
750 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
751 unsigned long inblock, oublock, cinblock, coublock;
752 unsigned long maxrss, cmaxrss;
753 struct task_io_accounting ioac;
754
755 /*
756 * Cumulative ns of schedule CPU time fo dead threads in the
757 * group, not including a zombie group leader, (This only differs
758 * from jiffies_to_ns(utime + stime) if sched_clock uses something
759 * other than jiffies.)
760 */
761 unsigned long long sum_sched_runtime;
762
763 /*
764 * We don't bother to synchronize most readers of this at all,
765 * because there is no reader checking a limit that actually needs
766 * to get both rlim_cur and rlim_max atomically, and either one
767 * alone is a single word that can safely be read normally.
768 * getrlimit/setrlimit use task_lock(current->group_leader) to
769 * protect this instead of the siglock, because they really
770 * have no need to disable irqs.
771 */
772 struct rlimit rlim[RLIM_NLIMITS];
773
774 #ifdef CONFIG_BSD_PROCESS_ACCT
775 struct pacct_struct pacct; /* per-process accounting information */
776 #endif
777 #ifdef CONFIG_TASKSTATS
778 struct taskstats *stats;
779 #endif
780 #ifdef CONFIG_AUDIT
781 unsigned audit_tty;
782 struct tty_audit_buf *tty_audit_buf;
783 #endif
784
785 oom_flags_t oom_flags;
786 short oom_score_adj; /* OOM kill score adjustment */
787 short oom_score_adj_min; /* OOM kill score adjustment min value.
788 * Only settable by CAP_SYS_RESOURCE. */
789
790 struct mutex cred_guard_mutex; /* guard against foreign influences on
791 * credential calculations
792 * (notably. ptrace) */
793 };
794
795 /*
796 * Bits in flags field of signal_struct.
797 */
798 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
799 #define SIGNAL_STOP_CONTINUED 0x00000002 /* SIGCONT since WCONTINUED reap */
800 #define SIGNAL_GROUP_EXIT 0x00000004 /* group exit in progress */
801 #define SIGNAL_GROUP_COREDUMP 0x00000008 /* coredump in progress */
802 /*
803 * Pending notifications to parent.
804 */
805 #define SIGNAL_CLD_STOPPED 0x00000010
806 #define SIGNAL_CLD_CONTINUED 0x00000020
807 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
808
809 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
810
811 /* If true, all threads except ->group_exit_task have pending SIGKILL */
812 static inline int signal_group_exit(const struct signal_struct *sig)
813 {
814 return (sig->flags & SIGNAL_GROUP_EXIT) ||
815 (sig->group_exit_task != NULL);
816 }
817
818 /*
819 * Some day this will be a full-fledged user tracking system..
820 */
821 struct user_struct {
822 atomic_t __count; /* reference count */
823 atomic_t processes; /* How many processes does this user have? */
824 atomic_t sigpending; /* How many pending signals does this user have? */
825 #ifdef CONFIG_INOTIFY_USER
826 atomic_t inotify_watches; /* How many inotify watches does this user have? */
827 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
828 #endif
829 #ifdef CONFIG_FANOTIFY
830 atomic_t fanotify_listeners;
831 #endif
832 #ifdef CONFIG_EPOLL
833 atomic_long_t epoll_watches; /* The number of file descriptors currently watched */
834 #endif
835 #ifdef CONFIG_POSIX_MQUEUE
836 /* protected by mq_lock */
837 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
838 #endif
839 unsigned long locked_shm; /* How many pages of mlocked shm ? */
840 unsigned long unix_inflight; /* How many files in flight in unix sockets */
841 atomic_long_t pipe_bufs; /* how many pages are allocated in pipe buffers */
842
843 #ifdef CONFIG_KEYS
844 struct key *uid_keyring; /* UID specific keyring */
845 struct key *session_keyring; /* UID's default session keyring */
846 #endif
847
848 /* Hash table maintenance information */
849 struct hlist_node uidhash_node;
850 kuid_t uid;
851
852 #if defined(CONFIG_PERF_EVENTS) || defined(CONFIG_BPF_SYSCALL)
853 atomic_long_t locked_vm;
854 #endif
855 };
856
857 extern int uids_sysfs_init(void);
858
859 extern struct user_struct *find_user(kuid_t);
860
861 extern struct user_struct root_user;
862 #define INIT_USER (&root_user)
863
864
865 struct backing_dev_info;
866 struct reclaim_state;
867
868 #ifdef CONFIG_SCHED_INFO
869 struct sched_info {
870 /* cumulative counters */
871 unsigned long pcount; /* # of times run on this cpu */
872 unsigned long long run_delay; /* time spent waiting on a runqueue */
873
874 /* timestamps */
875 unsigned long long last_arrival,/* when we last ran on a cpu */
876 last_queued; /* when we were last queued to run */
877 };
878 #endif /* CONFIG_SCHED_INFO */
879
880 #ifdef CONFIG_TASK_DELAY_ACCT
881 struct task_delay_info {
882 spinlock_t lock;
883 unsigned int flags; /* Private per-task flags */
884
885 /* For each stat XXX, add following, aligned appropriately
886 *
887 * struct timespec XXX_start, XXX_end;
888 * u64 XXX_delay;
889 * u32 XXX_count;
890 *
891 * Atomicity of updates to XXX_delay, XXX_count protected by
892 * single lock above (split into XXX_lock if contention is an issue).
893 */
894
895 /*
896 * XXX_count is incremented on every XXX operation, the delay
897 * associated with the operation is added to XXX_delay.
898 * XXX_delay contains the accumulated delay time in nanoseconds.
899 */
900 u64 blkio_start; /* Shared by blkio, swapin */
901 u64 blkio_delay; /* wait for sync block io completion */
902 u64 swapin_delay; /* wait for swapin block io completion */
903 u32 blkio_count; /* total count of the number of sync block */
904 /* io operations performed */
905 u32 swapin_count; /* total count of the number of swapin block */
906 /* io operations performed */
907
908 u64 freepages_start;
909 u64 freepages_delay; /* wait for memory reclaim */
910 u32 freepages_count; /* total count of memory reclaim */
911 };
912 #endif /* CONFIG_TASK_DELAY_ACCT */
913
914 static inline int sched_info_on(void)
915 {
916 #ifdef CONFIG_SCHEDSTATS
917 return 1;
918 #elif defined(CONFIG_TASK_DELAY_ACCT)
919 extern int delayacct_on;
920 return delayacct_on;
921 #else
922 return 0;
923 #endif
924 }
925
926 #ifdef CONFIG_SCHEDSTATS
927 void force_schedstat_enabled(void);
928 #endif
929
930 enum cpu_idle_type {
931 CPU_IDLE,
932 CPU_NOT_IDLE,
933 CPU_NEWLY_IDLE,
934 CPU_MAX_IDLE_TYPES
935 };
936
937 /*
938 * Increase resolution of cpu_capacity calculations
939 */
940 #define SCHED_CAPACITY_SHIFT 10
941 #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
942
943 /*
944 * Wake-queues are lists of tasks with a pending wakeup, whose
945 * callers have already marked the task as woken internally,
946 * and can thus carry on. A common use case is being able to
947 * do the wakeups once the corresponding user lock as been
948 * released.
949 *
950 * We hold reference to each task in the list across the wakeup,
951 * thus guaranteeing that the memory is still valid by the time
952 * the actual wakeups are performed in wake_up_q().
953 *
954 * One per task suffices, because there's never a need for a task to be
955 * in two wake queues simultaneously; it is forbidden to abandon a task
956 * in a wake queue (a call to wake_up_q() _must_ follow), so if a task is
957 * already in a wake queue, the wakeup will happen soon and the second
958 * waker can just skip it.
959 *
960 * The WAKE_Q macro declares and initializes the list head.
961 * wake_up_q() does NOT reinitialize the list; it's expected to be
962 * called near the end of a function, where the fact that the queue is
963 * not used again will be easy to see by inspection.
964 *
965 * Note that this can cause spurious wakeups. schedule() callers
966 * must ensure the call is done inside a loop, confirming that the
967 * wakeup condition has in fact occurred.
968 */
969 struct wake_q_node {
970 struct wake_q_node *next;
971 };
972
973 struct wake_q_head {
974 struct wake_q_node *first;
975 struct wake_q_node **lastp;
976 };
977
978 #define WAKE_Q_TAIL ((struct wake_q_node *) 0x01)
979
980 #define WAKE_Q(name) \
981 struct wake_q_head name = { WAKE_Q_TAIL, &name.first }
982
983 extern void wake_q_add(struct wake_q_head *head,
984 struct task_struct *task);
985 extern void wake_up_q(struct wake_q_head *head);
986
987 /*
988 * sched-domains (multiprocessor balancing) declarations:
989 */
990 #ifdef CONFIG_SMP
991 #define SD_LOAD_BALANCE 0x0001 /* Do load balancing on this domain. */
992 #define SD_BALANCE_NEWIDLE 0x0002 /* Balance when about to become idle */
993 #define SD_BALANCE_EXEC 0x0004 /* Balance on exec */
994 #define SD_BALANCE_FORK 0x0008 /* Balance on fork, clone */
995 #define SD_BALANCE_WAKE 0x0010 /* Balance on wakeup */
996 #define SD_WAKE_AFFINE 0x0020 /* Wake task to waking CPU */
997 #define SD_SHARE_CPUCAPACITY 0x0080 /* Domain members share cpu power */
998 #define SD_SHARE_POWERDOMAIN 0x0100 /* Domain members share power domain */
999 #define SD_SHARE_PKG_RESOURCES 0x0200 /* Domain members share cpu pkg resources */
1000 #define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
1001 #define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
1002 #define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
1003 #define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
1004 #define SD_NUMA 0x4000 /* cross-node balancing */
1005
1006 #ifdef CONFIG_SCHED_SMT
1007 static inline int cpu_smt_flags(void)
1008 {
1009 return SD_SHARE_CPUCAPACITY | SD_SHARE_PKG_RESOURCES;
1010 }
1011 #endif
1012
1013 #ifdef CONFIG_SCHED_MC
1014 static inline int cpu_core_flags(void)
1015 {
1016 return SD_SHARE_PKG_RESOURCES;
1017 }
1018 #endif
1019
1020 #ifdef CONFIG_NUMA
1021 static inline int cpu_numa_flags(void)
1022 {
1023 return SD_NUMA;
1024 }
1025 #endif
1026
1027 struct sched_domain_attr {
1028 int relax_domain_level;
1029 };
1030
1031 #define SD_ATTR_INIT (struct sched_domain_attr) { \
1032 .relax_domain_level = -1, \
1033 }
1034
1035 extern int sched_domain_level_max;
1036
1037 struct sched_group;
1038
1039 struct sched_domain {
1040 /* These fields must be setup */
1041 struct sched_domain *parent; /* top domain must be null terminated */
1042 struct sched_domain *child; /* bottom domain must be null terminated */
1043 struct sched_group *groups; /* the balancing groups of the domain */
1044 unsigned long min_interval; /* Minimum balance interval ms */
1045 unsigned long max_interval; /* Maximum balance interval ms */
1046 unsigned int busy_factor; /* less balancing by factor if busy */
1047 unsigned int imbalance_pct; /* No balance until over watermark */
1048 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
1049 unsigned int busy_idx;
1050 unsigned int idle_idx;
1051 unsigned int newidle_idx;
1052 unsigned int wake_idx;
1053 unsigned int forkexec_idx;
1054 unsigned int smt_gain;
1055
1056 int nohz_idle; /* NOHZ IDLE status */
1057 int flags; /* See SD_* */
1058 int level;
1059
1060 /* Runtime fields. */
1061 unsigned long last_balance; /* init to jiffies. units in jiffies */
1062 unsigned int balance_interval; /* initialise to 1. units in ms. */
1063 unsigned int nr_balance_failed; /* initialise to 0 */
1064
1065 /* idle_balance() stats */
1066 u64 max_newidle_lb_cost;
1067 unsigned long next_decay_max_lb_cost;
1068
1069 #ifdef CONFIG_SCHEDSTATS
1070 /* load_balance() stats */
1071 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
1072 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
1073 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
1074 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
1075 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
1076 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
1077 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
1078 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
1079
1080 /* Active load balancing */
1081 unsigned int alb_count;
1082 unsigned int alb_failed;
1083 unsigned int alb_pushed;
1084
1085 /* SD_BALANCE_EXEC stats */
1086 unsigned int sbe_count;
1087 unsigned int sbe_balanced;
1088 unsigned int sbe_pushed;
1089
1090 /* SD_BALANCE_FORK stats */
1091 unsigned int sbf_count;
1092 unsigned int sbf_balanced;
1093 unsigned int sbf_pushed;
1094
1095 /* try_to_wake_up() stats */
1096 unsigned int ttwu_wake_remote;
1097 unsigned int ttwu_move_affine;
1098 unsigned int ttwu_move_balance;
1099 #endif
1100 #ifdef CONFIG_SCHED_DEBUG
1101 char *name;
1102 #endif
1103 union {
1104 void *private; /* used during construction */
1105 struct rcu_head rcu; /* used during destruction */
1106 };
1107
1108 unsigned int span_weight;
1109 /*
1110 * Span of all CPUs in this domain.
1111 *
1112 * NOTE: this field is variable length. (Allocated dynamically
1113 * by attaching extra space to the end of the structure,
1114 * depending on how many CPUs the kernel has booted up with)
1115 */
1116 unsigned long span[0];
1117 };
1118
1119 static inline struct cpumask *sched_domain_span(struct sched_domain *sd)
1120 {
1121 return to_cpumask(sd->span);
1122 }
1123
1124 extern void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1125 struct sched_domain_attr *dattr_new);
1126
1127 /* Allocate an array of sched domains, for partition_sched_domains(). */
1128 cpumask_var_t *alloc_sched_domains(unsigned int ndoms);
1129 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms);
1130
1131 bool cpus_share_cache(int this_cpu, int that_cpu);
1132
1133 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
1134 typedef int (*sched_domain_flags_f)(void);
1135
1136 #define SDTL_OVERLAP 0x01
1137
1138 struct sd_data {
1139 struct sched_domain **__percpu sd;
1140 struct sched_group **__percpu sg;
1141 struct sched_group_capacity **__percpu sgc;
1142 };
1143
1144 struct sched_domain_topology_level {
1145 sched_domain_mask_f mask;
1146 sched_domain_flags_f sd_flags;
1147 int flags;
1148 int numa_level;
1149 struct sd_data data;
1150 #ifdef CONFIG_SCHED_DEBUG
1151 char *name;
1152 #endif
1153 };
1154
1155 extern void set_sched_topology(struct sched_domain_topology_level *tl);
1156 extern void wake_up_if_idle(int cpu);
1157
1158 #ifdef CONFIG_SCHED_DEBUG
1159 # define SD_INIT_NAME(type) .name = #type
1160 #else
1161 # define SD_INIT_NAME(type)
1162 #endif
1163
1164 #else /* CONFIG_SMP */
1165
1166 struct sched_domain_attr;
1167
1168 static inline void
1169 partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1170 struct sched_domain_attr *dattr_new)
1171 {
1172 }
1173
1174 static inline bool cpus_share_cache(int this_cpu, int that_cpu)
1175 {
1176 return true;
1177 }
1178
1179 #endif /* !CONFIG_SMP */
1180
1181
1182 struct io_context; /* See blkdev.h */
1183
1184
1185 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
1186 extern void prefetch_stack(struct task_struct *t);
1187 #else
1188 static inline void prefetch_stack(struct task_struct *t) { }
1189 #endif
1190
1191 struct audit_context; /* See audit.c */
1192 struct mempolicy;
1193 struct pipe_inode_info;
1194 struct uts_namespace;
1195
1196 struct load_weight {
1197 unsigned long weight;
1198 u32 inv_weight;
1199 };
1200
1201 /*
1202 * The load_avg/util_avg accumulates an infinite geometric series.
1203 * 1) load_avg factors frequency scaling into the amount of time that a
1204 * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the
1205 * aggregated such weights of all runnable and blocked sched_entities.
1206 * 2) util_avg factors frequency and cpu scaling into the amount of time
1207 * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
1208 * For cfs_rq, it is the aggregated such times of all runnable and
1209 * blocked sched_entities.
1210 * The 64 bit load_sum can:
1211 * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
1212 * the highest weight (=88761) always runnable, we should not overflow
1213 * 2) for entity, support any load.weight always runnable
1214 */
1215 struct sched_avg {
1216 u64 last_update_time, load_sum;
1217 u32 util_sum, period_contrib;
1218 unsigned long load_avg, util_avg;
1219 };
1220
1221 #ifdef CONFIG_SCHEDSTATS
1222 struct sched_statistics {
1223 u64 wait_start;
1224 u64 wait_max;
1225 u64 wait_count;
1226 u64 wait_sum;
1227 u64 iowait_count;
1228 u64 iowait_sum;
1229
1230 u64 sleep_start;
1231 u64 sleep_max;
1232 s64 sum_sleep_runtime;
1233
1234 u64 block_start;
1235 u64 block_max;
1236 u64 exec_max;
1237 u64 slice_max;
1238
1239 u64 nr_migrations_cold;
1240 u64 nr_failed_migrations_affine;
1241 u64 nr_failed_migrations_running;
1242 u64 nr_failed_migrations_hot;
1243 u64 nr_forced_migrations;
1244
1245 u64 nr_wakeups;
1246 u64 nr_wakeups_sync;
1247 u64 nr_wakeups_migrate;
1248 u64 nr_wakeups_local;
1249 u64 nr_wakeups_remote;
1250 u64 nr_wakeups_affine;
1251 u64 nr_wakeups_affine_attempts;
1252 u64 nr_wakeups_passive;
1253 u64 nr_wakeups_idle;
1254 };
1255 #endif
1256
1257 struct sched_entity {
1258 struct load_weight load; /* for load-balancing */
1259 struct rb_node run_node;
1260 struct list_head group_node;
1261 unsigned int on_rq;
1262
1263 u64 exec_start;
1264 u64 sum_exec_runtime;
1265 u64 vruntime;
1266 u64 prev_sum_exec_runtime;
1267
1268 u64 nr_migrations;
1269
1270 #ifdef CONFIG_SCHEDSTATS
1271 struct sched_statistics statistics;
1272 #endif
1273
1274 #ifdef CONFIG_FAIR_GROUP_SCHED
1275 int depth;
1276 struct sched_entity *parent;
1277 /* rq on which this entity is (to be) queued: */
1278 struct cfs_rq *cfs_rq;
1279 /* rq "owned" by this entity/group: */
1280 struct cfs_rq *my_q;
1281 #endif
1282
1283 #ifdef CONFIG_SMP
1284 /*
1285 * Per entity load average tracking.
1286 *
1287 * Put into separate cache line so it does not
1288 * collide with read-mostly values above.
1289 */
1290 struct sched_avg avg ____cacheline_aligned_in_smp;
1291 #endif
1292 };
1293
1294 struct sched_rt_entity {
1295 struct list_head run_list;
1296 unsigned long timeout;
1297 unsigned long watchdog_stamp;
1298 unsigned int time_slice;
1299 unsigned short on_rq;
1300 unsigned short on_list;
1301
1302 struct sched_rt_entity *back;
1303 #ifdef CONFIG_RT_GROUP_SCHED
1304 struct sched_rt_entity *parent;
1305 /* rq on which this entity is (to be) queued: */
1306 struct rt_rq *rt_rq;
1307 /* rq "owned" by this entity/group: */
1308 struct rt_rq *my_q;
1309 #endif
1310 };
1311
1312 struct sched_dl_entity {
1313 struct rb_node rb_node;
1314
1315 /*
1316 * Original scheduling parameters. Copied here from sched_attr
1317 * during sched_setattr(), they will remain the same until
1318 * the next sched_setattr().
1319 */
1320 u64 dl_runtime; /* maximum runtime for each instance */
1321 u64 dl_deadline; /* relative deadline of each instance */
1322 u64 dl_period; /* separation of two instances (period) */
1323 u64 dl_bw; /* dl_runtime / dl_deadline */
1324
1325 /*
1326 * Actual scheduling parameters. Initialized with the values above,
1327 * they are continously updated during task execution. Note that
1328 * the remaining runtime could be < 0 in case we are in overrun.
1329 */
1330 s64 runtime; /* remaining runtime for this instance */
1331 u64 deadline; /* absolute deadline for this instance */
1332 unsigned int flags; /* specifying the scheduler behaviour */
1333
1334 /*
1335 * Some bool flags:
1336 *
1337 * @dl_throttled tells if we exhausted the runtime. If so, the
1338 * task has to wait for a replenishment to be performed at the
1339 * next firing of dl_timer.
1340 *
1341 * @dl_boosted tells if we are boosted due to DI. If so we are
1342 * outside bandwidth enforcement mechanism (but only until we
1343 * exit the critical section);
1344 *
1345 * @dl_yielded tells if task gave up the cpu before consuming
1346 * all its available runtime during the last job.
1347 */
1348 int dl_throttled, dl_boosted, dl_yielded;
1349
1350 /*
1351 * Bandwidth enforcement timer. Each -deadline task has its
1352 * own bandwidth to be enforced, thus we need one timer per task.
1353 */
1354 struct hrtimer dl_timer;
1355 };
1356
1357 union rcu_special {
1358 struct {
1359 u8 blocked;
1360 u8 need_qs;
1361 u8 exp_need_qs;
1362 u8 pad; /* Otherwise the compiler can store garbage here. */
1363 } b; /* Bits. */
1364 u32 s; /* Set of bits. */
1365 };
1366 struct rcu_node;
1367
1368 enum perf_event_task_context {
1369 perf_invalid_context = -1,
1370 perf_hw_context = 0,
1371 perf_sw_context,
1372 perf_nr_task_contexts,
1373 };
1374
1375 /* Track pages that require TLB flushes */
1376 struct tlbflush_unmap_batch {
1377 /*
1378 * Each bit set is a CPU that potentially has a TLB entry for one of
1379 * the PFNs being flushed. See set_tlb_ubc_flush_pending().
1380 */
1381 struct cpumask cpumask;
1382
1383 /* True if any bit in cpumask is set */
1384 bool flush_required;
1385
1386 /*
1387 * If true then the PTE was dirty when unmapped. The entry must be
1388 * flushed before IO is initiated or a stale TLB entry potentially
1389 * allows an update without redirtying the page.
1390 */
1391 bool writable;
1392 };
1393
1394 struct task_struct {
1395 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1396 void *stack;
1397 atomic_t usage;
1398 unsigned int flags; /* per process flags, defined below */
1399 unsigned int ptrace;
1400
1401 #ifdef CONFIG_SMP
1402 struct llist_node wake_entry;
1403 int on_cpu;
1404 unsigned int wakee_flips;
1405 unsigned long wakee_flip_decay_ts;
1406 struct task_struct *last_wakee;
1407
1408 int wake_cpu;
1409 #endif
1410 int on_rq;
1411
1412 int prio, static_prio, normal_prio;
1413 unsigned int rt_priority;
1414 const struct sched_class *sched_class;
1415 struct sched_entity se;
1416 struct sched_rt_entity rt;
1417 #ifdef CONFIG_CGROUP_SCHED
1418 struct task_group *sched_task_group;
1419 #endif
1420 struct sched_dl_entity dl;
1421
1422 #ifdef CONFIG_PREEMPT_NOTIFIERS
1423 /* list of struct preempt_notifier: */
1424 struct hlist_head preempt_notifiers;
1425 #endif
1426
1427 #ifdef CONFIG_BLK_DEV_IO_TRACE
1428 unsigned int btrace_seq;
1429 #endif
1430
1431 unsigned int policy;
1432 int nr_cpus_allowed;
1433 cpumask_t cpus_allowed;
1434
1435 #ifdef CONFIG_PREEMPT_RCU
1436 int rcu_read_lock_nesting;
1437 union rcu_special rcu_read_unlock_special;
1438 struct list_head rcu_node_entry;
1439 struct rcu_node *rcu_blocked_node;
1440 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1441 #ifdef CONFIG_TASKS_RCU
1442 unsigned long rcu_tasks_nvcsw;
1443 bool rcu_tasks_holdout;
1444 struct list_head rcu_tasks_holdout_list;
1445 int rcu_tasks_idle_cpu;
1446 #endif /* #ifdef CONFIG_TASKS_RCU */
1447
1448 #ifdef CONFIG_SCHED_INFO
1449 struct sched_info sched_info;
1450 #endif
1451
1452 struct list_head tasks;
1453 #ifdef CONFIG_SMP
1454 struct plist_node pushable_tasks;
1455 struct rb_node pushable_dl_tasks;
1456 #endif
1457
1458 struct mm_struct *mm, *active_mm;
1459 /* per-thread vma caching */
1460 u32 vmacache_seqnum;
1461 struct vm_area_struct *vmacache[VMACACHE_SIZE];
1462 #if defined(SPLIT_RSS_COUNTING)
1463 struct task_rss_stat rss_stat;
1464 #endif
1465 /* task state */
1466 int exit_state;
1467 int exit_code, exit_signal;
1468 int pdeath_signal; /* The signal sent when the parent dies */
1469 unsigned long jobctl; /* JOBCTL_*, siglock protected */
1470
1471 /* Used for emulating ABI behavior of previous Linux versions */
1472 unsigned int personality;
1473
1474 /* scheduler bits, serialized by scheduler locks */
1475 unsigned sched_reset_on_fork:1;
1476 unsigned sched_contributes_to_load:1;
1477 unsigned sched_migrated:1;
1478 unsigned :0; /* force alignment to the next boundary */
1479
1480 /* unserialized, strictly 'current' */
1481 unsigned in_execve:1; /* bit to tell LSMs we're in execve */
1482 unsigned in_iowait:1;
1483 #ifdef CONFIG_MEMCG
1484 unsigned memcg_may_oom:1;
1485 #ifndef CONFIG_SLOB
1486 unsigned memcg_kmem_skip_account:1;
1487 #endif
1488 #endif
1489 #ifdef CONFIG_COMPAT_BRK
1490 unsigned brk_randomized:1;
1491 #endif
1492
1493 unsigned long atomic_flags; /* Flags needing atomic access. */
1494
1495 struct restart_block restart_block;
1496
1497 pid_t pid;
1498 pid_t tgid;
1499
1500 #ifdef CONFIG_CC_STACKPROTECTOR
1501 /* Canary value for the -fstack-protector gcc feature */
1502 unsigned long stack_canary;
1503 #endif
1504 /*
1505 * pointers to (original) parent process, youngest child, younger sibling,
1506 * older sibling, respectively. (p->father can be replaced with
1507 * p->real_parent->pid)
1508 */
1509 struct task_struct __rcu *real_parent; /* real parent process */
1510 struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */
1511 /*
1512 * children/sibling forms the list of my natural children
1513 */
1514 struct list_head children; /* list of my children */
1515 struct list_head sibling; /* linkage in my parent's children list */
1516 struct task_struct *group_leader; /* threadgroup leader */
1517
1518 /*
1519 * ptraced is the list of tasks this task is using ptrace on.
1520 * This includes both natural children and PTRACE_ATTACH targets.
1521 * p->ptrace_entry is p's link on the p->parent->ptraced list.
1522 */
1523 struct list_head ptraced;
1524 struct list_head ptrace_entry;
1525
1526 /* PID/PID hash table linkage. */
1527 struct pid_link pids[PIDTYPE_MAX];
1528 struct list_head thread_group;
1529 struct list_head thread_node;
1530
1531 struct completion *vfork_done; /* for vfork() */
1532 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1533 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1534
1535 cputime_t utime, stime, utimescaled, stimescaled;
1536 cputime_t gtime;
1537 struct prev_cputime prev_cputime;
1538 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1539 seqcount_t vtime_seqcount;
1540 unsigned long long vtime_snap;
1541 enum {
1542 /* Task is sleeping or running in a CPU with VTIME inactive */
1543 VTIME_INACTIVE = 0,
1544 /* Task runs in userspace in a CPU with VTIME active */
1545 VTIME_USER,
1546 /* Task runs in kernelspace in a CPU with VTIME active */
1547 VTIME_SYS,
1548 } vtime_snap_whence;
1549 #endif
1550
1551 #ifdef CONFIG_NO_HZ_FULL
1552 atomic_t tick_dep_mask;
1553 #endif
1554 unsigned long nvcsw, nivcsw; /* context switch counts */
1555 u64 start_time; /* monotonic time in nsec */
1556 u64 real_start_time; /* boot based time in nsec */
1557 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1558 unsigned long min_flt, maj_flt;
1559
1560 struct task_cputime cputime_expires;
1561 struct list_head cpu_timers[3];
1562
1563 /* process credentials */
1564 const struct cred __rcu *real_cred; /* objective and real subjective task
1565 * credentials (COW) */
1566 const struct cred __rcu *cred; /* effective (overridable) subjective task
1567 * credentials (COW) */
1568 char comm[TASK_COMM_LEN]; /* executable name excluding path
1569 - access with [gs]et_task_comm (which lock
1570 it with task_lock())
1571 - initialized normally by setup_new_exec */
1572 /* file system info */
1573 struct nameidata *nameidata;
1574 #ifdef CONFIG_SYSVIPC
1575 /* ipc stuff */
1576 struct sysv_sem sysvsem;
1577 struct sysv_shm sysvshm;
1578 #endif
1579 #ifdef CONFIG_DETECT_HUNG_TASK
1580 /* hung task detection */
1581 unsigned long last_switch_count;
1582 #endif
1583 /* filesystem information */
1584 struct fs_struct *fs;
1585 /* open file information */
1586 struct files_struct *files;
1587 /* namespaces */
1588 struct nsproxy *nsproxy;
1589 /* signal handlers */
1590 struct signal_struct *signal;
1591 struct sighand_struct *sighand;
1592
1593 sigset_t blocked, real_blocked;
1594 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1595 struct sigpending pending;
1596
1597 unsigned long sas_ss_sp;
1598 size_t sas_ss_size;
1599
1600 struct callback_head *task_works;
1601
1602 struct audit_context *audit_context;
1603 #ifdef CONFIG_AUDITSYSCALL
1604 kuid_t loginuid;
1605 unsigned int sessionid;
1606 #endif
1607 struct seccomp seccomp;
1608
1609 /* Thread group tracking */
1610 u32 parent_exec_id;
1611 u32 self_exec_id;
1612 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed,
1613 * mempolicy */
1614 spinlock_t alloc_lock;
1615
1616 /* Protection of the PI data structures: */
1617 raw_spinlock_t pi_lock;
1618
1619 struct wake_q_node wake_q;
1620
1621 #ifdef CONFIG_RT_MUTEXES
1622 /* PI waiters blocked on a rt_mutex held by this task */
1623 struct rb_root pi_waiters;
1624 struct rb_node *pi_waiters_leftmost;
1625 /* Deadlock detection and priority inheritance handling */
1626 struct rt_mutex_waiter *pi_blocked_on;
1627 #endif
1628
1629 #ifdef CONFIG_DEBUG_MUTEXES
1630 /* mutex deadlock detection */
1631 struct mutex_waiter *blocked_on;
1632 #endif
1633 #ifdef CONFIG_TRACE_IRQFLAGS
1634 unsigned int irq_events;
1635 unsigned long hardirq_enable_ip;
1636 unsigned long hardirq_disable_ip;
1637 unsigned int hardirq_enable_event;
1638 unsigned int hardirq_disable_event;
1639 int hardirqs_enabled;
1640 int hardirq_context;
1641 unsigned long softirq_disable_ip;
1642 unsigned long softirq_enable_ip;
1643 unsigned int softirq_disable_event;
1644 unsigned int softirq_enable_event;
1645 int softirqs_enabled;
1646 int softirq_context;
1647 #endif
1648 #ifdef CONFIG_LOCKDEP
1649 # define MAX_LOCK_DEPTH 48UL
1650 u64 curr_chain_key;
1651 int lockdep_depth;
1652 unsigned int lockdep_recursion;
1653 struct held_lock held_locks[MAX_LOCK_DEPTH];
1654 gfp_t lockdep_reclaim_gfp;
1655 #endif
1656 #ifdef CONFIG_UBSAN
1657 unsigned int in_ubsan;
1658 #endif
1659
1660 /* journalling filesystem info */
1661 void *journal_info;
1662
1663 /* stacked block device info */
1664 struct bio_list *bio_list;
1665
1666 #ifdef CONFIG_BLOCK
1667 /* stack plugging */
1668 struct blk_plug *plug;
1669 #endif
1670
1671 /* VM state */
1672 struct reclaim_state *reclaim_state;
1673
1674 struct backing_dev_info *backing_dev_info;
1675
1676 struct io_context *io_context;
1677
1678 unsigned long ptrace_message;
1679 siginfo_t *last_siginfo; /* For ptrace use. */
1680 struct task_io_accounting ioac;
1681 #if defined(CONFIG_TASK_XACCT)
1682 u64 acct_rss_mem1; /* accumulated rss usage */
1683 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1684 cputime_t acct_timexpd; /* stime + utime since last update */
1685 #endif
1686 #ifdef CONFIG_CPUSETS
1687 nodemask_t mems_allowed; /* Protected by alloc_lock */
1688 seqcount_t mems_allowed_seq; /* Seqence no to catch updates */
1689 int cpuset_mem_spread_rotor;
1690 int cpuset_slab_spread_rotor;
1691 #endif
1692 #ifdef CONFIG_CGROUPS
1693 /* Control Group info protected by css_set_lock */
1694 struct css_set __rcu *cgroups;
1695 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1696 struct list_head cg_list;
1697 #endif
1698 #ifdef CONFIG_FUTEX
1699 struct robust_list_head __user *robust_list;
1700 #ifdef CONFIG_COMPAT
1701 struct compat_robust_list_head __user *compat_robust_list;
1702 #endif
1703 struct list_head pi_state_list;
1704 struct futex_pi_state *pi_state_cache;
1705 #endif
1706 #ifdef CONFIG_PERF_EVENTS
1707 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1708 struct mutex perf_event_mutex;
1709 struct list_head perf_event_list;
1710 #endif
1711 #ifdef CONFIG_DEBUG_PREEMPT
1712 unsigned long preempt_disable_ip;
1713 #endif
1714 #ifdef CONFIG_NUMA
1715 struct mempolicy *mempolicy; /* Protected by alloc_lock */
1716 short il_next;
1717 short pref_node_fork;
1718 #endif
1719 #ifdef CONFIG_NUMA_BALANCING
1720 int numa_scan_seq;
1721 unsigned int numa_scan_period;
1722 unsigned int numa_scan_period_max;
1723 int numa_preferred_nid;
1724 unsigned long numa_migrate_retry;
1725 u64 node_stamp; /* migration stamp */
1726 u64 last_task_numa_placement;
1727 u64 last_sum_exec_runtime;
1728 struct callback_head numa_work;
1729
1730 struct list_head numa_entry;
1731 struct numa_group *numa_group;
1732
1733 /*
1734 * numa_faults is an array split into four regions:
1735 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1736 * in this precise order.
1737 *
1738 * faults_memory: Exponential decaying average of faults on a per-node
1739 * basis. Scheduling placement decisions are made based on these
1740 * counts. The values remain static for the duration of a PTE scan.
1741 * faults_cpu: Track the nodes the process was running on when a NUMA
1742 * hinting fault was incurred.
1743 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1744 * during the current scan window. When the scan completes, the counts
1745 * in faults_memory and faults_cpu decay and these values are copied.
1746 */
1747 unsigned long *numa_faults;
1748 unsigned long total_numa_faults;
1749
1750 /*
1751 * numa_faults_locality tracks if faults recorded during the last
1752 * scan window were remote/local or failed to migrate. The task scan
1753 * period is adapted based on the locality of the faults with different
1754 * weights depending on whether they were shared or private faults
1755 */
1756 unsigned long numa_faults_locality[3];
1757
1758 unsigned long numa_pages_migrated;
1759 #endif /* CONFIG_NUMA_BALANCING */
1760
1761 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1762 struct tlbflush_unmap_batch tlb_ubc;
1763 #endif
1764
1765 struct rcu_head rcu;
1766
1767 /*
1768 * cache last used pipe for splice
1769 */
1770 struct pipe_inode_info *splice_pipe;
1771
1772 struct page_frag task_frag;
1773
1774 #ifdef CONFIG_TASK_DELAY_ACCT
1775 struct task_delay_info *delays;
1776 #endif
1777 #ifdef CONFIG_FAULT_INJECTION
1778 int make_it_fail;
1779 #endif
1780 /*
1781 * when (nr_dirtied >= nr_dirtied_pause), it's time to call
1782 * balance_dirty_pages() for some dirty throttling pause
1783 */
1784 int nr_dirtied;
1785 int nr_dirtied_pause;
1786 unsigned long dirty_paused_when; /* start of a write-and-pause period */
1787
1788 #ifdef CONFIG_LATENCYTOP
1789 int latency_record_count;
1790 struct latency_record latency_record[LT_SAVECOUNT];
1791 #endif
1792 /*
1793 * time slack values; these are used to round up poll() and
1794 * select() etc timeout values. These are in nanoseconds.
1795 */
1796 u64 timer_slack_ns;
1797 u64 default_timer_slack_ns;
1798
1799 #ifdef CONFIG_KASAN
1800 unsigned int kasan_depth;
1801 #endif
1802 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1803 /* Index of current stored address in ret_stack */
1804 int curr_ret_stack;
1805 /* Stack of return addresses for return function tracing */
1806 struct ftrace_ret_stack *ret_stack;
1807 /* time stamp for last schedule */
1808 unsigned long long ftrace_timestamp;
1809 /*
1810 * Number of functions that haven't been traced
1811 * because of depth overrun.
1812 */
1813 atomic_t trace_overrun;
1814 /* Pause for the tracing */
1815 atomic_t tracing_graph_pause;
1816 #endif
1817 #ifdef CONFIG_TRACING
1818 /* state flags for use by tracers */
1819 unsigned long trace;
1820 /* bitmask and counter of trace recursion */
1821 unsigned long trace_recursion;
1822 #endif /* CONFIG_TRACING */
1823 #ifdef CONFIG_KCOV
1824 /* Coverage collection mode enabled for this task (0 if disabled). */
1825 enum kcov_mode kcov_mode;
1826 /* Size of the kcov_area. */
1827 unsigned kcov_size;
1828 /* Buffer for coverage collection. */
1829 void *kcov_area;
1830 /* kcov desciptor wired with this task or NULL. */
1831 struct kcov *kcov;
1832 #endif
1833 #ifdef CONFIG_MEMCG
1834 struct mem_cgroup *memcg_in_oom;
1835 gfp_t memcg_oom_gfp_mask;
1836 int memcg_oom_order;
1837
1838 /* number of pages to reclaim on returning to userland */
1839 unsigned int memcg_nr_pages_over_high;
1840 #endif
1841 #ifdef CONFIG_UPROBES
1842 struct uprobe_task *utask;
1843 #endif
1844 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1845 unsigned int sequential_io;
1846 unsigned int sequential_io_avg;
1847 #endif
1848 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1849 unsigned long task_state_change;
1850 #endif
1851 int pagefault_disabled;
1852 #ifdef CONFIG_MMU
1853 struct task_struct *oom_reaper_list;
1854 #endif
1855 /* CPU-specific state of this task */
1856 struct thread_struct thread;
1857 /*
1858 * WARNING: on x86, 'thread_struct' contains a variable-sized
1859 * structure. It *MUST* be at the end of 'task_struct'.
1860 *
1861 * Do not put anything below here!
1862 */
1863 };
1864
1865 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1866 extern int arch_task_struct_size __read_mostly;
1867 #else
1868 # define arch_task_struct_size (sizeof(struct task_struct))
1869 #endif
1870
1871 /* Future-safe accessor for struct task_struct's cpus_allowed. */
1872 #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed)
1873
1874 #define TNF_MIGRATED 0x01
1875 #define TNF_NO_GROUP 0x02
1876 #define TNF_SHARED 0x04
1877 #define TNF_FAULT_LOCAL 0x08
1878 #define TNF_MIGRATE_FAIL 0x10
1879
1880 #ifdef CONFIG_NUMA_BALANCING
1881 extern void task_numa_fault(int last_node, int node, int pages, int flags);
1882 extern pid_t task_numa_group_id(struct task_struct *p);
1883 extern void set_numabalancing_state(bool enabled);
1884 extern void task_numa_free(struct task_struct *p);
1885 extern bool should_numa_migrate_memory(struct task_struct *p, struct page *page,
1886 int src_nid, int dst_cpu);
1887 #else
1888 static inline void task_numa_fault(int last_node, int node, int pages,
1889 int flags)
1890 {
1891 }
1892 static inline pid_t task_numa_group_id(struct task_struct *p)
1893 {
1894 return 0;
1895 }
1896 static inline void set_numabalancing_state(bool enabled)
1897 {
1898 }
1899 static inline void task_numa_free(struct task_struct *p)
1900 {
1901 }
1902 static inline bool should_numa_migrate_memory(struct task_struct *p,
1903 struct page *page, int src_nid, int dst_cpu)
1904 {
1905 return true;
1906 }
1907 #endif
1908
1909 static inline struct pid *task_pid(struct task_struct *task)
1910 {
1911 return task->pids[PIDTYPE_PID].pid;
1912 }
1913
1914 static inline struct pid *task_tgid(struct task_struct *task)
1915 {
1916 return task->group_leader->pids[PIDTYPE_PID].pid;
1917 }
1918
1919 /*
1920 * Without tasklist or rcu lock it is not safe to dereference
1921 * the result of task_pgrp/task_session even if task == current,
1922 * we can race with another thread doing sys_setsid/sys_setpgid.
1923 */
1924 static inline struct pid *task_pgrp(struct task_struct *task)
1925 {
1926 return task->group_leader->pids[PIDTYPE_PGID].pid;
1927 }
1928
1929 static inline struct pid *task_session(struct task_struct *task)
1930 {
1931 return task->group_leader->pids[PIDTYPE_SID].pid;
1932 }
1933
1934 struct pid_namespace;
1935
1936 /*
1937 * the helpers to get the task's different pids as they are seen
1938 * from various namespaces
1939 *
1940 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1941 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1942 * current.
1943 * task_xid_nr_ns() : id seen from the ns specified;
1944 *
1945 * set_task_vxid() : assigns a virtual id to a task;
1946 *
1947 * see also pid_nr() etc in include/linux/pid.h
1948 */
1949 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
1950 struct pid_namespace *ns);
1951
1952 static inline pid_t task_pid_nr(struct task_struct *tsk)
1953 {
1954 return tsk->pid;
1955 }
1956
1957 static inline pid_t task_pid_nr_ns(struct task_struct *tsk,
1958 struct pid_namespace *ns)
1959 {
1960 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1961 }
1962
1963 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1964 {
1965 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1966 }
1967
1968
1969 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1970 {
1971 return tsk->tgid;
1972 }
1973
1974 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1975
1976 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1977 {
1978 return pid_vnr(task_tgid(tsk));
1979 }
1980
1981
1982 static inline int pid_alive(const struct task_struct *p);
1983 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1984 {
1985 pid_t pid = 0;
1986
1987 rcu_read_lock();
1988 if (pid_alive(tsk))
1989 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1990 rcu_read_unlock();
1991
1992 return pid;
1993 }
1994
1995 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1996 {
1997 return task_ppid_nr_ns(tsk, &init_pid_ns);
1998 }
1999
2000 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk,
2001 struct pid_namespace *ns)
2002 {
2003 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
2004 }
2005
2006 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
2007 {
2008 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
2009 }
2010
2011
2012 static inline pid_t task_session_nr_ns(struct task_struct *tsk,
2013 struct pid_namespace *ns)
2014 {
2015 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
2016 }
2017
2018 static inline pid_t task_session_vnr(struct task_struct *tsk)
2019 {
2020 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
2021 }
2022
2023 /* obsolete, do not use */
2024 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
2025 {
2026 return task_pgrp_nr_ns(tsk, &init_pid_ns);
2027 }
2028
2029 /**
2030 * pid_alive - check that a task structure is not stale
2031 * @p: Task structure to be checked.
2032 *
2033 * Test if a process is not yet dead (at most zombie state)
2034 * If pid_alive fails, then pointers within the task structure
2035 * can be stale and must not be dereferenced.
2036 *
2037 * Return: 1 if the process is alive. 0 otherwise.
2038 */
2039 static inline int pid_alive(const struct task_struct *p)
2040 {
2041 return p->pids[PIDTYPE_PID].pid != NULL;
2042 }
2043
2044 /**
2045 * is_global_init - check if a task structure is init. Since init
2046 * is free to have sub-threads we need to check tgid.
2047 * @tsk: Task structure to be checked.
2048 *
2049 * Check if a task structure is the first user space task the kernel created.
2050 *
2051 * Return: 1 if the task structure is init. 0 otherwise.
2052 */
2053 static inline int is_global_init(struct task_struct *tsk)
2054 {
2055 return task_tgid_nr(tsk) == 1;
2056 }
2057
2058 extern struct pid *cad_pid;
2059
2060 extern void free_task(struct task_struct *tsk);
2061 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
2062
2063 extern void __put_task_struct(struct task_struct *t);
2064
2065 static inline void put_task_struct(struct task_struct *t)
2066 {
2067 if (atomic_dec_and_test(&t->usage))
2068 __put_task_struct(t);
2069 }
2070
2071 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2072 extern void task_cputime(struct task_struct *t,
2073 cputime_t *utime, cputime_t *stime);
2074 extern void task_cputime_scaled(struct task_struct *t,
2075 cputime_t *utimescaled, cputime_t *stimescaled);
2076 extern cputime_t task_gtime(struct task_struct *t);
2077 #else
2078 static inline void task_cputime(struct task_struct *t,
2079 cputime_t *utime, cputime_t *stime)
2080 {
2081 if (utime)
2082 *utime = t->utime;
2083 if (stime)
2084 *stime = t->stime;
2085 }
2086
2087 static inline void task_cputime_scaled(struct task_struct *t,
2088 cputime_t *utimescaled,
2089 cputime_t *stimescaled)
2090 {
2091 if (utimescaled)
2092 *utimescaled = t->utimescaled;
2093 if (stimescaled)
2094 *stimescaled = t->stimescaled;
2095 }
2096
2097 static inline cputime_t task_gtime(struct task_struct *t)
2098 {
2099 return t->gtime;
2100 }
2101 #endif
2102 extern void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2103 extern void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st);
2104
2105 /*
2106 * Per process flags
2107 */
2108 #define PF_EXITING 0x00000004 /* getting shut down */
2109 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
2110 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
2111 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
2112 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
2113 #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */
2114 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
2115 #define PF_DUMPCORE 0x00000200 /* dumped core */
2116 #define PF_SIGNALED 0x00000400 /* killed by a signal */
2117 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
2118 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */
2119 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
2120 #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */
2121 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
2122 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
2123 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
2124 #define PF_KSWAPD 0x00040000 /* I am kswapd */
2125 #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */
2126 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
2127 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
2128 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
2129 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
2130 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */
2131 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
2132 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
2133 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
2134 #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */
2135
2136 /*
2137 * Only the _current_ task can read/write to tsk->flags, but other
2138 * tasks can access tsk->flags in readonly mode for example
2139 * with tsk_used_math (like during threaded core dumping).
2140 * There is however an exception to this rule during ptrace
2141 * or during fork: the ptracer task is allowed to write to the
2142 * child->flags of its traced child (same goes for fork, the parent
2143 * can write to the child->flags), because we're guaranteed the
2144 * child is not running and in turn not changing child->flags
2145 * at the same time the parent does it.
2146 */
2147 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
2148 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
2149 #define clear_used_math() clear_stopped_child_used_math(current)
2150 #define set_used_math() set_stopped_child_used_math(current)
2151 #define conditional_stopped_child_used_math(condition, child) \
2152 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
2153 #define conditional_used_math(condition) \
2154 conditional_stopped_child_used_math(condition, current)
2155 #define copy_to_stopped_child_used_math(child) \
2156 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
2157 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
2158 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
2159 #define used_math() tsk_used_math(current)
2160
2161 /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags
2162 * __GFP_FS is also cleared as it implies __GFP_IO.
2163 */
2164 static inline gfp_t memalloc_noio_flags(gfp_t flags)
2165 {
2166 if (unlikely(current->flags & PF_MEMALLOC_NOIO))
2167 flags &= ~(__GFP_IO | __GFP_FS);
2168 return flags;
2169 }
2170
2171 static inline unsigned int memalloc_noio_save(void)
2172 {
2173 unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
2174 current->flags |= PF_MEMALLOC_NOIO;
2175 return flags;
2176 }
2177
2178 static inline void memalloc_noio_restore(unsigned int flags)
2179 {
2180 current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
2181 }
2182
2183 /* Per-process atomic flags. */
2184 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
2185 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
2186 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
2187
2188
2189 #define TASK_PFA_TEST(name, func) \
2190 static inline bool task_##func(struct task_struct *p) \
2191 { return test_bit(PFA_##name, &p->atomic_flags); }
2192 #define TASK_PFA_SET(name, func) \
2193 static inline void task_set_##func(struct task_struct *p) \
2194 { set_bit(PFA_##name, &p->atomic_flags); }
2195 #define TASK_PFA_CLEAR(name, func) \
2196 static inline void task_clear_##func(struct task_struct *p) \
2197 { clear_bit(PFA_##name, &p->atomic_flags); }
2198
2199 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
2200 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
2201
2202 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
2203 TASK_PFA_SET(SPREAD_PAGE, spread_page)
2204 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
2205
2206 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
2207 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
2208 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
2209
2210 /*
2211 * task->jobctl flags
2212 */
2213 #define JOBCTL_STOP_SIGMASK 0xffff /* signr of the last group stop */
2214
2215 #define JOBCTL_STOP_DEQUEUED_BIT 16 /* stop signal dequeued */
2216 #define JOBCTL_STOP_PENDING_BIT 17 /* task should stop for group stop */
2217 #define JOBCTL_STOP_CONSUME_BIT 18 /* consume group stop count */
2218 #define JOBCTL_TRAP_STOP_BIT 19 /* trap for STOP */
2219 #define JOBCTL_TRAP_NOTIFY_BIT 20 /* trap for NOTIFY */
2220 #define JOBCTL_TRAPPING_BIT 21 /* switching to TRACED */
2221 #define JOBCTL_LISTENING_BIT 22 /* ptracer is listening for events */
2222
2223 #define JOBCTL_STOP_DEQUEUED (1UL << JOBCTL_STOP_DEQUEUED_BIT)
2224 #define JOBCTL_STOP_PENDING (1UL << JOBCTL_STOP_PENDING_BIT)
2225 #define JOBCTL_STOP_CONSUME (1UL << JOBCTL_STOP_CONSUME_BIT)
2226 #define JOBCTL_TRAP_STOP (1UL << JOBCTL_TRAP_STOP_BIT)
2227 #define JOBCTL_TRAP_NOTIFY (1UL << JOBCTL_TRAP_NOTIFY_BIT)
2228 #define JOBCTL_TRAPPING (1UL << JOBCTL_TRAPPING_BIT)
2229 #define JOBCTL_LISTENING (1UL << JOBCTL_LISTENING_BIT)
2230
2231 #define JOBCTL_TRAP_MASK (JOBCTL_TRAP_STOP | JOBCTL_TRAP_NOTIFY)
2232 #define JOBCTL_PENDING_MASK (JOBCTL_STOP_PENDING | JOBCTL_TRAP_MASK)
2233
2234 extern bool task_set_jobctl_pending(struct task_struct *task,
2235 unsigned long mask);
2236 extern void task_clear_jobctl_trapping(struct task_struct *task);
2237 extern void task_clear_jobctl_pending(struct task_struct *task,
2238 unsigned long mask);
2239
2240 static inline void rcu_copy_process(struct task_struct *p)
2241 {
2242 #ifdef CONFIG_PREEMPT_RCU
2243 p->rcu_read_lock_nesting = 0;
2244 p->rcu_read_unlock_special.s = 0;
2245 p->rcu_blocked_node = NULL;
2246 INIT_LIST_HEAD(&p->rcu_node_entry);
2247 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2248 #ifdef CONFIG_TASKS_RCU
2249 p->rcu_tasks_holdout = false;
2250 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2251 p->rcu_tasks_idle_cpu = -1;
2252 #endif /* #ifdef CONFIG_TASKS_RCU */
2253 }
2254
2255 static inline void tsk_restore_flags(struct task_struct *task,
2256 unsigned long orig_flags, unsigned long flags)
2257 {
2258 task->flags &= ~flags;
2259 task->flags |= orig_flags & flags;
2260 }
2261
2262 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur,
2263 const struct cpumask *trial);
2264 extern int task_can_attach(struct task_struct *p,
2265 const struct cpumask *cs_cpus_allowed);
2266 #ifdef CONFIG_SMP
2267 extern void do_set_cpus_allowed(struct task_struct *p,
2268 const struct cpumask *new_mask);
2269
2270 extern int set_cpus_allowed_ptr(struct task_struct *p,
2271 const struct cpumask *new_mask);
2272 #else
2273 static inline void do_set_cpus_allowed(struct task_struct *p,
2274 const struct cpumask *new_mask)
2275 {
2276 }
2277 static inline int set_cpus_allowed_ptr(struct task_struct *p,
2278 const struct cpumask *new_mask)
2279 {
2280 if (!cpumask_test_cpu(0, new_mask))
2281 return -EINVAL;
2282 return 0;
2283 }
2284 #endif
2285
2286 #ifdef CONFIG_NO_HZ_COMMON
2287 void calc_load_enter_idle(void);
2288 void calc_load_exit_idle(void);
2289 #else
2290 static inline void calc_load_enter_idle(void) { }
2291 static inline void calc_load_exit_idle(void) { }
2292 #endif /* CONFIG_NO_HZ_COMMON */
2293
2294 /*
2295 * Do not use outside of architecture code which knows its limitations.
2296 *
2297 * sched_clock() has no promise of monotonicity or bounded drift between
2298 * CPUs, use (which you should not) requires disabling IRQs.
2299 *
2300 * Please use one of the three interfaces below.
2301 */
2302 extern unsigned long long notrace sched_clock(void);
2303 /*
2304 * See the comment in kernel/sched/clock.c
2305 */
2306 extern u64 cpu_clock(int cpu);
2307 extern u64 local_clock(void);
2308 extern u64 running_clock(void);
2309 extern u64 sched_clock_cpu(int cpu);
2310
2311
2312 extern void sched_clock_init(void);
2313
2314 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2315 static inline void sched_clock_tick(void)
2316 {
2317 }
2318
2319 static inline void sched_clock_idle_sleep_event(void)
2320 {
2321 }
2322
2323 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
2324 {
2325 }
2326 #else
2327 /*
2328 * Architectures can set this to 1 if they have specified
2329 * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig,
2330 * but then during bootup it turns out that sched_clock()
2331 * is reliable after all:
2332 */
2333 extern int sched_clock_stable(void);
2334 extern void set_sched_clock_stable(void);
2335 extern void clear_sched_clock_stable(void);
2336
2337 extern void sched_clock_tick(void);
2338 extern void sched_clock_idle_sleep_event(void);
2339 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2340 #endif
2341
2342 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2343 /*
2344 * An i/f to runtime opt-in for irq time accounting based off of sched_clock.
2345 * The reason for this explicit opt-in is not to have perf penalty with
2346 * slow sched_clocks.
2347 */
2348 extern void enable_sched_clock_irqtime(void);
2349 extern void disable_sched_clock_irqtime(void);
2350 #else
2351 static inline void enable_sched_clock_irqtime(void) {}
2352 static inline void disable_sched_clock_irqtime(void) {}
2353 #endif
2354
2355 extern unsigned long long
2356 task_sched_runtime(struct task_struct *task);
2357
2358 /* sched_exec is called by processes performing an exec */
2359 #ifdef CONFIG_SMP
2360 extern void sched_exec(void);
2361 #else
2362 #define sched_exec() {}
2363 #endif
2364
2365 extern void sched_clock_idle_sleep_event(void);
2366 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
2367
2368 #ifdef CONFIG_HOTPLUG_CPU
2369 extern void idle_task_exit(void);
2370 #else
2371 static inline void idle_task_exit(void) {}
2372 #endif
2373
2374 #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
2375 extern void wake_up_nohz_cpu(int cpu);
2376 #else
2377 static inline void wake_up_nohz_cpu(int cpu) { }
2378 #endif
2379
2380 #ifdef CONFIG_NO_HZ_FULL
2381 extern u64 scheduler_tick_max_deferment(void);
2382 #endif
2383
2384 #ifdef CONFIG_SCHED_AUTOGROUP
2385 extern void sched_autogroup_create_attach(struct task_struct *p);
2386 extern void sched_autogroup_detach(struct task_struct *p);
2387 extern void sched_autogroup_fork(struct signal_struct *sig);
2388 extern void sched_autogroup_exit(struct signal_struct *sig);
2389 #ifdef CONFIG_PROC_FS
2390 extern void proc_sched_autogroup_show_task(struct task_struct *p, struct seq_file *m);
2391 extern int proc_sched_autogroup_set_nice(struct task_struct *p, int nice);
2392 #endif
2393 #else
2394 static inline void sched_autogroup_create_attach(struct task_struct *p) { }
2395 static inline void sched_autogroup_detach(struct task_struct *p) { }
2396 static inline void sched_autogroup_fork(struct signal_struct *sig) { }
2397 static inline void sched_autogroup_exit(struct signal_struct *sig) { }
2398 #endif
2399
2400 extern int yield_to(struct task_struct *p, bool preempt);
2401 extern void set_user_nice(struct task_struct *p, long nice);
2402 extern int task_prio(const struct task_struct *p);
2403 /**
2404 * task_nice - return the nice value of a given task.
2405 * @p: the task in question.
2406 *
2407 * Return: The nice value [ -20 ... 0 ... 19 ].
2408 */
2409 static inline int task_nice(const struct task_struct *p)
2410 {
2411 return PRIO_TO_NICE((p)->static_prio);
2412 }
2413 extern int can_nice(const struct task_struct *p, const int nice);
2414 extern int task_curr(const struct task_struct *p);
2415 extern int idle_cpu(int cpu);
2416 extern int sched_setscheduler(struct task_struct *, int,
2417 const struct sched_param *);
2418 extern int sched_setscheduler_nocheck(struct task_struct *, int,
2419 const struct sched_param *);
2420 extern int sched_setattr(struct task_struct *,
2421 const struct sched_attr *);
2422 extern struct task_struct *idle_task(int cpu);
2423 /**
2424 * is_idle_task - is the specified task an idle task?
2425 * @p: the task in question.
2426 *
2427 * Return: 1 if @p is an idle task. 0 otherwise.
2428 */
2429 static inline bool is_idle_task(const struct task_struct *p)
2430 {
2431 return p->pid == 0;
2432 }
2433 extern struct task_struct *curr_task(int cpu);
2434 extern void set_curr_task(int cpu, struct task_struct *p);
2435
2436 void yield(void);
2437
2438 union thread_union {
2439 struct thread_info thread_info;
2440 unsigned long stack[THREAD_SIZE/sizeof(long)];
2441 };
2442
2443 #ifndef __HAVE_ARCH_KSTACK_END
2444 static inline int kstack_end(void *addr)
2445 {
2446 /* Reliable end of stack detection:
2447 * Some APM bios versions misalign the stack
2448 */
2449 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
2450 }
2451 #endif
2452
2453 extern union thread_union init_thread_union;
2454 extern struct task_struct init_task;
2455
2456 extern struct mm_struct init_mm;
2457
2458 extern struct pid_namespace init_pid_ns;
2459
2460 /*
2461 * find a task by one of its numerical ids
2462 *
2463 * find_task_by_pid_ns():
2464 * finds a task by its pid in the specified namespace
2465 * find_task_by_vpid():
2466 * finds a task by its virtual pid
2467 *
2468 * see also find_vpid() etc in include/linux/pid.h
2469 */
2470
2471 extern struct task_struct *find_task_by_vpid(pid_t nr);
2472 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
2473 struct pid_namespace *ns);
2474
2475 /* per-UID process charging. */
2476 extern struct user_struct * alloc_uid(kuid_t);
2477 static inline struct user_struct *get_uid(struct user_struct *u)
2478 {
2479 atomic_inc(&u->__count);
2480 return u;
2481 }
2482 extern void free_uid(struct user_struct *);
2483
2484 #include <asm/current.h>
2485
2486 extern void xtime_update(unsigned long ticks);
2487
2488 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2489 extern int wake_up_process(struct task_struct *tsk);
2490 extern void wake_up_new_task(struct task_struct *tsk);
2491 #ifdef CONFIG_SMP
2492 extern void kick_process(struct task_struct *tsk);
2493 #else
2494 static inline void kick_process(struct task_struct *tsk) { }
2495 #endif
2496 extern int sched_fork(unsigned long clone_flags, struct task_struct *p);
2497 extern void sched_dead(struct task_struct *p);
2498
2499 extern void proc_caches_init(void);
2500 extern void flush_signals(struct task_struct *);
2501 extern void ignore_signals(struct task_struct *);
2502 extern void flush_signal_handlers(struct task_struct *, int force_default);
2503 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
2504
2505 static inline int kernel_dequeue_signal(siginfo_t *info)
2506 {
2507 struct task_struct *tsk = current;
2508 siginfo_t __info;
2509 int ret;
2510
2511 spin_lock_irq(&tsk->sighand->siglock);
2512 ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
2513 spin_unlock_irq(&tsk->sighand->siglock);
2514
2515 return ret;
2516 }
2517
2518 static inline void kernel_signal_stop(void)
2519 {
2520 spin_lock_irq(&current->sighand->siglock);
2521 if (current->jobctl & JOBCTL_STOP_DEQUEUED)
2522 __set_current_state(TASK_STOPPED);
2523 spin_unlock_irq(&current->sighand->siglock);
2524
2525 schedule();
2526 }
2527
2528 extern void release_task(struct task_struct * p);
2529 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
2530 extern int force_sigsegv(int, struct task_struct *);
2531 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
2532 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
2533 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
2534 extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
2535 const struct cred *, u32);
2536 extern int kill_pgrp(struct pid *pid, int sig, int priv);
2537 extern int kill_pid(struct pid *pid, int sig, int priv);
2538 extern int kill_proc_info(int, struct siginfo *, pid_t);
2539 extern __must_check bool do_notify_parent(struct task_struct *, int);
2540 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
2541 extern void force_sig(int, struct task_struct *);
2542 extern int send_sig(int, struct task_struct *, int);
2543 extern int zap_other_threads(struct task_struct *p);
2544 extern struct sigqueue *sigqueue_alloc(void);
2545 extern void sigqueue_free(struct sigqueue *);
2546 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
2547 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
2548
2549 static inline void restore_saved_sigmask(void)
2550 {
2551 if (test_and_clear_restore_sigmask())
2552 __set_current_blocked(&current->saved_sigmask);
2553 }
2554
2555 static inline sigset_t *sigmask_to_save(void)
2556 {
2557 sigset_t *res = &current->blocked;
2558 if (unlikely(test_restore_sigmask()))
2559 res = &current->saved_sigmask;
2560 return res;
2561 }
2562
2563 static inline int kill_cad_pid(int sig, int priv)
2564 {
2565 return kill_pid(cad_pid, sig, priv);
2566 }
2567
2568 /* These can be the second arg to send_sig_info/send_group_sig_info. */
2569 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
2570 #define SEND_SIG_PRIV ((struct siginfo *) 1)
2571 #define SEND_SIG_FORCED ((struct siginfo *) 2)
2572
2573 /*
2574 * True if we are on the alternate signal stack.
2575 */
2576 static inline int on_sig_stack(unsigned long sp)
2577 {
2578 #ifdef CONFIG_STACK_GROWSUP
2579 return sp >= current->sas_ss_sp &&
2580 sp - current->sas_ss_sp < current->sas_ss_size;
2581 #else
2582 return sp > current->sas_ss_sp &&
2583 sp - current->sas_ss_sp <= current->sas_ss_size;
2584 #endif
2585 }
2586
2587 static inline int sas_ss_flags(unsigned long sp)
2588 {
2589 if (!current->sas_ss_size)
2590 return SS_DISABLE;
2591
2592 return on_sig_stack(sp) ? SS_ONSTACK : 0;
2593 }
2594
2595 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
2596 {
2597 if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
2598 #ifdef CONFIG_STACK_GROWSUP
2599 return current->sas_ss_sp;
2600 #else
2601 return current->sas_ss_sp + current->sas_ss_size;
2602 #endif
2603 return sp;
2604 }
2605
2606 /*
2607 * Routines for handling mm_structs
2608 */
2609 extern struct mm_struct * mm_alloc(void);
2610
2611 /* mmdrop drops the mm and the page tables */
2612 extern void __mmdrop(struct mm_struct *);
2613 static inline void mmdrop(struct mm_struct * mm)
2614 {
2615 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
2616 __mmdrop(mm);
2617 }
2618
2619 /* mmput gets rid of the mappings and all user-space */
2620 extern void mmput(struct mm_struct *);
2621 /* Grab a reference to a task's mm, if it is not already going away */
2622 extern struct mm_struct *get_task_mm(struct task_struct *task);
2623 /*
2624 * Grab a reference to a task's mm, if it is not already going away
2625 * and ptrace_may_access with the mode parameter passed to it
2626 * succeeds.
2627 */
2628 extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
2629 /* Remove the current tasks stale references to the old mm_struct */
2630 extern void mm_release(struct task_struct *, struct mm_struct *);
2631
2632 #ifdef CONFIG_HAVE_COPY_THREAD_TLS
2633 extern int copy_thread_tls(unsigned long, unsigned long, unsigned long,
2634 struct task_struct *, unsigned long);
2635 #else
2636 extern int copy_thread(unsigned long, unsigned long, unsigned long,
2637 struct task_struct *);
2638
2639 /* Architectures that haven't opted into copy_thread_tls get the tls argument
2640 * via pt_regs, so ignore the tls argument passed via C. */
2641 static inline int copy_thread_tls(
2642 unsigned long clone_flags, unsigned long sp, unsigned long arg,
2643 struct task_struct *p, unsigned long tls)
2644 {
2645 return copy_thread(clone_flags, sp, arg, p);
2646 }
2647 #endif
2648 extern void flush_thread(void);
2649 extern void exit_thread(void);
2650
2651 extern void exit_files(struct task_struct *);
2652 extern void __cleanup_sighand(struct sighand_struct *);
2653
2654 extern void exit_itimers(struct signal_struct *);
2655 extern void flush_itimer_signals(void);
2656
2657 extern void do_group_exit(int);
2658
2659 extern int do_execve(struct filename *,
2660 const char __user * const __user *,
2661 const char __user * const __user *);
2662 extern int do_execveat(int, struct filename *,
2663 const char __user * const __user *,
2664 const char __user * const __user *,
2665 int);
2666 extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long);
2667 extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *);
2668 struct task_struct *fork_idle(int);
2669 extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);
2670
2671 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2672 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2673 {
2674 __set_task_comm(tsk, from, false);
2675 }
2676 extern char *get_task_comm(char *to, struct task_struct *tsk);
2677
2678 #ifdef CONFIG_SMP
2679 void scheduler_ipi(void);
2680 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
2681 #else
2682 static inline void scheduler_ipi(void) { }
2683 static inline unsigned long wait_task_inactive(struct task_struct *p,
2684 long match_state)
2685 {
2686 return 1;
2687 }
2688 #endif
2689
2690 #define tasklist_empty() \
2691 list_empty(&init_task.tasks)
2692
2693 #define next_task(p) \
2694 list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
2695
2696 #define for_each_process(p) \
2697 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
2698
2699 extern bool current_is_single_threaded(void);
2700
2701 /*
2702 * Careful: do_each_thread/while_each_thread is a double loop so
2703 * 'break' will not work as expected - use goto instead.
2704 */
2705 #define do_each_thread(g, t) \
2706 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
2707
2708 #define while_each_thread(g, t) \
2709 while ((t = next_thread(t)) != g)
2710
2711 #define __for_each_thread(signal, t) \
2712 list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
2713
2714 #define for_each_thread(p, t) \
2715 __for_each_thread((p)->signal, t)
2716
2717 /* Careful: this is a double loop, 'break' won't work as expected. */
2718 #define for_each_process_thread(p, t) \
2719 for_each_process(p) for_each_thread(p, t)
2720
2721 static inline int get_nr_threads(struct task_struct *tsk)
2722 {
2723 return tsk->signal->nr_threads;
2724 }
2725
2726 static inline bool thread_group_leader(struct task_struct *p)
2727 {
2728 return p->exit_signal >= 0;
2729 }
2730
2731 /* Do to the insanities of de_thread it is possible for a process
2732 * to have the pid of the thread group leader without actually being
2733 * the thread group leader. For iteration through the pids in proc
2734 * all we care about is that we have a task with the appropriate
2735 * pid, we don't actually care if we have the right task.
2736 */
2737 static inline bool has_group_leader_pid(struct task_struct *p)
2738 {
2739 return task_pid(p) == p->signal->leader_pid;
2740 }
2741
2742 static inline
2743 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
2744 {
2745 return p1->signal == p2->signal;
2746 }
2747
2748 static inline struct task_struct *next_thread(const struct task_struct *p)
2749 {
2750 return list_entry_rcu(p->thread_group.next,
2751 struct task_struct, thread_group);
2752 }
2753
2754 static inline int thread_group_empty(struct task_struct *p)
2755 {
2756 return list_empty(&p->thread_group);
2757 }
2758
2759 #define delay_group_leader(p) \
2760 (thread_group_leader(p) && !thread_group_empty(p))
2761
2762 /*
2763 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
2764 * subscriptions and synchronises with wait4(). Also used in procfs. Also
2765 * pins the final release of task.io_context. Also protects ->cpuset and
2766 * ->cgroup.subsys[]. And ->vfork_done.
2767 *
2768 * Nests both inside and outside of read_lock(&tasklist_lock).
2769 * It must not be nested with write_lock_irq(&tasklist_lock),
2770 * neither inside nor outside.
2771 */
2772 static inline void task_lock(struct task_struct *p)
2773 {
2774 spin_lock(&p->alloc_lock);
2775 }
2776
2777 static inline void task_unlock(struct task_struct *p)
2778 {
2779 spin_unlock(&p->alloc_lock);
2780 }
2781
2782 extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
2783 unsigned long *flags);
2784
2785 static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
2786 unsigned long *flags)
2787 {
2788 struct sighand_struct *ret;
2789
2790 ret = __lock_task_sighand(tsk, flags);
2791 (void)__cond_lock(&tsk->sighand->siglock, ret);
2792 return ret;
2793 }
2794
2795 static inline void unlock_task_sighand(struct task_struct *tsk,
2796 unsigned long *flags)
2797 {
2798 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
2799 }
2800
2801 /**
2802 * threadgroup_change_begin - mark the beginning of changes to a threadgroup
2803 * @tsk: task causing the changes
2804 *
2805 * All operations which modify a threadgroup - a new thread joining the
2806 * group, death of a member thread (the assertion of PF_EXITING) and
2807 * exec(2) dethreading the process and replacing the leader - are wrapped
2808 * by threadgroup_change_{begin|end}(). This is to provide a place which
2809 * subsystems needing threadgroup stability can hook into for
2810 * synchronization.
2811 */
2812 static inline void threadgroup_change_begin(struct task_struct *tsk)
2813 {
2814 might_sleep();
2815 cgroup_threadgroup_change_begin(tsk);
2816 }
2817
2818 /**
2819 * threadgroup_change_end - mark the end of changes to a threadgroup
2820 * @tsk: task causing the changes
2821 *
2822 * See threadgroup_change_begin().
2823 */
2824 static inline void threadgroup_change_end(struct task_struct *tsk)
2825 {
2826 cgroup_threadgroup_change_end(tsk);
2827 }
2828
2829 #ifndef __HAVE_THREAD_FUNCTIONS
2830
2831 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
2832 #define task_stack_page(task) ((task)->stack)
2833
2834 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
2835 {
2836 *task_thread_info(p) = *task_thread_info(org);
2837 task_thread_info(p)->task = p;
2838 }
2839
2840 /*
2841 * Return the address of the last usable long on the stack.
2842 *
2843 * When the stack grows down, this is just above the thread
2844 * info struct. Going any lower will corrupt the threadinfo.
2845 *
2846 * When the stack grows up, this is the highest address.
2847 * Beyond that position, we corrupt data on the next page.
2848 */
2849 static inline unsigned long *end_of_stack(struct task_struct *p)
2850 {
2851 #ifdef CONFIG_STACK_GROWSUP
2852 return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1;
2853 #else
2854 return (unsigned long *)(task_thread_info(p) + 1);
2855 #endif
2856 }
2857
2858 #endif
2859 #define task_stack_end_corrupted(task) \
2860 (*(end_of_stack(task)) != STACK_END_MAGIC)
2861
2862 static inline int object_is_on_stack(void *obj)
2863 {
2864 void *stack = task_stack_page(current);
2865
2866 return (obj >= stack) && (obj < (stack + THREAD_SIZE));
2867 }
2868
2869 extern void thread_info_cache_init(void);
2870
2871 #ifdef CONFIG_DEBUG_STACK_USAGE
2872 static inline unsigned long stack_not_used(struct task_struct *p)
2873 {
2874 unsigned long *n = end_of_stack(p);
2875
2876 do { /* Skip over canary */
2877 # ifdef CONFIG_STACK_GROWSUP
2878 n--;
2879 # else
2880 n++;
2881 # endif
2882 } while (!*n);
2883
2884 # ifdef CONFIG_STACK_GROWSUP
2885 return (unsigned long)end_of_stack(p) - (unsigned long)n;
2886 # else
2887 return (unsigned long)n - (unsigned long)end_of_stack(p);
2888 # endif
2889 }
2890 #endif
2891 extern void set_task_stack_end_magic(struct task_struct *tsk);
2892
2893 /* set thread flags in other task's structures
2894 * - see asm/thread_info.h for TIF_xxxx flags available
2895 */
2896 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2897 {
2898 set_ti_thread_flag(task_thread_info(tsk), flag);
2899 }
2900
2901 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2902 {
2903 clear_ti_thread_flag(task_thread_info(tsk), flag);
2904 }
2905
2906 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2907 {
2908 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2909 }
2910
2911 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2912 {
2913 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2914 }
2915
2916 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2917 {
2918 return test_ti_thread_flag(task_thread_info(tsk), flag);
2919 }
2920
2921 static inline void set_tsk_need_resched(struct task_struct *tsk)
2922 {
2923 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2924 }
2925
2926 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2927 {
2928 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2929 }
2930
2931 static inline int test_tsk_need_resched(struct task_struct *tsk)
2932 {
2933 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2934 }
2935
2936 static inline int restart_syscall(void)
2937 {
2938 set_tsk_thread_flag(current, TIF_SIGPENDING);
2939 return -ERESTARTNOINTR;
2940 }
2941
2942 static inline int signal_pending(struct task_struct *p)
2943 {
2944 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2945 }
2946
2947 static inline int __fatal_signal_pending(struct task_struct *p)
2948 {
2949 return unlikely(sigismember(&p->pending.signal, SIGKILL));
2950 }
2951
2952 static inline int fatal_signal_pending(struct task_struct *p)
2953 {
2954 return signal_pending(p) && __fatal_signal_pending(p);
2955 }
2956
2957 static inline int signal_pending_state(long state, struct task_struct *p)
2958 {
2959 if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
2960 return 0;
2961 if (!signal_pending(p))
2962 return 0;
2963
2964 return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
2965 }
2966
2967 /*
2968 * cond_resched() and cond_resched_lock(): latency reduction via
2969 * explicit rescheduling in places that are safe. The return
2970 * value indicates whether a reschedule was done in fact.
2971 * cond_resched_lock() will drop the spinlock before scheduling,
2972 * cond_resched_softirq() will enable bhs before scheduling.
2973 */
2974 extern int _cond_resched(void);
2975
2976 #define cond_resched() ({ \
2977 ___might_sleep(__FILE__, __LINE__, 0); \
2978 _cond_resched(); \
2979 })
2980
2981 extern int __cond_resched_lock(spinlock_t *lock);
2982
2983 #define cond_resched_lock(lock) ({ \
2984 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2985 __cond_resched_lock(lock); \
2986 })
2987
2988 extern int __cond_resched_softirq(void);
2989
2990 #define cond_resched_softirq() ({ \
2991 ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \
2992 __cond_resched_softirq(); \
2993 })
2994
2995 static inline void cond_resched_rcu(void)
2996 {
2997 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2998 rcu_read_unlock();
2999 cond_resched();
3000 rcu_read_lock();
3001 #endif
3002 }
3003
3004 /*
3005 * Does a critical section need to be broken due to another
3006 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
3007 * but a general need for low latency)
3008 */
3009 static inline int spin_needbreak(spinlock_t *lock)
3010 {
3011 #ifdef CONFIG_PREEMPT
3012 return spin_is_contended(lock);
3013 #else
3014 return 0;
3015 #endif
3016 }
3017
3018 /*
3019 * Idle thread specific functions to determine the need_resched
3020 * polling state.
3021 */
3022 #ifdef TIF_POLLING_NRFLAG
3023 static inline int tsk_is_polling(struct task_struct *p)
3024 {
3025 return test_tsk_thread_flag(p, TIF_POLLING_NRFLAG);
3026 }
3027
3028 static inline void __current_set_polling(void)
3029 {
3030 set_thread_flag(TIF_POLLING_NRFLAG);
3031 }
3032
3033 static inline bool __must_check current_set_polling_and_test(void)
3034 {
3035 __current_set_polling();
3036
3037 /*
3038 * Polling state must be visible before we test NEED_RESCHED,
3039 * paired by resched_curr()
3040 */
3041 smp_mb__after_atomic();
3042
3043 return unlikely(tif_need_resched());
3044 }
3045
3046 static inline void __current_clr_polling(void)
3047 {
3048 clear_thread_flag(TIF_POLLING_NRFLAG);
3049 }
3050
3051 static inline bool __must_check current_clr_polling_and_test(void)
3052 {
3053 __current_clr_polling();
3054
3055 /*
3056 * Polling state must be visible before we test NEED_RESCHED,
3057 * paired by resched_curr()
3058 */
3059 smp_mb__after_atomic();
3060
3061 return unlikely(tif_need_resched());
3062 }
3063
3064 #else
3065 static inline int tsk_is_polling(struct task_struct *p) { return 0; }
3066 static inline void __current_set_polling(void) { }
3067 static inline void __current_clr_polling(void) { }
3068
3069 static inline bool __must_check current_set_polling_and_test(void)
3070 {
3071 return unlikely(tif_need_resched());
3072 }
3073 static inline bool __must_check current_clr_polling_and_test(void)
3074 {
3075 return unlikely(tif_need_resched());
3076 }
3077 #endif
3078
3079 static inline void current_clr_polling(void)
3080 {
3081 __current_clr_polling();
3082
3083 /*
3084 * Ensure we check TIF_NEED_RESCHED after we clear the polling bit.
3085 * Once the bit is cleared, we'll get IPIs with every new
3086 * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also
3087 * fold.
3088 */
3089 smp_mb(); /* paired with resched_curr() */
3090
3091 preempt_fold_need_resched();
3092 }
3093
3094 static __always_inline bool need_resched(void)
3095 {
3096 return unlikely(tif_need_resched());
3097 }
3098
3099 /*
3100 * Thread group CPU time accounting.
3101 */
3102 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times);
3103 void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times);
3104
3105 /*
3106 * Reevaluate whether the task has signals pending delivery.
3107 * Wake the task if so.
3108 * This is required every time the blocked sigset_t changes.
3109 * callers must hold sighand->siglock.
3110 */
3111 extern void recalc_sigpending_and_wake(struct task_struct *t);
3112 extern void recalc_sigpending(void);
3113
3114 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
3115
3116 static inline void signal_wake_up(struct task_struct *t, bool resume)
3117 {
3118 signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
3119 }
3120 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
3121 {
3122 signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
3123 }
3124
3125 /*
3126 * Wrappers for p->thread_info->cpu access. No-op on UP.
3127 */
3128 #ifdef CONFIG_SMP
3129
3130 static inline unsigned int task_cpu(const struct task_struct *p)
3131 {
3132 return task_thread_info(p)->cpu;
3133 }
3134
3135 static inline int task_node(const struct task_struct *p)
3136 {
3137 return cpu_to_node(task_cpu(p));
3138 }
3139
3140 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
3141
3142 #else
3143
3144 static inline unsigned int task_cpu(const struct task_struct *p)
3145 {
3146 return 0;
3147 }
3148
3149 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
3150 {
3151 }
3152
3153 #endif /* CONFIG_SMP */
3154
3155 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
3156 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
3157
3158 #ifdef CONFIG_CGROUP_SCHED
3159 extern struct task_group root_task_group;
3160 #endif /* CONFIG_CGROUP_SCHED */
3161
3162 extern int task_can_switch_user(struct user_struct *up,
3163 struct task_struct *tsk);
3164
3165 #ifdef CONFIG_TASK_XACCT
3166 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3167 {
3168 tsk->ioac.rchar += amt;
3169 }
3170
3171 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3172 {
3173 tsk->ioac.wchar += amt;
3174 }
3175
3176 static inline void inc_syscr(struct task_struct *tsk)
3177 {
3178 tsk->ioac.syscr++;
3179 }
3180
3181 static inline void inc_syscw(struct task_struct *tsk)
3182 {
3183 tsk->ioac.syscw++;
3184 }
3185 #else
3186 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
3187 {
3188 }
3189
3190 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
3191 {
3192 }
3193
3194 static inline void inc_syscr(struct task_struct *tsk)
3195 {
3196 }
3197
3198 static inline void inc_syscw(struct task_struct *tsk)
3199 {
3200 }
3201 #endif
3202
3203 #ifndef TASK_SIZE_OF
3204 #define TASK_SIZE_OF(tsk) TASK_SIZE
3205 #endif
3206
3207 #ifdef CONFIG_MEMCG
3208 extern void mm_update_next_owner(struct mm_struct *mm);
3209 #else
3210 static inline void mm_update_next_owner(struct mm_struct *mm)
3211 {
3212 }
3213 #endif /* CONFIG_MEMCG */
3214
3215 static inline unsigned long task_rlimit(const struct task_struct *tsk,
3216 unsigned int limit)
3217 {
3218 return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
3219 }
3220
3221 static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
3222 unsigned int limit)
3223 {
3224 return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
3225 }
3226
3227 static inline unsigned long rlimit(unsigned int limit)
3228 {
3229 return task_rlimit(current, limit);
3230 }
3231
3232 static inline unsigned long rlimit_max(unsigned int limit)
3233 {
3234 return task_rlimit_max(current, limit);
3235 }
3236
3237 #ifdef CONFIG_CPU_FREQ
3238 struct update_util_data {
3239 void (*func)(struct update_util_data *data,
3240 u64 time, unsigned long util, unsigned long max);
3241 };
3242
3243 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data);
3244 #endif /* CONFIG_CPU_FREQ */
3245
3246 #endif
This page took 0.119984 seconds and 4 git commands to generate.