Merge remote-tracking branch 'cgroup/for-next'
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/file.h>
65 #include <net/sock.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/cgroup.h>
69
70 /*
71 * pidlists linger the following amount before being destroyed. The goal
72 * is avoiding frequent destruction in the middle of consecutive read calls
73 * Expiring in the middle is a performance problem not a correctness one.
74 * 1 sec should be enough.
75 */
76 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
77
78 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
79 MAX_CFTYPE_NAME + 2)
80
81 /*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
84 *
85 * css_set_lock protects task->cgroups pointer, the list of css_set
86 * objects, and the chain of tasks off each css_set.
87 *
88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
89 * cgroup.h can use them for lockdep annotations.
90 */
91 #ifdef CONFIG_PROVE_RCU
92 DEFINE_MUTEX(cgroup_mutex);
93 DEFINE_SPINLOCK(css_set_lock);
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #else
97 static DEFINE_MUTEX(cgroup_mutex);
98 static DEFINE_SPINLOCK(css_set_lock);
99 #endif
100
101 /*
102 * Protects cgroup_idr and css_idr so that IDs can be released without
103 * grabbing cgroup_mutex.
104 */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106
107 /*
108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
109 * against file removal/re-creation across css hiding.
110 */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112
113 /*
114 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
115 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
116 */
117 static DEFINE_SPINLOCK(release_agent_path_lock);
118
119 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
120
121 #define cgroup_assert_mutex_or_rcu_locked() \
122 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
123 !lockdep_is_held(&cgroup_mutex), \
124 "cgroup_mutex or RCU read lock required");
125
126 /*
127 * cgroup destruction makes heavy use of work items and there can be a lot
128 * of concurrent destructions. Use a separate workqueue so that cgroup
129 * destruction work items don't end up filling up max_active of system_wq
130 * which may lead to deadlock.
131 */
132 static struct workqueue_struct *cgroup_destroy_wq;
133
134 /*
135 * pidlist destructions need to be flushed on cgroup destruction. Use a
136 * separate workqueue as flush domain.
137 */
138 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
139
140 /* generate an array of cgroup subsystem pointers */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
142 static struct cgroup_subsys *cgroup_subsys[] = {
143 #include <linux/cgroup_subsys.h>
144 };
145 #undef SUBSYS
146
147 /* array of cgroup subsystem names */
148 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
149 static const char *cgroup_subsys_name[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
155 #define SUBSYS(_x) \
156 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
157 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
158 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
159 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
160 #include <linux/cgroup_subsys.h>
161 #undef SUBSYS
162
163 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
164 static struct static_key_true *cgroup_subsys_enabled_key[] = {
165 #include <linux/cgroup_subsys.h>
166 };
167 #undef SUBSYS
168
169 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
170 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
171 #include <linux/cgroup_subsys.h>
172 };
173 #undef SUBSYS
174
175 /*
176 * The default hierarchy, reserved for the subsystems that are otherwise
177 * unattached - it never has more than a single cgroup, and all tasks are
178 * part of that cgroup.
179 */
180 struct cgroup_root cgrp_dfl_root;
181 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
182
183 /*
184 * The default hierarchy always exists but is hidden until mounted for the
185 * first time. This is for backward compatibility.
186 */
187 static bool cgrp_dfl_visible;
188
189 /* Controllers blocked by the commandline in v1 */
190 static u16 cgroup_no_v1_mask;
191
192 /* some controllers are not supported in the default hierarchy */
193 static u16 cgrp_dfl_inhibit_ss_mask;
194
195 /* some controllers are implicitly enabled on the default hierarchy */
196 static unsigned long cgrp_dfl_implicit_ss_mask;
197
198 /* The list of hierarchy roots */
199
200 static LIST_HEAD(cgroup_roots);
201 static int cgroup_root_count;
202
203 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
204 static DEFINE_IDR(cgroup_hierarchy_idr);
205
206 /*
207 * Assign a monotonically increasing serial number to csses. It guarantees
208 * cgroups with bigger numbers are newer than those with smaller numbers.
209 * Also, as csses are always appended to the parent's ->children list, it
210 * guarantees that sibling csses are always sorted in the ascending serial
211 * number order on the list. Protected by cgroup_mutex.
212 */
213 static u64 css_serial_nr_next = 1;
214
215 /*
216 * These bitmask flags indicate whether tasks in the fork and exit paths have
217 * fork/exit handlers to call. This avoids us having to do extra work in the
218 * fork/exit path to check which subsystems have fork/exit callbacks.
219 */
220 static u16 have_fork_callback __read_mostly;
221 static u16 have_exit_callback __read_mostly;
222 static u16 have_free_callback __read_mostly;
223
224 /* cgroup namespace for init task */
225 struct cgroup_namespace init_cgroup_ns = {
226 .count = { .counter = 2, },
227 .user_ns = &init_user_ns,
228 .ns.ops = &cgroupns_operations,
229 .ns.inum = PROC_CGROUP_INIT_INO,
230 .root_cset = &init_css_set,
231 };
232
233 /* Ditto for the can_fork callback. */
234 static u16 have_canfork_callback __read_mostly;
235
236 static struct file_system_type cgroup2_fs_type;
237 static struct cftype cgroup_dfl_base_files[];
238 static struct cftype cgroup_legacy_base_files[];
239
240 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
241 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
242 static int cgroup_apply_control(struct cgroup *cgrp);
243 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
244 static void css_task_iter_advance(struct css_task_iter *it);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 struct cgroup *cgrp, struct cftype cfts[],
252 bool is_add);
253
254 /**
255 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
256 * @ssid: subsys ID of interest
257 *
258 * cgroup_subsys_enabled() can only be used with literal subsys names which
259 * is fine for individual subsystems but unsuitable for cgroup core. This
260 * is slower static_key_enabled() based test indexed by @ssid.
261 */
262 static bool cgroup_ssid_enabled(int ssid)
263 {
264 if (CGROUP_SUBSYS_COUNT == 0)
265 return false;
266
267 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
268 }
269
270 static bool cgroup_ssid_no_v1(int ssid)
271 {
272 return cgroup_no_v1_mask & (1 << ssid);
273 }
274
275 /**
276 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
277 * @cgrp: the cgroup of interest
278 *
279 * The default hierarchy is the v2 interface of cgroup and this function
280 * can be used to test whether a cgroup is on the default hierarchy for
281 * cases where a subsystem should behave differnetly depending on the
282 * interface version.
283 *
284 * The set of behaviors which change on the default hierarchy are still
285 * being determined and the mount option is prefixed with __DEVEL__.
286 *
287 * List of changed behaviors:
288 *
289 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
290 * and "name" are disallowed.
291 *
292 * - When mounting an existing superblock, mount options should match.
293 *
294 * - Remount is disallowed.
295 *
296 * - rename(2) is disallowed.
297 *
298 * - "tasks" is removed. Everything should be at process granularity. Use
299 * "cgroup.procs" instead.
300 *
301 * - "cgroup.procs" is not sorted. pids will be unique unless they got
302 * recycled inbetween reads.
303 *
304 * - "release_agent" and "notify_on_release" are removed. Replacement
305 * notification mechanism will be implemented.
306 *
307 * - "cgroup.clone_children" is removed.
308 *
309 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
310 * and its descendants contain no task; otherwise, 1. The file also
311 * generates kernfs notification which can be monitored through poll and
312 * [di]notify when the value of the file changes.
313 *
314 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
315 * take masks of ancestors with non-empty cpus/mems, instead of being
316 * moved to an ancestor.
317 *
318 * - cpuset: a task can be moved into an empty cpuset, and again it takes
319 * masks of ancestors.
320 *
321 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
322 * is not created.
323 *
324 * - blkcg: blk-throttle becomes properly hierarchical.
325 *
326 * - debug: disallowed on the default hierarchy.
327 */
328 static bool cgroup_on_dfl(const struct cgroup *cgrp)
329 {
330 return cgrp->root == &cgrp_dfl_root;
331 }
332
333 /* IDR wrappers which synchronize using cgroup_idr_lock */
334 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
335 gfp_t gfp_mask)
336 {
337 int ret;
338
339 idr_preload(gfp_mask);
340 spin_lock_bh(&cgroup_idr_lock);
341 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
342 spin_unlock_bh(&cgroup_idr_lock);
343 idr_preload_end();
344 return ret;
345 }
346
347 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
348 {
349 void *ret;
350
351 spin_lock_bh(&cgroup_idr_lock);
352 ret = idr_replace(idr, ptr, id);
353 spin_unlock_bh(&cgroup_idr_lock);
354 return ret;
355 }
356
357 static void cgroup_idr_remove(struct idr *idr, int id)
358 {
359 spin_lock_bh(&cgroup_idr_lock);
360 idr_remove(idr, id);
361 spin_unlock_bh(&cgroup_idr_lock);
362 }
363
364 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
365 {
366 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
367
368 if (parent_css)
369 return container_of(parent_css, struct cgroup, self);
370 return NULL;
371 }
372
373 /* subsystems visibly enabled on a cgroup */
374 static u16 cgroup_control(struct cgroup *cgrp)
375 {
376 struct cgroup *parent = cgroup_parent(cgrp);
377 u16 root_ss_mask = cgrp->root->subsys_mask;
378
379 if (parent)
380 return parent->subtree_control;
381
382 if (cgroup_on_dfl(cgrp))
383 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
384 cgrp_dfl_implicit_ss_mask);
385 return root_ss_mask;
386 }
387
388 /* subsystems enabled on a cgroup */
389 static u16 cgroup_ss_mask(struct cgroup *cgrp)
390 {
391 struct cgroup *parent = cgroup_parent(cgrp);
392
393 if (parent)
394 return parent->subtree_ss_mask;
395
396 return cgrp->root->subsys_mask;
397 }
398
399 /**
400 * cgroup_css - obtain a cgroup's css for the specified subsystem
401 * @cgrp: the cgroup of interest
402 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
403 *
404 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
405 * function must be called either under cgroup_mutex or rcu_read_lock() and
406 * the caller is responsible for pinning the returned css if it wants to
407 * keep accessing it outside the said locks. This function may return
408 * %NULL if @cgrp doesn't have @subsys_id enabled.
409 */
410 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
411 struct cgroup_subsys *ss)
412 {
413 if (ss)
414 return rcu_dereference_check(cgrp->subsys[ss->id],
415 lockdep_is_held(&cgroup_mutex));
416 else
417 return &cgrp->self;
418 }
419
420 /**
421 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
422 * @cgrp: the cgroup of interest
423 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
424 *
425 * Similar to cgroup_css() but returns the effective css, which is defined
426 * as the matching css of the nearest ancestor including self which has @ss
427 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
428 * function is guaranteed to return non-NULL css.
429 */
430 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
431 struct cgroup_subsys *ss)
432 {
433 lockdep_assert_held(&cgroup_mutex);
434
435 if (!ss)
436 return &cgrp->self;
437
438 /*
439 * This function is used while updating css associations and thus
440 * can't test the csses directly. Test ss_mask.
441 */
442 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
443 cgrp = cgroup_parent(cgrp);
444 if (!cgrp)
445 return NULL;
446 }
447
448 return cgroup_css(cgrp, ss);
449 }
450
451 /**
452 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
453 * @cgrp: the cgroup of interest
454 * @ss: the subsystem of interest
455 *
456 * Find and get the effective css of @cgrp for @ss. The effective css is
457 * defined as the matching css of the nearest ancestor including self which
458 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
459 * the root css is returned, so this function always returns a valid css.
460 * The returned css must be put using css_put().
461 */
462 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
463 struct cgroup_subsys *ss)
464 {
465 struct cgroup_subsys_state *css;
466
467 rcu_read_lock();
468
469 do {
470 css = cgroup_css(cgrp, ss);
471
472 if (css && css_tryget_online(css))
473 goto out_unlock;
474 cgrp = cgroup_parent(cgrp);
475 } while (cgrp);
476
477 css = init_css_set.subsys[ss->id];
478 css_get(css);
479 out_unlock:
480 rcu_read_unlock();
481 return css;
482 }
483
484 /* convenient tests for these bits */
485 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
486 {
487 return !(cgrp->self.flags & CSS_ONLINE);
488 }
489
490 static void cgroup_get(struct cgroup *cgrp)
491 {
492 WARN_ON_ONCE(cgroup_is_dead(cgrp));
493 css_get(&cgrp->self);
494 }
495
496 static bool cgroup_tryget(struct cgroup *cgrp)
497 {
498 return css_tryget(&cgrp->self);
499 }
500
501 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
502 {
503 struct cgroup *cgrp = of->kn->parent->priv;
504 struct cftype *cft = of_cft(of);
505
506 /*
507 * This is open and unprotected implementation of cgroup_css().
508 * seq_css() is only called from a kernfs file operation which has
509 * an active reference on the file. Because all the subsystem
510 * files are drained before a css is disassociated with a cgroup,
511 * the matching css from the cgroup's subsys table is guaranteed to
512 * be and stay valid until the enclosing operation is complete.
513 */
514 if (cft->ss)
515 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
516 else
517 return &cgrp->self;
518 }
519 EXPORT_SYMBOL_GPL(of_css);
520
521 static int notify_on_release(const struct cgroup *cgrp)
522 {
523 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
524 }
525
526 /**
527 * for_each_css - iterate all css's of a cgroup
528 * @css: the iteration cursor
529 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
530 * @cgrp: the target cgroup to iterate css's of
531 *
532 * Should be called under cgroup_[tree_]mutex.
533 */
534 #define for_each_css(css, ssid, cgrp) \
535 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
536 if (!((css) = rcu_dereference_check( \
537 (cgrp)->subsys[(ssid)], \
538 lockdep_is_held(&cgroup_mutex)))) { } \
539 else
540
541 /**
542 * for_each_e_css - iterate all effective css's of a cgroup
543 * @css: the iteration cursor
544 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
545 * @cgrp: the target cgroup to iterate css's of
546 *
547 * Should be called under cgroup_[tree_]mutex.
548 */
549 #define for_each_e_css(css, ssid, cgrp) \
550 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
551 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
552 ; \
553 else
554
555 /**
556 * for_each_subsys - iterate all enabled cgroup subsystems
557 * @ss: the iteration cursor
558 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
559 */
560 #define for_each_subsys(ss, ssid) \
561 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
562 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
563
564 /**
565 * do_each_subsys_mask - filter for_each_subsys with a bitmask
566 * @ss: the iteration cursor
567 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
568 * @ss_mask: the bitmask
569 *
570 * The block will only run for cases where the ssid-th bit (1 << ssid) of
571 * @ss_mask is set.
572 */
573 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
574 unsigned long __ss_mask = (ss_mask); \
575 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
576 (ssid) = 0; \
577 break; \
578 } \
579 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
580 (ss) = cgroup_subsys[ssid]; \
581 {
582
583 #define while_each_subsys_mask() \
584 } \
585 } \
586 } while (false)
587
588 /* iterate across the hierarchies */
589 #define for_each_root(root) \
590 list_for_each_entry((root), &cgroup_roots, root_list)
591
592 /* iterate over child cgrps, lock should be held throughout iteration */
593 #define cgroup_for_each_live_child(child, cgrp) \
594 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
595 if (({ lockdep_assert_held(&cgroup_mutex); \
596 cgroup_is_dead(child); })) \
597 ; \
598 else
599
600 /* walk live descendants in preorder */
601 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
602 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
603 if (({ lockdep_assert_held(&cgroup_mutex); \
604 (dsct) = (d_css)->cgroup; \
605 cgroup_is_dead(dsct); })) \
606 ; \
607 else
608
609 /* walk live descendants in postorder */
610 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
611 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
612 if (({ lockdep_assert_held(&cgroup_mutex); \
613 (dsct) = (d_css)->cgroup; \
614 cgroup_is_dead(dsct); })) \
615 ; \
616 else
617
618 static void cgroup_release_agent(struct work_struct *work);
619 static void check_for_release(struct cgroup *cgrp);
620
621 /*
622 * A cgroup can be associated with multiple css_sets as different tasks may
623 * belong to different cgroups on different hierarchies. In the other
624 * direction, a css_set is naturally associated with multiple cgroups.
625 * This M:N relationship is represented by the following link structure
626 * which exists for each association and allows traversing the associations
627 * from both sides.
628 */
629 struct cgrp_cset_link {
630 /* the cgroup and css_set this link associates */
631 struct cgroup *cgrp;
632 struct css_set *cset;
633
634 /* list of cgrp_cset_links anchored at cgrp->cset_links */
635 struct list_head cset_link;
636
637 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
638 struct list_head cgrp_link;
639 };
640
641 /*
642 * The default css_set - used by init and its children prior to any
643 * hierarchies being mounted. It contains a pointer to the root state
644 * for each subsystem. Also used to anchor the list of css_sets. Not
645 * reference-counted, to improve performance when child cgroups
646 * haven't been created.
647 */
648 struct css_set init_css_set = {
649 .refcount = ATOMIC_INIT(1),
650 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
651 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
652 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
653 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
654 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
655 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
656 };
657
658 static int css_set_count = 1; /* 1 for init_css_set */
659
660 /**
661 * css_set_populated - does a css_set contain any tasks?
662 * @cset: target css_set
663 */
664 static bool css_set_populated(struct css_set *cset)
665 {
666 lockdep_assert_held(&css_set_lock);
667
668 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
669 }
670
671 /**
672 * cgroup_update_populated - updated populated count of a cgroup
673 * @cgrp: the target cgroup
674 * @populated: inc or dec populated count
675 *
676 * One of the css_sets associated with @cgrp is either getting its first
677 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
678 * count is propagated towards root so that a given cgroup's populated_cnt
679 * is zero iff the cgroup and all its descendants don't contain any tasks.
680 *
681 * @cgrp's interface file "cgroup.populated" is zero if
682 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
683 * changes from or to zero, userland is notified that the content of the
684 * interface file has changed. This can be used to detect when @cgrp and
685 * its descendants become populated or empty.
686 */
687 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
688 {
689 lockdep_assert_held(&css_set_lock);
690
691 do {
692 bool trigger;
693
694 if (populated)
695 trigger = !cgrp->populated_cnt++;
696 else
697 trigger = !--cgrp->populated_cnt;
698
699 if (!trigger)
700 break;
701
702 check_for_release(cgrp);
703 cgroup_file_notify(&cgrp->events_file);
704
705 cgrp = cgroup_parent(cgrp);
706 } while (cgrp);
707 }
708
709 /**
710 * css_set_update_populated - update populated state of a css_set
711 * @cset: target css_set
712 * @populated: whether @cset is populated or depopulated
713 *
714 * @cset is either getting the first task or losing the last. Update the
715 * ->populated_cnt of all associated cgroups accordingly.
716 */
717 static void css_set_update_populated(struct css_set *cset, bool populated)
718 {
719 struct cgrp_cset_link *link;
720
721 lockdep_assert_held(&css_set_lock);
722
723 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
724 cgroup_update_populated(link->cgrp, populated);
725 }
726
727 /**
728 * css_set_move_task - move a task from one css_set to another
729 * @task: task being moved
730 * @from_cset: css_set @task currently belongs to (may be NULL)
731 * @to_cset: new css_set @task is being moved to (may be NULL)
732 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
733 *
734 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
735 * css_set, @from_cset can be NULL. If @task is being disassociated
736 * instead of moved, @to_cset can be NULL.
737 *
738 * This function automatically handles populated_cnt updates and
739 * css_task_iter adjustments but the caller is responsible for managing
740 * @from_cset and @to_cset's reference counts.
741 */
742 static void css_set_move_task(struct task_struct *task,
743 struct css_set *from_cset, struct css_set *to_cset,
744 bool use_mg_tasks)
745 {
746 lockdep_assert_held(&css_set_lock);
747
748 if (to_cset && !css_set_populated(to_cset))
749 css_set_update_populated(to_cset, true);
750
751 if (from_cset) {
752 struct css_task_iter *it, *pos;
753
754 WARN_ON_ONCE(list_empty(&task->cg_list));
755
756 /*
757 * @task is leaving, advance task iterators which are
758 * pointing to it so that they can resume at the next
759 * position. Advancing an iterator might remove it from
760 * the list, use safe walk. See css_task_iter_advance*()
761 * for details.
762 */
763 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
764 iters_node)
765 if (it->task_pos == &task->cg_list)
766 css_task_iter_advance(it);
767
768 list_del_init(&task->cg_list);
769 if (!css_set_populated(from_cset))
770 css_set_update_populated(from_cset, false);
771 } else {
772 WARN_ON_ONCE(!list_empty(&task->cg_list));
773 }
774
775 if (to_cset) {
776 /*
777 * We are synchronized through cgroup_threadgroup_rwsem
778 * against PF_EXITING setting such that we can't race
779 * against cgroup_exit() changing the css_set to
780 * init_css_set and dropping the old one.
781 */
782 WARN_ON_ONCE(task->flags & PF_EXITING);
783
784 rcu_assign_pointer(task->cgroups, to_cset);
785 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
786 &to_cset->tasks);
787 }
788 }
789
790 /*
791 * hash table for cgroup groups. This improves the performance to find
792 * an existing css_set. This hash doesn't (currently) take into
793 * account cgroups in empty hierarchies.
794 */
795 #define CSS_SET_HASH_BITS 7
796 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
797
798 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
799 {
800 unsigned long key = 0UL;
801 struct cgroup_subsys *ss;
802 int i;
803
804 for_each_subsys(ss, i)
805 key += (unsigned long)css[i];
806 key = (key >> 16) ^ key;
807
808 return key;
809 }
810
811 static void put_css_set_locked(struct css_set *cset)
812 {
813 struct cgrp_cset_link *link, *tmp_link;
814 struct cgroup_subsys *ss;
815 int ssid;
816
817 lockdep_assert_held(&css_set_lock);
818
819 if (!atomic_dec_and_test(&cset->refcount))
820 return;
821
822 /* This css_set is dead. unlink it and release cgroup and css refs */
823 for_each_subsys(ss, ssid) {
824 list_del(&cset->e_cset_node[ssid]);
825 css_put(cset->subsys[ssid]);
826 }
827 hash_del(&cset->hlist);
828 css_set_count--;
829
830 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
831 list_del(&link->cset_link);
832 list_del(&link->cgrp_link);
833 if (cgroup_parent(link->cgrp))
834 cgroup_put(link->cgrp);
835 kfree(link);
836 }
837
838 kfree_rcu(cset, rcu_head);
839 }
840
841 static void put_css_set(struct css_set *cset)
842 {
843 unsigned long flags;
844
845 /*
846 * Ensure that the refcount doesn't hit zero while any readers
847 * can see it. Similar to atomic_dec_and_lock(), but for an
848 * rwlock
849 */
850 if (atomic_add_unless(&cset->refcount, -1, 1))
851 return;
852
853 spin_lock_irqsave(&css_set_lock, flags);
854 put_css_set_locked(cset);
855 spin_unlock_irqrestore(&css_set_lock, flags);
856 }
857
858 /*
859 * refcounted get/put for css_set objects
860 */
861 static inline void get_css_set(struct css_set *cset)
862 {
863 atomic_inc(&cset->refcount);
864 }
865
866 /**
867 * compare_css_sets - helper function for find_existing_css_set().
868 * @cset: candidate css_set being tested
869 * @old_cset: existing css_set for a task
870 * @new_cgrp: cgroup that's being entered by the task
871 * @template: desired set of css pointers in css_set (pre-calculated)
872 *
873 * Returns true if "cset" matches "old_cset" except for the hierarchy
874 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
875 */
876 static bool compare_css_sets(struct css_set *cset,
877 struct css_set *old_cset,
878 struct cgroup *new_cgrp,
879 struct cgroup_subsys_state *template[])
880 {
881 struct list_head *l1, *l2;
882
883 /*
884 * On the default hierarchy, there can be csets which are
885 * associated with the same set of cgroups but different csses.
886 * Let's first ensure that csses match.
887 */
888 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
889 return false;
890
891 /*
892 * Compare cgroup pointers in order to distinguish between
893 * different cgroups in hierarchies. As different cgroups may
894 * share the same effective css, this comparison is always
895 * necessary.
896 */
897 l1 = &cset->cgrp_links;
898 l2 = &old_cset->cgrp_links;
899 while (1) {
900 struct cgrp_cset_link *link1, *link2;
901 struct cgroup *cgrp1, *cgrp2;
902
903 l1 = l1->next;
904 l2 = l2->next;
905 /* See if we reached the end - both lists are equal length. */
906 if (l1 == &cset->cgrp_links) {
907 BUG_ON(l2 != &old_cset->cgrp_links);
908 break;
909 } else {
910 BUG_ON(l2 == &old_cset->cgrp_links);
911 }
912 /* Locate the cgroups associated with these links. */
913 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
914 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
915 cgrp1 = link1->cgrp;
916 cgrp2 = link2->cgrp;
917 /* Hierarchies should be linked in the same order. */
918 BUG_ON(cgrp1->root != cgrp2->root);
919
920 /*
921 * If this hierarchy is the hierarchy of the cgroup
922 * that's changing, then we need to check that this
923 * css_set points to the new cgroup; if it's any other
924 * hierarchy, then this css_set should point to the
925 * same cgroup as the old css_set.
926 */
927 if (cgrp1->root == new_cgrp->root) {
928 if (cgrp1 != new_cgrp)
929 return false;
930 } else {
931 if (cgrp1 != cgrp2)
932 return false;
933 }
934 }
935 return true;
936 }
937
938 /**
939 * find_existing_css_set - init css array and find the matching css_set
940 * @old_cset: the css_set that we're using before the cgroup transition
941 * @cgrp: the cgroup that we're moving into
942 * @template: out param for the new set of csses, should be clear on entry
943 */
944 static struct css_set *find_existing_css_set(struct css_set *old_cset,
945 struct cgroup *cgrp,
946 struct cgroup_subsys_state *template[])
947 {
948 struct cgroup_root *root = cgrp->root;
949 struct cgroup_subsys *ss;
950 struct css_set *cset;
951 unsigned long key;
952 int i;
953
954 /*
955 * Build the set of subsystem state objects that we want to see in the
956 * new css_set. while subsystems can change globally, the entries here
957 * won't change, so no need for locking.
958 */
959 for_each_subsys(ss, i) {
960 if (root->subsys_mask & (1UL << i)) {
961 /*
962 * @ss is in this hierarchy, so we want the
963 * effective css from @cgrp.
964 */
965 template[i] = cgroup_e_css(cgrp, ss);
966 } else {
967 /*
968 * @ss is not in this hierarchy, so we don't want
969 * to change the css.
970 */
971 template[i] = old_cset->subsys[i];
972 }
973 }
974
975 key = css_set_hash(template);
976 hash_for_each_possible(css_set_table, cset, hlist, key) {
977 if (!compare_css_sets(cset, old_cset, cgrp, template))
978 continue;
979
980 /* This css_set matches what we need */
981 return cset;
982 }
983
984 /* No existing cgroup group matched */
985 return NULL;
986 }
987
988 static void free_cgrp_cset_links(struct list_head *links_to_free)
989 {
990 struct cgrp_cset_link *link, *tmp_link;
991
992 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
993 list_del(&link->cset_link);
994 kfree(link);
995 }
996 }
997
998 /**
999 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1000 * @count: the number of links to allocate
1001 * @tmp_links: list_head the allocated links are put on
1002 *
1003 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1004 * through ->cset_link. Returns 0 on success or -errno.
1005 */
1006 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1007 {
1008 struct cgrp_cset_link *link;
1009 int i;
1010
1011 INIT_LIST_HEAD(tmp_links);
1012
1013 for (i = 0; i < count; i++) {
1014 link = kzalloc(sizeof(*link), GFP_KERNEL);
1015 if (!link) {
1016 free_cgrp_cset_links(tmp_links);
1017 return -ENOMEM;
1018 }
1019 list_add(&link->cset_link, tmp_links);
1020 }
1021 return 0;
1022 }
1023
1024 /**
1025 * link_css_set - a helper function to link a css_set to a cgroup
1026 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1027 * @cset: the css_set to be linked
1028 * @cgrp: the destination cgroup
1029 */
1030 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1031 struct cgroup *cgrp)
1032 {
1033 struct cgrp_cset_link *link;
1034
1035 BUG_ON(list_empty(tmp_links));
1036
1037 if (cgroup_on_dfl(cgrp))
1038 cset->dfl_cgrp = cgrp;
1039
1040 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1041 link->cset = cset;
1042 link->cgrp = cgrp;
1043
1044 /*
1045 * Always add links to the tail of the lists so that the lists are
1046 * in choronological order.
1047 */
1048 list_move_tail(&link->cset_link, &cgrp->cset_links);
1049 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1050
1051 if (cgroup_parent(cgrp))
1052 cgroup_get(cgrp);
1053 }
1054
1055 /**
1056 * find_css_set - return a new css_set with one cgroup updated
1057 * @old_cset: the baseline css_set
1058 * @cgrp: the cgroup to be updated
1059 *
1060 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1061 * substituted into the appropriate hierarchy.
1062 */
1063 static struct css_set *find_css_set(struct css_set *old_cset,
1064 struct cgroup *cgrp)
1065 {
1066 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1067 struct css_set *cset;
1068 struct list_head tmp_links;
1069 struct cgrp_cset_link *link;
1070 struct cgroup_subsys *ss;
1071 unsigned long key;
1072 int ssid;
1073
1074 lockdep_assert_held(&cgroup_mutex);
1075
1076 /* First see if we already have a cgroup group that matches
1077 * the desired set */
1078 spin_lock_irq(&css_set_lock);
1079 cset = find_existing_css_set(old_cset, cgrp, template);
1080 if (cset)
1081 get_css_set(cset);
1082 spin_unlock_irq(&css_set_lock);
1083
1084 if (cset)
1085 return cset;
1086
1087 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1088 if (!cset)
1089 return NULL;
1090
1091 /* Allocate all the cgrp_cset_link objects that we'll need */
1092 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1093 kfree(cset);
1094 return NULL;
1095 }
1096
1097 atomic_set(&cset->refcount, 1);
1098 INIT_LIST_HEAD(&cset->cgrp_links);
1099 INIT_LIST_HEAD(&cset->tasks);
1100 INIT_LIST_HEAD(&cset->mg_tasks);
1101 INIT_LIST_HEAD(&cset->mg_preload_node);
1102 INIT_LIST_HEAD(&cset->mg_node);
1103 INIT_LIST_HEAD(&cset->task_iters);
1104 INIT_HLIST_NODE(&cset->hlist);
1105
1106 /* Copy the set of subsystem state objects generated in
1107 * find_existing_css_set() */
1108 memcpy(cset->subsys, template, sizeof(cset->subsys));
1109
1110 spin_lock_irq(&css_set_lock);
1111 /* Add reference counts and links from the new css_set. */
1112 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1113 struct cgroup *c = link->cgrp;
1114
1115 if (c->root == cgrp->root)
1116 c = cgrp;
1117 link_css_set(&tmp_links, cset, c);
1118 }
1119
1120 BUG_ON(!list_empty(&tmp_links));
1121
1122 css_set_count++;
1123
1124 /* Add @cset to the hash table */
1125 key = css_set_hash(cset->subsys);
1126 hash_add(css_set_table, &cset->hlist, key);
1127
1128 for_each_subsys(ss, ssid) {
1129 struct cgroup_subsys_state *css = cset->subsys[ssid];
1130
1131 list_add_tail(&cset->e_cset_node[ssid],
1132 &css->cgroup->e_csets[ssid]);
1133 css_get(css);
1134 }
1135
1136 spin_unlock_irq(&css_set_lock);
1137
1138 return cset;
1139 }
1140
1141 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1142 {
1143 struct cgroup *root_cgrp = kf_root->kn->priv;
1144
1145 return root_cgrp->root;
1146 }
1147
1148 static int cgroup_init_root_id(struct cgroup_root *root)
1149 {
1150 int id;
1151
1152 lockdep_assert_held(&cgroup_mutex);
1153
1154 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1155 if (id < 0)
1156 return id;
1157
1158 root->hierarchy_id = id;
1159 return 0;
1160 }
1161
1162 static void cgroup_exit_root_id(struct cgroup_root *root)
1163 {
1164 lockdep_assert_held(&cgroup_mutex);
1165
1166 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1167 }
1168
1169 static void cgroup_free_root(struct cgroup_root *root)
1170 {
1171 if (root) {
1172 idr_destroy(&root->cgroup_idr);
1173 kfree(root);
1174 }
1175 }
1176
1177 static void cgroup_destroy_root(struct cgroup_root *root)
1178 {
1179 struct cgroup *cgrp = &root->cgrp;
1180 struct cgrp_cset_link *link, *tmp_link;
1181
1182 trace_cgroup_destroy_root(root);
1183
1184 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1185
1186 BUG_ON(atomic_read(&root->nr_cgrps));
1187 BUG_ON(!list_empty(&cgrp->self.children));
1188
1189 /* Rebind all subsystems back to the default hierarchy */
1190 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1191
1192 /*
1193 * Release all the links from cset_links to this hierarchy's
1194 * root cgroup
1195 */
1196 spin_lock_irq(&css_set_lock);
1197
1198 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1199 list_del(&link->cset_link);
1200 list_del(&link->cgrp_link);
1201 kfree(link);
1202 }
1203
1204 spin_unlock_irq(&css_set_lock);
1205
1206 if (!list_empty(&root->root_list)) {
1207 list_del(&root->root_list);
1208 cgroup_root_count--;
1209 }
1210
1211 cgroup_exit_root_id(root);
1212
1213 mutex_unlock(&cgroup_mutex);
1214
1215 kernfs_destroy_root(root->kf_root);
1216 cgroup_free_root(root);
1217 }
1218
1219 /*
1220 * look up cgroup associated with current task's cgroup namespace on the
1221 * specified hierarchy
1222 */
1223 static struct cgroup *
1224 current_cgns_cgroup_from_root(struct cgroup_root *root)
1225 {
1226 struct cgroup *res = NULL;
1227 struct css_set *cset;
1228
1229 lockdep_assert_held(&css_set_lock);
1230
1231 rcu_read_lock();
1232
1233 cset = current->nsproxy->cgroup_ns->root_cset;
1234 if (cset == &init_css_set) {
1235 res = &root->cgrp;
1236 } else {
1237 struct cgrp_cset_link *link;
1238
1239 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1240 struct cgroup *c = link->cgrp;
1241
1242 if (c->root == root) {
1243 res = c;
1244 break;
1245 }
1246 }
1247 }
1248 rcu_read_unlock();
1249
1250 BUG_ON(!res);
1251 return res;
1252 }
1253
1254 /* look up cgroup associated with given css_set on the specified hierarchy */
1255 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1256 struct cgroup_root *root)
1257 {
1258 struct cgroup *res = NULL;
1259
1260 lockdep_assert_held(&cgroup_mutex);
1261 lockdep_assert_held(&css_set_lock);
1262
1263 if (cset == &init_css_set) {
1264 res = &root->cgrp;
1265 } else {
1266 struct cgrp_cset_link *link;
1267
1268 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1269 struct cgroup *c = link->cgrp;
1270
1271 if (c->root == root) {
1272 res = c;
1273 break;
1274 }
1275 }
1276 }
1277
1278 BUG_ON(!res);
1279 return res;
1280 }
1281
1282 /*
1283 * Return the cgroup for "task" from the given hierarchy. Must be
1284 * called with cgroup_mutex and css_set_lock held.
1285 */
1286 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1287 struct cgroup_root *root)
1288 {
1289 /*
1290 * No need to lock the task - since we hold cgroup_mutex the
1291 * task can't change groups, so the only thing that can happen
1292 * is that it exits and its css is set back to init_css_set.
1293 */
1294 return cset_cgroup_from_root(task_css_set(task), root);
1295 }
1296
1297 /*
1298 * A task must hold cgroup_mutex to modify cgroups.
1299 *
1300 * Any task can increment and decrement the count field without lock.
1301 * So in general, code holding cgroup_mutex can't rely on the count
1302 * field not changing. However, if the count goes to zero, then only
1303 * cgroup_attach_task() can increment it again. Because a count of zero
1304 * means that no tasks are currently attached, therefore there is no
1305 * way a task attached to that cgroup can fork (the other way to
1306 * increment the count). So code holding cgroup_mutex can safely
1307 * assume that if the count is zero, it will stay zero. Similarly, if
1308 * a task holds cgroup_mutex on a cgroup with zero count, it
1309 * knows that the cgroup won't be removed, as cgroup_rmdir()
1310 * needs that mutex.
1311 *
1312 * A cgroup can only be deleted if both its 'count' of using tasks
1313 * is zero, and its list of 'children' cgroups is empty. Since all
1314 * tasks in the system use _some_ cgroup, and since there is always at
1315 * least one task in the system (init, pid == 1), therefore, root cgroup
1316 * always has either children cgroups and/or using tasks. So we don't
1317 * need a special hack to ensure that root cgroup cannot be deleted.
1318 *
1319 * P.S. One more locking exception. RCU is used to guard the
1320 * update of a tasks cgroup pointer by cgroup_attach_task()
1321 */
1322
1323 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1324 static const struct file_operations proc_cgroupstats_operations;
1325
1326 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1327 char *buf)
1328 {
1329 struct cgroup_subsys *ss = cft->ss;
1330
1331 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1332 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1333 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1334 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1335 cft->name);
1336 else
1337 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1338 return buf;
1339 }
1340
1341 /**
1342 * cgroup_file_mode - deduce file mode of a control file
1343 * @cft: the control file in question
1344 *
1345 * S_IRUGO for read, S_IWUSR for write.
1346 */
1347 static umode_t cgroup_file_mode(const struct cftype *cft)
1348 {
1349 umode_t mode = 0;
1350
1351 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1352 mode |= S_IRUGO;
1353
1354 if (cft->write_u64 || cft->write_s64 || cft->write) {
1355 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1356 mode |= S_IWUGO;
1357 else
1358 mode |= S_IWUSR;
1359 }
1360
1361 return mode;
1362 }
1363
1364 /**
1365 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1366 * @subtree_control: the new subtree_control mask to consider
1367 * @this_ss_mask: available subsystems
1368 *
1369 * On the default hierarchy, a subsystem may request other subsystems to be
1370 * enabled together through its ->depends_on mask. In such cases, more
1371 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1372 *
1373 * This function calculates which subsystems need to be enabled if
1374 * @subtree_control is to be applied while restricted to @this_ss_mask.
1375 */
1376 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1377 {
1378 u16 cur_ss_mask = subtree_control;
1379 struct cgroup_subsys *ss;
1380 int ssid;
1381
1382 lockdep_assert_held(&cgroup_mutex);
1383
1384 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1385
1386 while (true) {
1387 u16 new_ss_mask = cur_ss_mask;
1388
1389 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1390 new_ss_mask |= ss->depends_on;
1391 } while_each_subsys_mask();
1392
1393 /*
1394 * Mask out subsystems which aren't available. This can
1395 * happen only if some depended-upon subsystems were bound
1396 * to non-default hierarchies.
1397 */
1398 new_ss_mask &= this_ss_mask;
1399
1400 if (new_ss_mask == cur_ss_mask)
1401 break;
1402 cur_ss_mask = new_ss_mask;
1403 }
1404
1405 return cur_ss_mask;
1406 }
1407
1408 /**
1409 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1410 * @kn: the kernfs_node being serviced
1411 *
1412 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1413 * the method finishes if locking succeeded. Note that once this function
1414 * returns the cgroup returned by cgroup_kn_lock_live() may become
1415 * inaccessible any time. If the caller intends to continue to access the
1416 * cgroup, it should pin it before invoking this function.
1417 */
1418 static void cgroup_kn_unlock(struct kernfs_node *kn)
1419 {
1420 struct cgroup *cgrp;
1421
1422 if (kernfs_type(kn) == KERNFS_DIR)
1423 cgrp = kn->priv;
1424 else
1425 cgrp = kn->parent->priv;
1426
1427 mutex_unlock(&cgroup_mutex);
1428
1429 kernfs_unbreak_active_protection(kn);
1430 cgroup_put(cgrp);
1431 }
1432
1433 /**
1434 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1435 * @kn: the kernfs_node being serviced
1436 * @drain_offline: perform offline draining on the cgroup
1437 *
1438 * This helper is to be used by a cgroup kernfs method currently servicing
1439 * @kn. It breaks the active protection, performs cgroup locking and
1440 * verifies that the associated cgroup is alive. Returns the cgroup if
1441 * alive; otherwise, %NULL. A successful return should be undone by a
1442 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1443 * cgroup is drained of offlining csses before return.
1444 *
1445 * Any cgroup kernfs method implementation which requires locking the
1446 * associated cgroup should use this helper. It avoids nesting cgroup
1447 * locking under kernfs active protection and allows all kernfs operations
1448 * including self-removal.
1449 */
1450 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1451 bool drain_offline)
1452 {
1453 struct cgroup *cgrp;
1454
1455 if (kernfs_type(kn) == KERNFS_DIR)
1456 cgrp = kn->priv;
1457 else
1458 cgrp = kn->parent->priv;
1459
1460 /*
1461 * We're gonna grab cgroup_mutex which nests outside kernfs
1462 * active_ref. cgroup liveliness check alone provides enough
1463 * protection against removal. Ensure @cgrp stays accessible and
1464 * break the active_ref protection.
1465 */
1466 if (!cgroup_tryget(cgrp))
1467 return NULL;
1468 kernfs_break_active_protection(kn);
1469
1470 if (drain_offline)
1471 cgroup_lock_and_drain_offline(cgrp);
1472 else
1473 mutex_lock(&cgroup_mutex);
1474
1475 if (!cgroup_is_dead(cgrp))
1476 return cgrp;
1477
1478 cgroup_kn_unlock(kn);
1479 return NULL;
1480 }
1481
1482 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1483 {
1484 char name[CGROUP_FILE_NAME_MAX];
1485
1486 lockdep_assert_held(&cgroup_mutex);
1487
1488 if (cft->file_offset) {
1489 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1490 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1491
1492 spin_lock_irq(&cgroup_file_kn_lock);
1493 cfile->kn = NULL;
1494 spin_unlock_irq(&cgroup_file_kn_lock);
1495 }
1496
1497 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1498 }
1499
1500 /**
1501 * css_clear_dir - remove subsys files in a cgroup directory
1502 * @css: taget css
1503 */
1504 static void css_clear_dir(struct cgroup_subsys_state *css)
1505 {
1506 struct cgroup *cgrp = css->cgroup;
1507 struct cftype *cfts;
1508
1509 if (!(css->flags & CSS_VISIBLE))
1510 return;
1511
1512 css->flags &= ~CSS_VISIBLE;
1513
1514 list_for_each_entry(cfts, &css->ss->cfts, node)
1515 cgroup_addrm_files(css, cgrp, cfts, false);
1516 }
1517
1518 /**
1519 * css_populate_dir - create subsys files in a cgroup directory
1520 * @css: target css
1521 *
1522 * On failure, no file is added.
1523 */
1524 static int css_populate_dir(struct cgroup_subsys_state *css)
1525 {
1526 struct cgroup *cgrp = css->cgroup;
1527 struct cftype *cfts, *failed_cfts;
1528 int ret;
1529
1530 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1531 return 0;
1532
1533 if (!css->ss) {
1534 if (cgroup_on_dfl(cgrp))
1535 cfts = cgroup_dfl_base_files;
1536 else
1537 cfts = cgroup_legacy_base_files;
1538
1539 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1540 }
1541
1542 list_for_each_entry(cfts, &css->ss->cfts, node) {
1543 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1544 if (ret < 0) {
1545 failed_cfts = cfts;
1546 goto err;
1547 }
1548 }
1549
1550 css->flags |= CSS_VISIBLE;
1551
1552 return 0;
1553 err:
1554 list_for_each_entry(cfts, &css->ss->cfts, node) {
1555 if (cfts == failed_cfts)
1556 break;
1557 cgroup_addrm_files(css, cgrp, cfts, false);
1558 }
1559 return ret;
1560 }
1561
1562 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1563 {
1564 struct cgroup *dcgrp = &dst_root->cgrp;
1565 struct cgroup_subsys *ss;
1566 int ssid, i, ret;
1567
1568 lockdep_assert_held(&cgroup_mutex);
1569
1570 do_each_subsys_mask(ss, ssid, ss_mask) {
1571 /*
1572 * If @ss has non-root csses attached to it, can't move.
1573 * If @ss is an implicit controller, it is exempt from this
1574 * rule and can be stolen.
1575 */
1576 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1577 !ss->implicit_on_dfl)
1578 return -EBUSY;
1579
1580 /* can't move between two non-dummy roots either */
1581 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1582 return -EBUSY;
1583 } while_each_subsys_mask();
1584
1585 do_each_subsys_mask(ss, ssid, ss_mask) {
1586 struct cgroup_root *src_root = ss->root;
1587 struct cgroup *scgrp = &src_root->cgrp;
1588 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1589 struct css_set *cset;
1590
1591 WARN_ON(!css || cgroup_css(dcgrp, ss));
1592
1593 /* disable from the source */
1594 src_root->subsys_mask &= ~(1 << ssid);
1595 WARN_ON(cgroup_apply_control(scgrp));
1596 cgroup_finalize_control(scgrp, 0);
1597
1598 /* rebind */
1599 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1600 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1601 ss->root = dst_root;
1602 css->cgroup = dcgrp;
1603
1604 spin_lock_irq(&css_set_lock);
1605 hash_for_each(css_set_table, i, cset, hlist)
1606 list_move_tail(&cset->e_cset_node[ss->id],
1607 &dcgrp->e_csets[ss->id]);
1608 spin_unlock_irq(&css_set_lock);
1609
1610 /* default hierarchy doesn't enable controllers by default */
1611 dst_root->subsys_mask |= 1 << ssid;
1612 if (dst_root == &cgrp_dfl_root) {
1613 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1614 } else {
1615 dcgrp->subtree_control |= 1 << ssid;
1616 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1617 }
1618
1619 ret = cgroup_apply_control(dcgrp);
1620 if (ret)
1621 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1622 ss->name, ret);
1623
1624 if (ss->bind)
1625 ss->bind(css);
1626 } while_each_subsys_mask();
1627
1628 kernfs_activate(dcgrp->kn);
1629 return 0;
1630 }
1631
1632 static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1633 struct kernfs_root *kf_root)
1634 {
1635 int len = 0;
1636 char *buf = NULL;
1637 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1638 struct cgroup *ns_cgroup;
1639
1640 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1641 if (!buf)
1642 return -ENOMEM;
1643
1644 spin_lock_irq(&css_set_lock);
1645 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1646 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1647 spin_unlock_irq(&css_set_lock);
1648
1649 if (len >= PATH_MAX)
1650 len = -ERANGE;
1651 else if (len > 0) {
1652 seq_escape(sf, buf, " \t\n\\");
1653 len = 0;
1654 }
1655 kfree(buf);
1656 return len;
1657 }
1658
1659 static int cgroup_show_options(struct seq_file *seq,
1660 struct kernfs_root *kf_root)
1661 {
1662 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1663 struct cgroup_subsys *ss;
1664 int ssid;
1665
1666 if (root != &cgrp_dfl_root)
1667 for_each_subsys(ss, ssid)
1668 if (root->subsys_mask & (1 << ssid))
1669 seq_show_option(seq, ss->legacy_name, NULL);
1670 if (root->flags & CGRP_ROOT_NOPREFIX)
1671 seq_puts(seq, ",noprefix");
1672 if (root->flags & CGRP_ROOT_XATTR)
1673 seq_puts(seq, ",xattr");
1674
1675 spin_lock(&release_agent_path_lock);
1676 if (strlen(root->release_agent_path))
1677 seq_show_option(seq, "release_agent",
1678 root->release_agent_path);
1679 spin_unlock(&release_agent_path_lock);
1680
1681 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1682 seq_puts(seq, ",clone_children");
1683 if (strlen(root->name))
1684 seq_show_option(seq, "name", root->name);
1685 return 0;
1686 }
1687
1688 struct cgroup_sb_opts {
1689 u16 subsys_mask;
1690 unsigned int flags;
1691 char *release_agent;
1692 bool cpuset_clone_children;
1693 char *name;
1694 /* User explicitly requested empty subsystem */
1695 bool none;
1696 };
1697
1698 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1699 {
1700 char *token, *o = data;
1701 bool all_ss = false, one_ss = false;
1702 u16 mask = U16_MAX;
1703 struct cgroup_subsys *ss;
1704 int nr_opts = 0;
1705 int i;
1706
1707 #ifdef CONFIG_CPUSETS
1708 mask = ~((u16)1 << cpuset_cgrp_id);
1709 #endif
1710
1711 memset(opts, 0, sizeof(*opts));
1712
1713 while ((token = strsep(&o, ",")) != NULL) {
1714 nr_opts++;
1715
1716 if (!*token)
1717 return -EINVAL;
1718 if (!strcmp(token, "none")) {
1719 /* Explicitly have no subsystems */
1720 opts->none = true;
1721 continue;
1722 }
1723 if (!strcmp(token, "all")) {
1724 /* Mutually exclusive option 'all' + subsystem name */
1725 if (one_ss)
1726 return -EINVAL;
1727 all_ss = true;
1728 continue;
1729 }
1730 if (!strcmp(token, "noprefix")) {
1731 opts->flags |= CGRP_ROOT_NOPREFIX;
1732 continue;
1733 }
1734 if (!strcmp(token, "clone_children")) {
1735 opts->cpuset_clone_children = true;
1736 continue;
1737 }
1738 if (!strcmp(token, "xattr")) {
1739 opts->flags |= CGRP_ROOT_XATTR;
1740 continue;
1741 }
1742 if (!strncmp(token, "release_agent=", 14)) {
1743 /* Specifying two release agents is forbidden */
1744 if (opts->release_agent)
1745 return -EINVAL;
1746 opts->release_agent =
1747 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1748 if (!opts->release_agent)
1749 return -ENOMEM;
1750 continue;
1751 }
1752 if (!strncmp(token, "name=", 5)) {
1753 const char *name = token + 5;
1754 /* Can't specify an empty name */
1755 if (!strlen(name))
1756 return -EINVAL;
1757 /* Must match [\w.-]+ */
1758 for (i = 0; i < strlen(name); i++) {
1759 char c = name[i];
1760 if (isalnum(c))
1761 continue;
1762 if ((c == '.') || (c == '-') || (c == '_'))
1763 continue;
1764 return -EINVAL;
1765 }
1766 /* Specifying two names is forbidden */
1767 if (opts->name)
1768 return -EINVAL;
1769 opts->name = kstrndup(name,
1770 MAX_CGROUP_ROOT_NAMELEN - 1,
1771 GFP_KERNEL);
1772 if (!opts->name)
1773 return -ENOMEM;
1774
1775 continue;
1776 }
1777
1778 for_each_subsys(ss, i) {
1779 if (strcmp(token, ss->legacy_name))
1780 continue;
1781 if (!cgroup_ssid_enabled(i))
1782 continue;
1783 if (cgroup_ssid_no_v1(i))
1784 continue;
1785
1786 /* Mutually exclusive option 'all' + subsystem name */
1787 if (all_ss)
1788 return -EINVAL;
1789 opts->subsys_mask |= (1 << i);
1790 one_ss = true;
1791
1792 break;
1793 }
1794 if (i == CGROUP_SUBSYS_COUNT)
1795 return -ENOENT;
1796 }
1797
1798 /*
1799 * If the 'all' option was specified select all the subsystems,
1800 * otherwise if 'none', 'name=' and a subsystem name options were
1801 * not specified, let's default to 'all'
1802 */
1803 if (all_ss || (!one_ss && !opts->none && !opts->name))
1804 for_each_subsys(ss, i)
1805 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1806 opts->subsys_mask |= (1 << i);
1807
1808 /*
1809 * We either have to specify by name or by subsystems. (So all
1810 * empty hierarchies must have a name).
1811 */
1812 if (!opts->subsys_mask && !opts->name)
1813 return -EINVAL;
1814
1815 /*
1816 * Option noprefix was introduced just for backward compatibility
1817 * with the old cpuset, so we allow noprefix only if mounting just
1818 * the cpuset subsystem.
1819 */
1820 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1821 return -EINVAL;
1822
1823 /* Can't specify "none" and some subsystems */
1824 if (opts->subsys_mask && opts->none)
1825 return -EINVAL;
1826
1827 return 0;
1828 }
1829
1830 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1831 {
1832 int ret = 0;
1833 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1834 struct cgroup_sb_opts opts;
1835 u16 added_mask, removed_mask;
1836
1837 if (root == &cgrp_dfl_root) {
1838 pr_err("remount is not allowed\n");
1839 return -EINVAL;
1840 }
1841
1842 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1843
1844 /* See what subsystems are wanted */
1845 ret = parse_cgroupfs_options(data, &opts);
1846 if (ret)
1847 goto out_unlock;
1848
1849 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1850 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1851 task_tgid_nr(current), current->comm);
1852
1853 added_mask = opts.subsys_mask & ~root->subsys_mask;
1854 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1855
1856 /* Don't allow flags or name to change at remount */
1857 if ((opts.flags ^ root->flags) ||
1858 (opts.name && strcmp(opts.name, root->name))) {
1859 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1860 opts.flags, opts.name ?: "", root->flags, root->name);
1861 ret = -EINVAL;
1862 goto out_unlock;
1863 }
1864
1865 /* remounting is not allowed for populated hierarchies */
1866 if (!list_empty(&root->cgrp.self.children)) {
1867 ret = -EBUSY;
1868 goto out_unlock;
1869 }
1870
1871 ret = rebind_subsystems(root, added_mask);
1872 if (ret)
1873 goto out_unlock;
1874
1875 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1876
1877 if (opts.release_agent) {
1878 spin_lock(&release_agent_path_lock);
1879 strcpy(root->release_agent_path, opts.release_agent);
1880 spin_unlock(&release_agent_path_lock);
1881 }
1882
1883 trace_cgroup_remount(root);
1884
1885 out_unlock:
1886 kfree(opts.release_agent);
1887 kfree(opts.name);
1888 mutex_unlock(&cgroup_mutex);
1889 return ret;
1890 }
1891
1892 /*
1893 * To reduce the fork() overhead for systems that are not actually using
1894 * their cgroups capability, we don't maintain the lists running through
1895 * each css_set to its tasks until we see the list actually used - in other
1896 * words after the first mount.
1897 */
1898 static bool use_task_css_set_links __read_mostly;
1899
1900 static void cgroup_enable_task_cg_lists(void)
1901 {
1902 struct task_struct *p, *g;
1903
1904 spin_lock_irq(&css_set_lock);
1905
1906 if (use_task_css_set_links)
1907 goto out_unlock;
1908
1909 use_task_css_set_links = true;
1910
1911 /*
1912 * We need tasklist_lock because RCU is not safe against
1913 * while_each_thread(). Besides, a forking task that has passed
1914 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1915 * is not guaranteed to have its child immediately visible in the
1916 * tasklist if we walk through it with RCU.
1917 */
1918 read_lock(&tasklist_lock);
1919 do_each_thread(g, p) {
1920 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1921 task_css_set(p) != &init_css_set);
1922
1923 /*
1924 * We should check if the process is exiting, otherwise
1925 * it will race with cgroup_exit() in that the list
1926 * entry won't be deleted though the process has exited.
1927 * Do it while holding siglock so that we don't end up
1928 * racing against cgroup_exit().
1929 *
1930 * Interrupts were already disabled while acquiring
1931 * the css_set_lock, so we do not need to disable it
1932 * again when acquiring the sighand->siglock here.
1933 */
1934 spin_lock(&p->sighand->siglock);
1935 if (!(p->flags & PF_EXITING)) {
1936 struct css_set *cset = task_css_set(p);
1937
1938 if (!css_set_populated(cset))
1939 css_set_update_populated(cset, true);
1940 list_add_tail(&p->cg_list, &cset->tasks);
1941 get_css_set(cset);
1942 }
1943 spin_unlock(&p->sighand->siglock);
1944 } while_each_thread(g, p);
1945 read_unlock(&tasklist_lock);
1946 out_unlock:
1947 spin_unlock_irq(&css_set_lock);
1948 }
1949
1950 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1951 {
1952 struct cgroup_subsys *ss;
1953 int ssid;
1954
1955 INIT_LIST_HEAD(&cgrp->self.sibling);
1956 INIT_LIST_HEAD(&cgrp->self.children);
1957 INIT_LIST_HEAD(&cgrp->cset_links);
1958 INIT_LIST_HEAD(&cgrp->pidlists);
1959 mutex_init(&cgrp->pidlist_mutex);
1960 cgrp->self.cgroup = cgrp;
1961 cgrp->self.flags |= CSS_ONLINE;
1962
1963 for_each_subsys(ss, ssid)
1964 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965
1966 init_waitqueue_head(&cgrp->offline_waitq);
1967 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1968 }
1969
1970 static void init_cgroup_root(struct cgroup_root *root,
1971 struct cgroup_sb_opts *opts)
1972 {
1973 struct cgroup *cgrp = &root->cgrp;
1974
1975 INIT_LIST_HEAD(&root->root_list);
1976 atomic_set(&root->nr_cgrps, 1);
1977 cgrp->root = root;
1978 init_cgroup_housekeeping(cgrp);
1979 idr_init(&root->cgroup_idr);
1980
1981 root->flags = opts->flags;
1982 if (opts->release_agent)
1983 strcpy(root->release_agent_path, opts->release_agent);
1984 if (opts->name)
1985 strcpy(root->name, opts->name);
1986 if (opts->cpuset_clone_children)
1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988 }
1989
1990 static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991 {
1992 LIST_HEAD(tmp_links);
1993 struct cgroup *root_cgrp = &root->cgrp;
1994 struct css_set *cset;
1995 int i, ret;
1996
1997 lockdep_assert_held(&cgroup_mutex);
1998
1999 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2000 if (ret < 0)
2001 goto out;
2002 root_cgrp->id = ret;
2003 root_cgrp->ancestor_ids[0] = ret;
2004
2005 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
2006 GFP_KERNEL);
2007 if (ret)
2008 goto out;
2009
2010 /*
2011 * We're accessing css_set_count without locking css_set_lock here,
2012 * but that's OK - it can only be increased by someone holding
2013 * cgroup_lock, and that's us. Later rebinding may disable
2014 * controllers on the default hierarchy and thus create new csets,
2015 * which can't be more than the existing ones. Allocate 2x.
2016 */
2017 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2018 if (ret)
2019 goto cancel_ref;
2020
2021 ret = cgroup_init_root_id(root);
2022 if (ret)
2023 goto cancel_ref;
2024
2025 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2026 KERNFS_ROOT_CREATE_DEACTIVATED,
2027 root_cgrp);
2028 if (IS_ERR(root->kf_root)) {
2029 ret = PTR_ERR(root->kf_root);
2030 goto exit_root_id;
2031 }
2032 root_cgrp->kn = root->kf_root->kn;
2033
2034 ret = css_populate_dir(&root_cgrp->self);
2035 if (ret)
2036 goto destroy_root;
2037
2038 ret = rebind_subsystems(root, ss_mask);
2039 if (ret)
2040 goto destroy_root;
2041
2042 trace_cgroup_setup_root(root);
2043
2044 /*
2045 * There must be no failure case after here, since rebinding takes
2046 * care of subsystems' refcounts, which are explicitly dropped in
2047 * the failure exit path.
2048 */
2049 list_add(&root->root_list, &cgroup_roots);
2050 cgroup_root_count++;
2051
2052 /*
2053 * Link the root cgroup in this hierarchy into all the css_set
2054 * objects.
2055 */
2056 spin_lock_irq(&css_set_lock);
2057 hash_for_each(css_set_table, i, cset, hlist) {
2058 link_css_set(&tmp_links, cset, root_cgrp);
2059 if (css_set_populated(cset))
2060 cgroup_update_populated(root_cgrp, true);
2061 }
2062 spin_unlock_irq(&css_set_lock);
2063
2064 BUG_ON(!list_empty(&root_cgrp->self.children));
2065 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2066
2067 kernfs_activate(root_cgrp->kn);
2068 ret = 0;
2069 goto out;
2070
2071 destroy_root:
2072 kernfs_destroy_root(root->kf_root);
2073 root->kf_root = NULL;
2074 exit_root_id:
2075 cgroup_exit_root_id(root);
2076 cancel_ref:
2077 percpu_ref_exit(&root_cgrp->self.refcnt);
2078 out:
2079 free_cgrp_cset_links(&tmp_links);
2080 return ret;
2081 }
2082
2083 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2084 int flags, const char *unused_dev_name,
2085 void *data)
2086 {
2087 bool is_v2 = fs_type == &cgroup2_fs_type;
2088 struct super_block *pinned_sb = NULL;
2089 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2090 struct cgroup_subsys *ss;
2091 struct cgroup_root *root;
2092 struct cgroup_sb_opts opts;
2093 struct dentry *dentry;
2094 int ret;
2095 int i;
2096 bool new_sb;
2097
2098 get_cgroup_ns(ns);
2099
2100 /* Check if the caller has permission to mount. */
2101 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2102 put_cgroup_ns(ns);
2103 return ERR_PTR(-EPERM);
2104 }
2105
2106 /*
2107 * The first time anyone tries to mount a cgroup, enable the list
2108 * linking each css_set to its tasks and fix up all existing tasks.
2109 */
2110 if (!use_task_css_set_links)
2111 cgroup_enable_task_cg_lists();
2112
2113 if (is_v2) {
2114 if (data) {
2115 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2116 put_cgroup_ns(ns);
2117 return ERR_PTR(-EINVAL);
2118 }
2119 cgrp_dfl_visible = true;
2120 root = &cgrp_dfl_root;
2121 cgroup_get(&root->cgrp);
2122 goto out_mount;
2123 }
2124
2125 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2126
2127 /* First find the desired set of subsystems */
2128 ret = parse_cgroupfs_options(data, &opts);
2129 if (ret)
2130 goto out_unlock;
2131
2132 /*
2133 * Destruction of cgroup root is asynchronous, so subsystems may
2134 * still be dying after the previous unmount. Let's drain the
2135 * dying subsystems. We just need to ensure that the ones
2136 * unmounted previously finish dying and don't care about new ones
2137 * starting. Testing ref liveliness is good enough.
2138 */
2139 for_each_subsys(ss, i) {
2140 if (!(opts.subsys_mask & (1 << i)) ||
2141 ss->root == &cgrp_dfl_root)
2142 continue;
2143
2144 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2145 mutex_unlock(&cgroup_mutex);
2146 msleep(10);
2147 ret = restart_syscall();
2148 goto out_free;
2149 }
2150 cgroup_put(&ss->root->cgrp);
2151 }
2152
2153 for_each_root(root) {
2154 bool name_match = false;
2155
2156 if (root == &cgrp_dfl_root)
2157 continue;
2158
2159 /*
2160 * If we asked for a name then it must match. Also, if
2161 * name matches but sybsys_mask doesn't, we should fail.
2162 * Remember whether name matched.
2163 */
2164 if (opts.name) {
2165 if (strcmp(opts.name, root->name))
2166 continue;
2167 name_match = true;
2168 }
2169
2170 /*
2171 * If we asked for subsystems (or explicitly for no
2172 * subsystems) then they must match.
2173 */
2174 if ((opts.subsys_mask || opts.none) &&
2175 (opts.subsys_mask != root->subsys_mask)) {
2176 if (!name_match)
2177 continue;
2178 ret = -EBUSY;
2179 goto out_unlock;
2180 }
2181
2182 if (root->flags ^ opts.flags)
2183 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2184
2185 /*
2186 * We want to reuse @root whose lifetime is governed by its
2187 * ->cgrp. Let's check whether @root is alive and keep it
2188 * that way. As cgroup_kill_sb() can happen anytime, we
2189 * want to block it by pinning the sb so that @root doesn't
2190 * get killed before mount is complete.
2191 *
2192 * With the sb pinned, tryget_live can reliably indicate
2193 * whether @root can be reused. If it's being killed,
2194 * drain it. We can use wait_queue for the wait but this
2195 * path is super cold. Let's just sleep a bit and retry.
2196 */
2197 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2198 if (IS_ERR(pinned_sb) ||
2199 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2200 mutex_unlock(&cgroup_mutex);
2201 if (!IS_ERR_OR_NULL(pinned_sb))
2202 deactivate_super(pinned_sb);
2203 msleep(10);
2204 ret = restart_syscall();
2205 goto out_free;
2206 }
2207
2208 ret = 0;
2209 goto out_unlock;
2210 }
2211
2212 /*
2213 * No such thing, create a new one. name= matching without subsys
2214 * specification is allowed for already existing hierarchies but we
2215 * can't create new one without subsys specification.
2216 */
2217 if (!opts.subsys_mask && !opts.none) {
2218 ret = -EINVAL;
2219 goto out_unlock;
2220 }
2221
2222 /* Hierarchies may only be created in the initial cgroup namespace. */
2223 if (ns != &init_cgroup_ns) {
2224 ret = -EPERM;
2225 goto out_unlock;
2226 }
2227
2228 root = kzalloc(sizeof(*root), GFP_KERNEL);
2229 if (!root) {
2230 ret = -ENOMEM;
2231 goto out_unlock;
2232 }
2233
2234 init_cgroup_root(root, &opts);
2235
2236 ret = cgroup_setup_root(root, opts.subsys_mask);
2237 if (ret)
2238 cgroup_free_root(root);
2239
2240 out_unlock:
2241 mutex_unlock(&cgroup_mutex);
2242 out_free:
2243 kfree(opts.release_agent);
2244 kfree(opts.name);
2245
2246 if (ret) {
2247 put_cgroup_ns(ns);
2248 return ERR_PTR(ret);
2249 }
2250 out_mount:
2251 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2252 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2253 &new_sb);
2254
2255 /*
2256 * In non-init cgroup namespace, instead of root cgroup's
2257 * dentry, we return the dentry corresponding to the
2258 * cgroupns->root_cgrp.
2259 */
2260 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2261 struct dentry *nsdentry;
2262 struct cgroup *cgrp;
2263
2264 mutex_lock(&cgroup_mutex);
2265 spin_lock_irq(&css_set_lock);
2266
2267 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2268
2269 spin_unlock_irq(&css_set_lock);
2270 mutex_unlock(&cgroup_mutex);
2271
2272 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2273 dput(dentry);
2274 dentry = nsdentry;
2275 }
2276
2277 if (IS_ERR(dentry) || !new_sb)
2278 cgroup_put(&root->cgrp);
2279
2280 /*
2281 * If @pinned_sb, we're reusing an existing root and holding an
2282 * extra ref on its sb. Mount is complete. Put the extra ref.
2283 */
2284 if (pinned_sb) {
2285 WARN_ON(new_sb);
2286 deactivate_super(pinned_sb);
2287 }
2288
2289 put_cgroup_ns(ns);
2290 return dentry;
2291 }
2292
2293 static void cgroup_kill_sb(struct super_block *sb)
2294 {
2295 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2296 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2297
2298 /*
2299 * If @root doesn't have any mounts or children, start killing it.
2300 * This prevents new mounts by disabling percpu_ref_tryget_live().
2301 * cgroup_mount() may wait for @root's release.
2302 *
2303 * And don't kill the default root.
2304 */
2305 if (!list_empty(&root->cgrp.self.children) ||
2306 root == &cgrp_dfl_root)
2307 cgroup_put(&root->cgrp);
2308 else
2309 percpu_ref_kill(&root->cgrp.self.refcnt);
2310
2311 kernfs_kill_sb(sb);
2312 }
2313
2314 static struct file_system_type cgroup_fs_type = {
2315 .name = "cgroup",
2316 .mount = cgroup_mount,
2317 .kill_sb = cgroup_kill_sb,
2318 .fs_flags = FS_USERNS_MOUNT,
2319 };
2320
2321 static struct file_system_type cgroup2_fs_type = {
2322 .name = "cgroup2",
2323 .mount = cgroup_mount,
2324 .kill_sb = cgroup_kill_sb,
2325 .fs_flags = FS_USERNS_MOUNT,
2326 };
2327
2328 static int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2329 struct cgroup_namespace *ns)
2330 {
2331 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2332
2333 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2334 }
2335
2336 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2337 struct cgroup_namespace *ns)
2338 {
2339 int ret;
2340
2341 mutex_lock(&cgroup_mutex);
2342 spin_lock_irq(&css_set_lock);
2343
2344 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2345
2346 spin_unlock_irq(&css_set_lock);
2347 mutex_unlock(&cgroup_mutex);
2348
2349 return ret;
2350 }
2351 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2352
2353 /**
2354 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2355 * @task: target task
2356 * @buf: the buffer to write the path into
2357 * @buflen: the length of the buffer
2358 *
2359 * Determine @task's cgroup on the first (the one with the lowest non-zero
2360 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2361 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2362 * cgroup controller callbacks.
2363 *
2364 * Return value is the same as kernfs_path().
2365 */
2366 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2367 {
2368 struct cgroup_root *root;
2369 struct cgroup *cgrp;
2370 int hierarchy_id = 1;
2371 int ret;
2372
2373 mutex_lock(&cgroup_mutex);
2374 spin_lock_irq(&css_set_lock);
2375
2376 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2377
2378 if (root) {
2379 cgrp = task_cgroup_from_root(task, root);
2380 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2381 } else {
2382 /* if no hierarchy exists, everyone is in "/" */
2383 ret = strlcpy(buf, "/", buflen);
2384 }
2385
2386 spin_unlock_irq(&css_set_lock);
2387 mutex_unlock(&cgroup_mutex);
2388 return ret;
2389 }
2390 EXPORT_SYMBOL_GPL(task_cgroup_path);
2391
2392 /* used to track tasks and other necessary states during migration */
2393 struct cgroup_taskset {
2394 /* the src and dst cset list running through cset->mg_node */
2395 struct list_head src_csets;
2396 struct list_head dst_csets;
2397
2398 /* the subsys currently being processed */
2399 int ssid;
2400
2401 /*
2402 * Fields for cgroup_taskset_*() iteration.
2403 *
2404 * Before migration is committed, the target migration tasks are on
2405 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2406 * the csets on ->dst_csets. ->csets point to either ->src_csets
2407 * or ->dst_csets depending on whether migration is committed.
2408 *
2409 * ->cur_csets and ->cur_task point to the current task position
2410 * during iteration.
2411 */
2412 struct list_head *csets;
2413 struct css_set *cur_cset;
2414 struct task_struct *cur_task;
2415 };
2416
2417 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2418 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2419 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2420 .csets = &tset.src_csets, \
2421 }
2422
2423 /**
2424 * cgroup_taskset_add - try to add a migration target task to a taskset
2425 * @task: target task
2426 * @tset: target taskset
2427 *
2428 * Add @task, which is a migration target, to @tset. This function becomes
2429 * noop if @task doesn't need to be migrated. @task's css_set should have
2430 * been added as a migration source and @task->cg_list will be moved from
2431 * the css_set's tasks list to mg_tasks one.
2432 */
2433 static void cgroup_taskset_add(struct task_struct *task,
2434 struct cgroup_taskset *tset)
2435 {
2436 struct css_set *cset;
2437
2438 lockdep_assert_held(&css_set_lock);
2439
2440 /* @task either already exited or can't exit until the end */
2441 if (task->flags & PF_EXITING)
2442 return;
2443
2444 /* leave @task alone if post_fork() hasn't linked it yet */
2445 if (list_empty(&task->cg_list))
2446 return;
2447
2448 cset = task_css_set(task);
2449 if (!cset->mg_src_cgrp)
2450 return;
2451
2452 list_move_tail(&task->cg_list, &cset->mg_tasks);
2453 if (list_empty(&cset->mg_node))
2454 list_add_tail(&cset->mg_node, &tset->src_csets);
2455 if (list_empty(&cset->mg_dst_cset->mg_node))
2456 list_move_tail(&cset->mg_dst_cset->mg_node,
2457 &tset->dst_csets);
2458 }
2459
2460 /**
2461 * cgroup_taskset_first - reset taskset and return the first task
2462 * @tset: taskset of interest
2463 * @dst_cssp: output variable for the destination css
2464 *
2465 * @tset iteration is initialized and the first task is returned.
2466 */
2467 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2468 struct cgroup_subsys_state **dst_cssp)
2469 {
2470 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2471 tset->cur_task = NULL;
2472
2473 return cgroup_taskset_next(tset, dst_cssp);
2474 }
2475
2476 /**
2477 * cgroup_taskset_next - iterate to the next task in taskset
2478 * @tset: taskset of interest
2479 * @dst_cssp: output variable for the destination css
2480 *
2481 * Return the next task in @tset. Iteration must have been initialized
2482 * with cgroup_taskset_first().
2483 */
2484 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2485 struct cgroup_subsys_state **dst_cssp)
2486 {
2487 struct css_set *cset = tset->cur_cset;
2488 struct task_struct *task = tset->cur_task;
2489
2490 while (&cset->mg_node != tset->csets) {
2491 if (!task)
2492 task = list_first_entry(&cset->mg_tasks,
2493 struct task_struct, cg_list);
2494 else
2495 task = list_next_entry(task, cg_list);
2496
2497 if (&task->cg_list != &cset->mg_tasks) {
2498 tset->cur_cset = cset;
2499 tset->cur_task = task;
2500
2501 /*
2502 * This function may be called both before and
2503 * after cgroup_taskset_migrate(). The two cases
2504 * can be distinguished by looking at whether @cset
2505 * has its ->mg_dst_cset set.
2506 */
2507 if (cset->mg_dst_cset)
2508 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2509 else
2510 *dst_cssp = cset->subsys[tset->ssid];
2511
2512 return task;
2513 }
2514
2515 cset = list_next_entry(cset, mg_node);
2516 task = NULL;
2517 }
2518
2519 return NULL;
2520 }
2521
2522 /**
2523 * cgroup_taskset_migrate - migrate a taskset
2524 * @tset: taget taskset
2525 * @root: cgroup root the migration is taking place on
2526 *
2527 * Migrate tasks in @tset as setup by migration preparation functions.
2528 * This function fails iff one of the ->can_attach callbacks fails and
2529 * guarantees that either all or none of the tasks in @tset are migrated.
2530 * @tset is consumed regardless of success.
2531 */
2532 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2533 struct cgroup_root *root)
2534 {
2535 struct cgroup_subsys *ss;
2536 struct task_struct *task, *tmp_task;
2537 struct css_set *cset, *tmp_cset;
2538 int ssid, failed_ssid, ret;
2539
2540 /* methods shouldn't be called if no task is actually migrating */
2541 if (list_empty(&tset->src_csets))
2542 return 0;
2543
2544 /* check that we can legitimately attach to the cgroup */
2545 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2546 if (ss->can_attach) {
2547 tset->ssid = ssid;
2548 ret = ss->can_attach(tset);
2549 if (ret) {
2550 failed_ssid = ssid;
2551 goto out_cancel_attach;
2552 }
2553 }
2554 } while_each_subsys_mask();
2555
2556 /*
2557 * Now that we're guaranteed success, proceed to move all tasks to
2558 * the new cgroup. There are no failure cases after here, so this
2559 * is the commit point.
2560 */
2561 spin_lock_irq(&css_set_lock);
2562 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2563 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2564 struct css_set *from_cset = task_css_set(task);
2565 struct css_set *to_cset = cset->mg_dst_cset;
2566
2567 get_css_set(to_cset);
2568 css_set_move_task(task, from_cset, to_cset, true);
2569 put_css_set_locked(from_cset);
2570 }
2571 }
2572 spin_unlock_irq(&css_set_lock);
2573
2574 /*
2575 * Migration is committed, all target tasks are now on dst_csets.
2576 * Nothing is sensitive to fork() after this point. Notify
2577 * controllers that migration is complete.
2578 */
2579 tset->csets = &tset->dst_csets;
2580
2581 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2582 if (ss->attach) {
2583 tset->ssid = ssid;
2584 ss->attach(tset);
2585 }
2586 } while_each_subsys_mask();
2587
2588 ret = 0;
2589 goto out_release_tset;
2590
2591 out_cancel_attach:
2592 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2593 if (ssid == failed_ssid)
2594 break;
2595 if (ss->cancel_attach) {
2596 tset->ssid = ssid;
2597 ss->cancel_attach(tset);
2598 }
2599 } while_each_subsys_mask();
2600 out_release_tset:
2601 spin_lock_irq(&css_set_lock);
2602 list_splice_init(&tset->dst_csets, &tset->src_csets);
2603 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2604 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2605 list_del_init(&cset->mg_node);
2606 }
2607 spin_unlock_irq(&css_set_lock);
2608 return ret;
2609 }
2610
2611 /**
2612 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2613 * @dst_cgrp: destination cgroup to test
2614 *
2615 * On the default hierarchy, except for the root, subtree_control must be
2616 * zero for migration destination cgroups with tasks so that child cgroups
2617 * don't compete against tasks.
2618 */
2619 static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2620 {
2621 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2622 !dst_cgrp->subtree_control;
2623 }
2624
2625 /**
2626 * cgroup_migrate_finish - cleanup after attach
2627 * @preloaded_csets: list of preloaded css_sets
2628 *
2629 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2630 * those functions for details.
2631 */
2632 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2633 {
2634 struct css_set *cset, *tmp_cset;
2635
2636 lockdep_assert_held(&cgroup_mutex);
2637
2638 spin_lock_irq(&css_set_lock);
2639 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2640 cset->mg_src_cgrp = NULL;
2641 cset->mg_dst_cgrp = NULL;
2642 cset->mg_dst_cset = NULL;
2643 list_del_init(&cset->mg_preload_node);
2644 put_css_set_locked(cset);
2645 }
2646 spin_unlock_irq(&css_set_lock);
2647 }
2648
2649 /**
2650 * cgroup_migrate_add_src - add a migration source css_set
2651 * @src_cset: the source css_set to add
2652 * @dst_cgrp: the destination cgroup
2653 * @preloaded_csets: list of preloaded css_sets
2654 *
2655 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2656 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2657 * up by cgroup_migrate_finish().
2658 *
2659 * This function may be called without holding cgroup_threadgroup_rwsem
2660 * even if the target is a process. Threads may be created and destroyed
2661 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2662 * into play and the preloaded css_sets are guaranteed to cover all
2663 * migrations.
2664 */
2665 static void cgroup_migrate_add_src(struct css_set *src_cset,
2666 struct cgroup *dst_cgrp,
2667 struct list_head *preloaded_csets)
2668 {
2669 struct cgroup *src_cgrp;
2670
2671 lockdep_assert_held(&cgroup_mutex);
2672 lockdep_assert_held(&css_set_lock);
2673
2674 /*
2675 * If ->dead, @src_set is associated with one or more dead cgroups
2676 * and doesn't contain any migratable tasks. Ignore it early so
2677 * that the rest of migration path doesn't get confused by it.
2678 */
2679 if (src_cset->dead)
2680 return;
2681
2682 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2683
2684 if (!list_empty(&src_cset->mg_preload_node))
2685 return;
2686
2687 WARN_ON(src_cset->mg_src_cgrp);
2688 WARN_ON(src_cset->mg_dst_cgrp);
2689 WARN_ON(!list_empty(&src_cset->mg_tasks));
2690 WARN_ON(!list_empty(&src_cset->mg_node));
2691
2692 src_cset->mg_src_cgrp = src_cgrp;
2693 src_cset->mg_dst_cgrp = dst_cgrp;
2694 get_css_set(src_cset);
2695 list_add(&src_cset->mg_preload_node, preloaded_csets);
2696 }
2697
2698 /**
2699 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2700 * @preloaded_csets: list of preloaded source css_sets
2701 *
2702 * Tasks are about to be moved and all the source css_sets have been
2703 * preloaded to @preloaded_csets. This function looks up and pins all
2704 * destination css_sets, links each to its source, and append them to
2705 * @preloaded_csets.
2706 *
2707 * This function must be called after cgroup_migrate_add_src() has been
2708 * called on each migration source css_set. After migration is performed
2709 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2710 * @preloaded_csets.
2711 */
2712 static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2713 {
2714 LIST_HEAD(csets);
2715 struct css_set *src_cset, *tmp_cset;
2716
2717 lockdep_assert_held(&cgroup_mutex);
2718
2719 /* look up the dst cset for each src cset and link it to src */
2720 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2721 struct css_set *dst_cset;
2722
2723 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2724 if (!dst_cset)
2725 goto err;
2726
2727 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2728
2729 /*
2730 * If src cset equals dst, it's noop. Drop the src.
2731 * cgroup_migrate() will skip the cset too. Note that we
2732 * can't handle src == dst as some nodes are used by both.
2733 */
2734 if (src_cset == dst_cset) {
2735 src_cset->mg_src_cgrp = NULL;
2736 src_cset->mg_dst_cgrp = NULL;
2737 list_del_init(&src_cset->mg_preload_node);
2738 put_css_set(src_cset);
2739 put_css_set(dst_cset);
2740 continue;
2741 }
2742
2743 src_cset->mg_dst_cset = dst_cset;
2744
2745 if (list_empty(&dst_cset->mg_preload_node))
2746 list_add(&dst_cset->mg_preload_node, &csets);
2747 else
2748 put_css_set(dst_cset);
2749 }
2750
2751 list_splice_tail(&csets, preloaded_csets);
2752 return 0;
2753 err:
2754 cgroup_migrate_finish(&csets);
2755 return -ENOMEM;
2756 }
2757
2758 /**
2759 * cgroup_migrate - migrate a process or task to a cgroup
2760 * @leader: the leader of the process or the task to migrate
2761 * @threadgroup: whether @leader points to the whole process or a single task
2762 * @root: cgroup root migration is taking place on
2763 *
2764 * Migrate a process or task denoted by @leader. If migrating a process,
2765 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2766 * responsible for invoking cgroup_migrate_add_src() and
2767 * cgroup_migrate_prepare_dst() on the targets before invoking this
2768 * function and following up with cgroup_migrate_finish().
2769 *
2770 * As long as a controller's ->can_attach() doesn't fail, this function is
2771 * guaranteed to succeed. This means that, excluding ->can_attach()
2772 * failure, when migrating multiple targets, the success or failure can be
2773 * decided for all targets by invoking group_migrate_prepare_dst() before
2774 * actually starting migrating.
2775 */
2776 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2777 struct cgroup_root *root)
2778 {
2779 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2780 struct task_struct *task;
2781
2782 /*
2783 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2784 * already PF_EXITING could be freed from underneath us unless we
2785 * take an rcu_read_lock.
2786 */
2787 spin_lock_irq(&css_set_lock);
2788 rcu_read_lock();
2789 task = leader;
2790 do {
2791 cgroup_taskset_add(task, &tset);
2792 if (!threadgroup)
2793 break;
2794 } while_each_thread(leader, task);
2795 rcu_read_unlock();
2796 spin_unlock_irq(&css_set_lock);
2797
2798 return cgroup_taskset_migrate(&tset, root);
2799 }
2800
2801 /**
2802 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2803 * @dst_cgrp: the cgroup to attach to
2804 * @leader: the task or the leader of the threadgroup to be attached
2805 * @threadgroup: attach the whole threadgroup?
2806 *
2807 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2808 */
2809 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2810 struct task_struct *leader, bool threadgroup)
2811 {
2812 LIST_HEAD(preloaded_csets);
2813 struct task_struct *task;
2814 int ret;
2815
2816 if (!cgroup_may_migrate_to(dst_cgrp))
2817 return -EBUSY;
2818
2819 /* look up all src csets */
2820 spin_lock_irq(&css_set_lock);
2821 rcu_read_lock();
2822 task = leader;
2823 do {
2824 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2825 &preloaded_csets);
2826 if (!threadgroup)
2827 break;
2828 } while_each_thread(leader, task);
2829 rcu_read_unlock();
2830 spin_unlock_irq(&css_set_lock);
2831
2832 /* prepare dst csets and commit */
2833 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2834 if (!ret)
2835 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2836
2837 cgroup_migrate_finish(&preloaded_csets);
2838
2839 if (!ret)
2840 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2841
2842 return ret;
2843 }
2844
2845 static int cgroup_procs_write_permission(struct task_struct *task,
2846 struct cgroup *dst_cgrp,
2847 struct kernfs_open_file *of)
2848 {
2849 const struct cred *cred = current_cred();
2850 const struct cred *tcred = get_task_cred(task);
2851 int ret = 0;
2852
2853 /*
2854 * even if we're attaching all tasks in the thread group, we only
2855 * need to check permissions on one of them.
2856 */
2857 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2858 !uid_eq(cred->euid, tcred->uid) &&
2859 !uid_eq(cred->euid, tcred->suid))
2860 ret = -EACCES;
2861
2862 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2863 struct super_block *sb = of->file->f_path.dentry->d_sb;
2864 struct cgroup *cgrp;
2865 struct inode *inode;
2866
2867 spin_lock_irq(&css_set_lock);
2868 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2869 spin_unlock_irq(&css_set_lock);
2870
2871 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2872 cgrp = cgroup_parent(cgrp);
2873
2874 ret = -ENOMEM;
2875 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2876 if (inode) {
2877 ret = inode_permission(inode, MAY_WRITE);
2878 iput(inode);
2879 }
2880 }
2881
2882 put_cred(tcred);
2883 return ret;
2884 }
2885
2886 /*
2887 * Find the task_struct of the task to attach by vpid and pass it along to the
2888 * function to attach either it or all tasks in its threadgroup. Will lock
2889 * cgroup_mutex and threadgroup.
2890 */
2891 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2892 size_t nbytes, loff_t off, bool threadgroup)
2893 {
2894 struct task_struct *tsk;
2895 struct cgroup_subsys *ss;
2896 struct cgroup *cgrp;
2897 pid_t pid;
2898 int ssid, ret;
2899
2900 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2901 return -EINVAL;
2902
2903 cgrp = cgroup_kn_lock_live(of->kn, false);
2904 if (!cgrp)
2905 return -ENODEV;
2906
2907 percpu_down_write(&cgroup_threadgroup_rwsem);
2908 rcu_read_lock();
2909 if (pid) {
2910 tsk = find_task_by_vpid(pid);
2911 if (!tsk) {
2912 ret = -ESRCH;
2913 goto out_unlock_rcu;
2914 }
2915 } else {
2916 tsk = current;
2917 }
2918
2919 if (threadgroup)
2920 tsk = tsk->group_leader;
2921
2922 /*
2923 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2924 * trapped in a cpuset, or RT worker may be born in a cgroup
2925 * with no rt_runtime allocated. Just say no.
2926 */
2927 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2928 ret = -EINVAL;
2929 goto out_unlock_rcu;
2930 }
2931
2932 get_task_struct(tsk);
2933 rcu_read_unlock();
2934
2935 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2936 if (!ret)
2937 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2938
2939 put_task_struct(tsk);
2940 goto out_unlock_threadgroup;
2941
2942 out_unlock_rcu:
2943 rcu_read_unlock();
2944 out_unlock_threadgroup:
2945 percpu_up_write(&cgroup_threadgroup_rwsem);
2946 for_each_subsys(ss, ssid)
2947 if (ss->post_attach)
2948 ss->post_attach();
2949 cgroup_kn_unlock(of->kn);
2950 return ret ?: nbytes;
2951 }
2952
2953 /**
2954 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2955 * @from: attach to all cgroups of a given task
2956 * @tsk: the task to be attached
2957 */
2958 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2959 {
2960 struct cgroup_root *root;
2961 int retval = 0;
2962
2963 mutex_lock(&cgroup_mutex);
2964 percpu_down_write(&cgroup_threadgroup_rwsem);
2965 for_each_root(root) {
2966 struct cgroup *from_cgrp;
2967
2968 if (root == &cgrp_dfl_root)
2969 continue;
2970
2971 spin_lock_irq(&css_set_lock);
2972 from_cgrp = task_cgroup_from_root(from, root);
2973 spin_unlock_irq(&css_set_lock);
2974
2975 retval = cgroup_attach_task(from_cgrp, tsk, false);
2976 if (retval)
2977 break;
2978 }
2979 percpu_up_write(&cgroup_threadgroup_rwsem);
2980 mutex_unlock(&cgroup_mutex);
2981
2982 return retval;
2983 }
2984 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2985
2986 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2987 char *buf, size_t nbytes, loff_t off)
2988 {
2989 return __cgroup_procs_write(of, buf, nbytes, off, false);
2990 }
2991
2992 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2993 char *buf, size_t nbytes, loff_t off)
2994 {
2995 return __cgroup_procs_write(of, buf, nbytes, off, true);
2996 }
2997
2998 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2999 char *buf, size_t nbytes, loff_t off)
3000 {
3001 struct cgroup *cgrp;
3002
3003 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
3004
3005 cgrp = cgroup_kn_lock_live(of->kn, false);
3006 if (!cgrp)
3007 return -ENODEV;
3008 spin_lock(&release_agent_path_lock);
3009 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3010 sizeof(cgrp->root->release_agent_path));
3011 spin_unlock(&release_agent_path_lock);
3012 cgroup_kn_unlock(of->kn);
3013 return nbytes;
3014 }
3015
3016 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3017 {
3018 struct cgroup *cgrp = seq_css(seq)->cgroup;
3019
3020 spin_lock(&release_agent_path_lock);
3021 seq_puts(seq, cgrp->root->release_agent_path);
3022 spin_unlock(&release_agent_path_lock);
3023 seq_putc(seq, '\n');
3024 return 0;
3025 }
3026
3027 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3028 {
3029 seq_puts(seq, "0\n");
3030 return 0;
3031 }
3032
3033 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3034 {
3035 struct cgroup_subsys *ss;
3036 bool printed = false;
3037 int ssid;
3038
3039 do_each_subsys_mask(ss, ssid, ss_mask) {
3040 if (printed)
3041 seq_putc(seq, ' ');
3042 seq_printf(seq, "%s", ss->name);
3043 printed = true;
3044 } while_each_subsys_mask();
3045 if (printed)
3046 seq_putc(seq, '\n');
3047 }
3048
3049 /* show controllers which are enabled from the parent */
3050 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3051 {
3052 struct cgroup *cgrp = seq_css(seq)->cgroup;
3053
3054 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3055 return 0;
3056 }
3057
3058 /* show controllers which are enabled for a given cgroup's children */
3059 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3060 {
3061 struct cgroup *cgrp = seq_css(seq)->cgroup;
3062
3063 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3064 return 0;
3065 }
3066
3067 /**
3068 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3069 * @cgrp: root of the subtree to update csses for
3070 *
3071 * @cgrp's control masks have changed and its subtree's css associations
3072 * need to be updated accordingly. This function looks up all css_sets
3073 * which are attached to the subtree, creates the matching updated css_sets
3074 * and migrates the tasks to the new ones.
3075 */
3076 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3077 {
3078 LIST_HEAD(preloaded_csets);
3079 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3080 struct cgroup_subsys_state *d_css;
3081 struct cgroup *dsct;
3082 struct css_set *src_cset;
3083 int ret;
3084
3085 lockdep_assert_held(&cgroup_mutex);
3086
3087 percpu_down_write(&cgroup_threadgroup_rwsem);
3088
3089 /* look up all csses currently attached to @cgrp's subtree */
3090 spin_lock_irq(&css_set_lock);
3091 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3092 struct cgrp_cset_link *link;
3093
3094 list_for_each_entry(link, &dsct->cset_links, cset_link)
3095 cgroup_migrate_add_src(link->cset, dsct,
3096 &preloaded_csets);
3097 }
3098 spin_unlock_irq(&css_set_lock);
3099
3100 /* NULL dst indicates self on default hierarchy */
3101 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3102 if (ret)
3103 goto out_finish;
3104
3105 spin_lock_irq(&css_set_lock);
3106 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3107 struct task_struct *task, *ntask;
3108
3109 /* src_csets precede dst_csets, break on the first dst_cset */
3110 if (!src_cset->mg_src_cgrp)
3111 break;
3112
3113 /* all tasks in src_csets need to be migrated */
3114 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3115 cgroup_taskset_add(task, &tset);
3116 }
3117 spin_unlock_irq(&css_set_lock);
3118
3119 ret = cgroup_taskset_migrate(&tset, cgrp->root);
3120 out_finish:
3121 cgroup_migrate_finish(&preloaded_csets);
3122 percpu_up_write(&cgroup_threadgroup_rwsem);
3123 return ret;
3124 }
3125
3126 /**
3127 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3128 * @cgrp: root of the target subtree
3129 *
3130 * Because css offlining is asynchronous, userland may try to re-enable a
3131 * controller while the previous css is still around. This function grabs
3132 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3133 */
3134 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3135 __acquires(&cgroup_mutex)
3136 {
3137 struct cgroup *dsct;
3138 struct cgroup_subsys_state *d_css;
3139 struct cgroup_subsys *ss;
3140 int ssid;
3141
3142 restart:
3143 mutex_lock(&cgroup_mutex);
3144
3145 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3146 for_each_subsys(ss, ssid) {
3147 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3148 DEFINE_WAIT(wait);
3149
3150 if (!css || !percpu_ref_is_dying(&css->refcnt))
3151 continue;
3152
3153 cgroup_get(dsct);
3154 prepare_to_wait(&dsct->offline_waitq, &wait,
3155 TASK_UNINTERRUPTIBLE);
3156
3157 mutex_unlock(&cgroup_mutex);
3158 schedule();
3159 finish_wait(&dsct->offline_waitq, &wait);
3160
3161 cgroup_put(dsct);
3162 goto restart;
3163 }
3164 }
3165 }
3166
3167 /**
3168 * cgroup_save_control - save control masks of a subtree
3169 * @cgrp: root of the target subtree
3170 *
3171 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3172 * prefixed fields for @cgrp's subtree including @cgrp itself.
3173 */
3174 static void cgroup_save_control(struct cgroup *cgrp)
3175 {
3176 struct cgroup *dsct;
3177 struct cgroup_subsys_state *d_css;
3178
3179 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3180 dsct->old_subtree_control = dsct->subtree_control;
3181 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3182 }
3183 }
3184
3185 /**
3186 * cgroup_propagate_control - refresh control masks of a subtree
3187 * @cgrp: root of the target subtree
3188 *
3189 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3190 * ->subtree_control and propagate controller availability through the
3191 * subtree so that descendants don't have unavailable controllers enabled.
3192 */
3193 static void cgroup_propagate_control(struct cgroup *cgrp)
3194 {
3195 struct cgroup *dsct;
3196 struct cgroup_subsys_state *d_css;
3197
3198 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3199 dsct->subtree_control &= cgroup_control(dsct);
3200 dsct->subtree_ss_mask =
3201 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3202 cgroup_ss_mask(dsct));
3203 }
3204 }
3205
3206 /**
3207 * cgroup_restore_control - restore control masks of a subtree
3208 * @cgrp: root of the target subtree
3209 *
3210 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3211 * prefixed fields for @cgrp's subtree including @cgrp itself.
3212 */
3213 static void cgroup_restore_control(struct cgroup *cgrp)
3214 {
3215 struct cgroup *dsct;
3216 struct cgroup_subsys_state *d_css;
3217
3218 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3219 dsct->subtree_control = dsct->old_subtree_control;
3220 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3221 }
3222 }
3223
3224 static bool css_visible(struct cgroup_subsys_state *css)
3225 {
3226 struct cgroup_subsys *ss = css->ss;
3227 struct cgroup *cgrp = css->cgroup;
3228
3229 if (cgroup_control(cgrp) & (1 << ss->id))
3230 return true;
3231 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3232 return false;
3233 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3234 }
3235
3236 /**
3237 * cgroup_apply_control_enable - enable or show csses according to control
3238 * @cgrp: root of the target subtree
3239 *
3240 * Walk @cgrp's subtree and create new csses or make the existing ones
3241 * visible. A css is created invisible if it's being implicitly enabled
3242 * through dependency. An invisible css is made visible when the userland
3243 * explicitly enables it.
3244 *
3245 * Returns 0 on success, -errno on failure. On failure, csses which have
3246 * been processed already aren't cleaned up. The caller is responsible for
3247 * cleaning up with cgroup_apply_control_disble().
3248 */
3249 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3250 {
3251 struct cgroup *dsct;
3252 struct cgroup_subsys_state *d_css;
3253 struct cgroup_subsys *ss;
3254 int ssid, ret;
3255
3256 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3257 for_each_subsys(ss, ssid) {
3258 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3259
3260 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3261
3262 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3263 continue;
3264
3265 if (!css) {
3266 css = css_create(dsct, ss);
3267 if (IS_ERR(css))
3268 return PTR_ERR(css);
3269 }
3270
3271 if (css_visible(css)) {
3272 ret = css_populate_dir(css);
3273 if (ret)
3274 return ret;
3275 }
3276 }
3277 }
3278
3279 return 0;
3280 }
3281
3282 /**
3283 * cgroup_apply_control_disable - kill or hide csses according to control
3284 * @cgrp: root of the target subtree
3285 *
3286 * Walk @cgrp's subtree and kill and hide csses so that they match
3287 * cgroup_ss_mask() and cgroup_visible_mask().
3288 *
3289 * A css is hidden when the userland requests it to be disabled while other
3290 * subsystems are still depending on it. The css must not actively control
3291 * resources and be in the vanilla state if it's made visible again later.
3292 * Controllers which may be depended upon should provide ->css_reset() for
3293 * this purpose.
3294 */
3295 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3296 {
3297 struct cgroup *dsct;
3298 struct cgroup_subsys_state *d_css;
3299 struct cgroup_subsys *ss;
3300 int ssid;
3301
3302 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3303 for_each_subsys(ss, ssid) {
3304 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3305
3306 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3307
3308 if (!css)
3309 continue;
3310
3311 if (css->parent &&
3312 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3313 kill_css(css);
3314 } else if (!css_visible(css)) {
3315 css_clear_dir(css);
3316 if (ss->css_reset)
3317 ss->css_reset(css);
3318 }
3319 }
3320 }
3321 }
3322
3323 /**
3324 * cgroup_apply_control - apply control mask updates to the subtree
3325 * @cgrp: root of the target subtree
3326 *
3327 * subsystems can be enabled and disabled in a subtree using the following
3328 * steps.
3329 *
3330 * 1. Call cgroup_save_control() to stash the current state.
3331 * 2. Update ->subtree_control masks in the subtree as desired.
3332 * 3. Call cgroup_apply_control() to apply the changes.
3333 * 4. Optionally perform other related operations.
3334 * 5. Call cgroup_finalize_control() to finish up.
3335 *
3336 * This function implements step 3 and propagates the mask changes
3337 * throughout @cgrp's subtree, updates csses accordingly and perform
3338 * process migrations.
3339 */
3340 static int cgroup_apply_control(struct cgroup *cgrp)
3341 {
3342 int ret;
3343
3344 cgroup_propagate_control(cgrp);
3345
3346 ret = cgroup_apply_control_enable(cgrp);
3347 if (ret)
3348 return ret;
3349
3350 /*
3351 * At this point, cgroup_e_css() results reflect the new csses
3352 * making the following cgroup_update_dfl_csses() properly update
3353 * css associations of all tasks in the subtree.
3354 */
3355 ret = cgroup_update_dfl_csses(cgrp);
3356 if (ret)
3357 return ret;
3358
3359 return 0;
3360 }
3361
3362 /**
3363 * cgroup_finalize_control - finalize control mask update
3364 * @cgrp: root of the target subtree
3365 * @ret: the result of the update
3366 *
3367 * Finalize control mask update. See cgroup_apply_control() for more info.
3368 */
3369 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3370 {
3371 if (ret) {
3372 cgroup_restore_control(cgrp);
3373 cgroup_propagate_control(cgrp);
3374 }
3375
3376 cgroup_apply_control_disable(cgrp);
3377 }
3378
3379 /* change the enabled child controllers for a cgroup in the default hierarchy */
3380 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3381 char *buf, size_t nbytes,
3382 loff_t off)
3383 {
3384 u16 enable = 0, disable = 0;
3385 struct cgroup *cgrp, *child;
3386 struct cgroup_subsys *ss;
3387 char *tok;
3388 int ssid, ret;
3389
3390 /*
3391 * Parse input - space separated list of subsystem names prefixed
3392 * with either + or -.
3393 */
3394 buf = strstrip(buf);
3395 while ((tok = strsep(&buf, " "))) {
3396 if (tok[0] == '\0')
3397 continue;
3398 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3399 if (!cgroup_ssid_enabled(ssid) ||
3400 strcmp(tok + 1, ss->name))
3401 continue;
3402
3403 if (*tok == '+') {
3404 enable |= 1 << ssid;
3405 disable &= ~(1 << ssid);
3406 } else if (*tok == '-') {
3407 disable |= 1 << ssid;
3408 enable &= ~(1 << ssid);
3409 } else {
3410 return -EINVAL;
3411 }
3412 break;
3413 } while_each_subsys_mask();
3414 if (ssid == CGROUP_SUBSYS_COUNT)
3415 return -EINVAL;
3416 }
3417
3418 cgrp = cgroup_kn_lock_live(of->kn, true);
3419 if (!cgrp)
3420 return -ENODEV;
3421
3422 for_each_subsys(ss, ssid) {
3423 if (enable & (1 << ssid)) {
3424 if (cgrp->subtree_control & (1 << ssid)) {
3425 enable &= ~(1 << ssid);
3426 continue;
3427 }
3428
3429 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3430 ret = -ENOENT;
3431 goto out_unlock;
3432 }
3433 } else if (disable & (1 << ssid)) {
3434 if (!(cgrp->subtree_control & (1 << ssid))) {
3435 disable &= ~(1 << ssid);
3436 continue;
3437 }
3438
3439 /* a child has it enabled? */
3440 cgroup_for_each_live_child(child, cgrp) {
3441 if (child->subtree_control & (1 << ssid)) {
3442 ret = -EBUSY;
3443 goto out_unlock;
3444 }
3445 }
3446 }
3447 }
3448
3449 if (!enable && !disable) {
3450 ret = 0;
3451 goto out_unlock;
3452 }
3453
3454 /*
3455 * Except for the root, subtree_control must be zero for a cgroup
3456 * with tasks so that child cgroups don't compete against tasks.
3457 */
3458 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3459 ret = -EBUSY;
3460 goto out_unlock;
3461 }
3462
3463 /* save and update control masks and prepare csses */
3464 cgroup_save_control(cgrp);
3465
3466 cgrp->subtree_control |= enable;
3467 cgrp->subtree_control &= ~disable;
3468
3469 ret = cgroup_apply_control(cgrp);
3470
3471 cgroup_finalize_control(cgrp, ret);
3472
3473 kernfs_activate(cgrp->kn);
3474 ret = 0;
3475 out_unlock:
3476 cgroup_kn_unlock(of->kn);
3477 return ret ?: nbytes;
3478 }
3479
3480 static int cgroup_events_show(struct seq_file *seq, void *v)
3481 {
3482 seq_printf(seq, "populated %d\n",
3483 cgroup_is_populated(seq_css(seq)->cgroup));
3484 return 0;
3485 }
3486
3487 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3488 size_t nbytes, loff_t off)
3489 {
3490 struct cgroup *cgrp = of->kn->parent->priv;
3491 struct cftype *cft = of->kn->priv;
3492 struct cgroup_subsys_state *css;
3493 int ret;
3494
3495 if (cft->write)
3496 return cft->write(of, buf, nbytes, off);
3497
3498 /*
3499 * kernfs guarantees that a file isn't deleted with operations in
3500 * flight, which means that the matching css is and stays alive and
3501 * doesn't need to be pinned. The RCU locking is not necessary
3502 * either. It's just for the convenience of using cgroup_css().
3503 */
3504 rcu_read_lock();
3505 css = cgroup_css(cgrp, cft->ss);
3506 rcu_read_unlock();
3507
3508 if (cft->write_u64) {
3509 unsigned long long v;
3510 ret = kstrtoull(buf, 0, &v);
3511 if (!ret)
3512 ret = cft->write_u64(css, cft, v);
3513 } else if (cft->write_s64) {
3514 long long v;
3515 ret = kstrtoll(buf, 0, &v);
3516 if (!ret)
3517 ret = cft->write_s64(css, cft, v);
3518 } else {
3519 ret = -EINVAL;
3520 }
3521
3522 return ret ?: nbytes;
3523 }
3524
3525 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3526 {
3527 return seq_cft(seq)->seq_start(seq, ppos);
3528 }
3529
3530 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3531 {
3532 return seq_cft(seq)->seq_next(seq, v, ppos);
3533 }
3534
3535 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3536 {
3537 seq_cft(seq)->seq_stop(seq, v);
3538 }
3539
3540 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3541 {
3542 struct cftype *cft = seq_cft(m);
3543 struct cgroup_subsys_state *css = seq_css(m);
3544
3545 if (cft->seq_show)
3546 return cft->seq_show(m, arg);
3547
3548 if (cft->read_u64)
3549 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3550 else if (cft->read_s64)
3551 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3552 else
3553 return -EINVAL;
3554 return 0;
3555 }
3556
3557 static struct kernfs_ops cgroup_kf_single_ops = {
3558 .atomic_write_len = PAGE_SIZE,
3559 .write = cgroup_file_write,
3560 .seq_show = cgroup_seqfile_show,
3561 };
3562
3563 static struct kernfs_ops cgroup_kf_ops = {
3564 .atomic_write_len = PAGE_SIZE,
3565 .write = cgroup_file_write,
3566 .seq_start = cgroup_seqfile_start,
3567 .seq_next = cgroup_seqfile_next,
3568 .seq_stop = cgroup_seqfile_stop,
3569 .seq_show = cgroup_seqfile_show,
3570 };
3571
3572 /*
3573 * cgroup_rename - Only allow simple rename of directories in place.
3574 */
3575 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3576 const char *new_name_str)
3577 {
3578 struct cgroup *cgrp = kn->priv;
3579 int ret;
3580
3581 if (kernfs_type(kn) != KERNFS_DIR)
3582 return -ENOTDIR;
3583 if (kn->parent != new_parent)
3584 return -EIO;
3585
3586 /*
3587 * This isn't a proper migration and its usefulness is very
3588 * limited. Disallow on the default hierarchy.
3589 */
3590 if (cgroup_on_dfl(cgrp))
3591 return -EPERM;
3592
3593 /*
3594 * We're gonna grab cgroup_mutex which nests outside kernfs
3595 * active_ref. kernfs_rename() doesn't require active_ref
3596 * protection. Break them before grabbing cgroup_mutex.
3597 */
3598 kernfs_break_active_protection(new_parent);
3599 kernfs_break_active_protection(kn);
3600
3601 mutex_lock(&cgroup_mutex);
3602
3603 ret = kernfs_rename(kn, new_parent, new_name_str);
3604 if (!ret)
3605 trace_cgroup_rename(cgrp);
3606
3607 mutex_unlock(&cgroup_mutex);
3608
3609 kernfs_unbreak_active_protection(kn);
3610 kernfs_unbreak_active_protection(new_parent);
3611 return ret;
3612 }
3613
3614 /* set uid and gid of cgroup dirs and files to that of the creator */
3615 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3616 {
3617 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3618 .ia_uid = current_fsuid(),
3619 .ia_gid = current_fsgid(), };
3620
3621 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3622 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3623 return 0;
3624
3625 return kernfs_setattr(kn, &iattr);
3626 }
3627
3628 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3629 struct cftype *cft)
3630 {
3631 char name[CGROUP_FILE_NAME_MAX];
3632 struct kernfs_node *kn;
3633 struct lock_class_key *key = NULL;
3634 int ret;
3635
3636 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3637 key = &cft->lockdep_key;
3638 #endif
3639 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3640 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3641 NULL, key);
3642 if (IS_ERR(kn))
3643 return PTR_ERR(kn);
3644
3645 ret = cgroup_kn_set_ugid(kn);
3646 if (ret) {
3647 kernfs_remove(kn);
3648 return ret;
3649 }
3650
3651 if (cft->file_offset) {
3652 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3653
3654 spin_lock_irq(&cgroup_file_kn_lock);
3655 cfile->kn = kn;
3656 spin_unlock_irq(&cgroup_file_kn_lock);
3657 }
3658
3659 return 0;
3660 }
3661
3662 /**
3663 * cgroup_addrm_files - add or remove files to a cgroup directory
3664 * @css: the target css
3665 * @cgrp: the target cgroup (usually css->cgroup)
3666 * @cfts: array of cftypes to be added
3667 * @is_add: whether to add or remove
3668 *
3669 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3670 * For removals, this function never fails.
3671 */
3672 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3673 struct cgroup *cgrp, struct cftype cfts[],
3674 bool is_add)
3675 {
3676 struct cftype *cft, *cft_end = NULL;
3677 int ret = 0;
3678
3679 lockdep_assert_held(&cgroup_mutex);
3680
3681 restart:
3682 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3683 /* does cft->flags tell us to skip this file on @cgrp? */
3684 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3685 continue;
3686 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3687 continue;
3688 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3689 continue;
3690 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3691 continue;
3692
3693 if (is_add) {
3694 ret = cgroup_add_file(css, cgrp, cft);
3695 if (ret) {
3696 pr_warn("%s: failed to add %s, err=%d\n",
3697 __func__, cft->name, ret);
3698 cft_end = cft;
3699 is_add = false;
3700 goto restart;
3701 }
3702 } else {
3703 cgroup_rm_file(cgrp, cft);
3704 }
3705 }
3706 return ret;
3707 }
3708
3709 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3710 {
3711 LIST_HEAD(pending);
3712 struct cgroup_subsys *ss = cfts[0].ss;
3713 struct cgroup *root = &ss->root->cgrp;
3714 struct cgroup_subsys_state *css;
3715 int ret = 0;
3716
3717 lockdep_assert_held(&cgroup_mutex);
3718
3719 /* add/rm files for all cgroups created before */
3720 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3721 struct cgroup *cgrp = css->cgroup;
3722
3723 if (!(css->flags & CSS_VISIBLE))
3724 continue;
3725
3726 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3727 if (ret)
3728 break;
3729 }
3730
3731 if (is_add && !ret)
3732 kernfs_activate(root->kn);
3733 return ret;
3734 }
3735
3736 static void cgroup_exit_cftypes(struct cftype *cfts)
3737 {
3738 struct cftype *cft;
3739
3740 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3741 /* free copy for custom atomic_write_len, see init_cftypes() */
3742 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3743 kfree(cft->kf_ops);
3744 cft->kf_ops = NULL;
3745 cft->ss = NULL;
3746
3747 /* revert flags set by cgroup core while adding @cfts */
3748 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3749 }
3750 }
3751
3752 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3753 {
3754 struct cftype *cft;
3755
3756 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3757 struct kernfs_ops *kf_ops;
3758
3759 WARN_ON(cft->ss || cft->kf_ops);
3760
3761 if (cft->seq_start)
3762 kf_ops = &cgroup_kf_ops;
3763 else
3764 kf_ops = &cgroup_kf_single_ops;
3765
3766 /*
3767 * Ugh... if @cft wants a custom max_write_len, we need to
3768 * make a copy of kf_ops to set its atomic_write_len.
3769 */
3770 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3771 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3772 if (!kf_ops) {
3773 cgroup_exit_cftypes(cfts);
3774 return -ENOMEM;
3775 }
3776 kf_ops->atomic_write_len = cft->max_write_len;
3777 }
3778
3779 cft->kf_ops = kf_ops;
3780 cft->ss = ss;
3781 }
3782
3783 return 0;
3784 }
3785
3786 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3787 {
3788 lockdep_assert_held(&cgroup_mutex);
3789
3790 if (!cfts || !cfts[0].ss)
3791 return -ENOENT;
3792
3793 list_del(&cfts->node);
3794 cgroup_apply_cftypes(cfts, false);
3795 cgroup_exit_cftypes(cfts);
3796 return 0;
3797 }
3798
3799 /**
3800 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3801 * @cfts: zero-length name terminated array of cftypes
3802 *
3803 * Unregister @cfts. Files described by @cfts are removed from all
3804 * existing cgroups and all future cgroups won't have them either. This
3805 * function can be called anytime whether @cfts' subsys is attached or not.
3806 *
3807 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3808 * registered.
3809 */
3810 int cgroup_rm_cftypes(struct cftype *cfts)
3811 {
3812 int ret;
3813
3814 mutex_lock(&cgroup_mutex);
3815 ret = cgroup_rm_cftypes_locked(cfts);
3816 mutex_unlock(&cgroup_mutex);
3817 return ret;
3818 }
3819
3820 /**
3821 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3822 * @ss: target cgroup subsystem
3823 * @cfts: zero-length name terminated array of cftypes
3824 *
3825 * Register @cfts to @ss. Files described by @cfts are created for all
3826 * existing cgroups to which @ss is attached and all future cgroups will
3827 * have them too. This function can be called anytime whether @ss is
3828 * attached or not.
3829 *
3830 * Returns 0 on successful registration, -errno on failure. Note that this
3831 * function currently returns 0 as long as @cfts registration is successful
3832 * even if some file creation attempts on existing cgroups fail.
3833 */
3834 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3835 {
3836 int ret;
3837
3838 if (!cgroup_ssid_enabled(ss->id))
3839 return 0;
3840
3841 if (!cfts || cfts[0].name[0] == '\0')
3842 return 0;
3843
3844 ret = cgroup_init_cftypes(ss, cfts);
3845 if (ret)
3846 return ret;
3847
3848 mutex_lock(&cgroup_mutex);
3849
3850 list_add_tail(&cfts->node, &ss->cfts);
3851 ret = cgroup_apply_cftypes(cfts, true);
3852 if (ret)
3853 cgroup_rm_cftypes_locked(cfts);
3854
3855 mutex_unlock(&cgroup_mutex);
3856 return ret;
3857 }
3858
3859 /**
3860 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3861 * @ss: target cgroup subsystem
3862 * @cfts: zero-length name terminated array of cftypes
3863 *
3864 * Similar to cgroup_add_cftypes() but the added files are only used for
3865 * the default hierarchy.
3866 */
3867 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3868 {
3869 struct cftype *cft;
3870
3871 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3872 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3873 return cgroup_add_cftypes(ss, cfts);
3874 }
3875
3876 /**
3877 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3878 * @ss: target cgroup subsystem
3879 * @cfts: zero-length name terminated array of cftypes
3880 *
3881 * Similar to cgroup_add_cftypes() but the added files are only used for
3882 * the legacy hierarchies.
3883 */
3884 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3885 {
3886 struct cftype *cft;
3887
3888 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3889 cft->flags |= __CFTYPE_NOT_ON_DFL;
3890 return cgroup_add_cftypes(ss, cfts);
3891 }
3892
3893 /**
3894 * cgroup_file_notify - generate a file modified event for a cgroup_file
3895 * @cfile: target cgroup_file
3896 *
3897 * @cfile must have been obtained by setting cftype->file_offset.
3898 */
3899 void cgroup_file_notify(struct cgroup_file *cfile)
3900 {
3901 unsigned long flags;
3902
3903 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3904 if (cfile->kn)
3905 kernfs_notify(cfile->kn);
3906 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3907 }
3908
3909 /**
3910 * cgroup_task_count - count the number of tasks in a cgroup.
3911 * @cgrp: the cgroup in question
3912 *
3913 * Return the number of tasks in the cgroup.
3914 */
3915 static int cgroup_task_count(const struct cgroup *cgrp)
3916 {
3917 int count = 0;
3918 struct cgrp_cset_link *link;
3919
3920 spin_lock_irq(&css_set_lock);
3921 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3922 count += atomic_read(&link->cset->refcount);
3923 spin_unlock_irq(&css_set_lock);
3924 return count;
3925 }
3926
3927 /**
3928 * css_next_child - find the next child of a given css
3929 * @pos: the current position (%NULL to initiate traversal)
3930 * @parent: css whose children to walk
3931 *
3932 * This function returns the next child of @parent and should be called
3933 * under either cgroup_mutex or RCU read lock. The only requirement is
3934 * that @parent and @pos are accessible. The next sibling is guaranteed to
3935 * be returned regardless of their states.
3936 *
3937 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3938 * css which finished ->css_online() is guaranteed to be visible in the
3939 * future iterations and will stay visible until the last reference is put.
3940 * A css which hasn't finished ->css_online() or already finished
3941 * ->css_offline() may show up during traversal. It's each subsystem's
3942 * responsibility to synchronize against on/offlining.
3943 */
3944 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3945 struct cgroup_subsys_state *parent)
3946 {
3947 struct cgroup_subsys_state *next;
3948
3949 cgroup_assert_mutex_or_rcu_locked();
3950
3951 /*
3952 * @pos could already have been unlinked from the sibling list.
3953 * Once a cgroup is removed, its ->sibling.next is no longer
3954 * updated when its next sibling changes. CSS_RELEASED is set when
3955 * @pos is taken off list, at which time its next pointer is valid,
3956 * and, as releases are serialized, the one pointed to by the next
3957 * pointer is guaranteed to not have started release yet. This
3958 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3959 * critical section, the one pointed to by its next pointer is
3960 * guaranteed to not have finished its RCU grace period even if we
3961 * have dropped rcu_read_lock() inbetween iterations.
3962 *
3963 * If @pos has CSS_RELEASED set, its next pointer can't be
3964 * dereferenced; however, as each css is given a monotonically
3965 * increasing unique serial number and always appended to the
3966 * sibling list, the next one can be found by walking the parent's
3967 * children until the first css with higher serial number than
3968 * @pos's. While this path can be slower, it happens iff iteration
3969 * races against release and the race window is very small.
3970 */
3971 if (!pos) {
3972 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3973 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3974 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3975 } else {
3976 list_for_each_entry_rcu(next, &parent->children, sibling)
3977 if (next->serial_nr > pos->serial_nr)
3978 break;
3979 }
3980
3981 /*
3982 * @next, if not pointing to the head, can be dereferenced and is
3983 * the next sibling.
3984 */
3985 if (&next->sibling != &parent->children)
3986 return next;
3987 return NULL;
3988 }
3989
3990 /**
3991 * css_next_descendant_pre - find the next descendant for pre-order walk
3992 * @pos: the current position (%NULL to initiate traversal)
3993 * @root: css whose descendants to walk
3994 *
3995 * To be used by css_for_each_descendant_pre(). Find the next descendant
3996 * to visit for pre-order traversal of @root's descendants. @root is
3997 * included in the iteration and the first node to be visited.
3998 *
3999 * While this function requires cgroup_mutex or RCU read locking, it
4000 * doesn't require the whole traversal to be contained in a single critical
4001 * section. This function will return the correct next descendant as long
4002 * as both @pos and @root are accessible and @pos is a descendant of @root.
4003 *
4004 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4005 * css which finished ->css_online() is guaranteed to be visible in the
4006 * future iterations and will stay visible until the last reference is put.
4007 * A css which hasn't finished ->css_online() or already finished
4008 * ->css_offline() may show up during traversal. It's each subsystem's
4009 * responsibility to synchronize against on/offlining.
4010 */
4011 struct cgroup_subsys_state *
4012 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4013 struct cgroup_subsys_state *root)
4014 {
4015 struct cgroup_subsys_state *next;
4016
4017 cgroup_assert_mutex_or_rcu_locked();
4018
4019 /* if first iteration, visit @root */
4020 if (!pos)
4021 return root;
4022
4023 /* visit the first child if exists */
4024 next = css_next_child(NULL, pos);
4025 if (next)
4026 return next;
4027
4028 /* no child, visit my or the closest ancestor's next sibling */
4029 while (pos != root) {
4030 next = css_next_child(pos, pos->parent);
4031 if (next)
4032 return next;
4033 pos = pos->parent;
4034 }
4035
4036 return NULL;
4037 }
4038
4039 /**
4040 * css_rightmost_descendant - return the rightmost descendant of a css
4041 * @pos: css of interest
4042 *
4043 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4044 * is returned. This can be used during pre-order traversal to skip
4045 * subtree of @pos.
4046 *
4047 * While this function requires cgroup_mutex or RCU read locking, it
4048 * doesn't require the whole traversal to be contained in a single critical
4049 * section. This function will return the correct rightmost descendant as
4050 * long as @pos is accessible.
4051 */
4052 struct cgroup_subsys_state *
4053 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4054 {
4055 struct cgroup_subsys_state *last, *tmp;
4056
4057 cgroup_assert_mutex_or_rcu_locked();
4058
4059 do {
4060 last = pos;
4061 /* ->prev isn't RCU safe, walk ->next till the end */
4062 pos = NULL;
4063 css_for_each_child(tmp, last)
4064 pos = tmp;
4065 } while (pos);
4066
4067 return last;
4068 }
4069
4070 static struct cgroup_subsys_state *
4071 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4072 {
4073 struct cgroup_subsys_state *last;
4074
4075 do {
4076 last = pos;
4077 pos = css_next_child(NULL, pos);
4078 } while (pos);
4079
4080 return last;
4081 }
4082
4083 /**
4084 * css_next_descendant_post - find the next descendant for post-order walk
4085 * @pos: the current position (%NULL to initiate traversal)
4086 * @root: css whose descendants to walk
4087 *
4088 * To be used by css_for_each_descendant_post(). Find the next descendant
4089 * to visit for post-order traversal of @root's descendants. @root is
4090 * included in the iteration and the last node to be visited.
4091 *
4092 * While this function requires cgroup_mutex or RCU read locking, it
4093 * doesn't require the whole traversal to be contained in a single critical
4094 * section. This function will return the correct next descendant as long
4095 * as both @pos and @cgroup are accessible and @pos is a descendant of
4096 * @cgroup.
4097 *
4098 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4099 * css which finished ->css_online() is guaranteed to be visible in the
4100 * future iterations and will stay visible until the last reference is put.
4101 * A css which hasn't finished ->css_online() or already finished
4102 * ->css_offline() may show up during traversal. It's each subsystem's
4103 * responsibility to synchronize against on/offlining.
4104 */
4105 struct cgroup_subsys_state *
4106 css_next_descendant_post(struct cgroup_subsys_state *pos,
4107 struct cgroup_subsys_state *root)
4108 {
4109 struct cgroup_subsys_state *next;
4110
4111 cgroup_assert_mutex_or_rcu_locked();
4112
4113 /* if first iteration, visit leftmost descendant which may be @root */
4114 if (!pos)
4115 return css_leftmost_descendant(root);
4116
4117 /* if we visited @root, we're done */
4118 if (pos == root)
4119 return NULL;
4120
4121 /* if there's an unvisited sibling, visit its leftmost descendant */
4122 next = css_next_child(pos, pos->parent);
4123 if (next)
4124 return css_leftmost_descendant(next);
4125
4126 /* no sibling left, visit parent */
4127 return pos->parent;
4128 }
4129
4130 /**
4131 * css_has_online_children - does a css have online children
4132 * @css: the target css
4133 *
4134 * Returns %true if @css has any online children; otherwise, %false. This
4135 * function can be called from any context but the caller is responsible
4136 * for synchronizing against on/offlining as necessary.
4137 */
4138 bool css_has_online_children(struct cgroup_subsys_state *css)
4139 {
4140 struct cgroup_subsys_state *child;
4141 bool ret = false;
4142
4143 rcu_read_lock();
4144 css_for_each_child(child, css) {
4145 if (child->flags & CSS_ONLINE) {
4146 ret = true;
4147 break;
4148 }
4149 }
4150 rcu_read_unlock();
4151 return ret;
4152 }
4153
4154 /**
4155 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4156 * @it: the iterator to advance
4157 *
4158 * Advance @it to the next css_set to walk.
4159 */
4160 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4161 {
4162 struct list_head *l = it->cset_pos;
4163 struct cgrp_cset_link *link;
4164 struct css_set *cset;
4165
4166 lockdep_assert_held(&css_set_lock);
4167
4168 /* Advance to the next non-empty css_set */
4169 do {
4170 l = l->next;
4171 if (l == it->cset_head) {
4172 it->cset_pos = NULL;
4173 it->task_pos = NULL;
4174 return;
4175 }
4176
4177 if (it->ss) {
4178 cset = container_of(l, struct css_set,
4179 e_cset_node[it->ss->id]);
4180 } else {
4181 link = list_entry(l, struct cgrp_cset_link, cset_link);
4182 cset = link->cset;
4183 }
4184 } while (!css_set_populated(cset));
4185
4186 it->cset_pos = l;
4187
4188 if (!list_empty(&cset->tasks))
4189 it->task_pos = cset->tasks.next;
4190 else
4191 it->task_pos = cset->mg_tasks.next;
4192
4193 it->tasks_head = &cset->tasks;
4194 it->mg_tasks_head = &cset->mg_tasks;
4195
4196 /*
4197 * We don't keep css_sets locked across iteration steps and thus
4198 * need to take steps to ensure that iteration can be resumed after
4199 * the lock is re-acquired. Iteration is performed at two levels -
4200 * css_sets and tasks in them.
4201 *
4202 * Once created, a css_set never leaves its cgroup lists, so a
4203 * pinned css_set is guaranteed to stay put and we can resume
4204 * iteration afterwards.
4205 *
4206 * Tasks may leave @cset across iteration steps. This is resolved
4207 * by registering each iterator with the css_set currently being
4208 * walked and making css_set_move_task() advance iterators whose
4209 * next task is leaving.
4210 */
4211 if (it->cur_cset) {
4212 list_del(&it->iters_node);
4213 put_css_set_locked(it->cur_cset);
4214 }
4215 get_css_set(cset);
4216 it->cur_cset = cset;
4217 list_add(&it->iters_node, &cset->task_iters);
4218 }
4219
4220 static void css_task_iter_advance(struct css_task_iter *it)
4221 {
4222 struct list_head *l = it->task_pos;
4223
4224 lockdep_assert_held(&css_set_lock);
4225 WARN_ON_ONCE(!l);
4226
4227 /*
4228 * Advance iterator to find next entry. cset->tasks is consumed
4229 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4230 * next cset.
4231 */
4232 l = l->next;
4233
4234 if (l == it->tasks_head)
4235 l = it->mg_tasks_head->next;
4236
4237 if (l == it->mg_tasks_head)
4238 css_task_iter_advance_css_set(it);
4239 else
4240 it->task_pos = l;
4241 }
4242
4243 /**
4244 * css_task_iter_start - initiate task iteration
4245 * @css: the css to walk tasks of
4246 * @it: the task iterator to use
4247 *
4248 * Initiate iteration through the tasks of @css. The caller can call
4249 * css_task_iter_next() to walk through the tasks until the function
4250 * returns NULL. On completion of iteration, css_task_iter_end() must be
4251 * called.
4252 */
4253 void css_task_iter_start(struct cgroup_subsys_state *css,
4254 struct css_task_iter *it)
4255 {
4256 /* no one should try to iterate before mounting cgroups */
4257 WARN_ON_ONCE(!use_task_css_set_links);
4258
4259 memset(it, 0, sizeof(*it));
4260
4261 spin_lock_irq(&css_set_lock);
4262
4263 it->ss = css->ss;
4264
4265 if (it->ss)
4266 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4267 else
4268 it->cset_pos = &css->cgroup->cset_links;
4269
4270 it->cset_head = it->cset_pos;
4271
4272 css_task_iter_advance_css_set(it);
4273
4274 spin_unlock_irq(&css_set_lock);
4275 }
4276
4277 /**
4278 * css_task_iter_next - return the next task for the iterator
4279 * @it: the task iterator being iterated
4280 *
4281 * The "next" function for task iteration. @it should have been
4282 * initialized via css_task_iter_start(). Returns NULL when the iteration
4283 * reaches the end.
4284 */
4285 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4286 {
4287 if (it->cur_task) {
4288 put_task_struct(it->cur_task);
4289 it->cur_task = NULL;
4290 }
4291
4292 spin_lock_irq(&css_set_lock);
4293
4294 if (it->task_pos) {
4295 it->cur_task = list_entry(it->task_pos, struct task_struct,
4296 cg_list);
4297 get_task_struct(it->cur_task);
4298 css_task_iter_advance(it);
4299 }
4300
4301 spin_unlock_irq(&css_set_lock);
4302
4303 return it->cur_task;
4304 }
4305
4306 /**
4307 * css_task_iter_end - finish task iteration
4308 * @it: the task iterator to finish
4309 *
4310 * Finish task iteration started by css_task_iter_start().
4311 */
4312 void css_task_iter_end(struct css_task_iter *it)
4313 {
4314 if (it->cur_cset) {
4315 spin_lock_irq(&css_set_lock);
4316 list_del(&it->iters_node);
4317 put_css_set_locked(it->cur_cset);
4318 spin_unlock_irq(&css_set_lock);
4319 }
4320
4321 if (it->cur_task)
4322 put_task_struct(it->cur_task);
4323 }
4324
4325 /**
4326 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4327 * @to: cgroup to which the tasks will be moved
4328 * @from: cgroup in which the tasks currently reside
4329 *
4330 * Locking rules between cgroup_post_fork() and the migration path
4331 * guarantee that, if a task is forking while being migrated, the new child
4332 * is guaranteed to be either visible in the source cgroup after the
4333 * parent's migration is complete or put into the target cgroup. No task
4334 * can slip out of migration through forking.
4335 */
4336 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4337 {
4338 LIST_HEAD(preloaded_csets);
4339 struct cgrp_cset_link *link;
4340 struct css_task_iter it;
4341 struct task_struct *task;
4342 int ret;
4343
4344 if (!cgroup_may_migrate_to(to))
4345 return -EBUSY;
4346
4347 mutex_lock(&cgroup_mutex);
4348
4349 percpu_down_write(&cgroup_threadgroup_rwsem);
4350
4351 /* all tasks in @from are being moved, all csets are source */
4352 spin_lock_irq(&css_set_lock);
4353 list_for_each_entry(link, &from->cset_links, cset_link)
4354 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4355 spin_unlock_irq(&css_set_lock);
4356
4357 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4358 if (ret)
4359 goto out_err;
4360
4361 /*
4362 * Migrate tasks one-by-one until @from is empty. This fails iff
4363 * ->can_attach() fails.
4364 */
4365 do {
4366 css_task_iter_start(&from->self, &it);
4367 task = css_task_iter_next(&it);
4368 if (task)
4369 get_task_struct(task);
4370 css_task_iter_end(&it);
4371
4372 if (task) {
4373 ret = cgroup_migrate(task, false, to->root);
4374 if (!ret)
4375 trace_cgroup_transfer_tasks(to, task, false);
4376 put_task_struct(task);
4377 }
4378 } while (task && !ret);
4379 out_err:
4380 cgroup_migrate_finish(&preloaded_csets);
4381 percpu_up_write(&cgroup_threadgroup_rwsem);
4382 mutex_unlock(&cgroup_mutex);
4383 return ret;
4384 }
4385
4386 /*
4387 * Stuff for reading the 'tasks'/'procs' files.
4388 *
4389 * Reading this file can return large amounts of data if a cgroup has
4390 * *lots* of attached tasks. So it may need several calls to read(),
4391 * but we cannot guarantee that the information we produce is correct
4392 * unless we produce it entirely atomically.
4393 *
4394 */
4395
4396 /* which pidlist file are we talking about? */
4397 enum cgroup_filetype {
4398 CGROUP_FILE_PROCS,
4399 CGROUP_FILE_TASKS,
4400 };
4401
4402 /*
4403 * A pidlist is a list of pids that virtually represents the contents of one
4404 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4405 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4406 * to the cgroup.
4407 */
4408 struct cgroup_pidlist {
4409 /*
4410 * used to find which pidlist is wanted. doesn't change as long as
4411 * this particular list stays in the list.
4412 */
4413 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4414 /* array of xids */
4415 pid_t *list;
4416 /* how many elements the above list has */
4417 int length;
4418 /* each of these stored in a list by its cgroup */
4419 struct list_head links;
4420 /* pointer to the cgroup we belong to, for list removal purposes */
4421 struct cgroup *owner;
4422 /* for delayed destruction */
4423 struct delayed_work destroy_dwork;
4424 };
4425
4426 /*
4427 * The following two functions "fix" the issue where there are more pids
4428 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4429 * TODO: replace with a kernel-wide solution to this problem
4430 */
4431 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4432 static void *pidlist_allocate(int count)
4433 {
4434 if (PIDLIST_TOO_LARGE(count))
4435 return vmalloc(count * sizeof(pid_t));
4436 else
4437 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4438 }
4439
4440 static void pidlist_free(void *p)
4441 {
4442 kvfree(p);
4443 }
4444
4445 /*
4446 * Used to destroy all pidlists lingering waiting for destroy timer. None
4447 * should be left afterwards.
4448 */
4449 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4450 {
4451 struct cgroup_pidlist *l, *tmp_l;
4452
4453 mutex_lock(&cgrp->pidlist_mutex);
4454 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4455 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4456 mutex_unlock(&cgrp->pidlist_mutex);
4457
4458 flush_workqueue(cgroup_pidlist_destroy_wq);
4459 BUG_ON(!list_empty(&cgrp->pidlists));
4460 }
4461
4462 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4463 {
4464 struct delayed_work *dwork = to_delayed_work(work);
4465 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4466 destroy_dwork);
4467 struct cgroup_pidlist *tofree = NULL;
4468
4469 mutex_lock(&l->owner->pidlist_mutex);
4470
4471 /*
4472 * Destroy iff we didn't get queued again. The state won't change
4473 * as destroy_dwork can only be queued while locked.
4474 */
4475 if (!delayed_work_pending(dwork)) {
4476 list_del(&l->links);
4477 pidlist_free(l->list);
4478 put_pid_ns(l->key.ns);
4479 tofree = l;
4480 }
4481
4482 mutex_unlock(&l->owner->pidlist_mutex);
4483 kfree(tofree);
4484 }
4485
4486 /*
4487 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4488 * Returns the number of unique elements.
4489 */
4490 static int pidlist_uniq(pid_t *list, int length)
4491 {
4492 int src, dest = 1;
4493
4494 /*
4495 * we presume the 0th element is unique, so i starts at 1. trivial
4496 * edge cases first; no work needs to be done for either
4497 */
4498 if (length == 0 || length == 1)
4499 return length;
4500 /* src and dest walk down the list; dest counts unique elements */
4501 for (src = 1; src < length; src++) {
4502 /* find next unique element */
4503 while (list[src] == list[src-1]) {
4504 src++;
4505 if (src == length)
4506 goto after;
4507 }
4508 /* dest always points to where the next unique element goes */
4509 list[dest] = list[src];
4510 dest++;
4511 }
4512 after:
4513 return dest;
4514 }
4515
4516 /*
4517 * The two pid files - task and cgroup.procs - guaranteed that the result
4518 * is sorted, which forced this whole pidlist fiasco. As pid order is
4519 * different per namespace, each namespace needs differently sorted list,
4520 * making it impossible to use, for example, single rbtree of member tasks
4521 * sorted by task pointer. As pidlists can be fairly large, allocating one
4522 * per open file is dangerous, so cgroup had to implement shared pool of
4523 * pidlists keyed by cgroup and namespace.
4524 *
4525 * All this extra complexity was caused by the original implementation
4526 * committing to an entirely unnecessary property. In the long term, we
4527 * want to do away with it. Explicitly scramble sort order if on the
4528 * default hierarchy so that no such expectation exists in the new
4529 * interface.
4530 *
4531 * Scrambling is done by swapping every two consecutive bits, which is
4532 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4533 */
4534 static pid_t pid_fry(pid_t pid)
4535 {
4536 unsigned a = pid & 0x55555555;
4537 unsigned b = pid & 0xAAAAAAAA;
4538
4539 return (a << 1) | (b >> 1);
4540 }
4541
4542 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4543 {
4544 if (cgroup_on_dfl(cgrp))
4545 return pid_fry(pid);
4546 else
4547 return pid;
4548 }
4549
4550 static int cmppid(const void *a, const void *b)
4551 {
4552 return *(pid_t *)a - *(pid_t *)b;
4553 }
4554
4555 static int fried_cmppid(const void *a, const void *b)
4556 {
4557 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4558 }
4559
4560 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4561 enum cgroup_filetype type)
4562 {
4563 struct cgroup_pidlist *l;
4564 /* don't need task_nsproxy() if we're looking at ourself */
4565 struct pid_namespace *ns = task_active_pid_ns(current);
4566
4567 lockdep_assert_held(&cgrp->pidlist_mutex);
4568
4569 list_for_each_entry(l, &cgrp->pidlists, links)
4570 if (l->key.type == type && l->key.ns == ns)
4571 return l;
4572 return NULL;
4573 }
4574
4575 /*
4576 * find the appropriate pidlist for our purpose (given procs vs tasks)
4577 * returns with the lock on that pidlist already held, and takes care
4578 * of the use count, or returns NULL with no locks held if we're out of
4579 * memory.
4580 */
4581 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4582 enum cgroup_filetype type)
4583 {
4584 struct cgroup_pidlist *l;
4585
4586 lockdep_assert_held(&cgrp->pidlist_mutex);
4587
4588 l = cgroup_pidlist_find(cgrp, type);
4589 if (l)
4590 return l;
4591
4592 /* entry not found; create a new one */
4593 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4594 if (!l)
4595 return l;
4596
4597 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4598 l->key.type = type;
4599 /* don't need task_nsproxy() if we're looking at ourself */
4600 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4601 l->owner = cgrp;
4602 list_add(&l->links, &cgrp->pidlists);
4603 return l;
4604 }
4605
4606 /*
4607 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4608 */
4609 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4610 struct cgroup_pidlist **lp)
4611 {
4612 pid_t *array;
4613 int length;
4614 int pid, n = 0; /* used for populating the array */
4615 struct css_task_iter it;
4616 struct task_struct *tsk;
4617 struct cgroup_pidlist *l;
4618
4619 lockdep_assert_held(&cgrp->pidlist_mutex);
4620
4621 /*
4622 * If cgroup gets more users after we read count, we won't have
4623 * enough space - tough. This race is indistinguishable to the
4624 * caller from the case that the additional cgroup users didn't
4625 * show up until sometime later on.
4626 */
4627 length = cgroup_task_count(cgrp);
4628 array = pidlist_allocate(length);
4629 if (!array)
4630 return -ENOMEM;
4631 /* now, populate the array */
4632 css_task_iter_start(&cgrp->self, &it);
4633 while ((tsk = css_task_iter_next(&it))) {
4634 if (unlikely(n == length))
4635 break;
4636 /* get tgid or pid for procs or tasks file respectively */
4637 if (type == CGROUP_FILE_PROCS)
4638 pid = task_tgid_vnr(tsk);
4639 else
4640 pid = task_pid_vnr(tsk);
4641 if (pid > 0) /* make sure to only use valid results */
4642 array[n++] = pid;
4643 }
4644 css_task_iter_end(&it);
4645 length = n;
4646 /* now sort & (if procs) strip out duplicates */
4647 if (cgroup_on_dfl(cgrp))
4648 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4649 else
4650 sort(array, length, sizeof(pid_t), cmppid, NULL);
4651 if (type == CGROUP_FILE_PROCS)
4652 length = pidlist_uniq(array, length);
4653
4654 l = cgroup_pidlist_find_create(cgrp, type);
4655 if (!l) {
4656 pidlist_free(array);
4657 return -ENOMEM;
4658 }
4659
4660 /* store array, freeing old if necessary */
4661 pidlist_free(l->list);
4662 l->list = array;
4663 l->length = length;
4664 *lp = l;
4665 return 0;
4666 }
4667
4668 /**
4669 * cgroupstats_build - build and fill cgroupstats
4670 * @stats: cgroupstats to fill information into
4671 * @dentry: A dentry entry belonging to the cgroup for which stats have
4672 * been requested.
4673 *
4674 * Build and fill cgroupstats so that taskstats can export it to user
4675 * space.
4676 */
4677 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4678 {
4679 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4680 struct cgroup *cgrp;
4681 struct css_task_iter it;
4682 struct task_struct *tsk;
4683
4684 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4685 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4686 kernfs_type(kn) != KERNFS_DIR)
4687 return -EINVAL;
4688
4689 mutex_lock(&cgroup_mutex);
4690
4691 /*
4692 * We aren't being called from kernfs and there's no guarantee on
4693 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4694 * @kn->priv is RCU safe. Let's do the RCU dancing.
4695 */
4696 rcu_read_lock();
4697 cgrp = rcu_dereference(kn->priv);
4698 if (!cgrp || cgroup_is_dead(cgrp)) {
4699 rcu_read_unlock();
4700 mutex_unlock(&cgroup_mutex);
4701 return -ENOENT;
4702 }
4703 rcu_read_unlock();
4704
4705 css_task_iter_start(&cgrp->self, &it);
4706 while ((tsk = css_task_iter_next(&it))) {
4707 switch (tsk->state) {
4708 case TASK_RUNNING:
4709 stats->nr_running++;
4710 break;
4711 case TASK_INTERRUPTIBLE:
4712 stats->nr_sleeping++;
4713 break;
4714 case TASK_UNINTERRUPTIBLE:
4715 stats->nr_uninterruptible++;
4716 break;
4717 case TASK_STOPPED:
4718 stats->nr_stopped++;
4719 break;
4720 default:
4721 if (delayacct_is_task_waiting_on_io(tsk))
4722 stats->nr_io_wait++;
4723 break;
4724 }
4725 }
4726 css_task_iter_end(&it);
4727
4728 mutex_unlock(&cgroup_mutex);
4729 return 0;
4730 }
4731
4732
4733 /*
4734 * seq_file methods for the tasks/procs files. The seq_file position is the
4735 * next pid to display; the seq_file iterator is a pointer to the pid
4736 * in the cgroup->l->list array.
4737 */
4738
4739 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4740 {
4741 /*
4742 * Initially we receive a position value that corresponds to
4743 * one more than the last pid shown (or 0 on the first call or
4744 * after a seek to the start). Use a binary-search to find the
4745 * next pid to display, if any
4746 */
4747 struct kernfs_open_file *of = s->private;
4748 struct cgroup *cgrp = seq_css(s)->cgroup;
4749 struct cgroup_pidlist *l;
4750 enum cgroup_filetype type = seq_cft(s)->private;
4751 int index = 0, pid = *pos;
4752 int *iter, ret;
4753
4754 mutex_lock(&cgrp->pidlist_mutex);
4755
4756 /*
4757 * !NULL @of->priv indicates that this isn't the first start()
4758 * after open. If the matching pidlist is around, we can use that.
4759 * Look for it. Note that @of->priv can't be used directly. It
4760 * could already have been destroyed.
4761 */
4762 if (of->priv)
4763 of->priv = cgroup_pidlist_find(cgrp, type);
4764
4765 /*
4766 * Either this is the first start() after open or the matching
4767 * pidlist has been destroyed inbetween. Create a new one.
4768 */
4769 if (!of->priv) {
4770 ret = pidlist_array_load(cgrp, type,
4771 (struct cgroup_pidlist **)&of->priv);
4772 if (ret)
4773 return ERR_PTR(ret);
4774 }
4775 l = of->priv;
4776
4777 if (pid) {
4778 int end = l->length;
4779
4780 while (index < end) {
4781 int mid = (index + end) / 2;
4782 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4783 index = mid;
4784 break;
4785 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4786 index = mid + 1;
4787 else
4788 end = mid;
4789 }
4790 }
4791 /* If we're off the end of the array, we're done */
4792 if (index >= l->length)
4793 return NULL;
4794 /* Update the abstract position to be the actual pid that we found */
4795 iter = l->list + index;
4796 *pos = cgroup_pid_fry(cgrp, *iter);
4797 return iter;
4798 }
4799
4800 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4801 {
4802 struct kernfs_open_file *of = s->private;
4803 struct cgroup_pidlist *l = of->priv;
4804
4805 if (l)
4806 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4807 CGROUP_PIDLIST_DESTROY_DELAY);
4808 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4809 }
4810
4811 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4812 {
4813 struct kernfs_open_file *of = s->private;
4814 struct cgroup_pidlist *l = of->priv;
4815 pid_t *p = v;
4816 pid_t *end = l->list + l->length;
4817 /*
4818 * Advance to the next pid in the array. If this goes off the
4819 * end, we're done
4820 */
4821 p++;
4822 if (p >= end) {
4823 return NULL;
4824 } else {
4825 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4826 return p;
4827 }
4828 }
4829
4830 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4831 {
4832 seq_printf(s, "%d\n", *(int *)v);
4833
4834 return 0;
4835 }
4836
4837 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4838 struct cftype *cft)
4839 {
4840 return notify_on_release(css->cgroup);
4841 }
4842
4843 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4844 struct cftype *cft, u64 val)
4845 {
4846 if (val)
4847 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4848 else
4849 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4850 return 0;
4851 }
4852
4853 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4854 struct cftype *cft)
4855 {
4856 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4857 }
4858
4859 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4860 struct cftype *cft, u64 val)
4861 {
4862 if (val)
4863 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4864 else
4865 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4866 return 0;
4867 }
4868
4869 /* cgroup core interface files for the default hierarchy */
4870 static struct cftype cgroup_dfl_base_files[] = {
4871 {
4872 .name = "cgroup.procs",
4873 .file_offset = offsetof(struct cgroup, procs_file),
4874 .seq_start = cgroup_pidlist_start,
4875 .seq_next = cgroup_pidlist_next,
4876 .seq_stop = cgroup_pidlist_stop,
4877 .seq_show = cgroup_pidlist_show,
4878 .private = CGROUP_FILE_PROCS,
4879 .write = cgroup_procs_write,
4880 },
4881 {
4882 .name = "cgroup.controllers",
4883 .seq_show = cgroup_controllers_show,
4884 },
4885 {
4886 .name = "cgroup.subtree_control",
4887 .seq_show = cgroup_subtree_control_show,
4888 .write = cgroup_subtree_control_write,
4889 },
4890 {
4891 .name = "cgroup.events",
4892 .flags = CFTYPE_NOT_ON_ROOT,
4893 .file_offset = offsetof(struct cgroup, events_file),
4894 .seq_show = cgroup_events_show,
4895 },
4896 { } /* terminate */
4897 };
4898
4899 /* cgroup core interface files for the legacy hierarchies */
4900 static struct cftype cgroup_legacy_base_files[] = {
4901 {
4902 .name = "cgroup.procs",
4903 .seq_start = cgroup_pidlist_start,
4904 .seq_next = cgroup_pidlist_next,
4905 .seq_stop = cgroup_pidlist_stop,
4906 .seq_show = cgroup_pidlist_show,
4907 .private = CGROUP_FILE_PROCS,
4908 .write = cgroup_procs_write,
4909 },
4910 {
4911 .name = "cgroup.clone_children",
4912 .read_u64 = cgroup_clone_children_read,
4913 .write_u64 = cgroup_clone_children_write,
4914 },
4915 {
4916 .name = "cgroup.sane_behavior",
4917 .flags = CFTYPE_ONLY_ON_ROOT,
4918 .seq_show = cgroup_sane_behavior_show,
4919 },
4920 {
4921 .name = "tasks",
4922 .seq_start = cgroup_pidlist_start,
4923 .seq_next = cgroup_pidlist_next,
4924 .seq_stop = cgroup_pidlist_stop,
4925 .seq_show = cgroup_pidlist_show,
4926 .private = CGROUP_FILE_TASKS,
4927 .write = cgroup_tasks_write,
4928 },
4929 {
4930 .name = "notify_on_release",
4931 .read_u64 = cgroup_read_notify_on_release,
4932 .write_u64 = cgroup_write_notify_on_release,
4933 },
4934 {
4935 .name = "release_agent",
4936 .flags = CFTYPE_ONLY_ON_ROOT,
4937 .seq_show = cgroup_release_agent_show,
4938 .write = cgroup_release_agent_write,
4939 .max_write_len = PATH_MAX - 1,
4940 },
4941 { } /* terminate */
4942 };
4943
4944 /*
4945 * css destruction is four-stage process.
4946 *
4947 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4948 * Implemented in kill_css().
4949 *
4950 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4951 * and thus css_tryget_online() is guaranteed to fail, the css can be
4952 * offlined by invoking offline_css(). After offlining, the base ref is
4953 * put. Implemented in css_killed_work_fn().
4954 *
4955 * 3. When the percpu_ref reaches zero, the only possible remaining
4956 * accessors are inside RCU read sections. css_release() schedules the
4957 * RCU callback.
4958 *
4959 * 4. After the grace period, the css can be freed. Implemented in
4960 * css_free_work_fn().
4961 *
4962 * It is actually hairier because both step 2 and 4 require process context
4963 * and thus involve punting to css->destroy_work adding two additional
4964 * steps to the already complex sequence.
4965 */
4966 static void css_free_work_fn(struct work_struct *work)
4967 {
4968 struct cgroup_subsys_state *css =
4969 container_of(work, struct cgroup_subsys_state, destroy_work);
4970 struct cgroup_subsys *ss = css->ss;
4971 struct cgroup *cgrp = css->cgroup;
4972
4973 percpu_ref_exit(&css->refcnt);
4974
4975 if (ss) {
4976 /* css free path */
4977 struct cgroup_subsys_state *parent = css->parent;
4978 int id = css->id;
4979
4980 ss->css_free(css);
4981 cgroup_idr_remove(&ss->css_idr, id);
4982 cgroup_put(cgrp);
4983
4984 if (parent)
4985 css_put(parent);
4986 } else {
4987 /* cgroup free path */
4988 atomic_dec(&cgrp->root->nr_cgrps);
4989 cgroup_pidlist_destroy_all(cgrp);
4990 cancel_work_sync(&cgrp->release_agent_work);
4991
4992 if (cgroup_parent(cgrp)) {
4993 /*
4994 * We get a ref to the parent, and put the ref when
4995 * this cgroup is being freed, so it's guaranteed
4996 * that the parent won't be destroyed before its
4997 * children.
4998 */
4999 cgroup_put(cgroup_parent(cgrp));
5000 kernfs_put(cgrp->kn);
5001 kfree(cgrp);
5002 } else {
5003 /*
5004 * This is root cgroup's refcnt reaching zero,
5005 * which indicates that the root should be
5006 * released.
5007 */
5008 cgroup_destroy_root(cgrp->root);
5009 }
5010 }
5011 }
5012
5013 static void css_free_rcu_fn(struct rcu_head *rcu_head)
5014 {
5015 struct cgroup_subsys_state *css =
5016 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5017
5018 INIT_WORK(&css->destroy_work, css_free_work_fn);
5019 queue_work(cgroup_destroy_wq, &css->destroy_work);
5020 }
5021
5022 static void css_release_work_fn(struct work_struct *work)
5023 {
5024 struct cgroup_subsys_state *css =
5025 container_of(work, struct cgroup_subsys_state, destroy_work);
5026 struct cgroup_subsys *ss = css->ss;
5027 struct cgroup *cgrp = css->cgroup;
5028
5029 mutex_lock(&cgroup_mutex);
5030
5031 css->flags |= CSS_RELEASED;
5032 list_del_rcu(&css->sibling);
5033
5034 if (ss) {
5035 /* css release path */
5036 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5037 if (ss->css_released)
5038 ss->css_released(css);
5039 } else {
5040 /* cgroup release path */
5041 trace_cgroup_release(cgrp);
5042
5043 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5044 cgrp->id = -1;
5045
5046 /*
5047 * There are two control paths which try to determine
5048 * cgroup from dentry without going through kernfs -
5049 * cgroupstats_build() and css_tryget_online_from_dir().
5050 * Those are supported by RCU protecting clearing of
5051 * cgrp->kn->priv backpointer.
5052 */
5053 if (cgrp->kn)
5054 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5055 NULL);
5056 }
5057
5058 mutex_unlock(&cgroup_mutex);
5059
5060 call_rcu(&css->rcu_head, css_free_rcu_fn);
5061 }
5062
5063 static void css_release(struct percpu_ref *ref)
5064 {
5065 struct cgroup_subsys_state *css =
5066 container_of(ref, struct cgroup_subsys_state, refcnt);
5067
5068 INIT_WORK(&css->destroy_work, css_release_work_fn);
5069 queue_work(cgroup_destroy_wq, &css->destroy_work);
5070 }
5071
5072 static void init_and_link_css(struct cgroup_subsys_state *css,
5073 struct cgroup_subsys *ss, struct cgroup *cgrp)
5074 {
5075 lockdep_assert_held(&cgroup_mutex);
5076
5077 cgroup_get(cgrp);
5078
5079 memset(css, 0, sizeof(*css));
5080 css->cgroup = cgrp;
5081 css->ss = ss;
5082 css->id = -1;
5083 INIT_LIST_HEAD(&css->sibling);
5084 INIT_LIST_HEAD(&css->children);
5085 css->serial_nr = css_serial_nr_next++;
5086 atomic_set(&css->online_cnt, 0);
5087
5088 if (cgroup_parent(cgrp)) {
5089 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5090 css_get(css->parent);
5091 }
5092
5093 BUG_ON(cgroup_css(cgrp, ss));
5094 }
5095
5096 /* invoke ->css_online() on a new CSS and mark it online if successful */
5097 static int online_css(struct cgroup_subsys_state *css)
5098 {
5099 struct cgroup_subsys *ss = css->ss;
5100 int ret = 0;
5101
5102 lockdep_assert_held(&cgroup_mutex);
5103
5104 if (ss->css_online)
5105 ret = ss->css_online(css);
5106 if (!ret) {
5107 css->flags |= CSS_ONLINE;
5108 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5109
5110 atomic_inc(&css->online_cnt);
5111 if (css->parent)
5112 atomic_inc(&css->parent->online_cnt);
5113 }
5114 return ret;
5115 }
5116
5117 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5118 static void offline_css(struct cgroup_subsys_state *css)
5119 {
5120 struct cgroup_subsys *ss = css->ss;
5121
5122 lockdep_assert_held(&cgroup_mutex);
5123
5124 if (!(css->flags & CSS_ONLINE))
5125 return;
5126
5127 if (ss->css_reset)
5128 ss->css_reset(css);
5129
5130 if (ss->css_offline)
5131 ss->css_offline(css);
5132
5133 css->flags &= ~CSS_ONLINE;
5134 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5135
5136 wake_up_all(&css->cgroup->offline_waitq);
5137 }
5138
5139 /**
5140 * css_create - create a cgroup_subsys_state
5141 * @cgrp: the cgroup new css will be associated with
5142 * @ss: the subsys of new css
5143 *
5144 * Create a new css associated with @cgrp - @ss pair. On success, the new
5145 * css is online and installed in @cgrp. This function doesn't create the
5146 * interface files. Returns 0 on success, -errno on failure.
5147 */
5148 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5149 struct cgroup_subsys *ss)
5150 {
5151 struct cgroup *parent = cgroup_parent(cgrp);
5152 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5153 struct cgroup_subsys_state *css;
5154 int err;
5155
5156 lockdep_assert_held(&cgroup_mutex);
5157
5158 css = ss->css_alloc(parent_css);
5159 if (!css)
5160 css = ERR_PTR(-ENOMEM);
5161 if (IS_ERR(css))
5162 return css;
5163
5164 init_and_link_css(css, ss, cgrp);
5165
5166 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5167 if (err)
5168 goto err_free_css;
5169
5170 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5171 if (err < 0)
5172 goto err_free_css;
5173 css->id = err;
5174
5175 /* @css is ready to be brought online now, make it visible */
5176 list_add_tail_rcu(&css->sibling, &parent_css->children);
5177 cgroup_idr_replace(&ss->css_idr, css, css->id);
5178
5179 err = online_css(css);
5180 if (err)
5181 goto err_list_del;
5182
5183 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5184 cgroup_parent(parent)) {
5185 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5186 current->comm, current->pid, ss->name);
5187 if (!strcmp(ss->name, "memory"))
5188 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5189 ss->warned_broken_hierarchy = true;
5190 }
5191
5192 return css;
5193
5194 err_list_del:
5195 list_del_rcu(&css->sibling);
5196 err_free_css:
5197 call_rcu(&css->rcu_head, css_free_rcu_fn);
5198 return ERR_PTR(err);
5199 }
5200
5201 static struct cgroup *cgroup_create(struct cgroup *parent)
5202 {
5203 struct cgroup_root *root = parent->root;
5204 struct cgroup *cgrp, *tcgrp;
5205 int level = parent->level + 1;
5206 int ret;
5207
5208 /* allocate the cgroup and its ID, 0 is reserved for the root */
5209 cgrp = kzalloc(sizeof(*cgrp) +
5210 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5211 if (!cgrp)
5212 return ERR_PTR(-ENOMEM);
5213
5214 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5215 if (ret)
5216 goto out_free_cgrp;
5217
5218 /*
5219 * Temporarily set the pointer to NULL, so idr_find() won't return
5220 * a half-baked cgroup.
5221 */
5222 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5223 if (cgrp->id < 0) {
5224 ret = -ENOMEM;
5225 goto out_cancel_ref;
5226 }
5227
5228 init_cgroup_housekeeping(cgrp);
5229
5230 cgrp->self.parent = &parent->self;
5231 cgrp->root = root;
5232 cgrp->level = level;
5233
5234 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5235 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5236
5237 if (notify_on_release(parent))
5238 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5239
5240 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5241 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5242
5243 cgrp->self.serial_nr = css_serial_nr_next++;
5244
5245 /* allocation complete, commit to creation */
5246 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5247 atomic_inc(&root->nr_cgrps);
5248 cgroup_get(parent);
5249
5250 /*
5251 * @cgrp is now fully operational. If something fails after this
5252 * point, it'll be released via the normal destruction path.
5253 */
5254 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5255
5256 /*
5257 * On the default hierarchy, a child doesn't automatically inherit
5258 * subtree_control from the parent. Each is configured manually.
5259 */
5260 if (!cgroup_on_dfl(cgrp))
5261 cgrp->subtree_control = cgroup_control(cgrp);
5262
5263 cgroup_propagate_control(cgrp);
5264
5265 /* @cgrp doesn't have dir yet so the following will only create csses */
5266 ret = cgroup_apply_control_enable(cgrp);
5267 if (ret)
5268 goto out_destroy;
5269
5270 return cgrp;
5271
5272 out_cancel_ref:
5273 percpu_ref_exit(&cgrp->self.refcnt);
5274 out_free_cgrp:
5275 kfree(cgrp);
5276 return ERR_PTR(ret);
5277 out_destroy:
5278 cgroup_destroy_locked(cgrp);
5279 return ERR_PTR(ret);
5280 }
5281
5282 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5283 umode_t mode)
5284 {
5285 struct cgroup *parent, *cgrp;
5286 struct kernfs_node *kn;
5287 int ret;
5288
5289 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5290 if (strchr(name, '\n'))
5291 return -EINVAL;
5292
5293 parent = cgroup_kn_lock_live(parent_kn, false);
5294 if (!parent)
5295 return -ENODEV;
5296
5297 cgrp = cgroup_create(parent);
5298 if (IS_ERR(cgrp)) {
5299 ret = PTR_ERR(cgrp);
5300 goto out_unlock;
5301 }
5302
5303 /* create the directory */
5304 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5305 if (IS_ERR(kn)) {
5306 ret = PTR_ERR(kn);
5307 goto out_destroy;
5308 }
5309 cgrp->kn = kn;
5310
5311 /*
5312 * This extra ref will be put in cgroup_free_fn() and guarantees
5313 * that @cgrp->kn is always accessible.
5314 */
5315 kernfs_get(kn);
5316
5317 ret = cgroup_kn_set_ugid(kn);
5318 if (ret)
5319 goto out_destroy;
5320
5321 ret = css_populate_dir(&cgrp->self);
5322 if (ret)
5323 goto out_destroy;
5324
5325 ret = cgroup_apply_control_enable(cgrp);
5326 if (ret)
5327 goto out_destroy;
5328
5329 trace_cgroup_mkdir(cgrp);
5330
5331 /* let's create and online css's */
5332 kernfs_activate(kn);
5333
5334 ret = 0;
5335 goto out_unlock;
5336
5337 out_destroy:
5338 cgroup_destroy_locked(cgrp);
5339 out_unlock:
5340 cgroup_kn_unlock(parent_kn);
5341 return ret;
5342 }
5343
5344 /*
5345 * This is called when the refcnt of a css is confirmed to be killed.
5346 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5347 * initate destruction and put the css ref from kill_css().
5348 */
5349 static void css_killed_work_fn(struct work_struct *work)
5350 {
5351 struct cgroup_subsys_state *css =
5352 container_of(work, struct cgroup_subsys_state, destroy_work);
5353
5354 mutex_lock(&cgroup_mutex);
5355
5356 do {
5357 offline_css(css);
5358 css_put(css);
5359 /* @css can't go away while we're holding cgroup_mutex */
5360 css = css->parent;
5361 } while (css && atomic_dec_and_test(&css->online_cnt));
5362
5363 mutex_unlock(&cgroup_mutex);
5364 }
5365
5366 /* css kill confirmation processing requires process context, bounce */
5367 static void css_killed_ref_fn(struct percpu_ref *ref)
5368 {
5369 struct cgroup_subsys_state *css =
5370 container_of(ref, struct cgroup_subsys_state, refcnt);
5371
5372 if (atomic_dec_and_test(&css->online_cnt)) {
5373 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5374 queue_work(cgroup_destroy_wq, &css->destroy_work);
5375 }
5376 }
5377
5378 /**
5379 * kill_css - destroy a css
5380 * @css: css to destroy
5381 *
5382 * This function initiates destruction of @css by removing cgroup interface
5383 * files and putting its base reference. ->css_offline() will be invoked
5384 * asynchronously once css_tryget_online() is guaranteed to fail and when
5385 * the reference count reaches zero, @css will be released.
5386 */
5387 static void kill_css(struct cgroup_subsys_state *css)
5388 {
5389 lockdep_assert_held(&cgroup_mutex);
5390
5391 /*
5392 * This must happen before css is disassociated with its cgroup.
5393 * See seq_css() for details.
5394 */
5395 css_clear_dir(css);
5396
5397 /*
5398 * Killing would put the base ref, but we need to keep it alive
5399 * until after ->css_offline().
5400 */
5401 css_get(css);
5402
5403 /*
5404 * cgroup core guarantees that, by the time ->css_offline() is
5405 * invoked, no new css reference will be given out via
5406 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5407 * proceed to offlining css's because percpu_ref_kill() doesn't
5408 * guarantee that the ref is seen as killed on all CPUs on return.
5409 *
5410 * Use percpu_ref_kill_and_confirm() to get notifications as each
5411 * css is confirmed to be seen as killed on all CPUs.
5412 */
5413 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5414 }
5415
5416 /**
5417 * cgroup_destroy_locked - the first stage of cgroup destruction
5418 * @cgrp: cgroup to be destroyed
5419 *
5420 * css's make use of percpu refcnts whose killing latency shouldn't be
5421 * exposed to userland and are RCU protected. Also, cgroup core needs to
5422 * guarantee that css_tryget_online() won't succeed by the time
5423 * ->css_offline() is invoked. To satisfy all the requirements,
5424 * destruction is implemented in the following two steps.
5425 *
5426 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5427 * userland visible parts and start killing the percpu refcnts of
5428 * css's. Set up so that the next stage will be kicked off once all
5429 * the percpu refcnts are confirmed to be killed.
5430 *
5431 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5432 * rest of destruction. Once all cgroup references are gone, the
5433 * cgroup is RCU-freed.
5434 *
5435 * This function implements s1. After this step, @cgrp is gone as far as
5436 * the userland is concerned and a new cgroup with the same name may be
5437 * created. As cgroup doesn't care about the names internally, this
5438 * doesn't cause any problem.
5439 */
5440 static int cgroup_destroy_locked(struct cgroup *cgrp)
5441 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5442 {
5443 struct cgroup_subsys_state *css;
5444 struct cgrp_cset_link *link;
5445 int ssid;
5446
5447 lockdep_assert_held(&cgroup_mutex);
5448
5449 /*
5450 * Only migration can raise populated from zero and we're already
5451 * holding cgroup_mutex.
5452 */
5453 if (cgroup_is_populated(cgrp))
5454 return -EBUSY;
5455
5456 /*
5457 * Make sure there's no live children. We can't test emptiness of
5458 * ->self.children as dead children linger on it while being
5459 * drained; otherwise, "rmdir parent/child parent" may fail.
5460 */
5461 if (css_has_online_children(&cgrp->self))
5462 return -EBUSY;
5463
5464 /*
5465 * Mark @cgrp and the associated csets dead. The former prevents
5466 * further task migration and child creation by disabling
5467 * cgroup_lock_live_group(). The latter makes the csets ignored by
5468 * the migration path.
5469 */
5470 cgrp->self.flags &= ~CSS_ONLINE;
5471
5472 spin_lock_irq(&css_set_lock);
5473 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5474 link->cset->dead = true;
5475 spin_unlock_irq(&css_set_lock);
5476
5477 /* initiate massacre of all css's */
5478 for_each_css(css, ssid, cgrp)
5479 kill_css(css);
5480
5481 /*
5482 * Remove @cgrp directory along with the base files. @cgrp has an
5483 * extra ref on its kn.
5484 */
5485 kernfs_remove(cgrp->kn);
5486
5487 check_for_release(cgroup_parent(cgrp));
5488
5489 /* put the base reference */
5490 percpu_ref_kill(&cgrp->self.refcnt);
5491
5492 return 0;
5493 };
5494
5495 static int cgroup_rmdir(struct kernfs_node *kn)
5496 {
5497 struct cgroup *cgrp;
5498 int ret = 0;
5499
5500 cgrp = cgroup_kn_lock_live(kn, false);
5501 if (!cgrp)
5502 return 0;
5503
5504 ret = cgroup_destroy_locked(cgrp);
5505
5506 if (!ret)
5507 trace_cgroup_rmdir(cgrp);
5508
5509 cgroup_kn_unlock(kn);
5510 return ret;
5511 }
5512
5513 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5514 .remount_fs = cgroup_remount,
5515 .show_options = cgroup_show_options,
5516 .mkdir = cgroup_mkdir,
5517 .rmdir = cgroup_rmdir,
5518 .rename = cgroup_rename,
5519 .show_path = cgroup_show_path,
5520 };
5521
5522 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5523 {
5524 struct cgroup_subsys_state *css;
5525
5526 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5527
5528 mutex_lock(&cgroup_mutex);
5529
5530 idr_init(&ss->css_idr);
5531 INIT_LIST_HEAD(&ss->cfts);
5532
5533 /* Create the root cgroup state for this subsystem */
5534 ss->root = &cgrp_dfl_root;
5535 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5536 /* We don't handle early failures gracefully */
5537 BUG_ON(IS_ERR(css));
5538 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5539
5540 /*
5541 * Root csses are never destroyed and we can't initialize
5542 * percpu_ref during early init. Disable refcnting.
5543 */
5544 css->flags |= CSS_NO_REF;
5545
5546 if (early) {
5547 /* allocation can't be done safely during early init */
5548 css->id = 1;
5549 } else {
5550 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5551 BUG_ON(css->id < 0);
5552 }
5553
5554 /* Update the init_css_set to contain a subsys
5555 * pointer to this state - since the subsystem is
5556 * newly registered, all tasks and hence the
5557 * init_css_set is in the subsystem's root cgroup. */
5558 init_css_set.subsys[ss->id] = css;
5559
5560 have_fork_callback |= (bool)ss->fork << ss->id;
5561 have_exit_callback |= (bool)ss->exit << ss->id;
5562 have_free_callback |= (bool)ss->free << ss->id;
5563 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5564
5565 /* At system boot, before all subsystems have been
5566 * registered, no tasks have been forked, so we don't
5567 * need to invoke fork callbacks here. */
5568 BUG_ON(!list_empty(&init_task.tasks));
5569
5570 BUG_ON(online_css(css));
5571
5572 mutex_unlock(&cgroup_mutex);
5573 }
5574
5575 /**
5576 * cgroup_init_early - cgroup initialization at system boot
5577 *
5578 * Initialize cgroups at system boot, and initialize any
5579 * subsystems that request early init.
5580 */
5581 int __init cgroup_init_early(void)
5582 {
5583 static struct cgroup_sb_opts __initdata opts;
5584 struct cgroup_subsys *ss;
5585 int i;
5586
5587 init_cgroup_root(&cgrp_dfl_root, &opts);
5588 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5589
5590 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5591
5592 for_each_subsys(ss, i) {
5593 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5594 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5595 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5596 ss->id, ss->name);
5597 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5598 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5599
5600 ss->id = i;
5601 ss->name = cgroup_subsys_name[i];
5602 if (!ss->legacy_name)
5603 ss->legacy_name = cgroup_subsys_name[i];
5604
5605 if (ss->early_init)
5606 cgroup_init_subsys(ss, true);
5607 }
5608 return 0;
5609 }
5610
5611 static u16 cgroup_disable_mask __initdata;
5612
5613 /**
5614 * cgroup_init - cgroup initialization
5615 *
5616 * Register cgroup filesystem and /proc file, and initialize
5617 * any subsystems that didn't request early init.
5618 */
5619 int __init cgroup_init(void)
5620 {
5621 struct cgroup_subsys *ss;
5622 int ssid;
5623
5624 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5625 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5626 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5627 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5628
5629 /*
5630 * The latency of the synchronize_sched() is too high for cgroups,
5631 * avoid it at the cost of forcing all readers into the slow path.
5632 */
5633 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5634
5635 get_user_ns(init_cgroup_ns.user_ns);
5636
5637 mutex_lock(&cgroup_mutex);
5638
5639 /*
5640 * Add init_css_set to the hash table so that dfl_root can link to
5641 * it during init.
5642 */
5643 hash_add(css_set_table, &init_css_set.hlist,
5644 css_set_hash(init_css_set.subsys));
5645
5646 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5647
5648 mutex_unlock(&cgroup_mutex);
5649
5650 for_each_subsys(ss, ssid) {
5651 if (ss->early_init) {
5652 struct cgroup_subsys_state *css =
5653 init_css_set.subsys[ss->id];
5654
5655 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5656 GFP_KERNEL);
5657 BUG_ON(css->id < 0);
5658 } else {
5659 cgroup_init_subsys(ss, false);
5660 }
5661
5662 list_add_tail(&init_css_set.e_cset_node[ssid],
5663 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5664
5665 /*
5666 * Setting dfl_root subsys_mask needs to consider the
5667 * disabled flag and cftype registration needs kmalloc,
5668 * both of which aren't available during early_init.
5669 */
5670 if (cgroup_disable_mask & (1 << ssid)) {
5671 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5672 printk(KERN_INFO "Disabling %s control group subsystem\n",
5673 ss->name);
5674 continue;
5675 }
5676
5677 if (cgroup_ssid_no_v1(ssid))
5678 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5679 ss->name);
5680
5681 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5682
5683 if (ss->implicit_on_dfl)
5684 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5685 else if (!ss->dfl_cftypes)
5686 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5687
5688 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5689 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5690 } else {
5691 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5692 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5693 }
5694
5695 if (ss->bind)
5696 ss->bind(init_css_set.subsys[ssid]);
5697 }
5698
5699 /* init_css_set.subsys[] has been updated, re-hash */
5700 hash_del(&init_css_set.hlist);
5701 hash_add(css_set_table, &init_css_set.hlist,
5702 css_set_hash(init_css_set.subsys));
5703
5704 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5705 WARN_ON(register_filesystem(&cgroup_fs_type));
5706 WARN_ON(register_filesystem(&cgroup2_fs_type));
5707 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5708
5709 return 0;
5710 }
5711
5712 static int __init cgroup_wq_init(void)
5713 {
5714 /*
5715 * There isn't much point in executing destruction path in
5716 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5717 * Use 1 for @max_active.
5718 *
5719 * We would prefer to do this in cgroup_init() above, but that
5720 * is called before init_workqueues(): so leave this until after.
5721 */
5722 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5723 BUG_ON(!cgroup_destroy_wq);
5724
5725 /*
5726 * Used to destroy pidlists and separate to serve as flush domain.
5727 * Cap @max_active to 1 too.
5728 */
5729 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5730 0, 1);
5731 BUG_ON(!cgroup_pidlist_destroy_wq);
5732
5733 return 0;
5734 }
5735 core_initcall(cgroup_wq_init);
5736
5737 /*
5738 * proc_cgroup_show()
5739 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5740 * - Used for /proc/<pid>/cgroup.
5741 */
5742 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5743 struct pid *pid, struct task_struct *tsk)
5744 {
5745 char *buf;
5746 int retval;
5747 struct cgroup_root *root;
5748
5749 retval = -ENOMEM;
5750 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5751 if (!buf)
5752 goto out;
5753
5754 mutex_lock(&cgroup_mutex);
5755 spin_lock_irq(&css_set_lock);
5756
5757 for_each_root(root) {
5758 struct cgroup_subsys *ss;
5759 struct cgroup *cgrp;
5760 int ssid, count = 0;
5761
5762 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5763 continue;
5764
5765 seq_printf(m, "%d:", root->hierarchy_id);
5766 if (root != &cgrp_dfl_root)
5767 for_each_subsys(ss, ssid)
5768 if (root->subsys_mask & (1 << ssid))
5769 seq_printf(m, "%s%s", count++ ? "," : "",
5770 ss->legacy_name);
5771 if (strlen(root->name))
5772 seq_printf(m, "%sname=%s", count ? "," : "",
5773 root->name);
5774 seq_putc(m, ':');
5775
5776 cgrp = task_cgroup_from_root(tsk, root);
5777
5778 /*
5779 * On traditional hierarchies, all zombie tasks show up as
5780 * belonging to the root cgroup. On the default hierarchy,
5781 * while a zombie doesn't show up in "cgroup.procs" and
5782 * thus can't be migrated, its /proc/PID/cgroup keeps
5783 * reporting the cgroup it belonged to before exiting. If
5784 * the cgroup is removed before the zombie is reaped,
5785 * " (deleted)" is appended to the cgroup path.
5786 */
5787 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5788 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5789 current->nsproxy->cgroup_ns);
5790 if (retval >= PATH_MAX) {
5791 retval = -ENAMETOOLONG;
5792 goto out_unlock;
5793 }
5794
5795 seq_puts(m, buf);
5796 } else {
5797 seq_puts(m, "/");
5798 }
5799
5800 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5801 seq_puts(m, " (deleted)\n");
5802 else
5803 seq_putc(m, '\n');
5804 }
5805
5806 retval = 0;
5807 out_unlock:
5808 spin_unlock_irq(&css_set_lock);
5809 mutex_unlock(&cgroup_mutex);
5810 kfree(buf);
5811 out:
5812 return retval;
5813 }
5814
5815 /* Display information about each subsystem and each hierarchy */
5816 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5817 {
5818 struct cgroup_subsys *ss;
5819 int i;
5820
5821 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5822 /*
5823 * ideally we don't want subsystems moving around while we do this.
5824 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5825 * subsys/hierarchy state.
5826 */
5827 mutex_lock(&cgroup_mutex);
5828
5829 for_each_subsys(ss, i)
5830 seq_printf(m, "%s\t%d\t%d\t%d\n",
5831 ss->legacy_name, ss->root->hierarchy_id,
5832 atomic_read(&ss->root->nr_cgrps),
5833 cgroup_ssid_enabled(i));
5834
5835 mutex_unlock(&cgroup_mutex);
5836 return 0;
5837 }
5838
5839 static int cgroupstats_open(struct inode *inode, struct file *file)
5840 {
5841 return single_open(file, proc_cgroupstats_show, NULL);
5842 }
5843
5844 static const struct file_operations proc_cgroupstats_operations = {
5845 .open = cgroupstats_open,
5846 .read = seq_read,
5847 .llseek = seq_lseek,
5848 .release = single_release,
5849 };
5850
5851 /**
5852 * cgroup_fork - initialize cgroup related fields during copy_process()
5853 * @child: pointer to task_struct of forking parent process.
5854 *
5855 * A task is associated with the init_css_set until cgroup_post_fork()
5856 * attaches it to the parent's css_set. Empty cg_list indicates that
5857 * @child isn't holding reference to its css_set.
5858 */
5859 void cgroup_fork(struct task_struct *child)
5860 {
5861 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5862 INIT_LIST_HEAD(&child->cg_list);
5863 }
5864
5865 /**
5866 * cgroup_can_fork - called on a new task before the process is exposed
5867 * @child: the task in question.
5868 *
5869 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5870 * returns an error, the fork aborts with that error code. This allows for
5871 * a cgroup subsystem to conditionally allow or deny new forks.
5872 */
5873 int cgroup_can_fork(struct task_struct *child)
5874 {
5875 struct cgroup_subsys *ss;
5876 int i, j, ret;
5877
5878 do_each_subsys_mask(ss, i, have_canfork_callback) {
5879 ret = ss->can_fork(child);
5880 if (ret)
5881 goto out_revert;
5882 } while_each_subsys_mask();
5883
5884 return 0;
5885
5886 out_revert:
5887 for_each_subsys(ss, j) {
5888 if (j >= i)
5889 break;
5890 if (ss->cancel_fork)
5891 ss->cancel_fork(child);
5892 }
5893
5894 return ret;
5895 }
5896
5897 /**
5898 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5899 * @child: the task in question
5900 *
5901 * This calls the cancel_fork() callbacks if a fork failed *after*
5902 * cgroup_can_fork() succeded.
5903 */
5904 void cgroup_cancel_fork(struct task_struct *child)
5905 {
5906 struct cgroup_subsys *ss;
5907 int i;
5908
5909 for_each_subsys(ss, i)
5910 if (ss->cancel_fork)
5911 ss->cancel_fork(child);
5912 }
5913
5914 /**
5915 * cgroup_post_fork - called on a new task after adding it to the task list
5916 * @child: the task in question
5917 *
5918 * Adds the task to the list running through its css_set if necessary and
5919 * call the subsystem fork() callbacks. Has to be after the task is
5920 * visible on the task list in case we race with the first call to
5921 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5922 * list.
5923 */
5924 void cgroup_post_fork(struct task_struct *child)
5925 {
5926 struct cgroup_subsys *ss;
5927 int i;
5928
5929 /*
5930 * This may race against cgroup_enable_task_cg_lists(). As that
5931 * function sets use_task_css_set_links before grabbing
5932 * tasklist_lock and we just went through tasklist_lock to add
5933 * @child, it's guaranteed that either we see the set
5934 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5935 * @child during its iteration.
5936 *
5937 * If we won the race, @child is associated with %current's
5938 * css_set. Grabbing css_set_lock guarantees both that the
5939 * association is stable, and, on completion of the parent's
5940 * migration, @child is visible in the source of migration or
5941 * already in the destination cgroup. This guarantee is necessary
5942 * when implementing operations which need to migrate all tasks of
5943 * a cgroup to another.
5944 *
5945 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5946 * will remain in init_css_set. This is safe because all tasks are
5947 * in the init_css_set before cg_links is enabled and there's no
5948 * operation which transfers all tasks out of init_css_set.
5949 */
5950 if (use_task_css_set_links) {
5951 struct css_set *cset;
5952
5953 spin_lock_irq(&css_set_lock);
5954 cset = task_css_set(current);
5955 if (list_empty(&child->cg_list)) {
5956 get_css_set(cset);
5957 css_set_move_task(child, NULL, cset, false);
5958 }
5959 spin_unlock_irq(&css_set_lock);
5960 }
5961
5962 /*
5963 * Call ss->fork(). This must happen after @child is linked on
5964 * css_set; otherwise, @child might change state between ->fork()
5965 * and addition to css_set.
5966 */
5967 do_each_subsys_mask(ss, i, have_fork_callback) {
5968 ss->fork(child);
5969 } while_each_subsys_mask();
5970 }
5971
5972 /**
5973 * cgroup_exit - detach cgroup from exiting task
5974 * @tsk: pointer to task_struct of exiting process
5975 *
5976 * Description: Detach cgroup from @tsk and release it.
5977 *
5978 * Note that cgroups marked notify_on_release force every task in
5979 * them to take the global cgroup_mutex mutex when exiting.
5980 * This could impact scaling on very large systems. Be reluctant to
5981 * use notify_on_release cgroups where very high task exit scaling
5982 * is required on large systems.
5983 *
5984 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5985 * call cgroup_exit() while the task is still competent to handle
5986 * notify_on_release(), then leave the task attached to the root cgroup in
5987 * each hierarchy for the remainder of its exit. No need to bother with
5988 * init_css_set refcnting. init_css_set never goes away and we can't race
5989 * with migration path - PF_EXITING is visible to migration path.
5990 */
5991 void cgroup_exit(struct task_struct *tsk)
5992 {
5993 struct cgroup_subsys *ss;
5994 struct css_set *cset;
5995 int i;
5996
5997 /*
5998 * Unlink from @tsk from its css_set. As migration path can't race
5999 * with us, we can check css_set and cg_list without synchronization.
6000 */
6001 cset = task_css_set(tsk);
6002
6003 if (!list_empty(&tsk->cg_list)) {
6004 spin_lock_irq(&css_set_lock);
6005 css_set_move_task(tsk, cset, NULL, false);
6006 spin_unlock_irq(&css_set_lock);
6007 } else {
6008 get_css_set(cset);
6009 }
6010
6011 /* see cgroup_post_fork() for details */
6012 do_each_subsys_mask(ss, i, have_exit_callback) {
6013 ss->exit(tsk);
6014 } while_each_subsys_mask();
6015 }
6016
6017 void cgroup_free(struct task_struct *task)
6018 {
6019 struct css_set *cset = task_css_set(task);
6020 struct cgroup_subsys *ss;
6021 int ssid;
6022
6023 do_each_subsys_mask(ss, ssid, have_free_callback) {
6024 ss->free(task);
6025 } while_each_subsys_mask();
6026
6027 put_css_set(cset);
6028 }
6029
6030 static void check_for_release(struct cgroup *cgrp)
6031 {
6032 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6033 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6034 schedule_work(&cgrp->release_agent_work);
6035 }
6036
6037 /*
6038 * Notify userspace when a cgroup is released, by running the
6039 * configured release agent with the name of the cgroup (path
6040 * relative to the root of cgroup file system) as the argument.
6041 *
6042 * Most likely, this user command will try to rmdir this cgroup.
6043 *
6044 * This races with the possibility that some other task will be
6045 * attached to this cgroup before it is removed, or that some other
6046 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6047 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6048 * unused, and this cgroup will be reprieved from its death sentence,
6049 * to continue to serve a useful existence. Next time it's released,
6050 * we will get notified again, if it still has 'notify_on_release' set.
6051 *
6052 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6053 * means only wait until the task is successfully execve()'d. The
6054 * separate release agent task is forked by call_usermodehelper(),
6055 * then control in this thread returns here, without waiting for the
6056 * release agent task. We don't bother to wait because the caller of
6057 * this routine has no use for the exit status of the release agent
6058 * task, so no sense holding our caller up for that.
6059 */
6060 static void cgroup_release_agent(struct work_struct *work)
6061 {
6062 struct cgroup *cgrp =
6063 container_of(work, struct cgroup, release_agent_work);
6064 char *pathbuf = NULL, *agentbuf = NULL;
6065 char *argv[3], *envp[3];
6066 int ret;
6067
6068 mutex_lock(&cgroup_mutex);
6069
6070 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6071 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6072 if (!pathbuf || !agentbuf)
6073 goto out;
6074
6075 spin_lock_irq(&css_set_lock);
6076 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6077 spin_unlock_irq(&css_set_lock);
6078 if (ret >= PATH_MAX)
6079 goto out;
6080
6081 argv[0] = agentbuf;
6082 argv[1] = pathbuf;
6083 argv[2] = NULL;
6084
6085 /* minimal command environment */
6086 envp[0] = "HOME=/";
6087 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6088 envp[2] = NULL;
6089
6090 mutex_unlock(&cgroup_mutex);
6091 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6092 goto out_free;
6093 out:
6094 mutex_unlock(&cgroup_mutex);
6095 out_free:
6096 kfree(agentbuf);
6097 kfree(pathbuf);
6098 }
6099
6100 static int __init cgroup_disable(char *str)
6101 {
6102 struct cgroup_subsys *ss;
6103 char *token;
6104 int i;
6105
6106 while ((token = strsep(&str, ",")) != NULL) {
6107 if (!*token)
6108 continue;
6109
6110 for_each_subsys(ss, i) {
6111 if (strcmp(token, ss->name) &&
6112 strcmp(token, ss->legacy_name))
6113 continue;
6114 cgroup_disable_mask |= 1 << i;
6115 }
6116 }
6117 return 1;
6118 }
6119 __setup("cgroup_disable=", cgroup_disable);
6120
6121 static int __init cgroup_no_v1(char *str)
6122 {
6123 struct cgroup_subsys *ss;
6124 char *token;
6125 int i;
6126
6127 while ((token = strsep(&str, ",")) != NULL) {
6128 if (!*token)
6129 continue;
6130
6131 if (!strcmp(token, "all")) {
6132 cgroup_no_v1_mask = U16_MAX;
6133 break;
6134 }
6135
6136 for_each_subsys(ss, i) {
6137 if (strcmp(token, ss->name) &&
6138 strcmp(token, ss->legacy_name))
6139 continue;
6140
6141 cgroup_no_v1_mask |= 1 << i;
6142 }
6143 }
6144 return 1;
6145 }
6146 __setup("cgroup_no_v1=", cgroup_no_v1);
6147
6148 /**
6149 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6150 * @dentry: directory dentry of interest
6151 * @ss: subsystem of interest
6152 *
6153 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6154 * to get the corresponding css and return it. If such css doesn't exist
6155 * or can't be pinned, an ERR_PTR value is returned.
6156 */
6157 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6158 struct cgroup_subsys *ss)
6159 {
6160 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6161 struct file_system_type *s_type = dentry->d_sb->s_type;
6162 struct cgroup_subsys_state *css = NULL;
6163 struct cgroup *cgrp;
6164
6165 /* is @dentry a cgroup dir? */
6166 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6167 !kn || kernfs_type(kn) != KERNFS_DIR)
6168 return ERR_PTR(-EBADF);
6169
6170 rcu_read_lock();
6171
6172 /*
6173 * This path doesn't originate from kernfs and @kn could already
6174 * have been or be removed at any point. @kn->priv is RCU
6175 * protected for this access. See css_release_work_fn() for details.
6176 */
6177 cgrp = rcu_dereference(kn->priv);
6178 if (cgrp)
6179 css = cgroup_css(cgrp, ss);
6180
6181 if (!css || !css_tryget_online(css))
6182 css = ERR_PTR(-ENOENT);
6183
6184 rcu_read_unlock();
6185 return css;
6186 }
6187
6188 /**
6189 * css_from_id - lookup css by id
6190 * @id: the cgroup id
6191 * @ss: cgroup subsys to be looked into
6192 *
6193 * Returns the css if there's valid one with @id, otherwise returns NULL.
6194 * Should be called under rcu_read_lock().
6195 */
6196 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6197 {
6198 WARN_ON_ONCE(!rcu_read_lock_held());
6199 return idr_find(&ss->css_idr, id);
6200 }
6201
6202 /**
6203 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6204 * @path: path on the default hierarchy
6205 *
6206 * Find the cgroup at @path on the default hierarchy, increment its
6207 * reference count and return it. Returns pointer to the found cgroup on
6208 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6209 * if @path points to a non-directory.
6210 */
6211 struct cgroup *cgroup_get_from_path(const char *path)
6212 {
6213 struct kernfs_node *kn;
6214 struct cgroup *cgrp;
6215
6216 mutex_lock(&cgroup_mutex);
6217
6218 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6219 if (kn) {
6220 if (kernfs_type(kn) == KERNFS_DIR) {
6221 cgrp = kn->priv;
6222 cgroup_get(cgrp);
6223 } else {
6224 cgrp = ERR_PTR(-ENOTDIR);
6225 }
6226 kernfs_put(kn);
6227 } else {
6228 cgrp = ERR_PTR(-ENOENT);
6229 }
6230
6231 mutex_unlock(&cgroup_mutex);
6232 return cgrp;
6233 }
6234 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6235
6236 /**
6237 * cgroup_get_from_fd - get a cgroup pointer from a fd
6238 * @fd: fd obtained by open(cgroup2_dir)
6239 *
6240 * Find the cgroup from a fd which should be obtained
6241 * by opening a cgroup directory. Returns a pointer to the
6242 * cgroup on success. ERR_PTR is returned if the cgroup
6243 * cannot be found.
6244 */
6245 struct cgroup *cgroup_get_from_fd(int fd)
6246 {
6247 struct cgroup_subsys_state *css;
6248 struct cgroup *cgrp;
6249 struct file *f;
6250
6251 f = fget_raw(fd);
6252 if (!f)
6253 return ERR_PTR(-EBADF);
6254
6255 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6256 fput(f);
6257 if (IS_ERR(css))
6258 return ERR_CAST(css);
6259
6260 cgrp = css->cgroup;
6261 if (!cgroup_on_dfl(cgrp)) {
6262 cgroup_put(cgrp);
6263 return ERR_PTR(-EBADF);
6264 }
6265
6266 return cgrp;
6267 }
6268 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6269
6270 /*
6271 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6272 * definition in cgroup-defs.h.
6273 */
6274 #ifdef CONFIG_SOCK_CGROUP_DATA
6275
6276 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6277
6278 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6279 static bool cgroup_sk_alloc_disabled __read_mostly;
6280
6281 void cgroup_sk_alloc_disable(void)
6282 {
6283 if (cgroup_sk_alloc_disabled)
6284 return;
6285 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6286 cgroup_sk_alloc_disabled = true;
6287 }
6288
6289 #else
6290
6291 #define cgroup_sk_alloc_disabled false
6292
6293 #endif
6294
6295 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6296 {
6297 if (cgroup_sk_alloc_disabled)
6298 return;
6299
6300 rcu_read_lock();
6301
6302 while (true) {
6303 struct css_set *cset;
6304
6305 cset = task_css_set(current);
6306 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6307 skcd->val = (unsigned long)cset->dfl_cgrp;
6308 break;
6309 }
6310 cpu_relax();
6311 }
6312
6313 rcu_read_unlock();
6314 }
6315
6316 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6317 {
6318 cgroup_put(sock_cgroup_ptr(skcd));
6319 }
6320
6321 #endif /* CONFIG_SOCK_CGROUP_DATA */
6322
6323 /* cgroup namespaces */
6324
6325 static struct cgroup_namespace *alloc_cgroup_ns(void)
6326 {
6327 struct cgroup_namespace *new_ns;
6328 int ret;
6329
6330 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6331 if (!new_ns)
6332 return ERR_PTR(-ENOMEM);
6333 ret = ns_alloc_inum(&new_ns->ns);
6334 if (ret) {
6335 kfree(new_ns);
6336 return ERR_PTR(ret);
6337 }
6338 atomic_set(&new_ns->count, 1);
6339 new_ns->ns.ops = &cgroupns_operations;
6340 return new_ns;
6341 }
6342
6343 void free_cgroup_ns(struct cgroup_namespace *ns)
6344 {
6345 put_css_set(ns->root_cset);
6346 put_user_ns(ns->user_ns);
6347 ns_free_inum(&ns->ns);
6348 kfree(ns);
6349 }
6350 EXPORT_SYMBOL(free_cgroup_ns);
6351
6352 struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6353 struct user_namespace *user_ns,
6354 struct cgroup_namespace *old_ns)
6355 {
6356 struct cgroup_namespace *new_ns;
6357 struct css_set *cset;
6358
6359 BUG_ON(!old_ns);
6360
6361 if (!(flags & CLONE_NEWCGROUP)) {
6362 get_cgroup_ns(old_ns);
6363 return old_ns;
6364 }
6365
6366 /* Allow only sysadmin to create cgroup namespace. */
6367 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6368 return ERR_PTR(-EPERM);
6369
6370 /* It is not safe to take cgroup_mutex here */
6371 spin_lock_irq(&css_set_lock);
6372 cset = task_css_set(current);
6373 get_css_set(cset);
6374 spin_unlock_irq(&css_set_lock);
6375
6376 new_ns = alloc_cgroup_ns();
6377 if (IS_ERR(new_ns)) {
6378 put_css_set(cset);
6379 return new_ns;
6380 }
6381
6382 new_ns->user_ns = get_user_ns(user_ns);
6383 new_ns->root_cset = cset;
6384
6385 return new_ns;
6386 }
6387
6388 static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6389 {
6390 return container_of(ns, struct cgroup_namespace, ns);
6391 }
6392
6393 static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6394 {
6395 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6396
6397 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6398 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6399 return -EPERM;
6400
6401 /* Don't need to do anything if we are attaching to our own cgroupns. */
6402 if (cgroup_ns == nsproxy->cgroup_ns)
6403 return 0;
6404
6405 get_cgroup_ns(cgroup_ns);
6406 put_cgroup_ns(nsproxy->cgroup_ns);
6407 nsproxy->cgroup_ns = cgroup_ns;
6408
6409 return 0;
6410 }
6411
6412 static struct ns_common *cgroupns_get(struct task_struct *task)
6413 {
6414 struct cgroup_namespace *ns = NULL;
6415 struct nsproxy *nsproxy;
6416
6417 task_lock(task);
6418 nsproxy = task->nsproxy;
6419 if (nsproxy) {
6420 ns = nsproxy->cgroup_ns;
6421 get_cgroup_ns(ns);
6422 }
6423 task_unlock(task);
6424
6425 return ns ? &ns->ns : NULL;
6426 }
6427
6428 static void cgroupns_put(struct ns_common *ns)
6429 {
6430 put_cgroup_ns(to_cg_ns(ns));
6431 }
6432
6433 const struct proc_ns_operations cgroupns_operations = {
6434 .name = "cgroup",
6435 .type = CLONE_NEWCGROUP,
6436 .get = cgroupns_get,
6437 .put = cgroupns_put,
6438 .install = cgroupns_install,
6439 };
6440
6441 static __init int cgroup_namespaces_init(void)
6442 {
6443 return 0;
6444 }
6445 subsys_initcall(cgroup_namespaces_init);
6446
6447 #ifdef CONFIG_CGROUP_DEBUG
6448 static struct cgroup_subsys_state *
6449 debug_css_alloc(struct cgroup_subsys_state *parent_css)
6450 {
6451 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6452
6453 if (!css)
6454 return ERR_PTR(-ENOMEM);
6455
6456 return css;
6457 }
6458
6459 static void debug_css_free(struct cgroup_subsys_state *css)
6460 {
6461 kfree(css);
6462 }
6463
6464 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6465 struct cftype *cft)
6466 {
6467 return cgroup_task_count(css->cgroup);
6468 }
6469
6470 static u64 current_css_set_read(struct cgroup_subsys_state *css,
6471 struct cftype *cft)
6472 {
6473 return (u64)(unsigned long)current->cgroups;
6474 }
6475
6476 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6477 struct cftype *cft)
6478 {
6479 u64 count;
6480
6481 rcu_read_lock();
6482 count = atomic_read(&task_css_set(current)->refcount);
6483 rcu_read_unlock();
6484 return count;
6485 }
6486
6487 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6488 {
6489 struct cgrp_cset_link *link;
6490 struct css_set *cset;
6491 char *name_buf;
6492
6493 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6494 if (!name_buf)
6495 return -ENOMEM;
6496
6497 spin_lock_irq(&css_set_lock);
6498 rcu_read_lock();
6499 cset = rcu_dereference(current->cgroups);
6500 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6501 struct cgroup *c = link->cgrp;
6502
6503 cgroup_name(c, name_buf, NAME_MAX + 1);
6504 seq_printf(seq, "Root %d group %s\n",
6505 c->root->hierarchy_id, name_buf);
6506 }
6507 rcu_read_unlock();
6508 spin_unlock_irq(&css_set_lock);
6509 kfree(name_buf);
6510 return 0;
6511 }
6512
6513 #define MAX_TASKS_SHOWN_PER_CSS 25
6514 static int cgroup_css_links_read(struct seq_file *seq, void *v)
6515 {
6516 struct cgroup_subsys_state *css = seq_css(seq);
6517 struct cgrp_cset_link *link;
6518
6519 spin_lock_irq(&css_set_lock);
6520 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6521 struct css_set *cset = link->cset;
6522 struct task_struct *task;
6523 int count = 0;
6524
6525 seq_printf(seq, "css_set %p\n", cset);
6526
6527 list_for_each_entry(task, &cset->tasks, cg_list) {
6528 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6529 goto overflow;
6530 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6531 }
6532
6533 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6534 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6535 goto overflow;
6536 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6537 }
6538 continue;
6539 overflow:
6540 seq_puts(seq, " ...\n");
6541 }
6542 spin_unlock_irq(&css_set_lock);
6543 return 0;
6544 }
6545
6546 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6547 {
6548 return (!cgroup_is_populated(css->cgroup) &&
6549 !css_has_online_children(&css->cgroup->self));
6550 }
6551
6552 static struct cftype debug_files[] = {
6553 {
6554 .name = "taskcount",
6555 .read_u64 = debug_taskcount_read,
6556 },
6557
6558 {
6559 .name = "current_css_set",
6560 .read_u64 = current_css_set_read,
6561 },
6562
6563 {
6564 .name = "current_css_set_refcount",
6565 .read_u64 = current_css_set_refcount_read,
6566 },
6567
6568 {
6569 .name = "current_css_set_cg_links",
6570 .seq_show = current_css_set_cg_links_read,
6571 },
6572
6573 {
6574 .name = "cgroup_css_links",
6575 .seq_show = cgroup_css_links_read,
6576 },
6577
6578 {
6579 .name = "releasable",
6580 .read_u64 = releasable_read,
6581 },
6582
6583 { } /* terminate */
6584 };
6585
6586 struct cgroup_subsys debug_cgrp_subsys = {
6587 .css_alloc = debug_css_alloc,
6588 .css_free = debug_css_free,
6589 .legacy_cftypes = debug_files,
6590 };
6591 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.187914 seconds and 5 git commands to generate.