bb263d0caab323810f2c30fc3799be467859a7ac
[deliverable/linux.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60
61 #include <linux/atomic.h>
62
63 /*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
74 /*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
80 *
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
83 */
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DECLARE_RWSEM(css_set_rwsem);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_rwsem);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DECLARE_RWSEM(css_set_rwsem);
92 #endif
93
94 /*
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
97 */
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
99
100 /*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104 static DEFINE_SPINLOCK(release_agent_path_lock);
105
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
110
111 /*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117 static struct workqueue_struct *cgroup_destroy_wq;
118
119 /*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
125 /* generate an array of cgroup subsystem pointers */
126 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
127 static struct cgroup_subsys *cgroup_subsys[] = {
128 #include <linux/cgroup_subsys.h>
129 };
130 #undef SUBSYS
131
132 /* array of cgroup subsystem names */
133 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134 static const char *cgroup_subsys_name[] = {
135 #include <linux/cgroup_subsys.h>
136 };
137 #undef SUBSYS
138
139 /*
140 * The default hierarchy, reserved for the subsystems that are otherwise
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
143 */
144 struct cgroup_root cgrp_dfl_root;
145
146 /*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150 static bool cgrp_dfl_root_visible;
151
152 /*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156 static bool cgroup_legacy_files_on_dfl;
157
158 /* some controllers are not supported in the default hierarchy */
159 static unsigned int cgrp_dfl_root_inhibit_ss_mask;
160
161 /* The list of hierarchy roots */
162
163 static LIST_HEAD(cgroup_roots);
164 static int cgroup_root_count;
165
166 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
167 static DEFINE_IDR(cgroup_hierarchy_idr);
168
169 /*
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
175 */
176 static u64 css_serial_nr_next = 1;
177
178 /* This flag indicates whether tasks in the fork and exit paths should
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
182 */
183 static int need_forkexit_callback __read_mostly;
184
185 static struct cftype cgroup_dfl_base_files[];
186 static struct cftype cgroup_legacy_base_files[];
187
188 static int rebind_subsystems(struct cgroup_root *dst_root,
189 unsigned int ss_mask);
190 static int cgroup_destroy_locked(struct cgroup *cgrp);
191 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
192 bool visible);
193 static void css_release(struct percpu_ref *ref);
194 static void kill_css(struct cgroup_subsys_state *css);
195 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
197
198 /* IDR wrappers which synchronize using cgroup_idr_lock */
199 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
200 gfp_t gfp_mask)
201 {
202 int ret;
203
204 idr_preload(gfp_mask);
205 spin_lock_bh(&cgroup_idr_lock);
206 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
207 spin_unlock_bh(&cgroup_idr_lock);
208 idr_preload_end();
209 return ret;
210 }
211
212 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
213 {
214 void *ret;
215
216 spin_lock_bh(&cgroup_idr_lock);
217 ret = idr_replace(idr, ptr, id);
218 spin_unlock_bh(&cgroup_idr_lock);
219 return ret;
220 }
221
222 static void cgroup_idr_remove(struct idr *idr, int id)
223 {
224 spin_lock_bh(&cgroup_idr_lock);
225 idr_remove(idr, id);
226 spin_unlock_bh(&cgroup_idr_lock);
227 }
228
229 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
230 {
231 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
232
233 if (parent_css)
234 return container_of(parent_css, struct cgroup, self);
235 return NULL;
236 }
237
238 /**
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
242 *
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
248 */
249 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
250 struct cgroup_subsys *ss)
251 {
252 if (ss)
253 return rcu_dereference_check(cgrp->subsys[ss->id],
254 lockdep_is_held(&cgroup_mutex));
255 else
256 return &cgrp->self;
257 }
258
259 /**
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
263 *
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
268 */
269 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
270 struct cgroup_subsys *ss)
271 {
272 lockdep_assert_held(&cgroup_mutex);
273
274 if (!ss)
275 return &cgrp->self;
276
277 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
278 return NULL;
279
280 /*
281 * This function is used while updating css associations and thus
282 * can't test the csses directly. Use ->child_subsys_mask.
283 */
284 while (cgroup_parent(cgrp) &&
285 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
286 cgrp = cgroup_parent(cgrp);
287
288 return cgroup_css(cgrp, ss);
289 }
290
291 /**
292 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
293 * @cgrp: the cgroup of interest
294 * @ss: the subsystem of interest
295 *
296 * Find and get the effective css of @cgrp for @ss. The effective css is
297 * defined as the matching css of the nearest ancestor including self which
298 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
299 * the root css is returned, so this function always returns a valid css.
300 * The returned css must be put using css_put().
301 */
302 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
303 struct cgroup_subsys *ss)
304 {
305 struct cgroup_subsys_state *css;
306
307 rcu_read_lock();
308
309 do {
310 css = cgroup_css(cgrp, ss);
311
312 if (css && css_tryget_online(css))
313 goto out_unlock;
314 cgrp = cgroup_parent(cgrp);
315 } while (cgrp);
316
317 css = init_css_set.subsys[ss->id];
318 css_get(css);
319 out_unlock:
320 rcu_read_unlock();
321 return css;
322 }
323
324 /* convenient tests for these bits */
325 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
326 {
327 return !(cgrp->self.flags & CSS_ONLINE);
328 }
329
330 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
331 {
332 struct cgroup *cgrp = of->kn->parent->priv;
333 struct cftype *cft = of_cft(of);
334
335 /*
336 * This is open and unprotected implementation of cgroup_css().
337 * seq_css() is only called from a kernfs file operation which has
338 * an active reference on the file. Because all the subsystem
339 * files are drained before a css is disassociated with a cgroup,
340 * the matching css from the cgroup's subsys table is guaranteed to
341 * be and stay valid until the enclosing operation is complete.
342 */
343 if (cft->ss)
344 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
345 else
346 return &cgrp->self;
347 }
348 EXPORT_SYMBOL_GPL(of_css);
349
350 /**
351 * cgroup_is_descendant - test ancestry
352 * @cgrp: the cgroup to be tested
353 * @ancestor: possible ancestor of @cgrp
354 *
355 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
356 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
357 * and @ancestor are accessible.
358 */
359 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
360 {
361 while (cgrp) {
362 if (cgrp == ancestor)
363 return true;
364 cgrp = cgroup_parent(cgrp);
365 }
366 return false;
367 }
368
369 static int notify_on_release(const struct cgroup *cgrp)
370 {
371 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
372 }
373
374 /**
375 * for_each_css - iterate all css's of a cgroup
376 * @css: the iteration cursor
377 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
378 * @cgrp: the target cgroup to iterate css's of
379 *
380 * Should be called under cgroup_[tree_]mutex.
381 */
382 #define for_each_css(css, ssid, cgrp) \
383 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
384 if (!((css) = rcu_dereference_check( \
385 (cgrp)->subsys[(ssid)], \
386 lockdep_is_held(&cgroup_mutex)))) { } \
387 else
388
389 /**
390 * for_each_e_css - iterate all effective css's of a cgroup
391 * @css: the iteration cursor
392 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
393 * @cgrp: the target cgroup to iterate css's of
394 *
395 * Should be called under cgroup_[tree_]mutex.
396 */
397 #define for_each_e_css(css, ssid, cgrp) \
398 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
399 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
400 ; \
401 else
402
403 /**
404 * for_each_subsys - iterate all enabled cgroup subsystems
405 * @ss: the iteration cursor
406 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
407 */
408 #define for_each_subsys(ss, ssid) \
409 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
410 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
411
412 /* iterate across the hierarchies */
413 #define for_each_root(root) \
414 list_for_each_entry((root), &cgroup_roots, root_list)
415
416 /* iterate over child cgrps, lock should be held throughout iteration */
417 #define cgroup_for_each_live_child(child, cgrp) \
418 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
419 if (({ lockdep_assert_held(&cgroup_mutex); \
420 cgroup_is_dead(child); })) \
421 ; \
422 else
423
424 static void cgroup_release_agent(struct work_struct *work);
425 static void check_for_release(struct cgroup *cgrp);
426
427 /*
428 * A cgroup can be associated with multiple css_sets as different tasks may
429 * belong to different cgroups on different hierarchies. In the other
430 * direction, a css_set is naturally associated with multiple cgroups.
431 * This M:N relationship is represented by the following link structure
432 * which exists for each association and allows traversing the associations
433 * from both sides.
434 */
435 struct cgrp_cset_link {
436 /* the cgroup and css_set this link associates */
437 struct cgroup *cgrp;
438 struct css_set *cset;
439
440 /* list of cgrp_cset_links anchored at cgrp->cset_links */
441 struct list_head cset_link;
442
443 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
444 struct list_head cgrp_link;
445 };
446
447 /*
448 * The default css_set - used by init and its children prior to any
449 * hierarchies being mounted. It contains a pointer to the root state
450 * for each subsystem. Also used to anchor the list of css_sets. Not
451 * reference-counted, to improve performance when child cgroups
452 * haven't been created.
453 */
454 struct css_set init_css_set = {
455 .refcount = ATOMIC_INIT(1),
456 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
457 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
458 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
459 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
460 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
461 };
462
463 static int css_set_count = 1; /* 1 for init_css_set */
464
465 /**
466 * cgroup_update_populated - updated populated count of a cgroup
467 * @cgrp: the target cgroup
468 * @populated: inc or dec populated count
469 *
470 * @cgrp is either getting the first task (css_set) or losing the last.
471 * Update @cgrp->populated_cnt accordingly. The count is propagated
472 * towards root so that a given cgroup's populated_cnt is zero iff the
473 * cgroup and all its descendants are empty.
474 *
475 * @cgrp's interface file "cgroup.populated" is zero if
476 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
477 * changes from or to zero, userland is notified that the content of the
478 * interface file has changed. This can be used to detect when @cgrp and
479 * its descendants become populated or empty.
480 */
481 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
482 {
483 lockdep_assert_held(&css_set_rwsem);
484
485 do {
486 bool trigger;
487
488 if (populated)
489 trigger = !cgrp->populated_cnt++;
490 else
491 trigger = !--cgrp->populated_cnt;
492
493 if (!trigger)
494 break;
495
496 if (cgrp->populated_kn)
497 kernfs_notify(cgrp->populated_kn);
498 cgrp = cgroup_parent(cgrp);
499 } while (cgrp);
500 }
501
502 /*
503 * hash table for cgroup groups. This improves the performance to find
504 * an existing css_set. This hash doesn't (currently) take into
505 * account cgroups in empty hierarchies.
506 */
507 #define CSS_SET_HASH_BITS 7
508 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
509
510 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
511 {
512 unsigned long key = 0UL;
513 struct cgroup_subsys *ss;
514 int i;
515
516 for_each_subsys(ss, i)
517 key += (unsigned long)css[i];
518 key = (key >> 16) ^ key;
519
520 return key;
521 }
522
523 static void put_css_set_locked(struct css_set *cset)
524 {
525 struct cgrp_cset_link *link, *tmp_link;
526 struct cgroup_subsys *ss;
527 int ssid;
528
529 lockdep_assert_held(&css_set_rwsem);
530
531 if (!atomic_dec_and_test(&cset->refcount))
532 return;
533
534 /* This css_set is dead. unlink it and release cgroup refcounts */
535 for_each_subsys(ss, ssid)
536 list_del(&cset->e_cset_node[ssid]);
537 hash_del(&cset->hlist);
538 css_set_count--;
539
540 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
541 struct cgroup *cgrp = link->cgrp;
542
543 list_del(&link->cset_link);
544 list_del(&link->cgrp_link);
545
546 /* @cgrp can't go away while we're holding css_set_rwsem */
547 if (list_empty(&cgrp->cset_links)) {
548 cgroup_update_populated(cgrp, false);
549 check_for_release(cgrp);
550 }
551
552 kfree(link);
553 }
554
555 kfree_rcu(cset, rcu_head);
556 }
557
558 static void put_css_set(struct css_set *cset)
559 {
560 /*
561 * Ensure that the refcount doesn't hit zero while any readers
562 * can see it. Similar to atomic_dec_and_lock(), but for an
563 * rwlock
564 */
565 if (atomic_add_unless(&cset->refcount, -1, 1))
566 return;
567
568 down_write(&css_set_rwsem);
569 put_css_set_locked(cset);
570 up_write(&css_set_rwsem);
571 }
572
573 /*
574 * refcounted get/put for css_set objects
575 */
576 static inline void get_css_set(struct css_set *cset)
577 {
578 atomic_inc(&cset->refcount);
579 }
580
581 /**
582 * compare_css_sets - helper function for find_existing_css_set().
583 * @cset: candidate css_set being tested
584 * @old_cset: existing css_set for a task
585 * @new_cgrp: cgroup that's being entered by the task
586 * @template: desired set of css pointers in css_set (pre-calculated)
587 *
588 * Returns true if "cset" matches "old_cset" except for the hierarchy
589 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
590 */
591 static bool compare_css_sets(struct css_set *cset,
592 struct css_set *old_cset,
593 struct cgroup *new_cgrp,
594 struct cgroup_subsys_state *template[])
595 {
596 struct list_head *l1, *l2;
597
598 /*
599 * On the default hierarchy, there can be csets which are
600 * associated with the same set of cgroups but different csses.
601 * Let's first ensure that csses match.
602 */
603 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
604 return false;
605
606 /*
607 * Compare cgroup pointers in order to distinguish between
608 * different cgroups in hierarchies. As different cgroups may
609 * share the same effective css, this comparison is always
610 * necessary.
611 */
612 l1 = &cset->cgrp_links;
613 l2 = &old_cset->cgrp_links;
614 while (1) {
615 struct cgrp_cset_link *link1, *link2;
616 struct cgroup *cgrp1, *cgrp2;
617
618 l1 = l1->next;
619 l2 = l2->next;
620 /* See if we reached the end - both lists are equal length. */
621 if (l1 == &cset->cgrp_links) {
622 BUG_ON(l2 != &old_cset->cgrp_links);
623 break;
624 } else {
625 BUG_ON(l2 == &old_cset->cgrp_links);
626 }
627 /* Locate the cgroups associated with these links. */
628 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
629 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
630 cgrp1 = link1->cgrp;
631 cgrp2 = link2->cgrp;
632 /* Hierarchies should be linked in the same order. */
633 BUG_ON(cgrp1->root != cgrp2->root);
634
635 /*
636 * If this hierarchy is the hierarchy of the cgroup
637 * that's changing, then we need to check that this
638 * css_set points to the new cgroup; if it's any other
639 * hierarchy, then this css_set should point to the
640 * same cgroup as the old css_set.
641 */
642 if (cgrp1->root == new_cgrp->root) {
643 if (cgrp1 != new_cgrp)
644 return false;
645 } else {
646 if (cgrp1 != cgrp2)
647 return false;
648 }
649 }
650 return true;
651 }
652
653 /**
654 * find_existing_css_set - init css array and find the matching css_set
655 * @old_cset: the css_set that we're using before the cgroup transition
656 * @cgrp: the cgroup that we're moving into
657 * @template: out param for the new set of csses, should be clear on entry
658 */
659 static struct css_set *find_existing_css_set(struct css_set *old_cset,
660 struct cgroup *cgrp,
661 struct cgroup_subsys_state *template[])
662 {
663 struct cgroup_root *root = cgrp->root;
664 struct cgroup_subsys *ss;
665 struct css_set *cset;
666 unsigned long key;
667 int i;
668
669 /*
670 * Build the set of subsystem state objects that we want to see in the
671 * new css_set. while subsystems can change globally, the entries here
672 * won't change, so no need for locking.
673 */
674 for_each_subsys(ss, i) {
675 if (root->subsys_mask & (1UL << i)) {
676 /*
677 * @ss is in this hierarchy, so we want the
678 * effective css from @cgrp.
679 */
680 template[i] = cgroup_e_css(cgrp, ss);
681 } else {
682 /*
683 * @ss is not in this hierarchy, so we don't want
684 * to change the css.
685 */
686 template[i] = old_cset->subsys[i];
687 }
688 }
689
690 key = css_set_hash(template);
691 hash_for_each_possible(css_set_table, cset, hlist, key) {
692 if (!compare_css_sets(cset, old_cset, cgrp, template))
693 continue;
694
695 /* This css_set matches what we need */
696 return cset;
697 }
698
699 /* No existing cgroup group matched */
700 return NULL;
701 }
702
703 static void free_cgrp_cset_links(struct list_head *links_to_free)
704 {
705 struct cgrp_cset_link *link, *tmp_link;
706
707 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
708 list_del(&link->cset_link);
709 kfree(link);
710 }
711 }
712
713 /**
714 * allocate_cgrp_cset_links - allocate cgrp_cset_links
715 * @count: the number of links to allocate
716 * @tmp_links: list_head the allocated links are put on
717 *
718 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
719 * through ->cset_link. Returns 0 on success or -errno.
720 */
721 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
722 {
723 struct cgrp_cset_link *link;
724 int i;
725
726 INIT_LIST_HEAD(tmp_links);
727
728 for (i = 0; i < count; i++) {
729 link = kzalloc(sizeof(*link), GFP_KERNEL);
730 if (!link) {
731 free_cgrp_cset_links(tmp_links);
732 return -ENOMEM;
733 }
734 list_add(&link->cset_link, tmp_links);
735 }
736 return 0;
737 }
738
739 /**
740 * link_css_set - a helper function to link a css_set to a cgroup
741 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
742 * @cset: the css_set to be linked
743 * @cgrp: the destination cgroup
744 */
745 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
746 struct cgroup *cgrp)
747 {
748 struct cgrp_cset_link *link;
749
750 BUG_ON(list_empty(tmp_links));
751
752 if (cgroup_on_dfl(cgrp))
753 cset->dfl_cgrp = cgrp;
754
755 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
756 link->cset = cset;
757 link->cgrp = cgrp;
758
759 if (list_empty(&cgrp->cset_links))
760 cgroup_update_populated(cgrp, true);
761 list_move(&link->cset_link, &cgrp->cset_links);
762
763 /*
764 * Always add links to the tail of the list so that the list
765 * is sorted by order of hierarchy creation
766 */
767 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
768 }
769
770 /**
771 * find_css_set - return a new css_set with one cgroup updated
772 * @old_cset: the baseline css_set
773 * @cgrp: the cgroup to be updated
774 *
775 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
776 * substituted into the appropriate hierarchy.
777 */
778 static struct css_set *find_css_set(struct css_set *old_cset,
779 struct cgroup *cgrp)
780 {
781 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
782 struct css_set *cset;
783 struct list_head tmp_links;
784 struct cgrp_cset_link *link;
785 struct cgroup_subsys *ss;
786 unsigned long key;
787 int ssid;
788
789 lockdep_assert_held(&cgroup_mutex);
790
791 /* First see if we already have a cgroup group that matches
792 * the desired set */
793 down_read(&css_set_rwsem);
794 cset = find_existing_css_set(old_cset, cgrp, template);
795 if (cset)
796 get_css_set(cset);
797 up_read(&css_set_rwsem);
798
799 if (cset)
800 return cset;
801
802 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
803 if (!cset)
804 return NULL;
805
806 /* Allocate all the cgrp_cset_link objects that we'll need */
807 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
808 kfree(cset);
809 return NULL;
810 }
811
812 atomic_set(&cset->refcount, 1);
813 INIT_LIST_HEAD(&cset->cgrp_links);
814 INIT_LIST_HEAD(&cset->tasks);
815 INIT_LIST_HEAD(&cset->mg_tasks);
816 INIT_LIST_HEAD(&cset->mg_preload_node);
817 INIT_LIST_HEAD(&cset->mg_node);
818 INIT_HLIST_NODE(&cset->hlist);
819
820 /* Copy the set of subsystem state objects generated in
821 * find_existing_css_set() */
822 memcpy(cset->subsys, template, sizeof(cset->subsys));
823
824 down_write(&css_set_rwsem);
825 /* Add reference counts and links from the new css_set. */
826 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
827 struct cgroup *c = link->cgrp;
828
829 if (c->root == cgrp->root)
830 c = cgrp;
831 link_css_set(&tmp_links, cset, c);
832 }
833
834 BUG_ON(!list_empty(&tmp_links));
835
836 css_set_count++;
837
838 /* Add @cset to the hash table */
839 key = css_set_hash(cset->subsys);
840 hash_add(css_set_table, &cset->hlist, key);
841
842 for_each_subsys(ss, ssid)
843 list_add_tail(&cset->e_cset_node[ssid],
844 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
845
846 up_write(&css_set_rwsem);
847
848 return cset;
849 }
850
851 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
852 {
853 struct cgroup *root_cgrp = kf_root->kn->priv;
854
855 return root_cgrp->root;
856 }
857
858 static int cgroup_init_root_id(struct cgroup_root *root)
859 {
860 int id;
861
862 lockdep_assert_held(&cgroup_mutex);
863
864 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
865 if (id < 0)
866 return id;
867
868 root->hierarchy_id = id;
869 return 0;
870 }
871
872 static void cgroup_exit_root_id(struct cgroup_root *root)
873 {
874 lockdep_assert_held(&cgroup_mutex);
875
876 if (root->hierarchy_id) {
877 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
878 root->hierarchy_id = 0;
879 }
880 }
881
882 static void cgroup_free_root(struct cgroup_root *root)
883 {
884 if (root) {
885 /* hierarhcy ID shoulid already have been released */
886 WARN_ON_ONCE(root->hierarchy_id);
887
888 idr_destroy(&root->cgroup_idr);
889 kfree(root);
890 }
891 }
892
893 static void cgroup_destroy_root(struct cgroup_root *root)
894 {
895 struct cgroup *cgrp = &root->cgrp;
896 struct cgrp_cset_link *link, *tmp_link;
897
898 mutex_lock(&cgroup_mutex);
899
900 BUG_ON(atomic_read(&root->nr_cgrps));
901 BUG_ON(!list_empty(&cgrp->self.children));
902
903 /* Rebind all subsystems back to the default hierarchy */
904 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
905
906 /*
907 * Release all the links from cset_links to this hierarchy's
908 * root cgroup
909 */
910 down_write(&css_set_rwsem);
911
912 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
913 list_del(&link->cset_link);
914 list_del(&link->cgrp_link);
915 kfree(link);
916 }
917 up_write(&css_set_rwsem);
918
919 if (!list_empty(&root->root_list)) {
920 list_del(&root->root_list);
921 cgroup_root_count--;
922 }
923
924 cgroup_exit_root_id(root);
925
926 mutex_unlock(&cgroup_mutex);
927
928 kernfs_destroy_root(root->kf_root);
929 cgroup_free_root(root);
930 }
931
932 /* look up cgroup associated with given css_set on the specified hierarchy */
933 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
934 struct cgroup_root *root)
935 {
936 struct cgroup *res = NULL;
937
938 lockdep_assert_held(&cgroup_mutex);
939 lockdep_assert_held(&css_set_rwsem);
940
941 if (cset == &init_css_set) {
942 res = &root->cgrp;
943 } else {
944 struct cgrp_cset_link *link;
945
946 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
947 struct cgroup *c = link->cgrp;
948
949 if (c->root == root) {
950 res = c;
951 break;
952 }
953 }
954 }
955
956 BUG_ON(!res);
957 return res;
958 }
959
960 /*
961 * Return the cgroup for "task" from the given hierarchy. Must be
962 * called with cgroup_mutex and css_set_rwsem held.
963 */
964 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
965 struct cgroup_root *root)
966 {
967 /*
968 * No need to lock the task - since we hold cgroup_mutex the
969 * task can't change groups, so the only thing that can happen
970 * is that it exits and its css is set back to init_css_set.
971 */
972 return cset_cgroup_from_root(task_css_set(task), root);
973 }
974
975 /*
976 * A task must hold cgroup_mutex to modify cgroups.
977 *
978 * Any task can increment and decrement the count field without lock.
979 * So in general, code holding cgroup_mutex can't rely on the count
980 * field not changing. However, if the count goes to zero, then only
981 * cgroup_attach_task() can increment it again. Because a count of zero
982 * means that no tasks are currently attached, therefore there is no
983 * way a task attached to that cgroup can fork (the other way to
984 * increment the count). So code holding cgroup_mutex can safely
985 * assume that if the count is zero, it will stay zero. Similarly, if
986 * a task holds cgroup_mutex on a cgroup with zero count, it
987 * knows that the cgroup won't be removed, as cgroup_rmdir()
988 * needs that mutex.
989 *
990 * A cgroup can only be deleted if both its 'count' of using tasks
991 * is zero, and its list of 'children' cgroups is empty. Since all
992 * tasks in the system use _some_ cgroup, and since there is always at
993 * least one task in the system (init, pid == 1), therefore, root cgroup
994 * always has either children cgroups and/or using tasks. So we don't
995 * need a special hack to ensure that root cgroup cannot be deleted.
996 *
997 * P.S. One more locking exception. RCU is used to guard the
998 * update of a tasks cgroup pointer by cgroup_attach_task()
999 */
1000
1001 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
1002 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1003 static const struct file_operations proc_cgroupstats_operations;
1004
1005 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1006 char *buf)
1007 {
1008 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1009 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1010 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1011 cft->ss->name, cft->name);
1012 else
1013 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1014 return buf;
1015 }
1016
1017 /**
1018 * cgroup_file_mode - deduce file mode of a control file
1019 * @cft: the control file in question
1020 *
1021 * returns cft->mode if ->mode is not 0
1022 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1023 * returns S_IRUGO if it has only a read handler
1024 * returns S_IWUSR if it has only a write hander
1025 */
1026 static umode_t cgroup_file_mode(const struct cftype *cft)
1027 {
1028 umode_t mode = 0;
1029
1030 if (cft->mode)
1031 return cft->mode;
1032
1033 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1034 mode |= S_IRUGO;
1035
1036 if (cft->write_u64 || cft->write_s64 || cft->write)
1037 mode |= S_IWUSR;
1038
1039 return mode;
1040 }
1041
1042 static void cgroup_get(struct cgroup *cgrp)
1043 {
1044 WARN_ON_ONCE(cgroup_is_dead(cgrp));
1045 css_get(&cgrp->self);
1046 }
1047
1048 static bool cgroup_tryget(struct cgroup *cgrp)
1049 {
1050 return css_tryget(&cgrp->self);
1051 }
1052
1053 static void cgroup_put(struct cgroup *cgrp)
1054 {
1055 css_put(&cgrp->self);
1056 }
1057
1058 /**
1059 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1060 * @cgrp: the target cgroup
1061 * @subtree_control: the new subtree_control mask to consider
1062 *
1063 * On the default hierarchy, a subsystem may request other subsystems to be
1064 * enabled together through its ->depends_on mask. In such cases, more
1065 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1066 *
1067 * This function calculates which subsystems need to be enabled if
1068 * @subtree_control is to be applied to @cgrp. The returned mask is always
1069 * a superset of @subtree_control and follows the usual hierarchy rules.
1070 */
1071 static unsigned int cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1072 unsigned int subtree_control)
1073 {
1074 struct cgroup *parent = cgroup_parent(cgrp);
1075 unsigned int cur_ss_mask = subtree_control;
1076 struct cgroup_subsys *ss;
1077 int ssid;
1078
1079 lockdep_assert_held(&cgroup_mutex);
1080
1081 if (!cgroup_on_dfl(cgrp))
1082 return cur_ss_mask;
1083
1084 while (true) {
1085 unsigned int new_ss_mask = cur_ss_mask;
1086
1087 for_each_subsys(ss, ssid)
1088 if (cur_ss_mask & (1 << ssid))
1089 new_ss_mask |= ss->depends_on;
1090
1091 /*
1092 * Mask out subsystems which aren't available. This can
1093 * happen only if some depended-upon subsystems were bound
1094 * to non-default hierarchies.
1095 */
1096 if (parent)
1097 new_ss_mask &= parent->child_subsys_mask;
1098 else
1099 new_ss_mask &= cgrp->root->subsys_mask;
1100
1101 if (new_ss_mask == cur_ss_mask)
1102 break;
1103 cur_ss_mask = new_ss_mask;
1104 }
1105
1106 return cur_ss_mask;
1107 }
1108
1109 /**
1110 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1111 * @cgrp: the target cgroup
1112 *
1113 * Update @cgrp->child_subsys_mask according to the current
1114 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1115 */
1116 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1117 {
1118 cgrp->child_subsys_mask =
1119 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1120 }
1121
1122 /**
1123 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1124 * @kn: the kernfs_node being serviced
1125 *
1126 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1127 * the method finishes if locking succeeded. Note that once this function
1128 * returns the cgroup returned by cgroup_kn_lock_live() may become
1129 * inaccessible any time. If the caller intends to continue to access the
1130 * cgroup, it should pin it before invoking this function.
1131 */
1132 static void cgroup_kn_unlock(struct kernfs_node *kn)
1133 {
1134 struct cgroup *cgrp;
1135
1136 if (kernfs_type(kn) == KERNFS_DIR)
1137 cgrp = kn->priv;
1138 else
1139 cgrp = kn->parent->priv;
1140
1141 mutex_unlock(&cgroup_mutex);
1142
1143 kernfs_unbreak_active_protection(kn);
1144 cgroup_put(cgrp);
1145 }
1146
1147 /**
1148 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1149 * @kn: the kernfs_node being serviced
1150 *
1151 * This helper is to be used by a cgroup kernfs method currently servicing
1152 * @kn. It breaks the active protection, performs cgroup locking and
1153 * verifies that the associated cgroup is alive. Returns the cgroup if
1154 * alive; otherwise, %NULL. A successful return should be undone by a
1155 * matching cgroup_kn_unlock() invocation.
1156 *
1157 * Any cgroup kernfs method implementation which requires locking the
1158 * associated cgroup should use this helper. It avoids nesting cgroup
1159 * locking under kernfs active protection and allows all kernfs operations
1160 * including self-removal.
1161 */
1162 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1163 {
1164 struct cgroup *cgrp;
1165
1166 if (kernfs_type(kn) == KERNFS_DIR)
1167 cgrp = kn->priv;
1168 else
1169 cgrp = kn->parent->priv;
1170
1171 /*
1172 * We're gonna grab cgroup_mutex which nests outside kernfs
1173 * active_ref. cgroup liveliness check alone provides enough
1174 * protection against removal. Ensure @cgrp stays accessible and
1175 * break the active_ref protection.
1176 */
1177 if (!cgroup_tryget(cgrp))
1178 return NULL;
1179 kernfs_break_active_protection(kn);
1180
1181 mutex_lock(&cgroup_mutex);
1182
1183 if (!cgroup_is_dead(cgrp))
1184 return cgrp;
1185
1186 cgroup_kn_unlock(kn);
1187 return NULL;
1188 }
1189
1190 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1191 {
1192 char name[CGROUP_FILE_NAME_MAX];
1193
1194 lockdep_assert_held(&cgroup_mutex);
1195 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1196 }
1197
1198 /**
1199 * cgroup_clear_dir - remove subsys files in a cgroup directory
1200 * @cgrp: target cgroup
1201 * @subsys_mask: mask of the subsystem ids whose files should be removed
1202 */
1203 static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
1204 {
1205 struct cgroup_subsys *ss;
1206 int i;
1207
1208 for_each_subsys(ss, i) {
1209 struct cftype *cfts;
1210
1211 if (!(subsys_mask & (1 << i)))
1212 continue;
1213 list_for_each_entry(cfts, &ss->cfts, node)
1214 cgroup_addrm_files(cgrp, cfts, false);
1215 }
1216 }
1217
1218 static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
1219 {
1220 struct cgroup_subsys *ss;
1221 unsigned int tmp_ss_mask;
1222 int ssid, i, ret;
1223
1224 lockdep_assert_held(&cgroup_mutex);
1225
1226 for_each_subsys(ss, ssid) {
1227 if (!(ss_mask & (1 << ssid)))
1228 continue;
1229
1230 /* if @ss has non-root csses attached to it, can't move */
1231 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1232 return -EBUSY;
1233
1234 /* can't move between two non-dummy roots either */
1235 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1236 return -EBUSY;
1237 }
1238
1239 /* skip creating root files on dfl_root for inhibited subsystems */
1240 tmp_ss_mask = ss_mask;
1241 if (dst_root == &cgrp_dfl_root)
1242 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1243
1244 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
1245 if (ret) {
1246 if (dst_root != &cgrp_dfl_root)
1247 return ret;
1248
1249 /*
1250 * Rebinding back to the default root is not allowed to
1251 * fail. Using both default and non-default roots should
1252 * be rare. Moving subsystems back and forth even more so.
1253 * Just warn about it and continue.
1254 */
1255 if (cgrp_dfl_root_visible) {
1256 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
1257 ret, ss_mask);
1258 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1259 }
1260 }
1261
1262 /*
1263 * Nothing can fail from this point on. Remove files for the
1264 * removed subsystems and rebind each subsystem.
1265 */
1266 for_each_subsys(ss, ssid)
1267 if (ss_mask & (1 << ssid))
1268 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
1269
1270 for_each_subsys(ss, ssid) {
1271 struct cgroup_root *src_root;
1272 struct cgroup_subsys_state *css;
1273 struct css_set *cset;
1274
1275 if (!(ss_mask & (1 << ssid)))
1276 continue;
1277
1278 src_root = ss->root;
1279 css = cgroup_css(&src_root->cgrp, ss);
1280
1281 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
1282
1283 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1284 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
1285 ss->root = dst_root;
1286 css->cgroup = &dst_root->cgrp;
1287
1288 down_write(&css_set_rwsem);
1289 hash_for_each(css_set_table, i, cset, hlist)
1290 list_move_tail(&cset->e_cset_node[ss->id],
1291 &dst_root->cgrp.e_csets[ss->id]);
1292 up_write(&css_set_rwsem);
1293
1294 src_root->subsys_mask &= ~(1 << ssid);
1295 src_root->cgrp.subtree_control &= ~(1 << ssid);
1296 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
1297
1298 /* default hierarchy doesn't enable controllers by default */
1299 dst_root->subsys_mask |= 1 << ssid;
1300 if (dst_root != &cgrp_dfl_root) {
1301 dst_root->cgrp.subtree_control |= 1 << ssid;
1302 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1303 }
1304
1305 if (ss->bind)
1306 ss->bind(css);
1307 }
1308
1309 kernfs_activate(dst_root->cgrp.kn);
1310 return 0;
1311 }
1312
1313 static int cgroup_show_options(struct seq_file *seq,
1314 struct kernfs_root *kf_root)
1315 {
1316 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1317 struct cgroup_subsys *ss;
1318 int ssid;
1319
1320 for_each_subsys(ss, ssid)
1321 if (root->subsys_mask & (1 << ssid))
1322 seq_printf(seq, ",%s", ss->name);
1323 if (root->flags & CGRP_ROOT_NOPREFIX)
1324 seq_puts(seq, ",noprefix");
1325 if (root->flags & CGRP_ROOT_XATTR)
1326 seq_puts(seq, ",xattr");
1327
1328 spin_lock(&release_agent_path_lock);
1329 if (strlen(root->release_agent_path))
1330 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1331 spin_unlock(&release_agent_path_lock);
1332
1333 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1334 seq_puts(seq, ",clone_children");
1335 if (strlen(root->name))
1336 seq_printf(seq, ",name=%s", root->name);
1337 return 0;
1338 }
1339
1340 struct cgroup_sb_opts {
1341 unsigned int subsys_mask;
1342 unsigned int flags;
1343 char *release_agent;
1344 bool cpuset_clone_children;
1345 char *name;
1346 /* User explicitly requested empty subsystem */
1347 bool none;
1348 };
1349
1350 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1351 {
1352 char *token, *o = data;
1353 bool all_ss = false, one_ss = false;
1354 unsigned int mask = -1U;
1355 struct cgroup_subsys *ss;
1356 int nr_opts = 0;
1357 int i;
1358
1359 #ifdef CONFIG_CPUSETS
1360 mask = ~(1U << cpuset_cgrp_id);
1361 #endif
1362
1363 memset(opts, 0, sizeof(*opts));
1364
1365 while ((token = strsep(&o, ",")) != NULL) {
1366 nr_opts++;
1367
1368 if (!*token)
1369 return -EINVAL;
1370 if (!strcmp(token, "none")) {
1371 /* Explicitly have no subsystems */
1372 opts->none = true;
1373 continue;
1374 }
1375 if (!strcmp(token, "all")) {
1376 /* Mutually exclusive option 'all' + subsystem name */
1377 if (one_ss)
1378 return -EINVAL;
1379 all_ss = true;
1380 continue;
1381 }
1382 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1383 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1384 continue;
1385 }
1386 if (!strcmp(token, "noprefix")) {
1387 opts->flags |= CGRP_ROOT_NOPREFIX;
1388 continue;
1389 }
1390 if (!strcmp(token, "clone_children")) {
1391 opts->cpuset_clone_children = true;
1392 continue;
1393 }
1394 if (!strcmp(token, "xattr")) {
1395 opts->flags |= CGRP_ROOT_XATTR;
1396 continue;
1397 }
1398 if (!strncmp(token, "release_agent=", 14)) {
1399 /* Specifying two release agents is forbidden */
1400 if (opts->release_agent)
1401 return -EINVAL;
1402 opts->release_agent =
1403 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1404 if (!opts->release_agent)
1405 return -ENOMEM;
1406 continue;
1407 }
1408 if (!strncmp(token, "name=", 5)) {
1409 const char *name = token + 5;
1410 /* Can't specify an empty name */
1411 if (!strlen(name))
1412 return -EINVAL;
1413 /* Must match [\w.-]+ */
1414 for (i = 0; i < strlen(name); i++) {
1415 char c = name[i];
1416 if (isalnum(c))
1417 continue;
1418 if ((c == '.') || (c == '-') || (c == '_'))
1419 continue;
1420 return -EINVAL;
1421 }
1422 /* Specifying two names is forbidden */
1423 if (opts->name)
1424 return -EINVAL;
1425 opts->name = kstrndup(name,
1426 MAX_CGROUP_ROOT_NAMELEN - 1,
1427 GFP_KERNEL);
1428 if (!opts->name)
1429 return -ENOMEM;
1430
1431 continue;
1432 }
1433
1434 for_each_subsys(ss, i) {
1435 if (strcmp(token, ss->name))
1436 continue;
1437 if (ss->disabled)
1438 continue;
1439
1440 /* Mutually exclusive option 'all' + subsystem name */
1441 if (all_ss)
1442 return -EINVAL;
1443 opts->subsys_mask |= (1 << i);
1444 one_ss = true;
1445
1446 break;
1447 }
1448 if (i == CGROUP_SUBSYS_COUNT)
1449 return -ENOENT;
1450 }
1451
1452 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1453 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1454 if (nr_opts != 1) {
1455 pr_err("sane_behavior: no other mount options allowed\n");
1456 return -EINVAL;
1457 }
1458 return 0;
1459 }
1460
1461 /*
1462 * If the 'all' option was specified select all the subsystems,
1463 * otherwise if 'none', 'name=' and a subsystem name options were
1464 * not specified, let's default to 'all'
1465 */
1466 if (all_ss || (!one_ss && !opts->none && !opts->name))
1467 for_each_subsys(ss, i)
1468 if (!ss->disabled)
1469 opts->subsys_mask |= (1 << i);
1470
1471 /*
1472 * We either have to specify by name or by subsystems. (So all
1473 * empty hierarchies must have a name).
1474 */
1475 if (!opts->subsys_mask && !opts->name)
1476 return -EINVAL;
1477
1478 /*
1479 * Option noprefix was introduced just for backward compatibility
1480 * with the old cpuset, so we allow noprefix only if mounting just
1481 * the cpuset subsystem.
1482 */
1483 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1484 return -EINVAL;
1485
1486 /* Can't specify "none" and some subsystems */
1487 if (opts->subsys_mask && opts->none)
1488 return -EINVAL;
1489
1490 return 0;
1491 }
1492
1493 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1494 {
1495 int ret = 0;
1496 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1497 struct cgroup_sb_opts opts;
1498 unsigned int added_mask, removed_mask;
1499
1500 if (root == &cgrp_dfl_root) {
1501 pr_err("remount is not allowed\n");
1502 return -EINVAL;
1503 }
1504
1505 mutex_lock(&cgroup_mutex);
1506
1507 /* See what subsystems are wanted */
1508 ret = parse_cgroupfs_options(data, &opts);
1509 if (ret)
1510 goto out_unlock;
1511
1512 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1513 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1514 task_tgid_nr(current), current->comm);
1515
1516 added_mask = opts.subsys_mask & ~root->subsys_mask;
1517 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1518
1519 /* Don't allow flags or name to change at remount */
1520 if ((opts.flags ^ root->flags) ||
1521 (opts.name && strcmp(opts.name, root->name))) {
1522 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1523 opts.flags, opts.name ?: "", root->flags, root->name);
1524 ret = -EINVAL;
1525 goto out_unlock;
1526 }
1527
1528 /* remounting is not allowed for populated hierarchies */
1529 if (!list_empty(&root->cgrp.self.children)) {
1530 ret = -EBUSY;
1531 goto out_unlock;
1532 }
1533
1534 ret = rebind_subsystems(root, added_mask);
1535 if (ret)
1536 goto out_unlock;
1537
1538 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1539
1540 if (opts.release_agent) {
1541 spin_lock(&release_agent_path_lock);
1542 strcpy(root->release_agent_path, opts.release_agent);
1543 spin_unlock(&release_agent_path_lock);
1544 }
1545 out_unlock:
1546 kfree(opts.release_agent);
1547 kfree(opts.name);
1548 mutex_unlock(&cgroup_mutex);
1549 return ret;
1550 }
1551
1552 /*
1553 * To reduce the fork() overhead for systems that are not actually using
1554 * their cgroups capability, we don't maintain the lists running through
1555 * each css_set to its tasks until we see the list actually used - in other
1556 * words after the first mount.
1557 */
1558 static bool use_task_css_set_links __read_mostly;
1559
1560 static void cgroup_enable_task_cg_lists(void)
1561 {
1562 struct task_struct *p, *g;
1563
1564 down_write(&css_set_rwsem);
1565
1566 if (use_task_css_set_links)
1567 goto out_unlock;
1568
1569 use_task_css_set_links = true;
1570
1571 /*
1572 * We need tasklist_lock because RCU is not safe against
1573 * while_each_thread(). Besides, a forking task that has passed
1574 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1575 * is not guaranteed to have its child immediately visible in the
1576 * tasklist if we walk through it with RCU.
1577 */
1578 read_lock(&tasklist_lock);
1579 do_each_thread(g, p) {
1580 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1581 task_css_set(p) != &init_css_set);
1582
1583 /*
1584 * We should check if the process is exiting, otherwise
1585 * it will race with cgroup_exit() in that the list
1586 * entry won't be deleted though the process has exited.
1587 * Do it while holding siglock so that we don't end up
1588 * racing against cgroup_exit().
1589 */
1590 spin_lock_irq(&p->sighand->siglock);
1591 if (!(p->flags & PF_EXITING)) {
1592 struct css_set *cset = task_css_set(p);
1593
1594 list_add(&p->cg_list, &cset->tasks);
1595 get_css_set(cset);
1596 }
1597 spin_unlock_irq(&p->sighand->siglock);
1598 } while_each_thread(g, p);
1599 read_unlock(&tasklist_lock);
1600 out_unlock:
1601 up_write(&css_set_rwsem);
1602 }
1603
1604 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1605 {
1606 struct cgroup_subsys *ss;
1607 int ssid;
1608
1609 INIT_LIST_HEAD(&cgrp->self.sibling);
1610 INIT_LIST_HEAD(&cgrp->self.children);
1611 INIT_LIST_HEAD(&cgrp->cset_links);
1612 INIT_LIST_HEAD(&cgrp->pidlists);
1613 mutex_init(&cgrp->pidlist_mutex);
1614 cgrp->self.cgroup = cgrp;
1615 cgrp->self.flags |= CSS_ONLINE;
1616
1617 for_each_subsys(ss, ssid)
1618 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1619
1620 init_waitqueue_head(&cgrp->offline_waitq);
1621 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1622 }
1623
1624 static void init_cgroup_root(struct cgroup_root *root,
1625 struct cgroup_sb_opts *opts)
1626 {
1627 struct cgroup *cgrp = &root->cgrp;
1628
1629 INIT_LIST_HEAD(&root->root_list);
1630 atomic_set(&root->nr_cgrps, 1);
1631 cgrp->root = root;
1632 init_cgroup_housekeeping(cgrp);
1633 idr_init(&root->cgroup_idr);
1634
1635 root->flags = opts->flags;
1636 if (opts->release_agent)
1637 strcpy(root->release_agent_path, opts->release_agent);
1638 if (opts->name)
1639 strcpy(root->name, opts->name);
1640 if (opts->cpuset_clone_children)
1641 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1642 }
1643
1644 static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
1645 {
1646 LIST_HEAD(tmp_links);
1647 struct cgroup *root_cgrp = &root->cgrp;
1648 struct cftype *base_files;
1649 struct css_set *cset;
1650 int i, ret;
1651
1652 lockdep_assert_held(&cgroup_mutex);
1653
1654 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
1655 if (ret < 0)
1656 goto out;
1657 root_cgrp->id = ret;
1658
1659 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1660 GFP_KERNEL);
1661 if (ret)
1662 goto out;
1663
1664 /*
1665 * We're accessing css_set_count without locking css_set_rwsem here,
1666 * but that's OK - it can only be increased by someone holding
1667 * cgroup_lock, and that's us. The worst that can happen is that we
1668 * have some link structures left over
1669 */
1670 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1671 if (ret)
1672 goto cancel_ref;
1673
1674 ret = cgroup_init_root_id(root);
1675 if (ret)
1676 goto cancel_ref;
1677
1678 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1679 KERNFS_ROOT_CREATE_DEACTIVATED,
1680 root_cgrp);
1681 if (IS_ERR(root->kf_root)) {
1682 ret = PTR_ERR(root->kf_root);
1683 goto exit_root_id;
1684 }
1685 root_cgrp->kn = root->kf_root->kn;
1686
1687 if (root == &cgrp_dfl_root)
1688 base_files = cgroup_dfl_base_files;
1689 else
1690 base_files = cgroup_legacy_base_files;
1691
1692 ret = cgroup_addrm_files(root_cgrp, base_files, true);
1693 if (ret)
1694 goto destroy_root;
1695
1696 ret = rebind_subsystems(root, ss_mask);
1697 if (ret)
1698 goto destroy_root;
1699
1700 /*
1701 * There must be no failure case after here, since rebinding takes
1702 * care of subsystems' refcounts, which are explicitly dropped in
1703 * the failure exit path.
1704 */
1705 list_add(&root->root_list, &cgroup_roots);
1706 cgroup_root_count++;
1707
1708 /*
1709 * Link the root cgroup in this hierarchy into all the css_set
1710 * objects.
1711 */
1712 down_write(&css_set_rwsem);
1713 hash_for_each(css_set_table, i, cset, hlist)
1714 link_css_set(&tmp_links, cset, root_cgrp);
1715 up_write(&css_set_rwsem);
1716
1717 BUG_ON(!list_empty(&root_cgrp->self.children));
1718 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1719
1720 kernfs_activate(root_cgrp->kn);
1721 ret = 0;
1722 goto out;
1723
1724 destroy_root:
1725 kernfs_destroy_root(root->kf_root);
1726 root->kf_root = NULL;
1727 exit_root_id:
1728 cgroup_exit_root_id(root);
1729 cancel_ref:
1730 percpu_ref_exit(&root_cgrp->self.refcnt);
1731 out:
1732 free_cgrp_cset_links(&tmp_links);
1733 return ret;
1734 }
1735
1736 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1737 int flags, const char *unused_dev_name,
1738 void *data)
1739 {
1740 struct super_block *pinned_sb = NULL;
1741 struct cgroup_subsys *ss;
1742 struct cgroup_root *root;
1743 struct cgroup_sb_opts opts;
1744 struct dentry *dentry;
1745 int ret;
1746 int i;
1747 bool new_sb;
1748
1749 /*
1750 * The first time anyone tries to mount a cgroup, enable the list
1751 * linking each css_set to its tasks and fix up all existing tasks.
1752 */
1753 if (!use_task_css_set_links)
1754 cgroup_enable_task_cg_lists();
1755
1756 mutex_lock(&cgroup_mutex);
1757
1758 /* First find the desired set of subsystems */
1759 ret = parse_cgroupfs_options(data, &opts);
1760 if (ret)
1761 goto out_unlock;
1762
1763 /* look for a matching existing root */
1764 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1765 cgrp_dfl_root_visible = true;
1766 root = &cgrp_dfl_root;
1767 cgroup_get(&root->cgrp);
1768 ret = 0;
1769 goto out_unlock;
1770 }
1771
1772 /*
1773 * Destruction of cgroup root is asynchronous, so subsystems may
1774 * still be dying after the previous unmount. Let's drain the
1775 * dying subsystems. We just need to ensure that the ones
1776 * unmounted previously finish dying and don't care about new ones
1777 * starting. Testing ref liveliness is good enough.
1778 */
1779 for_each_subsys(ss, i) {
1780 if (!(opts.subsys_mask & (1 << i)) ||
1781 ss->root == &cgrp_dfl_root)
1782 continue;
1783
1784 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1785 mutex_unlock(&cgroup_mutex);
1786 msleep(10);
1787 ret = restart_syscall();
1788 goto out_free;
1789 }
1790 cgroup_put(&ss->root->cgrp);
1791 }
1792
1793 for_each_root(root) {
1794 bool name_match = false;
1795
1796 if (root == &cgrp_dfl_root)
1797 continue;
1798
1799 /*
1800 * If we asked for a name then it must match. Also, if
1801 * name matches but sybsys_mask doesn't, we should fail.
1802 * Remember whether name matched.
1803 */
1804 if (opts.name) {
1805 if (strcmp(opts.name, root->name))
1806 continue;
1807 name_match = true;
1808 }
1809
1810 /*
1811 * If we asked for subsystems (or explicitly for no
1812 * subsystems) then they must match.
1813 */
1814 if ((opts.subsys_mask || opts.none) &&
1815 (opts.subsys_mask != root->subsys_mask)) {
1816 if (!name_match)
1817 continue;
1818 ret = -EBUSY;
1819 goto out_unlock;
1820 }
1821
1822 if (root->flags ^ opts.flags)
1823 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
1824
1825 /*
1826 * We want to reuse @root whose lifetime is governed by its
1827 * ->cgrp. Let's check whether @root is alive and keep it
1828 * that way. As cgroup_kill_sb() can happen anytime, we
1829 * want to block it by pinning the sb so that @root doesn't
1830 * get killed before mount is complete.
1831 *
1832 * With the sb pinned, tryget_live can reliably indicate
1833 * whether @root can be reused. If it's being killed,
1834 * drain it. We can use wait_queue for the wait but this
1835 * path is super cold. Let's just sleep a bit and retry.
1836 */
1837 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1838 if (IS_ERR(pinned_sb) ||
1839 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
1840 mutex_unlock(&cgroup_mutex);
1841 if (!IS_ERR_OR_NULL(pinned_sb))
1842 deactivate_super(pinned_sb);
1843 msleep(10);
1844 ret = restart_syscall();
1845 goto out_free;
1846 }
1847
1848 ret = 0;
1849 goto out_unlock;
1850 }
1851
1852 /*
1853 * No such thing, create a new one. name= matching without subsys
1854 * specification is allowed for already existing hierarchies but we
1855 * can't create new one without subsys specification.
1856 */
1857 if (!opts.subsys_mask && !opts.none) {
1858 ret = -EINVAL;
1859 goto out_unlock;
1860 }
1861
1862 root = kzalloc(sizeof(*root), GFP_KERNEL);
1863 if (!root) {
1864 ret = -ENOMEM;
1865 goto out_unlock;
1866 }
1867
1868 init_cgroup_root(root, &opts);
1869
1870 ret = cgroup_setup_root(root, opts.subsys_mask);
1871 if (ret)
1872 cgroup_free_root(root);
1873
1874 out_unlock:
1875 mutex_unlock(&cgroup_mutex);
1876 out_free:
1877 kfree(opts.release_agent);
1878 kfree(opts.name);
1879
1880 if (ret)
1881 return ERR_PTR(ret);
1882
1883 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1884 CGROUP_SUPER_MAGIC, &new_sb);
1885 if (IS_ERR(dentry) || !new_sb)
1886 cgroup_put(&root->cgrp);
1887
1888 /*
1889 * If @pinned_sb, we're reusing an existing root and holding an
1890 * extra ref on its sb. Mount is complete. Put the extra ref.
1891 */
1892 if (pinned_sb) {
1893 WARN_ON(new_sb);
1894 deactivate_super(pinned_sb);
1895 }
1896
1897 return dentry;
1898 }
1899
1900 static void cgroup_kill_sb(struct super_block *sb)
1901 {
1902 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1903 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1904
1905 /*
1906 * If @root doesn't have any mounts or children, start killing it.
1907 * This prevents new mounts by disabling percpu_ref_tryget_live().
1908 * cgroup_mount() may wait for @root's release.
1909 *
1910 * And don't kill the default root.
1911 */
1912 if (css_has_online_children(&root->cgrp.self) ||
1913 root == &cgrp_dfl_root)
1914 cgroup_put(&root->cgrp);
1915 else
1916 percpu_ref_kill(&root->cgrp.self.refcnt);
1917
1918 kernfs_kill_sb(sb);
1919 }
1920
1921 static struct file_system_type cgroup_fs_type = {
1922 .name = "cgroup",
1923 .mount = cgroup_mount,
1924 .kill_sb = cgroup_kill_sb,
1925 };
1926
1927 static struct kobject *cgroup_kobj;
1928
1929 /**
1930 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
1931 * @task: target task
1932 * @buf: the buffer to write the path into
1933 * @buflen: the length of the buffer
1934 *
1935 * Determine @task's cgroup on the first (the one with the lowest non-zero
1936 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1937 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1938 * cgroup controller callbacks.
1939 *
1940 * Return value is the same as kernfs_path().
1941 */
1942 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
1943 {
1944 struct cgroup_root *root;
1945 struct cgroup *cgrp;
1946 int hierarchy_id = 1;
1947 char *path = NULL;
1948
1949 mutex_lock(&cgroup_mutex);
1950 down_read(&css_set_rwsem);
1951
1952 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1953
1954 if (root) {
1955 cgrp = task_cgroup_from_root(task, root);
1956 path = cgroup_path(cgrp, buf, buflen);
1957 } else {
1958 /* if no hierarchy exists, everyone is in "/" */
1959 if (strlcpy(buf, "/", buflen) < buflen)
1960 path = buf;
1961 }
1962
1963 up_read(&css_set_rwsem);
1964 mutex_unlock(&cgroup_mutex);
1965 return path;
1966 }
1967 EXPORT_SYMBOL_GPL(task_cgroup_path);
1968
1969 /* used to track tasks and other necessary states during migration */
1970 struct cgroup_taskset {
1971 /* the src and dst cset list running through cset->mg_node */
1972 struct list_head src_csets;
1973 struct list_head dst_csets;
1974
1975 /*
1976 * Fields for cgroup_taskset_*() iteration.
1977 *
1978 * Before migration is committed, the target migration tasks are on
1979 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1980 * the csets on ->dst_csets. ->csets point to either ->src_csets
1981 * or ->dst_csets depending on whether migration is committed.
1982 *
1983 * ->cur_csets and ->cur_task point to the current task position
1984 * during iteration.
1985 */
1986 struct list_head *csets;
1987 struct css_set *cur_cset;
1988 struct task_struct *cur_task;
1989 };
1990
1991 /**
1992 * cgroup_taskset_first - reset taskset and return the first task
1993 * @tset: taskset of interest
1994 *
1995 * @tset iteration is initialized and the first task is returned.
1996 */
1997 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1998 {
1999 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2000 tset->cur_task = NULL;
2001
2002 return cgroup_taskset_next(tset);
2003 }
2004
2005 /**
2006 * cgroup_taskset_next - iterate to the next task in taskset
2007 * @tset: taskset of interest
2008 *
2009 * Return the next task in @tset. Iteration must have been initialized
2010 * with cgroup_taskset_first().
2011 */
2012 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2013 {
2014 struct css_set *cset = tset->cur_cset;
2015 struct task_struct *task = tset->cur_task;
2016
2017 while (&cset->mg_node != tset->csets) {
2018 if (!task)
2019 task = list_first_entry(&cset->mg_tasks,
2020 struct task_struct, cg_list);
2021 else
2022 task = list_next_entry(task, cg_list);
2023
2024 if (&task->cg_list != &cset->mg_tasks) {
2025 tset->cur_cset = cset;
2026 tset->cur_task = task;
2027 return task;
2028 }
2029
2030 cset = list_next_entry(cset, mg_node);
2031 task = NULL;
2032 }
2033
2034 return NULL;
2035 }
2036
2037 /**
2038 * cgroup_task_migrate - move a task from one cgroup to another.
2039 * @old_cgrp: the cgroup @tsk is being migrated from
2040 * @tsk: the task being migrated
2041 * @new_cset: the new css_set @tsk is being attached to
2042 *
2043 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
2044 */
2045 static void cgroup_task_migrate(struct cgroup *old_cgrp,
2046 struct task_struct *tsk,
2047 struct css_set *new_cset)
2048 {
2049 struct css_set *old_cset;
2050
2051 lockdep_assert_held(&cgroup_mutex);
2052 lockdep_assert_held(&css_set_rwsem);
2053
2054 /*
2055 * We are synchronized through threadgroup_lock() against PF_EXITING
2056 * setting such that we can't race against cgroup_exit() changing the
2057 * css_set to init_css_set and dropping the old one.
2058 */
2059 WARN_ON_ONCE(tsk->flags & PF_EXITING);
2060 old_cset = task_css_set(tsk);
2061
2062 get_css_set(new_cset);
2063 rcu_assign_pointer(tsk->cgroups, new_cset);
2064
2065 /*
2066 * Use move_tail so that cgroup_taskset_first() still returns the
2067 * leader after migration. This works because cgroup_migrate()
2068 * ensures that the dst_cset of the leader is the first on the
2069 * tset's dst_csets list.
2070 */
2071 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
2072
2073 /*
2074 * We just gained a reference on old_cset by taking it from the
2075 * task. As trading it for new_cset is protected by cgroup_mutex,
2076 * we're safe to drop it here; it will be freed under RCU.
2077 */
2078 put_css_set_locked(old_cset);
2079 }
2080
2081 /**
2082 * cgroup_migrate_finish - cleanup after attach
2083 * @preloaded_csets: list of preloaded css_sets
2084 *
2085 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2086 * those functions for details.
2087 */
2088 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2089 {
2090 struct css_set *cset, *tmp_cset;
2091
2092 lockdep_assert_held(&cgroup_mutex);
2093
2094 down_write(&css_set_rwsem);
2095 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2096 cset->mg_src_cgrp = NULL;
2097 cset->mg_dst_cset = NULL;
2098 list_del_init(&cset->mg_preload_node);
2099 put_css_set_locked(cset);
2100 }
2101 up_write(&css_set_rwsem);
2102 }
2103
2104 /**
2105 * cgroup_migrate_add_src - add a migration source css_set
2106 * @src_cset: the source css_set to add
2107 * @dst_cgrp: the destination cgroup
2108 * @preloaded_csets: list of preloaded css_sets
2109 *
2110 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2111 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2112 * up by cgroup_migrate_finish().
2113 *
2114 * This function may be called without holding threadgroup_lock even if the
2115 * target is a process. Threads may be created and destroyed but as long
2116 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2117 * the preloaded css_sets are guaranteed to cover all migrations.
2118 */
2119 static void cgroup_migrate_add_src(struct css_set *src_cset,
2120 struct cgroup *dst_cgrp,
2121 struct list_head *preloaded_csets)
2122 {
2123 struct cgroup *src_cgrp;
2124
2125 lockdep_assert_held(&cgroup_mutex);
2126 lockdep_assert_held(&css_set_rwsem);
2127
2128 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2129
2130 if (!list_empty(&src_cset->mg_preload_node))
2131 return;
2132
2133 WARN_ON(src_cset->mg_src_cgrp);
2134 WARN_ON(!list_empty(&src_cset->mg_tasks));
2135 WARN_ON(!list_empty(&src_cset->mg_node));
2136
2137 src_cset->mg_src_cgrp = src_cgrp;
2138 get_css_set(src_cset);
2139 list_add(&src_cset->mg_preload_node, preloaded_csets);
2140 }
2141
2142 /**
2143 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2144 * @dst_cgrp: the destination cgroup (may be %NULL)
2145 * @preloaded_csets: list of preloaded source css_sets
2146 *
2147 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2148 * have been preloaded to @preloaded_csets. This function looks up and
2149 * pins all destination css_sets, links each to its source, and append them
2150 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2151 * source css_set is assumed to be its cgroup on the default hierarchy.
2152 *
2153 * This function must be called after cgroup_migrate_add_src() has been
2154 * called on each migration source css_set. After migration is performed
2155 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2156 * @preloaded_csets.
2157 */
2158 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2159 struct list_head *preloaded_csets)
2160 {
2161 LIST_HEAD(csets);
2162 struct css_set *src_cset, *tmp_cset;
2163
2164 lockdep_assert_held(&cgroup_mutex);
2165
2166 /*
2167 * Except for the root, child_subsys_mask must be zero for a cgroup
2168 * with tasks so that child cgroups don't compete against tasks.
2169 */
2170 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2171 dst_cgrp->child_subsys_mask)
2172 return -EBUSY;
2173
2174 /* look up the dst cset for each src cset and link it to src */
2175 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2176 struct css_set *dst_cset;
2177
2178 dst_cset = find_css_set(src_cset,
2179 dst_cgrp ?: src_cset->dfl_cgrp);
2180 if (!dst_cset)
2181 goto err;
2182
2183 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2184
2185 /*
2186 * If src cset equals dst, it's noop. Drop the src.
2187 * cgroup_migrate() will skip the cset too. Note that we
2188 * can't handle src == dst as some nodes are used by both.
2189 */
2190 if (src_cset == dst_cset) {
2191 src_cset->mg_src_cgrp = NULL;
2192 list_del_init(&src_cset->mg_preload_node);
2193 put_css_set(src_cset);
2194 put_css_set(dst_cset);
2195 continue;
2196 }
2197
2198 src_cset->mg_dst_cset = dst_cset;
2199
2200 if (list_empty(&dst_cset->mg_preload_node))
2201 list_add(&dst_cset->mg_preload_node, &csets);
2202 else
2203 put_css_set(dst_cset);
2204 }
2205
2206 list_splice_tail(&csets, preloaded_csets);
2207 return 0;
2208 err:
2209 cgroup_migrate_finish(&csets);
2210 return -ENOMEM;
2211 }
2212
2213 /**
2214 * cgroup_migrate - migrate a process or task to a cgroup
2215 * @cgrp: the destination cgroup
2216 * @leader: the leader of the process or the task to migrate
2217 * @threadgroup: whether @leader points to the whole process or a single task
2218 *
2219 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2220 * process, the caller must be holding threadgroup_lock of @leader. The
2221 * caller is also responsible for invoking cgroup_migrate_add_src() and
2222 * cgroup_migrate_prepare_dst() on the targets before invoking this
2223 * function and following up with cgroup_migrate_finish().
2224 *
2225 * As long as a controller's ->can_attach() doesn't fail, this function is
2226 * guaranteed to succeed. This means that, excluding ->can_attach()
2227 * failure, when migrating multiple targets, the success or failure can be
2228 * decided for all targets by invoking group_migrate_prepare_dst() before
2229 * actually starting migrating.
2230 */
2231 static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2232 bool threadgroup)
2233 {
2234 struct cgroup_taskset tset = {
2235 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2236 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2237 .csets = &tset.src_csets,
2238 };
2239 struct cgroup_subsys_state *css, *failed_css = NULL;
2240 struct css_set *cset, *tmp_cset;
2241 struct task_struct *task, *tmp_task;
2242 int i, ret;
2243
2244 /*
2245 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2246 * already PF_EXITING could be freed from underneath us unless we
2247 * take an rcu_read_lock.
2248 */
2249 down_write(&css_set_rwsem);
2250 rcu_read_lock();
2251 task = leader;
2252 do {
2253 /* @task either already exited or can't exit until the end */
2254 if (task->flags & PF_EXITING)
2255 goto next;
2256
2257 /* leave @task alone if post_fork() hasn't linked it yet */
2258 if (list_empty(&task->cg_list))
2259 goto next;
2260
2261 cset = task_css_set(task);
2262 if (!cset->mg_src_cgrp)
2263 goto next;
2264
2265 /*
2266 * cgroup_taskset_first() must always return the leader.
2267 * Take care to avoid disturbing the ordering.
2268 */
2269 list_move_tail(&task->cg_list, &cset->mg_tasks);
2270 if (list_empty(&cset->mg_node))
2271 list_add_tail(&cset->mg_node, &tset.src_csets);
2272 if (list_empty(&cset->mg_dst_cset->mg_node))
2273 list_move_tail(&cset->mg_dst_cset->mg_node,
2274 &tset.dst_csets);
2275 next:
2276 if (!threadgroup)
2277 break;
2278 } while_each_thread(leader, task);
2279 rcu_read_unlock();
2280 up_write(&css_set_rwsem);
2281
2282 /* methods shouldn't be called if no task is actually migrating */
2283 if (list_empty(&tset.src_csets))
2284 return 0;
2285
2286 /* check that we can legitimately attach to the cgroup */
2287 for_each_e_css(css, i, cgrp) {
2288 if (css->ss->can_attach) {
2289 ret = css->ss->can_attach(css, &tset);
2290 if (ret) {
2291 failed_css = css;
2292 goto out_cancel_attach;
2293 }
2294 }
2295 }
2296
2297 /*
2298 * Now that we're guaranteed success, proceed to move all tasks to
2299 * the new cgroup. There are no failure cases after here, so this
2300 * is the commit point.
2301 */
2302 down_write(&css_set_rwsem);
2303 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2304 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2305 cgroup_task_migrate(cset->mg_src_cgrp, task,
2306 cset->mg_dst_cset);
2307 }
2308 up_write(&css_set_rwsem);
2309
2310 /*
2311 * Migration is committed, all target tasks are now on dst_csets.
2312 * Nothing is sensitive to fork() after this point. Notify
2313 * controllers that migration is complete.
2314 */
2315 tset.csets = &tset.dst_csets;
2316
2317 for_each_e_css(css, i, cgrp)
2318 if (css->ss->attach)
2319 css->ss->attach(css, &tset);
2320
2321 ret = 0;
2322 goto out_release_tset;
2323
2324 out_cancel_attach:
2325 for_each_e_css(css, i, cgrp) {
2326 if (css == failed_css)
2327 break;
2328 if (css->ss->cancel_attach)
2329 css->ss->cancel_attach(css, &tset);
2330 }
2331 out_release_tset:
2332 down_write(&css_set_rwsem);
2333 list_splice_init(&tset.dst_csets, &tset.src_csets);
2334 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
2335 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2336 list_del_init(&cset->mg_node);
2337 }
2338 up_write(&css_set_rwsem);
2339 return ret;
2340 }
2341
2342 /**
2343 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2344 * @dst_cgrp: the cgroup to attach to
2345 * @leader: the task or the leader of the threadgroup to be attached
2346 * @threadgroup: attach the whole threadgroup?
2347 *
2348 * Call holding cgroup_mutex and threadgroup_lock of @leader.
2349 */
2350 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2351 struct task_struct *leader, bool threadgroup)
2352 {
2353 LIST_HEAD(preloaded_csets);
2354 struct task_struct *task;
2355 int ret;
2356
2357 /* look up all src csets */
2358 down_read(&css_set_rwsem);
2359 rcu_read_lock();
2360 task = leader;
2361 do {
2362 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2363 &preloaded_csets);
2364 if (!threadgroup)
2365 break;
2366 } while_each_thread(leader, task);
2367 rcu_read_unlock();
2368 up_read(&css_set_rwsem);
2369
2370 /* prepare dst csets and commit */
2371 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2372 if (!ret)
2373 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2374
2375 cgroup_migrate_finish(&preloaded_csets);
2376 return ret;
2377 }
2378
2379 /*
2380 * Find the task_struct of the task to attach by vpid and pass it along to the
2381 * function to attach either it or all tasks in its threadgroup. Will lock
2382 * cgroup_mutex and threadgroup.
2383 */
2384 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2385 size_t nbytes, loff_t off, bool threadgroup)
2386 {
2387 struct task_struct *tsk;
2388 const struct cred *cred = current_cred(), *tcred;
2389 struct cgroup *cgrp;
2390 pid_t pid;
2391 int ret;
2392
2393 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2394 return -EINVAL;
2395
2396 cgrp = cgroup_kn_lock_live(of->kn);
2397 if (!cgrp)
2398 return -ENODEV;
2399
2400 retry_find_task:
2401 rcu_read_lock();
2402 if (pid) {
2403 tsk = find_task_by_vpid(pid);
2404 if (!tsk) {
2405 rcu_read_unlock();
2406 ret = -ESRCH;
2407 goto out_unlock_cgroup;
2408 }
2409 /*
2410 * even if we're attaching all tasks in the thread group, we
2411 * only need to check permissions on one of them.
2412 */
2413 tcred = __task_cred(tsk);
2414 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2415 !uid_eq(cred->euid, tcred->uid) &&
2416 !uid_eq(cred->euid, tcred->suid)) {
2417 rcu_read_unlock();
2418 ret = -EACCES;
2419 goto out_unlock_cgroup;
2420 }
2421 } else
2422 tsk = current;
2423
2424 if (threadgroup)
2425 tsk = tsk->group_leader;
2426
2427 /*
2428 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2429 * trapped in a cpuset, or RT worker may be born in a cgroup
2430 * with no rt_runtime allocated. Just say no.
2431 */
2432 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2433 ret = -EINVAL;
2434 rcu_read_unlock();
2435 goto out_unlock_cgroup;
2436 }
2437
2438 get_task_struct(tsk);
2439 rcu_read_unlock();
2440
2441 threadgroup_lock(tsk);
2442 if (threadgroup) {
2443 if (!thread_group_leader(tsk)) {
2444 /*
2445 * a race with de_thread from another thread's exec()
2446 * may strip us of our leadership, if this happens,
2447 * there is no choice but to throw this task away and
2448 * try again; this is
2449 * "double-double-toil-and-trouble-check locking".
2450 */
2451 threadgroup_unlock(tsk);
2452 put_task_struct(tsk);
2453 goto retry_find_task;
2454 }
2455 }
2456
2457 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2458
2459 threadgroup_unlock(tsk);
2460
2461 put_task_struct(tsk);
2462 out_unlock_cgroup:
2463 cgroup_kn_unlock(of->kn);
2464 return ret ?: nbytes;
2465 }
2466
2467 /**
2468 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2469 * @from: attach to all cgroups of a given task
2470 * @tsk: the task to be attached
2471 */
2472 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2473 {
2474 struct cgroup_root *root;
2475 int retval = 0;
2476
2477 mutex_lock(&cgroup_mutex);
2478 for_each_root(root) {
2479 struct cgroup *from_cgrp;
2480
2481 if (root == &cgrp_dfl_root)
2482 continue;
2483
2484 down_read(&css_set_rwsem);
2485 from_cgrp = task_cgroup_from_root(from, root);
2486 up_read(&css_set_rwsem);
2487
2488 retval = cgroup_attach_task(from_cgrp, tsk, false);
2489 if (retval)
2490 break;
2491 }
2492 mutex_unlock(&cgroup_mutex);
2493
2494 return retval;
2495 }
2496 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2497
2498 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2499 char *buf, size_t nbytes, loff_t off)
2500 {
2501 return __cgroup_procs_write(of, buf, nbytes, off, false);
2502 }
2503
2504 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2505 char *buf, size_t nbytes, loff_t off)
2506 {
2507 return __cgroup_procs_write(of, buf, nbytes, off, true);
2508 }
2509
2510 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2511 char *buf, size_t nbytes, loff_t off)
2512 {
2513 struct cgroup *cgrp;
2514
2515 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2516
2517 cgrp = cgroup_kn_lock_live(of->kn);
2518 if (!cgrp)
2519 return -ENODEV;
2520 spin_lock(&release_agent_path_lock);
2521 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2522 sizeof(cgrp->root->release_agent_path));
2523 spin_unlock(&release_agent_path_lock);
2524 cgroup_kn_unlock(of->kn);
2525 return nbytes;
2526 }
2527
2528 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2529 {
2530 struct cgroup *cgrp = seq_css(seq)->cgroup;
2531
2532 spin_lock(&release_agent_path_lock);
2533 seq_puts(seq, cgrp->root->release_agent_path);
2534 spin_unlock(&release_agent_path_lock);
2535 seq_putc(seq, '\n');
2536 return 0;
2537 }
2538
2539 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2540 {
2541 seq_puts(seq, "0\n");
2542 return 0;
2543 }
2544
2545 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
2546 {
2547 struct cgroup_subsys *ss;
2548 bool printed = false;
2549 int ssid;
2550
2551 for_each_subsys(ss, ssid) {
2552 if (ss_mask & (1 << ssid)) {
2553 if (printed)
2554 seq_putc(seq, ' ');
2555 seq_printf(seq, "%s", ss->name);
2556 printed = true;
2557 }
2558 }
2559 if (printed)
2560 seq_putc(seq, '\n');
2561 }
2562
2563 /* show controllers which are currently attached to the default hierarchy */
2564 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2565 {
2566 struct cgroup *cgrp = seq_css(seq)->cgroup;
2567
2568 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2569 ~cgrp_dfl_root_inhibit_ss_mask);
2570 return 0;
2571 }
2572
2573 /* show controllers which are enabled from the parent */
2574 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2575 {
2576 struct cgroup *cgrp = seq_css(seq)->cgroup;
2577
2578 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2579 return 0;
2580 }
2581
2582 /* show controllers which are enabled for a given cgroup's children */
2583 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2584 {
2585 struct cgroup *cgrp = seq_css(seq)->cgroup;
2586
2587 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2588 return 0;
2589 }
2590
2591 /**
2592 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2593 * @cgrp: root of the subtree to update csses for
2594 *
2595 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2596 * css associations need to be updated accordingly. This function looks up
2597 * all css_sets which are attached to the subtree, creates the matching
2598 * updated css_sets and migrates the tasks to the new ones.
2599 */
2600 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2601 {
2602 LIST_HEAD(preloaded_csets);
2603 struct cgroup_subsys_state *css;
2604 struct css_set *src_cset;
2605 int ret;
2606
2607 lockdep_assert_held(&cgroup_mutex);
2608
2609 /* look up all csses currently attached to @cgrp's subtree */
2610 down_read(&css_set_rwsem);
2611 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2612 struct cgrp_cset_link *link;
2613
2614 /* self is not affected by child_subsys_mask change */
2615 if (css->cgroup == cgrp)
2616 continue;
2617
2618 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2619 cgroup_migrate_add_src(link->cset, cgrp,
2620 &preloaded_csets);
2621 }
2622 up_read(&css_set_rwsem);
2623
2624 /* NULL dst indicates self on default hierarchy */
2625 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2626 if (ret)
2627 goto out_finish;
2628
2629 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2630 struct task_struct *last_task = NULL, *task;
2631
2632 /* src_csets precede dst_csets, break on the first dst_cset */
2633 if (!src_cset->mg_src_cgrp)
2634 break;
2635
2636 /*
2637 * All tasks in src_cset need to be migrated to the
2638 * matching dst_cset. Empty it process by process. We
2639 * walk tasks but migrate processes. The leader might even
2640 * belong to a different cset but such src_cset would also
2641 * be among the target src_csets because the default
2642 * hierarchy enforces per-process membership.
2643 */
2644 while (true) {
2645 down_read(&css_set_rwsem);
2646 task = list_first_entry_or_null(&src_cset->tasks,
2647 struct task_struct, cg_list);
2648 if (task) {
2649 task = task->group_leader;
2650 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2651 get_task_struct(task);
2652 }
2653 up_read(&css_set_rwsem);
2654
2655 if (!task)
2656 break;
2657
2658 /* guard against possible infinite loop */
2659 if (WARN(last_task == task,
2660 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2661 goto out_finish;
2662 last_task = task;
2663
2664 threadgroup_lock(task);
2665 /* raced against de_thread() from another thread? */
2666 if (!thread_group_leader(task)) {
2667 threadgroup_unlock(task);
2668 put_task_struct(task);
2669 continue;
2670 }
2671
2672 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2673
2674 threadgroup_unlock(task);
2675 put_task_struct(task);
2676
2677 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2678 goto out_finish;
2679 }
2680 }
2681
2682 out_finish:
2683 cgroup_migrate_finish(&preloaded_csets);
2684 return ret;
2685 }
2686
2687 /* change the enabled child controllers for a cgroup in the default hierarchy */
2688 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2689 char *buf, size_t nbytes,
2690 loff_t off)
2691 {
2692 unsigned int enable = 0, disable = 0;
2693 unsigned int css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2694 struct cgroup *cgrp, *child;
2695 struct cgroup_subsys *ss;
2696 char *tok;
2697 int ssid, ret;
2698
2699 /*
2700 * Parse input - space separated list of subsystem names prefixed
2701 * with either + or -.
2702 */
2703 buf = strstrip(buf);
2704 while ((tok = strsep(&buf, " "))) {
2705 if (tok[0] == '\0')
2706 continue;
2707 for_each_subsys(ss, ssid) {
2708 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2709 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
2710 continue;
2711
2712 if (*tok == '+') {
2713 enable |= 1 << ssid;
2714 disable &= ~(1 << ssid);
2715 } else if (*tok == '-') {
2716 disable |= 1 << ssid;
2717 enable &= ~(1 << ssid);
2718 } else {
2719 return -EINVAL;
2720 }
2721 break;
2722 }
2723 if (ssid == CGROUP_SUBSYS_COUNT)
2724 return -EINVAL;
2725 }
2726
2727 cgrp = cgroup_kn_lock_live(of->kn);
2728 if (!cgrp)
2729 return -ENODEV;
2730
2731 for_each_subsys(ss, ssid) {
2732 if (enable & (1 << ssid)) {
2733 if (cgrp->subtree_control & (1 << ssid)) {
2734 enable &= ~(1 << ssid);
2735 continue;
2736 }
2737
2738 /* unavailable or not enabled on the parent? */
2739 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2740 (cgroup_parent(cgrp) &&
2741 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2742 ret = -ENOENT;
2743 goto out_unlock;
2744 }
2745 } else if (disable & (1 << ssid)) {
2746 if (!(cgrp->subtree_control & (1 << ssid))) {
2747 disable &= ~(1 << ssid);
2748 continue;
2749 }
2750
2751 /* a child has it enabled? */
2752 cgroup_for_each_live_child(child, cgrp) {
2753 if (child->subtree_control & (1 << ssid)) {
2754 ret = -EBUSY;
2755 goto out_unlock;
2756 }
2757 }
2758 }
2759 }
2760
2761 if (!enable && !disable) {
2762 ret = 0;
2763 goto out_unlock;
2764 }
2765
2766 /*
2767 * Except for the root, subtree_control must be zero for a cgroup
2768 * with tasks so that child cgroups don't compete against tasks.
2769 */
2770 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2771 ret = -EBUSY;
2772 goto out_unlock;
2773 }
2774
2775 /*
2776 * Update subsys masks and calculate what needs to be done. More
2777 * subsystems than specified may need to be enabled or disabled
2778 * depending on subsystem dependencies.
2779 */
2780 old_sc = cgrp->subtree_control;
2781 old_ss = cgrp->child_subsys_mask;
2782 new_sc = (old_sc | enable) & ~disable;
2783 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2784
2785 css_enable = ~old_ss & new_ss;
2786 css_disable = old_ss & ~new_ss;
2787 enable |= css_enable;
2788 disable |= css_disable;
2789
2790 /*
2791 * Because css offlining is asynchronous, userland might try to
2792 * re-enable the same controller while the previous instance is
2793 * still around. In such cases, wait till it's gone using
2794 * offline_waitq.
2795 */
2796 for_each_subsys(ss, ssid) {
2797 if (!(css_enable & (1 << ssid)))
2798 continue;
2799
2800 cgroup_for_each_live_child(child, cgrp) {
2801 DEFINE_WAIT(wait);
2802
2803 if (!cgroup_css(child, ss))
2804 continue;
2805
2806 cgroup_get(child);
2807 prepare_to_wait(&child->offline_waitq, &wait,
2808 TASK_UNINTERRUPTIBLE);
2809 cgroup_kn_unlock(of->kn);
2810 schedule();
2811 finish_wait(&child->offline_waitq, &wait);
2812 cgroup_put(child);
2813
2814 return restart_syscall();
2815 }
2816 }
2817
2818 cgrp->subtree_control = new_sc;
2819 cgrp->child_subsys_mask = new_ss;
2820
2821 /*
2822 * Create new csses or make the existing ones visible. A css is
2823 * created invisible if it's being implicitly enabled through
2824 * dependency. An invisible css is made visible when the userland
2825 * explicitly enables it.
2826 */
2827 for_each_subsys(ss, ssid) {
2828 if (!(enable & (1 << ssid)))
2829 continue;
2830
2831 cgroup_for_each_live_child(child, cgrp) {
2832 if (css_enable & (1 << ssid))
2833 ret = create_css(child, ss,
2834 cgrp->subtree_control & (1 << ssid));
2835 else
2836 ret = cgroup_populate_dir(child, 1 << ssid);
2837 if (ret)
2838 goto err_undo_css;
2839 }
2840 }
2841
2842 /*
2843 * At this point, cgroup_e_css() results reflect the new csses
2844 * making the following cgroup_update_dfl_csses() properly update
2845 * css associations of all tasks in the subtree.
2846 */
2847 ret = cgroup_update_dfl_csses(cgrp);
2848 if (ret)
2849 goto err_undo_css;
2850
2851 /*
2852 * All tasks are migrated out of disabled csses. Kill or hide
2853 * them. A css is hidden when the userland requests it to be
2854 * disabled while other subsystems are still depending on it. The
2855 * css must not actively control resources and be in the vanilla
2856 * state if it's made visible again later. Controllers which may
2857 * be depended upon should provide ->css_reset() for this purpose.
2858 */
2859 for_each_subsys(ss, ssid) {
2860 if (!(disable & (1 << ssid)))
2861 continue;
2862
2863 cgroup_for_each_live_child(child, cgrp) {
2864 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2865
2866 if (css_disable & (1 << ssid)) {
2867 kill_css(css);
2868 } else {
2869 cgroup_clear_dir(child, 1 << ssid);
2870 if (ss->css_reset)
2871 ss->css_reset(css);
2872 }
2873 }
2874 }
2875
2876 /*
2877 * The effective csses of all the descendants (excluding @cgrp) may
2878 * have changed. Subsystems can optionally subscribe to this event
2879 * by implementing ->css_e_css_changed() which is invoked if any of
2880 * the effective csses seen from the css's cgroup may have changed.
2881 */
2882 for_each_subsys(ss, ssid) {
2883 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2884 struct cgroup_subsys_state *css;
2885
2886 if (!ss->css_e_css_changed || !this_css)
2887 continue;
2888
2889 css_for_each_descendant_pre(css, this_css)
2890 if (css != this_css)
2891 ss->css_e_css_changed(css);
2892 }
2893
2894 kernfs_activate(cgrp->kn);
2895 ret = 0;
2896 out_unlock:
2897 cgroup_kn_unlock(of->kn);
2898 return ret ?: nbytes;
2899
2900 err_undo_css:
2901 cgrp->subtree_control = old_sc;
2902 cgrp->child_subsys_mask = old_ss;
2903
2904 for_each_subsys(ss, ssid) {
2905 if (!(enable & (1 << ssid)))
2906 continue;
2907
2908 cgroup_for_each_live_child(child, cgrp) {
2909 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2910
2911 if (!css)
2912 continue;
2913
2914 if (css_enable & (1 << ssid))
2915 kill_css(css);
2916 else
2917 cgroup_clear_dir(child, 1 << ssid);
2918 }
2919 }
2920 goto out_unlock;
2921 }
2922
2923 static int cgroup_populated_show(struct seq_file *seq, void *v)
2924 {
2925 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2926 return 0;
2927 }
2928
2929 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2930 size_t nbytes, loff_t off)
2931 {
2932 struct cgroup *cgrp = of->kn->parent->priv;
2933 struct cftype *cft = of->kn->priv;
2934 struct cgroup_subsys_state *css;
2935 int ret;
2936
2937 if (cft->write)
2938 return cft->write(of, buf, nbytes, off);
2939
2940 /*
2941 * kernfs guarantees that a file isn't deleted with operations in
2942 * flight, which means that the matching css is and stays alive and
2943 * doesn't need to be pinned. The RCU locking is not necessary
2944 * either. It's just for the convenience of using cgroup_css().
2945 */
2946 rcu_read_lock();
2947 css = cgroup_css(cgrp, cft->ss);
2948 rcu_read_unlock();
2949
2950 if (cft->write_u64) {
2951 unsigned long long v;
2952 ret = kstrtoull(buf, 0, &v);
2953 if (!ret)
2954 ret = cft->write_u64(css, cft, v);
2955 } else if (cft->write_s64) {
2956 long long v;
2957 ret = kstrtoll(buf, 0, &v);
2958 if (!ret)
2959 ret = cft->write_s64(css, cft, v);
2960 } else {
2961 ret = -EINVAL;
2962 }
2963
2964 return ret ?: nbytes;
2965 }
2966
2967 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
2968 {
2969 return seq_cft(seq)->seq_start(seq, ppos);
2970 }
2971
2972 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
2973 {
2974 return seq_cft(seq)->seq_next(seq, v, ppos);
2975 }
2976
2977 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
2978 {
2979 seq_cft(seq)->seq_stop(seq, v);
2980 }
2981
2982 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2983 {
2984 struct cftype *cft = seq_cft(m);
2985 struct cgroup_subsys_state *css = seq_css(m);
2986
2987 if (cft->seq_show)
2988 return cft->seq_show(m, arg);
2989
2990 if (cft->read_u64)
2991 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2992 else if (cft->read_s64)
2993 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2994 else
2995 return -EINVAL;
2996 return 0;
2997 }
2998
2999 static struct kernfs_ops cgroup_kf_single_ops = {
3000 .atomic_write_len = PAGE_SIZE,
3001 .write = cgroup_file_write,
3002 .seq_show = cgroup_seqfile_show,
3003 };
3004
3005 static struct kernfs_ops cgroup_kf_ops = {
3006 .atomic_write_len = PAGE_SIZE,
3007 .write = cgroup_file_write,
3008 .seq_start = cgroup_seqfile_start,
3009 .seq_next = cgroup_seqfile_next,
3010 .seq_stop = cgroup_seqfile_stop,
3011 .seq_show = cgroup_seqfile_show,
3012 };
3013
3014 /*
3015 * cgroup_rename - Only allow simple rename of directories in place.
3016 */
3017 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3018 const char *new_name_str)
3019 {
3020 struct cgroup *cgrp = kn->priv;
3021 int ret;
3022
3023 if (kernfs_type(kn) != KERNFS_DIR)
3024 return -ENOTDIR;
3025 if (kn->parent != new_parent)
3026 return -EIO;
3027
3028 /*
3029 * This isn't a proper migration and its usefulness is very
3030 * limited. Disallow on the default hierarchy.
3031 */
3032 if (cgroup_on_dfl(cgrp))
3033 return -EPERM;
3034
3035 /*
3036 * We're gonna grab cgroup_mutex which nests outside kernfs
3037 * active_ref. kernfs_rename() doesn't require active_ref
3038 * protection. Break them before grabbing cgroup_mutex.
3039 */
3040 kernfs_break_active_protection(new_parent);
3041 kernfs_break_active_protection(kn);
3042
3043 mutex_lock(&cgroup_mutex);
3044
3045 ret = kernfs_rename(kn, new_parent, new_name_str);
3046
3047 mutex_unlock(&cgroup_mutex);
3048
3049 kernfs_unbreak_active_protection(kn);
3050 kernfs_unbreak_active_protection(new_parent);
3051 return ret;
3052 }
3053
3054 /* set uid and gid of cgroup dirs and files to that of the creator */
3055 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3056 {
3057 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3058 .ia_uid = current_fsuid(),
3059 .ia_gid = current_fsgid(), };
3060
3061 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3062 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3063 return 0;
3064
3065 return kernfs_setattr(kn, &iattr);
3066 }
3067
3068 static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
3069 {
3070 char name[CGROUP_FILE_NAME_MAX];
3071 struct kernfs_node *kn;
3072 struct lock_class_key *key = NULL;
3073 int ret;
3074
3075 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3076 key = &cft->lockdep_key;
3077 #endif
3078 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3079 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3080 NULL, false, key);
3081 if (IS_ERR(kn))
3082 return PTR_ERR(kn);
3083
3084 ret = cgroup_kn_set_ugid(kn);
3085 if (ret) {
3086 kernfs_remove(kn);
3087 return ret;
3088 }
3089
3090 if (cft->seq_show == cgroup_populated_show)
3091 cgrp->populated_kn = kn;
3092 return 0;
3093 }
3094
3095 /**
3096 * cgroup_addrm_files - add or remove files to a cgroup directory
3097 * @cgrp: the target cgroup
3098 * @cfts: array of cftypes to be added
3099 * @is_add: whether to add or remove
3100 *
3101 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3102 * For removals, this function never fails. If addition fails, this
3103 * function doesn't remove files already added. The caller is responsible
3104 * for cleaning up.
3105 */
3106 static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3107 bool is_add)
3108 {
3109 struct cftype *cft;
3110 int ret;
3111
3112 lockdep_assert_held(&cgroup_mutex);
3113
3114 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3115 /* does cft->flags tell us to skip this file on @cgrp? */
3116 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3117 continue;
3118 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3119 continue;
3120 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3121 continue;
3122 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3123 continue;
3124
3125 if (is_add) {
3126 ret = cgroup_add_file(cgrp, cft);
3127 if (ret) {
3128 pr_warn("%s: failed to add %s, err=%d\n",
3129 __func__, cft->name, ret);
3130 return ret;
3131 }
3132 } else {
3133 cgroup_rm_file(cgrp, cft);
3134 }
3135 }
3136 return 0;
3137 }
3138
3139 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3140 {
3141 LIST_HEAD(pending);
3142 struct cgroup_subsys *ss = cfts[0].ss;
3143 struct cgroup *root = &ss->root->cgrp;
3144 struct cgroup_subsys_state *css;
3145 int ret = 0;
3146
3147 lockdep_assert_held(&cgroup_mutex);
3148
3149 /* add/rm files for all cgroups created before */
3150 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3151 struct cgroup *cgrp = css->cgroup;
3152
3153 if (cgroup_is_dead(cgrp))
3154 continue;
3155
3156 ret = cgroup_addrm_files(cgrp, cfts, is_add);
3157 if (ret)
3158 break;
3159 }
3160
3161 if (is_add && !ret)
3162 kernfs_activate(root->kn);
3163 return ret;
3164 }
3165
3166 static void cgroup_exit_cftypes(struct cftype *cfts)
3167 {
3168 struct cftype *cft;
3169
3170 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3171 /* free copy for custom atomic_write_len, see init_cftypes() */
3172 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3173 kfree(cft->kf_ops);
3174 cft->kf_ops = NULL;
3175 cft->ss = NULL;
3176
3177 /* revert flags set by cgroup core while adding @cfts */
3178 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3179 }
3180 }
3181
3182 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3183 {
3184 struct cftype *cft;
3185
3186 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3187 struct kernfs_ops *kf_ops;
3188
3189 WARN_ON(cft->ss || cft->kf_ops);
3190
3191 if (cft->seq_start)
3192 kf_ops = &cgroup_kf_ops;
3193 else
3194 kf_ops = &cgroup_kf_single_ops;
3195
3196 /*
3197 * Ugh... if @cft wants a custom max_write_len, we need to
3198 * make a copy of kf_ops to set its atomic_write_len.
3199 */
3200 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3201 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3202 if (!kf_ops) {
3203 cgroup_exit_cftypes(cfts);
3204 return -ENOMEM;
3205 }
3206 kf_ops->atomic_write_len = cft->max_write_len;
3207 }
3208
3209 cft->kf_ops = kf_ops;
3210 cft->ss = ss;
3211 }
3212
3213 return 0;
3214 }
3215
3216 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3217 {
3218 lockdep_assert_held(&cgroup_mutex);
3219
3220 if (!cfts || !cfts[0].ss)
3221 return -ENOENT;
3222
3223 list_del(&cfts->node);
3224 cgroup_apply_cftypes(cfts, false);
3225 cgroup_exit_cftypes(cfts);
3226 return 0;
3227 }
3228
3229 /**
3230 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3231 * @cfts: zero-length name terminated array of cftypes
3232 *
3233 * Unregister @cfts. Files described by @cfts are removed from all
3234 * existing cgroups and all future cgroups won't have them either. This
3235 * function can be called anytime whether @cfts' subsys is attached or not.
3236 *
3237 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3238 * registered.
3239 */
3240 int cgroup_rm_cftypes(struct cftype *cfts)
3241 {
3242 int ret;
3243
3244 mutex_lock(&cgroup_mutex);
3245 ret = cgroup_rm_cftypes_locked(cfts);
3246 mutex_unlock(&cgroup_mutex);
3247 return ret;
3248 }
3249
3250 /**
3251 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3252 * @ss: target cgroup subsystem
3253 * @cfts: zero-length name terminated array of cftypes
3254 *
3255 * Register @cfts to @ss. Files described by @cfts are created for all
3256 * existing cgroups to which @ss is attached and all future cgroups will
3257 * have them too. This function can be called anytime whether @ss is
3258 * attached or not.
3259 *
3260 * Returns 0 on successful registration, -errno on failure. Note that this
3261 * function currently returns 0 as long as @cfts registration is successful
3262 * even if some file creation attempts on existing cgroups fail.
3263 */
3264 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3265 {
3266 int ret;
3267
3268 if (ss->disabled)
3269 return 0;
3270
3271 if (!cfts || cfts[0].name[0] == '\0')
3272 return 0;
3273
3274 ret = cgroup_init_cftypes(ss, cfts);
3275 if (ret)
3276 return ret;
3277
3278 mutex_lock(&cgroup_mutex);
3279
3280 list_add_tail(&cfts->node, &ss->cfts);
3281 ret = cgroup_apply_cftypes(cfts, true);
3282 if (ret)
3283 cgroup_rm_cftypes_locked(cfts);
3284
3285 mutex_unlock(&cgroup_mutex);
3286 return ret;
3287 }
3288
3289 /**
3290 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3291 * @ss: target cgroup subsystem
3292 * @cfts: zero-length name terminated array of cftypes
3293 *
3294 * Similar to cgroup_add_cftypes() but the added files are only used for
3295 * the default hierarchy.
3296 */
3297 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3298 {
3299 struct cftype *cft;
3300
3301 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3302 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3303 return cgroup_add_cftypes(ss, cfts);
3304 }
3305
3306 /**
3307 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3308 * @ss: target cgroup subsystem
3309 * @cfts: zero-length name terminated array of cftypes
3310 *
3311 * Similar to cgroup_add_cftypes() but the added files are only used for
3312 * the legacy hierarchies.
3313 */
3314 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3315 {
3316 struct cftype *cft;
3317
3318 /*
3319 * If legacy_flies_on_dfl, we want to show the legacy files on the
3320 * dfl hierarchy but iff the target subsystem hasn't been updated
3321 * for the dfl hierarchy yet.
3322 */
3323 if (!cgroup_legacy_files_on_dfl ||
3324 ss->dfl_cftypes != ss->legacy_cftypes) {
3325 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3326 cft->flags |= __CFTYPE_NOT_ON_DFL;
3327 }
3328
3329 return cgroup_add_cftypes(ss, cfts);
3330 }
3331
3332 /**
3333 * cgroup_task_count - count the number of tasks in a cgroup.
3334 * @cgrp: the cgroup in question
3335 *
3336 * Return the number of tasks in the cgroup.
3337 */
3338 static int cgroup_task_count(const struct cgroup *cgrp)
3339 {
3340 int count = 0;
3341 struct cgrp_cset_link *link;
3342
3343 down_read(&css_set_rwsem);
3344 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3345 count += atomic_read(&link->cset->refcount);
3346 up_read(&css_set_rwsem);
3347 return count;
3348 }
3349
3350 /**
3351 * css_next_child - find the next child of a given css
3352 * @pos: the current position (%NULL to initiate traversal)
3353 * @parent: css whose children to walk
3354 *
3355 * This function returns the next child of @parent and should be called
3356 * under either cgroup_mutex or RCU read lock. The only requirement is
3357 * that @parent and @pos are accessible. The next sibling is guaranteed to
3358 * be returned regardless of their states.
3359 *
3360 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3361 * css which finished ->css_online() is guaranteed to be visible in the
3362 * future iterations and will stay visible until the last reference is put.
3363 * A css which hasn't finished ->css_online() or already finished
3364 * ->css_offline() may show up during traversal. It's each subsystem's
3365 * responsibility to synchronize against on/offlining.
3366 */
3367 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3368 struct cgroup_subsys_state *parent)
3369 {
3370 struct cgroup_subsys_state *next;
3371
3372 cgroup_assert_mutex_or_rcu_locked();
3373
3374 /*
3375 * @pos could already have been unlinked from the sibling list.
3376 * Once a cgroup is removed, its ->sibling.next is no longer
3377 * updated when its next sibling changes. CSS_RELEASED is set when
3378 * @pos is taken off list, at which time its next pointer is valid,
3379 * and, as releases are serialized, the one pointed to by the next
3380 * pointer is guaranteed to not have started release yet. This
3381 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3382 * critical section, the one pointed to by its next pointer is
3383 * guaranteed to not have finished its RCU grace period even if we
3384 * have dropped rcu_read_lock() inbetween iterations.
3385 *
3386 * If @pos has CSS_RELEASED set, its next pointer can't be
3387 * dereferenced; however, as each css is given a monotonically
3388 * increasing unique serial number and always appended to the
3389 * sibling list, the next one can be found by walking the parent's
3390 * children until the first css with higher serial number than
3391 * @pos's. While this path can be slower, it happens iff iteration
3392 * races against release and the race window is very small.
3393 */
3394 if (!pos) {
3395 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3396 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3397 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3398 } else {
3399 list_for_each_entry_rcu(next, &parent->children, sibling)
3400 if (next->serial_nr > pos->serial_nr)
3401 break;
3402 }
3403
3404 /*
3405 * @next, if not pointing to the head, can be dereferenced and is
3406 * the next sibling.
3407 */
3408 if (&next->sibling != &parent->children)
3409 return next;
3410 return NULL;
3411 }
3412
3413 /**
3414 * css_next_descendant_pre - find the next descendant for pre-order walk
3415 * @pos: the current position (%NULL to initiate traversal)
3416 * @root: css whose descendants to walk
3417 *
3418 * To be used by css_for_each_descendant_pre(). Find the next descendant
3419 * to visit for pre-order traversal of @root's descendants. @root is
3420 * included in the iteration and the first node to be visited.
3421 *
3422 * While this function requires cgroup_mutex or RCU read locking, it
3423 * doesn't require the whole traversal to be contained in a single critical
3424 * section. This function will return the correct next descendant as long
3425 * as both @pos and @root are accessible and @pos is a descendant of @root.
3426 *
3427 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3428 * css which finished ->css_online() is guaranteed to be visible in the
3429 * future iterations and will stay visible until the last reference is put.
3430 * A css which hasn't finished ->css_online() or already finished
3431 * ->css_offline() may show up during traversal. It's each subsystem's
3432 * responsibility to synchronize against on/offlining.
3433 */
3434 struct cgroup_subsys_state *
3435 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3436 struct cgroup_subsys_state *root)
3437 {
3438 struct cgroup_subsys_state *next;
3439
3440 cgroup_assert_mutex_or_rcu_locked();
3441
3442 /* if first iteration, visit @root */
3443 if (!pos)
3444 return root;
3445
3446 /* visit the first child if exists */
3447 next = css_next_child(NULL, pos);
3448 if (next)
3449 return next;
3450
3451 /* no child, visit my or the closest ancestor's next sibling */
3452 while (pos != root) {
3453 next = css_next_child(pos, pos->parent);
3454 if (next)
3455 return next;
3456 pos = pos->parent;
3457 }
3458
3459 return NULL;
3460 }
3461
3462 /**
3463 * css_rightmost_descendant - return the rightmost descendant of a css
3464 * @pos: css of interest
3465 *
3466 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3467 * is returned. This can be used during pre-order traversal to skip
3468 * subtree of @pos.
3469 *
3470 * While this function requires cgroup_mutex or RCU read locking, it
3471 * doesn't require the whole traversal to be contained in a single critical
3472 * section. This function will return the correct rightmost descendant as
3473 * long as @pos is accessible.
3474 */
3475 struct cgroup_subsys_state *
3476 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3477 {
3478 struct cgroup_subsys_state *last, *tmp;
3479
3480 cgroup_assert_mutex_or_rcu_locked();
3481
3482 do {
3483 last = pos;
3484 /* ->prev isn't RCU safe, walk ->next till the end */
3485 pos = NULL;
3486 css_for_each_child(tmp, last)
3487 pos = tmp;
3488 } while (pos);
3489
3490 return last;
3491 }
3492
3493 static struct cgroup_subsys_state *
3494 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3495 {
3496 struct cgroup_subsys_state *last;
3497
3498 do {
3499 last = pos;
3500 pos = css_next_child(NULL, pos);
3501 } while (pos);
3502
3503 return last;
3504 }
3505
3506 /**
3507 * css_next_descendant_post - find the next descendant for post-order walk
3508 * @pos: the current position (%NULL to initiate traversal)
3509 * @root: css whose descendants to walk
3510 *
3511 * To be used by css_for_each_descendant_post(). Find the next descendant
3512 * to visit for post-order traversal of @root's descendants. @root is
3513 * included in the iteration and the last node to be visited.
3514 *
3515 * While this function requires cgroup_mutex or RCU read locking, it
3516 * doesn't require the whole traversal to be contained in a single critical
3517 * section. This function will return the correct next descendant as long
3518 * as both @pos and @cgroup are accessible and @pos is a descendant of
3519 * @cgroup.
3520 *
3521 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3522 * css which finished ->css_online() is guaranteed to be visible in the
3523 * future iterations and will stay visible until the last reference is put.
3524 * A css which hasn't finished ->css_online() or already finished
3525 * ->css_offline() may show up during traversal. It's each subsystem's
3526 * responsibility to synchronize against on/offlining.
3527 */
3528 struct cgroup_subsys_state *
3529 css_next_descendant_post(struct cgroup_subsys_state *pos,
3530 struct cgroup_subsys_state *root)
3531 {
3532 struct cgroup_subsys_state *next;
3533
3534 cgroup_assert_mutex_or_rcu_locked();
3535
3536 /* if first iteration, visit leftmost descendant which may be @root */
3537 if (!pos)
3538 return css_leftmost_descendant(root);
3539
3540 /* if we visited @root, we're done */
3541 if (pos == root)
3542 return NULL;
3543
3544 /* if there's an unvisited sibling, visit its leftmost descendant */
3545 next = css_next_child(pos, pos->parent);
3546 if (next)
3547 return css_leftmost_descendant(next);
3548
3549 /* no sibling left, visit parent */
3550 return pos->parent;
3551 }
3552
3553 /**
3554 * css_has_online_children - does a css have online children
3555 * @css: the target css
3556 *
3557 * Returns %true if @css has any online children; otherwise, %false. This
3558 * function can be called from any context but the caller is responsible
3559 * for synchronizing against on/offlining as necessary.
3560 */
3561 bool css_has_online_children(struct cgroup_subsys_state *css)
3562 {
3563 struct cgroup_subsys_state *child;
3564 bool ret = false;
3565
3566 rcu_read_lock();
3567 css_for_each_child(child, css) {
3568 if (child->flags & CSS_ONLINE) {
3569 ret = true;
3570 break;
3571 }
3572 }
3573 rcu_read_unlock();
3574 return ret;
3575 }
3576
3577 /**
3578 * css_advance_task_iter - advance a task itererator to the next css_set
3579 * @it: the iterator to advance
3580 *
3581 * Advance @it to the next css_set to walk.
3582 */
3583 static void css_advance_task_iter(struct css_task_iter *it)
3584 {
3585 struct list_head *l = it->cset_pos;
3586 struct cgrp_cset_link *link;
3587 struct css_set *cset;
3588
3589 /* Advance to the next non-empty css_set */
3590 do {
3591 l = l->next;
3592 if (l == it->cset_head) {
3593 it->cset_pos = NULL;
3594 return;
3595 }
3596
3597 if (it->ss) {
3598 cset = container_of(l, struct css_set,
3599 e_cset_node[it->ss->id]);
3600 } else {
3601 link = list_entry(l, struct cgrp_cset_link, cset_link);
3602 cset = link->cset;
3603 }
3604 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3605
3606 it->cset_pos = l;
3607
3608 if (!list_empty(&cset->tasks))
3609 it->task_pos = cset->tasks.next;
3610 else
3611 it->task_pos = cset->mg_tasks.next;
3612
3613 it->tasks_head = &cset->tasks;
3614 it->mg_tasks_head = &cset->mg_tasks;
3615 }
3616
3617 /**
3618 * css_task_iter_start - initiate task iteration
3619 * @css: the css to walk tasks of
3620 * @it: the task iterator to use
3621 *
3622 * Initiate iteration through the tasks of @css. The caller can call
3623 * css_task_iter_next() to walk through the tasks until the function
3624 * returns NULL. On completion of iteration, css_task_iter_end() must be
3625 * called.
3626 *
3627 * Note that this function acquires a lock which is released when the
3628 * iteration finishes. The caller can't sleep while iteration is in
3629 * progress.
3630 */
3631 void css_task_iter_start(struct cgroup_subsys_state *css,
3632 struct css_task_iter *it)
3633 __acquires(css_set_rwsem)
3634 {
3635 /* no one should try to iterate before mounting cgroups */
3636 WARN_ON_ONCE(!use_task_css_set_links);
3637
3638 down_read(&css_set_rwsem);
3639
3640 it->ss = css->ss;
3641
3642 if (it->ss)
3643 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3644 else
3645 it->cset_pos = &css->cgroup->cset_links;
3646
3647 it->cset_head = it->cset_pos;
3648
3649 css_advance_task_iter(it);
3650 }
3651
3652 /**
3653 * css_task_iter_next - return the next task for the iterator
3654 * @it: the task iterator being iterated
3655 *
3656 * The "next" function for task iteration. @it should have been
3657 * initialized via css_task_iter_start(). Returns NULL when the iteration
3658 * reaches the end.
3659 */
3660 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3661 {
3662 struct task_struct *res;
3663 struct list_head *l = it->task_pos;
3664
3665 /* If the iterator cg is NULL, we have no tasks */
3666 if (!it->cset_pos)
3667 return NULL;
3668 res = list_entry(l, struct task_struct, cg_list);
3669
3670 /*
3671 * Advance iterator to find next entry. cset->tasks is consumed
3672 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3673 * next cset.
3674 */
3675 l = l->next;
3676
3677 if (l == it->tasks_head)
3678 l = it->mg_tasks_head->next;
3679
3680 if (l == it->mg_tasks_head)
3681 css_advance_task_iter(it);
3682 else
3683 it->task_pos = l;
3684
3685 return res;
3686 }
3687
3688 /**
3689 * css_task_iter_end - finish task iteration
3690 * @it: the task iterator to finish
3691 *
3692 * Finish task iteration started by css_task_iter_start().
3693 */
3694 void css_task_iter_end(struct css_task_iter *it)
3695 __releases(css_set_rwsem)
3696 {
3697 up_read(&css_set_rwsem);
3698 }
3699
3700 /**
3701 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3702 * @to: cgroup to which the tasks will be moved
3703 * @from: cgroup in which the tasks currently reside
3704 *
3705 * Locking rules between cgroup_post_fork() and the migration path
3706 * guarantee that, if a task is forking while being migrated, the new child
3707 * is guaranteed to be either visible in the source cgroup after the
3708 * parent's migration is complete or put into the target cgroup. No task
3709 * can slip out of migration through forking.
3710 */
3711 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3712 {
3713 LIST_HEAD(preloaded_csets);
3714 struct cgrp_cset_link *link;
3715 struct css_task_iter it;
3716 struct task_struct *task;
3717 int ret;
3718
3719 mutex_lock(&cgroup_mutex);
3720
3721 /* all tasks in @from are being moved, all csets are source */
3722 down_read(&css_set_rwsem);
3723 list_for_each_entry(link, &from->cset_links, cset_link)
3724 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3725 up_read(&css_set_rwsem);
3726
3727 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3728 if (ret)
3729 goto out_err;
3730
3731 /*
3732 * Migrate tasks one-by-one until @form is empty. This fails iff
3733 * ->can_attach() fails.
3734 */
3735 do {
3736 css_task_iter_start(&from->self, &it);
3737 task = css_task_iter_next(&it);
3738 if (task)
3739 get_task_struct(task);
3740 css_task_iter_end(&it);
3741
3742 if (task) {
3743 ret = cgroup_migrate(to, task, false);
3744 put_task_struct(task);
3745 }
3746 } while (task && !ret);
3747 out_err:
3748 cgroup_migrate_finish(&preloaded_csets);
3749 mutex_unlock(&cgroup_mutex);
3750 return ret;
3751 }
3752
3753 /*
3754 * Stuff for reading the 'tasks'/'procs' files.
3755 *
3756 * Reading this file can return large amounts of data if a cgroup has
3757 * *lots* of attached tasks. So it may need several calls to read(),
3758 * but we cannot guarantee that the information we produce is correct
3759 * unless we produce it entirely atomically.
3760 *
3761 */
3762
3763 /* which pidlist file are we talking about? */
3764 enum cgroup_filetype {
3765 CGROUP_FILE_PROCS,
3766 CGROUP_FILE_TASKS,
3767 };
3768
3769 /*
3770 * A pidlist is a list of pids that virtually represents the contents of one
3771 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3772 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3773 * to the cgroup.
3774 */
3775 struct cgroup_pidlist {
3776 /*
3777 * used to find which pidlist is wanted. doesn't change as long as
3778 * this particular list stays in the list.
3779 */
3780 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3781 /* array of xids */
3782 pid_t *list;
3783 /* how many elements the above list has */
3784 int length;
3785 /* each of these stored in a list by its cgroup */
3786 struct list_head links;
3787 /* pointer to the cgroup we belong to, for list removal purposes */
3788 struct cgroup *owner;
3789 /* for delayed destruction */
3790 struct delayed_work destroy_dwork;
3791 };
3792
3793 /*
3794 * The following two functions "fix" the issue where there are more pids
3795 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3796 * TODO: replace with a kernel-wide solution to this problem
3797 */
3798 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3799 static void *pidlist_allocate(int count)
3800 {
3801 if (PIDLIST_TOO_LARGE(count))
3802 return vmalloc(count * sizeof(pid_t));
3803 else
3804 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3805 }
3806
3807 static void pidlist_free(void *p)
3808 {
3809 if (is_vmalloc_addr(p))
3810 vfree(p);
3811 else
3812 kfree(p);
3813 }
3814
3815 /*
3816 * Used to destroy all pidlists lingering waiting for destroy timer. None
3817 * should be left afterwards.
3818 */
3819 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3820 {
3821 struct cgroup_pidlist *l, *tmp_l;
3822
3823 mutex_lock(&cgrp->pidlist_mutex);
3824 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3825 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3826 mutex_unlock(&cgrp->pidlist_mutex);
3827
3828 flush_workqueue(cgroup_pidlist_destroy_wq);
3829 BUG_ON(!list_empty(&cgrp->pidlists));
3830 }
3831
3832 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3833 {
3834 struct delayed_work *dwork = to_delayed_work(work);
3835 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3836 destroy_dwork);
3837 struct cgroup_pidlist *tofree = NULL;
3838
3839 mutex_lock(&l->owner->pidlist_mutex);
3840
3841 /*
3842 * Destroy iff we didn't get queued again. The state won't change
3843 * as destroy_dwork can only be queued while locked.
3844 */
3845 if (!delayed_work_pending(dwork)) {
3846 list_del(&l->links);
3847 pidlist_free(l->list);
3848 put_pid_ns(l->key.ns);
3849 tofree = l;
3850 }
3851
3852 mutex_unlock(&l->owner->pidlist_mutex);
3853 kfree(tofree);
3854 }
3855
3856 /*
3857 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3858 * Returns the number of unique elements.
3859 */
3860 static int pidlist_uniq(pid_t *list, int length)
3861 {
3862 int src, dest = 1;
3863
3864 /*
3865 * we presume the 0th element is unique, so i starts at 1. trivial
3866 * edge cases first; no work needs to be done for either
3867 */
3868 if (length == 0 || length == 1)
3869 return length;
3870 /* src and dest walk down the list; dest counts unique elements */
3871 for (src = 1; src < length; src++) {
3872 /* find next unique element */
3873 while (list[src] == list[src-1]) {
3874 src++;
3875 if (src == length)
3876 goto after;
3877 }
3878 /* dest always points to where the next unique element goes */
3879 list[dest] = list[src];
3880 dest++;
3881 }
3882 after:
3883 return dest;
3884 }
3885
3886 /*
3887 * The two pid files - task and cgroup.procs - guaranteed that the result
3888 * is sorted, which forced this whole pidlist fiasco. As pid order is
3889 * different per namespace, each namespace needs differently sorted list,
3890 * making it impossible to use, for example, single rbtree of member tasks
3891 * sorted by task pointer. As pidlists can be fairly large, allocating one
3892 * per open file is dangerous, so cgroup had to implement shared pool of
3893 * pidlists keyed by cgroup and namespace.
3894 *
3895 * All this extra complexity was caused by the original implementation
3896 * committing to an entirely unnecessary property. In the long term, we
3897 * want to do away with it. Explicitly scramble sort order if on the
3898 * default hierarchy so that no such expectation exists in the new
3899 * interface.
3900 *
3901 * Scrambling is done by swapping every two consecutive bits, which is
3902 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3903 */
3904 static pid_t pid_fry(pid_t pid)
3905 {
3906 unsigned a = pid & 0x55555555;
3907 unsigned b = pid & 0xAAAAAAAA;
3908
3909 return (a << 1) | (b >> 1);
3910 }
3911
3912 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3913 {
3914 if (cgroup_on_dfl(cgrp))
3915 return pid_fry(pid);
3916 else
3917 return pid;
3918 }
3919
3920 static int cmppid(const void *a, const void *b)
3921 {
3922 return *(pid_t *)a - *(pid_t *)b;
3923 }
3924
3925 static int fried_cmppid(const void *a, const void *b)
3926 {
3927 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3928 }
3929
3930 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3931 enum cgroup_filetype type)
3932 {
3933 struct cgroup_pidlist *l;
3934 /* don't need task_nsproxy() if we're looking at ourself */
3935 struct pid_namespace *ns = task_active_pid_ns(current);
3936
3937 lockdep_assert_held(&cgrp->pidlist_mutex);
3938
3939 list_for_each_entry(l, &cgrp->pidlists, links)
3940 if (l->key.type == type && l->key.ns == ns)
3941 return l;
3942 return NULL;
3943 }
3944
3945 /*
3946 * find the appropriate pidlist for our purpose (given procs vs tasks)
3947 * returns with the lock on that pidlist already held, and takes care
3948 * of the use count, or returns NULL with no locks held if we're out of
3949 * memory.
3950 */
3951 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3952 enum cgroup_filetype type)
3953 {
3954 struct cgroup_pidlist *l;
3955
3956 lockdep_assert_held(&cgrp->pidlist_mutex);
3957
3958 l = cgroup_pidlist_find(cgrp, type);
3959 if (l)
3960 return l;
3961
3962 /* entry not found; create a new one */
3963 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3964 if (!l)
3965 return l;
3966
3967 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
3968 l->key.type = type;
3969 /* don't need task_nsproxy() if we're looking at ourself */
3970 l->key.ns = get_pid_ns(task_active_pid_ns(current));
3971 l->owner = cgrp;
3972 list_add(&l->links, &cgrp->pidlists);
3973 return l;
3974 }
3975
3976 /*
3977 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3978 */
3979 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3980 struct cgroup_pidlist **lp)
3981 {
3982 pid_t *array;
3983 int length;
3984 int pid, n = 0; /* used for populating the array */
3985 struct css_task_iter it;
3986 struct task_struct *tsk;
3987 struct cgroup_pidlist *l;
3988
3989 lockdep_assert_held(&cgrp->pidlist_mutex);
3990
3991 /*
3992 * If cgroup gets more users after we read count, we won't have
3993 * enough space - tough. This race is indistinguishable to the
3994 * caller from the case that the additional cgroup users didn't
3995 * show up until sometime later on.
3996 */
3997 length = cgroup_task_count(cgrp);
3998 array = pidlist_allocate(length);
3999 if (!array)
4000 return -ENOMEM;
4001 /* now, populate the array */
4002 css_task_iter_start(&cgrp->self, &it);
4003 while ((tsk = css_task_iter_next(&it))) {
4004 if (unlikely(n == length))
4005 break;
4006 /* get tgid or pid for procs or tasks file respectively */
4007 if (type == CGROUP_FILE_PROCS)
4008 pid = task_tgid_vnr(tsk);
4009 else
4010 pid = task_pid_vnr(tsk);
4011 if (pid > 0) /* make sure to only use valid results */
4012 array[n++] = pid;
4013 }
4014 css_task_iter_end(&it);
4015 length = n;
4016 /* now sort & (if procs) strip out duplicates */
4017 if (cgroup_on_dfl(cgrp))
4018 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4019 else
4020 sort(array, length, sizeof(pid_t), cmppid, NULL);
4021 if (type == CGROUP_FILE_PROCS)
4022 length = pidlist_uniq(array, length);
4023
4024 l = cgroup_pidlist_find_create(cgrp, type);
4025 if (!l) {
4026 pidlist_free(array);
4027 return -ENOMEM;
4028 }
4029
4030 /* store array, freeing old if necessary */
4031 pidlist_free(l->list);
4032 l->list = array;
4033 l->length = length;
4034 *lp = l;
4035 return 0;
4036 }
4037
4038 /**
4039 * cgroupstats_build - build and fill cgroupstats
4040 * @stats: cgroupstats to fill information into
4041 * @dentry: A dentry entry belonging to the cgroup for which stats have
4042 * been requested.
4043 *
4044 * Build and fill cgroupstats so that taskstats can export it to user
4045 * space.
4046 */
4047 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4048 {
4049 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4050 struct cgroup *cgrp;
4051 struct css_task_iter it;
4052 struct task_struct *tsk;
4053
4054 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4055 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4056 kernfs_type(kn) != KERNFS_DIR)
4057 return -EINVAL;
4058
4059 mutex_lock(&cgroup_mutex);
4060
4061 /*
4062 * We aren't being called from kernfs and there's no guarantee on
4063 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4064 * @kn->priv is RCU safe. Let's do the RCU dancing.
4065 */
4066 rcu_read_lock();
4067 cgrp = rcu_dereference(kn->priv);
4068 if (!cgrp || cgroup_is_dead(cgrp)) {
4069 rcu_read_unlock();
4070 mutex_unlock(&cgroup_mutex);
4071 return -ENOENT;
4072 }
4073 rcu_read_unlock();
4074
4075 css_task_iter_start(&cgrp->self, &it);
4076 while ((tsk = css_task_iter_next(&it))) {
4077 switch (tsk->state) {
4078 case TASK_RUNNING:
4079 stats->nr_running++;
4080 break;
4081 case TASK_INTERRUPTIBLE:
4082 stats->nr_sleeping++;
4083 break;
4084 case TASK_UNINTERRUPTIBLE:
4085 stats->nr_uninterruptible++;
4086 break;
4087 case TASK_STOPPED:
4088 stats->nr_stopped++;
4089 break;
4090 default:
4091 if (delayacct_is_task_waiting_on_io(tsk))
4092 stats->nr_io_wait++;
4093 break;
4094 }
4095 }
4096 css_task_iter_end(&it);
4097
4098 mutex_unlock(&cgroup_mutex);
4099 return 0;
4100 }
4101
4102
4103 /*
4104 * seq_file methods for the tasks/procs files. The seq_file position is the
4105 * next pid to display; the seq_file iterator is a pointer to the pid
4106 * in the cgroup->l->list array.
4107 */
4108
4109 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4110 {
4111 /*
4112 * Initially we receive a position value that corresponds to
4113 * one more than the last pid shown (or 0 on the first call or
4114 * after a seek to the start). Use a binary-search to find the
4115 * next pid to display, if any
4116 */
4117 struct kernfs_open_file *of = s->private;
4118 struct cgroup *cgrp = seq_css(s)->cgroup;
4119 struct cgroup_pidlist *l;
4120 enum cgroup_filetype type = seq_cft(s)->private;
4121 int index = 0, pid = *pos;
4122 int *iter, ret;
4123
4124 mutex_lock(&cgrp->pidlist_mutex);
4125
4126 /*
4127 * !NULL @of->priv indicates that this isn't the first start()
4128 * after open. If the matching pidlist is around, we can use that.
4129 * Look for it. Note that @of->priv can't be used directly. It
4130 * could already have been destroyed.
4131 */
4132 if (of->priv)
4133 of->priv = cgroup_pidlist_find(cgrp, type);
4134
4135 /*
4136 * Either this is the first start() after open or the matching
4137 * pidlist has been destroyed inbetween. Create a new one.
4138 */
4139 if (!of->priv) {
4140 ret = pidlist_array_load(cgrp, type,
4141 (struct cgroup_pidlist **)&of->priv);
4142 if (ret)
4143 return ERR_PTR(ret);
4144 }
4145 l = of->priv;
4146
4147 if (pid) {
4148 int end = l->length;
4149
4150 while (index < end) {
4151 int mid = (index + end) / 2;
4152 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4153 index = mid;
4154 break;
4155 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4156 index = mid + 1;
4157 else
4158 end = mid;
4159 }
4160 }
4161 /* If we're off the end of the array, we're done */
4162 if (index >= l->length)
4163 return NULL;
4164 /* Update the abstract position to be the actual pid that we found */
4165 iter = l->list + index;
4166 *pos = cgroup_pid_fry(cgrp, *iter);
4167 return iter;
4168 }
4169
4170 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4171 {
4172 struct kernfs_open_file *of = s->private;
4173 struct cgroup_pidlist *l = of->priv;
4174
4175 if (l)
4176 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4177 CGROUP_PIDLIST_DESTROY_DELAY);
4178 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4179 }
4180
4181 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4182 {
4183 struct kernfs_open_file *of = s->private;
4184 struct cgroup_pidlist *l = of->priv;
4185 pid_t *p = v;
4186 pid_t *end = l->list + l->length;
4187 /*
4188 * Advance to the next pid in the array. If this goes off the
4189 * end, we're done
4190 */
4191 p++;
4192 if (p >= end) {
4193 return NULL;
4194 } else {
4195 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4196 return p;
4197 }
4198 }
4199
4200 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4201 {
4202 return seq_printf(s, "%d\n", *(int *)v);
4203 }
4204
4205 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4206 struct cftype *cft)
4207 {
4208 return notify_on_release(css->cgroup);
4209 }
4210
4211 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4212 struct cftype *cft, u64 val)
4213 {
4214 if (val)
4215 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4216 else
4217 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4218 return 0;
4219 }
4220
4221 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4222 struct cftype *cft)
4223 {
4224 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4225 }
4226
4227 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4228 struct cftype *cft, u64 val)
4229 {
4230 if (val)
4231 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4232 else
4233 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4234 return 0;
4235 }
4236
4237 /* cgroup core interface files for the default hierarchy */
4238 static struct cftype cgroup_dfl_base_files[] = {
4239 {
4240 .name = "cgroup.procs",
4241 .seq_start = cgroup_pidlist_start,
4242 .seq_next = cgroup_pidlist_next,
4243 .seq_stop = cgroup_pidlist_stop,
4244 .seq_show = cgroup_pidlist_show,
4245 .private = CGROUP_FILE_PROCS,
4246 .write = cgroup_procs_write,
4247 .mode = S_IRUGO | S_IWUSR,
4248 },
4249 {
4250 .name = "cgroup.controllers",
4251 .flags = CFTYPE_ONLY_ON_ROOT,
4252 .seq_show = cgroup_root_controllers_show,
4253 },
4254 {
4255 .name = "cgroup.controllers",
4256 .flags = CFTYPE_NOT_ON_ROOT,
4257 .seq_show = cgroup_controllers_show,
4258 },
4259 {
4260 .name = "cgroup.subtree_control",
4261 .seq_show = cgroup_subtree_control_show,
4262 .write = cgroup_subtree_control_write,
4263 },
4264 {
4265 .name = "cgroup.populated",
4266 .flags = CFTYPE_NOT_ON_ROOT,
4267 .seq_show = cgroup_populated_show,
4268 },
4269 { } /* terminate */
4270 };
4271
4272 /* cgroup core interface files for the legacy hierarchies */
4273 static struct cftype cgroup_legacy_base_files[] = {
4274 {
4275 .name = "cgroup.procs",
4276 .seq_start = cgroup_pidlist_start,
4277 .seq_next = cgroup_pidlist_next,
4278 .seq_stop = cgroup_pidlist_stop,
4279 .seq_show = cgroup_pidlist_show,
4280 .private = CGROUP_FILE_PROCS,
4281 .write = cgroup_procs_write,
4282 .mode = S_IRUGO | S_IWUSR,
4283 },
4284 {
4285 .name = "cgroup.clone_children",
4286 .read_u64 = cgroup_clone_children_read,
4287 .write_u64 = cgroup_clone_children_write,
4288 },
4289 {
4290 .name = "cgroup.sane_behavior",
4291 .flags = CFTYPE_ONLY_ON_ROOT,
4292 .seq_show = cgroup_sane_behavior_show,
4293 },
4294 {
4295 .name = "tasks",
4296 .seq_start = cgroup_pidlist_start,
4297 .seq_next = cgroup_pidlist_next,
4298 .seq_stop = cgroup_pidlist_stop,
4299 .seq_show = cgroup_pidlist_show,
4300 .private = CGROUP_FILE_TASKS,
4301 .write = cgroup_tasks_write,
4302 .mode = S_IRUGO | S_IWUSR,
4303 },
4304 {
4305 .name = "notify_on_release",
4306 .read_u64 = cgroup_read_notify_on_release,
4307 .write_u64 = cgroup_write_notify_on_release,
4308 },
4309 {
4310 .name = "release_agent",
4311 .flags = CFTYPE_ONLY_ON_ROOT,
4312 .seq_show = cgroup_release_agent_show,
4313 .write = cgroup_release_agent_write,
4314 .max_write_len = PATH_MAX - 1,
4315 },
4316 { } /* terminate */
4317 };
4318
4319 /**
4320 * cgroup_populate_dir - create subsys files in a cgroup directory
4321 * @cgrp: target cgroup
4322 * @subsys_mask: mask of the subsystem ids whose files should be added
4323 *
4324 * On failure, no file is added.
4325 */
4326 static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
4327 {
4328 struct cgroup_subsys *ss;
4329 int i, ret = 0;
4330
4331 /* process cftsets of each subsystem */
4332 for_each_subsys(ss, i) {
4333 struct cftype *cfts;
4334
4335 if (!(subsys_mask & (1 << i)))
4336 continue;
4337
4338 list_for_each_entry(cfts, &ss->cfts, node) {
4339 ret = cgroup_addrm_files(cgrp, cfts, true);
4340 if (ret < 0)
4341 goto err;
4342 }
4343 }
4344 return 0;
4345 err:
4346 cgroup_clear_dir(cgrp, subsys_mask);
4347 return ret;
4348 }
4349
4350 /*
4351 * css destruction is four-stage process.
4352 *
4353 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4354 * Implemented in kill_css().
4355 *
4356 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4357 * and thus css_tryget_online() is guaranteed to fail, the css can be
4358 * offlined by invoking offline_css(). After offlining, the base ref is
4359 * put. Implemented in css_killed_work_fn().
4360 *
4361 * 3. When the percpu_ref reaches zero, the only possible remaining
4362 * accessors are inside RCU read sections. css_release() schedules the
4363 * RCU callback.
4364 *
4365 * 4. After the grace period, the css can be freed. Implemented in
4366 * css_free_work_fn().
4367 *
4368 * It is actually hairier because both step 2 and 4 require process context
4369 * and thus involve punting to css->destroy_work adding two additional
4370 * steps to the already complex sequence.
4371 */
4372 static void css_free_work_fn(struct work_struct *work)
4373 {
4374 struct cgroup_subsys_state *css =
4375 container_of(work, struct cgroup_subsys_state, destroy_work);
4376 struct cgroup *cgrp = css->cgroup;
4377
4378 percpu_ref_exit(&css->refcnt);
4379
4380 if (css->ss) {
4381 /* css free path */
4382 if (css->parent)
4383 css_put(css->parent);
4384
4385 css->ss->css_free(css);
4386 cgroup_put(cgrp);
4387 } else {
4388 /* cgroup free path */
4389 atomic_dec(&cgrp->root->nr_cgrps);
4390 cgroup_pidlist_destroy_all(cgrp);
4391 cancel_work_sync(&cgrp->release_agent_work);
4392
4393 if (cgroup_parent(cgrp)) {
4394 /*
4395 * We get a ref to the parent, and put the ref when
4396 * this cgroup is being freed, so it's guaranteed
4397 * that the parent won't be destroyed before its
4398 * children.
4399 */
4400 cgroup_put(cgroup_parent(cgrp));
4401 kernfs_put(cgrp->kn);
4402 kfree(cgrp);
4403 } else {
4404 /*
4405 * This is root cgroup's refcnt reaching zero,
4406 * which indicates that the root should be
4407 * released.
4408 */
4409 cgroup_destroy_root(cgrp->root);
4410 }
4411 }
4412 }
4413
4414 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4415 {
4416 struct cgroup_subsys_state *css =
4417 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4418
4419 INIT_WORK(&css->destroy_work, css_free_work_fn);
4420 queue_work(cgroup_destroy_wq, &css->destroy_work);
4421 }
4422
4423 static void css_release_work_fn(struct work_struct *work)
4424 {
4425 struct cgroup_subsys_state *css =
4426 container_of(work, struct cgroup_subsys_state, destroy_work);
4427 struct cgroup_subsys *ss = css->ss;
4428 struct cgroup *cgrp = css->cgroup;
4429
4430 mutex_lock(&cgroup_mutex);
4431
4432 css->flags |= CSS_RELEASED;
4433 list_del_rcu(&css->sibling);
4434
4435 if (ss) {
4436 /* css release path */
4437 cgroup_idr_remove(&ss->css_idr, css->id);
4438 if (ss->css_released)
4439 ss->css_released(css);
4440 } else {
4441 /* cgroup release path */
4442 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4443 cgrp->id = -1;
4444
4445 /*
4446 * There are two control paths which try to determine
4447 * cgroup from dentry without going through kernfs -
4448 * cgroupstats_build() and css_tryget_online_from_dir().
4449 * Those are supported by RCU protecting clearing of
4450 * cgrp->kn->priv backpointer.
4451 */
4452 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4453 }
4454
4455 mutex_unlock(&cgroup_mutex);
4456
4457 call_rcu(&css->rcu_head, css_free_rcu_fn);
4458 }
4459
4460 static void css_release(struct percpu_ref *ref)
4461 {
4462 struct cgroup_subsys_state *css =
4463 container_of(ref, struct cgroup_subsys_state, refcnt);
4464
4465 INIT_WORK(&css->destroy_work, css_release_work_fn);
4466 queue_work(cgroup_destroy_wq, &css->destroy_work);
4467 }
4468
4469 static void init_and_link_css(struct cgroup_subsys_state *css,
4470 struct cgroup_subsys *ss, struct cgroup *cgrp)
4471 {
4472 lockdep_assert_held(&cgroup_mutex);
4473
4474 cgroup_get(cgrp);
4475
4476 memset(css, 0, sizeof(*css));
4477 css->cgroup = cgrp;
4478 css->ss = ss;
4479 INIT_LIST_HEAD(&css->sibling);
4480 INIT_LIST_HEAD(&css->children);
4481 css->serial_nr = css_serial_nr_next++;
4482
4483 if (cgroup_parent(cgrp)) {
4484 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4485 css_get(css->parent);
4486 }
4487
4488 BUG_ON(cgroup_css(cgrp, ss));
4489 }
4490
4491 /* invoke ->css_online() on a new CSS and mark it online if successful */
4492 static int online_css(struct cgroup_subsys_state *css)
4493 {
4494 struct cgroup_subsys *ss = css->ss;
4495 int ret = 0;
4496
4497 lockdep_assert_held(&cgroup_mutex);
4498
4499 if (ss->css_online)
4500 ret = ss->css_online(css);
4501 if (!ret) {
4502 css->flags |= CSS_ONLINE;
4503 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4504 }
4505 return ret;
4506 }
4507
4508 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4509 static void offline_css(struct cgroup_subsys_state *css)
4510 {
4511 struct cgroup_subsys *ss = css->ss;
4512
4513 lockdep_assert_held(&cgroup_mutex);
4514
4515 if (!(css->flags & CSS_ONLINE))
4516 return;
4517
4518 if (ss->css_offline)
4519 ss->css_offline(css);
4520
4521 css->flags &= ~CSS_ONLINE;
4522 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4523
4524 wake_up_all(&css->cgroup->offline_waitq);
4525 }
4526
4527 /**
4528 * create_css - create a cgroup_subsys_state
4529 * @cgrp: the cgroup new css will be associated with
4530 * @ss: the subsys of new css
4531 * @visible: whether to create control knobs for the new css or not
4532 *
4533 * Create a new css associated with @cgrp - @ss pair. On success, the new
4534 * css is online and installed in @cgrp with all interface files created if
4535 * @visible. Returns 0 on success, -errno on failure.
4536 */
4537 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4538 bool visible)
4539 {
4540 struct cgroup *parent = cgroup_parent(cgrp);
4541 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4542 struct cgroup_subsys_state *css;
4543 int err;
4544
4545 lockdep_assert_held(&cgroup_mutex);
4546
4547 css = ss->css_alloc(parent_css);
4548 if (IS_ERR(css))
4549 return PTR_ERR(css);
4550
4551 init_and_link_css(css, ss, cgrp);
4552
4553 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4554 if (err)
4555 goto err_free_css;
4556
4557 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4558 if (err < 0)
4559 goto err_free_percpu_ref;
4560 css->id = err;
4561
4562 if (visible) {
4563 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4564 if (err)
4565 goto err_free_id;
4566 }
4567
4568 /* @css is ready to be brought online now, make it visible */
4569 list_add_tail_rcu(&css->sibling, &parent_css->children);
4570 cgroup_idr_replace(&ss->css_idr, css, css->id);
4571
4572 err = online_css(css);
4573 if (err)
4574 goto err_list_del;
4575
4576 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4577 cgroup_parent(parent)) {
4578 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4579 current->comm, current->pid, ss->name);
4580 if (!strcmp(ss->name, "memory"))
4581 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4582 ss->warned_broken_hierarchy = true;
4583 }
4584
4585 return 0;
4586
4587 err_list_del:
4588 list_del_rcu(&css->sibling);
4589 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4590 err_free_id:
4591 cgroup_idr_remove(&ss->css_idr, css->id);
4592 err_free_percpu_ref:
4593 percpu_ref_exit(&css->refcnt);
4594 err_free_css:
4595 call_rcu(&css->rcu_head, css_free_rcu_fn);
4596 return err;
4597 }
4598
4599 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4600 umode_t mode)
4601 {
4602 struct cgroup *parent, *cgrp;
4603 struct cgroup_root *root;
4604 struct cgroup_subsys *ss;
4605 struct kernfs_node *kn;
4606 struct cftype *base_files;
4607 int ssid, ret;
4608
4609 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4610 */
4611 if (strchr(name, '\n'))
4612 return -EINVAL;
4613
4614 parent = cgroup_kn_lock_live(parent_kn);
4615 if (!parent)
4616 return -ENODEV;
4617 root = parent->root;
4618
4619 /* allocate the cgroup and its ID, 0 is reserved for the root */
4620 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4621 if (!cgrp) {
4622 ret = -ENOMEM;
4623 goto out_unlock;
4624 }
4625
4626 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4627 if (ret)
4628 goto out_free_cgrp;
4629
4630 /*
4631 * Temporarily set the pointer to NULL, so idr_find() won't return
4632 * a half-baked cgroup.
4633 */
4634 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
4635 if (cgrp->id < 0) {
4636 ret = -ENOMEM;
4637 goto out_cancel_ref;
4638 }
4639
4640 init_cgroup_housekeeping(cgrp);
4641
4642 cgrp->self.parent = &parent->self;
4643 cgrp->root = root;
4644
4645 if (notify_on_release(parent))
4646 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4647
4648 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4649 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4650
4651 /* create the directory */
4652 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4653 if (IS_ERR(kn)) {
4654 ret = PTR_ERR(kn);
4655 goto out_free_id;
4656 }
4657 cgrp->kn = kn;
4658
4659 /*
4660 * This extra ref will be put in cgroup_free_fn() and guarantees
4661 * that @cgrp->kn is always accessible.
4662 */
4663 kernfs_get(kn);
4664
4665 cgrp->self.serial_nr = css_serial_nr_next++;
4666
4667 /* allocation complete, commit to creation */
4668 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4669 atomic_inc(&root->nr_cgrps);
4670 cgroup_get(parent);
4671
4672 /*
4673 * @cgrp is now fully operational. If something fails after this
4674 * point, it'll be released via the normal destruction path.
4675 */
4676 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4677
4678 ret = cgroup_kn_set_ugid(kn);
4679 if (ret)
4680 goto out_destroy;
4681
4682 if (cgroup_on_dfl(cgrp))
4683 base_files = cgroup_dfl_base_files;
4684 else
4685 base_files = cgroup_legacy_base_files;
4686
4687 ret = cgroup_addrm_files(cgrp, base_files, true);
4688 if (ret)
4689 goto out_destroy;
4690
4691 /* let's create and online css's */
4692 for_each_subsys(ss, ssid) {
4693 if (parent->child_subsys_mask & (1 << ssid)) {
4694 ret = create_css(cgrp, ss,
4695 parent->subtree_control & (1 << ssid));
4696 if (ret)
4697 goto out_destroy;
4698 }
4699 }
4700
4701 /*
4702 * On the default hierarchy, a child doesn't automatically inherit
4703 * subtree_control from the parent. Each is configured manually.
4704 */
4705 if (!cgroup_on_dfl(cgrp)) {
4706 cgrp->subtree_control = parent->subtree_control;
4707 cgroup_refresh_child_subsys_mask(cgrp);
4708 }
4709
4710 kernfs_activate(kn);
4711
4712 ret = 0;
4713 goto out_unlock;
4714
4715 out_free_id:
4716 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4717 out_cancel_ref:
4718 percpu_ref_exit(&cgrp->self.refcnt);
4719 out_free_cgrp:
4720 kfree(cgrp);
4721 out_unlock:
4722 cgroup_kn_unlock(parent_kn);
4723 return ret;
4724
4725 out_destroy:
4726 cgroup_destroy_locked(cgrp);
4727 goto out_unlock;
4728 }
4729
4730 /*
4731 * This is called when the refcnt of a css is confirmed to be killed.
4732 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4733 * initate destruction and put the css ref from kill_css().
4734 */
4735 static void css_killed_work_fn(struct work_struct *work)
4736 {
4737 struct cgroup_subsys_state *css =
4738 container_of(work, struct cgroup_subsys_state, destroy_work);
4739
4740 mutex_lock(&cgroup_mutex);
4741 offline_css(css);
4742 mutex_unlock(&cgroup_mutex);
4743
4744 css_put(css);
4745 }
4746
4747 /* css kill confirmation processing requires process context, bounce */
4748 static void css_killed_ref_fn(struct percpu_ref *ref)
4749 {
4750 struct cgroup_subsys_state *css =
4751 container_of(ref, struct cgroup_subsys_state, refcnt);
4752
4753 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4754 queue_work(cgroup_destroy_wq, &css->destroy_work);
4755 }
4756
4757 /**
4758 * kill_css - destroy a css
4759 * @css: css to destroy
4760 *
4761 * This function initiates destruction of @css by removing cgroup interface
4762 * files and putting its base reference. ->css_offline() will be invoked
4763 * asynchronously once css_tryget_online() is guaranteed to fail and when
4764 * the reference count reaches zero, @css will be released.
4765 */
4766 static void kill_css(struct cgroup_subsys_state *css)
4767 {
4768 lockdep_assert_held(&cgroup_mutex);
4769
4770 /*
4771 * This must happen before css is disassociated with its cgroup.
4772 * See seq_css() for details.
4773 */
4774 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
4775
4776 /*
4777 * Killing would put the base ref, but we need to keep it alive
4778 * until after ->css_offline().
4779 */
4780 css_get(css);
4781
4782 /*
4783 * cgroup core guarantees that, by the time ->css_offline() is
4784 * invoked, no new css reference will be given out via
4785 * css_tryget_online(). We can't simply call percpu_ref_kill() and
4786 * proceed to offlining css's because percpu_ref_kill() doesn't
4787 * guarantee that the ref is seen as killed on all CPUs on return.
4788 *
4789 * Use percpu_ref_kill_and_confirm() to get notifications as each
4790 * css is confirmed to be seen as killed on all CPUs.
4791 */
4792 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
4793 }
4794
4795 /**
4796 * cgroup_destroy_locked - the first stage of cgroup destruction
4797 * @cgrp: cgroup to be destroyed
4798 *
4799 * css's make use of percpu refcnts whose killing latency shouldn't be
4800 * exposed to userland and are RCU protected. Also, cgroup core needs to
4801 * guarantee that css_tryget_online() won't succeed by the time
4802 * ->css_offline() is invoked. To satisfy all the requirements,
4803 * destruction is implemented in the following two steps.
4804 *
4805 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4806 * userland visible parts and start killing the percpu refcnts of
4807 * css's. Set up so that the next stage will be kicked off once all
4808 * the percpu refcnts are confirmed to be killed.
4809 *
4810 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4811 * rest of destruction. Once all cgroup references are gone, the
4812 * cgroup is RCU-freed.
4813 *
4814 * This function implements s1. After this step, @cgrp is gone as far as
4815 * the userland is concerned and a new cgroup with the same name may be
4816 * created. As cgroup doesn't care about the names internally, this
4817 * doesn't cause any problem.
4818 */
4819 static int cgroup_destroy_locked(struct cgroup *cgrp)
4820 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4821 {
4822 struct cgroup_subsys_state *css;
4823 bool empty;
4824 int ssid;
4825
4826 lockdep_assert_held(&cgroup_mutex);
4827
4828 /*
4829 * css_set_rwsem synchronizes access to ->cset_links and prevents
4830 * @cgrp from being removed while put_css_set() is in progress.
4831 */
4832 down_read(&css_set_rwsem);
4833 empty = list_empty(&cgrp->cset_links);
4834 up_read(&css_set_rwsem);
4835 if (!empty)
4836 return -EBUSY;
4837
4838 /*
4839 * Make sure there's no live children. We can't test emptiness of
4840 * ->self.children as dead children linger on it while being
4841 * drained; otherwise, "rmdir parent/child parent" may fail.
4842 */
4843 if (css_has_online_children(&cgrp->self))
4844 return -EBUSY;
4845
4846 /*
4847 * Mark @cgrp dead. This prevents further task migration and child
4848 * creation by disabling cgroup_lock_live_group().
4849 */
4850 cgrp->self.flags &= ~CSS_ONLINE;
4851
4852 /* initiate massacre of all css's */
4853 for_each_css(css, ssid, cgrp)
4854 kill_css(css);
4855
4856 /*
4857 * Remove @cgrp directory along with the base files. @cgrp has an
4858 * extra ref on its kn.
4859 */
4860 kernfs_remove(cgrp->kn);
4861
4862 check_for_release(cgroup_parent(cgrp));
4863
4864 /* put the base reference */
4865 percpu_ref_kill(&cgrp->self.refcnt);
4866
4867 return 0;
4868 };
4869
4870 static int cgroup_rmdir(struct kernfs_node *kn)
4871 {
4872 struct cgroup *cgrp;
4873 int ret = 0;
4874
4875 cgrp = cgroup_kn_lock_live(kn);
4876 if (!cgrp)
4877 return 0;
4878
4879 ret = cgroup_destroy_locked(cgrp);
4880
4881 cgroup_kn_unlock(kn);
4882 return ret;
4883 }
4884
4885 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4886 .remount_fs = cgroup_remount,
4887 .show_options = cgroup_show_options,
4888 .mkdir = cgroup_mkdir,
4889 .rmdir = cgroup_rmdir,
4890 .rename = cgroup_rename,
4891 };
4892
4893 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
4894 {
4895 struct cgroup_subsys_state *css;
4896
4897 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4898
4899 mutex_lock(&cgroup_mutex);
4900
4901 idr_init(&ss->css_idr);
4902 INIT_LIST_HEAD(&ss->cfts);
4903
4904 /* Create the root cgroup state for this subsystem */
4905 ss->root = &cgrp_dfl_root;
4906 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
4907 /* We don't handle early failures gracefully */
4908 BUG_ON(IS_ERR(css));
4909 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
4910
4911 /*
4912 * Root csses are never destroyed and we can't initialize
4913 * percpu_ref during early init. Disable refcnting.
4914 */
4915 css->flags |= CSS_NO_REF;
4916
4917 if (early) {
4918 /* allocation can't be done safely during early init */
4919 css->id = 1;
4920 } else {
4921 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4922 BUG_ON(css->id < 0);
4923 }
4924
4925 /* Update the init_css_set to contain a subsys
4926 * pointer to this state - since the subsystem is
4927 * newly registered, all tasks and hence the
4928 * init_css_set is in the subsystem's root cgroup. */
4929 init_css_set.subsys[ss->id] = css;
4930
4931 need_forkexit_callback |= ss->fork || ss->exit;
4932
4933 /* At system boot, before all subsystems have been
4934 * registered, no tasks have been forked, so we don't
4935 * need to invoke fork callbacks here. */
4936 BUG_ON(!list_empty(&init_task.tasks));
4937
4938 BUG_ON(online_css(css));
4939
4940 mutex_unlock(&cgroup_mutex);
4941 }
4942
4943 /**
4944 * cgroup_init_early - cgroup initialization at system boot
4945 *
4946 * Initialize cgroups at system boot, and initialize any
4947 * subsystems that request early init.
4948 */
4949 int __init cgroup_init_early(void)
4950 {
4951 static struct cgroup_sb_opts __initdata opts;
4952 struct cgroup_subsys *ss;
4953 int i;
4954
4955 init_cgroup_root(&cgrp_dfl_root, &opts);
4956 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4957
4958 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
4959
4960 for_each_subsys(ss, i) {
4961 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
4962 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4963 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
4964 ss->id, ss->name);
4965 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4966 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4967
4968 ss->id = i;
4969 ss->name = cgroup_subsys_name[i];
4970
4971 if (ss->early_init)
4972 cgroup_init_subsys(ss, true);
4973 }
4974 return 0;
4975 }
4976
4977 /**
4978 * cgroup_init - cgroup initialization
4979 *
4980 * Register cgroup filesystem and /proc file, and initialize
4981 * any subsystems that didn't request early init.
4982 */
4983 int __init cgroup_init(void)
4984 {
4985 struct cgroup_subsys *ss;
4986 unsigned long key;
4987 int ssid, err;
4988
4989 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4990 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
4991
4992 mutex_lock(&cgroup_mutex);
4993
4994 /* Add init_css_set to the hash table */
4995 key = css_set_hash(init_css_set.subsys);
4996 hash_add(css_set_table, &init_css_set.hlist, key);
4997
4998 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4999
5000 mutex_unlock(&cgroup_mutex);
5001
5002 for_each_subsys(ss, ssid) {
5003 if (ss->early_init) {
5004 struct cgroup_subsys_state *css =
5005 init_css_set.subsys[ss->id];
5006
5007 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5008 GFP_KERNEL);
5009 BUG_ON(css->id < 0);
5010 } else {
5011 cgroup_init_subsys(ss, false);
5012 }
5013
5014 list_add_tail(&init_css_set.e_cset_node[ssid],
5015 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5016
5017 /*
5018 * Setting dfl_root subsys_mask needs to consider the
5019 * disabled flag and cftype registration needs kmalloc,
5020 * both of which aren't available during early_init.
5021 */
5022 if (ss->disabled)
5023 continue;
5024
5025 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5026
5027 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5028 ss->dfl_cftypes = ss->legacy_cftypes;
5029
5030 if (!ss->dfl_cftypes)
5031 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5032
5033 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5034 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5035 } else {
5036 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5037 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5038 }
5039 }
5040
5041 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
5042 if (!cgroup_kobj)
5043 return -ENOMEM;
5044
5045 err = register_filesystem(&cgroup_fs_type);
5046 if (err < 0) {
5047 kobject_put(cgroup_kobj);
5048 return err;
5049 }
5050
5051 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
5052 return 0;
5053 }
5054
5055 static int __init cgroup_wq_init(void)
5056 {
5057 /*
5058 * There isn't much point in executing destruction path in
5059 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5060 * Use 1 for @max_active.
5061 *
5062 * We would prefer to do this in cgroup_init() above, but that
5063 * is called before init_workqueues(): so leave this until after.
5064 */
5065 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5066 BUG_ON(!cgroup_destroy_wq);
5067
5068 /*
5069 * Used to destroy pidlists and separate to serve as flush domain.
5070 * Cap @max_active to 1 too.
5071 */
5072 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5073 0, 1);
5074 BUG_ON(!cgroup_pidlist_destroy_wq);
5075
5076 return 0;
5077 }
5078 core_initcall(cgroup_wq_init);
5079
5080 /*
5081 * proc_cgroup_show()
5082 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5083 * - Used for /proc/<pid>/cgroup.
5084 */
5085 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5086 struct pid *pid, struct task_struct *tsk)
5087 {
5088 char *buf, *path;
5089 int retval;
5090 struct cgroup_root *root;
5091
5092 retval = -ENOMEM;
5093 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5094 if (!buf)
5095 goto out;
5096
5097 mutex_lock(&cgroup_mutex);
5098 down_read(&css_set_rwsem);
5099
5100 for_each_root(root) {
5101 struct cgroup_subsys *ss;
5102 struct cgroup *cgrp;
5103 int ssid, count = 0;
5104
5105 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5106 continue;
5107
5108 seq_printf(m, "%d:", root->hierarchy_id);
5109 for_each_subsys(ss, ssid)
5110 if (root->subsys_mask & (1 << ssid))
5111 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
5112 if (strlen(root->name))
5113 seq_printf(m, "%sname=%s", count ? "," : "",
5114 root->name);
5115 seq_putc(m, ':');
5116 cgrp = task_cgroup_from_root(tsk, root);
5117 path = cgroup_path(cgrp, buf, PATH_MAX);
5118 if (!path) {
5119 retval = -ENAMETOOLONG;
5120 goto out_unlock;
5121 }
5122 seq_puts(m, path);
5123 seq_putc(m, '\n');
5124 }
5125
5126 retval = 0;
5127 out_unlock:
5128 up_read(&css_set_rwsem);
5129 mutex_unlock(&cgroup_mutex);
5130 kfree(buf);
5131 out:
5132 return retval;
5133 }
5134
5135 /* Display information about each subsystem and each hierarchy */
5136 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5137 {
5138 struct cgroup_subsys *ss;
5139 int i;
5140
5141 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5142 /*
5143 * ideally we don't want subsystems moving around while we do this.
5144 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5145 * subsys/hierarchy state.
5146 */
5147 mutex_lock(&cgroup_mutex);
5148
5149 for_each_subsys(ss, i)
5150 seq_printf(m, "%s\t%d\t%d\t%d\n",
5151 ss->name, ss->root->hierarchy_id,
5152 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
5153
5154 mutex_unlock(&cgroup_mutex);
5155 return 0;
5156 }
5157
5158 static int cgroupstats_open(struct inode *inode, struct file *file)
5159 {
5160 return single_open(file, proc_cgroupstats_show, NULL);
5161 }
5162
5163 static const struct file_operations proc_cgroupstats_operations = {
5164 .open = cgroupstats_open,
5165 .read = seq_read,
5166 .llseek = seq_lseek,
5167 .release = single_release,
5168 };
5169
5170 /**
5171 * cgroup_fork - initialize cgroup related fields during copy_process()
5172 * @child: pointer to task_struct of forking parent process.
5173 *
5174 * A task is associated with the init_css_set until cgroup_post_fork()
5175 * attaches it to the parent's css_set. Empty cg_list indicates that
5176 * @child isn't holding reference to its css_set.
5177 */
5178 void cgroup_fork(struct task_struct *child)
5179 {
5180 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5181 INIT_LIST_HEAD(&child->cg_list);
5182 }
5183
5184 /**
5185 * cgroup_post_fork - called on a new task after adding it to the task list
5186 * @child: the task in question
5187 *
5188 * Adds the task to the list running through its css_set if necessary and
5189 * call the subsystem fork() callbacks. Has to be after the task is
5190 * visible on the task list in case we race with the first call to
5191 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5192 * list.
5193 */
5194 void cgroup_post_fork(struct task_struct *child)
5195 {
5196 struct cgroup_subsys *ss;
5197 int i;
5198
5199 /*
5200 * This may race against cgroup_enable_task_cg_lists(). As that
5201 * function sets use_task_css_set_links before grabbing
5202 * tasklist_lock and we just went through tasklist_lock to add
5203 * @child, it's guaranteed that either we see the set
5204 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5205 * @child during its iteration.
5206 *
5207 * If we won the race, @child is associated with %current's
5208 * css_set. Grabbing css_set_rwsem guarantees both that the
5209 * association is stable, and, on completion of the parent's
5210 * migration, @child is visible in the source of migration or
5211 * already in the destination cgroup. This guarantee is necessary
5212 * when implementing operations which need to migrate all tasks of
5213 * a cgroup to another.
5214 *
5215 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5216 * will remain in init_css_set. This is safe because all tasks are
5217 * in the init_css_set before cg_links is enabled and there's no
5218 * operation which transfers all tasks out of init_css_set.
5219 */
5220 if (use_task_css_set_links) {
5221 struct css_set *cset;
5222
5223 down_write(&css_set_rwsem);
5224 cset = task_css_set(current);
5225 if (list_empty(&child->cg_list)) {
5226 rcu_assign_pointer(child->cgroups, cset);
5227 list_add(&child->cg_list, &cset->tasks);
5228 get_css_set(cset);
5229 }
5230 up_write(&css_set_rwsem);
5231 }
5232
5233 /*
5234 * Call ss->fork(). This must happen after @child is linked on
5235 * css_set; otherwise, @child might change state between ->fork()
5236 * and addition to css_set.
5237 */
5238 if (need_forkexit_callback) {
5239 for_each_subsys(ss, i)
5240 if (ss->fork)
5241 ss->fork(child);
5242 }
5243 }
5244
5245 /**
5246 * cgroup_exit - detach cgroup from exiting task
5247 * @tsk: pointer to task_struct of exiting process
5248 *
5249 * Description: Detach cgroup from @tsk and release it.
5250 *
5251 * Note that cgroups marked notify_on_release force every task in
5252 * them to take the global cgroup_mutex mutex when exiting.
5253 * This could impact scaling on very large systems. Be reluctant to
5254 * use notify_on_release cgroups where very high task exit scaling
5255 * is required on large systems.
5256 *
5257 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5258 * call cgroup_exit() while the task is still competent to handle
5259 * notify_on_release(), then leave the task attached to the root cgroup in
5260 * each hierarchy for the remainder of its exit. No need to bother with
5261 * init_css_set refcnting. init_css_set never goes away and we can't race
5262 * with migration path - PF_EXITING is visible to migration path.
5263 */
5264 void cgroup_exit(struct task_struct *tsk)
5265 {
5266 struct cgroup_subsys *ss;
5267 struct css_set *cset;
5268 bool put_cset = false;
5269 int i;
5270
5271 /*
5272 * Unlink from @tsk from its css_set. As migration path can't race
5273 * with us, we can check cg_list without grabbing css_set_rwsem.
5274 */
5275 if (!list_empty(&tsk->cg_list)) {
5276 down_write(&css_set_rwsem);
5277 list_del_init(&tsk->cg_list);
5278 up_write(&css_set_rwsem);
5279 put_cset = true;
5280 }
5281
5282 /* Reassign the task to the init_css_set. */
5283 cset = task_css_set(tsk);
5284 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
5285
5286 if (need_forkexit_callback) {
5287 /* see cgroup_post_fork() for details */
5288 for_each_subsys(ss, i) {
5289 if (ss->exit) {
5290 struct cgroup_subsys_state *old_css = cset->subsys[i];
5291 struct cgroup_subsys_state *css = task_css(tsk, i);
5292
5293 ss->exit(css, old_css, tsk);
5294 }
5295 }
5296 }
5297
5298 if (put_cset)
5299 put_css_set(cset);
5300 }
5301
5302 static void check_for_release(struct cgroup *cgrp)
5303 {
5304 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
5305 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5306 schedule_work(&cgrp->release_agent_work);
5307 }
5308
5309 /*
5310 * Notify userspace when a cgroup is released, by running the
5311 * configured release agent with the name of the cgroup (path
5312 * relative to the root of cgroup file system) as the argument.
5313 *
5314 * Most likely, this user command will try to rmdir this cgroup.
5315 *
5316 * This races with the possibility that some other task will be
5317 * attached to this cgroup before it is removed, or that some other
5318 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5319 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5320 * unused, and this cgroup will be reprieved from its death sentence,
5321 * to continue to serve a useful existence. Next time it's released,
5322 * we will get notified again, if it still has 'notify_on_release' set.
5323 *
5324 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5325 * means only wait until the task is successfully execve()'d. The
5326 * separate release agent task is forked by call_usermodehelper(),
5327 * then control in this thread returns here, without waiting for the
5328 * release agent task. We don't bother to wait because the caller of
5329 * this routine has no use for the exit status of the release agent
5330 * task, so no sense holding our caller up for that.
5331 */
5332 static void cgroup_release_agent(struct work_struct *work)
5333 {
5334 struct cgroup *cgrp =
5335 container_of(work, struct cgroup, release_agent_work);
5336 char *pathbuf = NULL, *agentbuf = NULL, *path;
5337 char *argv[3], *envp[3];
5338
5339 mutex_lock(&cgroup_mutex);
5340
5341 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5342 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5343 if (!pathbuf || !agentbuf)
5344 goto out;
5345
5346 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5347 if (!path)
5348 goto out;
5349
5350 argv[0] = agentbuf;
5351 argv[1] = path;
5352 argv[2] = NULL;
5353
5354 /* minimal command environment */
5355 envp[0] = "HOME=/";
5356 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5357 envp[2] = NULL;
5358
5359 mutex_unlock(&cgroup_mutex);
5360 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5361 goto out_free;
5362 out:
5363 mutex_unlock(&cgroup_mutex);
5364 out_free:
5365 kfree(agentbuf);
5366 kfree(pathbuf);
5367 }
5368
5369 static int __init cgroup_disable(char *str)
5370 {
5371 struct cgroup_subsys *ss;
5372 char *token;
5373 int i;
5374
5375 while ((token = strsep(&str, ",")) != NULL) {
5376 if (!*token)
5377 continue;
5378
5379 for_each_subsys(ss, i) {
5380 if (!strcmp(token, ss->name)) {
5381 ss->disabled = 1;
5382 printk(KERN_INFO "Disabling %s control group"
5383 " subsystem\n", ss->name);
5384 break;
5385 }
5386 }
5387 }
5388 return 1;
5389 }
5390 __setup("cgroup_disable=", cgroup_disable);
5391
5392 static int __init cgroup_set_legacy_files_on_dfl(char *str)
5393 {
5394 printk("cgroup: using legacy files on the default hierarchy\n");
5395 cgroup_legacy_files_on_dfl = true;
5396 return 0;
5397 }
5398 __setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5399
5400 /**
5401 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5402 * @dentry: directory dentry of interest
5403 * @ss: subsystem of interest
5404 *
5405 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5406 * to get the corresponding css and return it. If such css doesn't exist
5407 * or can't be pinned, an ERR_PTR value is returned.
5408 */
5409 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5410 struct cgroup_subsys *ss)
5411 {
5412 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5413 struct cgroup_subsys_state *css = NULL;
5414 struct cgroup *cgrp;
5415
5416 /* is @dentry a cgroup dir? */
5417 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5418 kernfs_type(kn) != KERNFS_DIR)
5419 return ERR_PTR(-EBADF);
5420
5421 rcu_read_lock();
5422
5423 /*
5424 * This path doesn't originate from kernfs and @kn could already
5425 * have been or be removed at any point. @kn->priv is RCU
5426 * protected for this access. See css_release_work_fn() for details.
5427 */
5428 cgrp = rcu_dereference(kn->priv);
5429 if (cgrp)
5430 css = cgroup_css(cgrp, ss);
5431
5432 if (!css || !css_tryget_online(css))
5433 css = ERR_PTR(-ENOENT);
5434
5435 rcu_read_unlock();
5436 return css;
5437 }
5438
5439 /**
5440 * css_from_id - lookup css by id
5441 * @id: the cgroup id
5442 * @ss: cgroup subsys to be looked into
5443 *
5444 * Returns the css if there's valid one with @id, otherwise returns NULL.
5445 * Should be called under rcu_read_lock().
5446 */
5447 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5448 {
5449 WARN_ON_ONCE(!rcu_read_lock_held());
5450 return idr_find(&ss->css_idr, id);
5451 }
5452
5453 #ifdef CONFIG_CGROUP_DEBUG
5454 static struct cgroup_subsys_state *
5455 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5456 {
5457 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5458
5459 if (!css)
5460 return ERR_PTR(-ENOMEM);
5461
5462 return css;
5463 }
5464
5465 static void debug_css_free(struct cgroup_subsys_state *css)
5466 {
5467 kfree(css);
5468 }
5469
5470 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5471 struct cftype *cft)
5472 {
5473 return cgroup_task_count(css->cgroup);
5474 }
5475
5476 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5477 struct cftype *cft)
5478 {
5479 return (u64)(unsigned long)current->cgroups;
5480 }
5481
5482 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5483 struct cftype *cft)
5484 {
5485 u64 count;
5486
5487 rcu_read_lock();
5488 count = atomic_read(&task_css_set(current)->refcount);
5489 rcu_read_unlock();
5490 return count;
5491 }
5492
5493 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5494 {
5495 struct cgrp_cset_link *link;
5496 struct css_set *cset;
5497 char *name_buf;
5498
5499 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5500 if (!name_buf)
5501 return -ENOMEM;
5502
5503 down_read(&css_set_rwsem);
5504 rcu_read_lock();
5505 cset = rcu_dereference(current->cgroups);
5506 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5507 struct cgroup *c = link->cgrp;
5508
5509 cgroup_name(c, name_buf, NAME_MAX + 1);
5510 seq_printf(seq, "Root %d group %s\n",
5511 c->root->hierarchy_id, name_buf);
5512 }
5513 rcu_read_unlock();
5514 up_read(&css_set_rwsem);
5515 kfree(name_buf);
5516 return 0;
5517 }
5518
5519 #define MAX_TASKS_SHOWN_PER_CSS 25
5520 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5521 {
5522 struct cgroup_subsys_state *css = seq_css(seq);
5523 struct cgrp_cset_link *link;
5524
5525 down_read(&css_set_rwsem);
5526 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5527 struct css_set *cset = link->cset;
5528 struct task_struct *task;
5529 int count = 0;
5530
5531 seq_printf(seq, "css_set %p\n", cset);
5532
5533 list_for_each_entry(task, &cset->tasks, cg_list) {
5534 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5535 goto overflow;
5536 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5537 }
5538
5539 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5540 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5541 goto overflow;
5542 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5543 }
5544 continue;
5545 overflow:
5546 seq_puts(seq, " ...\n");
5547 }
5548 up_read(&css_set_rwsem);
5549 return 0;
5550 }
5551
5552 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5553 {
5554 return (!cgroup_has_tasks(css->cgroup) &&
5555 !css_has_online_children(&css->cgroup->self));
5556 }
5557
5558 static struct cftype debug_files[] = {
5559 {
5560 .name = "taskcount",
5561 .read_u64 = debug_taskcount_read,
5562 },
5563
5564 {
5565 .name = "current_css_set",
5566 .read_u64 = current_css_set_read,
5567 },
5568
5569 {
5570 .name = "current_css_set_refcount",
5571 .read_u64 = current_css_set_refcount_read,
5572 },
5573
5574 {
5575 .name = "current_css_set_cg_links",
5576 .seq_show = current_css_set_cg_links_read,
5577 },
5578
5579 {
5580 .name = "cgroup_css_links",
5581 .seq_show = cgroup_css_links_read,
5582 },
5583
5584 {
5585 .name = "releasable",
5586 .read_u64 = releasable_read,
5587 },
5588
5589 { } /* terminate */
5590 };
5591
5592 struct cgroup_subsys debug_cgrp_subsys = {
5593 .css_alloc = debug_css_alloc,
5594 .css_free = debug_css_free,
5595 .legacy_cftypes = debug_files,
5596 };
5597 #endif /* CONFIG_CGROUP_DEBUG */
This page took 0.136435 seconds and 4 git commands to generate.