net/mlx5: Kconfig: Fix MLX5_EN/VXLAN build issue
[deliverable/linux.git] / kernel / cpuset.c
1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
38 #include <linux/mm.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/namei.h>
43 #include <linux/pagemap.h>
44 #include <linux/proc_fs.h>
45 #include <linux/rcupdate.h>
46 #include <linux/sched.h>
47 #include <linux/seq_file.h>
48 #include <linux/security.h>
49 #include <linux/slab.h>
50 #include <linux/spinlock.h>
51 #include <linux/stat.h>
52 #include <linux/string.h>
53 #include <linux/time.h>
54 #include <linux/time64.h>
55 #include <linux/backing-dev.h>
56 #include <linux/sort.h>
57
58 #include <asm/uaccess.h>
59 #include <linux/atomic.h>
60 #include <linux/mutex.h>
61 #include <linux/cgroup.h>
62 #include <linux/wait.h>
63
64 struct static_key cpusets_enabled_key __read_mostly = STATIC_KEY_INIT_FALSE;
65
66 /* See "Frequency meter" comments, below. */
67
68 struct fmeter {
69 int cnt; /* unprocessed events count */
70 int val; /* most recent output value */
71 time64_t time; /* clock (secs) when val computed */
72 spinlock_t lock; /* guards read or write of above */
73 };
74
75 struct cpuset {
76 struct cgroup_subsys_state css;
77
78 unsigned long flags; /* "unsigned long" so bitops work */
79
80 /*
81 * On default hierarchy:
82 *
83 * The user-configured masks can only be changed by writing to
84 * cpuset.cpus and cpuset.mems, and won't be limited by the
85 * parent masks.
86 *
87 * The effective masks is the real masks that apply to the tasks
88 * in the cpuset. They may be changed if the configured masks are
89 * changed or hotplug happens.
90 *
91 * effective_mask == configured_mask & parent's effective_mask,
92 * and if it ends up empty, it will inherit the parent's mask.
93 *
94 *
95 * On legacy hierachy:
96 *
97 * The user-configured masks are always the same with effective masks.
98 */
99
100 /* user-configured CPUs and Memory Nodes allow to tasks */
101 cpumask_var_t cpus_allowed;
102 nodemask_t mems_allowed;
103
104 /* effective CPUs and Memory Nodes allow to tasks */
105 cpumask_var_t effective_cpus;
106 nodemask_t effective_mems;
107
108 /*
109 * This is old Memory Nodes tasks took on.
110 *
111 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
112 * - A new cpuset's old_mems_allowed is initialized when some
113 * task is moved into it.
114 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
115 * cpuset.mems_allowed and have tasks' nodemask updated, and
116 * then old_mems_allowed is updated to mems_allowed.
117 */
118 nodemask_t old_mems_allowed;
119
120 struct fmeter fmeter; /* memory_pressure filter */
121
122 /*
123 * Tasks are being attached to this cpuset. Used to prevent
124 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
125 */
126 int attach_in_progress;
127
128 /* partition number for rebuild_sched_domains() */
129 int pn;
130
131 /* for custom sched domain */
132 int relax_domain_level;
133 };
134
135 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
136 {
137 return css ? container_of(css, struct cpuset, css) : NULL;
138 }
139
140 /* Retrieve the cpuset for a task */
141 static inline struct cpuset *task_cs(struct task_struct *task)
142 {
143 return css_cs(task_css(task, cpuset_cgrp_id));
144 }
145
146 static inline struct cpuset *parent_cs(struct cpuset *cs)
147 {
148 return css_cs(cs->css.parent);
149 }
150
151 #ifdef CONFIG_NUMA
152 static inline bool task_has_mempolicy(struct task_struct *task)
153 {
154 return task->mempolicy;
155 }
156 #else
157 static inline bool task_has_mempolicy(struct task_struct *task)
158 {
159 return false;
160 }
161 #endif
162
163
164 /* bits in struct cpuset flags field */
165 typedef enum {
166 CS_ONLINE,
167 CS_CPU_EXCLUSIVE,
168 CS_MEM_EXCLUSIVE,
169 CS_MEM_HARDWALL,
170 CS_MEMORY_MIGRATE,
171 CS_SCHED_LOAD_BALANCE,
172 CS_SPREAD_PAGE,
173 CS_SPREAD_SLAB,
174 } cpuset_flagbits_t;
175
176 /* convenient tests for these bits */
177 static inline bool is_cpuset_online(const struct cpuset *cs)
178 {
179 return test_bit(CS_ONLINE, &cs->flags);
180 }
181
182 static inline int is_cpu_exclusive(const struct cpuset *cs)
183 {
184 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
185 }
186
187 static inline int is_mem_exclusive(const struct cpuset *cs)
188 {
189 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
190 }
191
192 static inline int is_mem_hardwall(const struct cpuset *cs)
193 {
194 return test_bit(CS_MEM_HARDWALL, &cs->flags);
195 }
196
197 static inline int is_sched_load_balance(const struct cpuset *cs)
198 {
199 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
200 }
201
202 static inline int is_memory_migrate(const struct cpuset *cs)
203 {
204 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
205 }
206
207 static inline int is_spread_page(const struct cpuset *cs)
208 {
209 return test_bit(CS_SPREAD_PAGE, &cs->flags);
210 }
211
212 static inline int is_spread_slab(const struct cpuset *cs)
213 {
214 return test_bit(CS_SPREAD_SLAB, &cs->flags);
215 }
216
217 static struct cpuset top_cpuset = {
218 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
219 (1 << CS_MEM_EXCLUSIVE)),
220 };
221
222 /**
223 * cpuset_for_each_child - traverse online children of a cpuset
224 * @child_cs: loop cursor pointing to the current child
225 * @pos_css: used for iteration
226 * @parent_cs: target cpuset to walk children of
227 *
228 * Walk @child_cs through the online children of @parent_cs. Must be used
229 * with RCU read locked.
230 */
231 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
232 css_for_each_child((pos_css), &(parent_cs)->css) \
233 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
234
235 /**
236 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
237 * @des_cs: loop cursor pointing to the current descendant
238 * @pos_css: used for iteration
239 * @root_cs: target cpuset to walk ancestor of
240 *
241 * Walk @des_cs through the online descendants of @root_cs. Must be used
242 * with RCU read locked. The caller may modify @pos_css by calling
243 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
244 * iteration and the first node to be visited.
245 */
246 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
247 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
248 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
249
250 /*
251 * There are two global locks guarding cpuset structures - cpuset_mutex and
252 * callback_lock. We also require taking task_lock() when dereferencing a
253 * task's cpuset pointer. See "The task_lock() exception", at the end of this
254 * comment.
255 *
256 * A task must hold both locks to modify cpusets. If a task holds
257 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
258 * is the only task able to also acquire callback_lock and be able to
259 * modify cpusets. It can perform various checks on the cpuset structure
260 * first, knowing nothing will change. It can also allocate memory while
261 * just holding cpuset_mutex. While it is performing these checks, various
262 * callback routines can briefly acquire callback_lock to query cpusets.
263 * Once it is ready to make the changes, it takes callback_lock, blocking
264 * everyone else.
265 *
266 * Calls to the kernel memory allocator can not be made while holding
267 * callback_lock, as that would risk double tripping on callback_lock
268 * from one of the callbacks into the cpuset code from within
269 * __alloc_pages().
270 *
271 * If a task is only holding callback_lock, then it has read-only
272 * access to cpusets.
273 *
274 * Now, the task_struct fields mems_allowed and mempolicy may be changed
275 * by other task, we use alloc_lock in the task_struct fields to protect
276 * them.
277 *
278 * The cpuset_common_file_read() handlers only hold callback_lock across
279 * small pieces of code, such as when reading out possibly multi-word
280 * cpumasks and nodemasks.
281 *
282 * Accessing a task's cpuset should be done in accordance with the
283 * guidelines for accessing subsystem state in kernel/cgroup.c
284 */
285
286 static DEFINE_MUTEX(cpuset_mutex);
287 static DEFINE_SPINLOCK(callback_lock);
288
289 static struct workqueue_struct *cpuset_migrate_mm_wq;
290
291 /*
292 * CPU / memory hotplug is handled asynchronously.
293 */
294 static void cpuset_hotplug_workfn(struct work_struct *work);
295 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
296
297 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
298
299 /*
300 * This is ugly, but preserves the userspace API for existing cpuset
301 * users. If someone tries to mount the "cpuset" filesystem, we
302 * silently switch it to mount "cgroup" instead
303 */
304 static struct dentry *cpuset_mount(struct file_system_type *fs_type,
305 int flags, const char *unused_dev_name, void *data)
306 {
307 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
308 struct dentry *ret = ERR_PTR(-ENODEV);
309 if (cgroup_fs) {
310 char mountopts[] =
311 "cpuset,noprefix,"
312 "release_agent=/sbin/cpuset_release_agent";
313 ret = cgroup_fs->mount(cgroup_fs, flags,
314 unused_dev_name, mountopts);
315 put_filesystem(cgroup_fs);
316 }
317 return ret;
318 }
319
320 static struct file_system_type cpuset_fs_type = {
321 .name = "cpuset",
322 .mount = cpuset_mount,
323 };
324
325 /*
326 * Return in pmask the portion of a cpusets's cpus_allowed that
327 * are online. If none are online, walk up the cpuset hierarchy
328 * until we find one that does have some online cpus. The top
329 * cpuset always has some cpus online.
330 *
331 * One way or another, we guarantee to return some non-empty subset
332 * of cpu_online_mask.
333 *
334 * Call with callback_lock or cpuset_mutex held.
335 */
336 static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask)
337 {
338 while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask))
339 cs = parent_cs(cs);
340 cpumask_and(pmask, cs->effective_cpus, cpu_online_mask);
341 }
342
343 /*
344 * Return in *pmask the portion of a cpusets's mems_allowed that
345 * are online, with memory. If none are online with memory, walk
346 * up the cpuset hierarchy until we find one that does have some
347 * online mems. The top cpuset always has some mems online.
348 *
349 * One way or another, we guarantee to return some non-empty subset
350 * of node_states[N_MEMORY].
351 *
352 * Call with callback_lock or cpuset_mutex held.
353 */
354 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
355 {
356 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
357 cs = parent_cs(cs);
358 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
359 }
360
361 /*
362 * update task's spread flag if cpuset's page/slab spread flag is set
363 *
364 * Call with callback_lock or cpuset_mutex held.
365 */
366 static void cpuset_update_task_spread_flag(struct cpuset *cs,
367 struct task_struct *tsk)
368 {
369 if (is_spread_page(cs))
370 task_set_spread_page(tsk);
371 else
372 task_clear_spread_page(tsk);
373
374 if (is_spread_slab(cs))
375 task_set_spread_slab(tsk);
376 else
377 task_clear_spread_slab(tsk);
378 }
379
380 /*
381 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
382 *
383 * One cpuset is a subset of another if all its allowed CPUs and
384 * Memory Nodes are a subset of the other, and its exclusive flags
385 * are only set if the other's are set. Call holding cpuset_mutex.
386 */
387
388 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
389 {
390 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
391 nodes_subset(p->mems_allowed, q->mems_allowed) &&
392 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
393 is_mem_exclusive(p) <= is_mem_exclusive(q);
394 }
395
396 /**
397 * alloc_trial_cpuset - allocate a trial cpuset
398 * @cs: the cpuset that the trial cpuset duplicates
399 */
400 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
401 {
402 struct cpuset *trial;
403
404 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
405 if (!trial)
406 return NULL;
407
408 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL))
409 goto free_cs;
410 if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL))
411 goto free_cpus;
412
413 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
414 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
415 return trial;
416
417 free_cpus:
418 free_cpumask_var(trial->cpus_allowed);
419 free_cs:
420 kfree(trial);
421 return NULL;
422 }
423
424 /**
425 * free_trial_cpuset - free the trial cpuset
426 * @trial: the trial cpuset to be freed
427 */
428 static void free_trial_cpuset(struct cpuset *trial)
429 {
430 free_cpumask_var(trial->effective_cpus);
431 free_cpumask_var(trial->cpus_allowed);
432 kfree(trial);
433 }
434
435 /*
436 * validate_change() - Used to validate that any proposed cpuset change
437 * follows the structural rules for cpusets.
438 *
439 * If we replaced the flag and mask values of the current cpuset
440 * (cur) with those values in the trial cpuset (trial), would
441 * our various subset and exclusive rules still be valid? Presumes
442 * cpuset_mutex held.
443 *
444 * 'cur' is the address of an actual, in-use cpuset. Operations
445 * such as list traversal that depend on the actual address of the
446 * cpuset in the list must use cur below, not trial.
447 *
448 * 'trial' is the address of bulk structure copy of cur, with
449 * perhaps one or more of the fields cpus_allowed, mems_allowed,
450 * or flags changed to new, trial values.
451 *
452 * Return 0 if valid, -errno if not.
453 */
454
455 static int validate_change(struct cpuset *cur, struct cpuset *trial)
456 {
457 struct cgroup_subsys_state *css;
458 struct cpuset *c, *par;
459 int ret;
460
461 rcu_read_lock();
462
463 /* Each of our child cpusets must be a subset of us */
464 ret = -EBUSY;
465 cpuset_for_each_child(c, css, cur)
466 if (!is_cpuset_subset(c, trial))
467 goto out;
468
469 /* Remaining checks don't apply to root cpuset */
470 ret = 0;
471 if (cur == &top_cpuset)
472 goto out;
473
474 par = parent_cs(cur);
475
476 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
477 ret = -EACCES;
478 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
479 !is_cpuset_subset(trial, par))
480 goto out;
481
482 /*
483 * If either I or some sibling (!= me) is exclusive, we can't
484 * overlap
485 */
486 ret = -EINVAL;
487 cpuset_for_each_child(c, css, par) {
488 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
489 c != cur &&
490 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
491 goto out;
492 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
493 c != cur &&
494 nodes_intersects(trial->mems_allowed, c->mems_allowed))
495 goto out;
496 }
497
498 /*
499 * Cpusets with tasks - existing or newly being attached - can't
500 * be changed to have empty cpus_allowed or mems_allowed.
501 */
502 ret = -ENOSPC;
503 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
504 if (!cpumask_empty(cur->cpus_allowed) &&
505 cpumask_empty(trial->cpus_allowed))
506 goto out;
507 if (!nodes_empty(cur->mems_allowed) &&
508 nodes_empty(trial->mems_allowed))
509 goto out;
510 }
511
512 /*
513 * We can't shrink if we won't have enough room for SCHED_DEADLINE
514 * tasks.
515 */
516 ret = -EBUSY;
517 if (is_cpu_exclusive(cur) &&
518 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
519 trial->cpus_allowed))
520 goto out;
521
522 ret = 0;
523 out:
524 rcu_read_unlock();
525 return ret;
526 }
527
528 #ifdef CONFIG_SMP
529 /*
530 * Helper routine for generate_sched_domains().
531 * Do cpusets a, b have overlapping effective cpus_allowed masks?
532 */
533 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
534 {
535 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
536 }
537
538 static void
539 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
540 {
541 if (dattr->relax_domain_level < c->relax_domain_level)
542 dattr->relax_domain_level = c->relax_domain_level;
543 return;
544 }
545
546 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
547 struct cpuset *root_cs)
548 {
549 struct cpuset *cp;
550 struct cgroup_subsys_state *pos_css;
551
552 rcu_read_lock();
553 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
554 /* skip the whole subtree if @cp doesn't have any CPU */
555 if (cpumask_empty(cp->cpus_allowed)) {
556 pos_css = css_rightmost_descendant(pos_css);
557 continue;
558 }
559
560 if (is_sched_load_balance(cp))
561 update_domain_attr(dattr, cp);
562 }
563 rcu_read_unlock();
564 }
565
566 /*
567 * generate_sched_domains()
568 *
569 * This function builds a partial partition of the systems CPUs
570 * A 'partial partition' is a set of non-overlapping subsets whose
571 * union is a subset of that set.
572 * The output of this function needs to be passed to kernel/sched/core.c
573 * partition_sched_domains() routine, which will rebuild the scheduler's
574 * load balancing domains (sched domains) as specified by that partial
575 * partition.
576 *
577 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
578 * for a background explanation of this.
579 *
580 * Does not return errors, on the theory that the callers of this
581 * routine would rather not worry about failures to rebuild sched
582 * domains when operating in the severe memory shortage situations
583 * that could cause allocation failures below.
584 *
585 * Must be called with cpuset_mutex held.
586 *
587 * The three key local variables below are:
588 * q - a linked-list queue of cpuset pointers, used to implement a
589 * top-down scan of all cpusets. This scan loads a pointer
590 * to each cpuset marked is_sched_load_balance into the
591 * array 'csa'. For our purposes, rebuilding the schedulers
592 * sched domains, we can ignore !is_sched_load_balance cpusets.
593 * csa - (for CpuSet Array) Array of pointers to all the cpusets
594 * that need to be load balanced, for convenient iterative
595 * access by the subsequent code that finds the best partition,
596 * i.e the set of domains (subsets) of CPUs such that the
597 * cpus_allowed of every cpuset marked is_sched_load_balance
598 * is a subset of one of these domains, while there are as
599 * many such domains as possible, each as small as possible.
600 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
601 * the kernel/sched/core.c routine partition_sched_domains() in a
602 * convenient format, that can be easily compared to the prior
603 * value to determine what partition elements (sched domains)
604 * were changed (added or removed.)
605 *
606 * Finding the best partition (set of domains):
607 * The triple nested loops below over i, j, k scan over the
608 * load balanced cpusets (using the array of cpuset pointers in
609 * csa[]) looking for pairs of cpusets that have overlapping
610 * cpus_allowed, but which don't have the same 'pn' partition
611 * number and gives them in the same partition number. It keeps
612 * looping on the 'restart' label until it can no longer find
613 * any such pairs.
614 *
615 * The union of the cpus_allowed masks from the set of
616 * all cpusets having the same 'pn' value then form the one
617 * element of the partition (one sched domain) to be passed to
618 * partition_sched_domains().
619 */
620 static int generate_sched_domains(cpumask_var_t **domains,
621 struct sched_domain_attr **attributes)
622 {
623 struct cpuset *cp; /* scans q */
624 struct cpuset **csa; /* array of all cpuset ptrs */
625 int csn; /* how many cpuset ptrs in csa so far */
626 int i, j, k; /* indices for partition finding loops */
627 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
628 cpumask_var_t non_isolated_cpus; /* load balanced CPUs */
629 struct sched_domain_attr *dattr; /* attributes for custom domains */
630 int ndoms = 0; /* number of sched domains in result */
631 int nslot; /* next empty doms[] struct cpumask slot */
632 struct cgroup_subsys_state *pos_css;
633
634 doms = NULL;
635 dattr = NULL;
636 csa = NULL;
637
638 if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL))
639 goto done;
640 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
641
642 /* Special case for the 99% of systems with one, full, sched domain */
643 if (is_sched_load_balance(&top_cpuset)) {
644 ndoms = 1;
645 doms = alloc_sched_domains(ndoms);
646 if (!doms)
647 goto done;
648
649 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
650 if (dattr) {
651 *dattr = SD_ATTR_INIT;
652 update_domain_attr_tree(dattr, &top_cpuset);
653 }
654 cpumask_and(doms[0], top_cpuset.effective_cpus,
655 non_isolated_cpus);
656
657 goto done;
658 }
659
660 csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL);
661 if (!csa)
662 goto done;
663 csn = 0;
664
665 rcu_read_lock();
666 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
667 if (cp == &top_cpuset)
668 continue;
669 /*
670 * Continue traversing beyond @cp iff @cp has some CPUs and
671 * isn't load balancing. The former is obvious. The
672 * latter: All child cpusets contain a subset of the
673 * parent's cpus, so just skip them, and then we call
674 * update_domain_attr_tree() to calc relax_domain_level of
675 * the corresponding sched domain.
676 */
677 if (!cpumask_empty(cp->cpus_allowed) &&
678 !(is_sched_load_balance(cp) &&
679 cpumask_intersects(cp->cpus_allowed, non_isolated_cpus)))
680 continue;
681
682 if (is_sched_load_balance(cp))
683 csa[csn++] = cp;
684
685 /* skip @cp's subtree */
686 pos_css = css_rightmost_descendant(pos_css);
687 }
688 rcu_read_unlock();
689
690 for (i = 0; i < csn; i++)
691 csa[i]->pn = i;
692 ndoms = csn;
693
694 restart:
695 /* Find the best partition (set of sched domains) */
696 for (i = 0; i < csn; i++) {
697 struct cpuset *a = csa[i];
698 int apn = a->pn;
699
700 for (j = 0; j < csn; j++) {
701 struct cpuset *b = csa[j];
702 int bpn = b->pn;
703
704 if (apn != bpn && cpusets_overlap(a, b)) {
705 for (k = 0; k < csn; k++) {
706 struct cpuset *c = csa[k];
707
708 if (c->pn == bpn)
709 c->pn = apn;
710 }
711 ndoms--; /* one less element */
712 goto restart;
713 }
714 }
715 }
716
717 /*
718 * Now we know how many domains to create.
719 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
720 */
721 doms = alloc_sched_domains(ndoms);
722 if (!doms)
723 goto done;
724
725 /*
726 * The rest of the code, including the scheduler, can deal with
727 * dattr==NULL case. No need to abort if alloc fails.
728 */
729 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
730
731 for (nslot = 0, i = 0; i < csn; i++) {
732 struct cpuset *a = csa[i];
733 struct cpumask *dp;
734 int apn = a->pn;
735
736 if (apn < 0) {
737 /* Skip completed partitions */
738 continue;
739 }
740
741 dp = doms[nslot];
742
743 if (nslot == ndoms) {
744 static int warnings = 10;
745 if (warnings) {
746 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
747 nslot, ndoms, csn, i, apn);
748 warnings--;
749 }
750 continue;
751 }
752
753 cpumask_clear(dp);
754 if (dattr)
755 *(dattr + nslot) = SD_ATTR_INIT;
756 for (j = i; j < csn; j++) {
757 struct cpuset *b = csa[j];
758
759 if (apn == b->pn) {
760 cpumask_or(dp, dp, b->effective_cpus);
761 cpumask_and(dp, dp, non_isolated_cpus);
762 if (dattr)
763 update_domain_attr_tree(dattr + nslot, b);
764
765 /* Done with this partition */
766 b->pn = -1;
767 }
768 }
769 nslot++;
770 }
771 BUG_ON(nslot != ndoms);
772
773 done:
774 free_cpumask_var(non_isolated_cpus);
775 kfree(csa);
776
777 /*
778 * Fallback to the default domain if kmalloc() failed.
779 * See comments in partition_sched_domains().
780 */
781 if (doms == NULL)
782 ndoms = 1;
783
784 *domains = doms;
785 *attributes = dattr;
786 return ndoms;
787 }
788
789 /*
790 * Rebuild scheduler domains.
791 *
792 * If the flag 'sched_load_balance' of any cpuset with non-empty
793 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
794 * which has that flag enabled, or if any cpuset with a non-empty
795 * 'cpus' is removed, then call this routine to rebuild the
796 * scheduler's dynamic sched domains.
797 *
798 * Call with cpuset_mutex held. Takes get_online_cpus().
799 */
800 static void rebuild_sched_domains_locked(void)
801 {
802 struct sched_domain_attr *attr;
803 cpumask_var_t *doms;
804 int ndoms;
805
806 lockdep_assert_held(&cpuset_mutex);
807 get_online_cpus();
808
809 /*
810 * We have raced with CPU hotplug. Don't do anything to avoid
811 * passing doms with offlined cpu to partition_sched_domains().
812 * Anyways, hotplug work item will rebuild sched domains.
813 */
814 if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
815 goto out;
816
817 /* Generate domain masks and attrs */
818 ndoms = generate_sched_domains(&doms, &attr);
819
820 /* Have scheduler rebuild the domains */
821 partition_sched_domains(ndoms, doms, attr);
822 out:
823 put_online_cpus();
824 }
825 #else /* !CONFIG_SMP */
826 static void rebuild_sched_domains_locked(void)
827 {
828 }
829 #endif /* CONFIG_SMP */
830
831 void rebuild_sched_domains(void)
832 {
833 mutex_lock(&cpuset_mutex);
834 rebuild_sched_domains_locked();
835 mutex_unlock(&cpuset_mutex);
836 }
837
838 /**
839 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
840 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
841 *
842 * Iterate through each task of @cs updating its cpus_allowed to the
843 * effective cpuset's. As this function is called with cpuset_mutex held,
844 * cpuset membership stays stable.
845 */
846 static void update_tasks_cpumask(struct cpuset *cs)
847 {
848 struct css_task_iter it;
849 struct task_struct *task;
850
851 css_task_iter_start(&cs->css, &it);
852 while ((task = css_task_iter_next(&it)))
853 set_cpus_allowed_ptr(task, cs->effective_cpus);
854 css_task_iter_end(&it);
855 }
856
857 /*
858 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
859 * @cs: the cpuset to consider
860 * @new_cpus: temp variable for calculating new effective_cpus
861 *
862 * When congifured cpumask is changed, the effective cpumasks of this cpuset
863 * and all its descendants need to be updated.
864 *
865 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
866 *
867 * Called with cpuset_mutex held
868 */
869 static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus)
870 {
871 struct cpuset *cp;
872 struct cgroup_subsys_state *pos_css;
873 bool need_rebuild_sched_domains = false;
874
875 rcu_read_lock();
876 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
877 struct cpuset *parent = parent_cs(cp);
878
879 cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus);
880
881 /*
882 * If it becomes empty, inherit the effective mask of the
883 * parent, which is guaranteed to have some CPUs.
884 */
885 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
886 cpumask_empty(new_cpus))
887 cpumask_copy(new_cpus, parent->effective_cpus);
888
889 /* Skip the whole subtree if the cpumask remains the same. */
890 if (cpumask_equal(new_cpus, cp->effective_cpus)) {
891 pos_css = css_rightmost_descendant(pos_css);
892 continue;
893 }
894
895 if (!css_tryget_online(&cp->css))
896 continue;
897 rcu_read_unlock();
898
899 spin_lock_irq(&callback_lock);
900 cpumask_copy(cp->effective_cpus, new_cpus);
901 spin_unlock_irq(&callback_lock);
902
903 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
904 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
905
906 update_tasks_cpumask(cp);
907
908 /*
909 * If the effective cpumask of any non-empty cpuset is changed,
910 * we need to rebuild sched domains.
911 */
912 if (!cpumask_empty(cp->cpus_allowed) &&
913 is_sched_load_balance(cp))
914 need_rebuild_sched_domains = true;
915
916 rcu_read_lock();
917 css_put(&cp->css);
918 }
919 rcu_read_unlock();
920
921 if (need_rebuild_sched_domains)
922 rebuild_sched_domains_locked();
923 }
924
925 /**
926 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
927 * @cs: the cpuset to consider
928 * @trialcs: trial cpuset
929 * @buf: buffer of cpu numbers written to this cpuset
930 */
931 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
932 const char *buf)
933 {
934 int retval;
935
936 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
937 if (cs == &top_cpuset)
938 return -EACCES;
939
940 /*
941 * An empty cpus_allowed is ok only if the cpuset has no tasks.
942 * Since cpulist_parse() fails on an empty mask, we special case
943 * that parsing. The validate_change() call ensures that cpusets
944 * with tasks have cpus.
945 */
946 if (!*buf) {
947 cpumask_clear(trialcs->cpus_allowed);
948 } else {
949 retval = cpulist_parse(buf, trialcs->cpus_allowed);
950 if (retval < 0)
951 return retval;
952
953 if (!cpumask_subset(trialcs->cpus_allowed,
954 top_cpuset.cpus_allowed))
955 return -EINVAL;
956 }
957
958 /* Nothing to do if the cpus didn't change */
959 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
960 return 0;
961
962 retval = validate_change(cs, trialcs);
963 if (retval < 0)
964 return retval;
965
966 spin_lock_irq(&callback_lock);
967 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
968 spin_unlock_irq(&callback_lock);
969
970 /* use trialcs->cpus_allowed as a temp variable */
971 update_cpumasks_hier(cs, trialcs->cpus_allowed);
972 return 0;
973 }
974
975 /*
976 * Migrate memory region from one set of nodes to another. This is
977 * performed asynchronously as it can be called from process migration path
978 * holding locks involved in process management. All mm migrations are
979 * performed in the queued order and can be waited for by flushing
980 * cpuset_migrate_mm_wq.
981 */
982
983 struct cpuset_migrate_mm_work {
984 struct work_struct work;
985 struct mm_struct *mm;
986 nodemask_t from;
987 nodemask_t to;
988 };
989
990 static void cpuset_migrate_mm_workfn(struct work_struct *work)
991 {
992 struct cpuset_migrate_mm_work *mwork =
993 container_of(work, struct cpuset_migrate_mm_work, work);
994
995 /* on a wq worker, no need to worry about %current's mems_allowed */
996 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
997 mmput(mwork->mm);
998 kfree(mwork);
999 }
1000
1001 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1002 const nodemask_t *to)
1003 {
1004 struct cpuset_migrate_mm_work *mwork;
1005
1006 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1007 if (mwork) {
1008 mwork->mm = mm;
1009 mwork->from = *from;
1010 mwork->to = *to;
1011 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1012 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1013 } else {
1014 mmput(mm);
1015 }
1016 }
1017
1018 static void cpuset_post_attach(void)
1019 {
1020 flush_workqueue(cpuset_migrate_mm_wq);
1021 }
1022
1023 /*
1024 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1025 * @tsk: the task to change
1026 * @newmems: new nodes that the task will be set
1027 *
1028 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
1029 * we structure updates as setting all new allowed nodes, then clearing newly
1030 * disallowed ones.
1031 */
1032 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1033 nodemask_t *newmems)
1034 {
1035 bool need_loop;
1036
1037 /*
1038 * Allow tasks that have access to memory reserves because they have
1039 * been OOM killed to get memory anywhere.
1040 */
1041 if (unlikely(test_thread_flag(TIF_MEMDIE)))
1042 return;
1043 if (current->flags & PF_EXITING) /* Let dying task have memory */
1044 return;
1045
1046 task_lock(tsk);
1047 /*
1048 * Determine if a loop is necessary if another thread is doing
1049 * read_mems_allowed_begin(). If at least one node remains unchanged and
1050 * tsk does not have a mempolicy, then an empty nodemask will not be
1051 * possible when mems_allowed is larger than a word.
1052 */
1053 need_loop = task_has_mempolicy(tsk) ||
1054 !nodes_intersects(*newmems, tsk->mems_allowed);
1055
1056 if (need_loop) {
1057 local_irq_disable();
1058 write_seqcount_begin(&tsk->mems_allowed_seq);
1059 }
1060
1061 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1062 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
1063
1064 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
1065 tsk->mems_allowed = *newmems;
1066
1067 if (need_loop) {
1068 write_seqcount_end(&tsk->mems_allowed_seq);
1069 local_irq_enable();
1070 }
1071
1072 task_unlock(tsk);
1073 }
1074
1075 static void *cpuset_being_rebound;
1076
1077 /**
1078 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1079 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1080 *
1081 * Iterate through each task of @cs updating its mems_allowed to the
1082 * effective cpuset's. As this function is called with cpuset_mutex held,
1083 * cpuset membership stays stable.
1084 */
1085 static void update_tasks_nodemask(struct cpuset *cs)
1086 {
1087 static nodemask_t newmems; /* protected by cpuset_mutex */
1088 struct css_task_iter it;
1089 struct task_struct *task;
1090
1091 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1092
1093 guarantee_online_mems(cs, &newmems);
1094
1095 /*
1096 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1097 * take while holding tasklist_lock. Forks can happen - the
1098 * mpol_dup() cpuset_being_rebound check will catch such forks,
1099 * and rebind their vma mempolicies too. Because we still hold
1100 * the global cpuset_mutex, we know that no other rebind effort
1101 * will be contending for the global variable cpuset_being_rebound.
1102 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1103 * is idempotent. Also migrate pages in each mm to new nodes.
1104 */
1105 css_task_iter_start(&cs->css, &it);
1106 while ((task = css_task_iter_next(&it))) {
1107 struct mm_struct *mm;
1108 bool migrate;
1109
1110 cpuset_change_task_nodemask(task, &newmems);
1111
1112 mm = get_task_mm(task);
1113 if (!mm)
1114 continue;
1115
1116 migrate = is_memory_migrate(cs);
1117
1118 mpol_rebind_mm(mm, &cs->mems_allowed);
1119 if (migrate)
1120 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1121 else
1122 mmput(mm);
1123 }
1124 css_task_iter_end(&it);
1125
1126 /*
1127 * All the tasks' nodemasks have been updated, update
1128 * cs->old_mems_allowed.
1129 */
1130 cs->old_mems_allowed = newmems;
1131
1132 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1133 cpuset_being_rebound = NULL;
1134 }
1135
1136 /*
1137 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1138 * @cs: the cpuset to consider
1139 * @new_mems: a temp variable for calculating new effective_mems
1140 *
1141 * When configured nodemask is changed, the effective nodemasks of this cpuset
1142 * and all its descendants need to be updated.
1143 *
1144 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1145 *
1146 * Called with cpuset_mutex held
1147 */
1148 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1149 {
1150 struct cpuset *cp;
1151 struct cgroup_subsys_state *pos_css;
1152
1153 rcu_read_lock();
1154 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1155 struct cpuset *parent = parent_cs(cp);
1156
1157 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1158
1159 /*
1160 * If it becomes empty, inherit the effective mask of the
1161 * parent, which is guaranteed to have some MEMs.
1162 */
1163 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1164 nodes_empty(*new_mems))
1165 *new_mems = parent->effective_mems;
1166
1167 /* Skip the whole subtree if the nodemask remains the same. */
1168 if (nodes_equal(*new_mems, cp->effective_mems)) {
1169 pos_css = css_rightmost_descendant(pos_css);
1170 continue;
1171 }
1172
1173 if (!css_tryget_online(&cp->css))
1174 continue;
1175 rcu_read_unlock();
1176
1177 spin_lock_irq(&callback_lock);
1178 cp->effective_mems = *new_mems;
1179 spin_unlock_irq(&callback_lock);
1180
1181 WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1182 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1183
1184 update_tasks_nodemask(cp);
1185
1186 rcu_read_lock();
1187 css_put(&cp->css);
1188 }
1189 rcu_read_unlock();
1190 }
1191
1192 /*
1193 * Handle user request to change the 'mems' memory placement
1194 * of a cpuset. Needs to validate the request, update the
1195 * cpusets mems_allowed, and for each task in the cpuset,
1196 * update mems_allowed and rebind task's mempolicy and any vma
1197 * mempolicies and if the cpuset is marked 'memory_migrate',
1198 * migrate the tasks pages to the new memory.
1199 *
1200 * Call with cpuset_mutex held. May take callback_lock during call.
1201 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1202 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1203 * their mempolicies to the cpusets new mems_allowed.
1204 */
1205 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1206 const char *buf)
1207 {
1208 int retval;
1209
1210 /*
1211 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1212 * it's read-only
1213 */
1214 if (cs == &top_cpuset) {
1215 retval = -EACCES;
1216 goto done;
1217 }
1218
1219 /*
1220 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1221 * Since nodelist_parse() fails on an empty mask, we special case
1222 * that parsing. The validate_change() call ensures that cpusets
1223 * with tasks have memory.
1224 */
1225 if (!*buf) {
1226 nodes_clear(trialcs->mems_allowed);
1227 } else {
1228 retval = nodelist_parse(buf, trialcs->mems_allowed);
1229 if (retval < 0)
1230 goto done;
1231
1232 if (!nodes_subset(trialcs->mems_allowed,
1233 top_cpuset.mems_allowed)) {
1234 retval = -EINVAL;
1235 goto done;
1236 }
1237 }
1238
1239 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1240 retval = 0; /* Too easy - nothing to do */
1241 goto done;
1242 }
1243 retval = validate_change(cs, trialcs);
1244 if (retval < 0)
1245 goto done;
1246
1247 spin_lock_irq(&callback_lock);
1248 cs->mems_allowed = trialcs->mems_allowed;
1249 spin_unlock_irq(&callback_lock);
1250
1251 /* use trialcs->mems_allowed as a temp variable */
1252 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1253 done:
1254 return retval;
1255 }
1256
1257 int current_cpuset_is_being_rebound(void)
1258 {
1259 int ret;
1260
1261 rcu_read_lock();
1262 ret = task_cs(current) == cpuset_being_rebound;
1263 rcu_read_unlock();
1264
1265 return ret;
1266 }
1267
1268 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1269 {
1270 #ifdef CONFIG_SMP
1271 if (val < -1 || val >= sched_domain_level_max)
1272 return -EINVAL;
1273 #endif
1274
1275 if (val != cs->relax_domain_level) {
1276 cs->relax_domain_level = val;
1277 if (!cpumask_empty(cs->cpus_allowed) &&
1278 is_sched_load_balance(cs))
1279 rebuild_sched_domains_locked();
1280 }
1281
1282 return 0;
1283 }
1284
1285 /**
1286 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1287 * @cs: the cpuset in which each task's spread flags needs to be changed
1288 *
1289 * Iterate through each task of @cs updating its spread flags. As this
1290 * function is called with cpuset_mutex held, cpuset membership stays
1291 * stable.
1292 */
1293 static void update_tasks_flags(struct cpuset *cs)
1294 {
1295 struct css_task_iter it;
1296 struct task_struct *task;
1297
1298 css_task_iter_start(&cs->css, &it);
1299 while ((task = css_task_iter_next(&it)))
1300 cpuset_update_task_spread_flag(cs, task);
1301 css_task_iter_end(&it);
1302 }
1303
1304 /*
1305 * update_flag - read a 0 or a 1 in a file and update associated flag
1306 * bit: the bit to update (see cpuset_flagbits_t)
1307 * cs: the cpuset to update
1308 * turning_on: whether the flag is being set or cleared
1309 *
1310 * Call with cpuset_mutex held.
1311 */
1312
1313 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1314 int turning_on)
1315 {
1316 struct cpuset *trialcs;
1317 int balance_flag_changed;
1318 int spread_flag_changed;
1319 int err;
1320
1321 trialcs = alloc_trial_cpuset(cs);
1322 if (!trialcs)
1323 return -ENOMEM;
1324
1325 if (turning_on)
1326 set_bit(bit, &trialcs->flags);
1327 else
1328 clear_bit(bit, &trialcs->flags);
1329
1330 err = validate_change(cs, trialcs);
1331 if (err < 0)
1332 goto out;
1333
1334 balance_flag_changed = (is_sched_load_balance(cs) !=
1335 is_sched_load_balance(trialcs));
1336
1337 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1338 || (is_spread_page(cs) != is_spread_page(trialcs)));
1339
1340 spin_lock_irq(&callback_lock);
1341 cs->flags = trialcs->flags;
1342 spin_unlock_irq(&callback_lock);
1343
1344 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
1345 rebuild_sched_domains_locked();
1346
1347 if (spread_flag_changed)
1348 update_tasks_flags(cs);
1349 out:
1350 free_trial_cpuset(trialcs);
1351 return err;
1352 }
1353
1354 /*
1355 * Frequency meter - How fast is some event occurring?
1356 *
1357 * These routines manage a digitally filtered, constant time based,
1358 * event frequency meter. There are four routines:
1359 * fmeter_init() - initialize a frequency meter.
1360 * fmeter_markevent() - called each time the event happens.
1361 * fmeter_getrate() - returns the recent rate of such events.
1362 * fmeter_update() - internal routine used to update fmeter.
1363 *
1364 * A common data structure is passed to each of these routines,
1365 * which is used to keep track of the state required to manage the
1366 * frequency meter and its digital filter.
1367 *
1368 * The filter works on the number of events marked per unit time.
1369 * The filter is single-pole low-pass recursive (IIR). The time unit
1370 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1371 * simulate 3 decimal digits of precision (multiplied by 1000).
1372 *
1373 * With an FM_COEF of 933, and a time base of 1 second, the filter
1374 * has a half-life of 10 seconds, meaning that if the events quit
1375 * happening, then the rate returned from the fmeter_getrate()
1376 * will be cut in half each 10 seconds, until it converges to zero.
1377 *
1378 * It is not worth doing a real infinitely recursive filter. If more
1379 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1380 * just compute FM_MAXTICKS ticks worth, by which point the level
1381 * will be stable.
1382 *
1383 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1384 * arithmetic overflow in the fmeter_update() routine.
1385 *
1386 * Given the simple 32 bit integer arithmetic used, this meter works
1387 * best for reporting rates between one per millisecond (msec) and
1388 * one per 32 (approx) seconds. At constant rates faster than one
1389 * per msec it maxes out at values just under 1,000,000. At constant
1390 * rates between one per msec, and one per second it will stabilize
1391 * to a value N*1000, where N is the rate of events per second.
1392 * At constant rates between one per second and one per 32 seconds,
1393 * it will be choppy, moving up on the seconds that have an event,
1394 * and then decaying until the next event. At rates slower than
1395 * about one in 32 seconds, it decays all the way back to zero between
1396 * each event.
1397 */
1398
1399 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1400 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
1401 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1402 #define FM_SCALE 1000 /* faux fixed point scale */
1403
1404 /* Initialize a frequency meter */
1405 static void fmeter_init(struct fmeter *fmp)
1406 {
1407 fmp->cnt = 0;
1408 fmp->val = 0;
1409 fmp->time = 0;
1410 spin_lock_init(&fmp->lock);
1411 }
1412
1413 /* Internal meter update - process cnt events and update value */
1414 static void fmeter_update(struct fmeter *fmp)
1415 {
1416 time64_t now;
1417 u32 ticks;
1418
1419 now = ktime_get_seconds();
1420 ticks = now - fmp->time;
1421
1422 if (ticks == 0)
1423 return;
1424
1425 ticks = min(FM_MAXTICKS, ticks);
1426 while (ticks-- > 0)
1427 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1428 fmp->time = now;
1429
1430 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1431 fmp->cnt = 0;
1432 }
1433
1434 /* Process any previous ticks, then bump cnt by one (times scale). */
1435 static void fmeter_markevent(struct fmeter *fmp)
1436 {
1437 spin_lock(&fmp->lock);
1438 fmeter_update(fmp);
1439 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1440 spin_unlock(&fmp->lock);
1441 }
1442
1443 /* Process any previous ticks, then return current value. */
1444 static int fmeter_getrate(struct fmeter *fmp)
1445 {
1446 int val;
1447
1448 spin_lock(&fmp->lock);
1449 fmeter_update(fmp);
1450 val = fmp->val;
1451 spin_unlock(&fmp->lock);
1452 return val;
1453 }
1454
1455 static struct cpuset *cpuset_attach_old_cs;
1456
1457 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
1458 static int cpuset_can_attach(struct cgroup_taskset *tset)
1459 {
1460 struct cgroup_subsys_state *css;
1461 struct cpuset *cs;
1462 struct task_struct *task;
1463 int ret;
1464
1465 /* used later by cpuset_attach() */
1466 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
1467 cs = css_cs(css);
1468
1469 mutex_lock(&cpuset_mutex);
1470
1471 /* allow moving tasks into an empty cpuset if on default hierarchy */
1472 ret = -ENOSPC;
1473 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
1474 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
1475 goto out_unlock;
1476
1477 cgroup_taskset_for_each(task, css, tset) {
1478 ret = task_can_attach(task, cs->cpus_allowed);
1479 if (ret)
1480 goto out_unlock;
1481 ret = security_task_setscheduler(task);
1482 if (ret)
1483 goto out_unlock;
1484 }
1485
1486 /*
1487 * Mark attach is in progress. This makes validate_change() fail
1488 * changes which zero cpus/mems_allowed.
1489 */
1490 cs->attach_in_progress++;
1491 ret = 0;
1492 out_unlock:
1493 mutex_unlock(&cpuset_mutex);
1494 return ret;
1495 }
1496
1497 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
1498 {
1499 struct cgroup_subsys_state *css;
1500 struct cpuset *cs;
1501
1502 cgroup_taskset_first(tset, &css);
1503 cs = css_cs(css);
1504
1505 mutex_lock(&cpuset_mutex);
1506 css_cs(css)->attach_in_progress--;
1507 mutex_unlock(&cpuset_mutex);
1508 }
1509
1510 /*
1511 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
1512 * but we can't allocate it dynamically there. Define it global and
1513 * allocate from cpuset_init().
1514 */
1515 static cpumask_var_t cpus_attach;
1516
1517 static void cpuset_attach(struct cgroup_taskset *tset)
1518 {
1519 /* static buf protected by cpuset_mutex */
1520 static nodemask_t cpuset_attach_nodemask_to;
1521 struct task_struct *task;
1522 struct task_struct *leader;
1523 struct cgroup_subsys_state *css;
1524 struct cpuset *cs;
1525 struct cpuset *oldcs = cpuset_attach_old_cs;
1526
1527 cgroup_taskset_first(tset, &css);
1528 cs = css_cs(css);
1529
1530 mutex_lock(&cpuset_mutex);
1531
1532 /* prepare for attach */
1533 if (cs == &top_cpuset)
1534 cpumask_copy(cpus_attach, cpu_possible_mask);
1535 else
1536 guarantee_online_cpus(cs, cpus_attach);
1537
1538 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1539
1540 cgroup_taskset_for_each(task, css, tset) {
1541 /*
1542 * can_attach beforehand should guarantee that this doesn't
1543 * fail. TODO: have a better way to handle failure here
1544 */
1545 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1546
1547 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1548 cpuset_update_task_spread_flag(cs, task);
1549 }
1550
1551 /*
1552 * Change mm for all threadgroup leaders. This is expensive and may
1553 * sleep and should be moved outside migration path proper.
1554 */
1555 cpuset_attach_nodemask_to = cs->effective_mems;
1556 cgroup_taskset_for_each_leader(leader, css, tset) {
1557 struct mm_struct *mm = get_task_mm(leader);
1558
1559 if (mm) {
1560 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
1561
1562 /*
1563 * old_mems_allowed is the same with mems_allowed
1564 * here, except if this task is being moved
1565 * automatically due to hotplug. In that case
1566 * @mems_allowed has been updated and is empty, so
1567 * @old_mems_allowed is the right nodesets that we
1568 * migrate mm from.
1569 */
1570 if (is_memory_migrate(cs))
1571 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
1572 &cpuset_attach_nodemask_to);
1573 else
1574 mmput(mm);
1575 }
1576 }
1577
1578 cs->old_mems_allowed = cpuset_attach_nodemask_to;
1579
1580 cs->attach_in_progress--;
1581 if (!cs->attach_in_progress)
1582 wake_up(&cpuset_attach_wq);
1583
1584 mutex_unlock(&cpuset_mutex);
1585 }
1586
1587 /* The various types of files and directories in a cpuset file system */
1588
1589 typedef enum {
1590 FILE_MEMORY_MIGRATE,
1591 FILE_CPULIST,
1592 FILE_MEMLIST,
1593 FILE_EFFECTIVE_CPULIST,
1594 FILE_EFFECTIVE_MEMLIST,
1595 FILE_CPU_EXCLUSIVE,
1596 FILE_MEM_EXCLUSIVE,
1597 FILE_MEM_HARDWALL,
1598 FILE_SCHED_LOAD_BALANCE,
1599 FILE_SCHED_RELAX_DOMAIN_LEVEL,
1600 FILE_MEMORY_PRESSURE_ENABLED,
1601 FILE_MEMORY_PRESSURE,
1602 FILE_SPREAD_PAGE,
1603 FILE_SPREAD_SLAB,
1604 } cpuset_filetype_t;
1605
1606 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
1607 u64 val)
1608 {
1609 struct cpuset *cs = css_cs(css);
1610 cpuset_filetype_t type = cft->private;
1611 int retval = 0;
1612
1613 mutex_lock(&cpuset_mutex);
1614 if (!is_cpuset_online(cs)) {
1615 retval = -ENODEV;
1616 goto out_unlock;
1617 }
1618
1619 switch (type) {
1620 case FILE_CPU_EXCLUSIVE:
1621 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1622 break;
1623 case FILE_MEM_EXCLUSIVE:
1624 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1625 break;
1626 case FILE_MEM_HARDWALL:
1627 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1628 break;
1629 case FILE_SCHED_LOAD_BALANCE:
1630 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1631 break;
1632 case FILE_MEMORY_MIGRATE:
1633 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
1634 break;
1635 case FILE_MEMORY_PRESSURE_ENABLED:
1636 cpuset_memory_pressure_enabled = !!val;
1637 break;
1638 case FILE_SPREAD_PAGE:
1639 retval = update_flag(CS_SPREAD_PAGE, cs, val);
1640 break;
1641 case FILE_SPREAD_SLAB:
1642 retval = update_flag(CS_SPREAD_SLAB, cs, val);
1643 break;
1644 default:
1645 retval = -EINVAL;
1646 break;
1647 }
1648 out_unlock:
1649 mutex_unlock(&cpuset_mutex);
1650 return retval;
1651 }
1652
1653 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
1654 s64 val)
1655 {
1656 struct cpuset *cs = css_cs(css);
1657 cpuset_filetype_t type = cft->private;
1658 int retval = -ENODEV;
1659
1660 mutex_lock(&cpuset_mutex);
1661 if (!is_cpuset_online(cs))
1662 goto out_unlock;
1663
1664 switch (type) {
1665 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1666 retval = update_relax_domain_level(cs, val);
1667 break;
1668 default:
1669 retval = -EINVAL;
1670 break;
1671 }
1672 out_unlock:
1673 mutex_unlock(&cpuset_mutex);
1674 return retval;
1675 }
1676
1677 /*
1678 * Common handling for a write to a "cpus" or "mems" file.
1679 */
1680 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
1681 char *buf, size_t nbytes, loff_t off)
1682 {
1683 struct cpuset *cs = css_cs(of_css(of));
1684 struct cpuset *trialcs;
1685 int retval = -ENODEV;
1686
1687 buf = strstrip(buf);
1688
1689 /*
1690 * CPU or memory hotunplug may leave @cs w/o any execution
1691 * resources, in which case the hotplug code asynchronously updates
1692 * configuration and transfers all tasks to the nearest ancestor
1693 * which can execute.
1694 *
1695 * As writes to "cpus" or "mems" may restore @cs's execution
1696 * resources, wait for the previously scheduled operations before
1697 * proceeding, so that we don't end up keep removing tasks added
1698 * after execution capability is restored.
1699 *
1700 * cpuset_hotplug_work calls back into cgroup core via
1701 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
1702 * operation like this one can lead to a deadlock through kernfs
1703 * active_ref protection. Let's break the protection. Losing the
1704 * protection is okay as we check whether @cs is online after
1705 * grabbing cpuset_mutex anyway. This only happens on the legacy
1706 * hierarchies.
1707 */
1708 css_get(&cs->css);
1709 kernfs_break_active_protection(of->kn);
1710 flush_work(&cpuset_hotplug_work);
1711
1712 mutex_lock(&cpuset_mutex);
1713 if (!is_cpuset_online(cs))
1714 goto out_unlock;
1715
1716 trialcs = alloc_trial_cpuset(cs);
1717 if (!trialcs) {
1718 retval = -ENOMEM;
1719 goto out_unlock;
1720 }
1721
1722 switch (of_cft(of)->private) {
1723 case FILE_CPULIST:
1724 retval = update_cpumask(cs, trialcs, buf);
1725 break;
1726 case FILE_MEMLIST:
1727 retval = update_nodemask(cs, trialcs, buf);
1728 break;
1729 default:
1730 retval = -EINVAL;
1731 break;
1732 }
1733
1734 free_trial_cpuset(trialcs);
1735 out_unlock:
1736 mutex_unlock(&cpuset_mutex);
1737 kernfs_unbreak_active_protection(of->kn);
1738 css_put(&cs->css);
1739 flush_workqueue(cpuset_migrate_mm_wq);
1740 return retval ?: nbytes;
1741 }
1742
1743 /*
1744 * These ascii lists should be read in a single call, by using a user
1745 * buffer large enough to hold the entire map. If read in smaller
1746 * chunks, there is no guarantee of atomicity. Since the display format
1747 * used, list of ranges of sequential numbers, is variable length,
1748 * and since these maps can change value dynamically, one could read
1749 * gibberish by doing partial reads while a list was changing.
1750 */
1751 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
1752 {
1753 struct cpuset *cs = css_cs(seq_css(sf));
1754 cpuset_filetype_t type = seq_cft(sf)->private;
1755 int ret = 0;
1756
1757 spin_lock_irq(&callback_lock);
1758
1759 switch (type) {
1760 case FILE_CPULIST:
1761 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed));
1762 break;
1763 case FILE_MEMLIST:
1764 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
1765 break;
1766 case FILE_EFFECTIVE_CPULIST:
1767 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
1768 break;
1769 case FILE_EFFECTIVE_MEMLIST:
1770 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
1771 break;
1772 default:
1773 ret = -EINVAL;
1774 }
1775
1776 spin_unlock_irq(&callback_lock);
1777 return ret;
1778 }
1779
1780 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
1781 {
1782 struct cpuset *cs = css_cs(css);
1783 cpuset_filetype_t type = cft->private;
1784 switch (type) {
1785 case FILE_CPU_EXCLUSIVE:
1786 return is_cpu_exclusive(cs);
1787 case FILE_MEM_EXCLUSIVE:
1788 return is_mem_exclusive(cs);
1789 case FILE_MEM_HARDWALL:
1790 return is_mem_hardwall(cs);
1791 case FILE_SCHED_LOAD_BALANCE:
1792 return is_sched_load_balance(cs);
1793 case FILE_MEMORY_MIGRATE:
1794 return is_memory_migrate(cs);
1795 case FILE_MEMORY_PRESSURE_ENABLED:
1796 return cpuset_memory_pressure_enabled;
1797 case FILE_MEMORY_PRESSURE:
1798 return fmeter_getrate(&cs->fmeter);
1799 case FILE_SPREAD_PAGE:
1800 return is_spread_page(cs);
1801 case FILE_SPREAD_SLAB:
1802 return is_spread_slab(cs);
1803 default:
1804 BUG();
1805 }
1806
1807 /* Unreachable but makes gcc happy */
1808 return 0;
1809 }
1810
1811 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
1812 {
1813 struct cpuset *cs = css_cs(css);
1814 cpuset_filetype_t type = cft->private;
1815 switch (type) {
1816 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1817 return cs->relax_domain_level;
1818 default:
1819 BUG();
1820 }
1821
1822 /* Unrechable but makes gcc happy */
1823 return 0;
1824 }
1825
1826
1827 /*
1828 * for the common functions, 'private' gives the type of file
1829 */
1830
1831 static struct cftype files[] = {
1832 {
1833 .name = "cpus",
1834 .seq_show = cpuset_common_seq_show,
1835 .write = cpuset_write_resmask,
1836 .max_write_len = (100U + 6 * NR_CPUS),
1837 .private = FILE_CPULIST,
1838 },
1839
1840 {
1841 .name = "mems",
1842 .seq_show = cpuset_common_seq_show,
1843 .write = cpuset_write_resmask,
1844 .max_write_len = (100U + 6 * MAX_NUMNODES),
1845 .private = FILE_MEMLIST,
1846 },
1847
1848 {
1849 .name = "effective_cpus",
1850 .seq_show = cpuset_common_seq_show,
1851 .private = FILE_EFFECTIVE_CPULIST,
1852 },
1853
1854 {
1855 .name = "effective_mems",
1856 .seq_show = cpuset_common_seq_show,
1857 .private = FILE_EFFECTIVE_MEMLIST,
1858 },
1859
1860 {
1861 .name = "cpu_exclusive",
1862 .read_u64 = cpuset_read_u64,
1863 .write_u64 = cpuset_write_u64,
1864 .private = FILE_CPU_EXCLUSIVE,
1865 },
1866
1867 {
1868 .name = "mem_exclusive",
1869 .read_u64 = cpuset_read_u64,
1870 .write_u64 = cpuset_write_u64,
1871 .private = FILE_MEM_EXCLUSIVE,
1872 },
1873
1874 {
1875 .name = "mem_hardwall",
1876 .read_u64 = cpuset_read_u64,
1877 .write_u64 = cpuset_write_u64,
1878 .private = FILE_MEM_HARDWALL,
1879 },
1880
1881 {
1882 .name = "sched_load_balance",
1883 .read_u64 = cpuset_read_u64,
1884 .write_u64 = cpuset_write_u64,
1885 .private = FILE_SCHED_LOAD_BALANCE,
1886 },
1887
1888 {
1889 .name = "sched_relax_domain_level",
1890 .read_s64 = cpuset_read_s64,
1891 .write_s64 = cpuset_write_s64,
1892 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1893 },
1894
1895 {
1896 .name = "memory_migrate",
1897 .read_u64 = cpuset_read_u64,
1898 .write_u64 = cpuset_write_u64,
1899 .private = FILE_MEMORY_MIGRATE,
1900 },
1901
1902 {
1903 .name = "memory_pressure",
1904 .read_u64 = cpuset_read_u64,
1905 },
1906
1907 {
1908 .name = "memory_spread_page",
1909 .read_u64 = cpuset_read_u64,
1910 .write_u64 = cpuset_write_u64,
1911 .private = FILE_SPREAD_PAGE,
1912 },
1913
1914 {
1915 .name = "memory_spread_slab",
1916 .read_u64 = cpuset_read_u64,
1917 .write_u64 = cpuset_write_u64,
1918 .private = FILE_SPREAD_SLAB,
1919 },
1920
1921 {
1922 .name = "memory_pressure_enabled",
1923 .flags = CFTYPE_ONLY_ON_ROOT,
1924 .read_u64 = cpuset_read_u64,
1925 .write_u64 = cpuset_write_u64,
1926 .private = FILE_MEMORY_PRESSURE_ENABLED,
1927 },
1928
1929 { } /* terminate */
1930 };
1931
1932 /*
1933 * cpuset_css_alloc - allocate a cpuset css
1934 * cgrp: control group that the new cpuset will be part of
1935 */
1936
1937 static struct cgroup_subsys_state *
1938 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
1939 {
1940 struct cpuset *cs;
1941
1942 if (!parent_css)
1943 return &top_cpuset.css;
1944
1945 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1946 if (!cs)
1947 return ERR_PTR(-ENOMEM);
1948 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL))
1949 goto free_cs;
1950 if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL))
1951 goto free_cpus;
1952
1953 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1954 cpumask_clear(cs->cpus_allowed);
1955 nodes_clear(cs->mems_allowed);
1956 cpumask_clear(cs->effective_cpus);
1957 nodes_clear(cs->effective_mems);
1958 fmeter_init(&cs->fmeter);
1959 cs->relax_domain_level = -1;
1960
1961 return &cs->css;
1962
1963 free_cpus:
1964 free_cpumask_var(cs->cpus_allowed);
1965 free_cs:
1966 kfree(cs);
1967 return ERR_PTR(-ENOMEM);
1968 }
1969
1970 static int cpuset_css_online(struct cgroup_subsys_state *css)
1971 {
1972 struct cpuset *cs = css_cs(css);
1973 struct cpuset *parent = parent_cs(cs);
1974 struct cpuset *tmp_cs;
1975 struct cgroup_subsys_state *pos_css;
1976
1977 if (!parent)
1978 return 0;
1979
1980 mutex_lock(&cpuset_mutex);
1981
1982 set_bit(CS_ONLINE, &cs->flags);
1983 if (is_spread_page(parent))
1984 set_bit(CS_SPREAD_PAGE, &cs->flags);
1985 if (is_spread_slab(parent))
1986 set_bit(CS_SPREAD_SLAB, &cs->flags);
1987
1988 cpuset_inc();
1989
1990 spin_lock_irq(&callback_lock);
1991 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
1992 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
1993 cs->effective_mems = parent->effective_mems;
1994 }
1995 spin_unlock_irq(&callback_lock);
1996
1997 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
1998 goto out_unlock;
1999
2000 /*
2001 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2002 * set. This flag handling is implemented in cgroup core for
2003 * histrical reasons - the flag may be specified during mount.
2004 *
2005 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2006 * refuse to clone the configuration - thereby refusing the task to
2007 * be entered, and as a result refusing the sys_unshare() or
2008 * clone() which initiated it. If this becomes a problem for some
2009 * users who wish to allow that scenario, then this could be
2010 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2011 * (and likewise for mems) to the new cgroup.
2012 */
2013 rcu_read_lock();
2014 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2015 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2016 rcu_read_unlock();
2017 goto out_unlock;
2018 }
2019 }
2020 rcu_read_unlock();
2021
2022 spin_lock_irq(&callback_lock);
2023 cs->mems_allowed = parent->mems_allowed;
2024 cs->effective_mems = parent->mems_allowed;
2025 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2026 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2027 spin_unlock_irq(&callback_lock);
2028 out_unlock:
2029 mutex_unlock(&cpuset_mutex);
2030 return 0;
2031 }
2032
2033 /*
2034 * If the cpuset being removed has its flag 'sched_load_balance'
2035 * enabled, then simulate turning sched_load_balance off, which
2036 * will call rebuild_sched_domains_locked().
2037 */
2038
2039 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2040 {
2041 struct cpuset *cs = css_cs(css);
2042
2043 mutex_lock(&cpuset_mutex);
2044
2045 if (is_sched_load_balance(cs))
2046 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
2047
2048 cpuset_dec();
2049 clear_bit(CS_ONLINE, &cs->flags);
2050
2051 mutex_unlock(&cpuset_mutex);
2052 }
2053
2054 static void cpuset_css_free(struct cgroup_subsys_state *css)
2055 {
2056 struct cpuset *cs = css_cs(css);
2057
2058 free_cpumask_var(cs->effective_cpus);
2059 free_cpumask_var(cs->cpus_allowed);
2060 kfree(cs);
2061 }
2062
2063 static void cpuset_bind(struct cgroup_subsys_state *root_css)
2064 {
2065 mutex_lock(&cpuset_mutex);
2066 spin_lock_irq(&callback_lock);
2067
2068 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) {
2069 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
2070 top_cpuset.mems_allowed = node_possible_map;
2071 } else {
2072 cpumask_copy(top_cpuset.cpus_allowed,
2073 top_cpuset.effective_cpus);
2074 top_cpuset.mems_allowed = top_cpuset.effective_mems;
2075 }
2076
2077 spin_unlock_irq(&callback_lock);
2078 mutex_unlock(&cpuset_mutex);
2079 }
2080
2081 struct cgroup_subsys cpuset_cgrp_subsys = {
2082 .css_alloc = cpuset_css_alloc,
2083 .css_online = cpuset_css_online,
2084 .css_offline = cpuset_css_offline,
2085 .css_free = cpuset_css_free,
2086 .can_attach = cpuset_can_attach,
2087 .cancel_attach = cpuset_cancel_attach,
2088 .attach = cpuset_attach,
2089 .post_attach = cpuset_post_attach,
2090 .bind = cpuset_bind,
2091 .legacy_cftypes = files,
2092 .early_init = true,
2093 };
2094
2095 /**
2096 * cpuset_init - initialize cpusets at system boot
2097 *
2098 * Description: Initialize top_cpuset and the cpuset internal file system,
2099 **/
2100
2101 int __init cpuset_init(void)
2102 {
2103 int err = 0;
2104
2105 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
2106 BUG();
2107 if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL))
2108 BUG();
2109
2110 cpumask_setall(top_cpuset.cpus_allowed);
2111 nodes_setall(top_cpuset.mems_allowed);
2112 cpumask_setall(top_cpuset.effective_cpus);
2113 nodes_setall(top_cpuset.effective_mems);
2114
2115 fmeter_init(&top_cpuset.fmeter);
2116 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
2117 top_cpuset.relax_domain_level = -1;
2118
2119 err = register_filesystem(&cpuset_fs_type);
2120 if (err < 0)
2121 return err;
2122
2123 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2124 BUG();
2125
2126 return 0;
2127 }
2128
2129 /*
2130 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2131 * or memory nodes, we need to walk over the cpuset hierarchy,
2132 * removing that CPU or node from all cpusets. If this removes the
2133 * last CPU or node from a cpuset, then move the tasks in the empty
2134 * cpuset to its next-highest non-empty parent.
2135 */
2136 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2137 {
2138 struct cpuset *parent;
2139
2140 /*
2141 * Find its next-highest non-empty parent, (top cpuset
2142 * has online cpus, so can't be empty).
2143 */
2144 parent = parent_cs(cs);
2145 while (cpumask_empty(parent->cpus_allowed) ||
2146 nodes_empty(parent->mems_allowed))
2147 parent = parent_cs(parent);
2148
2149 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
2150 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2151 pr_cont_cgroup_name(cs->css.cgroup);
2152 pr_cont("\n");
2153 }
2154 }
2155
2156 static void
2157 hotplug_update_tasks_legacy(struct cpuset *cs,
2158 struct cpumask *new_cpus, nodemask_t *new_mems,
2159 bool cpus_updated, bool mems_updated)
2160 {
2161 bool is_empty;
2162
2163 spin_lock_irq(&callback_lock);
2164 cpumask_copy(cs->cpus_allowed, new_cpus);
2165 cpumask_copy(cs->effective_cpus, new_cpus);
2166 cs->mems_allowed = *new_mems;
2167 cs->effective_mems = *new_mems;
2168 spin_unlock_irq(&callback_lock);
2169
2170 /*
2171 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2172 * as the tasks will be migratecd to an ancestor.
2173 */
2174 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
2175 update_tasks_cpumask(cs);
2176 if (mems_updated && !nodes_empty(cs->mems_allowed))
2177 update_tasks_nodemask(cs);
2178
2179 is_empty = cpumask_empty(cs->cpus_allowed) ||
2180 nodes_empty(cs->mems_allowed);
2181
2182 mutex_unlock(&cpuset_mutex);
2183
2184 /*
2185 * Move tasks to the nearest ancestor with execution resources,
2186 * This is full cgroup operation which will also call back into
2187 * cpuset. Should be done outside any lock.
2188 */
2189 if (is_empty)
2190 remove_tasks_in_empty_cpuset(cs);
2191
2192 mutex_lock(&cpuset_mutex);
2193 }
2194
2195 static void
2196 hotplug_update_tasks(struct cpuset *cs,
2197 struct cpumask *new_cpus, nodemask_t *new_mems,
2198 bool cpus_updated, bool mems_updated)
2199 {
2200 if (cpumask_empty(new_cpus))
2201 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
2202 if (nodes_empty(*new_mems))
2203 *new_mems = parent_cs(cs)->effective_mems;
2204
2205 spin_lock_irq(&callback_lock);
2206 cpumask_copy(cs->effective_cpus, new_cpus);
2207 cs->effective_mems = *new_mems;
2208 spin_unlock_irq(&callback_lock);
2209
2210 if (cpus_updated)
2211 update_tasks_cpumask(cs);
2212 if (mems_updated)
2213 update_tasks_nodemask(cs);
2214 }
2215
2216 /**
2217 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
2218 * @cs: cpuset in interest
2219 *
2220 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2221 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2222 * all its tasks are moved to the nearest ancestor with both resources.
2223 */
2224 static void cpuset_hotplug_update_tasks(struct cpuset *cs)
2225 {
2226 static cpumask_t new_cpus;
2227 static nodemask_t new_mems;
2228 bool cpus_updated;
2229 bool mems_updated;
2230 retry:
2231 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
2232
2233 mutex_lock(&cpuset_mutex);
2234
2235 /*
2236 * We have raced with task attaching. We wait until attaching
2237 * is finished, so we won't attach a task to an empty cpuset.
2238 */
2239 if (cs->attach_in_progress) {
2240 mutex_unlock(&cpuset_mutex);
2241 goto retry;
2242 }
2243
2244 cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus);
2245 nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems);
2246
2247 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
2248 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
2249
2250 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2251 hotplug_update_tasks(cs, &new_cpus, &new_mems,
2252 cpus_updated, mems_updated);
2253 else
2254 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
2255 cpus_updated, mems_updated);
2256
2257 mutex_unlock(&cpuset_mutex);
2258 }
2259
2260 /**
2261 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
2262 *
2263 * This function is called after either CPU or memory configuration has
2264 * changed and updates cpuset accordingly. The top_cpuset is always
2265 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2266 * order to make cpusets transparent (of no affect) on systems that are
2267 * actively using CPU hotplug but making no active use of cpusets.
2268 *
2269 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2270 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
2271 * all descendants.
2272 *
2273 * Note that CPU offlining during suspend is ignored. We don't modify
2274 * cpusets across suspend/resume cycles at all.
2275 */
2276 static void cpuset_hotplug_workfn(struct work_struct *work)
2277 {
2278 static cpumask_t new_cpus;
2279 static nodemask_t new_mems;
2280 bool cpus_updated, mems_updated;
2281 bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys);
2282
2283 mutex_lock(&cpuset_mutex);
2284
2285 /* fetch the available cpus/mems and find out which changed how */
2286 cpumask_copy(&new_cpus, cpu_active_mask);
2287 new_mems = node_states[N_MEMORY];
2288
2289 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
2290 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
2291
2292 /* synchronize cpus_allowed to cpu_active_mask */
2293 if (cpus_updated) {
2294 spin_lock_irq(&callback_lock);
2295 if (!on_dfl)
2296 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2297 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
2298 spin_unlock_irq(&callback_lock);
2299 /* we don't mess with cpumasks of tasks in top_cpuset */
2300 }
2301
2302 /* synchronize mems_allowed to N_MEMORY */
2303 if (mems_updated) {
2304 spin_lock_irq(&callback_lock);
2305 if (!on_dfl)
2306 top_cpuset.mems_allowed = new_mems;
2307 top_cpuset.effective_mems = new_mems;
2308 spin_unlock_irq(&callback_lock);
2309 update_tasks_nodemask(&top_cpuset);
2310 }
2311
2312 mutex_unlock(&cpuset_mutex);
2313
2314 /* if cpus or mems changed, we need to propagate to descendants */
2315 if (cpus_updated || mems_updated) {
2316 struct cpuset *cs;
2317 struct cgroup_subsys_state *pos_css;
2318
2319 rcu_read_lock();
2320 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
2321 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
2322 continue;
2323 rcu_read_unlock();
2324
2325 cpuset_hotplug_update_tasks(cs);
2326
2327 rcu_read_lock();
2328 css_put(&cs->css);
2329 }
2330 rcu_read_unlock();
2331 }
2332
2333 /* rebuild sched domains if cpus_allowed has changed */
2334 if (cpus_updated)
2335 rebuild_sched_domains();
2336 }
2337
2338 void cpuset_update_active_cpus(bool cpu_online)
2339 {
2340 /*
2341 * We're inside cpu hotplug critical region which usually nests
2342 * inside cgroup synchronization. Bounce actual hotplug processing
2343 * to a work item to avoid reverse locking order.
2344 *
2345 * We still need to do partition_sched_domains() synchronously;
2346 * otherwise, the scheduler will get confused and put tasks to the
2347 * dead CPU. Fall back to the default single domain.
2348 * cpuset_hotplug_workfn() will rebuild it as necessary.
2349 */
2350 partition_sched_domains(1, NULL, NULL);
2351 schedule_work(&cpuset_hotplug_work);
2352 }
2353
2354 /*
2355 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2356 * Call this routine anytime after node_states[N_MEMORY] changes.
2357 * See cpuset_update_active_cpus() for CPU hotplug handling.
2358 */
2359 static int cpuset_track_online_nodes(struct notifier_block *self,
2360 unsigned long action, void *arg)
2361 {
2362 schedule_work(&cpuset_hotplug_work);
2363 return NOTIFY_OK;
2364 }
2365
2366 static struct notifier_block cpuset_track_online_nodes_nb = {
2367 .notifier_call = cpuset_track_online_nodes,
2368 .priority = 10, /* ??! */
2369 };
2370
2371 /**
2372 * cpuset_init_smp - initialize cpus_allowed
2373 *
2374 * Description: Finish top cpuset after cpu, node maps are initialized
2375 */
2376 void __init cpuset_init_smp(void)
2377 {
2378 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
2379 top_cpuset.mems_allowed = node_states[N_MEMORY];
2380 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
2381
2382 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
2383 top_cpuset.effective_mems = node_states[N_MEMORY];
2384
2385 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
2386
2387 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
2388 BUG_ON(!cpuset_migrate_mm_wq);
2389 }
2390
2391 /**
2392 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2393 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
2394 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
2395 *
2396 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
2397 * attached to the specified @tsk. Guaranteed to return some non-empty
2398 * subset of cpu_online_mask, even if this means going outside the
2399 * tasks cpuset.
2400 **/
2401
2402 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
2403 {
2404 unsigned long flags;
2405
2406 spin_lock_irqsave(&callback_lock, flags);
2407 rcu_read_lock();
2408 guarantee_online_cpus(task_cs(tsk), pmask);
2409 rcu_read_unlock();
2410 spin_unlock_irqrestore(&callback_lock, flags);
2411 }
2412
2413 void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
2414 {
2415 rcu_read_lock();
2416 do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus);
2417 rcu_read_unlock();
2418
2419 /*
2420 * We own tsk->cpus_allowed, nobody can change it under us.
2421 *
2422 * But we used cs && cs->cpus_allowed lockless and thus can
2423 * race with cgroup_attach_task() or update_cpumask() and get
2424 * the wrong tsk->cpus_allowed. However, both cases imply the
2425 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2426 * which takes task_rq_lock().
2427 *
2428 * If we are called after it dropped the lock we must see all
2429 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2430 * set any mask even if it is not right from task_cs() pov,
2431 * the pending set_cpus_allowed_ptr() will fix things.
2432 *
2433 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2434 * if required.
2435 */
2436 }
2437
2438 void __init cpuset_init_current_mems_allowed(void)
2439 {
2440 nodes_setall(current->mems_allowed);
2441 }
2442
2443 /**
2444 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2445 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2446 *
2447 * Description: Returns the nodemask_t mems_allowed of the cpuset
2448 * attached to the specified @tsk. Guaranteed to return some non-empty
2449 * subset of node_states[N_MEMORY], even if this means going outside the
2450 * tasks cpuset.
2451 **/
2452
2453 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2454 {
2455 nodemask_t mask;
2456 unsigned long flags;
2457
2458 spin_lock_irqsave(&callback_lock, flags);
2459 rcu_read_lock();
2460 guarantee_online_mems(task_cs(tsk), &mask);
2461 rcu_read_unlock();
2462 spin_unlock_irqrestore(&callback_lock, flags);
2463
2464 return mask;
2465 }
2466
2467 /**
2468 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2469 * @nodemask: the nodemask to be checked
2470 *
2471 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
2472 */
2473 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
2474 {
2475 return nodes_intersects(*nodemask, current->mems_allowed);
2476 }
2477
2478 /*
2479 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2480 * mem_hardwall ancestor to the specified cpuset. Call holding
2481 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
2482 * (an unusual configuration), then returns the root cpuset.
2483 */
2484 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
2485 {
2486 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2487 cs = parent_cs(cs);
2488 return cs;
2489 }
2490
2491 /**
2492 * cpuset_node_allowed - Can we allocate on a memory node?
2493 * @node: is this an allowed node?
2494 * @gfp_mask: memory allocation flags
2495 *
2496 * If we're in interrupt, yes, we can always allocate. If @node is set in
2497 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
2498 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
2499 * yes. If current has access to memory reserves due to TIF_MEMDIE, yes.
2500 * Otherwise, no.
2501 *
2502 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
2503 * and do not allow allocations outside the current tasks cpuset
2504 * unless the task has been OOM killed as is marked TIF_MEMDIE.
2505 * GFP_KERNEL allocations are not so marked, so can escape to the
2506 * nearest enclosing hardwalled ancestor cpuset.
2507 *
2508 * Scanning up parent cpusets requires callback_lock. The
2509 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2510 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2511 * current tasks mems_allowed came up empty on the first pass over
2512 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2513 * cpuset are short of memory, might require taking the callback_lock.
2514 *
2515 * The first call here from mm/page_alloc:get_page_from_freelist()
2516 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2517 * so no allocation on a node outside the cpuset is allowed (unless
2518 * in interrupt, of course).
2519 *
2520 * The second pass through get_page_from_freelist() doesn't even call
2521 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2522 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2523 * in alloc_flags. That logic and the checks below have the combined
2524 * affect that:
2525 * in_interrupt - any node ok (current task context irrelevant)
2526 * GFP_ATOMIC - any node ok
2527 * TIF_MEMDIE - any node ok
2528 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
2529 * GFP_USER - only nodes in current tasks mems allowed ok.
2530 */
2531 int __cpuset_node_allowed(int node, gfp_t gfp_mask)
2532 {
2533 struct cpuset *cs; /* current cpuset ancestors */
2534 int allowed; /* is allocation in zone z allowed? */
2535 unsigned long flags;
2536
2537 if (in_interrupt())
2538 return 1;
2539 if (node_isset(node, current->mems_allowed))
2540 return 1;
2541 /*
2542 * Allow tasks that have access to memory reserves because they have
2543 * been OOM killed to get memory anywhere.
2544 */
2545 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2546 return 1;
2547 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2548 return 0;
2549
2550 if (current->flags & PF_EXITING) /* Let dying task have memory */
2551 return 1;
2552
2553 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2554 spin_lock_irqsave(&callback_lock, flags);
2555
2556 rcu_read_lock();
2557 cs = nearest_hardwall_ancestor(task_cs(current));
2558 allowed = node_isset(node, cs->mems_allowed);
2559 rcu_read_unlock();
2560
2561 spin_unlock_irqrestore(&callback_lock, flags);
2562 return allowed;
2563 }
2564
2565 /**
2566 * cpuset_mem_spread_node() - On which node to begin search for a file page
2567 * cpuset_slab_spread_node() - On which node to begin search for a slab page
2568 *
2569 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2570 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2571 * and if the memory allocation used cpuset_mem_spread_node()
2572 * to determine on which node to start looking, as it will for
2573 * certain page cache or slab cache pages such as used for file
2574 * system buffers and inode caches, then instead of starting on the
2575 * local node to look for a free page, rather spread the starting
2576 * node around the tasks mems_allowed nodes.
2577 *
2578 * We don't have to worry about the returned node being offline
2579 * because "it can't happen", and even if it did, it would be ok.
2580 *
2581 * The routines calling guarantee_online_mems() are careful to
2582 * only set nodes in task->mems_allowed that are online. So it
2583 * should not be possible for the following code to return an
2584 * offline node. But if it did, that would be ok, as this routine
2585 * is not returning the node where the allocation must be, only
2586 * the node where the search should start. The zonelist passed to
2587 * __alloc_pages() will include all nodes. If the slab allocator
2588 * is passed an offline node, it will fall back to the local node.
2589 * See kmem_cache_alloc_node().
2590 */
2591
2592 static int cpuset_spread_node(int *rotor)
2593 {
2594 int node;
2595
2596 node = next_node(*rotor, current->mems_allowed);
2597 if (node == MAX_NUMNODES)
2598 node = first_node(current->mems_allowed);
2599 *rotor = node;
2600 return node;
2601 }
2602
2603 int cpuset_mem_spread_node(void)
2604 {
2605 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2606 current->cpuset_mem_spread_rotor =
2607 node_random(&current->mems_allowed);
2608
2609 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2610 }
2611
2612 int cpuset_slab_spread_node(void)
2613 {
2614 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2615 current->cpuset_slab_spread_rotor =
2616 node_random(&current->mems_allowed);
2617
2618 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2619 }
2620
2621 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2622
2623 /**
2624 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2625 * @tsk1: pointer to task_struct of some task.
2626 * @tsk2: pointer to task_struct of some other task.
2627 *
2628 * Description: Return true if @tsk1's mems_allowed intersects the
2629 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2630 * one of the task's memory usage might impact the memory available
2631 * to the other.
2632 **/
2633
2634 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2635 const struct task_struct *tsk2)
2636 {
2637 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
2638 }
2639
2640 /**
2641 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
2642 *
2643 * Description: Prints current's name, cpuset name, and cached copy of its
2644 * mems_allowed to the kernel log.
2645 */
2646 void cpuset_print_current_mems_allowed(void)
2647 {
2648 struct cgroup *cgrp;
2649
2650 rcu_read_lock();
2651
2652 cgrp = task_cs(current)->css.cgroup;
2653 pr_info("%s cpuset=", current->comm);
2654 pr_cont_cgroup_name(cgrp);
2655 pr_cont(" mems_allowed=%*pbl\n",
2656 nodemask_pr_args(&current->mems_allowed));
2657
2658 rcu_read_unlock();
2659 }
2660
2661 /*
2662 * Collection of memory_pressure is suppressed unless
2663 * this flag is enabled by writing "1" to the special
2664 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2665 */
2666
2667 int cpuset_memory_pressure_enabled __read_mostly;
2668
2669 /**
2670 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2671 *
2672 * Keep a running average of the rate of synchronous (direct)
2673 * page reclaim efforts initiated by tasks in each cpuset.
2674 *
2675 * This represents the rate at which some task in the cpuset
2676 * ran low on memory on all nodes it was allowed to use, and
2677 * had to enter the kernels page reclaim code in an effort to
2678 * create more free memory by tossing clean pages or swapping
2679 * or writing dirty pages.
2680 *
2681 * Display to user space in the per-cpuset read-only file
2682 * "memory_pressure". Value displayed is an integer
2683 * representing the recent rate of entry into the synchronous
2684 * (direct) page reclaim by any task attached to the cpuset.
2685 **/
2686
2687 void __cpuset_memory_pressure_bump(void)
2688 {
2689 rcu_read_lock();
2690 fmeter_markevent(&task_cs(current)->fmeter);
2691 rcu_read_unlock();
2692 }
2693
2694 #ifdef CONFIG_PROC_PID_CPUSET
2695 /*
2696 * proc_cpuset_show()
2697 * - Print tasks cpuset path into seq_file.
2698 * - Used for /proc/<pid>/cpuset.
2699 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2700 * doesn't really matter if tsk->cpuset changes after we read it,
2701 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2702 * anyway.
2703 */
2704 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
2705 struct pid *pid, struct task_struct *tsk)
2706 {
2707 char *buf, *p;
2708 struct cgroup_subsys_state *css;
2709 int retval;
2710
2711 retval = -ENOMEM;
2712 buf = kmalloc(PATH_MAX, GFP_KERNEL);
2713 if (!buf)
2714 goto out;
2715
2716 retval = -ENAMETOOLONG;
2717 css = task_get_css(tsk, cpuset_cgrp_id);
2718 p = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
2719 current->nsproxy->cgroup_ns);
2720 css_put(css);
2721 if (!p)
2722 goto out_free;
2723 seq_puts(m, p);
2724 seq_putc(m, '\n');
2725 retval = 0;
2726 out_free:
2727 kfree(buf);
2728 out:
2729 return retval;
2730 }
2731 #endif /* CONFIG_PROC_PID_CPUSET */
2732
2733 /* Display task mems_allowed in /proc/<pid>/status file. */
2734 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2735 {
2736 seq_printf(m, "Mems_allowed:\t%*pb\n",
2737 nodemask_pr_args(&task->mems_allowed));
2738 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
2739 nodemask_pr_args(&task->mems_allowed));
2740 }
This page took 0.085725 seconds and 5 git commands to generate.