Merge branch 'akpm-current/current'
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
163 {
164 #ifdef CONFIG_VMAP_STACK
165 void *stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
166 VMALLOC_START, VMALLOC_END,
167 THREADINFO_GFP | __GFP_HIGHMEM,
168 PAGE_KERNEL,
169 0, node,
170 __builtin_return_address(0));
171
172 /*
173 * We can't call find_vm_area() in interrupt context, and
174 * free_thread_stack() can be called in interrupt context,
175 * so cache the vm_struct.
176 */
177 if (stack)
178 tsk->stack_vm_area = find_vm_area(stack);
179 return stack;
180 #else
181 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
182 THREAD_SIZE_ORDER);
183
184 return page ? page_address(page) : NULL;
185 #endif
186 }
187
188 static inline void free_thread_stack(struct task_struct *tsk)
189 {
190 if (task_stack_vm_area(tsk))
191 vfree(tsk->stack);
192 else
193 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
194 }
195 # else
196 static struct kmem_cache *thread_stack_cache;
197
198 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
199 int node)
200 {
201 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
202 }
203
204 static void free_thread_stack(struct task_struct *tsk)
205 {
206 kmem_cache_free(thread_stack_cache, tsk->stack);
207 }
208
209 void thread_stack_cache_init(void)
210 {
211 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
212 THREAD_SIZE, 0, NULL);
213 BUG_ON(thread_stack_cache == NULL);
214 }
215 # endif
216 #endif
217
218 /* SLAB cache for signal_struct structures (tsk->signal) */
219 static struct kmem_cache *signal_cachep;
220
221 /* SLAB cache for sighand_struct structures (tsk->sighand) */
222 struct kmem_cache *sighand_cachep;
223
224 /* SLAB cache for files_struct structures (tsk->files) */
225 struct kmem_cache *files_cachep;
226
227 /* SLAB cache for fs_struct structures (tsk->fs) */
228 struct kmem_cache *fs_cachep;
229
230 /* SLAB cache for vm_area_struct structures */
231 struct kmem_cache *vm_area_cachep;
232
233 /* SLAB cache for mm_struct structures (tsk->mm) */
234 static struct kmem_cache *mm_cachep;
235
236 static void account_kernel_stack(struct task_struct *tsk, int account)
237 {
238 void *stack = task_stack_page(tsk);
239 struct vm_struct *vm = task_stack_vm_area(tsk);
240
241 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
242
243 if (vm) {
244 int i;
245
246 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
247
248 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
249 mod_zone_page_state(page_zone(vm->pages[i]),
250 NR_KERNEL_STACK_KB,
251 PAGE_SIZE / 1024 * account);
252 }
253
254 /* All stack pages belong to the same memcg. */
255 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
256 account * (THREAD_SIZE / 1024));
257 } else {
258 /*
259 * All stack pages are in the same zone and belong to the
260 * same memcg.
261 */
262 struct page *first_page = virt_to_page(stack);
263
264 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
265 THREAD_SIZE / 1024 * account);
266
267 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
268 account * (THREAD_SIZE / 1024));
269 }
270 }
271
272 void free_task(struct task_struct *tsk)
273 {
274 account_kernel_stack(tsk, -1);
275 arch_release_thread_stack(tsk->stack);
276 free_thread_stack(tsk);
277 rt_mutex_debug_task_free(tsk);
278 ftrace_graph_exit_task(tsk);
279 put_seccomp_filter(tsk);
280 arch_release_task_struct(tsk);
281 free_task_struct(tsk);
282 }
283 EXPORT_SYMBOL(free_task);
284
285 static inline void free_signal_struct(struct signal_struct *sig)
286 {
287 taskstats_tgid_free(sig);
288 sched_autogroup_exit(sig);
289 /*
290 * __mmdrop is not safe to call from softirq context on x86 due to
291 * pgd_dtor so postpone it to the async context
292 */
293 if (sig->oom_mm)
294 mmdrop_async(sig->oom_mm);
295 kmem_cache_free(signal_cachep, sig);
296 }
297
298 static inline void put_signal_struct(struct signal_struct *sig)
299 {
300 if (atomic_dec_and_test(&sig->sigcnt))
301 free_signal_struct(sig);
302 }
303
304 void __put_task_struct(struct task_struct *tsk)
305 {
306 WARN_ON(!tsk->exit_state);
307 WARN_ON(atomic_read(&tsk->usage));
308 WARN_ON(tsk == current);
309
310 cgroup_free(tsk);
311 task_numa_free(tsk);
312 security_task_free(tsk);
313 exit_creds(tsk);
314 delayacct_tsk_free(tsk);
315 put_signal_struct(tsk->signal);
316
317 if (!profile_handoff_task(tsk))
318 free_task(tsk);
319 }
320 EXPORT_SYMBOL_GPL(__put_task_struct);
321
322 void __init __weak arch_task_cache_init(void) { }
323
324 /*
325 * set_max_threads
326 */
327 static void set_max_threads(unsigned int max_threads_suggested)
328 {
329 u64 threads;
330
331 /*
332 * The number of threads shall be limited such that the thread
333 * structures may only consume a small part of the available memory.
334 */
335 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
336 threads = MAX_THREADS;
337 else
338 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
339 (u64) THREAD_SIZE * 8UL);
340
341 if (threads > max_threads_suggested)
342 threads = max_threads_suggested;
343
344 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
345 }
346
347 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
348 /* Initialized by the architecture: */
349 int arch_task_struct_size __read_mostly;
350 #endif
351
352 void __init fork_init(void)
353 {
354 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
355 #ifndef ARCH_MIN_TASKALIGN
356 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
357 #endif
358 /* create a slab on which task_structs can be allocated */
359 task_struct_cachep = kmem_cache_create("task_struct",
360 arch_task_struct_size, ARCH_MIN_TASKALIGN,
361 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
362 #endif
363
364 /* do the arch specific task caches init */
365 arch_task_cache_init();
366
367 set_max_threads(MAX_THREADS);
368
369 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
370 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
371 init_task.signal->rlim[RLIMIT_SIGPENDING] =
372 init_task.signal->rlim[RLIMIT_NPROC];
373 }
374
375 int __weak arch_dup_task_struct(struct task_struct *dst,
376 struct task_struct *src)
377 {
378 *dst = *src;
379 return 0;
380 }
381
382 void set_task_stack_end_magic(struct task_struct *tsk)
383 {
384 unsigned long *stackend;
385
386 stackend = end_of_stack(tsk);
387 *stackend = STACK_END_MAGIC; /* for overflow detection */
388 }
389
390 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
391 {
392 struct task_struct *tsk;
393 unsigned long *stack;
394 struct vm_struct *stack_vm_area;
395 int err;
396
397 if (node == NUMA_NO_NODE)
398 node = tsk_fork_get_node(orig);
399 tsk = alloc_task_struct_node(node);
400 if (!tsk)
401 return NULL;
402
403 stack = alloc_thread_stack_node(tsk, node);
404 if (!stack)
405 goto free_tsk;
406
407 stack_vm_area = task_stack_vm_area(tsk);
408
409 err = arch_dup_task_struct(tsk, orig);
410
411 /*
412 * arch_dup_task_struct() clobbers the stack-related fields. Make
413 * sure they're properly initialized before using any stack-related
414 * functions again.
415 */
416 tsk->stack = stack;
417 #ifdef CONFIG_VMAP_STACK
418 tsk->stack_vm_area = stack_vm_area;
419 #endif
420
421 if (err)
422 goto free_stack;
423
424 #ifdef CONFIG_SECCOMP
425 /*
426 * We must handle setting up seccomp filters once we're under
427 * the sighand lock in case orig has changed between now and
428 * then. Until then, filter must be NULL to avoid messing up
429 * the usage counts on the error path calling free_task.
430 */
431 tsk->seccomp.filter = NULL;
432 #endif
433
434 setup_thread_stack(tsk, orig);
435 clear_user_return_notifier(tsk);
436 clear_tsk_need_resched(tsk);
437 set_task_stack_end_magic(tsk);
438
439 #ifdef CONFIG_CC_STACKPROTECTOR
440 tsk->stack_canary = get_random_int();
441 #endif
442
443 /*
444 * One for us, one for whoever does the "release_task()" (usually
445 * parent)
446 */
447 atomic_set(&tsk->usage, 2);
448 #ifdef CONFIG_BLK_DEV_IO_TRACE
449 tsk->btrace_seq = 0;
450 #endif
451 tsk->splice_pipe = NULL;
452 tsk->task_frag.page = NULL;
453 tsk->wake_q.next = NULL;
454
455 account_kernel_stack(tsk, 1);
456
457 kcov_task_init(tsk);
458
459 return tsk;
460
461 free_stack:
462 free_thread_stack(tsk);
463 free_tsk:
464 free_task_struct(tsk);
465 return NULL;
466 }
467
468 #ifdef CONFIG_MMU
469 static __latent_entropy int dup_mmap(struct mm_struct *mm,
470 struct mm_struct *oldmm)
471 {
472 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
473 struct rb_node **rb_link, *rb_parent;
474 int retval;
475 unsigned long charge;
476
477 uprobe_start_dup_mmap();
478 if (down_write_killable(&oldmm->mmap_sem)) {
479 retval = -EINTR;
480 goto fail_uprobe_end;
481 }
482 flush_cache_dup_mm(oldmm);
483 uprobe_dup_mmap(oldmm, mm);
484 /*
485 * Not linked in yet - no deadlock potential:
486 */
487 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
488
489 /* No ordering required: file already has been exposed. */
490 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
491
492 mm->total_vm = oldmm->total_vm;
493 mm->data_vm = oldmm->data_vm;
494 mm->exec_vm = oldmm->exec_vm;
495 mm->stack_vm = oldmm->stack_vm;
496
497 rb_link = &mm->mm_rb.rb_node;
498 rb_parent = NULL;
499 pprev = &mm->mmap;
500 retval = ksm_fork(mm, oldmm);
501 if (retval)
502 goto out;
503 retval = khugepaged_fork(mm, oldmm);
504 if (retval)
505 goto out;
506
507 prev = NULL;
508 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
509 struct file *file;
510
511 if (mpnt->vm_flags & VM_DONTCOPY) {
512 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
513 continue;
514 }
515 charge = 0;
516 if (mpnt->vm_flags & VM_ACCOUNT) {
517 unsigned long len = vma_pages(mpnt);
518
519 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
520 goto fail_nomem;
521 charge = len;
522 }
523 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
524 if (!tmp)
525 goto fail_nomem;
526 *tmp = *mpnt;
527 INIT_LIST_HEAD(&tmp->anon_vma_chain);
528 retval = vma_dup_policy(mpnt, tmp);
529 if (retval)
530 goto fail_nomem_policy;
531 tmp->vm_mm = mm;
532 if (anon_vma_fork(tmp, mpnt))
533 goto fail_nomem_anon_vma_fork;
534 tmp->vm_flags &=
535 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
536 tmp->vm_next = tmp->vm_prev = NULL;
537 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
538 file = tmp->vm_file;
539 if (file) {
540 struct inode *inode = file_inode(file);
541 struct address_space *mapping = file->f_mapping;
542
543 get_file(file);
544 if (tmp->vm_flags & VM_DENYWRITE)
545 atomic_dec(&inode->i_writecount);
546 i_mmap_lock_write(mapping);
547 if (tmp->vm_flags & VM_SHARED)
548 atomic_inc(&mapping->i_mmap_writable);
549 flush_dcache_mmap_lock(mapping);
550 /* insert tmp into the share list, just after mpnt */
551 vma_interval_tree_insert_after(tmp, mpnt,
552 &mapping->i_mmap);
553 flush_dcache_mmap_unlock(mapping);
554 i_mmap_unlock_write(mapping);
555 }
556
557 /*
558 * Clear hugetlb-related page reserves for children. This only
559 * affects MAP_PRIVATE mappings. Faults generated by the child
560 * are not guaranteed to succeed, even if read-only
561 */
562 if (is_vm_hugetlb_page(tmp))
563 reset_vma_resv_huge_pages(tmp);
564
565 /*
566 * Link in the new vma and copy the page table entries.
567 */
568 *pprev = tmp;
569 pprev = &tmp->vm_next;
570 tmp->vm_prev = prev;
571 prev = tmp;
572
573 __vma_link_rb(mm, tmp, rb_link, rb_parent);
574 rb_link = &tmp->vm_rb.rb_right;
575 rb_parent = &tmp->vm_rb;
576
577 mm->map_count++;
578 retval = copy_page_range(mm, oldmm, mpnt);
579
580 if (tmp->vm_ops && tmp->vm_ops->open)
581 tmp->vm_ops->open(tmp);
582
583 if (retval)
584 goto out;
585 }
586 /* a new mm has just been created */
587 arch_dup_mmap(oldmm, mm);
588 retval = 0;
589 out:
590 up_write(&mm->mmap_sem);
591 flush_tlb_mm(oldmm);
592 up_write(&oldmm->mmap_sem);
593 fail_uprobe_end:
594 uprobe_end_dup_mmap();
595 return retval;
596 fail_nomem_anon_vma_fork:
597 mpol_put(vma_policy(tmp));
598 fail_nomem_policy:
599 kmem_cache_free(vm_area_cachep, tmp);
600 fail_nomem:
601 retval = -ENOMEM;
602 vm_unacct_memory(charge);
603 goto out;
604 }
605
606 static inline int mm_alloc_pgd(struct mm_struct *mm)
607 {
608 mm->pgd = pgd_alloc(mm);
609 if (unlikely(!mm->pgd))
610 return -ENOMEM;
611 return 0;
612 }
613
614 static inline void mm_free_pgd(struct mm_struct *mm)
615 {
616 pgd_free(mm, mm->pgd);
617 }
618 #else
619 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
620 {
621 down_write(&oldmm->mmap_sem);
622 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
623 up_write(&oldmm->mmap_sem);
624 return 0;
625 }
626 #define mm_alloc_pgd(mm) (0)
627 #define mm_free_pgd(mm)
628 #endif /* CONFIG_MMU */
629
630 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
631
632 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
633 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
634
635 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
636
637 static int __init coredump_filter_setup(char *s)
638 {
639 default_dump_filter =
640 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
641 MMF_DUMP_FILTER_MASK;
642 return 1;
643 }
644
645 __setup("coredump_filter=", coredump_filter_setup);
646
647 #include <linux/init_task.h>
648
649 static void mm_init_aio(struct mm_struct *mm)
650 {
651 #ifdef CONFIG_AIO
652 spin_lock_init(&mm->ioctx_lock);
653 mm->ioctx_table = NULL;
654 #endif
655 }
656
657 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
658 {
659 #ifdef CONFIG_MEMCG
660 mm->owner = p;
661 #endif
662 }
663
664 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
665 {
666 mm->mmap = NULL;
667 mm->mm_rb = RB_ROOT;
668 mm->vmacache_seqnum = 0;
669 atomic_set(&mm->mm_users, 1);
670 atomic_set(&mm->mm_count, 1);
671 init_rwsem(&mm->mmap_sem);
672 INIT_LIST_HEAD(&mm->mmlist);
673 mm->core_state = NULL;
674 atomic_long_set(&mm->nr_ptes, 0);
675 mm_nr_pmds_init(mm);
676 mm->map_count = 0;
677 mm->locked_vm = 0;
678 mm->pinned_vm = 0;
679 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
680 spin_lock_init(&mm->page_table_lock);
681 mm_init_cpumask(mm);
682 mm_init_aio(mm);
683 mm_init_owner(mm, p);
684 mmu_notifier_mm_init(mm);
685 clear_tlb_flush_pending(mm);
686 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
687 mm->pmd_huge_pte = NULL;
688 #endif
689
690 if (current->mm) {
691 mm->flags = current->mm->flags & MMF_INIT_MASK;
692 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
693 } else {
694 mm->flags = default_dump_filter;
695 mm->def_flags = 0;
696 }
697
698 if (mm_alloc_pgd(mm))
699 goto fail_nopgd;
700
701 if (init_new_context(p, mm))
702 goto fail_nocontext;
703
704 return mm;
705
706 fail_nocontext:
707 mm_free_pgd(mm);
708 fail_nopgd:
709 free_mm(mm);
710 return NULL;
711 }
712
713 static void check_mm(struct mm_struct *mm)
714 {
715 int i;
716
717 for (i = 0; i < NR_MM_COUNTERS; i++) {
718 long x = atomic_long_read(&mm->rss_stat.count[i]);
719
720 if (unlikely(x))
721 printk(KERN_ALERT "BUG: Bad rss-counter state "
722 "mm:%p idx:%d val:%ld\n", mm, i, x);
723 }
724
725 if (atomic_long_read(&mm->nr_ptes))
726 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
727 atomic_long_read(&mm->nr_ptes));
728 if (mm_nr_pmds(mm))
729 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
730 mm_nr_pmds(mm));
731
732 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
733 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
734 #endif
735 }
736
737 /*
738 * Allocate and initialize an mm_struct.
739 */
740 struct mm_struct *mm_alloc(void)
741 {
742 struct mm_struct *mm;
743
744 mm = allocate_mm();
745 if (!mm)
746 return NULL;
747
748 memset(mm, 0, sizeof(*mm));
749 return mm_init(mm, current);
750 }
751
752 /*
753 * Called when the last reference to the mm
754 * is dropped: either by a lazy thread or by
755 * mmput. Free the page directory and the mm.
756 */
757 void __mmdrop(struct mm_struct *mm)
758 {
759 BUG_ON(mm == &init_mm);
760 mm_free_pgd(mm);
761 destroy_context(mm);
762 mmu_notifier_mm_destroy(mm);
763 check_mm(mm);
764 free_mm(mm);
765 }
766 EXPORT_SYMBOL_GPL(__mmdrop);
767
768 static inline void __mmput(struct mm_struct *mm)
769 {
770 VM_BUG_ON(atomic_read(&mm->mm_users));
771
772 uprobe_clear_state(mm);
773 exit_aio(mm);
774 ksm_exit(mm);
775 khugepaged_exit(mm); /* must run before exit_mmap */
776 exit_mmap(mm);
777 mm_put_huge_zero_page(mm);
778 set_mm_exe_file(mm, NULL);
779 if (!list_empty(&mm->mmlist)) {
780 spin_lock(&mmlist_lock);
781 list_del(&mm->mmlist);
782 spin_unlock(&mmlist_lock);
783 }
784 if (mm->binfmt)
785 module_put(mm->binfmt->module);
786 set_bit(MMF_OOM_SKIP, &mm->flags);
787 mmdrop(mm);
788 }
789
790 /*
791 * Decrement the use count and release all resources for an mm.
792 */
793 void mmput(struct mm_struct *mm)
794 {
795 might_sleep();
796
797 if (atomic_dec_and_test(&mm->mm_users))
798 __mmput(mm);
799 }
800 EXPORT_SYMBOL_GPL(mmput);
801
802 #ifdef CONFIG_MMU
803 static void mmput_async_fn(struct work_struct *work)
804 {
805 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
806 __mmput(mm);
807 }
808
809 void mmput_async(struct mm_struct *mm)
810 {
811 if (atomic_dec_and_test(&mm->mm_users)) {
812 INIT_WORK(&mm->async_put_work, mmput_async_fn);
813 schedule_work(&mm->async_put_work);
814 }
815 }
816 #endif
817
818 /**
819 * set_mm_exe_file - change a reference to the mm's executable file
820 *
821 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
822 *
823 * Main users are mmput() and sys_execve(). Callers prevent concurrent
824 * invocations: in mmput() nobody alive left, in execve task is single
825 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
826 * mm->exe_file, but does so without using set_mm_exe_file() in order
827 * to do avoid the need for any locks.
828 */
829 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
830 {
831 struct file *old_exe_file;
832
833 /*
834 * It is safe to dereference the exe_file without RCU as
835 * this function is only called if nobody else can access
836 * this mm -- see comment above for justification.
837 */
838 old_exe_file = rcu_dereference_raw(mm->exe_file);
839
840 if (new_exe_file)
841 get_file(new_exe_file);
842 rcu_assign_pointer(mm->exe_file, new_exe_file);
843 if (old_exe_file)
844 fput(old_exe_file);
845 }
846
847 /**
848 * get_mm_exe_file - acquire a reference to the mm's executable file
849 *
850 * Returns %NULL if mm has no associated executable file.
851 * User must release file via fput().
852 */
853 struct file *get_mm_exe_file(struct mm_struct *mm)
854 {
855 struct file *exe_file;
856
857 rcu_read_lock();
858 exe_file = rcu_dereference(mm->exe_file);
859 if (exe_file && !get_file_rcu(exe_file))
860 exe_file = NULL;
861 rcu_read_unlock();
862 return exe_file;
863 }
864 EXPORT_SYMBOL(get_mm_exe_file);
865
866 /**
867 * get_task_exe_file - acquire a reference to the task's executable file
868 *
869 * Returns %NULL if task's mm (if any) has no associated executable file or
870 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
871 * User must release file via fput().
872 */
873 struct file *get_task_exe_file(struct task_struct *task)
874 {
875 struct file *exe_file = NULL;
876 struct mm_struct *mm;
877
878 task_lock(task);
879 mm = task->mm;
880 if (mm) {
881 if (!(task->flags & PF_KTHREAD))
882 exe_file = get_mm_exe_file(mm);
883 }
884 task_unlock(task);
885 return exe_file;
886 }
887 EXPORT_SYMBOL(get_task_exe_file);
888
889 /**
890 * get_task_mm - acquire a reference to the task's mm
891 *
892 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
893 * this kernel workthread has transiently adopted a user mm with use_mm,
894 * to do its AIO) is not set and if so returns a reference to it, after
895 * bumping up the use count. User must release the mm via mmput()
896 * after use. Typically used by /proc and ptrace.
897 */
898 struct mm_struct *get_task_mm(struct task_struct *task)
899 {
900 struct mm_struct *mm;
901
902 task_lock(task);
903 mm = task->mm;
904 if (mm) {
905 if (task->flags & PF_KTHREAD)
906 mm = NULL;
907 else
908 atomic_inc(&mm->mm_users);
909 }
910 task_unlock(task);
911 return mm;
912 }
913 EXPORT_SYMBOL_GPL(get_task_mm);
914
915 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
916 {
917 struct mm_struct *mm;
918 int err;
919
920 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
921 if (err)
922 return ERR_PTR(err);
923
924 mm = get_task_mm(task);
925 if (mm && mm != current->mm &&
926 !ptrace_may_access(task, mode)) {
927 mmput(mm);
928 mm = ERR_PTR(-EACCES);
929 }
930 mutex_unlock(&task->signal->cred_guard_mutex);
931
932 return mm;
933 }
934
935 static void complete_vfork_done(struct task_struct *tsk)
936 {
937 struct completion *vfork;
938
939 task_lock(tsk);
940 vfork = tsk->vfork_done;
941 if (likely(vfork)) {
942 tsk->vfork_done = NULL;
943 complete(vfork);
944 }
945 task_unlock(tsk);
946 }
947
948 static int wait_for_vfork_done(struct task_struct *child,
949 struct completion *vfork)
950 {
951 int killed;
952
953 freezer_do_not_count();
954 killed = wait_for_completion_killable(vfork);
955 freezer_count();
956
957 if (killed) {
958 task_lock(child);
959 child->vfork_done = NULL;
960 task_unlock(child);
961 }
962
963 put_task_struct(child);
964 return killed;
965 }
966
967 /* Please note the differences between mmput and mm_release.
968 * mmput is called whenever we stop holding onto a mm_struct,
969 * error success whatever.
970 *
971 * mm_release is called after a mm_struct has been removed
972 * from the current process.
973 *
974 * This difference is important for error handling, when we
975 * only half set up a mm_struct for a new process and need to restore
976 * the old one. Because we mmput the new mm_struct before
977 * restoring the old one. . .
978 * Eric Biederman 10 January 1998
979 */
980 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
981 {
982 /* Get rid of any futexes when releasing the mm */
983 #ifdef CONFIG_FUTEX
984 if (unlikely(tsk->robust_list)) {
985 exit_robust_list(tsk);
986 tsk->robust_list = NULL;
987 }
988 #ifdef CONFIG_COMPAT
989 if (unlikely(tsk->compat_robust_list)) {
990 compat_exit_robust_list(tsk);
991 tsk->compat_robust_list = NULL;
992 }
993 #endif
994 if (unlikely(!list_empty(&tsk->pi_state_list)))
995 exit_pi_state_list(tsk);
996 #endif
997
998 uprobe_free_utask(tsk);
999
1000 /* Get rid of any cached register state */
1001 deactivate_mm(tsk, mm);
1002
1003 /*
1004 * Signal userspace if we're not exiting with a core dump
1005 * because we want to leave the value intact for debugging
1006 * purposes.
1007 */
1008 if (tsk->clear_child_tid) {
1009 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1010 atomic_read(&mm->mm_users) > 1) {
1011 /*
1012 * We don't check the error code - if userspace has
1013 * not set up a proper pointer then tough luck.
1014 */
1015 put_user(0, tsk->clear_child_tid);
1016 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1017 1, NULL, NULL, 0);
1018 }
1019 tsk->clear_child_tid = NULL;
1020 }
1021
1022 /*
1023 * All done, finally we can wake up parent and return this mm to him.
1024 * Also kthread_stop() uses this completion for synchronization.
1025 */
1026 if (tsk->vfork_done)
1027 complete_vfork_done(tsk);
1028 }
1029
1030 /*
1031 * Allocate a new mm structure and copy contents from the
1032 * mm structure of the passed in task structure.
1033 */
1034 static struct mm_struct *dup_mm(struct task_struct *tsk)
1035 {
1036 struct mm_struct *mm, *oldmm = current->mm;
1037 int err;
1038
1039 mm = allocate_mm();
1040 if (!mm)
1041 goto fail_nomem;
1042
1043 memcpy(mm, oldmm, sizeof(*mm));
1044
1045 if (!mm_init(mm, tsk))
1046 goto fail_nomem;
1047
1048 err = dup_mmap(mm, oldmm);
1049 if (err)
1050 goto free_pt;
1051
1052 mm->hiwater_rss = get_mm_rss(mm);
1053 mm->hiwater_vm = mm->total_vm;
1054
1055 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1056 goto free_pt;
1057
1058 return mm;
1059
1060 free_pt:
1061 /* don't put binfmt in mmput, we haven't got module yet */
1062 mm->binfmt = NULL;
1063 mmput(mm);
1064
1065 fail_nomem:
1066 return NULL;
1067 }
1068
1069 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1070 {
1071 struct mm_struct *mm, *oldmm;
1072 int retval;
1073
1074 tsk->min_flt = tsk->maj_flt = 0;
1075 tsk->nvcsw = tsk->nivcsw = 0;
1076 #ifdef CONFIG_DETECT_HUNG_TASK
1077 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1078 #endif
1079
1080 tsk->mm = NULL;
1081 tsk->active_mm = NULL;
1082
1083 /*
1084 * Are we cloning a kernel thread?
1085 *
1086 * We need to steal a active VM for that..
1087 */
1088 oldmm = current->mm;
1089 if (!oldmm)
1090 return 0;
1091
1092 /* initialize the new vmacache entries */
1093 vmacache_flush(tsk);
1094
1095 if (clone_flags & CLONE_VM) {
1096 atomic_inc(&oldmm->mm_users);
1097 mm = oldmm;
1098 goto good_mm;
1099 }
1100
1101 retval = -ENOMEM;
1102 mm = dup_mm(tsk);
1103 if (!mm)
1104 goto fail_nomem;
1105
1106 good_mm:
1107 tsk->mm = mm;
1108 tsk->active_mm = mm;
1109 return 0;
1110
1111 fail_nomem:
1112 return retval;
1113 }
1114
1115 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1116 {
1117 struct fs_struct *fs = current->fs;
1118 if (clone_flags & CLONE_FS) {
1119 /* tsk->fs is already what we want */
1120 spin_lock(&fs->lock);
1121 if (fs->in_exec) {
1122 spin_unlock(&fs->lock);
1123 return -EAGAIN;
1124 }
1125 fs->users++;
1126 spin_unlock(&fs->lock);
1127 return 0;
1128 }
1129 tsk->fs = copy_fs_struct(fs);
1130 if (!tsk->fs)
1131 return -ENOMEM;
1132 return 0;
1133 }
1134
1135 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1136 {
1137 struct files_struct *oldf, *newf;
1138 int error = 0;
1139
1140 /*
1141 * A background process may not have any files ...
1142 */
1143 oldf = current->files;
1144 if (!oldf)
1145 goto out;
1146
1147 if (clone_flags & CLONE_FILES) {
1148 atomic_inc(&oldf->count);
1149 goto out;
1150 }
1151
1152 newf = dup_fd(oldf, &error);
1153 if (!newf)
1154 goto out;
1155
1156 tsk->files = newf;
1157 error = 0;
1158 out:
1159 return error;
1160 }
1161
1162 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1163 {
1164 #ifdef CONFIG_BLOCK
1165 struct io_context *ioc = current->io_context;
1166 struct io_context *new_ioc;
1167
1168 if (!ioc)
1169 return 0;
1170 /*
1171 * Share io context with parent, if CLONE_IO is set
1172 */
1173 if (clone_flags & CLONE_IO) {
1174 ioc_task_link(ioc);
1175 tsk->io_context = ioc;
1176 } else if (ioprio_valid(ioc->ioprio)) {
1177 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1178 if (unlikely(!new_ioc))
1179 return -ENOMEM;
1180
1181 new_ioc->ioprio = ioc->ioprio;
1182 put_io_context(new_ioc);
1183 }
1184 #endif
1185 return 0;
1186 }
1187
1188 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1189 {
1190 struct sighand_struct *sig;
1191
1192 if (clone_flags & CLONE_SIGHAND) {
1193 atomic_inc(&current->sighand->count);
1194 return 0;
1195 }
1196 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1197 rcu_assign_pointer(tsk->sighand, sig);
1198 if (!sig)
1199 return -ENOMEM;
1200
1201 atomic_set(&sig->count, 1);
1202 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1203 return 0;
1204 }
1205
1206 void __cleanup_sighand(struct sighand_struct *sighand)
1207 {
1208 if (atomic_dec_and_test(&sighand->count)) {
1209 signalfd_cleanup(sighand);
1210 /*
1211 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1212 * without an RCU grace period, see __lock_task_sighand().
1213 */
1214 kmem_cache_free(sighand_cachep, sighand);
1215 }
1216 }
1217
1218 /*
1219 * Initialize POSIX timer handling for a thread group.
1220 */
1221 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1222 {
1223 unsigned long cpu_limit;
1224
1225 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1226 if (cpu_limit != RLIM_INFINITY) {
1227 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1228 sig->cputimer.running = true;
1229 }
1230
1231 /* The timer lists. */
1232 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1233 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1234 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1235 }
1236
1237 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1238 {
1239 struct signal_struct *sig;
1240
1241 if (clone_flags & CLONE_THREAD)
1242 return 0;
1243
1244 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1245 tsk->signal = sig;
1246 if (!sig)
1247 return -ENOMEM;
1248
1249 sig->nr_threads = 1;
1250 atomic_set(&sig->live, 1);
1251 atomic_set(&sig->sigcnt, 1);
1252
1253 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1254 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1255 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1256
1257 init_waitqueue_head(&sig->wait_chldexit);
1258 sig->curr_target = tsk;
1259 init_sigpending(&sig->shared_pending);
1260 INIT_LIST_HEAD(&sig->posix_timers);
1261 seqlock_init(&sig->stats_lock);
1262 prev_cputime_init(&sig->prev_cputime);
1263
1264 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1265 sig->real_timer.function = it_real_fn;
1266
1267 task_lock(current->group_leader);
1268 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1269 task_unlock(current->group_leader);
1270
1271 posix_cpu_timers_init_group(sig);
1272
1273 tty_audit_fork(sig);
1274 sched_autogroup_fork(sig);
1275
1276 sig->oom_score_adj = current->signal->oom_score_adj;
1277 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1278
1279 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1280 current->signal->is_child_subreaper;
1281
1282 mutex_init(&sig->cred_guard_mutex);
1283
1284 return 0;
1285 }
1286
1287 static void copy_seccomp(struct task_struct *p)
1288 {
1289 #ifdef CONFIG_SECCOMP
1290 /*
1291 * Must be called with sighand->lock held, which is common to
1292 * all threads in the group. Holding cred_guard_mutex is not
1293 * needed because this new task is not yet running and cannot
1294 * be racing exec.
1295 */
1296 assert_spin_locked(&current->sighand->siglock);
1297
1298 /* Ref-count the new filter user, and assign it. */
1299 get_seccomp_filter(current);
1300 p->seccomp = current->seccomp;
1301
1302 /*
1303 * Explicitly enable no_new_privs here in case it got set
1304 * between the task_struct being duplicated and holding the
1305 * sighand lock. The seccomp state and nnp must be in sync.
1306 */
1307 if (task_no_new_privs(current))
1308 task_set_no_new_privs(p);
1309
1310 /*
1311 * If the parent gained a seccomp mode after copying thread
1312 * flags and between before we held the sighand lock, we have
1313 * to manually enable the seccomp thread flag here.
1314 */
1315 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1316 set_tsk_thread_flag(p, TIF_SECCOMP);
1317 #endif
1318 }
1319
1320 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1321 {
1322 current->clear_child_tid = tidptr;
1323
1324 return task_pid_vnr(current);
1325 }
1326
1327 static void rt_mutex_init_task(struct task_struct *p)
1328 {
1329 raw_spin_lock_init(&p->pi_lock);
1330 #ifdef CONFIG_RT_MUTEXES
1331 p->pi_waiters = RB_ROOT;
1332 p->pi_waiters_leftmost = NULL;
1333 p->pi_blocked_on = NULL;
1334 #endif
1335 }
1336
1337 /*
1338 * Initialize POSIX timer handling for a single task.
1339 */
1340 static void posix_cpu_timers_init(struct task_struct *tsk)
1341 {
1342 tsk->cputime_expires.prof_exp = 0;
1343 tsk->cputime_expires.virt_exp = 0;
1344 tsk->cputime_expires.sched_exp = 0;
1345 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1346 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1347 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1348 }
1349
1350 static inline void
1351 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1352 {
1353 task->pids[type].pid = pid;
1354 }
1355
1356 /*
1357 * This creates a new process as a copy of the old one,
1358 * but does not actually start it yet.
1359 *
1360 * It copies the registers, and all the appropriate
1361 * parts of the process environment (as per the clone
1362 * flags). The actual kick-off is left to the caller.
1363 */
1364 static __latent_entropy struct task_struct *copy_process(
1365 unsigned long clone_flags,
1366 unsigned long stack_start,
1367 unsigned long stack_size,
1368 int __user *child_tidptr,
1369 struct pid *pid,
1370 int trace,
1371 unsigned long tls,
1372 int node)
1373 {
1374 int retval;
1375 struct task_struct *p;
1376
1377 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1378 return ERR_PTR(-EINVAL);
1379
1380 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1381 return ERR_PTR(-EINVAL);
1382
1383 /*
1384 * Thread groups must share signals as well, and detached threads
1385 * can only be started up within the thread group.
1386 */
1387 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1388 return ERR_PTR(-EINVAL);
1389
1390 /*
1391 * Shared signal handlers imply shared VM. By way of the above,
1392 * thread groups also imply shared VM. Blocking this case allows
1393 * for various simplifications in other code.
1394 */
1395 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1396 return ERR_PTR(-EINVAL);
1397
1398 /*
1399 * Siblings of global init remain as zombies on exit since they are
1400 * not reaped by their parent (swapper). To solve this and to avoid
1401 * multi-rooted process trees, prevent global and container-inits
1402 * from creating siblings.
1403 */
1404 if ((clone_flags & CLONE_PARENT) &&
1405 current->signal->flags & SIGNAL_UNKILLABLE)
1406 return ERR_PTR(-EINVAL);
1407
1408 /*
1409 * If the new process will be in a different pid or user namespace
1410 * do not allow it to share a thread group with the forking task.
1411 */
1412 if (clone_flags & CLONE_THREAD) {
1413 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1414 (task_active_pid_ns(current) !=
1415 current->nsproxy->pid_ns_for_children))
1416 return ERR_PTR(-EINVAL);
1417 }
1418
1419 retval = security_task_create(clone_flags);
1420 if (retval)
1421 goto fork_out;
1422
1423 retval = -ENOMEM;
1424 p = dup_task_struct(current, node);
1425 if (!p)
1426 goto fork_out;
1427
1428 ftrace_graph_init_task(p);
1429
1430 rt_mutex_init_task(p);
1431
1432 #ifdef CONFIG_PROVE_LOCKING
1433 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1434 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1435 #endif
1436 retval = -EAGAIN;
1437 if (atomic_read(&p->real_cred->user->processes) >=
1438 task_rlimit(p, RLIMIT_NPROC)) {
1439 if (p->real_cred->user != INIT_USER &&
1440 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1441 goto bad_fork_free;
1442 }
1443 current->flags &= ~PF_NPROC_EXCEEDED;
1444
1445 retval = copy_creds(p, clone_flags);
1446 if (retval < 0)
1447 goto bad_fork_free;
1448
1449 /*
1450 * If multiple threads are within copy_process(), then this check
1451 * triggers too late. This doesn't hurt, the check is only there
1452 * to stop root fork bombs.
1453 */
1454 retval = -EAGAIN;
1455 if (nr_threads >= max_threads)
1456 goto bad_fork_cleanup_count;
1457
1458 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1459 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1460 p->flags |= PF_FORKNOEXEC;
1461 INIT_LIST_HEAD(&p->children);
1462 INIT_LIST_HEAD(&p->sibling);
1463 rcu_copy_process(p);
1464 p->vfork_done = NULL;
1465 spin_lock_init(&p->alloc_lock);
1466
1467 init_sigpending(&p->pending);
1468
1469 p->utime = p->stime = p->gtime = 0;
1470 p->utimescaled = p->stimescaled = 0;
1471 prev_cputime_init(&p->prev_cputime);
1472
1473 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1474 seqcount_init(&p->vtime_seqcount);
1475 p->vtime_snap = 0;
1476 p->vtime_snap_whence = VTIME_INACTIVE;
1477 #endif
1478
1479 #if defined(SPLIT_RSS_COUNTING)
1480 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1481 #endif
1482
1483 p->default_timer_slack_ns = current->timer_slack_ns;
1484
1485 task_io_accounting_init(&p->ioac);
1486 acct_clear_integrals(p);
1487
1488 posix_cpu_timers_init(p);
1489
1490 p->start_time = ktime_get_ns();
1491 p->real_start_time = ktime_get_boot_ns();
1492 p->io_context = NULL;
1493 p->audit_context = NULL;
1494 cgroup_fork(p);
1495 #ifdef CONFIG_NUMA
1496 p->mempolicy = mpol_dup(p->mempolicy);
1497 if (IS_ERR(p->mempolicy)) {
1498 retval = PTR_ERR(p->mempolicy);
1499 p->mempolicy = NULL;
1500 goto bad_fork_cleanup_threadgroup_lock;
1501 }
1502 #endif
1503 #ifdef CONFIG_CPUSETS
1504 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1505 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1506 seqcount_init(&p->mems_allowed_seq);
1507 #endif
1508 #ifdef CONFIG_TRACE_IRQFLAGS
1509 p->irq_events = 0;
1510 p->hardirqs_enabled = 0;
1511 p->hardirq_enable_ip = 0;
1512 p->hardirq_enable_event = 0;
1513 p->hardirq_disable_ip = _THIS_IP_;
1514 p->hardirq_disable_event = 0;
1515 p->softirqs_enabled = 1;
1516 p->softirq_enable_ip = _THIS_IP_;
1517 p->softirq_enable_event = 0;
1518 p->softirq_disable_ip = 0;
1519 p->softirq_disable_event = 0;
1520 p->hardirq_context = 0;
1521 p->softirq_context = 0;
1522 #endif
1523
1524 p->pagefault_disabled = 0;
1525
1526 #ifdef CONFIG_LOCKDEP
1527 p->lockdep_depth = 0; /* no locks held yet */
1528 p->curr_chain_key = 0;
1529 p->lockdep_recursion = 0;
1530 #endif
1531
1532 #ifdef CONFIG_DEBUG_MUTEXES
1533 p->blocked_on = NULL; /* not blocked yet */
1534 #endif
1535 #ifdef CONFIG_BCACHE
1536 p->sequential_io = 0;
1537 p->sequential_io_avg = 0;
1538 #endif
1539
1540 /* Perform scheduler related setup. Assign this task to a CPU. */
1541 retval = sched_fork(clone_flags, p);
1542 if (retval)
1543 goto bad_fork_cleanup_policy;
1544
1545 retval = perf_event_init_task(p);
1546 if (retval)
1547 goto bad_fork_cleanup_policy;
1548 retval = audit_alloc(p);
1549 if (retval)
1550 goto bad_fork_cleanup_perf;
1551 /* copy all the process information */
1552 shm_init_task(p);
1553 retval = copy_semundo(clone_flags, p);
1554 if (retval)
1555 goto bad_fork_cleanup_audit;
1556 retval = copy_files(clone_flags, p);
1557 if (retval)
1558 goto bad_fork_cleanup_semundo;
1559 retval = copy_fs(clone_flags, p);
1560 if (retval)
1561 goto bad_fork_cleanup_files;
1562 retval = copy_sighand(clone_flags, p);
1563 if (retval)
1564 goto bad_fork_cleanup_fs;
1565 retval = copy_signal(clone_flags, p);
1566 if (retval)
1567 goto bad_fork_cleanup_sighand;
1568 retval = copy_mm(clone_flags, p);
1569 if (retval)
1570 goto bad_fork_cleanup_signal;
1571 retval = copy_namespaces(clone_flags, p);
1572 if (retval)
1573 goto bad_fork_cleanup_mm;
1574 retval = copy_io(clone_flags, p);
1575 if (retval)
1576 goto bad_fork_cleanup_namespaces;
1577 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1578 if (retval)
1579 goto bad_fork_cleanup_io;
1580
1581 if (pid != &init_struct_pid) {
1582 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1583 if (IS_ERR(pid)) {
1584 retval = PTR_ERR(pid);
1585 goto bad_fork_cleanup_thread;
1586 }
1587 }
1588
1589 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1590 /*
1591 * Clear TID on mm_release()?
1592 */
1593 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1594 #ifdef CONFIG_BLOCK
1595 p->plug = NULL;
1596 #endif
1597 #ifdef CONFIG_FUTEX
1598 p->robust_list = NULL;
1599 #ifdef CONFIG_COMPAT
1600 p->compat_robust_list = NULL;
1601 #endif
1602 INIT_LIST_HEAD(&p->pi_state_list);
1603 p->pi_state_cache = NULL;
1604 #endif
1605 /*
1606 * sigaltstack should be cleared when sharing the same VM
1607 */
1608 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1609 sas_ss_reset(p);
1610
1611 /*
1612 * Syscall tracing and stepping should be turned off in the
1613 * child regardless of CLONE_PTRACE.
1614 */
1615 user_disable_single_step(p);
1616 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1617 #ifdef TIF_SYSCALL_EMU
1618 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1619 #endif
1620 clear_all_latency_tracing(p);
1621
1622 /* ok, now we should be set up.. */
1623 p->pid = pid_nr(pid);
1624 if (clone_flags & CLONE_THREAD) {
1625 p->exit_signal = -1;
1626 p->group_leader = current->group_leader;
1627 p->tgid = current->tgid;
1628 } else {
1629 if (clone_flags & CLONE_PARENT)
1630 p->exit_signal = current->group_leader->exit_signal;
1631 else
1632 p->exit_signal = (clone_flags & CSIGNAL);
1633 p->group_leader = p;
1634 p->tgid = p->pid;
1635 }
1636
1637 p->nr_dirtied = 0;
1638 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1639 p->dirty_paused_when = 0;
1640
1641 p->pdeath_signal = 0;
1642 INIT_LIST_HEAD(&p->thread_group);
1643 p->task_works = NULL;
1644
1645 threadgroup_change_begin(current);
1646 /*
1647 * Ensure that the cgroup subsystem policies allow the new process to be
1648 * forked. It should be noted the the new process's css_set can be changed
1649 * between here and cgroup_post_fork() if an organisation operation is in
1650 * progress.
1651 */
1652 retval = cgroup_can_fork(p);
1653 if (retval)
1654 goto bad_fork_free_pid;
1655
1656 /*
1657 * Make it visible to the rest of the system, but dont wake it up yet.
1658 * Need tasklist lock for parent etc handling!
1659 */
1660 write_lock_irq(&tasklist_lock);
1661
1662 /* CLONE_PARENT re-uses the old parent */
1663 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1664 p->real_parent = current->real_parent;
1665 p->parent_exec_id = current->parent_exec_id;
1666 } else {
1667 p->real_parent = current;
1668 p->parent_exec_id = current->self_exec_id;
1669 }
1670
1671 spin_lock(&current->sighand->siglock);
1672
1673 /*
1674 * Copy seccomp details explicitly here, in case they were changed
1675 * before holding sighand lock.
1676 */
1677 copy_seccomp(p);
1678
1679 /*
1680 * Process group and session signals need to be delivered to just the
1681 * parent before the fork or both the parent and the child after the
1682 * fork. Restart if a signal comes in before we add the new process to
1683 * it's process group.
1684 * A fatal signal pending means that current will exit, so the new
1685 * thread can't slip out of an OOM kill (or normal SIGKILL).
1686 */
1687 recalc_sigpending();
1688 if (signal_pending(current)) {
1689 spin_unlock(&current->sighand->siglock);
1690 write_unlock_irq(&tasklist_lock);
1691 retval = -ERESTARTNOINTR;
1692 goto bad_fork_cancel_cgroup;
1693 }
1694
1695 if (likely(p->pid)) {
1696 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1697
1698 init_task_pid(p, PIDTYPE_PID, pid);
1699 if (thread_group_leader(p)) {
1700 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1701 init_task_pid(p, PIDTYPE_SID, task_session(current));
1702
1703 if (is_child_reaper(pid)) {
1704 ns_of_pid(pid)->child_reaper = p;
1705 p->signal->flags |= SIGNAL_UNKILLABLE;
1706 }
1707
1708 p->signal->leader_pid = pid;
1709 p->signal->tty = tty_kref_get(current->signal->tty);
1710 list_add_tail(&p->sibling, &p->real_parent->children);
1711 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1712 attach_pid(p, PIDTYPE_PGID);
1713 attach_pid(p, PIDTYPE_SID);
1714 __this_cpu_inc(process_counts);
1715 } else {
1716 current->signal->nr_threads++;
1717 atomic_inc(&current->signal->live);
1718 atomic_inc(&current->signal->sigcnt);
1719 list_add_tail_rcu(&p->thread_group,
1720 &p->group_leader->thread_group);
1721 list_add_tail_rcu(&p->thread_node,
1722 &p->signal->thread_head);
1723 }
1724 attach_pid(p, PIDTYPE_PID);
1725 nr_threads++;
1726 }
1727
1728 total_forks++;
1729 spin_unlock(&current->sighand->siglock);
1730 syscall_tracepoint_update(p);
1731 write_unlock_irq(&tasklist_lock);
1732
1733 proc_fork_connector(p);
1734 cgroup_post_fork(p);
1735 threadgroup_change_end(current);
1736 perf_event_fork(p);
1737
1738 trace_task_newtask(p, clone_flags);
1739 uprobe_copy_process(p, clone_flags);
1740
1741 return p;
1742
1743 bad_fork_cancel_cgroup:
1744 cgroup_cancel_fork(p);
1745 bad_fork_free_pid:
1746 threadgroup_change_end(current);
1747 if (pid != &init_struct_pid)
1748 free_pid(pid);
1749 bad_fork_cleanup_thread:
1750 exit_thread(p);
1751 bad_fork_cleanup_io:
1752 if (p->io_context)
1753 exit_io_context(p);
1754 bad_fork_cleanup_namespaces:
1755 exit_task_namespaces(p);
1756 bad_fork_cleanup_mm:
1757 if (p->mm)
1758 mmput(p->mm);
1759 bad_fork_cleanup_signal:
1760 if (!(clone_flags & CLONE_THREAD))
1761 free_signal_struct(p->signal);
1762 bad_fork_cleanup_sighand:
1763 __cleanup_sighand(p->sighand);
1764 bad_fork_cleanup_fs:
1765 exit_fs(p); /* blocking */
1766 bad_fork_cleanup_files:
1767 exit_files(p); /* blocking */
1768 bad_fork_cleanup_semundo:
1769 exit_sem(p);
1770 bad_fork_cleanup_audit:
1771 audit_free(p);
1772 bad_fork_cleanup_perf:
1773 perf_event_free_task(p);
1774 bad_fork_cleanup_policy:
1775 #ifdef CONFIG_NUMA
1776 mpol_put(p->mempolicy);
1777 bad_fork_cleanup_threadgroup_lock:
1778 #endif
1779 delayacct_tsk_free(p);
1780 bad_fork_cleanup_count:
1781 atomic_dec(&p->cred->user->processes);
1782 exit_creds(p);
1783 bad_fork_free:
1784 free_task(p);
1785 fork_out:
1786 return ERR_PTR(retval);
1787 }
1788
1789 static inline void init_idle_pids(struct pid_link *links)
1790 {
1791 enum pid_type type;
1792
1793 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1794 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1795 links[type].pid = &init_struct_pid;
1796 }
1797 }
1798
1799 struct task_struct *fork_idle(int cpu)
1800 {
1801 struct task_struct *task;
1802 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1803 cpu_to_node(cpu));
1804 if (!IS_ERR(task)) {
1805 init_idle_pids(task->pids);
1806 init_idle(task, cpu);
1807 }
1808
1809 return task;
1810 }
1811
1812 /*
1813 * Ok, this is the main fork-routine.
1814 *
1815 * It copies the process, and if successful kick-starts
1816 * it and waits for it to finish using the VM if required.
1817 */
1818 long _do_fork(unsigned long clone_flags,
1819 unsigned long stack_start,
1820 unsigned long stack_size,
1821 int __user *parent_tidptr,
1822 int __user *child_tidptr,
1823 unsigned long tls)
1824 {
1825 struct task_struct *p;
1826 int trace = 0;
1827 long nr;
1828
1829 /*
1830 * Determine whether and which event to report to ptracer. When
1831 * called from kernel_thread or CLONE_UNTRACED is explicitly
1832 * requested, no event is reported; otherwise, report if the event
1833 * for the type of forking is enabled.
1834 */
1835 if (!(clone_flags & CLONE_UNTRACED)) {
1836 if (clone_flags & CLONE_VFORK)
1837 trace = PTRACE_EVENT_VFORK;
1838 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1839 trace = PTRACE_EVENT_CLONE;
1840 else
1841 trace = PTRACE_EVENT_FORK;
1842
1843 if (likely(!ptrace_event_enabled(current, trace)))
1844 trace = 0;
1845 }
1846
1847 p = copy_process(clone_flags, stack_start, stack_size,
1848 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1849 add_latent_entropy();
1850 /*
1851 * Do this prior waking up the new thread - the thread pointer
1852 * might get invalid after that point, if the thread exits quickly.
1853 */
1854 if (!IS_ERR(p)) {
1855 struct completion vfork;
1856 struct pid *pid;
1857
1858 trace_sched_process_fork(current, p);
1859
1860 pid = get_task_pid(p, PIDTYPE_PID);
1861 nr = pid_vnr(pid);
1862
1863 if (clone_flags & CLONE_PARENT_SETTID)
1864 put_user(nr, parent_tidptr);
1865
1866 if (clone_flags & CLONE_VFORK) {
1867 p->vfork_done = &vfork;
1868 init_completion(&vfork);
1869 get_task_struct(p);
1870 }
1871
1872 wake_up_new_task(p);
1873
1874 /* forking complete and child started to run, tell ptracer */
1875 if (unlikely(trace))
1876 ptrace_event_pid(trace, pid);
1877
1878 if (clone_flags & CLONE_VFORK) {
1879 if (!wait_for_vfork_done(p, &vfork))
1880 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1881 }
1882
1883 put_pid(pid);
1884 } else {
1885 nr = PTR_ERR(p);
1886 }
1887 return nr;
1888 }
1889
1890 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1891 /* For compatibility with architectures that call do_fork directly rather than
1892 * using the syscall entry points below. */
1893 long do_fork(unsigned long clone_flags,
1894 unsigned long stack_start,
1895 unsigned long stack_size,
1896 int __user *parent_tidptr,
1897 int __user *child_tidptr)
1898 {
1899 return _do_fork(clone_flags, stack_start, stack_size,
1900 parent_tidptr, child_tidptr, 0);
1901 }
1902 #endif
1903
1904 /*
1905 * Create a kernel thread.
1906 */
1907 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1908 {
1909 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1910 (unsigned long)arg, NULL, NULL, 0);
1911 }
1912
1913 #ifdef __ARCH_WANT_SYS_FORK
1914 SYSCALL_DEFINE0(fork)
1915 {
1916 #ifdef CONFIG_MMU
1917 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1918 #else
1919 /* can not support in nommu mode */
1920 return -EINVAL;
1921 #endif
1922 }
1923 #endif
1924
1925 #ifdef __ARCH_WANT_SYS_VFORK
1926 SYSCALL_DEFINE0(vfork)
1927 {
1928 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1929 0, NULL, NULL, 0);
1930 }
1931 #endif
1932
1933 #ifdef __ARCH_WANT_SYS_CLONE
1934 #ifdef CONFIG_CLONE_BACKWARDS
1935 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1936 int __user *, parent_tidptr,
1937 unsigned long, tls,
1938 int __user *, child_tidptr)
1939 #elif defined(CONFIG_CLONE_BACKWARDS2)
1940 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1941 int __user *, parent_tidptr,
1942 int __user *, child_tidptr,
1943 unsigned long, tls)
1944 #elif defined(CONFIG_CLONE_BACKWARDS3)
1945 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1946 int, stack_size,
1947 int __user *, parent_tidptr,
1948 int __user *, child_tidptr,
1949 unsigned long, tls)
1950 #else
1951 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1952 int __user *, parent_tidptr,
1953 int __user *, child_tidptr,
1954 unsigned long, tls)
1955 #endif
1956 {
1957 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1958 }
1959 #endif
1960
1961 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1962 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1963 #endif
1964
1965 static void sighand_ctor(void *data)
1966 {
1967 struct sighand_struct *sighand = data;
1968
1969 spin_lock_init(&sighand->siglock);
1970 init_waitqueue_head(&sighand->signalfd_wqh);
1971 }
1972
1973 void __init proc_caches_init(void)
1974 {
1975 sighand_cachep = kmem_cache_create("sighand_cache",
1976 sizeof(struct sighand_struct), 0,
1977 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1978 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1979 signal_cachep = kmem_cache_create("signal_cache",
1980 sizeof(struct signal_struct), 0,
1981 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1982 NULL);
1983 files_cachep = kmem_cache_create("files_cache",
1984 sizeof(struct files_struct), 0,
1985 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1986 NULL);
1987 fs_cachep = kmem_cache_create("fs_cache",
1988 sizeof(struct fs_struct), 0,
1989 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1990 NULL);
1991 /*
1992 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1993 * whole struct cpumask for the OFFSTACK case. We could change
1994 * this to *only* allocate as much of it as required by the
1995 * maximum number of CPU's we can ever have. The cpumask_allocation
1996 * is at the end of the structure, exactly for that reason.
1997 */
1998 mm_cachep = kmem_cache_create("mm_struct",
1999 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2000 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2001 NULL);
2002 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2003 mmap_init();
2004 nsproxy_cache_init();
2005 }
2006
2007 /*
2008 * Check constraints on flags passed to the unshare system call.
2009 */
2010 static int check_unshare_flags(unsigned long unshare_flags)
2011 {
2012 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2013 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2014 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2015 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2016 return -EINVAL;
2017 /*
2018 * Not implemented, but pretend it works if there is nothing
2019 * to unshare. Note that unsharing the address space or the
2020 * signal handlers also need to unshare the signal queues (aka
2021 * CLONE_THREAD).
2022 */
2023 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2024 if (!thread_group_empty(current))
2025 return -EINVAL;
2026 }
2027 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2028 if (atomic_read(&current->sighand->count) > 1)
2029 return -EINVAL;
2030 }
2031 if (unshare_flags & CLONE_VM) {
2032 if (!current_is_single_threaded())
2033 return -EINVAL;
2034 }
2035
2036 return 0;
2037 }
2038
2039 /*
2040 * Unshare the filesystem structure if it is being shared
2041 */
2042 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2043 {
2044 struct fs_struct *fs = current->fs;
2045
2046 if (!(unshare_flags & CLONE_FS) || !fs)
2047 return 0;
2048
2049 /* don't need lock here; in the worst case we'll do useless copy */
2050 if (fs->users == 1)
2051 return 0;
2052
2053 *new_fsp = copy_fs_struct(fs);
2054 if (!*new_fsp)
2055 return -ENOMEM;
2056
2057 return 0;
2058 }
2059
2060 /*
2061 * Unshare file descriptor table if it is being shared
2062 */
2063 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2064 {
2065 struct files_struct *fd = current->files;
2066 int error = 0;
2067
2068 if ((unshare_flags & CLONE_FILES) &&
2069 (fd && atomic_read(&fd->count) > 1)) {
2070 *new_fdp = dup_fd(fd, &error);
2071 if (!*new_fdp)
2072 return error;
2073 }
2074
2075 return 0;
2076 }
2077
2078 /*
2079 * unshare allows a process to 'unshare' part of the process
2080 * context which was originally shared using clone. copy_*
2081 * functions used by do_fork() cannot be used here directly
2082 * because they modify an inactive task_struct that is being
2083 * constructed. Here we are modifying the current, active,
2084 * task_struct.
2085 */
2086 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2087 {
2088 struct fs_struct *fs, *new_fs = NULL;
2089 struct files_struct *fd, *new_fd = NULL;
2090 struct cred *new_cred = NULL;
2091 struct nsproxy *new_nsproxy = NULL;
2092 int do_sysvsem = 0;
2093 int err;
2094
2095 /*
2096 * If unsharing a user namespace must also unshare the thread group
2097 * and unshare the filesystem root and working directories.
2098 */
2099 if (unshare_flags & CLONE_NEWUSER)
2100 unshare_flags |= CLONE_THREAD | CLONE_FS;
2101 /*
2102 * If unsharing vm, must also unshare signal handlers.
2103 */
2104 if (unshare_flags & CLONE_VM)
2105 unshare_flags |= CLONE_SIGHAND;
2106 /*
2107 * If unsharing a signal handlers, must also unshare the signal queues.
2108 */
2109 if (unshare_flags & CLONE_SIGHAND)
2110 unshare_flags |= CLONE_THREAD;
2111 /*
2112 * If unsharing namespace, must also unshare filesystem information.
2113 */
2114 if (unshare_flags & CLONE_NEWNS)
2115 unshare_flags |= CLONE_FS;
2116
2117 err = check_unshare_flags(unshare_flags);
2118 if (err)
2119 goto bad_unshare_out;
2120 /*
2121 * CLONE_NEWIPC must also detach from the undolist: after switching
2122 * to a new ipc namespace, the semaphore arrays from the old
2123 * namespace are unreachable.
2124 */
2125 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2126 do_sysvsem = 1;
2127 err = unshare_fs(unshare_flags, &new_fs);
2128 if (err)
2129 goto bad_unshare_out;
2130 err = unshare_fd(unshare_flags, &new_fd);
2131 if (err)
2132 goto bad_unshare_cleanup_fs;
2133 err = unshare_userns(unshare_flags, &new_cred);
2134 if (err)
2135 goto bad_unshare_cleanup_fd;
2136 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2137 new_cred, new_fs);
2138 if (err)
2139 goto bad_unshare_cleanup_cred;
2140
2141 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2142 if (do_sysvsem) {
2143 /*
2144 * CLONE_SYSVSEM is equivalent to sys_exit().
2145 */
2146 exit_sem(current);
2147 }
2148 if (unshare_flags & CLONE_NEWIPC) {
2149 /* Orphan segments in old ns (see sem above). */
2150 exit_shm(current);
2151 shm_init_task(current);
2152 }
2153
2154 if (new_nsproxy)
2155 switch_task_namespaces(current, new_nsproxy);
2156
2157 task_lock(current);
2158
2159 if (new_fs) {
2160 fs = current->fs;
2161 spin_lock(&fs->lock);
2162 current->fs = new_fs;
2163 if (--fs->users)
2164 new_fs = NULL;
2165 else
2166 new_fs = fs;
2167 spin_unlock(&fs->lock);
2168 }
2169
2170 if (new_fd) {
2171 fd = current->files;
2172 current->files = new_fd;
2173 new_fd = fd;
2174 }
2175
2176 task_unlock(current);
2177
2178 if (new_cred) {
2179 /* Install the new user namespace */
2180 commit_creds(new_cred);
2181 new_cred = NULL;
2182 }
2183 }
2184
2185 bad_unshare_cleanup_cred:
2186 if (new_cred)
2187 put_cred(new_cred);
2188 bad_unshare_cleanup_fd:
2189 if (new_fd)
2190 put_files_struct(new_fd);
2191
2192 bad_unshare_cleanup_fs:
2193 if (new_fs)
2194 free_fs_struct(new_fs);
2195
2196 bad_unshare_out:
2197 return err;
2198 }
2199
2200 /*
2201 * Helper to unshare the files of the current task.
2202 * We don't want to expose copy_files internals to
2203 * the exec layer of the kernel.
2204 */
2205
2206 int unshare_files(struct files_struct **displaced)
2207 {
2208 struct task_struct *task = current;
2209 struct files_struct *copy = NULL;
2210 int error;
2211
2212 error = unshare_fd(CLONE_FILES, &copy);
2213 if (error || !copy) {
2214 *displaced = NULL;
2215 return error;
2216 }
2217 *displaced = task->files;
2218 task_lock(task);
2219 task->files = copy;
2220 task_unlock(task);
2221 return 0;
2222 }
2223
2224 int sysctl_max_threads(struct ctl_table *table, int write,
2225 void __user *buffer, size_t *lenp, loff_t *ppos)
2226 {
2227 struct ctl_table t;
2228 int ret;
2229 int threads = max_threads;
2230 int min = MIN_THREADS;
2231 int max = MAX_THREADS;
2232
2233 t = *table;
2234 t.data = &threads;
2235 t.extra1 = &min;
2236 t.extra2 = &max;
2237
2238 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2239 if (ret || !write)
2240 return ret;
2241
2242 set_max_threads(threads);
2243
2244 return 0;
2245 }
This page took 0.080104 seconds and 5 git commands to generate.