treewide: Remove old email address
[deliverable/linux.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47
48 #include "internal.h"
49
50 #include <asm/irq_regs.h>
51
52 static struct workqueue_struct *perf_wq;
53
54 typedef int (*remote_function_f)(void *);
55
56 struct remote_function_call {
57 struct task_struct *p;
58 remote_function_f func;
59 void *info;
60 int ret;
61 };
62
63 static void remote_function(void *data)
64 {
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75 }
76
77 /**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90 static int
91 task_function_call(struct task_struct *p, remote_function_f func, void *info)
92 {
93 struct remote_function_call data = {
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104 }
105
106 /**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
115 static int cpu_function_call(int cpu, remote_function_f func, void *info)
116 {
117 struct remote_function_call data = {
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127 }
128
129 #define EVENT_OWNER_KERNEL ((void *) -1)
130
131 static bool is_kernel_event(struct perf_event *event)
132 {
133 return event->owner == EVENT_OWNER_KERNEL;
134 }
135
136 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
140
141 /*
142 * branch priv levels that need permission checks
143 */
144 #define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
148 enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152 };
153
154 /*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
158 struct static_key_deferred perf_sched_events __read_mostly;
159 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
160 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
161
162 static atomic_t nr_mmap_events __read_mostly;
163 static atomic_t nr_comm_events __read_mostly;
164 static atomic_t nr_task_events __read_mostly;
165 static atomic_t nr_freq_events __read_mostly;
166 static atomic_t nr_switch_events __read_mostly;
167
168 static LIST_HEAD(pmus);
169 static DEFINE_MUTEX(pmus_lock);
170 static struct srcu_struct pmus_srcu;
171
172 /*
173 * perf event paranoia level:
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
176 * 1 - disallow cpu events for unpriv
177 * 2 - disallow kernel profiling for unpriv
178 */
179 int sysctl_perf_event_paranoid __read_mostly = 1;
180
181 /* Minimum for 512 kiB + 1 user control page */
182 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
183
184 /*
185 * max perf event sample rate
186 */
187 #define DEFAULT_MAX_SAMPLE_RATE 100000
188 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
196 static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
198
199 static void update_perf_cpu_limits(void)
200 {
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
204 do_div(tmp, 100);
205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
206 }
207
208 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
210 int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213 {
214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224 }
225
226 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231 {
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
238
239 return 0;
240 }
241
242 /*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248 #define NR_ACCUMULATED_SAMPLES 128
249 static DEFINE_PER_CPU(u64, running_sample_length);
250
251 static void perf_duration_warn(struct irq_work *w)
252 {
253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
254 u64 avg_local_sample_len;
255 u64 local_samples_len;
256
257 local_samples_len = __this_cpu_read(running_sample_length);
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
263 avg_local_sample_len, allowed_ns >> 1,
264 sysctl_perf_event_sample_rate);
265 }
266
267 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269 void perf_sample_event_took(u64 sample_len_ns)
270 {
271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
274
275 if (allowed_ns == 0)
276 return;
277
278 /* decay the counter by 1 average sample */
279 local_samples_len = __this_cpu_read(running_sample_length);
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
282 __this_cpu_write(running_sample_length, local_samples_len);
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
291 if (avg_local_sample_len <= allowed_ns)
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
301 update_perf_cpu_limits();
302
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
309 }
310
311 static atomic64_t perf_event_id;
312
313 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320 static void update_context_time(struct perf_event_context *ctx);
321 static u64 perf_event_time(struct perf_event *event);
322
323 void __weak perf_event_print_debug(void) { }
324
325 extern __weak const char *perf_pmu_name(void)
326 {
327 return "pmu";
328 }
329
330 static inline u64 perf_clock(void)
331 {
332 return local_clock();
333 }
334
335 static inline u64 perf_event_clock(struct perf_event *event)
336 {
337 return event->clock();
338 }
339
340 static inline struct perf_cpu_context *
341 __get_cpu_context(struct perf_event_context *ctx)
342 {
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344 }
345
346 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348 {
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352 }
353
354 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356 {
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360 }
361
362 #ifdef CONFIG_CGROUP_PERF
363
364 static inline bool
365 perf_cgroup_match(struct perf_event *event)
366 {
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
386 }
387
388 static inline void perf_detach_cgroup(struct perf_event *event)
389 {
390 css_put(&event->cgrp->css);
391 event->cgrp = NULL;
392 }
393
394 static inline int is_cgroup_event(struct perf_event *event)
395 {
396 return event->cgrp != NULL;
397 }
398
399 static inline u64 perf_cgroup_event_time(struct perf_event *event)
400 {
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405 }
406
407 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408 {
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418 }
419
420 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421 {
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425 }
426
427 static inline void update_cgrp_time_from_event(struct perf_event *event)
428 {
429 struct perf_cgroup *cgrp;
430
431 /*
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
434 */
435 if (!is_cgroup_event(event))
436 return;
437
438 cgrp = perf_cgroup_from_task(current, event->ctx);
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
444 }
445
446 static inline void
447 perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
449 {
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
459 return;
460
461 cgrp = perf_cgroup_from_task(task, ctx);
462 info = this_cpu_ptr(cgrp->info);
463 info->timestamp = ctx->timestamp;
464 }
465
466 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469 /*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
475 static void perf_cgroup_switch(struct task_struct *task, int mode)
476 {
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
492
493 list_for_each_entry_rcu(pmu, &pmus, entry) {
494 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
495 if (cpuctx->unique_pmu != pmu)
496 continue; /* ensure we process each cpuctx once */
497
498 /*
499 * perf_cgroup_events says at least one
500 * context on this CPU has cgroup events.
501 *
502 * ctx->nr_cgroups reports the number of cgroup
503 * events for a context.
504 */
505 if (cpuctx->ctx.nr_cgroups > 0) {
506 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 perf_pmu_disable(cpuctx->ctx.pmu);
508
509 if (mode & PERF_CGROUP_SWOUT) {
510 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 /*
512 * must not be done before ctxswout due
513 * to event_filter_match() in event_sched_out()
514 */
515 cpuctx->cgrp = NULL;
516 }
517
518 if (mode & PERF_CGROUP_SWIN) {
519 WARN_ON_ONCE(cpuctx->cgrp);
520 /*
521 * set cgrp before ctxsw in to allow
522 * event_filter_match() to not have to pass
523 * task around
524 * we pass the cpuctx->ctx to perf_cgroup_from_task()
525 * because cgorup events are only per-cpu
526 */
527 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
528 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
529 }
530 perf_pmu_enable(cpuctx->ctx.pmu);
531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
532 }
533 }
534
535 local_irq_restore(flags);
536 }
537
538 static inline void perf_cgroup_sched_out(struct task_struct *task,
539 struct task_struct *next)
540 {
541 struct perf_cgroup *cgrp1;
542 struct perf_cgroup *cgrp2 = NULL;
543
544 rcu_read_lock();
545 /*
546 * we come here when we know perf_cgroup_events > 0
547 * we do not need to pass the ctx here because we know
548 * we are holding the rcu lock
549 */
550 cgrp1 = perf_cgroup_from_task(task, NULL);
551
552 /*
553 * next is NULL when called from perf_event_enable_on_exec()
554 * that will systematically cause a cgroup_switch()
555 */
556 if (next)
557 cgrp2 = perf_cgroup_from_task(next, NULL);
558
559 /*
560 * only schedule out current cgroup events if we know
561 * that we are switching to a different cgroup. Otherwise,
562 * do no touch the cgroup events.
563 */
564 if (cgrp1 != cgrp2)
565 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
566
567 rcu_read_unlock();
568 }
569
570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
572 {
573 struct perf_cgroup *cgrp1;
574 struct perf_cgroup *cgrp2 = NULL;
575
576 rcu_read_lock();
577 /*
578 * we come here when we know perf_cgroup_events > 0
579 * we do not need to pass the ctx here because we know
580 * we are holding the rcu lock
581 */
582 cgrp1 = perf_cgroup_from_task(task, NULL);
583
584 /* prev can never be NULL */
585 cgrp2 = perf_cgroup_from_task(prev, NULL);
586
587 /*
588 * only need to schedule in cgroup events if we are changing
589 * cgroup during ctxsw. Cgroup events were not scheduled
590 * out of ctxsw out if that was not the case.
591 */
592 if (cgrp1 != cgrp2)
593 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
594
595 rcu_read_unlock();
596 }
597
598 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 struct perf_event_attr *attr,
600 struct perf_event *group_leader)
601 {
602 struct perf_cgroup *cgrp;
603 struct cgroup_subsys_state *css;
604 struct fd f = fdget(fd);
605 int ret = 0;
606
607 if (!f.file)
608 return -EBADF;
609
610 css = css_tryget_online_from_dir(f.file->f_path.dentry,
611 &perf_event_cgrp_subsys);
612 if (IS_ERR(css)) {
613 ret = PTR_ERR(css);
614 goto out;
615 }
616
617 cgrp = container_of(css, struct perf_cgroup, css);
618 event->cgrp = cgrp;
619
620 /*
621 * all events in a group must monitor
622 * the same cgroup because a task belongs
623 * to only one perf cgroup at a time
624 */
625 if (group_leader && group_leader->cgrp != cgrp) {
626 perf_detach_cgroup(event);
627 ret = -EINVAL;
628 }
629 out:
630 fdput(f);
631 return ret;
632 }
633
634 static inline void
635 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
636 {
637 struct perf_cgroup_info *t;
638 t = per_cpu_ptr(event->cgrp->info, event->cpu);
639 event->shadow_ctx_time = now - t->timestamp;
640 }
641
642 static inline void
643 perf_cgroup_defer_enabled(struct perf_event *event)
644 {
645 /*
646 * when the current task's perf cgroup does not match
647 * the event's, we need to remember to call the
648 * perf_mark_enable() function the first time a task with
649 * a matching perf cgroup is scheduled in.
650 */
651 if (is_cgroup_event(event) && !perf_cgroup_match(event))
652 event->cgrp_defer_enabled = 1;
653 }
654
655 static inline void
656 perf_cgroup_mark_enabled(struct perf_event *event,
657 struct perf_event_context *ctx)
658 {
659 struct perf_event *sub;
660 u64 tstamp = perf_event_time(event);
661
662 if (!event->cgrp_defer_enabled)
663 return;
664
665 event->cgrp_defer_enabled = 0;
666
667 event->tstamp_enabled = tstamp - event->total_time_enabled;
668 list_for_each_entry(sub, &event->sibling_list, group_entry) {
669 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
670 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
671 sub->cgrp_defer_enabled = 0;
672 }
673 }
674 }
675 #else /* !CONFIG_CGROUP_PERF */
676
677 static inline bool
678 perf_cgroup_match(struct perf_event *event)
679 {
680 return true;
681 }
682
683 static inline void perf_detach_cgroup(struct perf_event *event)
684 {}
685
686 static inline int is_cgroup_event(struct perf_event *event)
687 {
688 return 0;
689 }
690
691 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
692 {
693 return 0;
694 }
695
696 static inline void update_cgrp_time_from_event(struct perf_event *event)
697 {
698 }
699
700 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
701 {
702 }
703
704 static inline void perf_cgroup_sched_out(struct task_struct *task,
705 struct task_struct *next)
706 {
707 }
708
709 static inline void perf_cgroup_sched_in(struct task_struct *prev,
710 struct task_struct *task)
711 {
712 }
713
714 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
715 struct perf_event_attr *attr,
716 struct perf_event *group_leader)
717 {
718 return -EINVAL;
719 }
720
721 static inline void
722 perf_cgroup_set_timestamp(struct task_struct *task,
723 struct perf_event_context *ctx)
724 {
725 }
726
727 void
728 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
729 {
730 }
731
732 static inline void
733 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
734 {
735 }
736
737 static inline u64 perf_cgroup_event_time(struct perf_event *event)
738 {
739 return 0;
740 }
741
742 static inline void
743 perf_cgroup_defer_enabled(struct perf_event *event)
744 {
745 }
746
747 static inline void
748 perf_cgroup_mark_enabled(struct perf_event *event,
749 struct perf_event_context *ctx)
750 {
751 }
752 #endif
753
754 /*
755 * set default to be dependent on timer tick just
756 * like original code
757 */
758 #define PERF_CPU_HRTIMER (1000 / HZ)
759 /*
760 * function must be called with interrupts disbled
761 */
762 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
763 {
764 struct perf_cpu_context *cpuctx;
765 int rotations = 0;
766
767 WARN_ON(!irqs_disabled());
768
769 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
770 rotations = perf_rotate_context(cpuctx);
771
772 raw_spin_lock(&cpuctx->hrtimer_lock);
773 if (rotations)
774 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
775 else
776 cpuctx->hrtimer_active = 0;
777 raw_spin_unlock(&cpuctx->hrtimer_lock);
778
779 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
780 }
781
782 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
783 {
784 struct hrtimer *timer = &cpuctx->hrtimer;
785 struct pmu *pmu = cpuctx->ctx.pmu;
786 u64 interval;
787
788 /* no multiplexing needed for SW PMU */
789 if (pmu->task_ctx_nr == perf_sw_context)
790 return;
791
792 /*
793 * check default is sane, if not set then force to
794 * default interval (1/tick)
795 */
796 interval = pmu->hrtimer_interval_ms;
797 if (interval < 1)
798 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
799
800 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
801
802 raw_spin_lock_init(&cpuctx->hrtimer_lock);
803 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
804 timer->function = perf_mux_hrtimer_handler;
805 }
806
807 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
808 {
809 struct hrtimer *timer = &cpuctx->hrtimer;
810 struct pmu *pmu = cpuctx->ctx.pmu;
811 unsigned long flags;
812
813 /* not for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
815 return 0;
816
817 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
818 if (!cpuctx->hrtimer_active) {
819 cpuctx->hrtimer_active = 1;
820 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
821 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
822 }
823 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
824
825 return 0;
826 }
827
828 void perf_pmu_disable(struct pmu *pmu)
829 {
830 int *count = this_cpu_ptr(pmu->pmu_disable_count);
831 if (!(*count)++)
832 pmu->pmu_disable(pmu);
833 }
834
835 void perf_pmu_enable(struct pmu *pmu)
836 {
837 int *count = this_cpu_ptr(pmu->pmu_disable_count);
838 if (!--(*count))
839 pmu->pmu_enable(pmu);
840 }
841
842 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
843
844 /*
845 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
846 * perf_event_task_tick() are fully serialized because they're strictly cpu
847 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
848 * disabled, while perf_event_task_tick is called from IRQ context.
849 */
850 static void perf_event_ctx_activate(struct perf_event_context *ctx)
851 {
852 struct list_head *head = this_cpu_ptr(&active_ctx_list);
853
854 WARN_ON(!irqs_disabled());
855
856 WARN_ON(!list_empty(&ctx->active_ctx_list));
857
858 list_add(&ctx->active_ctx_list, head);
859 }
860
861 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
862 {
863 WARN_ON(!irqs_disabled());
864
865 WARN_ON(list_empty(&ctx->active_ctx_list));
866
867 list_del_init(&ctx->active_ctx_list);
868 }
869
870 static void get_ctx(struct perf_event_context *ctx)
871 {
872 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
873 }
874
875 static void free_ctx(struct rcu_head *head)
876 {
877 struct perf_event_context *ctx;
878
879 ctx = container_of(head, struct perf_event_context, rcu_head);
880 kfree(ctx->task_ctx_data);
881 kfree(ctx);
882 }
883
884 static void put_ctx(struct perf_event_context *ctx)
885 {
886 if (atomic_dec_and_test(&ctx->refcount)) {
887 if (ctx->parent_ctx)
888 put_ctx(ctx->parent_ctx);
889 if (ctx->task)
890 put_task_struct(ctx->task);
891 call_rcu(&ctx->rcu_head, free_ctx);
892 }
893 }
894
895 /*
896 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
897 * perf_pmu_migrate_context() we need some magic.
898 *
899 * Those places that change perf_event::ctx will hold both
900 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
901 *
902 * Lock ordering is by mutex address. There are two other sites where
903 * perf_event_context::mutex nests and those are:
904 *
905 * - perf_event_exit_task_context() [ child , 0 ]
906 * __perf_event_exit_task()
907 * sync_child_event()
908 * put_event() [ parent, 1 ]
909 *
910 * - perf_event_init_context() [ parent, 0 ]
911 * inherit_task_group()
912 * inherit_group()
913 * inherit_event()
914 * perf_event_alloc()
915 * perf_init_event()
916 * perf_try_init_event() [ child , 1 ]
917 *
918 * While it appears there is an obvious deadlock here -- the parent and child
919 * nesting levels are inverted between the two. This is in fact safe because
920 * life-time rules separate them. That is an exiting task cannot fork, and a
921 * spawning task cannot (yet) exit.
922 *
923 * But remember that that these are parent<->child context relations, and
924 * migration does not affect children, therefore these two orderings should not
925 * interact.
926 *
927 * The change in perf_event::ctx does not affect children (as claimed above)
928 * because the sys_perf_event_open() case will install a new event and break
929 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
930 * concerned with cpuctx and that doesn't have children.
931 *
932 * The places that change perf_event::ctx will issue:
933 *
934 * perf_remove_from_context();
935 * synchronize_rcu();
936 * perf_install_in_context();
937 *
938 * to affect the change. The remove_from_context() + synchronize_rcu() should
939 * quiesce the event, after which we can install it in the new location. This
940 * means that only external vectors (perf_fops, prctl) can perturb the event
941 * while in transit. Therefore all such accessors should also acquire
942 * perf_event_context::mutex to serialize against this.
943 *
944 * However; because event->ctx can change while we're waiting to acquire
945 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
946 * function.
947 *
948 * Lock order:
949 * task_struct::perf_event_mutex
950 * perf_event_context::mutex
951 * perf_event_context::lock
952 * perf_event::child_mutex;
953 * perf_event::mmap_mutex
954 * mmap_sem
955 */
956 static struct perf_event_context *
957 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
958 {
959 struct perf_event_context *ctx;
960
961 again:
962 rcu_read_lock();
963 ctx = ACCESS_ONCE(event->ctx);
964 if (!atomic_inc_not_zero(&ctx->refcount)) {
965 rcu_read_unlock();
966 goto again;
967 }
968 rcu_read_unlock();
969
970 mutex_lock_nested(&ctx->mutex, nesting);
971 if (event->ctx != ctx) {
972 mutex_unlock(&ctx->mutex);
973 put_ctx(ctx);
974 goto again;
975 }
976
977 return ctx;
978 }
979
980 static inline struct perf_event_context *
981 perf_event_ctx_lock(struct perf_event *event)
982 {
983 return perf_event_ctx_lock_nested(event, 0);
984 }
985
986 static void perf_event_ctx_unlock(struct perf_event *event,
987 struct perf_event_context *ctx)
988 {
989 mutex_unlock(&ctx->mutex);
990 put_ctx(ctx);
991 }
992
993 /*
994 * This must be done under the ctx->lock, such as to serialize against
995 * context_equiv(), therefore we cannot call put_ctx() since that might end up
996 * calling scheduler related locks and ctx->lock nests inside those.
997 */
998 static __must_check struct perf_event_context *
999 unclone_ctx(struct perf_event_context *ctx)
1000 {
1001 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1002
1003 lockdep_assert_held(&ctx->lock);
1004
1005 if (parent_ctx)
1006 ctx->parent_ctx = NULL;
1007 ctx->generation++;
1008
1009 return parent_ctx;
1010 }
1011
1012 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1013 {
1014 /*
1015 * only top level events have the pid namespace they were created in
1016 */
1017 if (event->parent)
1018 event = event->parent;
1019
1020 return task_tgid_nr_ns(p, event->ns);
1021 }
1022
1023 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1024 {
1025 /*
1026 * only top level events have the pid namespace they were created in
1027 */
1028 if (event->parent)
1029 event = event->parent;
1030
1031 return task_pid_nr_ns(p, event->ns);
1032 }
1033
1034 /*
1035 * If we inherit events we want to return the parent event id
1036 * to userspace.
1037 */
1038 static u64 primary_event_id(struct perf_event *event)
1039 {
1040 u64 id = event->id;
1041
1042 if (event->parent)
1043 id = event->parent->id;
1044
1045 return id;
1046 }
1047
1048 /*
1049 * Get the perf_event_context for a task and lock it.
1050 * This has to cope with with the fact that until it is locked,
1051 * the context could get moved to another task.
1052 */
1053 static struct perf_event_context *
1054 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1055 {
1056 struct perf_event_context *ctx;
1057
1058 retry:
1059 /*
1060 * One of the few rules of preemptible RCU is that one cannot do
1061 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1062 * part of the read side critical section was irqs-enabled -- see
1063 * rcu_read_unlock_special().
1064 *
1065 * Since ctx->lock nests under rq->lock we must ensure the entire read
1066 * side critical section has interrupts disabled.
1067 */
1068 local_irq_save(*flags);
1069 rcu_read_lock();
1070 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1071 if (ctx) {
1072 /*
1073 * If this context is a clone of another, it might
1074 * get swapped for another underneath us by
1075 * perf_event_task_sched_out, though the
1076 * rcu_read_lock() protects us from any context
1077 * getting freed. Lock the context and check if it
1078 * got swapped before we could get the lock, and retry
1079 * if so. If we locked the right context, then it
1080 * can't get swapped on us any more.
1081 */
1082 raw_spin_lock(&ctx->lock);
1083 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1084 raw_spin_unlock(&ctx->lock);
1085 rcu_read_unlock();
1086 local_irq_restore(*flags);
1087 goto retry;
1088 }
1089
1090 if (!atomic_inc_not_zero(&ctx->refcount)) {
1091 raw_spin_unlock(&ctx->lock);
1092 ctx = NULL;
1093 }
1094 }
1095 rcu_read_unlock();
1096 if (!ctx)
1097 local_irq_restore(*flags);
1098 return ctx;
1099 }
1100
1101 /*
1102 * Get the context for a task and increment its pin_count so it
1103 * can't get swapped to another task. This also increments its
1104 * reference count so that the context can't get freed.
1105 */
1106 static struct perf_event_context *
1107 perf_pin_task_context(struct task_struct *task, int ctxn)
1108 {
1109 struct perf_event_context *ctx;
1110 unsigned long flags;
1111
1112 ctx = perf_lock_task_context(task, ctxn, &flags);
1113 if (ctx) {
1114 ++ctx->pin_count;
1115 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1116 }
1117 return ctx;
1118 }
1119
1120 static void perf_unpin_context(struct perf_event_context *ctx)
1121 {
1122 unsigned long flags;
1123
1124 raw_spin_lock_irqsave(&ctx->lock, flags);
1125 --ctx->pin_count;
1126 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1127 }
1128
1129 /*
1130 * Update the record of the current time in a context.
1131 */
1132 static void update_context_time(struct perf_event_context *ctx)
1133 {
1134 u64 now = perf_clock();
1135
1136 ctx->time += now - ctx->timestamp;
1137 ctx->timestamp = now;
1138 }
1139
1140 static u64 perf_event_time(struct perf_event *event)
1141 {
1142 struct perf_event_context *ctx = event->ctx;
1143
1144 if (is_cgroup_event(event))
1145 return perf_cgroup_event_time(event);
1146
1147 return ctx ? ctx->time : 0;
1148 }
1149
1150 /*
1151 * Update the total_time_enabled and total_time_running fields for a event.
1152 * The caller of this function needs to hold the ctx->lock.
1153 */
1154 static void update_event_times(struct perf_event *event)
1155 {
1156 struct perf_event_context *ctx = event->ctx;
1157 u64 run_end;
1158
1159 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1160 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1161 return;
1162 /*
1163 * in cgroup mode, time_enabled represents
1164 * the time the event was enabled AND active
1165 * tasks were in the monitored cgroup. This is
1166 * independent of the activity of the context as
1167 * there may be a mix of cgroup and non-cgroup events.
1168 *
1169 * That is why we treat cgroup events differently
1170 * here.
1171 */
1172 if (is_cgroup_event(event))
1173 run_end = perf_cgroup_event_time(event);
1174 else if (ctx->is_active)
1175 run_end = ctx->time;
1176 else
1177 run_end = event->tstamp_stopped;
1178
1179 event->total_time_enabled = run_end - event->tstamp_enabled;
1180
1181 if (event->state == PERF_EVENT_STATE_INACTIVE)
1182 run_end = event->tstamp_stopped;
1183 else
1184 run_end = perf_event_time(event);
1185
1186 event->total_time_running = run_end - event->tstamp_running;
1187
1188 }
1189
1190 /*
1191 * Update total_time_enabled and total_time_running for all events in a group.
1192 */
1193 static void update_group_times(struct perf_event *leader)
1194 {
1195 struct perf_event *event;
1196
1197 update_event_times(leader);
1198 list_for_each_entry(event, &leader->sibling_list, group_entry)
1199 update_event_times(event);
1200 }
1201
1202 static struct list_head *
1203 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1204 {
1205 if (event->attr.pinned)
1206 return &ctx->pinned_groups;
1207 else
1208 return &ctx->flexible_groups;
1209 }
1210
1211 /*
1212 * Add a event from the lists for its context.
1213 * Must be called with ctx->mutex and ctx->lock held.
1214 */
1215 static void
1216 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1217 {
1218 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1219 event->attach_state |= PERF_ATTACH_CONTEXT;
1220
1221 /*
1222 * If we're a stand alone event or group leader, we go to the context
1223 * list, group events are kept attached to the group so that
1224 * perf_group_detach can, at all times, locate all siblings.
1225 */
1226 if (event->group_leader == event) {
1227 struct list_head *list;
1228
1229 if (is_software_event(event))
1230 event->group_flags |= PERF_GROUP_SOFTWARE;
1231
1232 list = ctx_group_list(event, ctx);
1233 list_add_tail(&event->group_entry, list);
1234 }
1235
1236 if (is_cgroup_event(event))
1237 ctx->nr_cgroups++;
1238
1239 list_add_rcu(&event->event_entry, &ctx->event_list);
1240 ctx->nr_events++;
1241 if (event->attr.inherit_stat)
1242 ctx->nr_stat++;
1243
1244 ctx->generation++;
1245 }
1246
1247 /*
1248 * Initialize event state based on the perf_event_attr::disabled.
1249 */
1250 static inline void perf_event__state_init(struct perf_event *event)
1251 {
1252 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1253 PERF_EVENT_STATE_INACTIVE;
1254 }
1255
1256 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1257 {
1258 int entry = sizeof(u64); /* value */
1259 int size = 0;
1260 int nr = 1;
1261
1262 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1263 size += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1266 size += sizeof(u64);
1267
1268 if (event->attr.read_format & PERF_FORMAT_ID)
1269 entry += sizeof(u64);
1270
1271 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1272 nr += nr_siblings;
1273 size += sizeof(u64);
1274 }
1275
1276 size += entry * nr;
1277 event->read_size = size;
1278 }
1279
1280 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1281 {
1282 struct perf_sample_data *data;
1283 u16 size = 0;
1284
1285 if (sample_type & PERF_SAMPLE_IP)
1286 size += sizeof(data->ip);
1287
1288 if (sample_type & PERF_SAMPLE_ADDR)
1289 size += sizeof(data->addr);
1290
1291 if (sample_type & PERF_SAMPLE_PERIOD)
1292 size += sizeof(data->period);
1293
1294 if (sample_type & PERF_SAMPLE_WEIGHT)
1295 size += sizeof(data->weight);
1296
1297 if (sample_type & PERF_SAMPLE_READ)
1298 size += event->read_size;
1299
1300 if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 size += sizeof(data->data_src.val);
1302
1303 if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 size += sizeof(data->txn);
1305
1306 event->header_size = size;
1307 }
1308
1309 /*
1310 * Called at perf_event creation and when events are attached/detached from a
1311 * group.
1312 */
1313 static void perf_event__header_size(struct perf_event *event)
1314 {
1315 __perf_event_read_size(event,
1316 event->group_leader->nr_siblings);
1317 __perf_event_header_size(event, event->attr.sample_type);
1318 }
1319
1320 static void perf_event__id_header_size(struct perf_event *event)
1321 {
1322 struct perf_sample_data *data;
1323 u64 sample_type = event->attr.sample_type;
1324 u16 size = 0;
1325
1326 if (sample_type & PERF_SAMPLE_TID)
1327 size += sizeof(data->tid_entry);
1328
1329 if (sample_type & PERF_SAMPLE_TIME)
1330 size += sizeof(data->time);
1331
1332 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1333 size += sizeof(data->id);
1334
1335 if (sample_type & PERF_SAMPLE_ID)
1336 size += sizeof(data->id);
1337
1338 if (sample_type & PERF_SAMPLE_STREAM_ID)
1339 size += sizeof(data->stream_id);
1340
1341 if (sample_type & PERF_SAMPLE_CPU)
1342 size += sizeof(data->cpu_entry);
1343
1344 event->id_header_size = size;
1345 }
1346
1347 static bool perf_event_validate_size(struct perf_event *event)
1348 {
1349 /*
1350 * The values computed here will be over-written when we actually
1351 * attach the event.
1352 */
1353 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1354 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1355 perf_event__id_header_size(event);
1356
1357 /*
1358 * Sum the lot; should not exceed the 64k limit we have on records.
1359 * Conservative limit to allow for callchains and other variable fields.
1360 */
1361 if (event->read_size + event->header_size +
1362 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1363 return false;
1364
1365 return true;
1366 }
1367
1368 static void perf_group_attach(struct perf_event *event)
1369 {
1370 struct perf_event *group_leader = event->group_leader, *pos;
1371
1372 /*
1373 * We can have double attach due to group movement in perf_event_open.
1374 */
1375 if (event->attach_state & PERF_ATTACH_GROUP)
1376 return;
1377
1378 event->attach_state |= PERF_ATTACH_GROUP;
1379
1380 if (group_leader == event)
1381 return;
1382
1383 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1384
1385 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1386 !is_software_event(event))
1387 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1388
1389 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1390 group_leader->nr_siblings++;
1391
1392 perf_event__header_size(group_leader);
1393
1394 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1395 perf_event__header_size(pos);
1396 }
1397
1398 /*
1399 * Remove a event from the lists for its context.
1400 * Must be called with ctx->mutex and ctx->lock held.
1401 */
1402 static void
1403 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1404 {
1405 struct perf_cpu_context *cpuctx;
1406
1407 WARN_ON_ONCE(event->ctx != ctx);
1408 lockdep_assert_held(&ctx->lock);
1409
1410 /*
1411 * We can have double detach due to exit/hot-unplug + close.
1412 */
1413 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1414 return;
1415
1416 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1417
1418 if (is_cgroup_event(event)) {
1419 ctx->nr_cgroups--;
1420 cpuctx = __get_cpu_context(ctx);
1421 /*
1422 * if there are no more cgroup events
1423 * then cler cgrp to avoid stale pointer
1424 * in update_cgrp_time_from_cpuctx()
1425 */
1426 if (!ctx->nr_cgroups)
1427 cpuctx->cgrp = NULL;
1428 }
1429
1430 ctx->nr_events--;
1431 if (event->attr.inherit_stat)
1432 ctx->nr_stat--;
1433
1434 list_del_rcu(&event->event_entry);
1435
1436 if (event->group_leader == event)
1437 list_del_init(&event->group_entry);
1438
1439 update_group_times(event);
1440
1441 /*
1442 * If event was in error state, then keep it
1443 * that way, otherwise bogus counts will be
1444 * returned on read(). The only way to get out
1445 * of error state is by explicit re-enabling
1446 * of the event
1447 */
1448 if (event->state > PERF_EVENT_STATE_OFF)
1449 event->state = PERF_EVENT_STATE_OFF;
1450
1451 ctx->generation++;
1452 }
1453
1454 static void perf_group_detach(struct perf_event *event)
1455 {
1456 struct perf_event *sibling, *tmp;
1457 struct list_head *list = NULL;
1458
1459 /*
1460 * We can have double detach due to exit/hot-unplug + close.
1461 */
1462 if (!(event->attach_state & PERF_ATTACH_GROUP))
1463 return;
1464
1465 event->attach_state &= ~PERF_ATTACH_GROUP;
1466
1467 /*
1468 * If this is a sibling, remove it from its group.
1469 */
1470 if (event->group_leader != event) {
1471 list_del_init(&event->group_entry);
1472 event->group_leader->nr_siblings--;
1473 goto out;
1474 }
1475
1476 if (!list_empty(&event->group_entry))
1477 list = &event->group_entry;
1478
1479 /*
1480 * If this was a group event with sibling events then
1481 * upgrade the siblings to singleton events by adding them
1482 * to whatever list we are on.
1483 */
1484 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1485 if (list)
1486 list_move_tail(&sibling->group_entry, list);
1487 sibling->group_leader = sibling;
1488
1489 /* Inherit group flags from the previous leader */
1490 sibling->group_flags = event->group_flags;
1491
1492 WARN_ON_ONCE(sibling->ctx != event->ctx);
1493 }
1494
1495 out:
1496 perf_event__header_size(event->group_leader);
1497
1498 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1499 perf_event__header_size(tmp);
1500 }
1501
1502 /*
1503 * User event without the task.
1504 */
1505 static bool is_orphaned_event(struct perf_event *event)
1506 {
1507 return event && !is_kernel_event(event) && !event->owner;
1508 }
1509
1510 /*
1511 * Event has a parent but parent's task finished and it's
1512 * alive only because of children holding refference.
1513 */
1514 static bool is_orphaned_child(struct perf_event *event)
1515 {
1516 return is_orphaned_event(event->parent);
1517 }
1518
1519 static void orphans_remove_work(struct work_struct *work);
1520
1521 static void schedule_orphans_remove(struct perf_event_context *ctx)
1522 {
1523 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1524 return;
1525
1526 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1527 get_ctx(ctx);
1528 ctx->orphans_remove_sched = true;
1529 }
1530 }
1531
1532 static int __init perf_workqueue_init(void)
1533 {
1534 perf_wq = create_singlethread_workqueue("perf");
1535 WARN(!perf_wq, "failed to create perf workqueue\n");
1536 return perf_wq ? 0 : -1;
1537 }
1538
1539 core_initcall(perf_workqueue_init);
1540
1541 static inline int pmu_filter_match(struct perf_event *event)
1542 {
1543 struct pmu *pmu = event->pmu;
1544 return pmu->filter_match ? pmu->filter_match(event) : 1;
1545 }
1546
1547 static inline int
1548 event_filter_match(struct perf_event *event)
1549 {
1550 return (event->cpu == -1 || event->cpu == smp_processor_id())
1551 && perf_cgroup_match(event) && pmu_filter_match(event);
1552 }
1553
1554 static void
1555 event_sched_out(struct perf_event *event,
1556 struct perf_cpu_context *cpuctx,
1557 struct perf_event_context *ctx)
1558 {
1559 u64 tstamp = perf_event_time(event);
1560 u64 delta;
1561
1562 WARN_ON_ONCE(event->ctx != ctx);
1563 lockdep_assert_held(&ctx->lock);
1564
1565 /*
1566 * An event which could not be activated because of
1567 * filter mismatch still needs to have its timings
1568 * maintained, otherwise bogus information is return
1569 * via read() for time_enabled, time_running:
1570 */
1571 if (event->state == PERF_EVENT_STATE_INACTIVE
1572 && !event_filter_match(event)) {
1573 delta = tstamp - event->tstamp_stopped;
1574 event->tstamp_running += delta;
1575 event->tstamp_stopped = tstamp;
1576 }
1577
1578 if (event->state != PERF_EVENT_STATE_ACTIVE)
1579 return;
1580
1581 perf_pmu_disable(event->pmu);
1582
1583 event->state = PERF_EVENT_STATE_INACTIVE;
1584 if (event->pending_disable) {
1585 event->pending_disable = 0;
1586 event->state = PERF_EVENT_STATE_OFF;
1587 }
1588 event->tstamp_stopped = tstamp;
1589 event->pmu->del(event, 0);
1590 event->oncpu = -1;
1591
1592 if (!is_software_event(event))
1593 cpuctx->active_oncpu--;
1594 if (!--ctx->nr_active)
1595 perf_event_ctx_deactivate(ctx);
1596 if (event->attr.freq && event->attr.sample_freq)
1597 ctx->nr_freq--;
1598 if (event->attr.exclusive || !cpuctx->active_oncpu)
1599 cpuctx->exclusive = 0;
1600
1601 if (is_orphaned_child(event))
1602 schedule_orphans_remove(ctx);
1603
1604 perf_pmu_enable(event->pmu);
1605 }
1606
1607 static void
1608 group_sched_out(struct perf_event *group_event,
1609 struct perf_cpu_context *cpuctx,
1610 struct perf_event_context *ctx)
1611 {
1612 struct perf_event *event;
1613 int state = group_event->state;
1614
1615 event_sched_out(group_event, cpuctx, ctx);
1616
1617 /*
1618 * Schedule out siblings (if any):
1619 */
1620 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1621 event_sched_out(event, cpuctx, ctx);
1622
1623 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1624 cpuctx->exclusive = 0;
1625 }
1626
1627 struct remove_event {
1628 struct perf_event *event;
1629 bool detach_group;
1630 };
1631
1632 /*
1633 * Cross CPU call to remove a performance event
1634 *
1635 * We disable the event on the hardware level first. After that we
1636 * remove it from the context list.
1637 */
1638 static int __perf_remove_from_context(void *info)
1639 {
1640 struct remove_event *re = info;
1641 struct perf_event *event = re->event;
1642 struct perf_event_context *ctx = event->ctx;
1643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1644
1645 raw_spin_lock(&ctx->lock);
1646 event_sched_out(event, cpuctx, ctx);
1647 if (re->detach_group)
1648 perf_group_detach(event);
1649 list_del_event(event, ctx);
1650 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1651 ctx->is_active = 0;
1652 cpuctx->task_ctx = NULL;
1653 }
1654 raw_spin_unlock(&ctx->lock);
1655
1656 return 0;
1657 }
1658
1659
1660 /*
1661 * Remove the event from a task's (or a CPU's) list of events.
1662 *
1663 * CPU events are removed with a smp call. For task events we only
1664 * call when the task is on a CPU.
1665 *
1666 * If event->ctx is a cloned context, callers must make sure that
1667 * every task struct that event->ctx->task could possibly point to
1668 * remains valid. This is OK when called from perf_release since
1669 * that only calls us on the top-level context, which can't be a clone.
1670 * When called from perf_event_exit_task, it's OK because the
1671 * context has been detached from its task.
1672 */
1673 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1674 {
1675 struct perf_event_context *ctx = event->ctx;
1676 struct task_struct *task = ctx->task;
1677 struct remove_event re = {
1678 .event = event,
1679 .detach_group = detach_group,
1680 };
1681
1682 lockdep_assert_held(&ctx->mutex);
1683
1684 if (!task) {
1685 /*
1686 * Per cpu events are removed via an smp call. The removal can
1687 * fail if the CPU is currently offline, but in that case we
1688 * already called __perf_remove_from_context from
1689 * perf_event_exit_cpu.
1690 */
1691 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1692 return;
1693 }
1694
1695 retry:
1696 if (!task_function_call(task, __perf_remove_from_context, &re))
1697 return;
1698
1699 raw_spin_lock_irq(&ctx->lock);
1700 /*
1701 * If we failed to find a running task, but find the context active now
1702 * that we've acquired the ctx->lock, retry.
1703 */
1704 if (ctx->is_active) {
1705 raw_spin_unlock_irq(&ctx->lock);
1706 /*
1707 * Reload the task pointer, it might have been changed by
1708 * a concurrent perf_event_context_sched_out().
1709 */
1710 task = ctx->task;
1711 goto retry;
1712 }
1713
1714 /*
1715 * Since the task isn't running, its safe to remove the event, us
1716 * holding the ctx->lock ensures the task won't get scheduled in.
1717 */
1718 if (detach_group)
1719 perf_group_detach(event);
1720 list_del_event(event, ctx);
1721 raw_spin_unlock_irq(&ctx->lock);
1722 }
1723
1724 /*
1725 * Cross CPU call to disable a performance event
1726 */
1727 int __perf_event_disable(void *info)
1728 {
1729 struct perf_event *event = info;
1730 struct perf_event_context *ctx = event->ctx;
1731 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1732
1733 /*
1734 * If this is a per-task event, need to check whether this
1735 * event's task is the current task on this cpu.
1736 *
1737 * Can trigger due to concurrent perf_event_context_sched_out()
1738 * flipping contexts around.
1739 */
1740 if (ctx->task && cpuctx->task_ctx != ctx)
1741 return -EINVAL;
1742
1743 raw_spin_lock(&ctx->lock);
1744
1745 /*
1746 * If the event is on, turn it off.
1747 * If it is in error state, leave it in error state.
1748 */
1749 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1750 update_context_time(ctx);
1751 update_cgrp_time_from_event(event);
1752 update_group_times(event);
1753 if (event == event->group_leader)
1754 group_sched_out(event, cpuctx, ctx);
1755 else
1756 event_sched_out(event, cpuctx, ctx);
1757 event->state = PERF_EVENT_STATE_OFF;
1758 }
1759
1760 raw_spin_unlock(&ctx->lock);
1761
1762 return 0;
1763 }
1764
1765 /*
1766 * Disable a event.
1767 *
1768 * If event->ctx is a cloned context, callers must make sure that
1769 * every task struct that event->ctx->task could possibly point to
1770 * remains valid. This condition is satisifed when called through
1771 * perf_event_for_each_child or perf_event_for_each because they
1772 * hold the top-level event's child_mutex, so any descendant that
1773 * goes to exit will block in sync_child_event.
1774 * When called from perf_pending_event it's OK because event->ctx
1775 * is the current context on this CPU and preemption is disabled,
1776 * hence we can't get into perf_event_task_sched_out for this context.
1777 */
1778 static void _perf_event_disable(struct perf_event *event)
1779 {
1780 struct perf_event_context *ctx = event->ctx;
1781 struct task_struct *task = ctx->task;
1782
1783 if (!task) {
1784 /*
1785 * Disable the event on the cpu that it's on
1786 */
1787 cpu_function_call(event->cpu, __perf_event_disable, event);
1788 return;
1789 }
1790
1791 retry:
1792 if (!task_function_call(task, __perf_event_disable, event))
1793 return;
1794
1795 raw_spin_lock_irq(&ctx->lock);
1796 /*
1797 * If the event is still active, we need to retry the cross-call.
1798 */
1799 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1800 raw_spin_unlock_irq(&ctx->lock);
1801 /*
1802 * Reload the task pointer, it might have been changed by
1803 * a concurrent perf_event_context_sched_out().
1804 */
1805 task = ctx->task;
1806 goto retry;
1807 }
1808
1809 /*
1810 * Since we have the lock this context can't be scheduled
1811 * in, so we can change the state safely.
1812 */
1813 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1814 update_group_times(event);
1815 event->state = PERF_EVENT_STATE_OFF;
1816 }
1817 raw_spin_unlock_irq(&ctx->lock);
1818 }
1819
1820 /*
1821 * Strictly speaking kernel users cannot create groups and therefore this
1822 * interface does not need the perf_event_ctx_lock() magic.
1823 */
1824 void perf_event_disable(struct perf_event *event)
1825 {
1826 struct perf_event_context *ctx;
1827
1828 ctx = perf_event_ctx_lock(event);
1829 _perf_event_disable(event);
1830 perf_event_ctx_unlock(event, ctx);
1831 }
1832 EXPORT_SYMBOL_GPL(perf_event_disable);
1833
1834 static void perf_set_shadow_time(struct perf_event *event,
1835 struct perf_event_context *ctx,
1836 u64 tstamp)
1837 {
1838 /*
1839 * use the correct time source for the time snapshot
1840 *
1841 * We could get by without this by leveraging the
1842 * fact that to get to this function, the caller
1843 * has most likely already called update_context_time()
1844 * and update_cgrp_time_xx() and thus both timestamp
1845 * are identical (or very close). Given that tstamp is,
1846 * already adjusted for cgroup, we could say that:
1847 * tstamp - ctx->timestamp
1848 * is equivalent to
1849 * tstamp - cgrp->timestamp.
1850 *
1851 * Then, in perf_output_read(), the calculation would
1852 * work with no changes because:
1853 * - event is guaranteed scheduled in
1854 * - no scheduled out in between
1855 * - thus the timestamp would be the same
1856 *
1857 * But this is a bit hairy.
1858 *
1859 * So instead, we have an explicit cgroup call to remain
1860 * within the time time source all along. We believe it
1861 * is cleaner and simpler to understand.
1862 */
1863 if (is_cgroup_event(event))
1864 perf_cgroup_set_shadow_time(event, tstamp);
1865 else
1866 event->shadow_ctx_time = tstamp - ctx->timestamp;
1867 }
1868
1869 #define MAX_INTERRUPTS (~0ULL)
1870
1871 static void perf_log_throttle(struct perf_event *event, int enable);
1872 static void perf_log_itrace_start(struct perf_event *event);
1873
1874 static int
1875 event_sched_in(struct perf_event *event,
1876 struct perf_cpu_context *cpuctx,
1877 struct perf_event_context *ctx)
1878 {
1879 u64 tstamp = perf_event_time(event);
1880 int ret = 0;
1881
1882 lockdep_assert_held(&ctx->lock);
1883
1884 if (event->state <= PERF_EVENT_STATE_OFF)
1885 return 0;
1886
1887 event->state = PERF_EVENT_STATE_ACTIVE;
1888 event->oncpu = smp_processor_id();
1889
1890 /*
1891 * Unthrottle events, since we scheduled we might have missed several
1892 * ticks already, also for a heavily scheduling task there is little
1893 * guarantee it'll get a tick in a timely manner.
1894 */
1895 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1896 perf_log_throttle(event, 1);
1897 event->hw.interrupts = 0;
1898 }
1899
1900 /*
1901 * The new state must be visible before we turn it on in the hardware:
1902 */
1903 smp_wmb();
1904
1905 perf_pmu_disable(event->pmu);
1906
1907 perf_set_shadow_time(event, ctx, tstamp);
1908
1909 perf_log_itrace_start(event);
1910
1911 if (event->pmu->add(event, PERF_EF_START)) {
1912 event->state = PERF_EVENT_STATE_INACTIVE;
1913 event->oncpu = -1;
1914 ret = -EAGAIN;
1915 goto out;
1916 }
1917
1918 event->tstamp_running += tstamp - event->tstamp_stopped;
1919
1920 if (!is_software_event(event))
1921 cpuctx->active_oncpu++;
1922 if (!ctx->nr_active++)
1923 perf_event_ctx_activate(ctx);
1924 if (event->attr.freq && event->attr.sample_freq)
1925 ctx->nr_freq++;
1926
1927 if (event->attr.exclusive)
1928 cpuctx->exclusive = 1;
1929
1930 if (is_orphaned_child(event))
1931 schedule_orphans_remove(ctx);
1932
1933 out:
1934 perf_pmu_enable(event->pmu);
1935
1936 return ret;
1937 }
1938
1939 static int
1940 group_sched_in(struct perf_event *group_event,
1941 struct perf_cpu_context *cpuctx,
1942 struct perf_event_context *ctx)
1943 {
1944 struct perf_event *event, *partial_group = NULL;
1945 struct pmu *pmu = ctx->pmu;
1946 u64 now = ctx->time;
1947 bool simulate = false;
1948
1949 if (group_event->state == PERF_EVENT_STATE_OFF)
1950 return 0;
1951
1952 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
1953
1954 if (event_sched_in(group_event, cpuctx, ctx)) {
1955 pmu->cancel_txn(pmu);
1956 perf_mux_hrtimer_restart(cpuctx);
1957 return -EAGAIN;
1958 }
1959
1960 /*
1961 * Schedule in siblings as one group (if any):
1962 */
1963 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1964 if (event_sched_in(event, cpuctx, ctx)) {
1965 partial_group = event;
1966 goto group_error;
1967 }
1968 }
1969
1970 if (!pmu->commit_txn(pmu))
1971 return 0;
1972
1973 group_error:
1974 /*
1975 * Groups can be scheduled in as one unit only, so undo any
1976 * partial group before returning:
1977 * The events up to the failed event are scheduled out normally,
1978 * tstamp_stopped will be updated.
1979 *
1980 * The failed events and the remaining siblings need to have
1981 * their timings updated as if they had gone thru event_sched_in()
1982 * and event_sched_out(). This is required to get consistent timings
1983 * across the group. This also takes care of the case where the group
1984 * could never be scheduled by ensuring tstamp_stopped is set to mark
1985 * the time the event was actually stopped, such that time delta
1986 * calculation in update_event_times() is correct.
1987 */
1988 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1989 if (event == partial_group)
1990 simulate = true;
1991
1992 if (simulate) {
1993 event->tstamp_running += now - event->tstamp_stopped;
1994 event->tstamp_stopped = now;
1995 } else {
1996 event_sched_out(event, cpuctx, ctx);
1997 }
1998 }
1999 event_sched_out(group_event, cpuctx, ctx);
2000
2001 pmu->cancel_txn(pmu);
2002
2003 perf_mux_hrtimer_restart(cpuctx);
2004
2005 return -EAGAIN;
2006 }
2007
2008 /*
2009 * Work out whether we can put this event group on the CPU now.
2010 */
2011 static int group_can_go_on(struct perf_event *event,
2012 struct perf_cpu_context *cpuctx,
2013 int can_add_hw)
2014 {
2015 /*
2016 * Groups consisting entirely of software events can always go on.
2017 */
2018 if (event->group_flags & PERF_GROUP_SOFTWARE)
2019 return 1;
2020 /*
2021 * If an exclusive group is already on, no other hardware
2022 * events can go on.
2023 */
2024 if (cpuctx->exclusive)
2025 return 0;
2026 /*
2027 * If this group is exclusive and there are already
2028 * events on the CPU, it can't go on.
2029 */
2030 if (event->attr.exclusive && cpuctx->active_oncpu)
2031 return 0;
2032 /*
2033 * Otherwise, try to add it if all previous groups were able
2034 * to go on.
2035 */
2036 return can_add_hw;
2037 }
2038
2039 static void add_event_to_ctx(struct perf_event *event,
2040 struct perf_event_context *ctx)
2041 {
2042 u64 tstamp = perf_event_time(event);
2043
2044 list_add_event(event, ctx);
2045 perf_group_attach(event);
2046 event->tstamp_enabled = tstamp;
2047 event->tstamp_running = tstamp;
2048 event->tstamp_stopped = tstamp;
2049 }
2050
2051 static void task_ctx_sched_out(struct perf_event_context *ctx);
2052 static void
2053 ctx_sched_in(struct perf_event_context *ctx,
2054 struct perf_cpu_context *cpuctx,
2055 enum event_type_t event_type,
2056 struct task_struct *task);
2057
2058 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2059 struct perf_event_context *ctx,
2060 struct task_struct *task)
2061 {
2062 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2063 if (ctx)
2064 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2065 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2066 if (ctx)
2067 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2068 }
2069
2070 /*
2071 * Cross CPU call to install and enable a performance event
2072 *
2073 * Must be called with ctx->mutex held
2074 */
2075 static int __perf_install_in_context(void *info)
2076 {
2077 struct perf_event *event = info;
2078 struct perf_event_context *ctx = event->ctx;
2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2080 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2081 struct task_struct *task = current;
2082
2083 perf_ctx_lock(cpuctx, task_ctx);
2084 perf_pmu_disable(cpuctx->ctx.pmu);
2085
2086 /*
2087 * If there was an active task_ctx schedule it out.
2088 */
2089 if (task_ctx)
2090 task_ctx_sched_out(task_ctx);
2091
2092 /*
2093 * If the context we're installing events in is not the
2094 * active task_ctx, flip them.
2095 */
2096 if (ctx->task && task_ctx != ctx) {
2097 if (task_ctx)
2098 raw_spin_unlock(&task_ctx->lock);
2099 raw_spin_lock(&ctx->lock);
2100 task_ctx = ctx;
2101 }
2102
2103 if (task_ctx) {
2104 cpuctx->task_ctx = task_ctx;
2105 task = task_ctx->task;
2106 }
2107
2108 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2109
2110 update_context_time(ctx);
2111 /*
2112 * update cgrp time only if current cgrp
2113 * matches event->cgrp. Must be done before
2114 * calling add_event_to_ctx()
2115 */
2116 update_cgrp_time_from_event(event);
2117
2118 add_event_to_ctx(event, ctx);
2119
2120 /*
2121 * Schedule everything back in
2122 */
2123 perf_event_sched_in(cpuctx, task_ctx, task);
2124
2125 perf_pmu_enable(cpuctx->ctx.pmu);
2126 perf_ctx_unlock(cpuctx, task_ctx);
2127
2128 return 0;
2129 }
2130
2131 /*
2132 * Attach a performance event to a context
2133 *
2134 * First we add the event to the list with the hardware enable bit
2135 * in event->hw_config cleared.
2136 *
2137 * If the event is attached to a task which is on a CPU we use a smp
2138 * call to enable it in the task context. The task might have been
2139 * scheduled away, but we check this in the smp call again.
2140 */
2141 static void
2142 perf_install_in_context(struct perf_event_context *ctx,
2143 struct perf_event *event,
2144 int cpu)
2145 {
2146 struct task_struct *task = ctx->task;
2147
2148 lockdep_assert_held(&ctx->mutex);
2149
2150 event->ctx = ctx;
2151 if (event->cpu != -1)
2152 event->cpu = cpu;
2153
2154 if (!task) {
2155 /*
2156 * Per cpu events are installed via an smp call and
2157 * the install is always successful.
2158 */
2159 cpu_function_call(cpu, __perf_install_in_context, event);
2160 return;
2161 }
2162
2163 retry:
2164 if (!task_function_call(task, __perf_install_in_context, event))
2165 return;
2166
2167 raw_spin_lock_irq(&ctx->lock);
2168 /*
2169 * If we failed to find a running task, but find the context active now
2170 * that we've acquired the ctx->lock, retry.
2171 */
2172 if (ctx->is_active) {
2173 raw_spin_unlock_irq(&ctx->lock);
2174 /*
2175 * Reload the task pointer, it might have been changed by
2176 * a concurrent perf_event_context_sched_out().
2177 */
2178 task = ctx->task;
2179 goto retry;
2180 }
2181
2182 /*
2183 * Since the task isn't running, its safe to add the event, us holding
2184 * the ctx->lock ensures the task won't get scheduled in.
2185 */
2186 add_event_to_ctx(event, ctx);
2187 raw_spin_unlock_irq(&ctx->lock);
2188 }
2189
2190 /*
2191 * Put a event into inactive state and update time fields.
2192 * Enabling the leader of a group effectively enables all
2193 * the group members that aren't explicitly disabled, so we
2194 * have to update their ->tstamp_enabled also.
2195 * Note: this works for group members as well as group leaders
2196 * since the non-leader members' sibling_lists will be empty.
2197 */
2198 static void __perf_event_mark_enabled(struct perf_event *event)
2199 {
2200 struct perf_event *sub;
2201 u64 tstamp = perf_event_time(event);
2202
2203 event->state = PERF_EVENT_STATE_INACTIVE;
2204 event->tstamp_enabled = tstamp - event->total_time_enabled;
2205 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2206 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2207 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
2208 }
2209 }
2210
2211 /*
2212 * Cross CPU call to enable a performance event
2213 */
2214 static int __perf_event_enable(void *info)
2215 {
2216 struct perf_event *event = info;
2217 struct perf_event_context *ctx = event->ctx;
2218 struct perf_event *leader = event->group_leader;
2219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2220 int err;
2221
2222 /*
2223 * There's a time window between 'ctx->is_active' check
2224 * in perf_event_enable function and this place having:
2225 * - IRQs on
2226 * - ctx->lock unlocked
2227 *
2228 * where the task could be killed and 'ctx' deactivated
2229 * by perf_event_exit_task.
2230 */
2231 if (!ctx->is_active)
2232 return -EINVAL;
2233
2234 raw_spin_lock(&ctx->lock);
2235 update_context_time(ctx);
2236
2237 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2238 goto unlock;
2239
2240 /*
2241 * set current task's cgroup time reference point
2242 */
2243 perf_cgroup_set_timestamp(current, ctx);
2244
2245 __perf_event_mark_enabled(event);
2246
2247 if (!event_filter_match(event)) {
2248 if (is_cgroup_event(event))
2249 perf_cgroup_defer_enabled(event);
2250 goto unlock;
2251 }
2252
2253 /*
2254 * If the event is in a group and isn't the group leader,
2255 * then don't put it on unless the group is on.
2256 */
2257 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
2258 goto unlock;
2259
2260 if (!group_can_go_on(event, cpuctx, 1)) {
2261 err = -EEXIST;
2262 } else {
2263 if (event == leader)
2264 err = group_sched_in(event, cpuctx, ctx);
2265 else
2266 err = event_sched_in(event, cpuctx, ctx);
2267 }
2268
2269 if (err) {
2270 /*
2271 * If this event can't go on and it's part of a
2272 * group, then the whole group has to come off.
2273 */
2274 if (leader != event) {
2275 group_sched_out(leader, cpuctx, ctx);
2276 perf_mux_hrtimer_restart(cpuctx);
2277 }
2278 if (leader->attr.pinned) {
2279 update_group_times(leader);
2280 leader->state = PERF_EVENT_STATE_ERROR;
2281 }
2282 }
2283
2284 unlock:
2285 raw_spin_unlock(&ctx->lock);
2286
2287 return 0;
2288 }
2289
2290 /*
2291 * Enable a event.
2292 *
2293 * If event->ctx is a cloned context, callers must make sure that
2294 * every task struct that event->ctx->task could possibly point to
2295 * remains valid. This condition is satisfied when called through
2296 * perf_event_for_each_child or perf_event_for_each as described
2297 * for perf_event_disable.
2298 */
2299 static void _perf_event_enable(struct perf_event *event)
2300 {
2301 struct perf_event_context *ctx = event->ctx;
2302 struct task_struct *task = ctx->task;
2303
2304 if (!task) {
2305 /*
2306 * Enable the event on the cpu that it's on
2307 */
2308 cpu_function_call(event->cpu, __perf_event_enable, event);
2309 return;
2310 }
2311
2312 raw_spin_lock_irq(&ctx->lock);
2313 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2314 goto out;
2315
2316 /*
2317 * If the event is in error state, clear that first.
2318 * That way, if we see the event in error state below, we
2319 * know that it has gone back into error state, as distinct
2320 * from the task having been scheduled away before the
2321 * cross-call arrived.
2322 */
2323 if (event->state == PERF_EVENT_STATE_ERROR)
2324 event->state = PERF_EVENT_STATE_OFF;
2325
2326 retry:
2327 if (!ctx->is_active) {
2328 __perf_event_mark_enabled(event);
2329 goto out;
2330 }
2331
2332 raw_spin_unlock_irq(&ctx->lock);
2333
2334 if (!task_function_call(task, __perf_event_enable, event))
2335 return;
2336
2337 raw_spin_lock_irq(&ctx->lock);
2338
2339 /*
2340 * If the context is active and the event is still off,
2341 * we need to retry the cross-call.
2342 */
2343 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2344 /*
2345 * task could have been flipped by a concurrent
2346 * perf_event_context_sched_out()
2347 */
2348 task = ctx->task;
2349 goto retry;
2350 }
2351
2352 out:
2353 raw_spin_unlock_irq(&ctx->lock);
2354 }
2355
2356 /*
2357 * See perf_event_disable();
2358 */
2359 void perf_event_enable(struct perf_event *event)
2360 {
2361 struct perf_event_context *ctx;
2362
2363 ctx = perf_event_ctx_lock(event);
2364 _perf_event_enable(event);
2365 perf_event_ctx_unlock(event, ctx);
2366 }
2367 EXPORT_SYMBOL_GPL(perf_event_enable);
2368
2369 static int _perf_event_refresh(struct perf_event *event, int refresh)
2370 {
2371 /*
2372 * not supported on inherited events
2373 */
2374 if (event->attr.inherit || !is_sampling_event(event))
2375 return -EINVAL;
2376
2377 atomic_add(refresh, &event->event_limit);
2378 _perf_event_enable(event);
2379
2380 return 0;
2381 }
2382
2383 /*
2384 * See perf_event_disable()
2385 */
2386 int perf_event_refresh(struct perf_event *event, int refresh)
2387 {
2388 struct perf_event_context *ctx;
2389 int ret;
2390
2391 ctx = perf_event_ctx_lock(event);
2392 ret = _perf_event_refresh(event, refresh);
2393 perf_event_ctx_unlock(event, ctx);
2394
2395 return ret;
2396 }
2397 EXPORT_SYMBOL_GPL(perf_event_refresh);
2398
2399 static void ctx_sched_out(struct perf_event_context *ctx,
2400 struct perf_cpu_context *cpuctx,
2401 enum event_type_t event_type)
2402 {
2403 struct perf_event *event;
2404 int is_active = ctx->is_active;
2405
2406 ctx->is_active &= ~event_type;
2407 if (likely(!ctx->nr_events))
2408 return;
2409
2410 update_context_time(ctx);
2411 update_cgrp_time_from_cpuctx(cpuctx);
2412 if (!ctx->nr_active)
2413 return;
2414
2415 perf_pmu_disable(ctx->pmu);
2416 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2417 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2418 group_sched_out(event, cpuctx, ctx);
2419 }
2420
2421 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2422 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2423 group_sched_out(event, cpuctx, ctx);
2424 }
2425 perf_pmu_enable(ctx->pmu);
2426 }
2427
2428 /*
2429 * Test whether two contexts are equivalent, i.e. whether they have both been
2430 * cloned from the same version of the same context.
2431 *
2432 * Equivalence is measured using a generation number in the context that is
2433 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2434 * and list_del_event().
2435 */
2436 static int context_equiv(struct perf_event_context *ctx1,
2437 struct perf_event_context *ctx2)
2438 {
2439 lockdep_assert_held(&ctx1->lock);
2440 lockdep_assert_held(&ctx2->lock);
2441
2442 /* Pinning disables the swap optimization */
2443 if (ctx1->pin_count || ctx2->pin_count)
2444 return 0;
2445
2446 /* If ctx1 is the parent of ctx2 */
2447 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2448 return 1;
2449
2450 /* If ctx2 is the parent of ctx1 */
2451 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2452 return 1;
2453
2454 /*
2455 * If ctx1 and ctx2 have the same parent; we flatten the parent
2456 * hierarchy, see perf_event_init_context().
2457 */
2458 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2459 ctx1->parent_gen == ctx2->parent_gen)
2460 return 1;
2461
2462 /* Unmatched */
2463 return 0;
2464 }
2465
2466 static void __perf_event_sync_stat(struct perf_event *event,
2467 struct perf_event *next_event)
2468 {
2469 u64 value;
2470
2471 if (!event->attr.inherit_stat)
2472 return;
2473
2474 /*
2475 * Update the event value, we cannot use perf_event_read()
2476 * because we're in the middle of a context switch and have IRQs
2477 * disabled, which upsets smp_call_function_single(), however
2478 * we know the event must be on the current CPU, therefore we
2479 * don't need to use it.
2480 */
2481 switch (event->state) {
2482 case PERF_EVENT_STATE_ACTIVE:
2483 event->pmu->read(event);
2484 /* fall-through */
2485
2486 case PERF_EVENT_STATE_INACTIVE:
2487 update_event_times(event);
2488 break;
2489
2490 default:
2491 break;
2492 }
2493
2494 /*
2495 * In order to keep per-task stats reliable we need to flip the event
2496 * values when we flip the contexts.
2497 */
2498 value = local64_read(&next_event->count);
2499 value = local64_xchg(&event->count, value);
2500 local64_set(&next_event->count, value);
2501
2502 swap(event->total_time_enabled, next_event->total_time_enabled);
2503 swap(event->total_time_running, next_event->total_time_running);
2504
2505 /*
2506 * Since we swizzled the values, update the user visible data too.
2507 */
2508 perf_event_update_userpage(event);
2509 perf_event_update_userpage(next_event);
2510 }
2511
2512 static void perf_event_sync_stat(struct perf_event_context *ctx,
2513 struct perf_event_context *next_ctx)
2514 {
2515 struct perf_event *event, *next_event;
2516
2517 if (!ctx->nr_stat)
2518 return;
2519
2520 update_context_time(ctx);
2521
2522 event = list_first_entry(&ctx->event_list,
2523 struct perf_event, event_entry);
2524
2525 next_event = list_first_entry(&next_ctx->event_list,
2526 struct perf_event, event_entry);
2527
2528 while (&event->event_entry != &ctx->event_list &&
2529 &next_event->event_entry != &next_ctx->event_list) {
2530
2531 __perf_event_sync_stat(event, next_event);
2532
2533 event = list_next_entry(event, event_entry);
2534 next_event = list_next_entry(next_event, event_entry);
2535 }
2536 }
2537
2538 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2539 struct task_struct *next)
2540 {
2541 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2542 struct perf_event_context *next_ctx;
2543 struct perf_event_context *parent, *next_parent;
2544 struct perf_cpu_context *cpuctx;
2545 int do_switch = 1;
2546
2547 if (likely(!ctx))
2548 return;
2549
2550 cpuctx = __get_cpu_context(ctx);
2551 if (!cpuctx->task_ctx)
2552 return;
2553
2554 rcu_read_lock();
2555 next_ctx = next->perf_event_ctxp[ctxn];
2556 if (!next_ctx)
2557 goto unlock;
2558
2559 parent = rcu_dereference(ctx->parent_ctx);
2560 next_parent = rcu_dereference(next_ctx->parent_ctx);
2561
2562 /* If neither context have a parent context; they cannot be clones. */
2563 if (!parent && !next_parent)
2564 goto unlock;
2565
2566 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2567 /*
2568 * Looks like the two contexts are clones, so we might be
2569 * able to optimize the context switch. We lock both
2570 * contexts and check that they are clones under the
2571 * lock (including re-checking that neither has been
2572 * uncloned in the meantime). It doesn't matter which
2573 * order we take the locks because no other cpu could
2574 * be trying to lock both of these tasks.
2575 */
2576 raw_spin_lock(&ctx->lock);
2577 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2578 if (context_equiv(ctx, next_ctx)) {
2579 /*
2580 * XXX do we need a memory barrier of sorts
2581 * wrt to rcu_dereference() of perf_event_ctxp
2582 */
2583 task->perf_event_ctxp[ctxn] = next_ctx;
2584 next->perf_event_ctxp[ctxn] = ctx;
2585 ctx->task = next;
2586 next_ctx->task = task;
2587
2588 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2589
2590 do_switch = 0;
2591
2592 perf_event_sync_stat(ctx, next_ctx);
2593 }
2594 raw_spin_unlock(&next_ctx->lock);
2595 raw_spin_unlock(&ctx->lock);
2596 }
2597 unlock:
2598 rcu_read_unlock();
2599
2600 if (do_switch) {
2601 raw_spin_lock(&ctx->lock);
2602 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2603 cpuctx->task_ctx = NULL;
2604 raw_spin_unlock(&ctx->lock);
2605 }
2606 }
2607
2608 void perf_sched_cb_dec(struct pmu *pmu)
2609 {
2610 this_cpu_dec(perf_sched_cb_usages);
2611 }
2612
2613 void perf_sched_cb_inc(struct pmu *pmu)
2614 {
2615 this_cpu_inc(perf_sched_cb_usages);
2616 }
2617
2618 /*
2619 * This function provides the context switch callback to the lower code
2620 * layer. It is invoked ONLY when the context switch callback is enabled.
2621 */
2622 static void perf_pmu_sched_task(struct task_struct *prev,
2623 struct task_struct *next,
2624 bool sched_in)
2625 {
2626 struct perf_cpu_context *cpuctx;
2627 struct pmu *pmu;
2628 unsigned long flags;
2629
2630 if (prev == next)
2631 return;
2632
2633 local_irq_save(flags);
2634
2635 rcu_read_lock();
2636
2637 list_for_each_entry_rcu(pmu, &pmus, entry) {
2638 if (pmu->sched_task) {
2639 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2640
2641 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2642
2643 perf_pmu_disable(pmu);
2644
2645 pmu->sched_task(cpuctx->task_ctx, sched_in);
2646
2647 perf_pmu_enable(pmu);
2648
2649 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2650 }
2651 }
2652
2653 rcu_read_unlock();
2654
2655 local_irq_restore(flags);
2656 }
2657
2658 static void perf_event_switch(struct task_struct *task,
2659 struct task_struct *next_prev, bool sched_in);
2660
2661 #define for_each_task_context_nr(ctxn) \
2662 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2663
2664 /*
2665 * Called from scheduler to remove the events of the current task,
2666 * with interrupts disabled.
2667 *
2668 * We stop each event and update the event value in event->count.
2669 *
2670 * This does not protect us against NMI, but disable()
2671 * sets the disabled bit in the control field of event _before_
2672 * accessing the event control register. If a NMI hits, then it will
2673 * not restart the event.
2674 */
2675 void __perf_event_task_sched_out(struct task_struct *task,
2676 struct task_struct *next)
2677 {
2678 int ctxn;
2679
2680 if (__this_cpu_read(perf_sched_cb_usages))
2681 perf_pmu_sched_task(task, next, false);
2682
2683 if (atomic_read(&nr_switch_events))
2684 perf_event_switch(task, next, false);
2685
2686 for_each_task_context_nr(ctxn)
2687 perf_event_context_sched_out(task, ctxn, next);
2688
2689 /*
2690 * if cgroup events exist on this CPU, then we need
2691 * to check if we have to switch out PMU state.
2692 * cgroup event are system-wide mode only
2693 */
2694 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2695 perf_cgroup_sched_out(task, next);
2696 }
2697
2698 static void task_ctx_sched_out(struct perf_event_context *ctx)
2699 {
2700 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2701
2702 if (!cpuctx->task_ctx)
2703 return;
2704
2705 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2706 return;
2707
2708 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2709 cpuctx->task_ctx = NULL;
2710 }
2711
2712 /*
2713 * Called with IRQs disabled
2714 */
2715 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2716 enum event_type_t event_type)
2717 {
2718 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2719 }
2720
2721 static void
2722 ctx_pinned_sched_in(struct perf_event_context *ctx,
2723 struct perf_cpu_context *cpuctx)
2724 {
2725 struct perf_event *event;
2726
2727 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2728 if (event->state <= PERF_EVENT_STATE_OFF)
2729 continue;
2730 if (!event_filter_match(event))
2731 continue;
2732
2733 /* may need to reset tstamp_enabled */
2734 if (is_cgroup_event(event))
2735 perf_cgroup_mark_enabled(event, ctx);
2736
2737 if (group_can_go_on(event, cpuctx, 1))
2738 group_sched_in(event, cpuctx, ctx);
2739
2740 /*
2741 * If this pinned group hasn't been scheduled,
2742 * put it in error state.
2743 */
2744 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2745 update_group_times(event);
2746 event->state = PERF_EVENT_STATE_ERROR;
2747 }
2748 }
2749 }
2750
2751 static void
2752 ctx_flexible_sched_in(struct perf_event_context *ctx,
2753 struct perf_cpu_context *cpuctx)
2754 {
2755 struct perf_event *event;
2756 int can_add_hw = 1;
2757
2758 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2759 /* Ignore events in OFF or ERROR state */
2760 if (event->state <= PERF_EVENT_STATE_OFF)
2761 continue;
2762 /*
2763 * Listen to the 'cpu' scheduling filter constraint
2764 * of events:
2765 */
2766 if (!event_filter_match(event))
2767 continue;
2768
2769 /* may need to reset tstamp_enabled */
2770 if (is_cgroup_event(event))
2771 perf_cgroup_mark_enabled(event, ctx);
2772
2773 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2774 if (group_sched_in(event, cpuctx, ctx))
2775 can_add_hw = 0;
2776 }
2777 }
2778 }
2779
2780 static void
2781 ctx_sched_in(struct perf_event_context *ctx,
2782 struct perf_cpu_context *cpuctx,
2783 enum event_type_t event_type,
2784 struct task_struct *task)
2785 {
2786 u64 now;
2787 int is_active = ctx->is_active;
2788
2789 ctx->is_active |= event_type;
2790 if (likely(!ctx->nr_events))
2791 return;
2792
2793 now = perf_clock();
2794 ctx->timestamp = now;
2795 perf_cgroup_set_timestamp(task, ctx);
2796 /*
2797 * First go through the list and put on any pinned groups
2798 * in order to give them the best chance of going on.
2799 */
2800 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2801 ctx_pinned_sched_in(ctx, cpuctx);
2802
2803 /* Then walk through the lower prio flexible groups */
2804 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2805 ctx_flexible_sched_in(ctx, cpuctx);
2806 }
2807
2808 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2809 enum event_type_t event_type,
2810 struct task_struct *task)
2811 {
2812 struct perf_event_context *ctx = &cpuctx->ctx;
2813
2814 ctx_sched_in(ctx, cpuctx, event_type, task);
2815 }
2816
2817 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2818 struct task_struct *task)
2819 {
2820 struct perf_cpu_context *cpuctx;
2821
2822 cpuctx = __get_cpu_context(ctx);
2823 if (cpuctx->task_ctx == ctx)
2824 return;
2825
2826 perf_ctx_lock(cpuctx, ctx);
2827 perf_pmu_disable(ctx->pmu);
2828 /*
2829 * We want to keep the following priority order:
2830 * cpu pinned (that don't need to move), task pinned,
2831 * cpu flexible, task flexible.
2832 */
2833 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2834
2835 if (ctx->nr_events)
2836 cpuctx->task_ctx = ctx;
2837
2838 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2839
2840 perf_pmu_enable(ctx->pmu);
2841 perf_ctx_unlock(cpuctx, ctx);
2842 }
2843
2844 /*
2845 * Called from scheduler to add the events of the current task
2846 * with interrupts disabled.
2847 *
2848 * We restore the event value and then enable it.
2849 *
2850 * This does not protect us against NMI, but enable()
2851 * sets the enabled bit in the control field of event _before_
2852 * accessing the event control register. If a NMI hits, then it will
2853 * keep the event running.
2854 */
2855 void __perf_event_task_sched_in(struct task_struct *prev,
2856 struct task_struct *task)
2857 {
2858 struct perf_event_context *ctx;
2859 int ctxn;
2860
2861 for_each_task_context_nr(ctxn) {
2862 ctx = task->perf_event_ctxp[ctxn];
2863 if (likely(!ctx))
2864 continue;
2865
2866 perf_event_context_sched_in(ctx, task);
2867 }
2868 /*
2869 * if cgroup events exist on this CPU, then we need
2870 * to check if we have to switch in PMU state.
2871 * cgroup event are system-wide mode only
2872 */
2873 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2874 perf_cgroup_sched_in(prev, task);
2875
2876 if (atomic_read(&nr_switch_events))
2877 perf_event_switch(task, prev, true);
2878
2879 if (__this_cpu_read(perf_sched_cb_usages))
2880 perf_pmu_sched_task(prev, task, true);
2881 }
2882
2883 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2884 {
2885 u64 frequency = event->attr.sample_freq;
2886 u64 sec = NSEC_PER_SEC;
2887 u64 divisor, dividend;
2888
2889 int count_fls, nsec_fls, frequency_fls, sec_fls;
2890
2891 count_fls = fls64(count);
2892 nsec_fls = fls64(nsec);
2893 frequency_fls = fls64(frequency);
2894 sec_fls = 30;
2895
2896 /*
2897 * We got @count in @nsec, with a target of sample_freq HZ
2898 * the target period becomes:
2899 *
2900 * @count * 10^9
2901 * period = -------------------
2902 * @nsec * sample_freq
2903 *
2904 */
2905
2906 /*
2907 * Reduce accuracy by one bit such that @a and @b converge
2908 * to a similar magnitude.
2909 */
2910 #define REDUCE_FLS(a, b) \
2911 do { \
2912 if (a##_fls > b##_fls) { \
2913 a >>= 1; \
2914 a##_fls--; \
2915 } else { \
2916 b >>= 1; \
2917 b##_fls--; \
2918 } \
2919 } while (0)
2920
2921 /*
2922 * Reduce accuracy until either term fits in a u64, then proceed with
2923 * the other, so that finally we can do a u64/u64 division.
2924 */
2925 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2926 REDUCE_FLS(nsec, frequency);
2927 REDUCE_FLS(sec, count);
2928 }
2929
2930 if (count_fls + sec_fls > 64) {
2931 divisor = nsec * frequency;
2932
2933 while (count_fls + sec_fls > 64) {
2934 REDUCE_FLS(count, sec);
2935 divisor >>= 1;
2936 }
2937
2938 dividend = count * sec;
2939 } else {
2940 dividend = count * sec;
2941
2942 while (nsec_fls + frequency_fls > 64) {
2943 REDUCE_FLS(nsec, frequency);
2944 dividend >>= 1;
2945 }
2946
2947 divisor = nsec * frequency;
2948 }
2949
2950 if (!divisor)
2951 return dividend;
2952
2953 return div64_u64(dividend, divisor);
2954 }
2955
2956 static DEFINE_PER_CPU(int, perf_throttled_count);
2957 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2958
2959 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2960 {
2961 struct hw_perf_event *hwc = &event->hw;
2962 s64 period, sample_period;
2963 s64 delta;
2964
2965 period = perf_calculate_period(event, nsec, count);
2966
2967 delta = (s64)(period - hwc->sample_period);
2968 delta = (delta + 7) / 8; /* low pass filter */
2969
2970 sample_period = hwc->sample_period + delta;
2971
2972 if (!sample_period)
2973 sample_period = 1;
2974
2975 hwc->sample_period = sample_period;
2976
2977 if (local64_read(&hwc->period_left) > 8*sample_period) {
2978 if (disable)
2979 event->pmu->stop(event, PERF_EF_UPDATE);
2980
2981 local64_set(&hwc->period_left, 0);
2982
2983 if (disable)
2984 event->pmu->start(event, PERF_EF_RELOAD);
2985 }
2986 }
2987
2988 /*
2989 * combine freq adjustment with unthrottling to avoid two passes over the
2990 * events. At the same time, make sure, having freq events does not change
2991 * the rate of unthrottling as that would introduce bias.
2992 */
2993 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2994 int needs_unthr)
2995 {
2996 struct perf_event *event;
2997 struct hw_perf_event *hwc;
2998 u64 now, period = TICK_NSEC;
2999 s64 delta;
3000
3001 /*
3002 * only need to iterate over all events iff:
3003 * - context have events in frequency mode (needs freq adjust)
3004 * - there are events to unthrottle on this cpu
3005 */
3006 if (!(ctx->nr_freq || needs_unthr))
3007 return;
3008
3009 raw_spin_lock(&ctx->lock);
3010 perf_pmu_disable(ctx->pmu);
3011
3012 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3013 if (event->state != PERF_EVENT_STATE_ACTIVE)
3014 continue;
3015
3016 if (!event_filter_match(event))
3017 continue;
3018
3019 perf_pmu_disable(event->pmu);
3020
3021 hwc = &event->hw;
3022
3023 if (hwc->interrupts == MAX_INTERRUPTS) {
3024 hwc->interrupts = 0;
3025 perf_log_throttle(event, 1);
3026 event->pmu->start(event, 0);
3027 }
3028
3029 if (!event->attr.freq || !event->attr.sample_freq)
3030 goto next;
3031
3032 /*
3033 * stop the event and update event->count
3034 */
3035 event->pmu->stop(event, PERF_EF_UPDATE);
3036
3037 now = local64_read(&event->count);
3038 delta = now - hwc->freq_count_stamp;
3039 hwc->freq_count_stamp = now;
3040
3041 /*
3042 * restart the event
3043 * reload only if value has changed
3044 * we have stopped the event so tell that
3045 * to perf_adjust_period() to avoid stopping it
3046 * twice.
3047 */
3048 if (delta > 0)
3049 perf_adjust_period(event, period, delta, false);
3050
3051 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3052 next:
3053 perf_pmu_enable(event->pmu);
3054 }
3055
3056 perf_pmu_enable(ctx->pmu);
3057 raw_spin_unlock(&ctx->lock);
3058 }
3059
3060 /*
3061 * Round-robin a context's events:
3062 */
3063 static void rotate_ctx(struct perf_event_context *ctx)
3064 {
3065 /*
3066 * Rotate the first entry last of non-pinned groups. Rotation might be
3067 * disabled by the inheritance code.
3068 */
3069 if (!ctx->rotate_disable)
3070 list_rotate_left(&ctx->flexible_groups);
3071 }
3072
3073 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3074 {
3075 struct perf_event_context *ctx = NULL;
3076 int rotate = 0;
3077
3078 if (cpuctx->ctx.nr_events) {
3079 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3080 rotate = 1;
3081 }
3082
3083 ctx = cpuctx->task_ctx;
3084 if (ctx && ctx->nr_events) {
3085 if (ctx->nr_events != ctx->nr_active)
3086 rotate = 1;
3087 }
3088
3089 if (!rotate)
3090 goto done;
3091
3092 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3093 perf_pmu_disable(cpuctx->ctx.pmu);
3094
3095 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3096 if (ctx)
3097 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3098
3099 rotate_ctx(&cpuctx->ctx);
3100 if (ctx)
3101 rotate_ctx(ctx);
3102
3103 perf_event_sched_in(cpuctx, ctx, current);
3104
3105 perf_pmu_enable(cpuctx->ctx.pmu);
3106 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3107 done:
3108
3109 return rotate;
3110 }
3111
3112 #ifdef CONFIG_NO_HZ_FULL
3113 bool perf_event_can_stop_tick(void)
3114 {
3115 if (atomic_read(&nr_freq_events) ||
3116 __this_cpu_read(perf_throttled_count))
3117 return false;
3118 else
3119 return true;
3120 }
3121 #endif
3122
3123 void perf_event_task_tick(void)
3124 {
3125 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3126 struct perf_event_context *ctx, *tmp;
3127 int throttled;
3128
3129 WARN_ON(!irqs_disabled());
3130
3131 __this_cpu_inc(perf_throttled_seq);
3132 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3133
3134 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3135 perf_adjust_freq_unthr_context(ctx, throttled);
3136 }
3137
3138 static int event_enable_on_exec(struct perf_event *event,
3139 struct perf_event_context *ctx)
3140 {
3141 if (!event->attr.enable_on_exec)
3142 return 0;
3143
3144 event->attr.enable_on_exec = 0;
3145 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3146 return 0;
3147
3148 __perf_event_mark_enabled(event);
3149
3150 return 1;
3151 }
3152
3153 /*
3154 * Enable all of a task's events that have been marked enable-on-exec.
3155 * This expects task == current.
3156 */
3157 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
3158 {
3159 struct perf_event_context *clone_ctx = NULL;
3160 struct perf_event *event;
3161 unsigned long flags;
3162 int enabled = 0;
3163 int ret;
3164
3165 local_irq_save(flags);
3166 if (!ctx || !ctx->nr_events)
3167 goto out;
3168
3169 /*
3170 * We must ctxsw out cgroup events to avoid conflict
3171 * when invoking perf_task_event_sched_in() later on
3172 * in this function. Otherwise we end up trying to
3173 * ctxswin cgroup events which are already scheduled
3174 * in.
3175 */
3176 perf_cgroup_sched_out(current, NULL);
3177
3178 raw_spin_lock(&ctx->lock);
3179 task_ctx_sched_out(ctx);
3180
3181 list_for_each_entry(event, &ctx->event_list, event_entry) {
3182 ret = event_enable_on_exec(event, ctx);
3183 if (ret)
3184 enabled = 1;
3185 }
3186
3187 /*
3188 * Unclone this context if we enabled any event.
3189 */
3190 if (enabled)
3191 clone_ctx = unclone_ctx(ctx);
3192
3193 raw_spin_unlock(&ctx->lock);
3194
3195 /*
3196 * Also calls ctxswin for cgroup events, if any:
3197 */
3198 perf_event_context_sched_in(ctx, ctx->task);
3199 out:
3200 local_irq_restore(flags);
3201
3202 if (clone_ctx)
3203 put_ctx(clone_ctx);
3204 }
3205
3206 void perf_event_exec(void)
3207 {
3208 struct perf_event_context *ctx;
3209 int ctxn;
3210
3211 rcu_read_lock();
3212 for_each_task_context_nr(ctxn) {
3213 ctx = current->perf_event_ctxp[ctxn];
3214 if (!ctx)
3215 continue;
3216
3217 perf_event_enable_on_exec(ctx);
3218 }
3219 rcu_read_unlock();
3220 }
3221
3222 struct perf_read_data {
3223 struct perf_event *event;
3224 bool group;
3225 int ret;
3226 };
3227
3228 /*
3229 * Cross CPU call to read the hardware event
3230 */
3231 static void __perf_event_read(void *info)
3232 {
3233 struct perf_read_data *data = info;
3234 struct perf_event *sub, *event = data->event;
3235 struct perf_event_context *ctx = event->ctx;
3236 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3237 struct pmu *pmu = event->pmu;
3238
3239 /*
3240 * If this is a task context, we need to check whether it is
3241 * the current task context of this cpu. If not it has been
3242 * scheduled out before the smp call arrived. In that case
3243 * event->count would have been updated to a recent sample
3244 * when the event was scheduled out.
3245 */
3246 if (ctx->task && cpuctx->task_ctx != ctx)
3247 return;
3248
3249 raw_spin_lock(&ctx->lock);
3250 if (ctx->is_active) {
3251 update_context_time(ctx);
3252 update_cgrp_time_from_event(event);
3253 }
3254
3255 update_event_times(event);
3256 if (event->state != PERF_EVENT_STATE_ACTIVE)
3257 goto unlock;
3258
3259 if (!data->group) {
3260 pmu->read(event);
3261 data->ret = 0;
3262 goto unlock;
3263 }
3264
3265 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3266
3267 pmu->read(event);
3268
3269 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3270 update_event_times(sub);
3271 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3272 /*
3273 * Use sibling's PMU rather than @event's since
3274 * sibling could be on different (eg: software) PMU.
3275 */
3276 sub->pmu->read(sub);
3277 }
3278 }
3279
3280 data->ret = pmu->commit_txn(pmu);
3281
3282 unlock:
3283 raw_spin_unlock(&ctx->lock);
3284 }
3285
3286 static inline u64 perf_event_count(struct perf_event *event)
3287 {
3288 if (event->pmu->count)
3289 return event->pmu->count(event);
3290
3291 return __perf_event_count(event);
3292 }
3293
3294 /*
3295 * NMI-safe method to read a local event, that is an event that
3296 * is:
3297 * - either for the current task, or for this CPU
3298 * - does not have inherit set, for inherited task events
3299 * will not be local and we cannot read them atomically
3300 * - must not have a pmu::count method
3301 */
3302 u64 perf_event_read_local(struct perf_event *event)
3303 {
3304 unsigned long flags;
3305 u64 val;
3306
3307 /*
3308 * Disabling interrupts avoids all counter scheduling (context
3309 * switches, timer based rotation and IPIs).
3310 */
3311 local_irq_save(flags);
3312
3313 /* If this is a per-task event, it must be for current */
3314 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3315 event->hw.target != current);
3316
3317 /* If this is a per-CPU event, it must be for this CPU */
3318 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3319 event->cpu != smp_processor_id());
3320
3321 /*
3322 * It must not be an event with inherit set, we cannot read
3323 * all child counters from atomic context.
3324 */
3325 WARN_ON_ONCE(event->attr.inherit);
3326
3327 /*
3328 * It must not have a pmu::count method, those are not
3329 * NMI safe.
3330 */
3331 WARN_ON_ONCE(event->pmu->count);
3332
3333 /*
3334 * If the event is currently on this CPU, its either a per-task event,
3335 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3336 * oncpu == -1).
3337 */
3338 if (event->oncpu == smp_processor_id())
3339 event->pmu->read(event);
3340
3341 val = local64_read(&event->count);
3342 local_irq_restore(flags);
3343
3344 return val;
3345 }
3346
3347 static int perf_event_read(struct perf_event *event, bool group)
3348 {
3349 int ret = 0;
3350
3351 /*
3352 * If event is enabled and currently active on a CPU, update the
3353 * value in the event structure:
3354 */
3355 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3356 struct perf_read_data data = {
3357 .event = event,
3358 .group = group,
3359 .ret = 0,
3360 };
3361 smp_call_function_single(event->oncpu,
3362 __perf_event_read, &data, 1);
3363 ret = data.ret;
3364 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3365 struct perf_event_context *ctx = event->ctx;
3366 unsigned long flags;
3367
3368 raw_spin_lock_irqsave(&ctx->lock, flags);
3369 /*
3370 * may read while context is not active
3371 * (e.g., thread is blocked), in that case
3372 * we cannot update context time
3373 */
3374 if (ctx->is_active) {
3375 update_context_time(ctx);
3376 update_cgrp_time_from_event(event);
3377 }
3378 if (group)
3379 update_group_times(event);
3380 else
3381 update_event_times(event);
3382 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3383 }
3384
3385 return ret;
3386 }
3387
3388 /*
3389 * Initialize the perf_event context in a task_struct:
3390 */
3391 static void __perf_event_init_context(struct perf_event_context *ctx)
3392 {
3393 raw_spin_lock_init(&ctx->lock);
3394 mutex_init(&ctx->mutex);
3395 INIT_LIST_HEAD(&ctx->active_ctx_list);
3396 INIT_LIST_HEAD(&ctx->pinned_groups);
3397 INIT_LIST_HEAD(&ctx->flexible_groups);
3398 INIT_LIST_HEAD(&ctx->event_list);
3399 atomic_set(&ctx->refcount, 1);
3400 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
3401 }
3402
3403 static struct perf_event_context *
3404 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3405 {
3406 struct perf_event_context *ctx;
3407
3408 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3409 if (!ctx)
3410 return NULL;
3411
3412 __perf_event_init_context(ctx);
3413 if (task) {
3414 ctx->task = task;
3415 get_task_struct(task);
3416 }
3417 ctx->pmu = pmu;
3418
3419 return ctx;
3420 }
3421
3422 static struct task_struct *
3423 find_lively_task_by_vpid(pid_t vpid)
3424 {
3425 struct task_struct *task;
3426 int err;
3427
3428 rcu_read_lock();
3429 if (!vpid)
3430 task = current;
3431 else
3432 task = find_task_by_vpid(vpid);
3433 if (task)
3434 get_task_struct(task);
3435 rcu_read_unlock();
3436
3437 if (!task)
3438 return ERR_PTR(-ESRCH);
3439
3440 /* Reuse ptrace permission checks for now. */
3441 err = -EACCES;
3442 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3443 goto errout;
3444
3445 return task;
3446 errout:
3447 put_task_struct(task);
3448 return ERR_PTR(err);
3449
3450 }
3451
3452 /*
3453 * Returns a matching context with refcount and pincount.
3454 */
3455 static struct perf_event_context *
3456 find_get_context(struct pmu *pmu, struct task_struct *task,
3457 struct perf_event *event)
3458 {
3459 struct perf_event_context *ctx, *clone_ctx = NULL;
3460 struct perf_cpu_context *cpuctx;
3461 void *task_ctx_data = NULL;
3462 unsigned long flags;
3463 int ctxn, err;
3464 int cpu = event->cpu;
3465
3466 if (!task) {
3467 /* Must be root to operate on a CPU event: */
3468 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3469 return ERR_PTR(-EACCES);
3470
3471 /*
3472 * We could be clever and allow to attach a event to an
3473 * offline CPU and activate it when the CPU comes up, but
3474 * that's for later.
3475 */
3476 if (!cpu_online(cpu))
3477 return ERR_PTR(-ENODEV);
3478
3479 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3480 ctx = &cpuctx->ctx;
3481 get_ctx(ctx);
3482 ++ctx->pin_count;
3483
3484 return ctx;
3485 }
3486
3487 err = -EINVAL;
3488 ctxn = pmu->task_ctx_nr;
3489 if (ctxn < 0)
3490 goto errout;
3491
3492 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3493 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3494 if (!task_ctx_data) {
3495 err = -ENOMEM;
3496 goto errout;
3497 }
3498 }
3499
3500 retry:
3501 ctx = perf_lock_task_context(task, ctxn, &flags);
3502 if (ctx) {
3503 clone_ctx = unclone_ctx(ctx);
3504 ++ctx->pin_count;
3505
3506 if (task_ctx_data && !ctx->task_ctx_data) {
3507 ctx->task_ctx_data = task_ctx_data;
3508 task_ctx_data = NULL;
3509 }
3510 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3511
3512 if (clone_ctx)
3513 put_ctx(clone_ctx);
3514 } else {
3515 ctx = alloc_perf_context(pmu, task);
3516 err = -ENOMEM;
3517 if (!ctx)
3518 goto errout;
3519
3520 if (task_ctx_data) {
3521 ctx->task_ctx_data = task_ctx_data;
3522 task_ctx_data = NULL;
3523 }
3524
3525 err = 0;
3526 mutex_lock(&task->perf_event_mutex);
3527 /*
3528 * If it has already passed perf_event_exit_task().
3529 * we must see PF_EXITING, it takes this mutex too.
3530 */
3531 if (task->flags & PF_EXITING)
3532 err = -ESRCH;
3533 else if (task->perf_event_ctxp[ctxn])
3534 err = -EAGAIN;
3535 else {
3536 get_ctx(ctx);
3537 ++ctx->pin_count;
3538 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3539 }
3540 mutex_unlock(&task->perf_event_mutex);
3541
3542 if (unlikely(err)) {
3543 put_ctx(ctx);
3544
3545 if (err == -EAGAIN)
3546 goto retry;
3547 goto errout;
3548 }
3549 }
3550
3551 kfree(task_ctx_data);
3552 return ctx;
3553
3554 errout:
3555 kfree(task_ctx_data);
3556 return ERR_PTR(err);
3557 }
3558
3559 static void perf_event_free_filter(struct perf_event *event);
3560 static void perf_event_free_bpf_prog(struct perf_event *event);
3561
3562 static void free_event_rcu(struct rcu_head *head)
3563 {
3564 struct perf_event *event;
3565
3566 event = container_of(head, struct perf_event, rcu_head);
3567 if (event->ns)
3568 put_pid_ns(event->ns);
3569 perf_event_free_filter(event);
3570 kfree(event);
3571 }
3572
3573 static void ring_buffer_attach(struct perf_event *event,
3574 struct ring_buffer *rb);
3575
3576 static void unaccount_event_cpu(struct perf_event *event, int cpu)
3577 {
3578 if (event->parent)
3579 return;
3580
3581 if (is_cgroup_event(event))
3582 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3583 }
3584
3585 static void unaccount_event(struct perf_event *event)
3586 {
3587 if (event->parent)
3588 return;
3589
3590 if (event->attach_state & PERF_ATTACH_TASK)
3591 static_key_slow_dec_deferred(&perf_sched_events);
3592 if (event->attr.mmap || event->attr.mmap_data)
3593 atomic_dec(&nr_mmap_events);
3594 if (event->attr.comm)
3595 atomic_dec(&nr_comm_events);
3596 if (event->attr.task)
3597 atomic_dec(&nr_task_events);
3598 if (event->attr.freq)
3599 atomic_dec(&nr_freq_events);
3600 if (event->attr.context_switch) {
3601 static_key_slow_dec_deferred(&perf_sched_events);
3602 atomic_dec(&nr_switch_events);
3603 }
3604 if (is_cgroup_event(event))
3605 static_key_slow_dec_deferred(&perf_sched_events);
3606 if (has_branch_stack(event))
3607 static_key_slow_dec_deferred(&perf_sched_events);
3608
3609 unaccount_event_cpu(event, event->cpu);
3610 }
3611
3612 /*
3613 * The following implement mutual exclusion of events on "exclusive" pmus
3614 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3615 * at a time, so we disallow creating events that might conflict, namely:
3616 *
3617 * 1) cpu-wide events in the presence of per-task events,
3618 * 2) per-task events in the presence of cpu-wide events,
3619 * 3) two matching events on the same context.
3620 *
3621 * The former two cases are handled in the allocation path (perf_event_alloc(),
3622 * __free_event()), the latter -- before the first perf_install_in_context().
3623 */
3624 static int exclusive_event_init(struct perf_event *event)
3625 {
3626 struct pmu *pmu = event->pmu;
3627
3628 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3629 return 0;
3630
3631 /*
3632 * Prevent co-existence of per-task and cpu-wide events on the
3633 * same exclusive pmu.
3634 *
3635 * Negative pmu::exclusive_cnt means there are cpu-wide
3636 * events on this "exclusive" pmu, positive means there are
3637 * per-task events.
3638 *
3639 * Since this is called in perf_event_alloc() path, event::ctx
3640 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3641 * to mean "per-task event", because unlike other attach states it
3642 * never gets cleared.
3643 */
3644 if (event->attach_state & PERF_ATTACH_TASK) {
3645 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3646 return -EBUSY;
3647 } else {
3648 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3649 return -EBUSY;
3650 }
3651
3652 return 0;
3653 }
3654
3655 static void exclusive_event_destroy(struct perf_event *event)
3656 {
3657 struct pmu *pmu = event->pmu;
3658
3659 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3660 return;
3661
3662 /* see comment in exclusive_event_init() */
3663 if (event->attach_state & PERF_ATTACH_TASK)
3664 atomic_dec(&pmu->exclusive_cnt);
3665 else
3666 atomic_inc(&pmu->exclusive_cnt);
3667 }
3668
3669 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3670 {
3671 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3672 (e1->cpu == e2->cpu ||
3673 e1->cpu == -1 ||
3674 e2->cpu == -1))
3675 return true;
3676 return false;
3677 }
3678
3679 /* Called under the same ctx::mutex as perf_install_in_context() */
3680 static bool exclusive_event_installable(struct perf_event *event,
3681 struct perf_event_context *ctx)
3682 {
3683 struct perf_event *iter_event;
3684 struct pmu *pmu = event->pmu;
3685
3686 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3687 return true;
3688
3689 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3690 if (exclusive_event_match(iter_event, event))
3691 return false;
3692 }
3693
3694 return true;
3695 }
3696
3697 static void __free_event(struct perf_event *event)
3698 {
3699 if (!event->parent) {
3700 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3701 put_callchain_buffers();
3702 }
3703
3704 perf_event_free_bpf_prog(event);
3705
3706 if (event->destroy)
3707 event->destroy(event);
3708
3709 if (event->ctx)
3710 put_ctx(event->ctx);
3711
3712 if (event->pmu) {
3713 exclusive_event_destroy(event);
3714 module_put(event->pmu->module);
3715 }
3716
3717 call_rcu(&event->rcu_head, free_event_rcu);
3718 }
3719
3720 static void _free_event(struct perf_event *event)
3721 {
3722 irq_work_sync(&event->pending);
3723
3724 unaccount_event(event);
3725
3726 if (event->rb) {
3727 /*
3728 * Can happen when we close an event with re-directed output.
3729 *
3730 * Since we have a 0 refcount, perf_mmap_close() will skip
3731 * over us; possibly making our ring_buffer_put() the last.
3732 */
3733 mutex_lock(&event->mmap_mutex);
3734 ring_buffer_attach(event, NULL);
3735 mutex_unlock(&event->mmap_mutex);
3736 }
3737
3738 if (is_cgroup_event(event))
3739 perf_detach_cgroup(event);
3740
3741 __free_event(event);
3742 }
3743
3744 /*
3745 * Used to free events which have a known refcount of 1, such as in error paths
3746 * where the event isn't exposed yet and inherited events.
3747 */
3748 static void free_event(struct perf_event *event)
3749 {
3750 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3751 "unexpected event refcount: %ld; ptr=%p\n",
3752 atomic_long_read(&event->refcount), event)) {
3753 /* leak to avoid use-after-free */
3754 return;
3755 }
3756
3757 _free_event(event);
3758 }
3759
3760 /*
3761 * Remove user event from the owner task.
3762 */
3763 static void perf_remove_from_owner(struct perf_event *event)
3764 {
3765 struct task_struct *owner;
3766
3767 rcu_read_lock();
3768 owner = ACCESS_ONCE(event->owner);
3769 /*
3770 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3771 * !owner it means the list deletion is complete and we can indeed
3772 * free this event, otherwise we need to serialize on
3773 * owner->perf_event_mutex.
3774 */
3775 smp_read_barrier_depends();
3776 if (owner) {
3777 /*
3778 * Since delayed_put_task_struct() also drops the last
3779 * task reference we can safely take a new reference
3780 * while holding the rcu_read_lock().
3781 */
3782 get_task_struct(owner);
3783 }
3784 rcu_read_unlock();
3785
3786 if (owner) {
3787 /*
3788 * If we're here through perf_event_exit_task() we're already
3789 * holding ctx->mutex which would be an inversion wrt. the
3790 * normal lock order.
3791 *
3792 * However we can safely take this lock because its the child
3793 * ctx->mutex.
3794 */
3795 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3796
3797 /*
3798 * We have to re-check the event->owner field, if it is cleared
3799 * we raced with perf_event_exit_task(), acquiring the mutex
3800 * ensured they're done, and we can proceed with freeing the
3801 * event.
3802 */
3803 if (event->owner)
3804 list_del_init(&event->owner_entry);
3805 mutex_unlock(&owner->perf_event_mutex);
3806 put_task_struct(owner);
3807 }
3808 }
3809
3810 static void put_event(struct perf_event *event)
3811 {
3812 struct perf_event_context *ctx;
3813
3814 if (!atomic_long_dec_and_test(&event->refcount))
3815 return;
3816
3817 if (!is_kernel_event(event))
3818 perf_remove_from_owner(event);
3819
3820 /*
3821 * There are two ways this annotation is useful:
3822 *
3823 * 1) there is a lock recursion from perf_event_exit_task
3824 * see the comment there.
3825 *
3826 * 2) there is a lock-inversion with mmap_sem through
3827 * perf_read_group(), which takes faults while
3828 * holding ctx->mutex, however this is called after
3829 * the last filedesc died, so there is no possibility
3830 * to trigger the AB-BA case.
3831 */
3832 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3833 WARN_ON_ONCE(ctx->parent_ctx);
3834 perf_remove_from_context(event, true);
3835 perf_event_ctx_unlock(event, ctx);
3836
3837 _free_event(event);
3838 }
3839
3840 int perf_event_release_kernel(struct perf_event *event)
3841 {
3842 put_event(event);
3843 return 0;
3844 }
3845 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3846
3847 /*
3848 * Called when the last reference to the file is gone.
3849 */
3850 static int perf_release(struct inode *inode, struct file *file)
3851 {
3852 put_event(file->private_data);
3853 return 0;
3854 }
3855
3856 /*
3857 * Remove all orphanes events from the context.
3858 */
3859 static void orphans_remove_work(struct work_struct *work)
3860 {
3861 struct perf_event_context *ctx;
3862 struct perf_event *event, *tmp;
3863
3864 ctx = container_of(work, struct perf_event_context,
3865 orphans_remove.work);
3866
3867 mutex_lock(&ctx->mutex);
3868 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3869 struct perf_event *parent_event = event->parent;
3870
3871 if (!is_orphaned_child(event))
3872 continue;
3873
3874 perf_remove_from_context(event, true);
3875
3876 mutex_lock(&parent_event->child_mutex);
3877 list_del_init(&event->child_list);
3878 mutex_unlock(&parent_event->child_mutex);
3879
3880 free_event(event);
3881 put_event(parent_event);
3882 }
3883
3884 raw_spin_lock_irq(&ctx->lock);
3885 ctx->orphans_remove_sched = false;
3886 raw_spin_unlock_irq(&ctx->lock);
3887 mutex_unlock(&ctx->mutex);
3888
3889 put_ctx(ctx);
3890 }
3891
3892 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3893 {
3894 struct perf_event *child;
3895 u64 total = 0;
3896
3897 *enabled = 0;
3898 *running = 0;
3899
3900 mutex_lock(&event->child_mutex);
3901
3902 (void)perf_event_read(event, false);
3903 total += perf_event_count(event);
3904
3905 *enabled += event->total_time_enabled +
3906 atomic64_read(&event->child_total_time_enabled);
3907 *running += event->total_time_running +
3908 atomic64_read(&event->child_total_time_running);
3909
3910 list_for_each_entry(child, &event->child_list, child_list) {
3911 (void)perf_event_read(child, false);
3912 total += perf_event_count(child);
3913 *enabled += child->total_time_enabled;
3914 *running += child->total_time_running;
3915 }
3916 mutex_unlock(&event->child_mutex);
3917
3918 return total;
3919 }
3920 EXPORT_SYMBOL_GPL(perf_event_read_value);
3921
3922 static int __perf_read_group_add(struct perf_event *leader,
3923 u64 read_format, u64 *values)
3924 {
3925 struct perf_event *sub;
3926 int n = 1; /* skip @nr */
3927 int ret;
3928
3929 ret = perf_event_read(leader, true);
3930 if (ret)
3931 return ret;
3932
3933 /*
3934 * Since we co-schedule groups, {enabled,running} times of siblings
3935 * will be identical to those of the leader, so we only publish one
3936 * set.
3937 */
3938 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3939 values[n++] += leader->total_time_enabled +
3940 atomic64_read(&leader->child_total_time_enabled);
3941 }
3942
3943 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3944 values[n++] += leader->total_time_running +
3945 atomic64_read(&leader->child_total_time_running);
3946 }
3947
3948 /*
3949 * Write {count,id} tuples for every sibling.
3950 */
3951 values[n++] += perf_event_count(leader);
3952 if (read_format & PERF_FORMAT_ID)
3953 values[n++] = primary_event_id(leader);
3954
3955 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3956 values[n++] += perf_event_count(sub);
3957 if (read_format & PERF_FORMAT_ID)
3958 values[n++] = primary_event_id(sub);
3959 }
3960
3961 return 0;
3962 }
3963
3964 static int perf_read_group(struct perf_event *event,
3965 u64 read_format, char __user *buf)
3966 {
3967 struct perf_event *leader = event->group_leader, *child;
3968 struct perf_event_context *ctx = leader->ctx;
3969 int ret;
3970 u64 *values;
3971
3972 lockdep_assert_held(&ctx->mutex);
3973
3974 values = kzalloc(event->read_size, GFP_KERNEL);
3975 if (!values)
3976 return -ENOMEM;
3977
3978 values[0] = 1 + leader->nr_siblings;
3979
3980 /*
3981 * By locking the child_mutex of the leader we effectively
3982 * lock the child list of all siblings.. XXX explain how.
3983 */
3984 mutex_lock(&leader->child_mutex);
3985
3986 ret = __perf_read_group_add(leader, read_format, values);
3987 if (ret)
3988 goto unlock;
3989
3990 list_for_each_entry(child, &leader->child_list, child_list) {
3991 ret = __perf_read_group_add(child, read_format, values);
3992 if (ret)
3993 goto unlock;
3994 }
3995
3996 mutex_unlock(&leader->child_mutex);
3997
3998 ret = event->read_size;
3999 if (copy_to_user(buf, values, event->read_size))
4000 ret = -EFAULT;
4001 goto out;
4002
4003 unlock:
4004 mutex_unlock(&leader->child_mutex);
4005 out:
4006 kfree(values);
4007 return ret;
4008 }
4009
4010 static int perf_read_one(struct perf_event *event,
4011 u64 read_format, char __user *buf)
4012 {
4013 u64 enabled, running;
4014 u64 values[4];
4015 int n = 0;
4016
4017 values[n++] = perf_event_read_value(event, &enabled, &running);
4018 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4019 values[n++] = enabled;
4020 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4021 values[n++] = running;
4022 if (read_format & PERF_FORMAT_ID)
4023 values[n++] = primary_event_id(event);
4024
4025 if (copy_to_user(buf, values, n * sizeof(u64)))
4026 return -EFAULT;
4027
4028 return n * sizeof(u64);
4029 }
4030
4031 static bool is_event_hup(struct perf_event *event)
4032 {
4033 bool no_children;
4034
4035 if (event->state != PERF_EVENT_STATE_EXIT)
4036 return false;
4037
4038 mutex_lock(&event->child_mutex);
4039 no_children = list_empty(&event->child_list);
4040 mutex_unlock(&event->child_mutex);
4041 return no_children;
4042 }
4043
4044 /*
4045 * Read the performance event - simple non blocking version for now
4046 */
4047 static ssize_t
4048 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4049 {
4050 u64 read_format = event->attr.read_format;
4051 int ret;
4052
4053 /*
4054 * Return end-of-file for a read on a event that is in
4055 * error state (i.e. because it was pinned but it couldn't be
4056 * scheduled on to the CPU at some point).
4057 */
4058 if (event->state == PERF_EVENT_STATE_ERROR)
4059 return 0;
4060
4061 if (count < event->read_size)
4062 return -ENOSPC;
4063
4064 WARN_ON_ONCE(event->ctx->parent_ctx);
4065 if (read_format & PERF_FORMAT_GROUP)
4066 ret = perf_read_group(event, read_format, buf);
4067 else
4068 ret = perf_read_one(event, read_format, buf);
4069
4070 return ret;
4071 }
4072
4073 static ssize_t
4074 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4075 {
4076 struct perf_event *event = file->private_data;
4077 struct perf_event_context *ctx;
4078 int ret;
4079
4080 ctx = perf_event_ctx_lock(event);
4081 ret = __perf_read(event, buf, count);
4082 perf_event_ctx_unlock(event, ctx);
4083
4084 return ret;
4085 }
4086
4087 static unsigned int perf_poll(struct file *file, poll_table *wait)
4088 {
4089 struct perf_event *event = file->private_data;
4090 struct ring_buffer *rb;
4091 unsigned int events = POLLHUP;
4092
4093 poll_wait(file, &event->waitq, wait);
4094
4095 if (is_event_hup(event))
4096 return events;
4097
4098 /*
4099 * Pin the event->rb by taking event->mmap_mutex; otherwise
4100 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4101 */
4102 mutex_lock(&event->mmap_mutex);
4103 rb = event->rb;
4104 if (rb)
4105 events = atomic_xchg(&rb->poll, 0);
4106 mutex_unlock(&event->mmap_mutex);
4107 return events;
4108 }
4109
4110 static void _perf_event_reset(struct perf_event *event)
4111 {
4112 (void)perf_event_read(event, false);
4113 local64_set(&event->count, 0);
4114 perf_event_update_userpage(event);
4115 }
4116
4117 /*
4118 * Holding the top-level event's child_mutex means that any
4119 * descendant process that has inherited this event will block
4120 * in sync_child_event if it goes to exit, thus satisfying the
4121 * task existence requirements of perf_event_enable/disable.
4122 */
4123 static void perf_event_for_each_child(struct perf_event *event,
4124 void (*func)(struct perf_event *))
4125 {
4126 struct perf_event *child;
4127
4128 WARN_ON_ONCE(event->ctx->parent_ctx);
4129
4130 mutex_lock(&event->child_mutex);
4131 func(event);
4132 list_for_each_entry(child, &event->child_list, child_list)
4133 func(child);
4134 mutex_unlock(&event->child_mutex);
4135 }
4136
4137 static void perf_event_for_each(struct perf_event *event,
4138 void (*func)(struct perf_event *))
4139 {
4140 struct perf_event_context *ctx = event->ctx;
4141 struct perf_event *sibling;
4142
4143 lockdep_assert_held(&ctx->mutex);
4144
4145 event = event->group_leader;
4146
4147 perf_event_for_each_child(event, func);
4148 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4149 perf_event_for_each_child(sibling, func);
4150 }
4151
4152 struct period_event {
4153 struct perf_event *event;
4154 u64 value;
4155 };
4156
4157 static int __perf_event_period(void *info)
4158 {
4159 struct period_event *pe = info;
4160 struct perf_event *event = pe->event;
4161 struct perf_event_context *ctx = event->ctx;
4162 u64 value = pe->value;
4163 bool active;
4164
4165 raw_spin_lock(&ctx->lock);
4166 if (event->attr.freq) {
4167 event->attr.sample_freq = value;
4168 } else {
4169 event->attr.sample_period = value;
4170 event->hw.sample_period = value;
4171 }
4172
4173 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4174 if (active) {
4175 perf_pmu_disable(ctx->pmu);
4176 event->pmu->stop(event, PERF_EF_UPDATE);
4177 }
4178
4179 local64_set(&event->hw.period_left, 0);
4180
4181 if (active) {
4182 event->pmu->start(event, PERF_EF_RELOAD);
4183 perf_pmu_enable(ctx->pmu);
4184 }
4185 raw_spin_unlock(&ctx->lock);
4186
4187 return 0;
4188 }
4189
4190 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4191 {
4192 struct period_event pe = { .event = event, };
4193 struct perf_event_context *ctx = event->ctx;
4194 struct task_struct *task;
4195 u64 value;
4196
4197 if (!is_sampling_event(event))
4198 return -EINVAL;
4199
4200 if (copy_from_user(&value, arg, sizeof(value)))
4201 return -EFAULT;
4202
4203 if (!value)
4204 return -EINVAL;
4205
4206 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4207 return -EINVAL;
4208
4209 task = ctx->task;
4210 pe.value = value;
4211
4212 if (!task) {
4213 cpu_function_call(event->cpu, __perf_event_period, &pe);
4214 return 0;
4215 }
4216
4217 retry:
4218 if (!task_function_call(task, __perf_event_period, &pe))
4219 return 0;
4220
4221 raw_spin_lock_irq(&ctx->lock);
4222 if (ctx->is_active) {
4223 raw_spin_unlock_irq(&ctx->lock);
4224 task = ctx->task;
4225 goto retry;
4226 }
4227
4228 __perf_event_period(&pe);
4229 raw_spin_unlock_irq(&ctx->lock);
4230
4231 return 0;
4232 }
4233
4234 static const struct file_operations perf_fops;
4235
4236 static inline int perf_fget_light(int fd, struct fd *p)
4237 {
4238 struct fd f = fdget(fd);
4239 if (!f.file)
4240 return -EBADF;
4241
4242 if (f.file->f_op != &perf_fops) {
4243 fdput(f);
4244 return -EBADF;
4245 }
4246 *p = f;
4247 return 0;
4248 }
4249
4250 static int perf_event_set_output(struct perf_event *event,
4251 struct perf_event *output_event);
4252 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4253 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4254
4255 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4256 {
4257 void (*func)(struct perf_event *);
4258 u32 flags = arg;
4259
4260 switch (cmd) {
4261 case PERF_EVENT_IOC_ENABLE:
4262 func = _perf_event_enable;
4263 break;
4264 case PERF_EVENT_IOC_DISABLE:
4265 func = _perf_event_disable;
4266 break;
4267 case PERF_EVENT_IOC_RESET:
4268 func = _perf_event_reset;
4269 break;
4270
4271 case PERF_EVENT_IOC_REFRESH:
4272 return _perf_event_refresh(event, arg);
4273
4274 case PERF_EVENT_IOC_PERIOD:
4275 return perf_event_period(event, (u64 __user *)arg);
4276
4277 case PERF_EVENT_IOC_ID:
4278 {
4279 u64 id = primary_event_id(event);
4280
4281 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4282 return -EFAULT;
4283 return 0;
4284 }
4285
4286 case PERF_EVENT_IOC_SET_OUTPUT:
4287 {
4288 int ret;
4289 if (arg != -1) {
4290 struct perf_event *output_event;
4291 struct fd output;
4292 ret = perf_fget_light(arg, &output);
4293 if (ret)
4294 return ret;
4295 output_event = output.file->private_data;
4296 ret = perf_event_set_output(event, output_event);
4297 fdput(output);
4298 } else {
4299 ret = perf_event_set_output(event, NULL);
4300 }
4301 return ret;
4302 }
4303
4304 case PERF_EVENT_IOC_SET_FILTER:
4305 return perf_event_set_filter(event, (void __user *)arg);
4306
4307 case PERF_EVENT_IOC_SET_BPF:
4308 return perf_event_set_bpf_prog(event, arg);
4309
4310 default:
4311 return -ENOTTY;
4312 }
4313
4314 if (flags & PERF_IOC_FLAG_GROUP)
4315 perf_event_for_each(event, func);
4316 else
4317 perf_event_for_each_child(event, func);
4318
4319 return 0;
4320 }
4321
4322 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4323 {
4324 struct perf_event *event = file->private_data;
4325 struct perf_event_context *ctx;
4326 long ret;
4327
4328 ctx = perf_event_ctx_lock(event);
4329 ret = _perf_ioctl(event, cmd, arg);
4330 perf_event_ctx_unlock(event, ctx);
4331
4332 return ret;
4333 }
4334
4335 #ifdef CONFIG_COMPAT
4336 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4337 unsigned long arg)
4338 {
4339 switch (_IOC_NR(cmd)) {
4340 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4341 case _IOC_NR(PERF_EVENT_IOC_ID):
4342 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4343 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4344 cmd &= ~IOCSIZE_MASK;
4345 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4346 }
4347 break;
4348 }
4349 return perf_ioctl(file, cmd, arg);
4350 }
4351 #else
4352 # define perf_compat_ioctl NULL
4353 #endif
4354
4355 int perf_event_task_enable(void)
4356 {
4357 struct perf_event_context *ctx;
4358 struct perf_event *event;
4359
4360 mutex_lock(&current->perf_event_mutex);
4361 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4362 ctx = perf_event_ctx_lock(event);
4363 perf_event_for_each_child(event, _perf_event_enable);
4364 perf_event_ctx_unlock(event, ctx);
4365 }
4366 mutex_unlock(&current->perf_event_mutex);
4367
4368 return 0;
4369 }
4370
4371 int perf_event_task_disable(void)
4372 {
4373 struct perf_event_context *ctx;
4374 struct perf_event *event;
4375
4376 mutex_lock(&current->perf_event_mutex);
4377 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4378 ctx = perf_event_ctx_lock(event);
4379 perf_event_for_each_child(event, _perf_event_disable);
4380 perf_event_ctx_unlock(event, ctx);
4381 }
4382 mutex_unlock(&current->perf_event_mutex);
4383
4384 return 0;
4385 }
4386
4387 static int perf_event_index(struct perf_event *event)
4388 {
4389 if (event->hw.state & PERF_HES_STOPPED)
4390 return 0;
4391
4392 if (event->state != PERF_EVENT_STATE_ACTIVE)
4393 return 0;
4394
4395 return event->pmu->event_idx(event);
4396 }
4397
4398 static void calc_timer_values(struct perf_event *event,
4399 u64 *now,
4400 u64 *enabled,
4401 u64 *running)
4402 {
4403 u64 ctx_time;
4404
4405 *now = perf_clock();
4406 ctx_time = event->shadow_ctx_time + *now;
4407 *enabled = ctx_time - event->tstamp_enabled;
4408 *running = ctx_time - event->tstamp_running;
4409 }
4410
4411 static void perf_event_init_userpage(struct perf_event *event)
4412 {
4413 struct perf_event_mmap_page *userpg;
4414 struct ring_buffer *rb;
4415
4416 rcu_read_lock();
4417 rb = rcu_dereference(event->rb);
4418 if (!rb)
4419 goto unlock;
4420
4421 userpg = rb->user_page;
4422
4423 /* Allow new userspace to detect that bit 0 is deprecated */
4424 userpg->cap_bit0_is_deprecated = 1;
4425 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4426 userpg->data_offset = PAGE_SIZE;
4427 userpg->data_size = perf_data_size(rb);
4428
4429 unlock:
4430 rcu_read_unlock();
4431 }
4432
4433 void __weak arch_perf_update_userpage(
4434 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4435 {
4436 }
4437
4438 /*
4439 * Callers need to ensure there can be no nesting of this function, otherwise
4440 * the seqlock logic goes bad. We can not serialize this because the arch
4441 * code calls this from NMI context.
4442 */
4443 void perf_event_update_userpage(struct perf_event *event)
4444 {
4445 struct perf_event_mmap_page *userpg;
4446 struct ring_buffer *rb;
4447 u64 enabled, running, now;
4448
4449 rcu_read_lock();
4450 rb = rcu_dereference(event->rb);
4451 if (!rb)
4452 goto unlock;
4453
4454 /*
4455 * compute total_time_enabled, total_time_running
4456 * based on snapshot values taken when the event
4457 * was last scheduled in.
4458 *
4459 * we cannot simply called update_context_time()
4460 * because of locking issue as we can be called in
4461 * NMI context
4462 */
4463 calc_timer_values(event, &now, &enabled, &running);
4464
4465 userpg = rb->user_page;
4466 /*
4467 * Disable preemption so as to not let the corresponding user-space
4468 * spin too long if we get preempted.
4469 */
4470 preempt_disable();
4471 ++userpg->lock;
4472 barrier();
4473 userpg->index = perf_event_index(event);
4474 userpg->offset = perf_event_count(event);
4475 if (userpg->index)
4476 userpg->offset -= local64_read(&event->hw.prev_count);
4477
4478 userpg->time_enabled = enabled +
4479 atomic64_read(&event->child_total_time_enabled);
4480
4481 userpg->time_running = running +
4482 atomic64_read(&event->child_total_time_running);
4483
4484 arch_perf_update_userpage(event, userpg, now);
4485
4486 barrier();
4487 ++userpg->lock;
4488 preempt_enable();
4489 unlock:
4490 rcu_read_unlock();
4491 }
4492
4493 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4494 {
4495 struct perf_event *event = vma->vm_file->private_data;
4496 struct ring_buffer *rb;
4497 int ret = VM_FAULT_SIGBUS;
4498
4499 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4500 if (vmf->pgoff == 0)
4501 ret = 0;
4502 return ret;
4503 }
4504
4505 rcu_read_lock();
4506 rb = rcu_dereference(event->rb);
4507 if (!rb)
4508 goto unlock;
4509
4510 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4511 goto unlock;
4512
4513 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
4514 if (!vmf->page)
4515 goto unlock;
4516
4517 get_page(vmf->page);
4518 vmf->page->mapping = vma->vm_file->f_mapping;
4519 vmf->page->index = vmf->pgoff;
4520
4521 ret = 0;
4522 unlock:
4523 rcu_read_unlock();
4524
4525 return ret;
4526 }
4527
4528 static void ring_buffer_attach(struct perf_event *event,
4529 struct ring_buffer *rb)
4530 {
4531 struct ring_buffer *old_rb = NULL;
4532 unsigned long flags;
4533
4534 if (event->rb) {
4535 /*
4536 * Should be impossible, we set this when removing
4537 * event->rb_entry and wait/clear when adding event->rb_entry.
4538 */
4539 WARN_ON_ONCE(event->rcu_pending);
4540
4541 old_rb = event->rb;
4542 spin_lock_irqsave(&old_rb->event_lock, flags);
4543 list_del_rcu(&event->rb_entry);
4544 spin_unlock_irqrestore(&old_rb->event_lock, flags);
4545
4546 event->rcu_batches = get_state_synchronize_rcu();
4547 event->rcu_pending = 1;
4548 }
4549
4550 if (rb) {
4551 if (event->rcu_pending) {
4552 cond_synchronize_rcu(event->rcu_batches);
4553 event->rcu_pending = 0;
4554 }
4555
4556 spin_lock_irqsave(&rb->event_lock, flags);
4557 list_add_rcu(&event->rb_entry, &rb->event_list);
4558 spin_unlock_irqrestore(&rb->event_lock, flags);
4559 }
4560
4561 rcu_assign_pointer(event->rb, rb);
4562
4563 if (old_rb) {
4564 ring_buffer_put(old_rb);
4565 /*
4566 * Since we detached before setting the new rb, so that we
4567 * could attach the new rb, we could have missed a wakeup.
4568 * Provide it now.
4569 */
4570 wake_up_all(&event->waitq);
4571 }
4572 }
4573
4574 static void ring_buffer_wakeup(struct perf_event *event)
4575 {
4576 struct ring_buffer *rb;
4577
4578 rcu_read_lock();
4579 rb = rcu_dereference(event->rb);
4580 if (rb) {
4581 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4582 wake_up_all(&event->waitq);
4583 }
4584 rcu_read_unlock();
4585 }
4586
4587 struct ring_buffer *ring_buffer_get(struct perf_event *event)
4588 {
4589 struct ring_buffer *rb;
4590
4591 rcu_read_lock();
4592 rb = rcu_dereference(event->rb);
4593 if (rb) {
4594 if (!atomic_inc_not_zero(&rb->refcount))
4595 rb = NULL;
4596 }
4597 rcu_read_unlock();
4598
4599 return rb;
4600 }
4601
4602 void ring_buffer_put(struct ring_buffer *rb)
4603 {
4604 if (!atomic_dec_and_test(&rb->refcount))
4605 return;
4606
4607 WARN_ON_ONCE(!list_empty(&rb->event_list));
4608
4609 call_rcu(&rb->rcu_head, rb_free_rcu);
4610 }
4611
4612 static void perf_mmap_open(struct vm_area_struct *vma)
4613 {
4614 struct perf_event *event = vma->vm_file->private_data;
4615
4616 atomic_inc(&event->mmap_count);
4617 atomic_inc(&event->rb->mmap_count);
4618
4619 if (vma->vm_pgoff)
4620 atomic_inc(&event->rb->aux_mmap_count);
4621
4622 if (event->pmu->event_mapped)
4623 event->pmu->event_mapped(event);
4624 }
4625
4626 /*
4627 * A buffer can be mmap()ed multiple times; either directly through the same
4628 * event, or through other events by use of perf_event_set_output().
4629 *
4630 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4631 * the buffer here, where we still have a VM context. This means we need
4632 * to detach all events redirecting to us.
4633 */
4634 static void perf_mmap_close(struct vm_area_struct *vma)
4635 {
4636 struct perf_event *event = vma->vm_file->private_data;
4637
4638 struct ring_buffer *rb = ring_buffer_get(event);
4639 struct user_struct *mmap_user = rb->mmap_user;
4640 int mmap_locked = rb->mmap_locked;
4641 unsigned long size = perf_data_size(rb);
4642
4643 if (event->pmu->event_unmapped)
4644 event->pmu->event_unmapped(event);
4645
4646 /*
4647 * rb->aux_mmap_count will always drop before rb->mmap_count and
4648 * event->mmap_count, so it is ok to use event->mmap_mutex to
4649 * serialize with perf_mmap here.
4650 */
4651 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4652 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4653 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4654 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4655
4656 rb_free_aux(rb);
4657 mutex_unlock(&event->mmap_mutex);
4658 }
4659
4660 atomic_dec(&rb->mmap_count);
4661
4662 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
4663 goto out_put;
4664
4665 ring_buffer_attach(event, NULL);
4666 mutex_unlock(&event->mmap_mutex);
4667
4668 /* If there's still other mmap()s of this buffer, we're done. */
4669 if (atomic_read(&rb->mmap_count))
4670 goto out_put;
4671
4672 /*
4673 * No other mmap()s, detach from all other events that might redirect
4674 * into the now unreachable buffer. Somewhat complicated by the
4675 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4676 */
4677 again:
4678 rcu_read_lock();
4679 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4680 if (!atomic_long_inc_not_zero(&event->refcount)) {
4681 /*
4682 * This event is en-route to free_event() which will
4683 * detach it and remove it from the list.
4684 */
4685 continue;
4686 }
4687 rcu_read_unlock();
4688
4689 mutex_lock(&event->mmap_mutex);
4690 /*
4691 * Check we didn't race with perf_event_set_output() which can
4692 * swizzle the rb from under us while we were waiting to
4693 * acquire mmap_mutex.
4694 *
4695 * If we find a different rb; ignore this event, a next
4696 * iteration will no longer find it on the list. We have to
4697 * still restart the iteration to make sure we're not now
4698 * iterating the wrong list.
4699 */
4700 if (event->rb == rb)
4701 ring_buffer_attach(event, NULL);
4702
4703 mutex_unlock(&event->mmap_mutex);
4704 put_event(event);
4705
4706 /*
4707 * Restart the iteration; either we're on the wrong list or
4708 * destroyed its integrity by doing a deletion.
4709 */
4710 goto again;
4711 }
4712 rcu_read_unlock();
4713
4714 /*
4715 * It could be there's still a few 0-ref events on the list; they'll
4716 * get cleaned up by free_event() -- they'll also still have their
4717 * ref on the rb and will free it whenever they are done with it.
4718 *
4719 * Aside from that, this buffer is 'fully' detached and unmapped,
4720 * undo the VM accounting.
4721 */
4722
4723 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4724 vma->vm_mm->pinned_vm -= mmap_locked;
4725 free_uid(mmap_user);
4726
4727 out_put:
4728 ring_buffer_put(rb); /* could be last */
4729 }
4730
4731 static const struct vm_operations_struct perf_mmap_vmops = {
4732 .open = perf_mmap_open,
4733 .close = perf_mmap_close, /* non mergable */
4734 .fault = perf_mmap_fault,
4735 .page_mkwrite = perf_mmap_fault,
4736 };
4737
4738 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4739 {
4740 struct perf_event *event = file->private_data;
4741 unsigned long user_locked, user_lock_limit;
4742 struct user_struct *user = current_user();
4743 unsigned long locked, lock_limit;
4744 struct ring_buffer *rb = NULL;
4745 unsigned long vma_size;
4746 unsigned long nr_pages;
4747 long user_extra = 0, extra = 0;
4748 int ret = 0, flags = 0;
4749
4750 /*
4751 * Don't allow mmap() of inherited per-task counters. This would
4752 * create a performance issue due to all children writing to the
4753 * same rb.
4754 */
4755 if (event->cpu == -1 && event->attr.inherit)
4756 return -EINVAL;
4757
4758 if (!(vma->vm_flags & VM_SHARED))
4759 return -EINVAL;
4760
4761 vma_size = vma->vm_end - vma->vm_start;
4762
4763 if (vma->vm_pgoff == 0) {
4764 nr_pages = (vma_size / PAGE_SIZE) - 1;
4765 } else {
4766 /*
4767 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4768 * mapped, all subsequent mappings should have the same size
4769 * and offset. Must be above the normal perf buffer.
4770 */
4771 u64 aux_offset, aux_size;
4772
4773 if (!event->rb)
4774 return -EINVAL;
4775
4776 nr_pages = vma_size / PAGE_SIZE;
4777
4778 mutex_lock(&event->mmap_mutex);
4779 ret = -EINVAL;
4780
4781 rb = event->rb;
4782 if (!rb)
4783 goto aux_unlock;
4784
4785 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4786 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4787
4788 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4789 goto aux_unlock;
4790
4791 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4792 goto aux_unlock;
4793
4794 /* already mapped with a different offset */
4795 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4796 goto aux_unlock;
4797
4798 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4799 goto aux_unlock;
4800
4801 /* already mapped with a different size */
4802 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4803 goto aux_unlock;
4804
4805 if (!is_power_of_2(nr_pages))
4806 goto aux_unlock;
4807
4808 if (!atomic_inc_not_zero(&rb->mmap_count))
4809 goto aux_unlock;
4810
4811 if (rb_has_aux(rb)) {
4812 atomic_inc(&rb->aux_mmap_count);
4813 ret = 0;
4814 goto unlock;
4815 }
4816
4817 atomic_set(&rb->aux_mmap_count, 1);
4818 user_extra = nr_pages;
4819
4820 goto accounting;
4821 }
4822
4823 /*
4824 * If we have rb pages ensure they're a power-of-two number, so we
4825 * can do bitmasks instead of modulo.
4826 */
4827 if (nr_pages != 0 && !is_power_of_2(nr_pages))
4828 return -EINVAL;
4829
4830 if (vma_size != PAGE_SIZE * (1 + nr_pages))
4831 return -EINVAL;
4832
4833 WARN_ON_ONCE(event->ctx->parent_ctx);
4834 again:
4835 mutex_lock(&event->mmap_mutex);
4836 if (event->rb) {
4837 if (event->rb->nr_pages != nr_pages) {
4838 ret = -EINVAL;
4839 goto unlock;
4840 }
4841
4842 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4843 /*
4844 * Raced against perf_mmap_close() through
4845 * perf_event_set_output(). Try again, hope for better
4846 * luck.
4847 */
4848 mutex_unlock(&event->mmap_mutex);
4849 goto again;
4850 }
4851
4852 goto unlock;
4853 }
4854
4855 user_extra = nr_pages + 1;
4856
4857 accounting:
4858 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
4859
4860 /*
4861 * Increase the limit linearly with more CPUs:
4862 */
4863 user_lock_limit *= num_online_cpus();
4864
4865 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
4866
4867 if (user_locked > user_lock_limit)
4868 extra = user_locked - user_lock_limit;
4869
4870 lock_limit = rlimit(RLIMIT_MEMLOCK);
4871 lock_limit >>= PAGE_SHIFT;
4872 locked = vma->vm_mm->pinned_vm + extra;
4873
4874 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4875 !capable(CAP_IPC_LOCK)) {
4876 ret = -EPERM;
4877 goto unlock;
4878 }
4879
4880 WARN_ON(!rb && event->rb);
4881
4882 if (vma->vm_flags & VM_WRITE)
4883 flags |= RING_BUFFER_WRITABLE;
4884
4885 if (!rb) {
4886 rb = rb_alloc(nr_pages,
4887 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4888 event->cpu, flags);
4889
4890 if (!rb) {
4891 ret = -ENOMEM;
4892 goto unlock;
4893 }
4894
4895 atomic_set(&rb->mmap_count, 1);
4896 rb->mmap_user = get_current_user();
4897 rb->mmap_locked = extra;
4898
4899 ring_buffer_attach(event, rb);
4900
4901 perf_event_init_userpage(event);
4902 perf_event_update_userpage(event);
4903 } else {
4904 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4905 event->attr.aux_watermark, flags);
4906 if (!ret)
4907 rb->aux_mmap_locked = extra;
4908 }
4909
4910 unlock:
4911 if (!ret) {
4912 atomic_long_add(user_extra, &user->locked_vm);
4913 vma->vm_mm->pinned_vm += extra;
4914
4915 atomic_inc(&event->mmap_count);
4916 } else if (rb) {
4917 atomic_dec(&rb->mmap_count);
4918 }
4919 aux_unlock:
4920 mutex_unlock(&event->mmap_mutex);
4921
4922 /*
4923 * Since pinned accounting is per vm we cannot allow fork() to copy our
4924 * vma.
4925 */
4926 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
4927 vma->vm_ops = &perf_mmap_vmops;
4928
4929 if (event->pmu->event_mapped)
4930 event->pmu->event_mapped(event);
4931
4932 return ret;
4933 }
4934
4935 static int perf_fasync(int fd, struct file *filp, int on)
4936 {
4937 struct inode *inode = file_inode(filp);
4938 struct perf_event *event = filp->private_data;
4939 int retval;
4940
4941 mutex_lock(&inode->i_mutex);
4942 retval = fasync_helper(fd, filp, on, &event->fasync);
4943 mutex_unlock(&inode->i_mutex);
4944
4945 if (retval < 0)
4946 return retval;
4947
4948 return 0;
4949 }
4950
4951 static const struct file_operations perf_fops = {
4952 .llseek = no_llseek,
4953 .release = perf_release,
4954 .read = perf_read,
4955 .poll = perf_poll,
4956 .unlocked_ioctl = perf_ioctl,
4957 .compat_ioctl = perf_compat_ioctl,
4958 .mmap = perf_mmap,
4959 .fasync = perf_fasync,
4960 };
4961
4962 /*
4963 * Perf event wakeup
4964 *
4965 * If there's data, ensure we set the poll() state and publish everything
4966 * to user-space before waking everybody up.
4967 */
4968
4969 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4970 {
4971 /* only the parent has fasync state */
4972 if (event->parent)
4973 event = event->parent;
4974 return &event->fasync;
4975 }
4976
4977 void perf_event_wakeup(struct perf_event *event)
4978 {
4979 ring_buffer_wakeup(event);
4980
4981 if (event->pending_kill) {
4982 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4983 event->pending_kill = 0;
4984 }
4985 }
4986
4987 static void perf_pending_event(struct irq_work *entry)
4988 {
4989 struct perf_event *event = container_of(entry,
4990 struct perf_event, pending);
4991 int rctx;
4992
4993 rctx = perf_swevent_get_recursion_context();
4994 /*
4995 * If we 'fail' here, that's OK, it means recursion is already disabled
4996 * and we won't recurse 'further'.
4997 */
4998
4999 if (event->pending_disable) {
5000 event->pending_disable = 0;
5001 __perf_event_disable(event);
5002 }
5003
5004 if (event->pending_wakeup) {
5005 event->pending_wakeup = 0;
5006 perf_event_wakeup(event);
5007 }
5008
5009 if (rctx >= 0)
5010 perf_swevent_put_recursion_context(rctx);
5011 }
5012
5013 /*
5014 * We assume there is only KVM supporting the callbacks.
5015 * Later on, we might change it to a list if there is
5016 * another virtualization implementation supporting the callbacks.
5017 */
5018 struct perf_guest_info_callbacks *perf_guest_cbs;
5019
5020 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5021 {
5022 perf_guest_cbs = cbs;
5023 return 0;
5024 }
5025 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5026
5027 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5028 {
5029 perf_guest_cbs = NULL;
5030 return 0;
5031 }
5032 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5033
5034 static void
5035 perf_output_sample_regs(struct perf_output_handle *handle,
5036 struct pt_regs *regs, u64 mask)
5037 {
5038 int bit;
5039
5040 for_each_set_bit(bit, (const unsigned long *) &mask,
5041 sizeof(mask) * BITS_PER_BYTE) {
5042 u64 val;
5043
5044 val = perf_reg_value(regs, bit);
5045 perf_output_put(handle, val);
5046 }
5047 }
5048
5049 static void perf_sample_regs_user(struct perf_regs *regs_user,
5050 struct pt_regs *regs,
5051 struct pt_regs *regs_user_copy)
5052 {
5053 if (user_mode(regs)) {
5054 regs_user->abi = perf_reg_abi(current);
5055 regs_user->regs = regs;
5056 } else if (current->mm) {
5057 perf_get_regs_user(regs_user, regs, regs_user_copy);
5058 } else {
5059 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5060 regs_user->regs = NULL;
5061 }
5062 }
5063
5064 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5065 struct pt_regs *regs)
5066 {
5067 regs_intr->regs = regs;
5068 regs_intr->abi = perf_reg_abi(current);
5069 }
5070
5071
5072 /*
5073 * Get remaining task size from user stack pointer.
5074 *
5075 * It'd be better to take stack vma map and limit this more
5076 * precisly, but there's no way to get it safely under interrupt,
5077 * so using TASK_SIZE as limit.
5078 */
5079 static u64 perf_ustack_task_size(struct pt_regs *regs)
5080 {
5081 unsigned long addr = perf_user_stack_pointer(regs);
5082
5083 if (!addr || addr >= TASK_SIZE)
5084 return 0;
5085
5086 return TASK_SIZE - addr;
5087 }
5088
5089 static u16
5090 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5091 struct pt_regs *regs)
5092 {
5093 u64 task_size;
5094
5095 /* No regs, no stack pointer, no dump. */
5096 if (!regs)
5097 return 0;
5098
5099 /*
5100 * Check if we fit in with the requested stack size into the:
5101 * - TASK_SIZE
5102 * If we don't, we limit the size to the TASK_SIZE.
5103 *
5104 * - remaining sample size
5105 * If we don't, we customize the stack size to
5106 * fit in to the remaining sample size.
5107 */
5108
5109 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5110 stack_size = min(stack_size, (u16) task_size);
5111
5112 /* Current header size plus static size and dynamic size. */
5113 header_size += 2 * sizeof(u64);
5114
5115 /* Do we fit in with the current stack dump size? */
5116 if ((u16) (header_size + stack_size) < header_size) {
5117 /*
5118 * If we overflow the maximum size for the sample,
5119 * we customize the stack dump size to fit in.
5120 */
5121 stack_size = USHRT_MAX - header_size - sizeof(u64);
5122 stack_size = round_up(stack_size, sizeof(u64));
5123 }
5124
5125 return stack_size;
5126 }
5127
5128 static void
5129 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5130 struct pt_regs *regs)
5131 {
5132 /* Case of a kernel thread, nothing to dump */
5133 if (!regs) {
5134 u64 size = 0;
5135 perf_output_put(handle, size);
5136 } else {
5137 unsigned long sp;
5138 unsigned int rem;
5139 u64 dyn_size;
5140
5141 /*
5142 * We dump:
5143 * static size
5144 * - the size requested by user or the best one we can fit
5145 * in to the sample max size
5146 * data
5147 * - user stack dump data
5148 * dynamic size
5149 * - the actual dumped size
5150 */
5151
5152 /* Static size. */
5153 perf_output_put(handle, dump_size);
5154
5155 /* Data. */
5156 sp = perf_user_stack_pointer(regs);
5157 rem = __output_copy_user(handle, (void *) sp, dump_size);
5158 dyn_size = dump_size - rem;
5159
5160 perf_output_skip(handle, rem);
5161
5162 /* Dynamic size. */
5163 perf_output_put(handle, dyn_size);
5164 }
5165 }
5166
5167 static void __perf_event_header__init_id(struct perf_event_header *header,
5168 struct perf_sample_data *data,
5169 struct perf_event *event)
5170 {
5171 u64 sample_type = event->attr.sample_type;
5172
5173 data->type = sample_type;
5174 header->size += event->id_header_size;
5175
5176 if (sample_type & PERF_SAMPLE_TID) {
5177 /* namespace issues */
5178 data->tid_entry.pid = perf_event_pid(event, current);
5179 data->tid_entry.tid = perf_event_tid(event, current);
5180 }
5181
5182 if (sample_type & PERF_SAMPLE_TIME)
5183 data->time = perf_event_clock(event);
5184
5185 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5186 data->id = primary_event_id(event);
5187
5188 if (sample_type & PERF_SAMPLE_STREAM_ID)
5189 data->stream_id = event->id;
5190
5191 if (sample_type & PERF_SAMPLE_CPU) {
5192 data->cpu_entry.cpu = raw_smp_processor_id();
5193 data->cpu_entry.reserved = 0;
5194 }
5195 }
5196
5197 void perf_event_header__init_id(struct perf_event_header *header,
5198 struct perf_sample_data *data,
5199 struct perf_event *event)
5200 {
5201 if (event->attr.sample_id_all)
5202 __perf_event_header__init_id(header, data, event);
5203 }
5204
5205 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5206 struct perf_sample_data *data)
5207 {
5208 u64 sample_type = data->type;
5209
5210 if (sample_type & PERF_SAMPLE_TID)
5211 perf_output_put(handle, data->tid_entry);
5212
5213 if (sample_type & PERF_SAMPLE_TIME)
5214 perf_output_put(handle, data->time);
5215
5216 if (sample_type & PERF_SAMPLE_ID)
5217 perf_output_put(handle, data->id);
5218
5219 if (sample_type & PERF_SAMPLE_STREAM_ID)
5220 perf_output_put(handle, data->stream_id);
5221
5222 if (sample_type & PERF_SAMPLE_CPU)
5223 perf_output_put(handle, data->cpu_entry);
5224
5225 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5226 perf_output_put(handle, data->id);
5227 }
5228
5229 void perf_event__output_id_sample(struct perf_event *event,
5230 struct perf_output_handle *handle,
5231 struct perf_sample_data *sample)
5232 {
5233 if (event->attr.sample_id_all)
5234 __perf_event__output_id_sample(handle, sample);
5235 }
5236
5237 static void perf_output_read_one(struct perf_output_handle *handle,
5238 struct perf_event *event,
5239 u64 enabled, u64 running)
5240 {
5241 u64 read_format = event->attr.read_format;
5242 u64 values[4];
5243 int n = 0;
5244
5245 values[n++] = perf_event_count(event);
5246 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5247 values[n++] = enabled +
5248 atomic64_read(&event->child_total_time_enabled);
5249 }
5250 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5251 values[n++] = running +
5252 atomic64_read(&event->child_total_time_running);
5253 }
5254 if (read_format & PERF_FORMAT_ID)
5255 values[n++] = primary_event_id(event);
5256
5257 __output_copy(handle, values, n * sizeof(u64));
5258 }
5259
5260 /*
5261 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
5262 */
5263 static void perf_output_read_group(struct perf_output_handle *handle,
5264 struct perf_event *event,
5265 u64 enabled, u64 running)
5266 {
5267 struct perf_event *leader = event->group_leader, *sub;
5268 u64 read_format = event->attr.read_format;
5269 u64 values[5];
5270 int n = 0;
5271
5272 values[n++] = 1 + leader->nr_siblings;
5273
5274 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5275 values[n++] = enabled;
5276
5277 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5278 values[n++] = running;
5279
5280 if (leader != event)
5281 leader->pmu->read(leader);
5282
5283 values[n++] = perf_event_count(leader);
5284 if (read_format & PERF_FORMAT_ID)
5285 values[n++] = primary_event_id(leader);
5286
5287 __output_copy(handle, values, n * sizeof(u64));
5288
5289 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5290 n = 0;
5291
5292 if ((sub != event) &&
5293 (sub->state == PERF_EVENT_STATE_ACTIVE))
5294 sub->pmu->read(sub);
5295
5296 values[n++] = perf_event_count(sub);
5297 if (read_format & PERF_FORMAT_ID)
5298 values[n++] = primary_event_id(sub);
5299
5300 __output_copy(handle, values, n * sizeof(u64));
5301 }
5302 }
5303
5304 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5305 PERF_FORMAT_TOTAL_TIME_RUNNING)
5306
5307 static void perf_output_read(struct perf_output_handle *handle,
5308 struct perf_event *event)
5309 {
5310 u64 enabled = 0, running = 0, now;
5311 u64 read_format = event->attr.read_format;
5312
5313 /*
5314 * compute total_time_enabled, total_time_running
5315 * based on snapshot values taken when the event
5316 * was last scheduled in.
5317 *
5318 * we cannot simply called update_context_time()
5319 * because of locking issue as we are called in
5320 * NMI context
5321 */
5322 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5323 calc_timer_values(event, &now, &enabled, &running);
5324
5325 if (event->attr.read_format & PERF_FORMAT_GROUP)
5326 perf_output_read_group(handle, event, enabled, running);
5327 else
5328 perf_output_read_one(handle, event, enabled, running);
5329 }
5330
5331 void perf_output_sample(struct perf_output_handle *handle,
5332 struct perf_event_header *header,
5333 struct perf_sample_data *data,
5334 struct perf_event *event)
5335 {
5336 u64 sample_type = data->type;
5337
5338 perf_output_put(handle, *header);
5339
5340 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5341 perf_output_put(handle, data->id);
5342
5343 if (sample_type & PERF_SAMPLE_IP)
5344 perf_output_put(handle, data->ip);
5345
5346 if (sample_type & PERF_SAMPLE_TID)
5347 perf_output_put(handle, data->tid_entry);
5348
5349 if (sample_type & PERF_SAMPLE_TIME)
5350 perf_output_put(handle, data->time);
5351
5352 if (sample_type & PERF_SAMPLE_ADDR)
5353 perf_output_put(handle, data->addr);
5354
5355 if (sample_type & PERF_SAMPLE_ID)
5356 perf_output_put(handle, data->id);
5357
5358 if (sample_type & PERF_SAMPLE_STREAM_ID)
5359 perf_output_put(handle, data->stream_id);
5360
5361 if (sample_type & PERF_SAMPLE_CPU)
5362 perf_output_put(handle, data->cpu_entry);
5363
5364 if (sample_type & PERF_SAMPLE_PERIOD)
5365 perf_output_put(handle, data->period);
5366
5367 if (sample_type & PERF_SAMPLE_READ)
5368 perf_output_read(handle, event);
5369
5370 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5371 if (data->callchain) {
5372 int size = 1;
5373
5374 if (data->callchain)
5375 size += data->callchain->nr;
5376
5377 size *= sizeof(u64);
5378
5379 __output_copy(handle, data->callchain, size);
5380 } else {
5381 u64 nr = 0;
5382 perf_output_put(handle, nr);
5383 }
5384 }
5385
5386 if (sample_type & PERF_SAMPLE_RAW) {
5387 if (data->raw) {
5388 u32 raw_size = data->raw->size;
5389 u32 real_size = round_up(raw_size + sizeof(u32),
5390 sizeof(u64)) - sizeof(u32);
5391 u64 zero = 0;
5392
5393 perf_output_put(handle, real_size);
5394 __output_copy(handle, data->raw->data, raw_size);
5395 if (real_size - raw_size)
5396 __output_copy(handle, &zero, real_size - raw_size);
5397 } else {
5398 struct {
5399 u32 size;
5400 u32 data;
5401 } raw = {
5402 .size = sizeof(u32),
5403 .data = 0,
5404 };
5405 perf_output_put(handle, raw);
5406 }
5407 }
5408
5409 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5410 if (data->br_stack) {
5411 size_t size;
5412
5413 size = data->br_stack->nr
5414 * sizeof(struct perf_branch_entry);
5415
5416 perf_output_put(handle, data->br_stack->nr);
5417 perf_output_copy(handle, data->br_stack->entries, size);
5418 } else {
5419 /*
5420 * we always store at least the value of nr
5421 */
5422 u64 nr = 0;
5423 perf_output_put(handle, nr);
5424 }
5425 }
5426
5427 if (sample_type & PERF_SAMPLE_REGS_USER) {
5428 u64 abi = data->regs_user.abi;
5429
5430 /*
5431 * If there are no regs to dump, notice it through
5432 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5433 */
5434 perf_output_put(handle, abi);
5435
5436 if (abi) {
5437 u64 mask = event->attr.sample_regs_user;
5438 perf_output_sample_regs(handle,
5439 data->regs_user.regs,
5440 mask);
5441 }
5442 }
5443
5444 if (sample_type & PERF_SAMPLE_STACK_USER) {
5445 perf_output_sample_ustack(handle,
5446 data->stack_user_size,
5447 data->regs_user.regs);
5448 }
5449
5450 if (sample_type & PERF_SAMPLE_WEIGHT)
5451 perf_output_put(handle, data->weight);
5452
5453 if (sample_type & PERF_SAMPLE_DATA_SRC)
5454 perf_output_put(handle, data->data_src.val);
5455
5456 if (sample_type & PERF_SAMPLE_TRANSACTION)
5457 perf_output_put(handle, data->txn);
5458
5459 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5460 u64 abi = data->regs_intr.abi;
5461 /*
5462 * If there are no regs to dump, notice it through
5463 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5464 */
5465 perf_output_put(handle, abi);
5466
5467 if (abi) {
5468 u64 mask = event->attr.sample_regs_intr;
5469
5470 perf_output_sample_regs(handle,
5471 data->regs_intr.regs,
5472 mask);
5473 }
5474 }
5475
5476 if (!event->attr.watermark) {
5477 int wakeup_events = event->attr.wakeup_events;
5478
5479 if (wakeup_events) {
5480 struct ring_buffer *rb = handle->rb;
5481 int events = local_inc_return(&rb->events);
5482
5483 if (events >= wakeup_events) {
5484 local_sub(wakeup_events, &rb->events);
5485 local_inc(&rb->wakeup);
5486 }
5487 }
5488 }
5489 }
5490
5491 void perf_prepare_sample(struct perf_event_header *header,
5492 struct perf_sample_data *data,
5493 struct perf_event *event,
5494 struct pt_regs *regs)
5495 {
5496 u64 sample_type = event->attr.sample_type;
5497
5498 header->type = PERF_RECORD_SAMPLE;
5499 header->size = sizeof(*header) + event->header_size;
5500
5501 header->misc = 0;
5502 header->misc |= perf_misc_flags(regs);
5503
5504 __perf_event_header__init_id(header, data, event);
5505
5506 if (sample_type & PERF_SAMPLE_IP)
5507 data->ip = perf_instruction_pointer(regs);
5508
5509 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5510 int size = 1;
5511
5512 data->callchain = perf_callchain(event, regs);
5513
5514 if (data->callchain)
5515 size += data->callchain->nr;
5516
5517 header->size += size * sizeof(u64);
5518 }
5519
5520 if (sample_type & PERF_SAMPLE_RAW) {
5521 int size = sizeof(u32);
5522
5523 if (data->raw)
5524 size += data->raw->size;
5525 else
5526 size += sizeof(u32);
5527
5528 header->size += round_up(size, sizeof(u64));
5529 }
5530
5531 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5532 int size = sizeof(u64); /* nr */
5533 if (data->br_stack) {
5534 size += data->br_stack->nr
5535 * sizeof(struct perf_branch_entry);
5536 }
5537 header->size += size;
5538 }
5539
5540 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
5541 perf_sample_regs_user(&data->regs_user, regs,
5542 &data->regs_user_copy);
5543
5544 if (sample_type & PERF_SAMPLE_REGS_USER) {
5545 /* regs dump ABI info */
5546 int size = sizeof(u64);
5547
5548 if (data->regs_user.regs) {
5549 u64 mask = event->attr.sample_regs_user;
5550 size += hweight64(mask) * sizeof(u64);
5551 }
5552
5553 header->size += size;
5554 }
5555
5556 if (sample_type & PERF_SAMPLE_STACK_USER) {
5557 /*
5558 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5559 * processed as the last one or have additional check added
5560 * in case new sample type is added, because we could eat
5561 * up the rest of the sample size.
5562 */
5563 u16 stack_size = event->attr.sample_stack_user;
5564 u16 size = sizeof(u64);
5565
5566 stack_size = perf_sample_ustack_size(stack_size, header->size,
5567 data->regs_user.regs);
5568
5569 /*
5570 * If there is something to dump, add space for the dump
5571 * itself and for the field that tells the dynamic size,
5572 * which is how many have been actually dumped.
5573 */
5574 if (stack_size)
5575 size += sizeof(u64) + stack_size;
5576
5577 data->stack_user_size = stack_size;
5578 header->size += size;
5579 }
5580
5581 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5582 /* regs dump ABI info */
5583 int size = sizeof(u64);
5584
5585 perf_sample_regs_intr(&data->regs_intr, regs);
5586
5587 if (data->regs_intr.regs) {
5588 u64 mask = event->attr.sample_regs_intr;
5589
5590 size += hweight64(mask) * sizeof(u64);
5591 }
5592
5593 header->size += size;
5594 }
5595 }
5596
5597 void perf_event_output(struct perf_event *event,
5598 struct perf_sample_data *data,
5599 struct pt_regs *regs)
5600 {
5601 struct perf_output_handle handle;
5602 struct perf_event_header header;
5603
5604 /* protect the callchain buffers */
5605 rcu_read_lock();
5606
5607 perf_prepare_sample(&header, data, event, regs);
5608
5609 if (perf_output_begin(&handle, event, header.size))
5610 goto exit;
5611
5612 perf_output_sample(&handle, &header, data, event);
5613
5614 perf_output_end(&handle);
5615
5616 exit:
5617 rcu_read_unlock();
5618 }
5619
5620 /*
5621 * read event_id
5622 */
5623
5624 struct perf_read_event {
5625 struct perf_event_header header;
5626
5627 u32 pid;
5628 u32 tid;
5629 };
5630
5631 static void
5632 perf_event_read_event(struct perf_event *event,
5633 struct task_struct *task)
5634 {
5635 struct perf_output_handle handle;
5636 struct perf_sample_data sample;
5637 struct perf_read_event read_event = {
5638 .header = {
5639 .type = PERF_RECORD_READ,
5640 .misc = 0,
5641 .size = sizeof(read_event) + event->read_size,
5642 },
5643 .pid = perf_event_pid(event, task),
5644 .tid = perf_event_tid(event, task),
5645 };
5646 int ret;
5647
5648 perf_event_header__init_id(&read_event.header, &sample, event);
5649 ret = perf_output_begin(&handle, event, read_event.header.size);
5650 if (ret)
5651 return;
5652
5653 perf_output_put(&handle, read_event);
5654 perf_output_read(&handle, event);
5655 perf_event__output_id_sample(event, &handle, &sample);
5656
5657 perf_output_end(&handle);
5658 }
5659
5660 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5661
5662 static void
5663 perf_event_aux_ctx(struct perf_event_context *ctx,
5664 perf_event_aux_output_cb output,
5665 void *data)
5666 {
5667 struct perf_event *event;
5668
5669 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5670 if (event->state < PERF_EVENT_STATE_INACTIVE)
5671 continue;
5672 if (!event_filter_match(event))
5673 continue;
5674 output(event, data);
5675 }
5676 }
5677
5678 static void
5679 perf_event_aux(perf_event_aux_output_cb output, void *data,
5680 struct perf_event_context *task_ctx)
5681 {
5682 struct perf_cpu_context *cpuctx;
5683 struct perf_event_context *ctx;
5684 struct pmu *pmu;
5685 int ctxn;
5686
5687 rcu_read_lock();
5688 list_for_each_entry_rcu(pmu, &pmus, entry) {
5689 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5690 if (cpuctx->unique_pmu != pmu)
5691 goto next;
5692 perf_event_aux_ctx(&cpuctx->ctx, output, data);
5693 if (task_ctx)
5694 goto next;
5695 ctxn = pmu->task_ctx_nr;
5696 if (ctxn < 0)
5697 goto next;
5698 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5699 if (ctx)
5700 perf_event_aux_ctx(ctx, output, data);
5701 next:
5702 put_cpu_ptr(pmu->pmu_cpu_context);
5703 }
5704
5705 if (task_ctx) {
5706 preempt_disable();
5707 perf_event_aux_ctx(task_ctx, output, data);
5708 preempt_enable();
5709 }
5710 rcu_read_unlock();
5711 }
5712
5713 /*
5714 * task tracking -- fork/exit
5715 *
5716 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
5717 */
5718
5719 struct perf_task_event {
5720 struct task_struct *task;
5721 struct perf_event_context *task_ctx;
5722
5723 struct {
5724 struct perf_event_header header;
5725
5726 u32 pid;
5727 u32 ppid;
5728 u32 tid;
5729 u32 ptid;
5730 u64 time;
5731 } event_id;
5732 };
5733
5734 static int perf_event_task_match(struct perf_event *event)
5735 {
5736 return event->attr.comm || event->attr.mmap ||
5737 event->attr.mmap2 || event->attr.mmap_data ||
5738 event->attr.task;
5739 }
5740
5741 static void perf_event_task_output(struct perf_event *event,
5742 void *data)
5743 {
5744 struct perf_task_event *task_event = data;
5745 struct perf_output_handle handle;
5746 struct perf_sample_data sample;
5747 struct task_struct *task = task_event->task;
5748 int ret, size = task_event->event_id.header.size;
5749
5750 if (!perf_event_task_match(event))
5751 return;
5752
5753 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
5754
5755 ret = perf_output_begin(&handle, event,
5756 task_event->event_id.header.size);
5757 if (ret)
5758 goto out;
5759
5760 task_event->event_id.pid = perf_event_pid(event, task);
5761 task_event->event_id.ppid = perf_event_pid(event, current);
5762
5763 task_event->event_id.tid = perf_event_tid(event, task);
5764 task_event->event_id.ptid = perf_event_tid(event, current);
5765
5766 task_event->event_id.time = perf_event_clock(event);
5767
5768 perf_output_put(&handle, task_event->event_id);
5769
5770 perf_event__output_id_sample(event, &handle, &sample);
5771
5772 perf_output_end(&handle);
5773 out:
5774 task_event->event_id.header.size = size;
5775 }
5776
5777 static void perf_event_task(struct task_struct *task,
5778 struct perf_event_context *task_ctx,
5779 int new)
5780 {
5781 struct perf_task_event task_event;
5782
5783 if (!atomic_read(&nr_comm_events) &&
5784 !atomic_read(&nr_mmap_events) &&
5785 !atomic_read(&nr_task_events))
5786 return;
5787
5788 task_event = (struct perf_task_event){
5789 .task = task,
5790 .task_ctx = task_ctx,
5791 .event_id = {
5792 .header = {
5793 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
5794 .misc = 0,
5795 .size = sizeof(task_event.event_id),
5796 },
5797 /* .pid */
5798 /* .ppid */
5799 /* .tid */
5800 /* .ptid */
5801 /* .time */
5802 },
5803 };
5804
5805 perf_event_aux(perf_event_task_output,
5806 &task_event,
5807 task_ctx);
5808 }
5809
5810 void perf_event_fork(struct task_struct *task)
5811 {
5812 perf_event_task(task, NULL, 1);
5813 }
5814
5815 /*
5816 * comm tracking
5817 */
5818
5819 struct perf_comm_event {
5820 struct task_struct *task;
5821 char *comm;
5822 int comm_size;
5823
5824 struct {
5825 struct perf_event_header header;
5826
5827 u32 pid;
5828 u32 tid;
5829 } event_id;
5830 };
5831
5832 static int perf_event_comm_match(struct perf_event *event)
5833 {
5834 return event->attr.comm;
5835 }
5836
5837 static void perf_event_comm_output(struct perf_event *event,
5838 void *data)
5839 {
5840 struct perf_comm_event *comm_event = data;
5841 struct perf_output_handle handle;
5842 struct perf_sample_data sample;
5843 int size = comm_event->event_id.header.size;
5844 int ret;
5845
5846 if (!perf_event_comm_match(event))
5847 return;
5848
5849 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5850 ret = perf_output_begin(&handle, event,
5851 comm_event->event_id.header.size);
5852
5853 if (ret)
5854 goto out;
5855
5856 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5857 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
5858
5859 perf_output_put(&handle, comm_event->event_id);
5860 __output_copy(&handle, comm_event->comm,
5861 comm_event->comm_size);
5862
5863 perf_event__output_id_sample(event, &handle, &sample);
5864
5865 perf_output_end(&handle);
5866 out:
5867 comm_event->event_id.header.size = size;
5868 }
5869
5870 static void perf_event_comm_event(struct perf_comm_event *comm_event)
5871 {
5872 char comm[TASK_COMM_LEN];
5873 unsigned int size;
5874
5875 memset(comm, 0, sizeof(comm));
5876 strlcpy(comm, comm_event->task->comm, sizeof(comm));
5877 size = ALIGN(strlen(comm)+1, sizeof(u64));
5878
5879 comm_event->comm = comm;
5880 comm_event->comm_size = size;
5881
5882 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
5883
5884 perf_event_aux(perf_event_comm_output,
5885 comm_event,
5886 NULL);
5887 }
5888
5889 void perf_event_comm(struct task_struct *task, bool exec)
5890 {
5891 struct perf_comm_event comm_event;
5892
5893 if (!atomic_read(&nr_comm_events))
5894 return;
5895
5896 comm_event = (struct perf_comm_event){
5897 .task = task,
5898 /* .comm */
5899 /* .comm_size */
5900 .event_id = {
5901 .header = {
5902 .type = PERF_RECORD_COMM,
5903 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
5904 /* .size */
5905 },
5906 /* .pid */
5907 /* .tid */
5908 },
5909 };
5910
5911 perf_event_comm_event(&comm_event);
5912 }
5913
5914 /*
5915 * mmap tracking
5916 */
5917
5918 struct perf_mmap_event {
5919 struct vm_area_struct *vma;
5920
5921 const char *file_name;
5922 int file_size;
5923 int maj, min;
5924 u64 ino;
5925 u64 ino_generation;
5926 u32 prot, flags;
5927
5928 struct {
5929 struct perf_event_header header;
5930
5931 u32 pid;
5932 u32 tid;
5933 u64 start;
5934 u64 len;
5935 u64 pgoff;
5936 } event_id;
5937 };
5938
5939 static int perf_event_mmap_match(struct perf_event *event,
5940 void *data)
5941 {
5942 struct perf_mmap_event *mmap_event = data;
5943 struct vm_area_struct *vma = mmap_event->vma;
5944 int executable = vma->vm_flags & VM_EXEC;
5945
5946 return (!executable && event->attr.mmap_data) ||
5947 (executable && (event->attr.mmap || event->attr.mmap2));
5948 }
5949
5950 static void perf_event_mmap_output(struct perf_event *event,
5951 void *data)
5952 {
5953 struct perf_mmap_event *mmap_event = data;
5954 struct perf_output_handle handle;
5955 struct perf_sample_data sample;
5956 int size = mmap_event->event_id.header.size;
5957 int ret;
5958
5959 if (!perf_event_mmap_match(event, data))
5960 return;
5961
5962 if (event->attr.mmap2) {
5963 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5964 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5965 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5966 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
5967 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
5968 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5969 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
5970 }
5971
5972 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5973 ret = perf_output_begin(&handle, event,
5974 mmap_event->event_id.header.size);
5975 if (ret)
5976 goto out;
5977
5978 mmap_event->event_id.pid = perf_event_pid(event, current);
5979 mmap_event->event_id.tid = perf_event_tid(event, current);
5980
5981 perf_output_put(&handle, mmap_event->event_id);
5982
5983 if (event->attr.mmap2) {
5984 perf_output_put(&handle, mmap_event->maj);
5985 perf_output_put(&handle, mmap_event->min);
5986 perf_output_put(&handle, mmap_event->ino);
5987 perf_output_put(&handle, mmap_event->ino_generation);
5988 perf_output_put(&handle, mmap_event->prot);
5989 perf_output_put(&handle, mmap_event->flags);
5990 }
5991
5992 __output_copy(&handle, mmap_event->file_name,
5993 mmap_event->file_size);
5994
5995 perf_event__output_id_sample(event, &handle, &sample);
5996
5997 perf_output_end(&handle);
5998 out:
5999 mmap_event->event_id.header.size = size;
6000 }
6001
6002 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6003 {
6004 struct vm_area_struct *vma = mmap_event->vma;
6005 struct file *file = vma->vm_file;
6006 int maj = 0, min = 0;
6007 u64 ino = 0, gen = 0;
6008 u32 prot = 0, flags = 0;
6009 unsigned int size;
6010 char tmp[16];
6011 char *buf = NULL;
6012 char *name;
6013
6014 if (file) {
6015 struct inode *inode;
6016 dev_t dev;
6017
6018 buf = kmalloc(PATH_MAX, GFP_KERNEL);
6019 if (!buf) {
6020 name = "//enomem";
6021 goto cpy_name;
6022 }
6023 /*
6024 * d_path() works from the end of the rb backwards, so we
6025 * need to add enough zero bytes after the string to handle
6026 * the 64bit alignment we do later.
6027 */
6028 name = file_path(file, buf, PATH_MAX - sizeof(u64));
6029 if (IS_ERR(name)) {
6030 name = "//toolong";
6031 goto cpy_name;
6032 }
6033 inode = file_inode(vma->vm_file);
6034 dev = inode->i_sb->s_dev;
6035 ino = inode->i_ino;
6036 gen = inode->i_generation;
6037 maj = MAJOR(dev);
6038 min = MINOR(dev);
6039
6040 if (vma->vm_flags & VM_READ)
6041 prot |= PROT_READ;
6042 if (vma->vm_flags & VM_WRITE)
6043 prot |= PROT_WRITE;
6044 if (vma->vm_flags & VM_EXEC)
6045 prot |= PROT_EXEC;
6046
6047 if (vma->vm_flags & VM_MAYSHARE)
6048 flags = MAP_SHARED;
6049 else
6050 flags = MAP_PRIVATE;
6051
6052 if (vma->vm_flags & VM_DENYWRITE)
6053 flags |= MAP_DENYWRITE;
6054 if (vma->vm_flags & VM_MAYEXEC)
6055 flags |= MAP_EXECUTABLE;
6056 if (vma->vm_flags & VM_LOCKED)
6057 flags |= MAP_LOCKED;
6058 if (vma->vm_flags & VM_HUGETLB)
6059 flags |= MAP_HUGETLB;
6060
6061 goto got_name;
6062 } else {
6063 if (vma->vm_ops && vma->vm_ops->name) {
6064 name = (char *) vma->vm_ops->name(vma);
6065 if (name)
6066 goto cpy_name;
6067 }
6068
6069 name = (char *)arch_vma_name(vma);
6070 if (name)
6071 goto cpy_name;
6072
6073 if (vma->vm_start <= vma->vm_mm->start_brk &&
6074 vma->vm_end >= vma->vm_mm->brk) {
6075 name = "[heap]";
6076 goto cpy_name;
6077 }
6078 if (vma->vm_start <= vma->vm_mm->start_stack &&
6079 vma->vm_end >= vma->vm_mm->start_stack) {
6080 name = "[stack]";
6081 goto cpy_name;
6082 }
6083
6084 name = "//anon";
6085 goto cpy_name;
6086 }
6087
6088 cpy_name:
6089 strlcpy(tmp, name, sizeof(tmp));
6090 name = tmp;
6091 got_name:
6092 /*
6093 * Since our buffer works in 8 byte units we need to align our string
6094 * size to a multiple of 8. However, we must guarantee the tail end is
6095 * zero'd out to avoid leaking random bits to userspace.
6096 */
6097 size = strlen(name)+1;
6098 while (!IS_ALIGNED(size, sizeof(u64)))
6099 name[size++] = '\0';
6100
6101 mmap_event->file_name = name;
6102 mmap_event->file_size = size;
6103 mmap_event->maj = maj;
6104 mmap_event->min = min;
6105 mmap_event->ino = ino;
6106 mmap_event->ino_generation = gen;
6107 mmap_event->prot = prot;
6108 mmap_event->flags = flags;
6109
6110 if (!(vma->vm_flags & VM_EXEC))
6111 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6112
6113 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
6114
6115 perf_event_aux(perf_event_mmap_output,
6116 mmap_event,
6117 NULL);
6118
6119 kfree(buf);
6120 }
6121
6122 void perf_event_mmap(struct vm_area_struct *vma)
6123 {
6124 struct perf_mmap_event mmap_event;
6125
6126 if (!atomic_read(&nr_mmap_events))
6127 return;
6128
6129 mmap_event = (struct perf_mmap_event){
6130 .vma = vma,
6131 /* .file_name */
6132 /* .file_size */
6133 .event_id = {
6134 .header = {
6135 .type = PERF_RECORD_MMAP,
6136 .misc = PERF_RECORD_MISC_USER,
6137 /* .size */
6138 },
6139 /* .pid */
6140 /* .tid */
6141 .start = vma->vm_start,
6142 .len = vma->vm_end - vma->vm_start,
6143 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
6144 },
6145 /* .maj (attr_mmap2 only) */
6146 /* .min (attr_mmap2 only) */
6147 /* .ino (attr_mmap2 only) */
6148 /* .ino_generation (attr_mmap2 only) */
6149 /* .prot (attr_mmap2 only) */
6150 /* .flags (attr_mmap2 only) */
6151 };
6152
6153 perf_event_mmap_event(&mmap_event);
6154 }
6155
6156 void perf_event_aux_event(struct perf_event *event, unsigned long head,
6157 unsigned long size, u64 flags)
6158 {
6159 struct perf_output_handle handle;
6160 struct perf_sample_data sample;
6161 struct perf_aux_event {
6162 struct perf_event_header header;
6163 u64 offset;
6164 u64 size;
6165 u64 flags;
6166 } rec = {
6167 .header = {
6168 .type = PERF_RECORD_AUX,
6169 .misc = 0,
6170 .size = sizeof(rec),
6171 },
6172 .offset = head,
6173 .size = size,
6174 .flags = flags,
6175 };
6176 int ret;
6177
6178 perf_event_header__init_id(&rec.header, &sample, event);
6179 ret = perf_output_begin(&handle, event, rec.header.size);
6180
6181 if (ret)
6182 return;
6183
6184 perf_output_put(&handle, rec);
6185 perf_event__output_id_sample(event, &handle, &sample);
6186
6187 perf_output_end(&handle);
6188 }
6189
6190 /*
6191 * Lost/dropped samples logging
6192 */
6193 void perf_log_lost_samples(struct perf_event *event, u64 lost)
6194 {
6195 struct perf_output_handle handle;
6196 struct perf_sample_data sample;
6197 int ret;
6198
6199 struct {
6200 struct perf_event_header header;
6201 u64 lost;
6202 } lost_samples_event = {
6203 .header = {
6204 .type = PERF_RECORD_LOST_SAMPLES,
6205 .misc = 0,
6206 .size = sizeof(lost_samples_event),
6207 },
6208 .lost = lost,
6209 };
6210
6211 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6212
6213 ret = perf_output_begin(&handle, event,
6214 lost_samples_event.header.size);
6215 if (ret)
6216 return;
6217
6218 perf_output_put(&handle, lost_samples_event);
6219 perf_event__output_id_sample(event, &handle, &sample);
6220 perf_output_end(&handle);
6221 }
6222
6223 /*
6224 * context_switch tracking
6225 */
6226
6227 struct perf_switch_event {
6228 struct task_struct *task;
6229 struct task_struct *next_prev;
6230
6231 struct {
6232 struct perf_event_header header;
6233 u32 next_prev_pid;
6234 u32 next_prev_tid;
6235 } event_id;
6236 };
6237
6238 static int perf_event_switch_match(struct perf_event *event)
6239 {
6240 return event->attr.context_switch;
6241 }
6242
6243 static void perf_event_switch_output(struct perf_event *event, void *data)
6244 {
6245 struct perf_switch_event *se = data;
6246 struct perf_output_handle handle;
6247 struct perf_sample_data sample;
6248 int ret;
6249
6250 if (!perf_event_switch_match(event))
6251 return;
6252
6253 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6254 if (event->ctx->task) {
6255 se->event_id.header.type = PERF_RECORD_SWITCH;
6256 se->event_id.header.size = sizeof(se->event_id.header);
6257 } else {
6258 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6259 se->event_id.header.size = sizeof(se->event_id);
6260 se->event_id.next_prev_pid =
6261 perf_event_pid(event, se->next_prev);
6262 se->event_id.next_prev_tid =
6263 perf_event_tid(event, se->next_prev);
6264 }
6265
6266 perf_event_header__init_id(&se->event_id.header, &sample, event);
6267
6268 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6269 if (ret)
6270 return;
6271
6272 if (event->ctx->task)
6273 perf_output_put(&handle, se->event_id.header);
6274 else
6275 perf_output_put(&handle, se->event_id);
6276
6277 perf_event__output_id_sample(event, &handle, &sample);
6278
6279 perf_output_end(&handle);
6280 }
6281
6282 static void perf_event_switch(struct task_struct *task,
6283 struct task_struct *next_prev, bool sched_in)
6284 {
6285 struct perf_switch_event switch_event;
6286
6287 /* N.B. caller checks nr_switch_events != 0 */
6288
6289 switch_event = (struct perf_switch_event){
6290 .task = task,
6291 .next_prev = next_prev,
6292 .event_id = {
6293 .header = {
6294 /* .type */
6295 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6296 /* .size */
6297 },
6298 /* .next_prev_pid */
6299 /* .next_prev_tid */
6300 },
6301 };
6302
6303 perf_event_aux(perf_event_switch_output,
6304 &switch_event,
6305 NULL);
6306 }
6307
6308 /*
6309 * IRQ throttle logging
6310 */
6311
6312 static void perf_log_throttle(struct perf_event *event, int enable)
6313 {
6314 struct perf_output_handle handle;
6315 struct perf_sample_data sample;
6316 int ret;
6317
6318 struct {
6319 struct perf_event_header header;
6320 u64 time;
6321 u64 id;
6322 u64 stream_id;
6323 } throttle_event = {
6324 .header = {
6325 .type = PERF_RECORD_THROTTLE,
6326 .misc = 0,
6327 .size = sizeof(throttle_event),
6328 },
6329 .time = perf_event_clock(event),
6330 .id = primary_event_id(event),
6331 .stream_id = event->id,
6332 };
6333
6334 if (enable)
6335 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
6336
6337 perf_event_header__init_id(&throttle_event.header, &sample, event);
6338
6339 ret = perf_output_begin(&handle, event,
6340 throttle_event.header.size);
6341 if (ret)
6342 return;
6343
6344 perf_output_put(&handle, throttle_event);
6345 perf_event__output_id_sample(event, &handle, &sample);
6346 perf_output_end(&handle);
6347 }
6348
6349 static void perf_log_itrace_start(struct perf_event *event)
6350 {
6351 struct perf_output_handle handle;
6352 struct perf_sample_data sample;
6353 struct perf_aux_event {
6354 struct perf_event_header header;
6355 u32 pid;
6356 u32 tid;
6357 } rec;
6358 int ret;
6359
6360 if (event->parent)
6361 event = event->parent;
6362
6363 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6364 event->hw.itrace_started)
6365 return;
6366
6367 rec.header.type = PERF_RECORD_ITRACE_START;
6368 rec.header.misc = 0;
6369 rec.header.size = sizeof(rec);
6370 rec.pid = perf_event_pid(event, current);
6371 rec.tid = perf_event_tid(event, current);
6372
6373 perf_event_header__init_id(&rec.header, &sample, event);
6374 ret = perf_output_begin(&handle, event, rec.header.size);
6375
6376 if (ret)
6377 return;
6378
6379 perf_output_put(&handle, rec);
6380 perf_event__output_id_sample(event, &handle, &sample);
6381
6382 perf_output_end(&handle);
6383 }
6384
6385 /*
6386 * Generic event overflow handling, sampling.
6387 */
6388
6389 static int __perf_event_overflow(struct perf_event *event,
6390 int throttle, struct perf_sample_data *data,
6391 struct pt_regs *regs)
6392 {
6393 int events = atomic_read(&event->event_limit);
6394 struct hw_perf_event *hwc = &event->hw;
6395 u64 seq;
6396 int ret = 0;
6397
6398 /*
6399 * Non-sampling counters might still use the PMI to fold short
6400 * hardware counters, ignore those.
6401 */
6402 if (unlikely(!is_sampling_event(event)))
6403 return 0;
6404
6405 seq = __this_cpu_read(perf_throttled_seq);
6406 if (seq != hwc->interrupts_seq) {
6407 hwc->interrupts_seq = seq;
6408 hwc->interrupts = 1;
6409 } else {
6410 hwc->interrupts++;
6411 if (unlikely(throttle
6412 && hwc->interrupts >= max_samples_per_tick)) {
6413 __this_cpu_inc(perf_throttled_count);
6414 hwc->interrupts = MAX_INTERRUPTS;
6415 perf_log_throttle(event, 0);
6416 tick_nohz_full_kick();
6417 ret = 1;
6418 }
6419 }
6420
6421 if (event->attr.freq) {
6422 u64 now = perf_clock();
6423 s64 delta = now - hwc->freq_time_stamp;
6424
6425 hwc->freq_time_stamp = now;
6426
6427 if (delta > 0 && delta < 2*TICK_NSEC)
6428 perf_adjust_period(event, delta, hwc->last_period, true);
6429 }
6430
6431 /*
6432 * XXX event_limit might not quite work as expected on inherited
6433 * events
6434 */
6435
6436 event->pending_kill = POLL_IN;
6437 if (events && atomic_dec_and_test(&event->event_limit)) {
6438 ret = 1;
6439 event->pending_kill = POLL_HUP;
6440 event->pending_disable = 1;
6441 irq_work_queue(&event->pending);
6442 }
6443
6444 if (event->overflow_handler)
6445 event->overflow_handler(event, data, regs);
6446 else
6447 perf_event_output(event, data, regs);
6448
6449 if (*perf_event_fasync(event) && event->pending_kill) {
6450 event->pending_wakeup = 1;
6451 irq_work_queue(&event->pending);
6452 }
6453
6454 return ret;
6455 }
6456
6457 int perf_event_overflow(struct perf_event *event,
6458 struct perf_sample_data *data,
6459 struct pt_regs *regs)
6460 {
6461 return __perf_event_overflow(event, 1, data, regs);
6462 }
6463
6464 /*
6465 * Generic software event infrastructure
6466 */
6467
6468 struct swevent_htable {
6469 struct swevent_hlist *swevent_hlist;
6470 struct mutex hlist_mutex;
6471 int hlist_refcount;
6472
6473 /* Recursion avoidance in each contexts */
6474 int recursion[PERF_NR_CONTEXTS];
6475
6476 /* Keeps track of cpu being initialized/exited */
6477 bool online;
6478 };
6479
6480 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6481
6482 /*
6483 * We directly increment event->count and keep a second value in
6484 * event->hw.period_left to count intervals. This period event
6485 * is kept in the range [-sample_period, 0] so that we can use the
6486 * sign as trigger.
6487 */
6488
6489 u64 perf_swevent_set_period(struct perf_event *event)
6490 {
6491 struct hw_perf_event *hwc = &event->hw;
6492 u64 period = hwc->last_period;
6493 u64 nr, offset;
6494 s64 old, val;
6495
6496 hwc->last_period = hwc->sample_period;
6497
6498 again:
6499 old = val = local64_read(&hwc->period_left);
6500 if (val < 0)
6501 return 0;
6502
6503 nr = div64_u64(period + val, period);
6504 offset = nr * period;
6505 val -= offset;
6506 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
6507 goto again;
6508
6509 return nr;
6510 }
6511
6512 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
6513 struct perf_sample_data *data,
6514 struct pt_regs *regs)
6515 {
6516 struct hw_perf_event *hwc = &event->hw;
6517 int throttle = 0;
6518
6519 if (!overflow)
6520 overflow = perf_swevent_set_period(event);
6521
6522 if (hwc->interrupts == MAX_INTERRUPTS)
6523 return;
6524
6525 for (; overflow; overflow--) {
6526 if (__perf_event_overflow(event, throttle,
6527 data, regs)) {
6528 /*
6529 * We inhibit the overflow from happening when
6530 * hwc->interrupts == MAX_INTERRUPTS.
6531 */
6532 break;
6533 }
6534 throttle = 1;
6535 }
6536 }
6537
6538 static void perf_swevent_event(struct perf_event *event, u64 nr,
6539 struct perf_sample_data *data,
6540 struct pt_regs *regs)
6541 {
6542 struct hw_perf_event *hwc = &event->hw;
6543
6544 local64_add(nr, &event->count);
6545
6546 if (!regs)
6547 return;
6548
6549 if (!is_sampling_event(event))
6550 return;
6551
6552 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6553 data->period = nr;
6554 return perf_swevent_overflow(event, 1, data, regs);
6555 } else
6556 data->period = event->hw.last_period;
6557
6558 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
6559 return perf_swevent_overflow(event, 1, data, regs);
6560
6561 if (local64_add_negative(nr, &hwc->period_left))
6562 return;
6563
6564 perf_swevent_overflow(event, 0, data, regs);
6565 }
6566
6567 static int perf_exclude_event(struct perf_event *event,
6568 struct pt_regs *regs)
6569 {
6570 if (event->hw.state & PERF_HES_STOPPED)
6571 return 1;
6572
6573 if (regs) {
6574 if (event->attr.exclude_user && user_mode(regs))
6575 return 1;
6576
6577 if (event->attr.exclude_kernel && !user_mode(regs))
6578 return 1;
6579 }
6580
6581 return 0;
6582 }
6583
6584 static int perf_swevent_match(struct perf_event *event,
6585 enum perf_type_id type,
6586 u32 event_id,
6587 struct perf_sample_data *data,
6588 struct pt_regs *regs)
6589 {
6590 if (event->attr.type != type)
6591 return 0;
6592
6593 if (event->attr.config != event_id)
6594 return 0;
6595
6596 if (perf_exclude_event(event, regs))
6597 return 0;
6598
6599 return 1;
6600 }
6601
6602 static inline u64 swevent_hash(u64 type, u32 event_id)
6603 {
6604 u64 val = event_id | (type << 32);
6605
6606 return hash_64(val, SWEVENT_HLIST_BITS);
6607 }
6608
6609 static inline struct hlist_head *
6610 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
6611 {
6612 u64 hash = swevent_hash(type, event_id);
6613
6614 return &hlist->heads[hash];
6615 }
6616
6617 /* For the read side: events when they trigger */
6618 static inline struct hlist_head *
6619 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
6620 {
6621 struct swevent_hlist *hlist;
6622
6623 hlist = rcu_dereference(swhash->swevent_hlist);
6624 if (!hlist)
6625 return NULL;
6626
6627 return __find_swevent_head(hlist, type, event_id);
6628 }
6629
6630 /* For the event head insertion and removal in the hlist */
6631 static inline struct hlist_head *
6632 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
6633 {
6634 struct swevent_hlist *hlist;
6635 u32 event_id = event->attr.config;
6636 u64 type = event->attr.type;
6637
6638 /*
6639 * Event scheduling is always serialized against hlist allocation
6640 * and release. Which makes the protected version suitable here.
6641 * The context lock guarantees that.
6642 */
6643 hlist = rcu_dereference_protected(swhash->swevent_hlist,
6644 lockdep_is_held(&event->ctx->lock));
6645 if (!hlist)
6646 return NULL;
6647
6648 return __find_swevent_head(hlist, type, event_id);
6649 }
6650
6651 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
6652 u64 nr,
6653 struct perf_sample_data *data,
6654 struct pt_regs *regs)
6655 {
6656 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6657 struct perf_event *event;
6658 struct hlist_head *head;
6659
6660 rcu_read_lock();
6661 head = find_swevent_head_rcu(swhash, type, event_id);
6662 if (!head)
6663 goto end;
6664
6665 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6666 if (perf_swevent_match(event, type, event_id, data, regs))
6667 perf_swevent_event(event, nr, data, regs);
6668 }
6669 end:
6670 rcu_read_unlock();
6671 }
6672
6673 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6674
6675 int perf_swevent_get_recursion_context(void)
6676 {
6677 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6678
6679 return get_recursion_context(swhash->recursion);
6680 }
6681 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
6682
6683 inline void perf_swevent_put_recursion_context(int rctx)
6684 {
6685 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6686
6687 put_recursion_context(swhash->recursion, rctx);
6688 }
6689
6690 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6691 {
6692 struct perf_sample_data data;
6693
6694 if (WARN_ON_ONCE(!regs))
6695 return;
6696
6697 perf_sample_data_init(&data, addr, 0);
6698 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
6699 }
6700
6701 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6702 {
6703 int rctx;
6704
6705 preempt_disable_notrace();
6706 rctx = perf_swevent_get_recursion_context();
6707 if (unlikely(rctx < 0))
6708 goto fail;
6709
6710 ___perf_sw_event(event_id, nr, regs, addr);
6711
6712 perf_swevent_put_recursion_context(rctx);
6713 fail:
6714 preempt_enable_notrace();
6715 }
6716
6717 static void perf_swevent_read(struct perf_event *event)
6718 {
6719 }
6720
6721 static int perf_swevent_add(struct perf_event *event, int flags)
6722 {
6723 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
6724 struct hw_perf_event *hwc = &event->hw;
6725 struct hlist_head *head;
6726
6727 if (is_sampling_event(event)) {
6728 hwc->last_period = hwc->sample_period;
6729 perf_swevent_set_period(event);
6730 }
6731
6732 hwc->state = !(flags & PERF_EF_START);
6733
6734 head = find_swevent_head(swhash, event);
6735 if (!head) {
6736 /*
6737 * We can race with cpu hotplug code. Do not
6738 * WARN if the cpu just got unplugged.
6739 */
6740 WARN_ON_ONCE(swhash->online);
6741 return -EINVAL;
6742 }
6743
6744 hlist_add_head_rcu(&event->hlist_entry, head);
6745 perf_event_update_userpage(event);
6746
6747 return 0;
6748 }
6749
6750 static void perf_swevent_del(struct perf_event *event, int flags)
6751 {
6752 hlist_del_rcu(&event->hlist_entry);
6753 }
6754
6755 static void perf_swevent_start(struct perf_event *event, int flags)
6756 {
6757 event->hw.state = 0;
6758 }
6759
6760 static void perf_swevent_stop(struct perf_event *event, int flags)
6761 {
6762 event->hw.state = PERF_HES_STOPPED;
6763 }
6764
6765 /* Deref the hlist from the update side */
6766 static inline struct swevent_hlist *
6767 swevent_hlist_deref(struct swevent_htable *swhash)
6768 {
6769 return rcu_dereference_protected(swhash->swevent_hlist,
6770 lockdep_is_held(&swhash->hlist_mutex));
6771 }
6772
6773 static void swevent_hlist_release(struct swevent_htable *swhash)
6774 {
6775 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
6776
6777 if (!hlist)
6778 return;
6779
6780 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
6781 kfree_rcu(hlist, rcu_head);
6782 }
6783
6784 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6785 {
6786 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6787
6788 mutex_lock(&swhash->hlist_mutex);
6789
6790 if (!--swhash->hlist_refcount)
6791 swevent_hlist_release(swhash);
6792
6793 mutex_unlock(&swhash->hlist_mutex);
6794 }
6795
6796 static void swevent_hlist_put(struct perf_event *event)
6797 {
6798 int cpu;
6799
6800 for_each_possible_cpu(cpu)
6801 swevent_hlist_put_cpu(event, cpu);
6802 }
6803
6804 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6805 {
6806 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6807 int err = 0;
6808
6809 mutex_lock(&swhash->hlist_mutex);
6810
6811 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
6812 struct swevent_hlist *hlist;
6813
6814 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6815 if (!hlist) {
6816 err = -ENOMEM;
6817 goto exit;
6818 }
6819 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6820 }
6821 swhash->hlist_refcount++;
6822 exit:
6823 mutex_unlock(&swhash->hlist_mutex);
6824
6825 return err;
6826 }
6827
6828 static int swevent_hlist_get(struct perf_event *event)
6829 {
6830 int err;
6831 int cpu, failed_cpu;
6832
6833 get_online_cpus();
6834 for_each_possible_cpu(cpu) {
6835 err = swevent_hlist_get_cpu(event, cpu);
6836 if (err) {
6837 failed_cpu = cpu;
6838 goto fail;
6839 }
6840 }
6841 put_online_cpus();
6842
6843 return 0;
6844 fail:
6845 for_each_possible_cpu(cpu) {
6846 if (cpu == failed_cpu)
6847 break;
6848 swevent_hlist_put_cpu(event, cpu);
6849 }
6850
6851 put_online_cpus();
6852 return err;
6853 }
6854
6855 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
6856
6857 static void sw_perf_event_destroy(struct perf_event *event)
6858 {
6859 u64 event_id = event->attr.config;
6860
6861 WARN_ON(event->parent);
6862
6863 static_key_slow_dec(&perf_swevent_enabled[event_id]);
6864 swevent_hlist_put(event);
6865 }
6866
6867 static int perf_swevent_init(struct perf_event *event)
6868 {
6869 u64 event_id = event->attr.config;
6870
6871 if (event->attr.type != PERF_TYPE_SOFTWARE)
6872 return -ENOENT;
6873
6874 /*
6875 * no branch sampling for software events
6876 */
6877 if (has_branch_stack(event))
6878 return -EOPNOTSUPP;
6879
6880 switch (event_id) {
6881 case PERF_COUNT_SW_CPU_CLOCK:
6882 case PERF_COUNT_SW_TASK_CLOCK:
6883 return -ENOENT;
6884
6885 default:
6886 break;
6887 }
6888
6889 if (event_id >= PERF_COUNT_SW_MAX)
6890 return -ENOENT;
6891
6892 if (!event->parent) {
6893 int err;
6894
6895 err = swevent_hlist_get(event);
6896 if (err)
6897 return err;
6898
6899 static_key_slow_inc(&perf_swevent_enabled[event_id]);
6900 event->destroy = sw_perf_event_destroy;
6901 }
6902
6903 return 0;
6904 }
6905
6906 static struct pmu perf_swevent = {
6907 .task_ctx_nr = perf_sw_context,
6908
6909 .capabilities = PERF_PMU_CAP_NO_NMI,
6910
6911 .event_init = perf_swevent_init,
6912 .add = perf_swevent_add,
6913 .del = perf_swevent_del,
6914 .start = perf_swevent_start,
6915 .stop = perf_swevent_stop,
6916 .read = perf_swevent_read,
6917 };
6918
6919 #ifdef CONFIG_EVENT_TRACING
6920
6921 static int perf_tp_filter_match(struct perf_event *event,
6922 struct perf_sample_data *data)
6923 {
6924 void *record = data->raw->data;
6925
6926 /* only top level events have filters set */
6927 if (event->parent)
6928 event = event->parent;
6929
6930 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6931 return 1;
6932 return 0;
6933 }
6934
6935 static int perf_tp_event_match(struct perf_event *event,
6936 struct perf_sample_data *data,
6937 struct pt_regs *regs)
6938 {
6939 if (event->hw.state & PERF_HES_STOPPED)
6940 return 0;
6941 /*
6942 * All tracepoints are from kernel-space.
6943 */
6944 if (event->attr.exclude_kernel)
6945 return 0;
6946
6947 if (!perf_tp_filter_match(event, data))
6948 return 0;
6949
6950 return 1;
6951 }
6952
6953 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
6954 struct pt_regs *regs, struct hlist_head *head, int rctx,
6955 struct task_struct *task)
6956 {
6957 struct perf_sample_data data;
6958 struct perf_event *event;
6959
6960 struct perf_raw_record raw = {
6961 .size = entry_size,
6962 .data = record,
6963 };
6964
6965 perf_sample_data_init(&data, addr, 0);
6966 data.raw = &raw;
6967
6968 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6969 if (perf_tp_event_match(event, &data, regs))
6970 perf_swevent_event(event, count, &data, regs);
6971 }
6972
6973 /*
6974 * If we got specified a target task, also iterate its context and
6975 * deliver this event there too.
6976 */
6977 if (task && task != current) {
6978 struct perf_event_context *ctx;
6979 struct trace_entry *entry = record;
6980
6981 rcu_read_lock();
6982 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6983 if (!ctx)
6984 goto unlock;
6985
6986 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6987 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6988 continue;
6989 if (event->attr.config != entry->type)
6990 continue;
6991 if (perf_tp_event_match(event, &data, regs))
6992 perf_swevent_event(event, count, &data, regs);
6993 }
6994 unlock:
6995 rcu_read_unlock();
6996 }
6997
6998 perf_swevent_put_recursion_context(rctx);
6999 }
7000 EXPORT_SYMBOL_GPL(perf_tp_event);
7001
7002 static void tp_perf_event_destroy(struct perf_event *event)
7003 {
7004 perf_trace_destroy(event);
7005 }
7006
7007 static int perf_tp_event_init(struct perf_event *event)
7008 {
7009 int err;
7010
7011 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7012 return -ENOENT;
7013
7014 /*
7015 * no branch sampling for tracepoint events
7016 */
7017 if (has_branch_stack(event))
7018 return -EOPNOTSUPP;
7019
7020 err = perf_trace_init(event);
7021 if (err)
7022 return err;
7023
7024 event->destroy = tp_perf_event_destroy;
7025
7026 return 0;
7027 }
7028
7029 static struct pmu perf_tracepoint = {
7030 .task_ctx_nr = perf_sw_context,
7031
7032 .event_init = perf_tp_event_init,
7033 .add = perf_trace_add,
7034 .del = perf_trace_del,
7035 .start = perf_swevent_start,
7036 .stop = perf_swevent_stop,
7037 .read = perf_swevent_read,
7038 };
7039
7040 static inline void perf_tp_register(void)
7041 {
7042 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
7043 }
7044
7045 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7046 {
7047 char *filter_str;
7048 int ret;
7049
7050 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7051 return -EINVAL;
7052
7053 filter_str = strndup_user(arg, PAGE_SIZE);
7054 if (IS_ERR(filter_str))
7055 return PTR_ERR(filter_str);
7056
7057 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7058
7059 kfree(filter_str);
7060 return ret;
7061 }
7062
7063 static void perf_event_free_filter(struct perf_event *event)
7064 {
7065 ftrace_profile_free_filter(event);
7066 }
7067
7068 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7069 {
7070 struct bpf_prog *prog;
7071
7072 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7073 return -EINVAL;
7074
7075 if (event->tp_event->prog)
7076 return -EEXIST;
7077
7078 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7079 /* bpf programs can only be attached to u/kprobes */
7080 return -EINVAL;
7081
7082 prog = bpf_prog_get(prog_fd);
7083 if (IS_ERR(prog))
7084 return PTR_ERR(prog);
7085
7086 if (prog->type != BPF_PROG_TYPE_KPROBE) {
7087 /* valid fd, but invalid bpf program type */
7088 bpf_prog_put(prog);
7089 return -EINVAL;
7090 }
7091
7092 event->tp_event->prog = prog;
7093
7094 return 0;
7095 }
7096
7097 static void perf_event_free_bpf_prog(struct perf_event *event)
7098 {
7099 struct bpf_prog *prog;
7100
7101 if (!event->tp_event)
7102 return;
7103
7104 prog = event->tp_event->prog;
7105 if (prog) {
7106 event->tp_event->prog = NULL;
7107 bpf_prog_put(prog);
7108 }
7109 }
7110
7111 #else
7112
7113 static inline void perf_tp_register(void)
7114 {
7115 }
7116
7117 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7118 {
7119 return -ENOENT;
7120 }
7121
7122 static void perf_event_free_filter(struct perf_event *event)
7123 {
7124 }
7125
7126 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7127 {
7128 return -ENOENT;
7129 }
7130
7131 static void perf_event_free_bpf_prog(struct perf_event *event)
7132 {
7133 }
7134 #endif /* CONFIG_EVENT_TRACING */
7135
7136 #ifdef CONFIG_HAVE_HW_BREAKPOINT
7137 void perf_bp_event(struct perf_event *bp, void *data)
7138 {
7139 struct perf_sample_data sample;
7140 struct pt_regs *regs = data;
7141
7142 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
7143
7144 if (!bp->hw.state && !perf_exclude_event(bp, regs))
7145 perf_swevent_event(bp, 1, &sample, regs);
7146 }
7147 #endif
7148
7149 /*
7150 * hrtimer based swevent callback
7151 */
7152
7153 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
7154 {
7155 enum hrtimer_restart ret = HRTIMER_RESTART;
7156 struct perf_sample_data data;
7157 struct pt_regs *regs;
7158 struct perf_event *event;
7159 u64 period;
7160
7161 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
7162
7163 if (event->state != PERF_EVENT_STATE_ACTIVE)
7164 return HRTIMER_NORESTART;
7165
7166 event->pmu->read(event);
7167
7168 perf_sample_data_init(&data, 0, event->hw.last_period);
7169 regs = get_irq_regs();
7170
7171 if (regs && !perf_exclude_event(event, regs)) {
7172 if (!(event->attr.exclude_idle && is_idle_task(current)))
7173 if (__perf_event_overflow(event, 1, &data, regs))
7174 ret = HRTIMER_NORESTART;
7175 }
7176
7177 period = max_t(u64, 10000, event->hw.sample_period);
7178 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
7179
7180 return ret;
7181 }
7182
7183 static void perf_swevent_start_hrtimer(struct perf_event *event)
7184 {
7185 struct hw_perf_event *hwc = &event->hw;
7186 s64 period;
7187
7188 if (!is_sampling_event(event))
7189 return;
7190
7191 period = local64_read(&hwc->period_left);
7192 if (period) {
7193 if (period < 0)
7194 period = 10000;
7195
7196 local64_set(&hwc->period_left, 0);
7197 } else {
7198 period = max_t(u64, 10000, hwc->sample_period);
7199 }
7200 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7201 HRTIMER_MODE_REL_PINNED);
7202 }
7203
7204 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
7205 {
7206 struct hw_perf_event *hwc = &event->hw;
7207
7208 if (is_sampling_event(event)) {
7209 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
7210 local64_set(&hwc->period_left, ktime_to_ns(remaining));
7211
7212 hrtimer_cancel(&hwc->hrtimer);
7213 }
7214 }
7215
7216 static void perf_swevent_init_hrtimer(struct perf_event *event)
7217 {
7218 struct hw_perf_event *hwc = &event->hw;
7219
7220 if (!is_sampling_event(event))
7221 return;
7222
7223 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7224 hwc->hrtimer.function = perf_swevent_hrtimer;
7225
7226 /*
7227 * Since hrtimers have a fixed rate, we can do a static freq->period
7228 * mapping and avoid the whole period adjust feedback stuff.
7229 */
7230 if (event->attr.freq) {
7231 long freq = event->attr.sample_freq;
7232
7233 event->attr.sample_period = NSEC_PER_SEC / freq;
7234 hwc->sample_period = event->attr.sample_period;
7235 local64_set(&hwc->period_left, hwc->sample_period);
7236 hwc->last_period = hwc->sample_period;
7237 event->attr.freq = 0;
7238 }
7239 }
7240
7241 /*
7242 * Software event: cpu wall time clock
7243 */
7244
7245 static void cpu_clock_event_update(struct perf_event *event)
7246 {
7247 s64 prev;
7248 u64 now;
7249
7250 now = local_clock();
7251 prev = local64_xchg(&event->hw.prev_count, now);
7252 local64_add(now - prev, &event->count);
7253 }
7254
7255 static void cpu_clock_event_start(struct perf_event *event, int flags)
7256 {
7257 local64_set(&event->hw.prev_count, local_clock());
7258 perf_swevent_start_hrtimer(event);
7259 }
7260
7261 static void cpu_clock_event_stop(struct perf_event *event, int flags)
7262 {
7263 perf_swevent_cancel_hrtimer(event);
7264 cpu_clock_event_update(event);
7265 }
7266
7267 static int cpu_clock_event_add(struct perf_event *event, int flags)
7268 {
7269 if (flags & PERF_EF_START)
7270 cpu_clock_event_start(event, flags);
7271 perf_event_update_userpage(event);
7272
7273 return 0;
7274 }
7275
7276 static void cpu_clock_event_del(struct perf_event *event, int flags)
7277 {
7278 cpu_clock_event_stop(event, flags);
7279 }
7280
7281 static void cpu_clock_event_read(struct perf_event *event)
7282 {
7283 cpu_clock_event_update(event);
7284 }
7285
7286 static int cpu_clock_event_init(struct perf_event *event)
7287 {
7288 if (event->attr.type != PERF_TYPE_SOFTWARE)
7289 return -ENOENT;
7290
7291 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7292 return -ENOENT;
7293
7294 /*
7295 * no branch sampling for software events
7296 */
7297 if (has_branch_stack(event))
7298 return -EOPNOTSUPP;
7299
7300 perf_swevent_init_hrtimer(event);
7301
7302 return 0;
7303 }
7304
7305 static struct pmu perf_cpu_clock = {
7306 .task_ctx_nr = perf_sw_context,
7307
7308 .capabilities = PERF_PMU_CAP_NO_NMI,
7309
7310 .event_init = cpu_clock_event_init,
7311 .add = cpu_clock_event_add,
7312 .del = cpu_clock_event_del,
7313 .start = cpu_clock_event_start,
7314 .stop = cpu_clock_event_stop,
7315 .read = cpu_clock_event_read,
7316 };
7317
7318 /*
7319 * Software event: task time clock
7320 */
7321
7322 static void task_clock_event_update(struct perf_event *event, u64 now)
7323 {
7324 u64 prev;
7325 s64 delta;
7326
7327 prev = local64_xchg(&event->hw.prev_count, now);
7328 delta = now - prev;
7329 local64_add(delta, &event->count);
7330 }
7331
7332 static void task_clock_event_start(struct perf_event *event, int flags)
7333 {
7334 local64_set(&event->hw.prev_count, event->ctx->time);
7335 perf_swevent_start_hrtimer(event);
7336 }
7337
7338 static void task_clock_event_stop(struct perf_event *event, int flags)
7339 {
7340 perf_swevent_cancel_hrtimer(event);
7341 task_clock_event_update(event, event->ctx->time);
7342 }
7343
7344 static int task_clock_event_add(struct perf_event *event, int flags)
7345 {
7346 if (flags & PERF_EF_START)
7347 task_clock_event_start(event, flags);
7348 perf_event_update_userpage(event);
7349
7350 return 0;
7351 }
7352
7353 static void task_clock_event_del(struct perf_event *event, int flags)
7354 {
7355 task_clock_event_stop(event, PERF_EF_UPDATE);
7356 }
7357
7358 static void task_clock_event_read(struct perf_event *event)
7359 {
7360 u64 now = perf_clock();
7361 u64 delta = now - event->ctx->timestamp;
7362 u64 time = event->ctx->time + delta;
7363
7364 task_clock_event_update(event, time);
7365 }
7366
7367 static int task_clock_event_init(struct perf_event *event)
7368 {
7369 if (event->attr.type != PERF_TYPE_SOFTWARE)
7370 return -ENOENT;
7371
7372 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7373 return -ENOENT;
7374
7375 /*
7376 * no branch sampling for software events
7377 */
7378 if (has_branch_stack(event))
7379 return -EOPNOTSUPP;
7380
7381 perf_swevent_init_hrtimer(event);
7382
7383 return 0;
7384 }
7385
7386 static struct pmu perf_task_clock = {
7387 .task_ctx_nr = perf_sw_context,
7388
7389 .capabilities = PERF_PMU_CAP_NO_NMI,
7390
7391 .event_init = task_clock_event_init,
7392 .add = task_clock_event_add,
7393 .del = task_clock_event_del,
7394 .start = task_clock_event_start,
7395 .stop = task_clock_event_stop,
7396 .read = task_clock_event_read,
7397 };
7398
7399 static void perf_pmu_nop_void(struct pmu *pmu)
7400 {
7401 }
7402
7403 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7404 {
7405 }
7406
7407 static int perf_pmu_nop_int(struct pmu *pmu)
7408 {
7409 return 0;
7410 }
7411
7412 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
7413
7414 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
7415 {
7416 __this_cpu_write(nop_txn_flags, flags);
7417
7418 if (flags & ~PERF_PMU_TXN_ADD)
7419 return;
7420
7421 perf_pmu_disable(pmu);
7422 }
7423
7424 static int perf_pmu_commit_txn(struct pmu *pmu)
7425 {
7426 unsigned int flags = __this_cpu_read(nop_txn_flags);
7427
7428 __this_cpu_write(nop_txn_flags, 0);
7429
7430 if (flags & ~PERF_PMU_TXN_ADD)
7431 return 0;
7432
7433 perf_pmu_enable(pmu);
7434 return 0;
7435 }
7436
7437 static void perf_pmu_cancel_txn(struct pmu *pmu)
7438 {
7439 unsigned int flags = __this_cpu_read(nop_txn_flags);
7440
7441 __this_cpu_write(nop_txn_flags, 0);
7442
7443 if (flags & ~PERF_PMU_TXN_ADD)
7444 return;
7445
7446 perf_pmu_enable(pmu);
7447 }
7448
7449 static int perf_event_idx_default(struct perf_event *event)
7450 {
7451 return 0;
7452 }
7453
7454 /*
7455 * Ensures all contexts with the same task_ctx_nr have the same
7456 * pmu_cpu_context too.
7457 */
7458 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
7459 {
7460 struct pmu *pmu;
7461
7462 if (ctxn < 0)
7463 return NULL;
7464
7465 list_for_each_entry(pmu, &pmus, entry) {
7466 if (pmu->task_ctx_nr == ctxn)
7467 return pmu->pmu_cpu_context;
7468 }
7469
7470 return NULL;
7471 }
7472
7473 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
7474 {
7475 int cpu;
7476
7477 for_each_possible_cpu(cpu) {
7478 struct perf_cpu_context *cpuctx;
7479
7480 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7481
7482 if (cpuctx->unique_pmu == old_pmu)
7483 cpuctx->unique_pmu = pmu;
7484 }
7485 }
7486
7487 static void free_pmu_context(struct pmu *pmu)
7488 {
7489 struct pmu *i;
7490
7491 mutex_lock(&pmus_lock);
7492 /*
7493 * Like a real lame refcount.
7494 */
7495 list_for_each_entry(i, &pmus, entry) {
7496 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7497 update_pmu_context(i, pmu);
7498 goto out;
7499 }
7500 }
7501
7502 free_percpu(pmu->pmu_cpu_context);
7503 out:
7504 mutex_unlock(&pmus_lock);
7505 }
7506 static struct idr pmu_idr;
7507
7508 static ssize_t
7509 type_show(struct device *dev, struct device_attribute *attr, char *page)
7510 {
7511 struct pmu *pmu = dev_get_drvdata(dev);
7512
7513 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7514 }
7515 static DEVICE_ATTR_RO(type);
7516
7517 static ssize_t
7518 perf_event_mux_interval_ms_show(struct device *dev,
7519 struct device_attribute *attr,
7520 char *page)
7521 {
7522 struct pmu *pmu = dev_get_drvdata(dev);
7523
7524 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7525 }
7526
7527 static DEFINE_MUTEX(mux_interval_mutex);
7528
7529 static ssize_t
7530 perf_event_mux_interval_ms_store(struct device *dev,
7531 struct device_attribute *attr,
7532 const char *buf, size_t count)
7533 {
7534 struct pmu *pmu = dev_get_drvdata(dev);
7535 int timer, cpu, ret;
7536
7537 ret = kstrtoint(buf, 0, &timer);
7538 if (ret)
7539 return ret;
7540
7541 if (timer < 1)
7542 return -EINVAL;
7543
7544 /* same value, noting to do */
7545 if (timer == pmu->hrtimer_interval_ms)
7546 return count;
7547
7548 mutex_lock(&mux_interval_mutex);
7549 pmu->hrtimer_interval_ms = timer;
7550
7551 /* update all cpuctx for this PMU */
7552 get_online_cpus();
7553 for_each_online_cpu(cpu) {
7554 struct perf_cpu_context *cpuctx;
7555 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7556 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7557
7558 cpu_function_call(cpu,
7559 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
7560 }
7561 put_online_cpus();
7562 mutex_unlock(&mux_interval_mutex);
7563
7564 return count;
7565 }
7566 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
7567
7568 static struct attribute *pmu_dev_attrs[] = {
7569 &dev_attr_type.attr,
7570 &dev_attr_perf_event_mux_interval_ms.attr,
7571 NULL,
7572 };
7573 ATTRIBUTE_GROUPS(pmu_dev);
7574
7575 static int pmu_bus_running;
7576 static struct bus_type pmu_bus = {
7577 .name = "event_source",
7578 .dev_groups = pmu_dev_groups,
7579 };
7580
7581 static void pmu_dev_release(struct device *dev)
7582 {
7583 kfree(dev);
7584 }
7585
7586 static int pmu_dev_alloc(struct pmu *pmu)
7587 {
7588 int ret = -ENOMEM;
7589
7590 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7591 if (!pmu->dev)
7592 goto out;
7593
7594 pmu->dev->groups = pmu->attr_groups;
7595 device_initialize(pmu->dev);
7596 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7597 if (ret)
7598 goto free_dev;
7599
7600 dev_set_drvdata(pmu->dev, pmu);
7601 pmu->dev->bus = &pmu_bus;
7602 pmu->dev->release = pmu_dev_release;
7603 ret = device_add(pmu->dev);
7604 if (ret)
7605 goto free_dev;
7606
7607 out:
7608 return ret;
7609
7610 free_dev:
7611 put_device(pmu->dev);
7612 goto out;
7613 }
7614
7615 static struct lock_class_key cpuctx_mutex;
7616 static struct lock_class_key cpuctx_lock;
7617
7618 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
7619 {
7620 int cpu, ret;
7621
7622 mutex_lock(&pmus_lock);
7623 ret = -ENOMEM;
7624 pmu->pmu_disable_count = alloc_percpu(int);
7625 if (!pmu->pmu_disable_count)
7626 goto unlock;
7627
7628 pmu->type = -1;
7629 if (!name)
7630 goto skip_type;
7631 pmu->name = name;
7632
7633 if (type < 0) {
7634 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7635 if (type < 0) {
7636 ret = type;
7637 goto free_pdc;
7638 }
7639 }
7640 pmu->type = type;
7641
7642 if (pmu_bus_running) {
7643 ret = pmu_dev_alloc(pmu);
7644 if (ret)
7645 goto free_idr;
7646 }
7647
7648 skip_type:
7649 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7650 if (pmu->pmu_cpu_context)
7651 goto got_cpu_context;
7652
7653 ret = -ENOMEM;
7654 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7655 if (!pmu->pmu_cpu_context)
7656 goto free_dev;
7657
7658 for_each_possible_cpu(cpu) {
7659 struct perf_cpu_context *cpuctx;
7660
7661 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7662 __perf_event_init_context(&cpuctx->ctx);
7663 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
7664 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
7665 cpuctx->ctx.pmu = pmu;
7666
7667 __perf_mux_hrtimer_init(cpuctx, cpu);
7668
7669 cpuctx->unique_pmu = pmu;
7670 }
7671
7672 got_cpu_context:
7673 if (!pmu->start_txn) {
7674 if (pmu->pmu_enable) {
7675 /*
7676 * If we have pmu_enable/pmu_disable calls, install
7677 * transaction stubs that use that to try and batch
7678 * hardware accesses.
7679 */
7680 pmu->start_txn = perf_pmu_start_txn;
7681 pmu->commit_txn = perf_pmu_commit_txn;
7682 pmu->cancel_txn = perf_pmu_cancel_txn;
7683 } else {
7684 pmu->start_txn = perf_pmu_nop_txn;
7685 pmu->commit_txn = perf_pmu_nop_int;
7686 pmu->cancel_txn = perf_pmu_nop_void;
7687 }
7688 }
7689
7690 if (!pmu->pmu_enable) {
7691 pmu->pmu_enable = perf_pmu_nop_void;
7692 pmu->pmu_disable = perf_pmu_nop_void;
7693 }
7694
7695 if (!pmu->event_idx)
7696 pmu->event_idx = perf_event_idx_default;
7697
7698 list_add_rcu(&pmu->entry, &pmus);
7699 atomic_set(&pmu->exclusive_cnt, 0);
7700 ret = 0;
7701 unlock:
7702 mutex_unlock(&pmus_lock);
7703
7704 return ret;
7705
7706 free_dev:
7707 device_del(pmu->dev);
7708 put_device(pmu->dev);
7709
7710 free_idr:
7711 if (pmu->type >= PERF_TYPE_MAX)
7712 idr_remove(&pmu_idr, pmu->type);
7713
7714 free_pdc:
7715 free_percpu(pmu->pmu_disable_count);
7716 goto unlock;
7717 }
7718 EXPORT_SYMBOL_GPL(perf_pmu_register);
7719
7720 void perf_pmu_unregister(struct pmu *pmu)
7721 {
7722 mutex_lock(&pmus_lock);
7723 list_del_rcu(&pmu->entry);
7724 mutex_unlock(&pmus_lock);
7725
7726 /*
7727 * We dereference the pmu list under both SRCU and regular RCU, so
7728 * synchronize against both of those.
7729 */
7730 synchronize_srcu(&pmus_srcu);
7731 synchronize_rcu();
7732
7733 free_percpu(pmu->pmu_disable_count);
7734 if (pmu->type >= PERF_TYPE_MAX)
7735 idr_remove(&pmu_idr, pmu->type);
7736 device_del(pmu->dev);
7737 put_device(pmu->dev);
7738 free_pmu_context(pmu);
7739 }
7740 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
7741
7742 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7743 {
7744 struct perf_event_context *ctx = NULL;
7745 int ret;
7746
7747 if (!try_module_get(pmu->module))
7748 return -ENODEV;
7749
7750 if (event->group_leader != event) {
7751 /*
7752 * This ctx->mutex can nest when we're called through
7753 * inheritance. See the perf_event_ctx_lock_nested() comment.
7754 */
7755 ctx = perf_event_ctx_lock_nested(event->group_leader,
7756 SINGLE_DEPTH_NESTING);
7757 BUG_ON(!ctx);
7758 }
7759
7760 event->pmu = pmu;
7761 ret = pmu->event_init(event);
7762
7763 if (ctx)
7764 perf_event_ctx_unlock(event->group_leader, ctx);
7765
7766 if (ret)
7767 module_put(pmu->module);
7768
7769 return ret;
7770 }
7771
7772 static struct pmu *perf_init_event(struct perf_event *event)
7773 {
7774 struct pmu *pmu = NULL;
7775 int idx;
7776 int ret;
7777
7778 idx = srcu_read_lock(&pmus_srcu);
7779
7780 rcu_read_lock();
7781 pmu = idr_find(&pmu_idr, event->attr.type);
7782 rcu_read_unlock();
7783 if (pmu) {
7784 ret = perf_try_init_event(pmu, event);
7785 if (ret)
7786 pmu = ERR_PTR(ret);
7787 goto unlock;
7788 }
7789
7790 list_for_each_entry_rcu(pmu, &pmus, entry) {
7791 ret = perf_try_init_event(pmu, event);
7792 if (!ret)
7793 goto unlock;
7794
7795 if (ret != -ENOENT) {
7796 pmu = ERR_PTR(ret);
7797 goto unlock;
7798 }
7799 }
7800 pmu = ERR_PTR(-ENOENT);
7801 unlock:
7802 srcu_read_unlock(&pmus_srcu, idx);
7803
7804 return pmu;
7805 }
7806
7807 static void account_event_cpu(struct perf_event *event, int cpu)
7808 {
7809 if (event->parent)
7810 return;
7811
7812 if (is_cgroup_event(event))
7813 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7814 }
7815
7816 static void account_event(struct perf_event *event)
7817 {
7818 if (event->parent)
7819 return;
7820
7821 if (event->attach_state & PERF_ATTACH_TASK)
7822 static_key_slow_inc(&perf_sched_events.key);
7823 if (event->attr.mmap || event->attr.mmap_data)
7824 atomic_inc(&nr_mmap_events);
7825 if (event->attr.comm)
7826 atomic_inc(&nr_comm_events);
7827 if (event->attr.task)
7828 atomic_inc(&nr_task_events);
7829 if (event->attr.freq) {
7830 if (atomic_inc_return(&nr_freq_events) == 1)
7831 tick_nohz_full_kick_all();
7832 }
7833 if (event->attr.context_switch) {
7834 atomic_inc(&nr_switch_events);
7835 static_key_slow_inc(&perf_sched_events.key);
7836 }
7837 if (has_branch_stack(event))
7838 static_key_slow_inc(&perf_sched_events.key);
7839 if (is_cgroup_event(event))
7840 static_key_slow_inc(&perf_sched_events.key);
7841
7842 account_event_cpu(event, event->cpu);
7843 }
7844
7845 /*
7846 * Allocate and initialize a event structure
7847 */
7848 static struct perf_event *
7849 perf_event_alloc(struct perf_event_attr *attr, int cpu,
7850 struct task_struct *task,
7851 struct perf_event *group_leader,
7852 struct perf_event *parent_event,
7853 perf_overflow_handler_t overflow_handler,
7854 void *context, int cgroup_fd)
7855 {
7856 struct pmu *pmu;
7857 struct perf_event *event;
7858 struct hw_perf_event *hwc;
7859 long err = -EINVAL;
7860
7861 if ((unsigned)cpu >= nr_cpu_ids) {
7862 if (!task || cpu != -1)
7863 return ERR_PTR(-EINVAL);
7864 }
7865
7866 event = kzalloc(sizeof(*event), GFP_KERNEL);
7867 if (!event)
7868 return ERR_PTR(-ENOMEM);
7869
7870 /*
7871 * Single events are their own group leaders, with an
7872 * empty sibling list:
7873 */
7874 if (!group_leader)
7875 group_leader = event;
7876
7877 mutex_init(&event->child_mutex);
7878 INIT_LIST_HEAD(&event->child_list);
7879
7880 INIT_LIST_HEAD(&event->group_entry);
7881 INIT_LIST_HEAD(&event->event_entry);
7882 INIT_LIST_HEAD(&event->sibling_list);
7883 INIT_LIST_HEAD(&event->rb_entry);
7884 INIT_LIST_HEAD(&event->active_entry);
7885 INIT_HLIST_NODE(&event->hlist_entry);
7886
7887
7888 init_waitqueue_head(&event->waitq);
7889 init_irq_work(&event->pending, perf_pending_event);
7890
7891 mutex_init(&event->mmap_mutex);
7892
7893 atomic_long_set(&event->refcount, 1);
7894 event->cpu = cpu;
7895 event->attr = *attr;
7896 event->group_leader = group_leader;
7897 event->pmu = NULL;
7898 event->oncpu = -1;
7899
7900 event->parent = parent_event;
7901
7902 event->ns = get_pid_ns(task_active_pid_ns(current));
7903 event->id = atomic64_inc_return(&perf_event_id);
7904
7905 event->state = PERF_EVENT_STATE_INACTIVE;
7906
7907 if (task) {
7908 event->attach_state = PERF_ATTACH_TASK;
7909 /*
7910 * XXX pmu::event_init needs to know what task to account to
7911 * and we cannot use the ctx information because we need the
7912 * pmu before we get a ctx.
7913 */
7914 event->hw.target = task;
7915 }
7916
7917 event->clock = &local_clock;
7918 if (parent_event)
7919 event->clock = parent_event->clock;
7920
7921 if (!overflow_handler && parent_event) {
7922 overflow_handler = parent_event->overflow_handler;
7923 context = parent_event->overflow_handler_context;
7924 }
7925
7926 event->overflow_handler = overflow_handler;
7927 event->overflow_handler_context = context;
7928
7929 perf_event__state_init(event);
7930
7931 pmu = NULL;
7932
7933 hwc = &event->hw;
7934 hwc->sample_period = attr->sample_period;
7935 if (attr->freq && attr->sample_freq)
7936 hwc->sample_period = 1;
7937 hwc->last_period = hwc->sample_period;
7938
7939 local64_set(&hwc->period_left, hwc->sample_period);
7940
7941 /*
7942 * we currently do not support PERF_FORMAT_GROUP on inherited events
7943 */
7944 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
7945 goto err_ns;
7946
7947 if (!has_branch_stack(event))
7948 event->attr.branch_sample_type = 0;
7949
7950 if (cgroup_fd != -1) {
7951 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7952 if (err)
7953 goto err_ns;
7954 }
7955
7956 pmu = perf_init_event(event);
7957 if (!pmu)
7958 goto err_ns;
7959 else if (IS_ERR(pmu)) {
7960 err = PTR_ERR(pmu);
7961 goto err_ns;
7962 }
7963
7964 err = exclusive_event_init(event);
7965 if (err)
7966 goto err_pmu;
7967
7968 if (!event->parent) {
7969 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7970 err = get_callchain_buffers();
7971 if (err)
7972 goto err_per_task;
7973 }
7974 }
7975
7976 return event;
7977
7978 err_per_task:
7979 exclusive_event_destroy(event);
7980
7981 err_pmu:
7982 if (event->destroy)
7983 event->destroy(event);
7984 module_put(pmu->module);
7985 err_ns:
7986 if (is_cgroup_event(event))
7987 perf_detach_cgroup(event);
7988 if (event->ns)
7989 put_pid_ns(event->ns);
7990 kfree(event);
7991
7992 return ERR_PTR(err);
7993 }
7994
7995 static int perf_copy_attr(struct perf_event_attr __user *uattr,
7996 struct perf_event_attr *attr)
7997 {
7998 u32 size;
7999 int ret;
8000
8001 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8002 return -EFAULT;
8003
8004 /*
8005 * zero the full structure, so that a short copy will be nice.
8006 */
8007 memset(attr, 0, sizeof(*attr));
8008
8009 ret = get_user(size, &uattr->size);
8010 if (ret)
8011 return ret;
8012
8013 if (size > PAGE_SIZE) /* silly large */
8014 goto err_size;
8015
8016 if (!size) /* abi compat */
8017 size = PERF_ATTR_SIZE_VER0;
8018
8019 if (size < PERF_ATTR_SIZE_VER0)
8020 goto err_size;
8021
8022 /*
8023 * If we're handed a bigger struct than we know of,
8024 * ensure all the unknown bits are 0 - i.e. new
8025 * user-space does not rely on any kernel feature
8026 * extensions we dont know about yet.
8027 */
8028 if (size > sizeof(*attr)) {
8029 unsigned char __user *addr;
8030 unsigned char __user *end;
8031 unsigned char val;
8032
8033 addr = (void __user *)uattr + sizeof(*attr);
8034 end = (void __user *)uattr + size;
8035
8036 for (; addr < end; addr++) {
8037 ret = get_user(val, addr);
8038 if (ret)
8039 return ret;
8040 if (val)
8041 goto err_size;
8042 }
8043 size = sizeof(*attr);
8044 }
8045
8046 ret = copy_from_user(attr, uattr, size);
8047 if (ret)
8048 return -EFAULT;
8049
8050 if (attr->__reserved_1)
8051 return -EINVAL;
8052
8053 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8054 return -EINVAL;
8055
8056 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8057 return -EINVAL;
8058
8059 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8060 u64 mask = attr->branch_sample_type;
8061
8062 /* only using defined bits */
8063 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8064 return -EINVAL;
8065
8066 /* at least one branch bit must be set */
8067 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8068 return -EINVAL;
8069
8070 /* propagate priv level, when not set for branch */
8071 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8072
8073 /* exclude_kernel checked on syscall entry */
8074 if (!attr->exclude_kernel)
8075 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8076
8077 if (!attr->exclude_user)
8078 mask |= PERF_SAMPLE_BRANCH_USER;
8079
8080 if (!attr->exclude_hv)
8081 mask |= PERF_SAMPLE_BRANCH_HV;
8082 /*
8083 * adjust user setting (for HW filter setup)
8084 */
8085 attr->branch_sample_type = mask;
8086 }
8087 /* privileged levels capture (kernel, hv): check permissions */
8088 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
8089 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8090 return -EACCES;
8091 }
8092
8093 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
8094 ret = perf_reg_validate(attr->sample_regs_user);
8095 if (ret)
8096 return ret;
8097 }
8098
8099 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8100 if (!arch_perf_have_user_stack_dump())
8101 return -ENOSYS;
8102
8103 /*
8104 * We have __u32 type for the size, but so far
8105 * we can only use __u16 as maximum due to the
8106 * __u16 sample size limit.
8107 */
8108 if (attr->sample_stack_user >= USHRT_MAX)
8109 ret = -EINVAL;
8110 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8111 ret = -EINVAL;
8112 }
8113
8114 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8115 ret = perf_reg_validate(attr->sample_regs_intr);
8116 out:
8117 return ret;
8118
8119 err_size:
8120 put_user(sizeof(*attr), &uattr->size);
8121 ret = -E2BIG;
8122 goto out;
8123 }
8124
8125 static int
8126 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
8127 {
8128 struct ring_buffer *rb = NULL;
8129 int ret = -EINVAL;
8130
8131 if (!output_event)
8132 goto set;
8133
8134 /* don't allow circular references */
8135 if (event == output_event)
8136 goto out;
8137
8138 /*
8139 * Don't allow cross-cpu buffers
8140 */
8141 if (output_event->cpu != event->cpu)
8142 goto out;
8143
8144 /*
8145 * If its not a per-cpu rb, it must be the same task.
8146 */
8147 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8148 goto out;
8149
8150 /*
8151 * Mixing clocks in the same buffer is trouble you don't need.
8152 */
8153 if (output_event->clock != event->clock)
8154 goto out;
8155
8156 /*
8157 * If both events generate aux data, they must be on the same PMU
8158 */
8159 if (has_aux(event) && has_aux(output_event) &&
8160 event->pmu != output_event->pmu)
8161 goto out;
8162
8163 set:
8164 mutex_lock(&event->mmap_mutex);
8165 /* Can't redirect output if we've got an active mmap() */
8166 if (atomic_read(&event->mmap_count))
8167 goto unlock;
8168
8169 if (output_event) {
8170 /* get the rb we want to redirect to */
8171 rb = ring_buffer_get(output_event);
8172 if (!rb)
8173 goto unlock;
8174 }
8175
8176 ring_buffer_attach(event, rb);
8177
8178 ret = 0;
8179 unlock:
8180 mutex_unlock(&event->mmap_mutex);
8181
8182 out:
8183 return ret;
8184 }
8185
8186 static void mutex_lock_double(struct mutex *a, struct mutex *b)
8187 {
8188 if (b < a)
8189 swap(a, b);
8190
8191 mutex_lock(a);
8192 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8193 }
8194
8195 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8196 {
8197 bool nmi_safe = false;
8198
8199 switch (clk_id) {
8200 case CLOCK_MONOTONIC:
8201 event->clock = &ktime_get_mono_fast_ns;
8202 nmi_safe = true;
8203 break;
8204
8205 case CLOCK_MONOTONIC_RAW:
8206 event->clock = &ktime_get_raw_fast_ns;
8207 nmi_safe = true;
8208 break;
8209
8210 case CLOCK_REALTIME:
8211 event->clock = &ktime_get_real_ns;
8212 break;
8213
8214 case CLOCK_BOOTTIME:
8215 event->clock = &ktime_get_boot_ns;
8216 break;
8217
8218 case CLOCK_TAI:
8219 event->clock = &ktime_get_tai_ns;
8220 break;
8221
8222 default:
8223 return -EINVAL;
8224 }
8225
8226 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8227 return -EINVAL;
8228
8229 return 0;
8230 }
8231
8232 /**
8233 * sys_perf_event_open - open a performance event, associate it to a task/cpu
8234 *
8235 * @attr_uptr: event_id type attributes for monitoring/sampling
8236 * @pid: target pid
8237 * @cpu: target cpu
8238 * @group_fd: group leader event fd
8239 */
8240 SYSCALL_DEFINE5(perf_event_open,
8241 struct perf_event_attr __user *, attr_uptr,
8242 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
8243 {
8244 struct perf_event *group_leader = NULL, *output_event = NULL;
8245 struct perf_event *event, *sibling;
8246 struct perf_event_attr attr;
8247 struct perf_event_context *ctx, *uninitialized_var(gctx);
8248 struct file *event_file = NULL;
8249 struct fd group = {NULL, 0};
8250 struct task_struct *task = NULL;
8251 struct pmu *pmu;
8252 int event_fd;
8253 int move_group = 0;
8254 int err;
8255 int f_flags = O_RDWR;
8256 int cgroup_fd = -1;
8257
8258 /* for future expandability... */
8259 if (flags & ~PERF_FLAG_ALL)
8260 return -EINVAL;
8261
8262 err = perf_copy_attr(attr_uptr, &attr);
8263 if (err)
8264 return err;
8265
8266 if (!attr.exclude_kernel) {
8267 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8268 return -EACCES;
8269 }
8270
8271 if (attr.freq) {
8272 if (attr.sample_freq > sysctl_perf_event_sample_rate)
8273 return -EINVAL;
8274 } else {
8275 if (attr.sample_period & (1ULL << 63))
8276 return -EINVAL;
8277 }
8278
8279 /*
8280 * In cgroup mode, the pid argument is used to pass the fd
8281 * opened to the cgroup directory in cgroupfs. The cpu argument
8282 * designates the cpu on which to monitor threads from that
8283 * cgroup.
8284 */
8285 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8286 return -EINVAL;
8287
8288 if (flags & PERF_FLAG_FD_CLOEXEC)
8289 f_flags |= O_CLOEXEC;
8290
8291 event_fd = get_unused_fd_flags(f_flags);
8292 if (event_fd < 0)
8293 return event_fd;
8294
8295 if (group_fd != -1) {
8296 err = perf_fget_light(group_fd, &group);
8297 if (err)
8298 goto err_fd;
8299 group_leader = group.file->private_data;
8300 if (flags & PERF_FLAG_FD_OUTPUT)
8301 output_event = group_leader;
8302 if (flags & PERF_FLAG_FD_NO_GROUP)
8303 group_leader = NULL;
8304 }
8305
8306 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
8307 task = find_lively_task_by_vpid(pid);
8308 if (IS_ERR(task)) {
8309 err = PTR_ERR(task);
8310 goto err_group_fd;
8311 }
8312 }
8313
8314 if (task && group_leader &&
8315 group_leader->attr.inherit != attr.inherit) {
8316 err = -EINVAL;
8317 goto err_task;
8318 }
8319
8320 get_online_cpus();
8321
8322 if (flags & PERF_FLAG_PID_CGROUP)
8323 cgroup_fd = pid;
8324
8325 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
8326 NULL, NULL, cgroup_fd);
8327 if (IS_ERR(event)) {
8328 err = PTR_ERR(event);
8329 goto err_cpus;
8330 }
8331
8332 if (is_sampling_event(event)) {
8333 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8334 err = -ENOTSUPP;
8335 goto err_alloc;
8336 }
8337 }
8338
8339 account_event(event);
8340
8341 /*
8342 * Special case software events and allow them to be part of
8343 * any hardware group.
8344 */
8345 pmu = event->pmu;
8346
8347 if (attr.use_clockid) {
8348 err = perf_event_set_clock(event, attr.clockid);
8349 if (err)
8350 goto err_alloc;
8351 }
8352
8353 if (group_leader &&
8354 (is_software_event(event) != is_software_event(group_leader))) {
8355 if (is_software_event(event)) {
8356 /*
8357 * If event and group_leader are not both a software
8358 * event, and event is, then group leader is not.
8359 *
8360 * Allow the addition of software events to !software
8361 * groups, this is safe because software events never
8362 * fail to schedule.
8363 */
8364 pmu = group_leader->pmu;
8365 } else if (is_software_event(group_leader) &&
8366 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8367 /*
8368 * In case the group is a pure software group, and we
8369 * try to add a hardware event, move the whole group to
8370 * the hardware context.
8371 */
8372 move_group = 1;
8373 }
8374 }
8375
8376 /*
8377 * Get the target context (task or percpu):
8378 */
8379 ctx = find_get_context(pmu, task, event);
8380 if (IS_ERR(ctx)) {
8381 err = PTR_ERR(ctx);
8382 goto err_alloc;
8383 }
8384
8385 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8386 err = -EBUSY;
8387 goto err_context;
8388 }
8389
8390 if (task) {
8391 put_task_struct(task);
8392 task = NULL;
8393 }
8394
8395 /*
8396 * Look up the group leader (we will attach this event to it):
8397 */
8398 if (group_leader) {
8399 err = -EINVAL;
8400
8401 /*
8402 * Do not allow a recursive hierarchy (this new sibling
8403 * becoming part of another group-sibling):
8404 */
8405 if (group_leader->group_leader != group_leader)
8406 goto err_context;
8407
8408 /* All events in a group should have the same clock */
8409 if (group_leader->clock != event->clock)
8410 goto err_context;
8411
8412 /*
8413 * Do not allow to attach to a group in a different
8414 * task or CPU context:
8415 */
8416 if (move_group) {
8417 /*
8418 * Make sure we're both on the same task, or both
8419 * per-cpu events.
8420 */
8421 if (group_leader->ctx->task != ctx->task)
8422 goto err_context;
8423
8424 /*
8425 * Make sure we're both events for the same CPU;
8426 * grouping events for different CPUs is broken; since
8427 * you can never concurrently schedule them anyhow.
8428 */
8429 if (group_leader->cpu != event->cpu)
8430 goto err_context;
8431 } else {
8432 if (group_leader->ctx != ctx)
8433 goto err_context;
8434 }
8435
8436 /*
8437 * Only a group leader can be exclusive or pinned
8438 */
8439 if (attr.exclusive || attr.pinned)
8440 goto err_context;
8441 }
8442
8443 if (output_event) {
8444 err = perf_event_set_output(event, output_event);
8445 if (err)
8446 goto err_context;
8447 }
8448
8449 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8450 f_flags);
8451 if (IS_ERR(event_file)) {
8452 err = PTR_ERR(event_file);
8453 goto err_context;
8454 }
8455
8456 if (move_group) {
8457 gctx = group_leader->ctx;
8458 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8459 } else {
8460 mutex_lock(&ctx->mutex);
8461 }
8462
8463 if (!perf_event_validate_size(event)) {
8464 err = -E2BIG;
8465 goto err_locked;
8466 }
8467
8468 /*
8469 * Must be under the same ctx::mutex as perf_install_in_context(),
8470 * because we need to serialize with concurrent event creation.
8471 */
8472 if (!exclusive_event_installable(event, ctx)) {
8473 /* exclusive and group stuff are assumed mutually exclusive */
8474 WARN_ON_ONCE(move_group);
8475
8476 err = -EBUSY;
8477 goto err_locked;
8478 }
8479
8480 WARN_ON_ONCE(ctx->parent_ctx);
8481
8482 if (move_group) {
8483 /*
8484 * See perf_event_ctx_lock() for comments on the details
8485 * of swizzling perf_event::ctx.
8486 */
8487 perf_remove_from_context(group_leader, false);
8488
8489 list_for_each_entry(sibling, &group_leader->sibling_list,
8490 group_entry) {
8491 perf_remove_from_context(sibling, false);
8492 put_ctx(gctx);
8493 }
8494
8495 /*
8496 * Wait for everybody to stop referencing the events through
8497 * the old lists, before installing it on new lists.
8498 */
8499 synchronize_rcu();
8500
8501 /*
8502 * Install the group siblings before the group leader.
8503 *
8504 * Because a group leader will try and install the entire group
8505 * (through the sibling list, which is still in-tact), we can
8506 * end up with siblings installed in the wrong context.
8507 *
8508 * By installing siblings first we NO-OP because they're not
8509 * reachable through the group lists.
8510 */
8511 list_for_each_entry(sibling, &group_leader->sibling_list,
8512 group_entry) {
8513 perf_event__state_init(sibling);
8514 perf_install_in_context(ctx, sibling, sibling->cpu);
8515 get_ctx(ctx);
8516 }
8517
8518 /*
8519 * Removing from the context ends up with disabled
8520 * event. What we want here is event in the initial
8521 * startup state, ready to be add into new context.
8522 */
8523 perf_event__state_init(group_leader);
8524 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8525 get_ctx(ctx);
8526
8527 /*
8528 * Now that all events are installed in @ctx, nothing
8529 * references @gctx anymore, so drop the last reference we have
8530 * on it.
8531 */
8532 put_ctx(gctx);
8533 }
8534
8535 /*
8536 * Precalculate sample_data sizes; do while holding ctx::mutex such
8537 * that we're serialized against further additions and before
8538 * perf_install_in_context() which is the point the event is active and
8539 * can use these values.
8540 */
8541 perf_event__header_size(event);
8542 perf_event__id_header_size(event);
8543
8544 perf_install_in_context(ctx, event, event->cpu);
8545 perf_unpin_context(ctx);
8546
8547 if (move_group)
8548 mutex_unlock(&gctx->mutex);
8549 mutex_unlock(&ctx->mutex);
8550
8551 put_online_cpus();
8552
8553 event->owner = current;
8554
8555 mutex_lock(&current->perf_event_mutex);
8556 list_add_tail(&event->owner_entry, &current->perf_event_list);
8557 mutex_unlock(&current->perf_event_mutex);
8558
8559 /*
8560 * Drop the reference on the group_event after placing the
8561 * new event on the sibling_list. This ensures destruction
8562 * of the group leader will find the pointer to itself in
8563 * perf_group_detach().
8564 */
8565 fdput(group);
8566 fd_install(event_fd, event_file);
8567 return event_fd;
8568
8569 err_locked:
8570 if (move_group)
8571 mutex_unlock(&gctx->mutex);
8572 mutex_unlock(&ctx->mutex);
8573 /* err_file: */
8574 fput(event_file);
8575 err_context:
8576 perf_unpin_context(ctx);
8577 put_ctx(ctx);
8578 err_alloc:
8579 free_event(event);
8580 err_cpus:
8581 put_online_cpus();
8582 err_task:
8583 if (task)
8584 put_task_struct(task);
8585 err_group_fd:
8586 fdput(group);
8587 err_fd:
8588 put_unused_fd(event_fd);
8589 return err;
8590 }
8591
8592 /**
8593 * perf_event_create_kernel_counter
8594 *
8595 * @attr: attributes of the counter to create
8596 * @cpu: cpu in which the counter is bound
8597 * @task: task to profile (NULL for percpu)
8598 */
8599 struct perf_event *
8600 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
8601 struct task_struct *task,
8602 perf_overflow_handler_t overflow_handler,
8603 void *context)
8604 {
8605 struct perf_event_context *ctx;
8606 struct perf_event *event;
8607 int err;
8608
8609 /*
8610 * Get the target context (task or percpu):
8611 */
8612
8613 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
8614 overflow_handler, context, -1);
8615 if (IS_ERR(event)) {
8616 err = PTR_ERR(event);
8617 goto err;
8618 }
8619
8620 /* Mark owner so we could distinguish it from user events. */
8621 event->owner = EVENT_OWNER_KERNEL;
8622
8623 account_event(event);
8624
8625 ctx = find_get_context(event->pmu, task, event);
8626 if (IS_ERR(ctx)) {
8627 err = PTR_ERR(ctx);
8628 goto err_free;
8629 }
8630
8631 WARN_ON_ONCE(ctx->parent_ctx);
8632 mutex_lock(&ctx->mutex);
8633 if (!exclusive_event_installable(event, ctx)) {
8634 mutex_unlock(&ctx->mutex);
8635 perf_unpin_context(ctx);
8636 put_ctx(ctx);
8637 err = -EBUSY;
8638 goto err_free;
8639 }
8640
8641 perf_install_in_context(ctx, event, cpu);
8642 perf_unpin_context(ctx);
8643 mutex_unlock(&ctx->mutex);
8644
8645 return event;
8646
8647 err_free:
8648 free_event(event);
8649 err:
8650 return ERR_PTR(err);
8651 }
8652 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
8653
8654 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8655 {
8656 struct perf_event_context *src_ctx;
8657 struct perf_event_context *dst_ctx;
8658 struct perf_event *event, *tmp;
8659 LIST_HEAD(events);
8660
8661 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8662 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8663
8664 /*
8665 * See perf_event_ctx_lock() for comments on the details
8666 * of swizzling perf_event::ctx.
8667 */
8668 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
8669 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8670 event_entry) {
8671 perf_remove_from_context(event, false);
8672 unaccount_event_cpu(event, src_cpu);
8673 put_ctx(src_ctx);
8674 list_add(&event->migrate_entry, &events);
8675 }
8676
8677 /*
8678 * Wait for the events to quiesce before re-instating them.
8679 */
8680 synchronize_rcu();
8681
8682 /*
8683 * Re-instate events in 2 passes.
8684 *
8685 * Skip over group leaders and only install siblings on this first
8686 * pass, siblings will not get enabled without a leader, however a
8687 * leader will enable its siblings, even if those are still on the old
8688 * context.
8689 */
8690 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8691 if (event->group_leader == event)
8692 continue;
8693
8694 list_del(&event->migrate_entry);
8695 if (event->state >= PERF_EVENT_STATE_OFF)
8696 event->state = PERF_EVENT_STATE_INACTIVE;
8697 account_event_cpu(event, dst_cpu);
8698 perf_install_in_context(dst_ctx, event, dst_cpu);
8699 get_ctx(dst_ctx);
8700 }
8701
8702 /*
8703 * Once all the siblings are setup properly, install the group leaders
8704 * to make it go.
8705 */
8706 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8707 list_del(&event->migrate_entry);
8708 if (event->state >= PERF_EVENT_STATE_OFF)
8709 event->state = PERF_EVENT_STATE_INACTIVE;
8710 account_event_cpu(event, dst_cpu);
8711 perf_install_in_context(dst_ctx, event, dst_cpu);
8712 get_ctx(dst_ctx);
8713 }
8714 mutex_unlock(&dst_ctx->mutex);
8715 mutex_unlock(&src_ctx->mutex);
8716 }
8717 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8718
8719 static void sync_child_event(struct perf_event *child_event,
8720 struct task_struct *child)
8721 {
8722 struct perf_event *parent_event = child_event->parent;
8723 u64 child_val;
8724
8725 if (child_event->attr.inherit_stat)
8726 perf_event_read_event(child_event, child);
8727
8728 child_val = perf_event_count(child_event);
8729
8730 /*
8731 * Add back the child's count to the parent's count:
8732 */
8733 atomic64_add(child_val, &parent_event->child_count);
8734 atomic64_add(child_event->total_time_enabled,
8735 &parent_event->child_total_time_enabled);
8736 atomic64_add(child_event->total_time_running,
8737 &parent_event->child_total_time_running);
8738
8739 /*
8740 * Remove this event from the parent's list
8741 */
8742 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8743 mutex_lock(&parent_event->child_mutex);
8744 list_del_init(&child_event->child_list);
8745 mutex_unlock(&parent_event->child_mutex);
8746
8747 /*
8748 * Make sure user/parent get notified, that we just
8749 * lost one event.
8750 */
8751 perf_event_wakeup(parent_event);
8752
8753 /*
8754 * Release the parent event, if this was the last
8755 * reference to it.
8756 */
8757 put_event(parent_event);
8758 }
8759
8760 static void
8761 __perf_event_exit_task(struct perf_event *child_event,
8762 struct perf_event_context *child_ctx,
8763 struct task_struct *child)
8764 {
8765 /*
8766 * Do not destroy the 'original' grouping; because of the context
8767 * switch optimization the original events could've ended up in a
8768 * random child task.
8769 *
8770 * If we were to destroy the original group, all group related
8771 * operations would cease to function properly after this random
8772 * child dies.
8773 *
8774 * Do destroy all inherited groups, we don't care about those
8775 * and being thorough is better.
8776 */
8777 perf_remove_from_context(child_event, !!child_event->parent);
8778
8779 /*
8780 * It can happen that the parent exits first, and has events
8781 * that are still around due to the child reference. These
8782 * events need to be zapped.
8783 */
8784 if (child_event->parent) {
8785 sync_child_event(child_event, child);
8786 free_event(child_event);
8787 } else {
8788 child_event->state = PERF_EVENT_STATE_EXIT;
8789 perf_event_wakeup(child_event);
8790 }
8791 }
8792
8793 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
8794 {
8795 struct perf_event *child_event, *next;
8796 struct perf_event_context *child_ctx, *clone_ctx = NULL;
8797 unsigned long flags;
8798
8799 if (likely(!child->perf_event_ctxp[ctxn])) {
8800 perf_event_task(child, NULL, 0);
8801 return;
8802 }
8803
8804 local_irq_save(flags);
8805 /*
8806 * We can't reschedule here because interrupts are disabled,
8807 * and either child is current or it is a task that can't be
8808 * scheduled, so we are now safe from rescheduling changing
8809 * our context.
8810 */
8811 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
8812
8813 /*
8814 * Take the context lock here so that if find_get_context is
8815 * reading child->perf_event_ctxp, we wait until it has
8816 * incremented the context's refcount before we do put_ctx below.
8817 */
8818 raw_spin_lock(&child_ctx->lock);
8819 task_ctx_sched_out(child_ctx);
8820 child->perf_event_ctxp[ctxn] = NULL;
8821
8822 /*
8823 * If this context is a clone; unclone it so it can't get
8824 * swapped to another process while we're removing all
8825 * the events from it.
8826 */
8827 clone_ctx = unclone_ctx(child_ctx);
8828 update_context_time(child_ctx);
8829 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
8830
8831 if (clone_ctx)
8832 put_ctx(clone_ctx);
8833
8834 /*
8835 * Report the task dead after unscheduling the events so that we
8836 * won't get any samples after PERF_RECORD_EXIT. We can however still
8837 * get a few PERF_RECORD_READ events.
8838 */
8839 perf_event_task(child, child_ctx, 0);
8840
8841 /*
8842 * We can recurse on the same lock type through:
8843 *
8844 * __perf_event_exit_task()
8845 * sync_child_event()
8846 * put_event()
8847 * mutex_lock(&ctx->mutex)
8848 *
8849 * But since its the parent context it won't be the same instance.
8850 */
8851 mutex_lock(&child_ctx->mutex);
8852
8853 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8854 __perf_event_exit_task(child_event, child_ctx, child);
8855
8856 mutex_unlock(&child_ctx->mutex);
8857
8858 put_ctx(child_ctx);
8859 }
8860
8861 /*
8862 * When a child task exits, feed back event values to parent events.
8863 */
8864 void perf_event_exit_task(struct task_struct *child)
8865 {
8866 struct perf_event *event, *tmp;
8867 int ctxn;
8868
8869 mutex_lock(&child->perf_event_mutex);
8870 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8871 owner_entry) {
8872 list_del_init(&event->owner_entry);
8873
8874 /*
8875 * Ensure the list deletion is visible before we clear
8876 * the owner, closes a race against perf_release() where
8877 * we need to serialize on the owner->perf_event_mutex.
8878 */
8879 smp_wmb();
8880 event->owner = NULL;
8881 }
8882 mutex_unlock(&child->perf_event_mutex);
8883
8884 for_each_task_context_nr(ctxn)
8885 perf_event_exit_task_context(child, ctxn);
8886 }
8887
8888 static void perf_free_event(struct perf_event *event,
8889 struct perf_event_context *ctx)
8890 {
8891 struct perf_event *parent = event->parent;
8892
8893 if (WARN_ON_ONCE(!parent))
8894 return;
8895
8896 mutex_lock(&parent->child_mutex);
8897 list_del_init(&event->child_list);
8898 mutex_unlock(&parent->child_mutex);
8899
8900 put_event(parent);
8901
8902 raw_spin_lock_irq(&ctx->lock);
8903 perf_group_detach(event);
8904 list_del_event(event, ctx);
8905 raw_spin_unlock_irq(&ctx->lock);
8906 free_event(event);
8907 }
8908
8909 /*
8910 * Free an unexposed, unused context as created by inheritance by
8911 * perf_event_init_task below, used by fork() in case of fail.
8912 *
8913 * Not all locks are strictly required, but take them anyway to be nice and
8914 * help out with the lockdep assertions.
8915 */
8916 void perf_event_free_task(struct task_struct *task)
8917 {
8918 struct perf_event_context *ctx;
8919 struct perf_event *event, *tmp;
8920 int ctxn;
8921
8922 for_each_task_context_nr(ctxn) {
8923 ctx = task->perf_event_ctxp[ctxn];
8924 if (!ctx)
8925 continue;
8926
8927 mutex_lock(&ctx->mutex);
8928 again:
8929 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8930 group_entry)
8931 perf_free_event(event, ctx);
8932
8933 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8934 group_entry)
8935 perf_free_event(event, ctx);
8936
8937 if (!list_empty(&ctx->pinned_groups) ||
8938 !list_empty(&ctx->flexible_groups))
8939 goto again;
8940
8941 mutex_unlock(&ctx->mutex);
8942
8943 put_ctx(ctx);
8944 }
8945 }
8946
8947 void perf_event_delayed_put(struct task_struct *task)
8948 {
8949 int ctxn;
8950
8951 for_each_task_context_nr(ctxn)
8952 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8953 }
8954
8955 struct perf_event *perf_event_get(unsigned int fd)
8956 {
8957 int err;
8958 struct fd f;
8959 struct perf_event *event;
8960
8961 err = perf_fget_light(fd, &f);
8962 if (err)
8963 return ERR_PTR(err);
8964
8965 event = f.file->private_data;
8966 atomic_long_inc(&event->refcount);
8967 fdput(f);
8968
8969 return event;
8970 }
8971
8972 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8973 {
8974 if (!event)
8975 return ERR_PTR(-EINVAL);
8976
8977 return &event->attr;
8978 }
8979
8980 /*
8981 * inherit a event from parent task to child task:
8982 */
8983 static struct perf_event *
8984 inherit_event(struct perf_event *parent_event,
8985 struct task_struct *parent,
8986 struct perf_event_context *parent_ctx,
8987 struct task_struct *child,
8988 struct perf_event *group_leader,
8989 struct perf_event_context *child_ctx)
8990 {
8991 enum perf_event_active_state parent_state = parent_event->state;
8992 struct perf_event *child_event;
8993 unsigned long flags;
8994
8995 /*
8996 * Instead of creating recursive hierarchies of events,
8997 * we link inherited events back to the original parent,
8998 * which has a filp for sure, which we use as the reference
8999 * count:
9000 */
9001 if (parent_event->parent)
9002 parent_event = parent_event->parent;
9003
9004 child_event = perf_event_alloc(&parent_event->attr,
9005 parent_event->cpu,
9006 child,
9007 group_leader, parent_event,
9008 NULL, NULL, -1);
9009 if (IS_ERR(child_event))
9010 return child_event;
9011
9012 if (is_orphaned_event(parent_event) ||
9013 !atomic_long_inc_not_zero(&parent_event->refcount)) {
9014 free_event(child_event);
9015 return NULL;
9016 }
9017
9018 get_ctx(child_ctx);
9019
9020 /*
9021 * Make the child state follow the state of the parent event,
9022 * not its attr.disabled bit. We hold the parent's mutex,
9023 * so we won't race with perf_event_{en, dis}able_family.
9024 */
9025 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
9026 child_event->state = PERF_EVENT_STATE_INACTIVE;
9027 else
9028 child_event->state = PERF_EVENT_STATE_OFF;
9029
9030 if (parent_event->attr.freq) {
9031 u64 sample_period = parent_event->hw.sample_period;
9032 struct hw_perf_event *hwc = &child_event->hw;
9033
9034 hwc->sample_period = sample_period;
9035 hwc->last_period = sample_period;
9036
9037 local64_set(&hwc->period_left, sample_period);
9038 }
9039
9040 child_event->ctx = child_ctx;
9041 child_event->overflow_handler = parent_event->overflow_handler;
9042 child_event->overflow_handler_context
9043 = parent_event->overflow_handler_context;
9044
9045 /*
9046 * Precalculate sample_data sizes
9047 */
9048 perf_event__header_size(child_event);
9049 perf_event__id_header_size(child_event);
9050
9051 /*
9052 * Link it up in the child's context:
9053 */
9054 raw_spin_lock_irqsave(&child_ctx->lock, flags);
9055 add_event_to_ctx(child_event, child_ctx);
9056 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9057
9058 /*
9059 * Link this into the parent event's child list
9060 */
9061 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9062 mutex_lock(&parent_event->child_mutex);
9063 list_add_tail(&child_event->child_list, &parent_event->child_list);
9064 mutex_unlock(&parent_event->child_mutex);
9065
9066 return child_event;
9067 }
9068
9069 static int inherit_group(struct perf_event *parent_event,
9070 struct task_struct *parent,
9071 struct perf_event_context *parent_ctx,
9072 struct task_struct *child,
9073 struct perf_event_context *child_ctx)
9074 {
9075 struct perf_event *leader;
9076 struct perf_event *sub;
9077 struct perf_event *child_ctr;
9078
9079 leader = inherit_event(parent_event, parent, parent_ctx,
9080 child, NULL, child_ctx);
9081 if (IS_ERR(leader))
9082 return PTR_ERR(leader);
9083 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9084 child_ctr = inherit_event(sub, parent, parent_ctx,
9085 child, leader, child_ctx);
9086 if (IS_ERR(child_ctr))
9087 return PTR_ERR(child_ctr);
9088 }
9089 return 0;
9090 }
9091
9092 static int
9093 inherit_task_group(struct perf_event *event, struct task_struct *parent,
9094 struct perf_event_context *parent_ctx,
9095 struct task_struct *child, int ctxn,
9096 int *inherited_all)
9097 {
9098 int ret;
9099 struct perf_event_context *child_ctx;
9100
9101 if (!event->attr.inherit) {
9102 *inherited_all = 0;
9103 return 0;
9104 }
9105
9106 child_ctx = child->perf_event_ctxp[ctxn];
9107 if (!child_ctx) {
9108 /*
9109 * This is executed from the parent task context, so
9110 * inherit events that have been marked for cloning.
9111 * First allocate and initialize a context for the
9112 * child.
9113 */
9114
9115 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
9116 if (!child_ctx)
9117 return -ENOMEM;
9118
9119 child->perf_event_ctxp[ctxn] = child_ctx;
9120 }
9121
9122 ret = inherit_group(event, parent, parent_ctx,
9123 child, child_ctx);
9124
9125 if (ret)
9126 *inherited_all = 0;
9127
9128 return ret;
9129 }
9130
9131 /*
9132 * Initialize the perf_event context in task_struct
9133 */
9134 static int perf_event_init_context(struct task_struct *child, int ctxn)
9135 {
9136 struct perf_event_context *child_ctx, *parent_ctx;
9137 struct perf_event_context *cloned_ctx;
9138 struct perf_event *event;
9139 struct task_struct *parent = current;
9140 int inherited_all = 1;
9141 unsigned long flags;
9142 int ret = 0;
9143
9144 if (likely(!parent->perf_event_ctxp[ctxn]))
9145 return 0;
9146
9147 /*
9148 * If the parent's context is a clone, pin it so it won't get
9149 * swapped under us.
9150 */
9151 parent_ctx = perf_pin_task_context(parent, ctxn);
9152 if (!parent_ctx)
9153 return 0;
9154
9155 /*
9156 * No need to check if parent_ctx != NULL here; since we saw
9157 * it non-NULL earlier, the only reason for it to become NULL
9158 * is if we exit, and since we're currently in the middle of
9159 * a fork we can't be exiting at the same time.
9160 */
9161
9162 /*
9163 * Lock the parent list. No need to lock the child - not PID
9164 * hashed yet and not running, so nobody can access it.
9165 */
9166 mutex_lock(&parent_ctx->mutex);
9167
9168 /*
9169 * We dont have to disable NMIs - we are only looking at
9170 * the list, not manipulating it:
9171 */
9172 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
9173 ret = inherit_task_group(event, parent, parent_ctx,
9174 child, ctxn, &inherited_all);
9175 if (ret)
9176 break;
9177 }
9178
9179 /*
9180 * We can't hold ctx->lock when iterating the ->flexible_group list due
9181 * to allocations, but we need to prevent rotation because
9182 * rotate_ctx() will change the list from interrupt context.
9183 */
9184 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9185 parent_ctx->rotate_disable = 1;
9186 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9187
9188 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
9189 ret = inherit_task_group(event, parent, parent_ctx,
9190 child, ctxn, &inherited_all);
9191 if (ret)
9192 break;
9193 }
9194
9195 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9196 parent_ctx->rotate_disable = 0;
9197
9198 child_ctx = child->perf_event_ctxp[ctxn];
9199
9200 if (child_ctx && inherited_all) {
9201 /*
9202 * Mark the child context as a clone of the parent
9203 * context, or of whatever the parent is a clone of.
9204 *
9205 * Note that if the parent is a clone, the holding of
9206 * parent_ctx->lock avoids it from being uncloned.
9207 */
9208 cloned_ctx = parent_ctx->parent_ctx;
9209 if (cloned_ctx) {
9210 child_ctx->parent_ctx = cloned_ctx;
9211 child_ctx->parent_gen = parent_ctx->parent_gen;
9212 } else {
9213 child_ctx->parent_ctx = parent_ctx;
9214 child_ctx->parent_gen = parent_ctx->generation;
9215 }
9216 get_ctx(child_ctx->parent_ctx);
9217 }
9218
9219 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9220 mutex_unlock(&parent_ctx->mutex);
9221
9222 perf_unpin_context(parent_ctx);
9223 put_ctx(parent_ctx);
9224
9225 return ret;
9226 }
9227
9228 /*
9229 * Initialize the perf_event context in task_struct
9230 */
9231 int perf_event_init_task(struct task_struct *child)
9232 {
9233 int ctxn, ret;
9234
9235 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9236 mutex_init(&child->perf_event_mutex);
9237 INIT_LIST_HEAD(&child->perf_event_list);
9238
9239 for_each_task_context_nr(ctxn) {
9240 ret = perf_event_init_context(child, ctxn);
9241 if (ret) {
9242 perf_event_free_task(child);
9243 return ret;
9244 }
9245 }
9246
9247 return 0;
9248 }
9249
9250 static void __init perf_event_init_all_cpus(void)
9251 {
9252 struct swevent_htable *swhash;
9253 int cpu;
9254
9255 for_each_possible_cpu(cpu) {
9256 swhash = &per_cpu(swevent_htable, cpu);
9257 mutex_init(&swhash->hlist_mutex);
9258 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
9259 }
9260 }
9261
9262 static void perf_event_init_cpu(int cpu)
9263 {
9264 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9265
9266 mutex_lock(&swhash->hlist_mutex);
9267 swhash->online = true;
9268 if (swhash->hlist_refcount > 0) {
9269 struct swevent_hlist *hlist;
9270
9271 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9272 WARN_ON(!hlist);
9273 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9274 }
9275 mutex_unlock(&swhash->hlist_mutex);
9276 }
9277
9278 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
9279 static void __perf_event_exit_context(void *__info)
9280 {
9281 struct remove_event re = { .detach_group = true };
9282 struct perf_event_context *ctx = __info;
9283
9284 rcu_read_lock();
9285 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9286 __perf_remove_from_context(&re);
9287 rcu_read_unlock();
9288 }
9289
9290 static void perf_event_exit_cpu_context(int cpu)
9291 {
9292 struct perf_event_context *ctx;
9293 struct pmu *pmu;
9294 int idx;
9295
9296 idx = srcu_read_lock(&pmus_srcu);
9297 list_for_each_entry_rcu(pmu, &pmus, entry) {
9298 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
9299
9300 mutex_lock(&ctx->mutex);
9301 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9302 mutex_unlock(&ctx->mutex);
9303 }
9304 srcu_read_unlock(&pmus_srcu, idx);
9305 }
9306
9307 static void perf_event_exit_cpu(int cpu)
9308 {
9309 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9310
9311 perf_event_exit_cpu_context(cpu);
9312
9313 mutex_lock(&swhash->hlist_mutex);
9314 swhash->online = false;
9315 swevent_hlist_release(swhash);
9316 mutex_unlock(&swhash->hlist_mutex);
9317 }
9318 #else
9319 static inline void perf_event_exit_cpu(int cpu) { }
9320 #endif
9321
9322 static int
9323 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9324 {
9325 int cpu;
9326
9327 for_each_online_cpu(cpu)
9328 perf_event_exit_cpu(cpu);
9329
9330 return NOTIFY_OK;
9331 }
9332
9333 /*
9334 * Run the perf reboot notifier at the very last possible moment so that
9335 * the generic watchdog code runs as long as possible.
9336 */
9337 static struct notifier_block perf_reboot_notifier = {
9338 .notifier_call = perf_reboot,
9339 .priority = INT_MIN,
9340 };
9341
9342 static int
9343 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9344 {
9345 unsigned int cpu = (long)hcpu;
9346
9347 switch (action & ~CPU_TASKS_FROZEN) {
9348
9349 case CPU_UP_PREPARE:
9350 case CPU_DOWN_FAILED:
9351 perf_event_init_cpu(cpu);
9352 break;
9353
9354 case CPU_UP_CANCELED:
9355 case CPU_DOWN_PREPARE:
9356 perf_event_exit_cpu(cpu);
9357 break;
9358 default:
9359 break;
9360 }
9361
9362 return NOTIFY_OK;
9363 }
9364
9365 void __init perf_event_init(void)
9366 {
9367 int ret;
9368
9369 idr_init(&pmu_idr);
9370
9371 perf_event_init_all_cpus();
9372 init_srcu_struct(&pmus_srcu);
9373 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9374 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9375 perf_pmu_register(&perf_task_clock, NULL, -1);
9376 perf_tp_register();
9377 perf_cpu_notifier(perf_cpu_notify);
9378 register_reboot_notifier(&perf_reboot_notifier);
9379
9380 ret = init_hw_breakpoint();
9381 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
9382
9383 /* do not patch jump label more than once per second */
9384 jump_label_rate_limit(&perf_sched_events, HZ);
9385
9386 /*
9387 * Build time assertion that we keep the data_head at the intended
9388 * location. IOW, validation we got the __reserved[] size right.
9389 */
9390 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9391 != 1024);
9392 }
9393
9394 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9395 char *page)
9396 {
9397 struct perf_pmu_events_attr *pmu_attr =
9398 container_of(attr, struct perf_pmu_events_attr, attr);
9399
9400 if (pmu_attr->event_str)
9401 return sprintf(page, "%s\n", pmu_attr->event_str);
9402
9403 return 0;
9404 }
9405
9406 static int __init perf_event_sysfs_init(void)
9407 {
9408 struct pmu *pmu;
9409 int ret;
9410
9411 mutex_lock(&pmus_lock);
9412
9413 ret = bus_register(&pmu_bus);
9414 if (ret)
9415 goto unlock;
9416
9417 list_for_each_entry(pmu, &pmus, entry) {
9418 if (!pmu->name || pmu->type < 0)
9419 continue;
9420
9421 ret = pmu_dev_alloc(pmu);
9422 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9423 }
9424 pmu_bus_running = 1;
9425 ret = 0;
9426
9427 unlock:
9428 mutex_unlock(&pmus_lock);
9429
9430 return ret;
9431 }
9432 device_initcall(perf_event_sysfs_init);
9433
9434 #ifdef CONFIG_CGROUP_PERF
9435 static struct cgroup_subsys_state *
9436 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
9437 {
9438 struct perf_cgroup *jc;
9439
9440 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
9441 if (!jc)
9442 return ERR_PTR(-ENOMEM);
9443
9444 jc->info = alloc_percpu(struct perf_cgroup_info);
9445 if (!jc->info) {
9446 kfree(jc);
9447 return ERR_PTR(-ENOMEM);
9448 }
9449
9450 return &jc->css;
9451 }
9452
9453 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
9454 {
9455 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9456
9457 free_percpu(jc->info);
9458 kfree(jc);
9459 }
9460
9461 static int __perf_cgroup_move(void *info)
9462 {
9463 struct task_struct *task = info;
9464 rcu_read_lock();
9465 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
9466 rcu_read_unlock();
9467 return 0;
9468 }
9469
9470 static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9471 struct cgroup_taskset *tset)
9472 {
9473 struct task_struct *task;
9474
9475 cgroup_taskset_for_each(task, tset)
9476 task_function_call(task, __perf_cgroup_move, task);
9477 }
9478
9479 struct cgroup_subsys perf_event_cgrp_subsys = {
9480 .css_alloc = perf_cgroup_css_alloc,
9481 .css_free = perf_cgroup_css_free,
9482 .attach = perf_cgroup_attach,
9483 };
9484 #endif /* CONFIG_CGROUP_PERF */
This page took 0.225785 seconds and 5 git commands to generate.