beb31725f7e2746fb17cdd305c4193ab2c70e551
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
163 int node)
164 {
165 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
166 THREAD_SIZE_ORDER);
167
168 return page ? page_address(page) : NULL;
169 }
170
171 static inline void free_thread_stack(unsigned long *stack)
172 {
173 __free_pages(virt_to_page(stack), THREAD_SIZE_ORDER);
174 }
175 # else
176 static struct kmem_cache *thread_stack_cache;
177
178 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
179 int node)
180 {
181 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
182 }
183
184 static void free_thread_stack(unsigned long *stack)
185 {
186 kmem_cache_free(thread_stack_cache, stack);
187 }
188
189 void thread_stack_cache_init(void)
190 {
191 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
192 THREAD_SIZE, 0, NULL);
193 BUG_ON(thread_stack_cache == NULL);
194 }
195 # endif
196 #endif
197
198 /* SLAB cache for signal_struct structures (tsk->signal) */
199 static struct kmem_cache *signal_cachep;
200
201 /* SLAB cache for sighand_struct structures (tsk->sighand) */
202 struct kmem_cache *sighand_cachep;
203
204 /* SLAB cache for files_struct structures (tsk->files) */
205 struct kmem_cache *files_cachep;
206
207 /* SLAB cache for fs_struct structures (tsk->fs) */
208 struct kmem_cache *fs_cachep;
209
210 /* SLAB cache for vm_area_struct structures */
211 struct kmem_cache *vm_area_cachep;
212
213 /* SLAB cache for mm_struct structures (tsk->mm) */
214 static struct kmem_cache *mm_cachep;
215
216 static void account_kernel_stack(unsigned long *stack, int account)
217 {
218 /* All stack pages are in the same zone and belong to the same memcg. */
219 struct page *first_page = virt_to_page(stack);
220
221 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
222 THREAD_SIZE / 1024 * account);
223
224 memcg_kmem_update_page_stat(
225 first_page, MEMCG_KERNEL_STACK_KB,
226 account * (THREAD_SIZE / 1024));
227 }
228
229 void free_task(struct task_struct *tsk)
230 {
231 account_kernel_stack(tsk->stack, -1);
232 arch_release_thread_stack(tsk->stack);
233 free_thread_stack(tsk->stack);
234 rt_mutex_debug_task_free(tsk);
235 ftrace_graph_exit_task(tsk);
236 put_seccomp_filter(tsk);
237 arch_release_task_struct(tsk);
238 free_task_struct(tsk);
239 }
240 EXPORT_SYMBOL(free_task);
241
242 static inline void free_signal_struct(struct signal_struct *sig)
243 {
244 taskstats_tgid_free(sig);
245 sched_autogroup_exit(sig);
246 kmem_cache_free(signal_cachep, sig);
247 }
248
249 static inline void put_signal_struct(struct signal_struct *sig)
250 {
251 if (atomic_dec_and_test(&sig->sigcnt))
252 free_signal_struct(sig);
253 }
254
255 void __put_task_struct(struct task_struct *tsk)
256 {
257 WARN_ON(!tsk->exit_state);
258 WARN_ON(atomic_read(&tsk->usage));
259 WARN_ON(tsk == current);
260
261 cgroup_free(tsk);
262 task_numa_free(tsk);
263 security_task_free(tsk);
264 exit_creds(tsk);
265 delayacct_tsk_free(tsk);
266 put_signal_struct(tsk->signal);
267
268 if (!profile_handoff_task(tsk))
269 free_task(tsk);
270 }
271 EXPORT_SYMBOL_GPL(__put_task_struct);
272
273 void __init __weak arch_task_cache_init(void) { }
274
275 /*
276 * set_max_threads
277 */
278 static void set_max_threads(unsigned int max_threads_suggested)
279 {
280 u64 threads;
281
282 /*
283 * The number of threads shall be limited such that the thread
284 * structures may only consume a small part of the available memory.
285 */
286 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
287 threads = MAX_THREADS;
288 else
289 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
290 (u64) THREAD_SIZE * 8UL);
291
292 if (threads > max_threads_suggested)
293 threads = max_threads_suggested;
294
295 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
296 }
297
298 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
299 /* Initialized by the architecture: */
300 int arch_task_struct_size __read_mostly;
301 #endif
302
303 void __init fork_init(void)
304 {
305 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
306 #ifndef ARCH_MIN_TASKALIGN
307 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
308 #endif
309 /* create a slab on which task_structs can be allocated */
310 task_struct_cachep = kmem_cache_create("task_struct",
311 arch_task_struct_size, ARCH_MIN_TASKALIGN,
312 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
313 #endif
314
315 /* do the arch specific task caches init */
316 arch_task_cache_init();
317
318 set_max_threads(MAX_THREADS);
319
320 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
321 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
322 init_task.signal->rlim[RLIMIT_SIGPENDING] =
323 init_task.signal->rlim[RLIMIT_NPROC];
324 }
325
326 int __weak arch_dup_task_struct(struct task_struct *dst,
327 struct task_struct *src)
328 {
329 *dst = *src;
330 return 0;
331 }
332
333 void set_task_stack_end_magic(struct task_struct *tsk)
334 {
335 unsigned long *stackend;
336
337 stackend = end_of_stack(tsk);
338 *stackend = STACK_END_MAGIC; /* for overflow detection */
339 }
340
341 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
342 {
343 struct task_struct *tsk;
344 unsigned long *stack;
345 int err;
346
347 if (node == NUMA_NO_NODE)
348 node = tsk_fork_get_node(orig);
349 tsk = alloc_task_struct_node(node);
350 if (!tsk)
351 return NULL;
352
353 stack = alloc_thread_stack_node(tsk, node);
354 if (!stack)
355 goto free_tsk;
356
357 err = arch_dup_task_struct(tsk, orig);
358 if (err)
359 goto free_stack;
360
361 tsk->stack = stack;
362 #ifdef CONFIG_SECCOMP
363 /*
364 * We must handle setting up seccomp filters once we're under
365 * the sighand lock in case orig has changed between now and
366 * then. Until then, filter must be NULL to avoid messing up
367 * the usage counts on the error path calling free_task.
368 */
369 tsk->seccomp.filter = NULL;
370 #endif
371
372 setup_thread_stack(tsk, orig);
373 clear_user_return_notifier(tsk);
374 clear_tsk_need_resched(tsk);
375 set_task_stack_end_magic(tsk);
376
377 #ifdef CONFIG_CC_STACKPROTECTOR
378 tsk->stack_canary = get_random_int();
379 #endif
380
381 /*
382 * One for us, one for whoever does the "release_task()" (usually
383 * parent)
384 */
385 atomic_set(&tsk->usage, 2);
386 #ifdef CONFIG_BLK_DEV_IO_TRACE
387 tsk->btrace_seq = 0;
388 #endif
389 tsk->splice_pipe = NULL;
390 tsk->task_frag.page = NULL;
391 tsk->wake_q.next = NULL;
392
393 account_kernel_stack(stack, 1);
394
395 kcov_task_init(tsk);
396
397 return tsk;
398
399 free_stack:
400 free_thread_stack(stack);
401 free_tsk:
402 free_task_struct(tsk);
403 return NULL;
404 }
405
406 #ifdef CONFIG_MMU
407 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
408 {
409 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
410 struct rb_node **rb_link, *rb_parent;
411 int retval;
412 unsigned long charge;
413
414 uprobe_start_dup_mmap();
415 if (down_write_killable(&oldmm->mmap_sem)) {
416 retval = -EINTR;
417 goto fail_uprobe_end;
418 }
419 flush_cache_dup_mm(oldmm);
420 uprobe_dup_mmap(oldmm, mm);
421 /*
422 * Not linked in yet - no deadlock potential:
423 */
424 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
425
426 /* No ordering required: file already has been exposed. */
427 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
428
429 mm->total_vm = oldmm->total_vm;
430 mm->data_vm = oldmm->data_vm;
431 mm->exec_vm = oldmm->exec_vm;
432 mm->stack_vm = oldmm->stack_vm;
433
434 rb_link = &mm->mm_rb.rb_node;
435 rb_parent = NULL;
436 pprev = &mm->mmap;
437 retval = ksm_fork(mm, oldmm);
438 if (retval)
439 goto out;
440 retval = khugepaged_fork(mm, oldmm);
441 if (retval)
442 goto out;
443
444 prev = NULL;
445 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
446 struct file *file;
447
448 if (mpnt->vm_flags & VM_DONTCOPY) {
449 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
450 continue;
451 }
452 charge = 0;
453 if (mpnt->vm_flags & VM_ACCOUNT) {
454 unsigned long len = vma_pages(mpnt);
455
456 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
457 goto fail_nomem;
458 charge = len;
459 }
460 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
461 if (!tmp)
462 goto fail_nomem;
463 *tmp = *mpnt;
464 INIT_LIST_HEAD(&tmp->anon_vma_chain);
465 retval = vma_dup_policy(mpnt, tmp);
466 if (retval)
467 goto fail_nomem_policy;
468 tmp->vm_mm = mm;
469 if (anon_vma_fork(tmp, mpnt))
470 goto fail_nomem_anon_vma_fork;
471 tmp->vm_flags &=
472 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
473 tmp->vm_next = tmp->vm_prev = NULL;
474 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
475 file = tmp->vm_file;
476 if (file) {
477 struct inode *inode = file_inode(file);
478 struct address_space *mapping = file->f_mapping;
479
480 get_file(file);
481 if (tmp->vm_flags & VM_DENYWRITE)
482 atomic_dec(&inode->i_writecount);
483 i_mmap_lock_write(mapping);
484 if (tmp->vm_flags & VM_SHARED)
485 atomic_inc(&mapping->i_mmap_writable);
486 flush_dcache_mmap_lock(mapping);
487 /* insert tmp into the share list, just after mpnt */
488 vma_interval_tree_insert_after(tmp, mpnt,
489 &mapping->i_mmap);
490 flush_dcache_mmap_unlock(mapping);
491 i_mmap_unlock_write(mapping);
492 }
493
494 /*
495 * Clear hugetlb-related page reserves for children. This only
496 * affects MAP_PRIVATE mappings. Faults generated by the child
497 * are not guaranteed to succeed, even if read-only
498 */
499 if (is_vm_hugetlb_page(tmp))
500 reset_vma_resv_huge_pages(tmp);
501
502 /*
503 * Link in the new vma and copy the page table entries.
504 */
505 *pprev = tmp;
506 pprev = &tmp->vm_next;
507 tmp->vm_prev = prev;
508 prev = tmp;
509
510 __vma_link_rb(mm, tmp, rb_link, rb_parent);
511 rb_link = &tmp->vm_rb.rb_right;
512 rb_parent = &tmp->vm_rb;
513
514 mm->map_count++;
515 retval = copy_page_range(mm, oldmm, mpnt);
516
517 if (tmp->vm_ops && tmp->vm_ops->open)
518 tmp->vm_ops->open(tmp);
519
520 if (retval)
521 goto out;
522 }
523 /* a new mm has just been created */
524 arch_dup_mmap(oldmm, mm);
525 retval = 0;
526 out:
527 up_write(&mm->mmap_sem);
528 flush_tlb_mm(oldmm);
529 up_write(&oldmm->mmap_sem);
530 fail_uprobe_end:
531 uprobe_end_dup_mmap();
532 return retval;
533 fail_nomem_anon_vma_fork:
534 mpol_put(vma_policy(tmp));
535 fail_nomem_policy:
536 kmem_cache_free(vm_area_cachep, tmp);
537 fail_nomem:
538 retval = -ENOMEM;
539 vm_unacct_memory(charge);
540 goto out;
541 }
542
543 static inline int mm_alloc_pgd(struct mm_struct *mm)
544 {
545 mm->pgd = pgd_alloc(mm);
546 if (unlikely(!mm->pgd))
547 return -ENOMEM;
548 return 0;
549 }
550
551 static inline void mm_free_pgd(struct mm_struct *mm)
552 {
553 pgd_free(mm, mm->pgd);
554 }
555 #else
556 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
557 {
558 down_write(&oldmm->mmap_sem);
559 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
560 up_write(&oldmm->mmap_sem);
561 return 0;
562 }
563 #define mm_alloc_pgd(mm) (0)
564 #define mm_free_pgd(mm)
565 #endif /* CONFIG_MMU */
566
567 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
568
569 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
570 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
571
572 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
573
574 static int __init coredump_filter_setup(char *s)
575 {
576 default_dump_filter =
577 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
578 MMF_DUMP_FILTER_MASK;
579 return 1;
580 }
581
582 __setup("coredump_filter=", coredump_filter_setup);
583
584 #include <linux/init_task.h>
585
586 static void mm_init_aio(struct mm_struct *mm)
587 {
588 #ifdef CONFIG_AIO
589 spin_lock_init(&mm->ioctx_lock);
590 mm->ioctx_table = NULL;
591 #endif
592 }
593
594 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
595 {
596 #ifdef CONFIG_MEMCG
597 mm->owner = p;
598 #endif
599 }
600
601 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
602 {
603 mm->mmap = NULL;
604 mm->mm_rb = RB_ROOT;
605 mm->vmacache_seqnum = 0;
606 atomic_set(&mm->mm_users, 1);
607 atomic_set(&mm->mm_count, 1);
608 init_rwsem(&mm->mmap_sem);
609 INIT_LIST_HEAD(&mm->mmlist);
610 mm->core_state = NULL;
611 atomic_long_set(&mm->nr_ptes, 0);
612 mm_nr_pmds_init(mm);
613 mm->map_count = 0;
614 mm->locked_vm = 0;
615 mm->pinned_vm = 0;
616 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
617 spin_lock_init(&mm->page_table_lock);
618 mm_init_cpumask(mm);
619 mm_init_aio(mm);
620 mm_init_owner(mm, p);
621 mmu_notifier_mm_init(mm);
622 clear_tlb_flush_pending(mm);
623 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
624 mm->pmd_huge_pte = NULL;
625 #endif
626
627 if (current->mm) {
628 mm->flags = current->mm->flags & MMF_INIT_MASK;
629 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
630 } else {
631 mm->flags = default_dump_filter;
632 mm->def_flags = 0;
633 }
634
635 if (mm_alloc_pgd(mm))
636 goto fail_nopgd;
637
638 if (init_new_context(p, mm))
639 goto fail_nocontext;
640
641 return mm;
642
643 fail_nocontext:
644 mm_free_pgd(mm);
645 fail_nopgd:
646 free_mm(mm);
647 return NULL;
648 }
649
650 static void check_mm(struct mm_struct *mm)
651 {
652 int i;
653
654 for (i = 0; i < NR_MM_COUNTERS; i++) {
655 long x = atomic_long_read(&mm->rss_stat.count[i]);
656
657 if (unlikely(x))
658 printk(KERN_ALERT "BUG: Bad rss-counter state "
659 "mm:%p idx:%d val:%ld\n", mm, i, x);
660 }
661
662 if (atomic_long_read(&mm->nr_ptes))
663 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
664 atomic_long_read(&mm->nr_ptes));
665 if (mm_nr_pmds(mm))
666 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
667 mm_nr_pmds(mm));
668
669 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
670 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
671 #endif
672 }
673
674 /*
675 * Allocate and initialize an mm_struct.
676 */
677 struct mm_struct *mm_alloc(void)
678 {
679 struct mm_struct *mm;
680
681 mm = allocate_mm();
682 if (!mm)
683 return NULL;
684
685 memset(mm, 0, sizeof(*mm));
686 return mm_init(mm, current);
687 }
688
689 /*
690 * Called when the last reference to the mm
691 * is dropped: either by a lazy thread or by
692 * mmput. Free the page directory and the mm.
693 */
694 void __mmdrop(struct mm_struct *mm)
695 {
696 BUG_ON(mm == &init_mm);
697 mm_free_pgd(mm);
698 destroy_context(mm);
699 mmu_notifier_mm_destroy(mm);
700 check_mm(mm);
701 free_mm(mm);
702 }
703 EXPORT_SYMBOL_GPL(__mmdrop);
704
705 static inline void __mmput(struct mm_struct *mm)
706 {
707 VM_BUG_ON(atomic_read(&mm->mm_users));
708
709 uprobe_clear_state(mm);
710 exit_aio(mm);
711 ksm_exit(mm);
712 khugepaged_exit(mm); /* must run before exit_mmap */
713 exit_mmap(mm);
714 set_mm_exe_file(mm, NULL);
715 if (!list_empty(&mm->mmlist)) {
716 spin_lock(&mmlist_lock);
717 list_del(&mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 if (mm->binfmt)
721 module_put(mm->binfmt->module);
722 mmdrop(mm);
723 }
724
725 /*
726 * Decrement the use count and release all resources for an mm.
727 */
728 void mmput(struct mm_struct *mm)
729 {
730 might_sleep();
731
732 if (atomic_dec_and_test(&mm->mm_users))
733 __mmput(mm);
734 }
735 EXPORT_SYMBOL_GPL(mmput);
736
737 #ifdef CONFIG_MMU
738 static void mmput_async_fn(struct work_struct *work)
739 {
740 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
741 __mmput(mm);
742 }
743
744 void mmput_async(struct mm_struct *mm)
745 {
746 if (atomic_dec_and_test(&mm->mm_users)) {
747 INIT_WORK(&mm->async_put_work, mmput_async_fn);
748 schedule_work(&mm->async_put_work);
749 }
750 }
751 #endif
752
753 /**
754 * set_mm_exe_file - change a reference to the mm's executable file
755 *
756 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
757 *
758 * Main users are mmput() and sys_execve(). Callers prevent concurrent
759 * invocations: in mmput() nobody alive left, in execve task is single
760 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
761 * mm->exe_file, but does so without using set_mm_exe_file() in order
762 * to do avoid the need for any locks.
763 */
764 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
765 {
766 struct file *old_exe_file;
767
768 /*
769 * It is safe to dereference the exe_file without RCU as
770 * this function is only called if nobody else can access
771 * this mm -- see comment above for justification.
772 */
773 old_exe_file = rcu_dereference_raw(mm->exe_file);
774
775 if (new_exe_file)
776 get_file(new_exe_file);
777 rcu_assign_pointer(mm->exe_file, new_exe_file);
778 if (old_exe_file)
779 fput(old_exe_file);
780 }
781
782 /**
783 * get_mm_exe_file - acquire a reference to the mm's executable file
784 *
785 * Returns %NULL if mm has no associated executable file.
786 * User must release file via fput().
787 */
788 struct file *get_mm_exe_file(struct mm_struct *mm)
789 {
790 struct file *exe_file;
791
792 rcu_read_lock();
793 exe_file = rcu_dereference(mm->exe_file);
794 if (exe_file && !get_file_rcu(exe_file))
795 exe_file = NULL;
796 rcu_read_unlock();
797 return exe_file;
798 }
799 EXPORT_SYMBOL(get_mm_exe_file);
800
801 /**
802 * get_task_exe_file - acquire a reference to the task's executable file
803 *
804 * Returns %NULL if task's mm (if any) has no associated executable file or
805 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
806 * User must release file via fput().
807 */
808 struct file *get_task_exe_file(struct task_struct *task)
809 {
810 struct file *exe_file = NULL;
811 struct mm_struct *mm;
812
813 task_lock(task);
814 mm = task->mm;
815 if (mm) {
816 if (!(task->flags & PF_KTHREAD))
817 exe_file = get_mm_exe_file(mm);
818 }
819 task_unlock(task);
820 return exe_file;
821 }
822 EXPORT_SYMBOL(get_task_exe_file);
823
824 /**
825 * get_task_mm - acquire a reference to the task's mm
826 *
827 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
828 * this kernel workthread has transiently adopted a user mm with use_mm,
829 * to do its AIO) is not set and if so returns a reference to it, after
830 * bumping up the use count. User must release the mm via mmput()
831 * after use. Typically used by /proc and ptrace.
832 */
833 struct mm_struct *get_task_mm(struct task_struct *task)
834 {
835 struct mm_struct *mm;
836
837 task_lock(task);
838 mm = task->mm;
839 if (mm) {
840 if (task->flags & PF_KTHREAD)
841 mm = NULL;
842 else
843 atomic_inc(&mm->mm_users);
844 }
845 task_unlock(task);
846 return mm;
847 }
848 EXPORT_SYMBOL_GPL(get_task_mm);
849
850 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
851 {
852 struct mm_struct *mm;
853 int err;
854
855 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
856 if (err)
857 return ERR_PTR(err);
858
859 mm = get_task_mm(task);
860 if (mm && mm != current->mm &&
861 !ptrace_may_access(task, mode)) {
862 mmput(mm);
863 mm = ERR_PTR(-EACCES);
864 }
865 mutex_unlock(&task->signal->cred_guard_mutex);
866
867 return mm;
868 }
869
870 static void complete_vfork_done(struct task_struct *tsk)
871 {
872 struct completion *vfork;
873
874 task_lock(tsk);
875 vfork = tsk->vfork_done;
876 if (likely(vfork)) {
877 tsk->vfork_done = NULL;
878 complete(vfork);
879 }
880 task_unlock(tsk);
881 }
882
883 static int wait_for_vfork_done(struct task_struct *child,
884 struct completion *vfork)
885 {
886 int killed;
887
888 freezer_do_not_count();
889 killed = wait_for_completion_killable(vfork);
890 freezer_count();
891
892 if (killed) {
893 task_lock(child);
894 child->vfork_done = NULL;
895 task_unlock(child);
896 }
897
898 put_task_struct(child);
899 return killed;
900 }
901
902 /* Please note the differences between mmput and mm_release.
903 * mmput is called whenever we stop holding onto a mm_struct,
904 * error success whatever.
905 *
906 * mm_release is called after a mm_struct has been removed
907 * from the current process.
908 *
909 * This difference is important for error handling, when we
910 * only half set up a mm_struct for a new process and need to restore
911 * the old one. Because we mmput the new mm_struct before
912 * restoring the old one. . .
913 * Eric Biederman 10 January 1998
914 */
915 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
916 {
917 /* Get rid of any futexes when releasing the mm */
918 #ifdef CONFIG_FUTEX
919 if (unlikely(tsk->robust_list)) {
920 exit_robust_list(tsk);
921 tsk->robust_list = NULL;
922 }
923 #ifdef CONFIG_COMPAT
924 if (unlikely(tsk->compat_robust_list)) {
925 compat_exit_robust_list(tsk);
926 tsk->compat_robust_list = NULL;
927 }
928 #endif
929 if (unlikely(!list_empty(&tsk->pi_state_list)))
930 exit_pi_state_list(tsk);
931 #endif
932
933 uprobe_free_utask(tsk);
934
935 /* Get rid of any cached register state */
936 deactivate_mm(tsk, mm);
937
938 /*
939 * Signal userspace if we're not exiting with a core dump
940 * because we want to leave the value intact for debugging
941 * purposes.
942 */
943 if (tsk->clear_child_tid) {
944 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
945 atomic_read(&mm->mm_users) > 1) {
946 /*
947 * We don't check the error code - if userspace has
948 * not set up a proper pointer then tough luck.
949 */
950 put_user(0, tsk->clear_child_tid);
951 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
952 1, NULL, NULL, 0);
953 }
954 tsk->clear_child_tid = NULL;
955 }
956
957 /*
958 * All done, finally we can wake up parent and return this mm to him.
959 * Also kthread_stop() uses this completion for synchronization.
960 */
961 if (tsk->vfork_done)
962 complete_vfork_done(tsk);
963 }
964
965 /*
966 * Allocate a new mm structure and copy contents from the
967 * mm structure of the passed in task structure.
968 */
969 static struct mm_struct *dup_mm(struct task_struct *tsk)
970 {
971 struct mm_struct *mm, *oldmm = current->mm;
972 int err;
973
974 mm = allocate_mm();
975 if (!mm)
976 goto fail_nomem;
977
978 memcpy(mm, oldmm, sizeof(*mm));
979
980 if (!mm_init(mm, tsk))
981 goto fail_nomem;
982
983 err = dup_mmap(mm, oldmm);
984 if (err)
985 goto free_pt;
986
987 mm->hiwater_rss = get_mm_rss(mm);
988 mm->hiwater_vm = mm->total_vm;
989
990 if (mm->binfmt && !try_module_get(mm->binfmt->module))
991 goto free_pt;
992
993 return mm;
994
995 free_pt:
996 /* don't put binfmt in mmput, we haven't got module yet */
997 mm->binfmt = NULL;
998 mmput(mm);
999
1000 fail_nomem:
1001 return NULL;
1002 }
1003
1004 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1005 {
1006 struct mm_struct *mm, *oldmm;
1007 int retval;
1008
1009 tsk->min_flt = tsk->maj_flt = 0;
1010 tsk->nvcsw = tsk->nivcsw = 0;
1011 #ifdef CONFIG_DETECT_HUNG_TASK
1012 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1013 #endif
1014
1015 tsk->mm = NULL;
1016 tsk->active_mm = NULL;
1017
1018 /*
1019 * Are we cloning a kernel thread?
1020 *
1021 * We need to steal a active VM for that..
1022 */
1023 oldmm = current->mm;
1024 if (!oldmm)
1025 return 0;
1026
1027 /* initialize the new vmacache entries */
1028 vmacache_flush(tsk);
1029
1030 if (clone_flags & CLONE_VM) {
1031 atomic_inc(&oldmm->mm_users);
1032 mm = oldmm;
1033 goto good_mm;
1034 }
1035
1036 retval = -ENOMEM;
1037 mm = dup_mm(tsk);
1038 if (!mm)
1039 goto fail_nomem;
1040
1041 good_mm:
1042 tsk->mm = mm;
1043 tsk->active_mm = mm;
1044 return 0;
1045
1046 fail_nomem:
1047 return retval;
1048 }
1049
1050 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1051 {
1052 struct fs_struct *fs = current->fs;
1053 if (clone_flags & CLONE_FS) {
1054 /* tsk->fs is already what we want */
1055 spin_lock(&fs->lock);
1056 if (fs->in_exec) {
1057 spin_unlock(&fs->lock);
1058 return -EAGAIN;
1059 }
1060 fs->users++;
1061 spin_unlock(&fs->lock);
1062 return 0;
1063 }
1064 tsk->fs = copy_fs_struct(fs);
1065 if (!tsk->fs)
1066 return -ENOMEM;
1067 return 0;
1068 }
1069
1070 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1071 {
1072 struct files_struct *oldf, *newf;
1073 int error = 0;
1074
1075 /*
1076 * A background process may not have any files ...
1077 */
1078 oldf = current->files;
1079 if (!oldf)
1080 goto out;
1081
1082 if (clone_flags & CLONE_FILES) {
1083 atomic_inc(&oldf->count);
1084 goto out;
1085 }
1086
1087 newf = dup_fd(oldf, &error);
1088 if (!newf)
1089 goto out;
1090
1091 tsk->files = newf;
1092 error = 0;
1093 out:
1094 return error;
1095 }
1096
1097 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1098 {
1099 #ifdef CONFIG_BLOCK
1100 struct io_context *ioc = current->io_context;
1101 struct io_context *new_ioc;
1102
1103 if (!ioc)
1104 return 0;
1105 /*
1106 * Share io context with parent, if CLONE_IO is set
1107 */
1108 if (clone_flags & CLONE_IO) {
1109 ioc_task_link(ioc);
1110 tsk->io_context = ioc;
1111 } else if (ioprio_valid(ioc->ioprio)) {
1112 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1113 if (unlikely(!new_ioc))
1114 return -ENOMEM;
1115
1116 new_ioc->ioprio = ioc->ioprio;
1117 put_io_context(new_ioc);
1118 }
1119 #endif
1120 return 0;
1121 }
1122
1123 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1124 {
1125 struct sighand_struct *sig;
1126
1127 if (clone_flags & CLONE_SIGHAND) {
1128 atomic_inc(&current->sighand->count);
1129 return 0;
1130 }
1131 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1132 rcu_assign_pointer(tsk->sighand, sig);
1133 if (!sig)
1134 return -ENOMEM;
1135
1136 atomic_set(&sig->count, 1);
1137 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1138 return 0;
1139 }
1140
1141 void __cleanup_sighand(struct sighand_struct *sighand)
1142 {
1143 if (atomic_dec_and_test(&sighand->count)) {
1144 signalfd_cleanup(sighand);
1145 /*
1146 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1147 * without an RCU grace period, see __lock_task_sighand().
1148 */
1149 kmem_cache_free(sighand_cachep, sighand);
1150 }
1151 }
1152
1153 /*
1154 * Initialize POSIX timer handling for a thread group.
1155 */
1156 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1157 {
1158 unsigned long cpu_limit;
1159
1160 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1161 if (cpu_limit != RLIM_INFINITY) {
1162 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1163 sig->cputimer.running = true;
1164 }
1165
1166 /* The timer lists. */
1167 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1168 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1169 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1170 }
1171
1172 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1173 {
1174 struct signal_struct *sig;
1175
1176 if (clone_flags & CLONE_THREAD)
1177 return 0;
1178
1179 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1180 tsk->signal = sig;
1181 if (!sig)
1182 return -ENOMEM;
1183
1184 sig->nr_threads = 1;
1185 atomic_set(&sig->live, 1);
1186 atomic_set(&sig->sigcnt, 1);
1187
1188 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1189 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1190 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1191
1192 init_waitqueue_head(&sig->wait_chldexit);
1193 sig->curr_target = tsk;
1194 init_sigpending(&sig->shared_pending);
1195 INIT_LIST_HEAD(&sig->posix_timers);
1196 seqlock_init(&sig->stats_lock);
1197 prev_cputime_init(&sig->prev_cputime);
1198
1199 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1200 sig->real_timer.function = it_real_fn;
1201
1202 task_lock(current->group_leader);
1203 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1204 task_unlock(current->group_leader);
1205
1206 posix_cpu_timers_init_group(sig);
1207
1208 tty_audit_fork(sig);
1209 sched_autogroup_fork(sig);
1210
1211 sig->oom_score_adj = current->signal->oom_score_adj;
1212 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1213
1214 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1215 current->signal->is_child_subreaper;
1216
1217 mutex_init(&sig->cred_guard_mutex);
1218
1219 return 0;
1220 }
1221
1222 static void copy_seccomp(struct task_struct *p)
1223 {
1224 #ifdef CONFIG_SECCOMP
1225 /*
1226 * Must be called with sighand->lock held, which is common to
1227 * all threads in the group. Holding cred_guard_mutex is not
1228 * needed because this new task is not yet running and cannot
1229 * be racing exec.
1230 */
1231 assert_spin_locked(&current->sighand->siglock);
1232
1233 /* Ref-count the new filter user, and assign it. */
1234 get_seccomp_filter(current);
1235 p->seccomp = current->seccomp;
1236
1237 /*
1238 * Explicitly enable no_new_privs here in case it got set
1239 * between the task_struct being duplicated and holding the
1240 * sighand lock. The seccomp state and nnp must be in sync.
1241 */
1242 if (task_no_new_privs(current))
1243 task_set_no_new_privs(p);
1244
1245 /*
1246 * If the parent gained a seccomp mode after copying thread
1247 * flags and between before we held the sighand lock, we have
1248 * to manually enable the seccomp thread flag here.
1249 */
1250 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1251 set_tsk_thread_flag(p, TIF_SECCOMP);
1252 #endif
1253 }
1254
1255 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1256 {
1257 current->clear_child_tid = tidptr;
1258
1259 return task_pid_vnr(current);
1260 }
1261
1262 static void rt_mutex_init_task(struct task_struct *p)
1263 {
1264 raw_spin_lock_init(&p->pi_lock);
1265 #ifdef CONFIG_RT_MUTEXES
1266 p->pi_waiters = RB_ROOT;
1267 p->pi_waiters_leftmost = NULL;
1268 p->pi_blocked_on = NULL;
1269 #endif
1270 }
1271
1272 /*
1273 * Initialize POSIX timer handling for a single task.
1274 */
1275 static void posix_cpu_timers_init(struct task_struct *tsk)
1276 {
1277 tsk->cputime_expires.prof_exp = 0;
1278 tsk->cputime_expires.virt_exp = 0;
1279 tsk->cputime_expires.sched_exp = 0;
1280 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1281 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1282 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1283 }
1284
1285 static inline void
1286 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1287 {
1288 task->pids[type].pid = pid;
1289 }
1290
1291 /*
1292 * This creates a new process as a copy of the old one,
1293 * but does not actually start it yet.
1294 *
1295 * It copies the registers, and all the appropriate
1296 * parts of the process environment (as per the clone
1297 * flags). The actual kick-off is left to the caller.
1298 */
1299 static struct task_struct *copy_process(unsigned long clone_flags,
1300 unsigned long stack_start,
1301 unsigned long stack_size,
1302 int __user *child_tidptr,
1303 struct pid *pid,
1304 int trace,
1305 unsigned long tls,
1306 int node)
1307 {
1308 int retval;
1309 struct task_struct *p;
1310
1311 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1312 return ERR_PTR(-EINVAL);
1313
1314 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1315 return ERR_PTR(-EINVAL);
1316
1317 /*
1318 * Thread groups must share signals as well, and detached threads
1319 * can only be started up within the thread group.
1320 */
1321 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1322 return ERR_PTR(-EINVAL);
1323
1324 /*
1325 * Shared signal handlers imply shared VM. By way of the above,
1326 * thread groups also imply shared VM. Blocking this case allows
1327 * for various simplifications in other code.
1328 */
1329 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1330 return ERR_PTR(-EINVAL);
1331
1332 /*
1333 * Siblings of global init remain as zombies on exit since they are
1334 * not reaped by their parent (swapper). To solve this and to avoid
1335 * multi-rooted process trees, prevent global and container-inits
1336 * from creating siblings.
1337 */
1338 if ((clone_flags & CLONE_PARENT) &&
1339 current->signal->flags & SIGNAL_UNKILLABLE)
1340 return ERR_PTR(-EINVAL);
1341
1342 /*
1343 * If the new process will be in a different pid or user namespace
1344 * do not allow it to share a thread group with the forking task.
1345 */
1346 if (clone_flags & CLONE_THREAD) {
1347 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1348 (task_active_pid_ns(current) !=
1349 current->nsproxy->pid_ns_for_children))
1350 return ERR_PTR(-EINVAL);
1351 }
1352
1353 retval = security_task_create(clone_flags);
1354 if (retval)
1355 goto fork_out;
1356
1357 retval = -ENOMEM;
1358 p = dup_task_struct(current, node);
1359 if (!p)
1360 goto fork_out;
1361
1362 ftrace_graph_init_task(p);
1363
1364 rt_mutex_init_task(p);
1365
1366 #ifdef CONFIG_PROVE_LOCKING
1367 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1368 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1369 #endif
1370 retval = -EAGAIN;
1371 if (atomic_read(&p->real_cred->user->processes) >=
1372 task_rlimit(p, RLIMIT_NPROC)) {
1373 if (p->real_cred->user != INIT_USER &&
1374 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1375 goto bad_fork_free;
1376 }
1377 current->flags &= ~PF_NPROC_EXCEEDED;
1378
1379 retval = copy_creds(p, clone_flags);
1380 if (retval < 0)
1381 goto bad_fork_free;
1382
1383 /*
1384 * If multiple threads are within copy_process(), then this check
1385 * triggers too late. This doesn't hurt, the check is only there
1386 * to stop root fork bombs.
1387 */
1388 retval = -EAGAIN;
1389 if (nr_threads >= max_threads)
1390 goto bad_fork_cleanup_count;
1391
1392 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1393 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1394 p->flags |= PF_FORKNOEXEC;
1395 INIT_LIST_HEAD(&p->children);
1396 INIT_LIST_HEAD(&p->sibling);
1397 rcu_copy_process(p);
1398 p->vfork_done = NULL;
1399 spin_lock_init(&p->alloc_lock);
1400
1401 init_sigpending(&p->pending);
1402
1403 p->utime = p->stime = p->gtime = 0;
1404 p->utimescaled = p->stimescaled = 0;
1405 prev_cputime_init(&p->prev_cputime);
1406
1407 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1408 seqcount_init(&p->vtime_seqcount);
1409 p->vtime_snap = 0;
1410 p->vtime_snap_whence = VTIME_INACTIVE;
1411 #endif
1412
1413 #if defined(SPLIT_RSS_COUNTING)
1414 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1415 #endif
1416
1417 p->default_timer_slack_ns = current->timer_slack_ns;
1418
1419 task_io_accounting_init(&p->ioac);
1420 acct_clear_integrals(p);
1421
1422 posix_cpu_timers_init(p);
1423
1424 p->start_time = ktime_get_ns();
1425 p->real_start_time = ktime_get_boot_ns();
1426 p->io_context = NULL;
1427 p->audit_context = NULL;
1428 cgroup_fork(p);
1429 #ifdef CONFIG_NUMA
1430 p->mempolicy = mpol_dup(p->mempolicy);
1431 if (IS_ERR(p->mempolicy)) {
1432 retval = PTR_ERR(p->mempolicy);
1433 p->mempolicy = NULL;
1434 goto bad_fork_cleanup_threadgroup_lock;
1435 }
1436 #endif
1437 #ifdef CONFIG_CPUSETS
1438 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1439 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1440 seqcount_init(&p->mems_allowed_seq);
1441 #endif
1442 #ifdef CONFIG_TRACE_IRQFLAGS
1443 p->irq_events = 0;
1444 p->hardirqs_enabled = 0;
1445 p->hardirq_enable_ip = 0;
1446 p->hardirq_enable_event = 0;
1447 p->hardirq_disable_ip = _THIS_IP_;
1448 p->hardirq_disable_event = 0;
1449 p->softirqs_enabled = 1;
1450 p->softirq_enable_ip = _THIS_IP_;
1451 p->softirq_enable_event = 0;
1452 p->softirq_disable_ip = 0;
1453 p->softirq_disable_event = 0;
1454 p->hardirq_context = 0;
1455 p->softirq_context = 0;
1456 #endif
1457
1458 p->pagefault_disabled = 0;
1459
1460 #ifdef CONFIG_LOCKDEP
1461 p->lockdep_depth = 0; /* no locks held yet */
1462 p->curr_chain_key = 0;
1463 p->lockdep_recursion = 0;
1464 #endif
1465
1466 #ifdef CONFIG_DEBUG_MUTEXES
1467 p->blocked_on = NULL; /* not blocked yet */
1468 #endif
1469 #ifdef CONFIG_BCACHE
1470 p->sequential_io = 0;
1471 p->sequential_io_avg = 0;
1472 #endif
1473
1474 /* Perform scheduler related setup. Assign this task to a CPU. */
1475 retval = sched_fork(clone_flags, p);
1476 if (retval)
1477 goto bad_fork_cleanup_policy;
1478
1479 retval = perf_event_init_task(p);
1480 if (retval)
1481 goto bad_fork_cleanup_policy;
1482 retval = audit_alloc(p);
1483 if (retval)
1484 goto bad_fork_cleanup_perf;
1485 /* copy all the process information */
1486 shm_init_task(p);
1487 retval = copy_semundo(clone_flags, p);
1488 if (retval)
1489 goto bad_fork_cleanup_audit;
1490 retval = copy_files(clone_flags, p);
1491 if (retval)
1492 goto bad_fork_cleanup_semundo;
1493 retval = copy_fs(clone_flags, p);
1494 if (retval)
1495 goto bad_fork_cleanup_files;
1496 retval = copy_sighand(clone_flags, p);
1497 if (retval)
1498 goto bad_fork_cleanup_fs;
1499 retval = copy_signal(clone_flags, p);
1500 if (retval)
1501 goto bad_fork_cleanup_sighand;
1502 retval = copy_mm(clone_flags, p);
1503 if (retval)
1504 goto bad_fork_cleanup_signal;
1505 retval = copy_namespaces(clone_flags, p);
1506 if (retval)
1507 goto bad_fork_cleanup_mm;
1508 retval = copy_io(clone_flags, p);
1509 if (retval)
1510 goto bad_fork_cleanup_namespaces;
1511 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1512 if (retval)
1513 goto bad_fork_cleanup_io;
1514
1515 if (pid != &init_struct_pid) {
1516 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1517 if (IS_ERR(pid)) {
1518 retval = PTR_ERR(pid);
1519 goto bad_fork_cleanup_thread;
1520 }
1521 }
1522
1523 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1524 /*
1525 * Clear TID on mm_release()?
1526 */
1527 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1528 #ifdef CONFIG_BLOCK
1529 p->plug = NULL;
1530 #endif
1531 #ifdef CONFIG_FUTEX
1532 p->robust_list = NULL;
1533 #ifdef CONFIG_COMPAT
1534 p->compat_robust_list = NULL;
1535 #endif
1536 INIT_LIST_HEAD(&p->pi_state_list);
1537 p->pi_state_cache = NULL;
1538 #endif
1539 /*
1540 * sigaltstack should be cleared when sharing the same VM
1541 */
1542 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1543 sas_ss_reset(p);
1544
1545 /*
1546 * Syscall tracing and stepping should be turned off in the
1547 * child regardless of CLONE_PTRACE.
1548 */
1549 user_disable_single_step(p);
1550 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1551 #ifdef TIF_SYSCALL_EMU
1552 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1553 #endif
1554 clear_all_latency_tracing(p);
1555
1556 /* ok, now we should be set up.. */
1557 p->pid = pid_nr(pid);
1558 if (clone_flags & CLONE_THREAD) {
1559 p->exit_signal = -1;
1560 p->group_leader = current->group_leader;
1561 p->tgid = current->tgid;
1562 } else {
1563 if (clone_flags & CLONE_PARENT)
1564 p->exit_signal = current->group_leader->exit_signal;
1565 else
1566 p->exit_signal = (clone_flags & CSIGNAL);
1567 p->group_leader = p;
1568 p->tgid = p->pid;
1569 }
1570
1571 p->nr_dirtied = 0;
1572 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1573 p->dirty_paused_when = 0;
1574
1575 p->pdeath_signal = 0;
1576 INIT_LIST_HEAD(&p->thread_group);
1577 p->task_works = NULL;
1578
1579 threadgroup_change_begin(current);
1580 /*
1581 * Ensure that the cgroup subsystem policies allow the new process to be
1582 * forked. It should be noted the the new process's css_set can be changed
1583 * between here and cgroup_post_fork() if an organisation operation is in
1584 * progress.
1585 */
1586 retval = cgroup_can_fork(p);
1587 if (retval)
1588 goto bad_fork_free_pid;
1589
1590 /*
1591 * Make it visible to the rest of the system, but dont wake it up yet.
1592 * Need tasklist lock for parent etc handling!
1593 */
1594 write_lock_irq(&tasklist_lock);
1595
1596 /* CLONE_PARENT re-uses the old parent */
1597 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1598 p->real_parent = current->real_parent;
1599 p->parent_exec_id = current->parent_exec_id;
1600 } else {
1601 p->real_parent = current;
1602 p->parent_exec_id = current->self_exec_id;
1603 }
1604
1605 spin_lock(&current->sighand->siglock);
1606
1607 /*
1608 * Copy seccomp details explicitly here, in case they were changed
1609 * before holding sighand lock.
1610 */
1611 copy_seccomp(p);
1612
1613 /*
1614 * Process group and session signals need to be delivered to just the
1615 * parent before the fork or both the parent and the child after the
1616 * fork. Restart if a signal comes in before we add the new process to
1617 * it's process group.
1618 * A fatal signal pending means that current will exit, so the new
1619 * thread can't slip out of an OOM kill (or normal SIGKILL).
1620 */
1621 recalc_sigpending();
1622 if (signal_pending(current)) {
1623 spin_unlock(&current->sighand->siglock);
1624 write_unlock_irq(&tasklist_lock);
1625 retval = -ERESTARTNOINTR;
1626 goto bad_fork_cancel_cgroup;
1627 }
1628
1629 if (likely(p->pid)) {
1630 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1631
1632 init_task_pid(p, PIDTYPE_PID, pid);
1633 if (thread_group_leader(p)) {
1634 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1635 init_task_pid(p, PIDTYPE_SID, task_session(current));
1636
1637 if (is_child_reaper(pid)) {
1638 ns_of_pid(pid)->child_reaper = p;
1639 p->signal->flags |= SIGNAL_UNKILLABLE;
1640 }
1641
1642 p->signal->leader_pid = pid;
1643 p->signal->tty = tty_kref_get(current->signal->tty);
1644 list_add_tail(&p->sibling, &p->real_parent->children);
1645 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1646 attach_pid(p, PIDTYPE_PGID);
1647 attach_pid(p, PIDTYPE_SID);
1648 __this_cpu_inc(process_counts);
1649 } else {
1650 current->signal->nr_threads++;
1651 atomic_inc(&current->signal->live);
1652 atomic_inc(&current->signal->sigcnt);
1653 list_add_tail_rcu(&p->thread_group,
1654 &p->group_leader->thread_group);
1655 list_add_tail_rcu(&p->thread_node,
1656 &p->signal->thread_head);
1657 }
1658 attach_pid(p, PIDTYPE_PID);
1659 nr_threads++;
1660 }
1661
1662 total_forks++;
1663 spin_unlock(&current->sighand->siglock);
1664 syscall_tracepoint_update(p);
1665 write_unlock_irq(&tasklist_lock);
1666
1667 proc_fork_connector(p);
1668 cgroup_post_fork(p);
1669 threadgroup_change_end(current);
1670 perf_event_fork(p);
1671
1672 trace_task_newtask(p, clone_flags);
1673 uprobe_copy_process(p, clone_flags);
1674
1675 return p;
1676
1677 bad_fork_cancel_cgroup:
1678 cgroup_cancel_fork(p);
1679 bad_fork_free_pid:
1680 threadgroup_change_end(current);
1681 if (pid != &init_struct_pid)
1682 free_pid(pid);
1683 bad_fork_cleanup_thread:
1684 exit_thread(p);
1685 bad_fork_cleanup_io:
1686 if (p->io_context)
1687 exit_io_context(p);
1688 bad_fork_cleanup_namespaces:
1689 exit_task_namespaces(p);
1690 bad_fork_cleanup_mm:
1691 if (p->mm)
1692 mmput(p->mm);
1693 bad_fork_cleanup_signal:
1694 if (!(clone_flags & CLONE_THREAD))
1695 free_signal_struct(p->signal);
1696 bad_fork_cleanup_sighand:
1697 __cleanup_sighand(p->sighand);
1698 bad_fork_cleanup_fs:
1699 exit_fs(p); /* blocking */
1700 bad_fork_cleanup_files:
1701 exit_files(p); /* blocking */
1702 bad_fork_cleanup_semundo:
1703 exit_sem(p);
1704 bad_fork_cleanup_audit:
1705 audit_free(p);
1706 bad_fork_cleanup_perf:
1707 perf_event_free_task(p);
1708 bad_fork_cleanup_policy:
1709 #ifdef CONFIG_NUMA
1710 mpol_put(p->mempolicy);
1711 bad_fork_cleanup_threadgroup_lock:
1712 #endif
1713 delayacct_tsk_free(p);
1714 bad_fork_cleanup_count:
1715 atomic_dec(&p->cred->user->processes);
1716 exit_creds(p);
1717 bad_fork_free:
1718 free_task(p);
1719 fork_out:
1720 return ERR_PTR(retval);
1721 }
1722
1723 static inline void init_idle_pids(struct pid_link *links)
1724 {
1725 enum pid_type type;
1726
1727 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1728 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1729 links[type].pid = &init_struct_pid;
1730 }
1731 }
1732
1733 struct task_struct *fork_idle(int cpu)
1734 {
1735 struct task_struct *task;
1736 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1737 cpu_to_node(cpu));
1738 if (!IS_ERR(task)) {
1739 init_idle_pids(task->pids);
1740 init_idle(task, cpu);
1741 }
1742
1743 return task;
1744 }
1745
1746 /*
1747 * Ok, this is the main fork-routine.
1748 *
1749 * It copies the process, and if successful kick-starts
1750 * it and waits for it to finish using the VM if required.
1751 */
1752 long _do_fork(unsigned long clone_flags,
1753 unsigned long stack_start,
1754 unsigned long stack_size,
1755 int __user *parent_tidptr,
1756 int __user *child_tidptr,
1757 unsigned long tls)
1758 {
1759 struct task_struct *p;
1760 int trace = 0;
1761 long nr;
1762
1763 /*
1764 * Determine whether and which event to report to ptracer. When
1765 * called from kernel_thread or CLONE_UNTRACED is explicitly
1766 * requested, no event is reported; otherwise, report if the event
1767 * for the type of forking is enabled.
1768 */
1769 if (!(clone_flags & CLONE_UNTRACED)) {
1770 if (clone_flags & CLONE_VFORK)
1771 trace = PTRACE_EVENT_VFORK;
1772 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1773 trace = PTRACE_EVENT_CLONE;
1774 else
1775 trace = PTRACE_EVENT_FORK;
1776
1777 if (likely(!ptrace_event_enabled(current, trace)))
1778 trace = 0;
1779 }
1780
1781 p = copy_process(clone_flags, stack_start, stack_size,
1782 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1783 /*
1784 * Do this prior waking up the new thread - the thread pointer
1785 * might get invalid after that point, if the thread exits quickly.
1786 */
1787 if (!IS_ERR(p)) {
1788 struct completion vfork;
1789 struct pid *pid;
1790
1791 trace_sched_process_fork(current, p);
1792
1793 pid = get_task_pid(p, PIDTYPE_PID);
1794 nr = pid_vnr(pid);
1795
1796 if (clone_flags & CLONE_PARENT_SETTID)
1797 put_user(nr, parent_tidptr);
1798
1799 if (clone_flags & CLONE_VFORK) {
1800 p->vfork_done = &vfork;
1801 init_completion(&vfork);
1802 get_task_struct(p);
1803 }
1804
1805 wake_up_new_task(p);
1806
1807 /* forking complete and child started to run, tell ptracer */
1808 if (unlikely(trace))
1809 ptrace_event_pid(trace, pid);
1810
1811 if (clone_flags & CLONE_VFORK) {
1812 if (!wait_for_vfork_done(p, &vfork))
1813 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1814 }
1815
1816 put_pid(pid);
1817 } else {
1818 nr = PTR_ERR(p);
1819 }
1820 return nr;
1821 }
1822
1823 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1824 /* For compatibility with architectures that call do_fork directly rather than
1825 * using the syscall entry points below. */
1826 long do_fork(unsigned long clone_flags,
1827 unsigned long stack_start,
1828 unsigned long stack_size,
1829 int __user *parent_tidptr,
1830 int __user *child_tidptr)
1831 {
1832 return _do_fork(clone_flags, stack_start, stack_size,
1833 parent_tidptr, child_tidptr, 0);
1834 }
1835 #endif
1836
1837 /*
1838 * Create a kernel thread.
1839 */
1840 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1841 {
1842 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1843 (unsigned long)arg, NULL, NULL, 0);
1844 }
1845
1846 #ifdef __ARCH_WANT_SYS_FORK
1847 SYSCALL_DEFINE0(fork)
1848 {
1849 #ifdef CONFIG_MMU
1850 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1851 #else
1852 /* can not support in nommu mode */
1853 return -EINVAL;
1854 #endif
1855 }
1856 #endif
1857
1858 #ifdef __ARCH_WANT_SYS_VFORK
1859 SYSCALL_DEFINE0(vfork)
1860 {
1861 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1862 0, NULL, NULL, 0);
1863 }
1864 #endif
1865
1866 #ifdef __ARCH_WANT_SYS_CLONE
1867 #ifdef CONFIG_CLONE_BACKWARDS
1868 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1869 int __user *, parent_tidptr,
1870 unsigned long, tls,
1871 int __user *, child_tidptr)
1872 #elif defined(CONFIG_CLONE_BACKWARDS2)
1873 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1874 int __user *, parent_tidptr,
1875 int __user *, child_tidptr,
1876 unsigned long, tls)
1877 #elif defined(CONFIG_CLONE_BACKWARDS3)
1878 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1879 int, stack_size,
1880 int __user *, parent_tidptr,
1881 int __user *, child_tidptr,
1882 unsigned long, tls)
1883 #else
1884 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1885 int __user *, parent_tidptr,
1886 int __user *, child_tidptr,
1887 unsigned long, tls)
1888 #endif
1889 {
1890 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1891 }
1892 #endif
1893
1894 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1895 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1896 #endif
1897
1898 static void sighand_ctor(void *data)
1899 {
1900 struct sighand_struct *sighand = data;
1901
1902 spin_lock_init(&sighand->siglock);
1903 init_waitqueue_head(&sighand->signalfd_wqh);
1904 }
1905
1906 void __init proc_caches_init(void)
1907 {
1908 sighand_cachep = kmem_cache_create("sighand_cache",
1909 sizeof(struct sighand_struct), 0,
1910 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1911 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1912 signal_cachep = kmem_cache_create("signal_cache",
1913 sizeof(struct signal_struct), 0,
1914 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1915 NULL);
1916 files_cachep = kmem_cache_create("files_cache",
1917 sizeof(struct files_struct), 0,
1918 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1919 NULL);
1920 fs_cachep = kmem_cache_create("fs_cache",
1921 sizeof(struct fs_struct), 0,
1922 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1923 NULL);
1924 /*
1925 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1926 * whole struct cpumask for the OFFSTACK case. We could change
1927 * this to *only* allocate as much of it as required by the
1928 * maximum number of CPU's we can ever have. The cpumask_allocation
1929 * is at the end of the structure, exactly for that reason.
1930 */
1931 mm_cachep = kmem_cache_create("mm_struct",
1932 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1933 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1934 NULL);
1935 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1936 mmap_init();
1937 nsproxy_cache_init();
1938 }
1939
1940 /*
1941 * Check constraints on flags passed to the unshare system call.
1942 */
1943 static int check_unshare_flags(unsigned long unshare_flags)
1944 {
1945 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1946 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1947 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1948 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
1949 return -EINVAL;
1950 /*
1951 * Not implemented, but pretend it works if there is nothing
1952 * to unshare. Note that unsharing the address space or the
1953 * signal handlers also need to unshare the signal queues (aka
1954 * CLONE_THREAD).
1955 */
1956 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1957 if (!thread_group_empty(current))
1958 return -EINVAL;
1959 }
1960 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1961 if (atomic_read(&current->sighand->count) > 1)
1962 return -EINVAL;
1963 }
1964 if (unshare_flags & CLONE_VM) {
1965 if (!current_is_single_threaded())
1966 return -EINVAL;
1967 }
1968
1969 return 0;
1970 }
1971
1972 /*
1973 * Unshare the filesystem structure if it is being shared
1974 */
1975 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1976 {
1977 struct fs_struct *fs = current->fs;
1978
1979 if (!(unshare_flags & CLONE_FS) || !fs)
1980 return 0;
1981
1982 /* don't need lock here; in the worst case we'll do useless copy */
1983 if (fs->users == 1)
1984 return 0;
1985
1986 *new_fsp = copy_fs_struct(fs);
1987 if (!*new_fsp)
1988 return -ENOMEM;
1989
1990 return 0;
1991 }
1992
1993 /*
1994 * Unshare file descriptor table if it is being shared
1995 */
1996 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1997 {
1998 struct files_struct *fd = current->files;
1999 int error = 0;
2000
2001 if ((unshare_flags & CLONE_FILES) &&
2002 (fd && atomic_read(&fd->count) > 1)) {
2003 *new_fdp = dup_fd(fd, &error);
2004 if (!*new_fdp)
2005 return error;
2006 }
2007
2008 return 0;
2009 }
2010
2011 /*
2012 * unshare allows a process to 'unshare' part of the process
2013 * context which was originally shared using clone. copy_*
2014 * functions used by do_fork() cannot be used here directly
2015 * because they modify an inactive task_struct that is being
2016 * constructed. Here we are modifying the current, active,
2017 * task_struct.
2018 */
2019 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2020 {
2021 struct fs_struct *fs, *new_fs = NULL;
2022 struct files_struct *fd, *new_fd = NULL;
2023 struct cred *new_cred = NULL;
2024 struct nsproxy *new_nsproxy = NULL;
2025 int do_sysvsem = 0;
2026 int err;
2027
2028 /*
2029 * If unsharing a user namespace must also unshare the thread group
2030 * and unshare the filesystem root and working directories.
2031 */
2032 if (unshare_flags & CLONE_NEWUSER)
2033 unshare_flags |= CLONE_THREAD | CLONE_FS;
2034 /*
2035 * If unsharing vm, must also unshare signal handlers.
2036 */
2037 if (unshare_flags & CLONE_VM)
2038 unshare_flags |= CLONE_SIGHAND;
2039 /*
2040 * If unsharing a signal handlers, must also unshare the signal queues.
2041 */
2042 if (unshare_flags & CLONE_SIGHAND)
2043 unshare_flags |= CLONE_THREAD;
2044 /*
2045 * If unsharing namespace, must also unshare filesystem information.
2046 */
2047 if (unshare_flags & CLONE_NEWNS)
2048 unshare_flags |= CLONE_FS;
2049
2050 err = check_unshare_flags(unshare_flags);
2051 if (err)
2052 goto bad_unshare_out;
2053 /*
2054 * CLONE_NEWIPC must also detach from the undolist: after switching
2055 * to a new ipc namespace, the semaphore arrays from the old
2056 * namespace are unreachable.
2057 */
2058 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2059 do_sysvsem = 1;
2060 err = unshare_fs(unshare_flags, &new_fs);
2061 if (err)
2062 goto bad_unshare_out;
2063 err = unshare_fd(unshare_flags, &new_fd);
2064 if (err)
2065 goto bad_unshare_cleanup_fs;
2066 err = unshare_userns(unshare_flags, &new_cred);
2067 if (err)
2068 goto bad_unshare_cleanup_fd;
2069 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2070 new_cred, new_fs);
2071 if (err)
2072 goto bad_unshare_cleanup_cred;
2073
2074 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2075 if (do_sysvsem) {
2076 /*
2077 * CLONE_SYSVSEM is equivalent to sys_exit().
2078 */
2079 exit_sem(current);
2080 }
2081 if (unshare_flags & CLONE_NEWIPC) {
2082 /* Orphan segments in old ns (see sem above). */
2083 exit_shm(current);
2084 shm_init_task(current);
2085 }
2086
2087 if (new_nsproxy)
2088 switch_task_namespaces(current, new_nsproxy);
2089
2090 task_lock(current);
2091
2092 if (new_fs) {
2093 fs = current->fs;
2094 spin_lock(&fs->lock);
2095 current->fs = new_fs;
2096 if (--fs->users)
2097 new_fs = NULL;
2098 else
2099 new_fs = fs;
2100 spin_unlock(&fs->lock);
2101 }
2102
2103 if (new_fd) {
2104 fd = current->files;
2105 current->files = new_fd;
2106 new_fd = fd;
2107 }
2108
2109 task_unlock(current);
2110
2111 if (new_cred) {
2112 /* Install the new user namespace */
2113 commit_creds(new_cred);
2114 new_cred = NULL;
2115 }
2116 }
2117
2118 bad_unshare_cleanup_cred:
2119 if (new_cred)
2120 put_cred(new_cred);
2121 bad_unshare_cleanup_fd:
2122 if (new_fd)
2123 put_files_struct(new_fd);
2124
2125 bad_unshare_cleanup_fs:
2126 if (new_fs)
2127 free_fs_struct(new_fs);
2128
2129 bad_unshare_out:
2130 return err;
2131 }
2132
2133 /*
2134 * Helper to unshare the files of the current task.
2135 * We don't want to expose copy_files internals to
2136 * the exec layer of the kernel.
2137 */
2138
2139 int unshare_files(struct files_struct **displaced)
2140 {
2141 struct task_struct *task = current;
2142 struct files_struct *copy = NULL;
2143 int error;
2144
2145 error = unshare_fd(CLONE_FILES, &copy);
2146 if (error || !copy) {
2147 *displaced = NULL;
2148 return error;
2149 }
2150 *displaced = task->files;
2151 task_lock(task);
2152 task->files = copy;
2153 task_unlock(task);
2154 return 0;
2155 }
2156
2157 int sysctl_max_threads(struct ctl_table *table, int write,
2158 void __user *buffer, size_t *lenp, loff_t *ppos)
2159 {
2160 struct ctl_table t;
2161 int ret;
2162 int threads = max_threads;
2163 int min = MIN_THREADS;
2164 int max = MAX_THREADS;
2165
2166 t = *table;
2167 t.data = &threads;
2168 t.extra1 = &min;
2169 t.extra2 = &max;
2170
2171 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2172 if (ret || !write)
2173 return ret;
2174
2175 set_max_threads(threads);
2176
2177 return 0;
2178 }
This page took 0.086859 seconds and 4 git commands to generate.