Merge remote-tracking branch 'tip/auto-latest'
[deliverable/linux.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
163 {
164 #ifdef CONFIG_VMAP_STACK
165 void *stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
166 VMALLOC_START, VMALLOC_END,
167 THREADINFO_GFP | __GFP_HIGHMEM,
168 PAGE_KERNEL,
169 0, node,
170 __builtin_return_address(0));
171
172 /*
173 * We can't call find_vm_area() in interrupt context, and
174 * free_thread_stack() can be called in interrupt context,
175 * so cache the vm_struct.
176 */
177 if (stack)
178 tsk->stack_vm_area = find_vm_area(stack);
179 return stack;
180 #else
181 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
182 THREAD_SIZE_ORDER);
183
184 return page ? page_address(page) : NULL;
185 #endif
186 }
187
188 static inline void free_thread_stack(struct task_struct *tsk)
189 {
190 if (task_stack_vm_area(tsk))
191 vfree(tsk->stack);
192 else
193 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
194 }
195 # else
196 static struct kmem_cache *thread_stack_cache;
197
198 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
199 int node)
200 {
201 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
202 }
203
204 static void free_thread_stack(struct task_struct *tsk)
205 {
206 kmem_cache_free(thread_stack_cache, tsk->stack);
207 }
208
209 void thread_stack_cache_init(void)
210 {
211 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
212 THREAD_SIZE, 0, NULL);
213 BUG_ON(thread_stack_cache == NULL);
214 }
215 # endif
216 #endif
217
218 /* SLAB cache for signal_struct structures (tsk->signal) */
219 static struct kmem_cache *signal_cachep;
220
221 /* SLAB cache for sighand_struct structures (tsk->sighand) */
222 struct kmem_cache *sighand_cachep;
223
224 /* SLAB cache for files_struct structures (tsk->files) */
225 struct kmem_cache *files_cachep;
226
227 /* SLAB cache for fs_struct structures (tsk->fs) */
228 struct kmem_cache *fs_cachep;
229
230 /* SLAB cache for vm_area_struct structures */
231 struct kmem_cache *vm_area_cachep;
232
233 /* SLAB cache for mm_struct structures (tsk->mm) */
234 static struct kmem_cache *mm_cachep;
235
236 static void account_kernel_stack(struct task_struct *tsk, int account)
237 {
238 void *stack = task_stack_page(tsk);
239 struct vm_struct *vm = task_stack_vm_area(tsk);
240
241 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
242
243 if (vm) {
244 int i;
245
246 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
247
248 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
249 mod_zone_page_state(page_zone(vm->pages[i]),
250 NR_KERNEL_STACK_KB,
251 PAGE_SIZE / 1024 * account);
252 }
253
254 /* All stack pages belong to the same memcg. */
255 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
256 account * (THREAD_SIZE / 1024));
257 } else {
258 /*
259 * All stack pages are in the same zone and belong to the
260 * same memcg.
261 */
262 struct page *first_page = virt_to_page(stack);
263
264 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
265 THREAD_SIZE / 1024 * account);
266
267 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
268 account * (THREAD_SIZE / 1024));
269 }
270 }
271
272 void free_task(struct task_struct *tsk)
273 {
274 account_kernel_stack(tsk, -1);
275 arch_release_thread_stack(tsk->stack);
276 free_thread_stack(tsk);
277 rt_mutex_debug_task_free(tsk);
278 ftrace_graph_exit_task(tsk);
279 put_seccomp_filter(tsk);
280 arch_release_task_struct(tsk);
281 free_task_struct(tsk);
282 }
283 EXPORT_SYMBOL(free_task);
284
285 static inline void free_signal_struct(struct signal_struct *sig)
286 {
287 taskstats_tgid_free(sig);
288 sched_autogroup_exit(sig);
289 kmem_cache_free(signal_cachep, sig);
290 }
291
292 static inline void put_signal_struct(struct signal_struct *sig)
293 {
294 if (atomic_dec_and_test(&sig->sigcnt))
295 free_signal_struct(sig);
296 }
297
298 void __put_task_struct(struct task_struct *tsk)
299 {
300 WARN_ON(!tsk->exit_state);
301 WARN_ON(atomic_read(&tsk->usage));
302 WARN_ON(tsk == current);
303
304 cgroup_free(tsk);
305 task_numa_free(tsk);
306 security_task_free(tsk);
307 exit_creds(tsk);
308 delayacct_tsk_free(tsk);
309 put_signal_struct(tsk->signal);
310
311 if (!profile_handoff_task(tsk))
312 free_task(tsk);
313 }
314 EXPORT_SYMBOL_GPL(__put_task_struct);
315
316 void __init __weak arch_task_cache_init(void) { }
317
318 /*
319 * set_max_threads
320 */
321 static void set_max_threads(unsigned int max_threads_suggested)
322 {
323 u64 threads;
324
325 /*
326 * The number of threads shall be limited such that the thread
327 * structures may only consume a small part of the available memory.
328 */
329 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
330 threads = MAX_THREADS;
331 else
332 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
333 (u64) THREAD_SIZE * 8UL);
334
335 if (threads > max_threads_suggested)
336 threads = max_threads_suggested;
337
338 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
339 }
340
341 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
342 /* Initialized by the architecture: */
343 int arch_task_struct_size __read_mostly;
344 #endif
345
346 void __init fork_init(void)
347 {
348 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
349 #ifndef ARCH_MIN_TASKALIGN
350 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
351 #endif
352 /* create a slab on which task_structs can be allocated */
353 task_struct_cachep = kmem_cache_create("task_struct",
354 arch_task_struct_size, ARCH_MIN_TASKALIGN,
355 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
356 #endif
357
358 /* do the arch specific task caches init */
359 arch_task_cache_init();
360
361 set_max_threads(MAX_THREADS);
362
363 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
364 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
365 init_task.signal->rlim[RLIMIT_SIGPENDING] =
366 init_task.signal->rlim[RLIMIT_NPROC];
367 }
368
369 int __weak arch_dup_task_struct(struct task_struct *dst,
370 struct task_struct *src)
371 {
372 *dst = *src;
373 return 0;
374 }
375
376 void set_task_stack_end_magic(struct task_struct *tsk)
377 {
378 unsigned long *stackend;
379
380 stackend = end_of_stack(tsk);
381 *stackend = STACK_END_MAGIC; /* for overflow detection */
382 }
383
384 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
385 {
386 struct task_struct *tsk;
387 unsigned long *stack;
388 struct vm_struct *stack_vm_area;
389 int err;
390
391 if (node == NUMA_NO_NODE)
392 node = tsk_fork_get_node(orig);
393 tsk = alloc_task_struct_node(node);
394 if (!tsk)
395 return NULL;
396
397 stack = alloc_thread_stack_node(tsk, node);
398 if (!stack)
399 goto free_tsk;
400
401 stack_vm_area = task_stack_vm_area(tsk);
402
403 err = arch_dup_task_struct(tsk, orig);
404
405 /*
406 * arch_dup_task_struct() clobbers the stack-related fields. Make
407 * sure they're properly initialized before using any stack-related
408 * functions again.
409 */
410 tsk->stack = stack;
411 #ifdef CONFIG_VMAP_STACK
412 tsk->stack_vm_area = stack_vm_area;
413 #endif
414
415 if (err)
416 goto free_stack;
417
418 #ifdef CONFIG_SECCOMP
419 /*
420 * We must handle setting up seccomp filters once we're under
421 * the sighand lock in case orig has changed between now and
422 * then. Until then, filter must be NULL to avoid messing up
423 * the usage counts on the error path calling free_task.
424 */
425 tsk->seccomp.filter = NULL;
426 #endif
427
428 setup_thread_stack(tsk, orig);
429 clear_user_return_notifier(tsk);
430 clear_tsk_need_resched(tsk);
431 set_task_stack_end_magic(tsk);
432
433 #ifdef CONFIG_CC_STACKPROTECTOR
434 tsk->stack_canary = get_random_int();
435 #endif
436
437 /*
438 * One for us, one for whoever does the "release_task()" (usually
439 * parent)
440 */
441 atomic_set(&tsk->usage, 2);
442 #ifdef CONFIG_BLK_DEV_IO_TRACE
443 tsk->btrace_seq = 0;
444 #endif
445 tsk->splice_pipe = NULL;
446 tsk->task_frag.page = NULL;
447 tsk->wake_q.next = NULL;
448
449 account_kernel_stack(tsk, 1);
450
451 kcov_task_init(tsk);
452
453 return tsk;
454
455 free_stack:
456 free_thread_stack(tsk);
457 free_tsk:
458 free_task_struct(tsk);
459 return NULL;
460 }
461
462 #ifdef CONFIG_MMU
463 static __latent_entropy int dup_mmap(struct mm_struct *mm,
464 struct mm_struct *oldmm)
465 {
466 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
467 struct rb_node **rb_link, *rb_parent;
468 int retval;
469 unsigned long charge;
470
471 uprobe_start_dup_mmap();
472 if (down_write_killable(&oldmm->mmap_sem)) {
473 retval = -EINTR;
474 goto fail_uprobe_end;
475 }
476 flush_cache_dup_mm(oldmm);
477 uprobe_dup_mmap(oldmm, mm);
478 /*
479 * Not linked in yet - no deadlock potential:
480 */
481 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
482
483 /* No ordering required: file already has been exposed. */
484 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
485
486 mm->total_vm = oldmm->total_vm;
487 mm->data_vm = oldmm->data_vm;
488 mm->exec_vm = oldmm->exec_vm;
489 mm->stack_vm = oldmm->stack_vm;
490
491 rb_link = &mm->mm_rb.rb_node;
492 rb_parent = NULL;
493 pprev = &mm->mmap;
494 retval = ksm_fork(mm, oldmm);
495 if (retval)
496 goto out;
497 retval = khugepaged_fork(mm, oldmm);
498 if (retval)
499 goto out;
500
501 prev = NULL;
502 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
503 struct file *file;
504
505 if (mpnt->vm_flags & VM_DONTCOPY) {
506 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
507 continue;
508 }
509 charge = 0;
510 if (mpnt->vm_flags & VM_ACCOUNT) {
511 unsigned long len = vma_pages(mpnt);
512
513 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
514 goto fail_nomem;
515 charge = len;
516 }
517 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
518 if (!tmp)
519 goto fail_nomem;
520 *tmp = *mpnt;
521 INIT_LIST_HEAD(&tmp->anon_vma_chain);
522 retval = vma_dup_policy(mpnt, tmp);
523 if (retval)
524 goto fail_nomem_policy;
525 tmp->vm_mm = mm;
526 if (anon_vma_fork(tmp, mpnt))
527 goto fail_nomem_anon_vma_fork;
528 tmp->vm_flags &=
529 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
530 tmp->vm_next = tmp->vm_prev = NULL;
531 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
532 file = tmp->vm_file;
533 if (file) {
534 struct inode *inode = file_inode(file);
535 struct address_space *mapping = file->f_mapping;
536
537 get_file(file);
538 if (tmp->vm_flags & VM_DENYWRITE)
539 atomic_dec(&inode->i_writecount);
540 i_mmap_lock_write(mapping);
541 if (tmp->vm_flags & VM_SHARED)
542 atomic_inc(&mapping->i_mmap_writable);
543 flush_dcache_mmap_lock(mapping);
544 /* insert tmp into the share list, just after mpnt */
545 vma_interval_tree_insert_after(tmp, mpnt,
546 &mapping->i_mmap);
547 flush_dcache_mmap_unlock(mapping);
548 i_mmap_unlock_write(mapping);
549 }
550
551 /*
552 * Clear hugetlb-related page reserves for children. This only
553 * affects MAP_PRIVATE mappings. Faults generated by the child
554 * are not guaranteed to succeed, even if read-only
555 */
556 if (is_vm_hugetlb_page(tmp))
557 reset_vma_resv_huge_pages(tmp);
558
559 /*
560 * Link in the new vma and copy the page table entries.
561 */
562 *pprev = tmp;
563 pprev = &tmp->vm_next;
564 tmp->vm_prev = prev;
565 prev = tmp;
566
567 __vma_link_rb(mm, tmp, rb_link, rb_parent);
568 rb_link = &tmp->vm_rb.rb_right;
569 rb_parent = &tmp->vm_rb;
570
571 mm->map_count++;
572 retval = copy_page_range(mm, oldmm, mpnt);
573
574 if (tmp->vm_ops && tmp->vm_ops->open)
575 tmp->vm_ops->open(tmp);
576
577 if (retval)
578 goto out;
579 }
580 /* a new mm has just been created */
581 arch_dup_mmap(oldmm, mm);
582 retval = 0;
583 out:
584 up_write(&mm->mmap_sem);
585 flush_tlb_mm(oldmm);
586 up_write(&oldmm->mmap_sem);
587 fail_uprobe_end:
588 uprobe_end_dup_mmap();
589 return retval;
590 fail_nomem_anon_vma_fork:
591 mpol_put(vma_policy(tmp));
592 fail_nomem_policy:
593 kmem_cache_free(vm_area_cachep, tmp);
594 fail_nomem:
595 retval = -ENOMEM;
596 vm_unacct_memory(charge);
597 goto out;
598 }
599
600 static inline int mm_alloc_pgd(struct mm_struct *mm)
601 {
602 mm->pgd = pgd_alloc(mm);
603 if (unlikely(!mm->pgd))
604 return -ENOMEM;
605 return 0;
606 }
607
608 static inline void mm_free_pgd(struct mm_struct *mm)
609 {
610 pgd_free(mm, mm->pgd);
611 }
612 #else
613 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
614 {
615 down_write(&oldmm->mmap_sem);
616 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
617 up_write(&oldmm->mmap_sem);
618 return 0;
619 }
620 #define mm_alloc_pgd(mm) (0)
621 #define mm_free_pgd(mm)
622 #endif /* CONFIG_MMU */
623
624 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
625
626 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
627 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
628
629 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
630
631 static int __init coredump_filter_setup(char *s)
632 {
633 default_dump_filter =
634 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
635 MMF_DUMP_FILTER_MASK;
636 return 1;
637 }
638
639 __setup("coredump_filter=", coredump_filter_setup);
640
641 #include <linux/init_task.h>
642
643 static void mm_init_aio(struct mm_struct *mm)
644 {
645 #ifdef CONFIG_AIO
646 spin_lock_init(&mm->ioctx_lock);
647 mm->ioctx_table = NULL;
648 #endif
649 }
650
651 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
652 {
653 #ifdef CONFIG_MEMCG
654 mm->owner = p;
655 #endif
656 }
657
658 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
659 {
660 mm->mmap = NULL;
661 mm->mm_rb = RB_ROOT;
662 mm->vmacache_seqnum = 0;
663 atomic_set(&mm->mm_users, 1);
664 atomic_set(&mm->mm_count, 1);
665 init_rwsem(&mm->mmap_sem);
666 INIT_LIST_HEAD(&mm->mmlist);
667 mm->core_state = NULL;
668 atomic_long_set(&mm->nr_ptes, 0);
669 mm_nr_pmds_init(mm);
670 mm->map_count = 0;
671 mm->locked_vm = 0;
672 mm->pinned_vm = 0;
673 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
674 spin_lock_init(&mm->page_table_lock);
675 mm_init_cpumask(mm);
676 mm_init_aio(mm);
677 mm_init_owner(mm, p);
678 mmu_notifier_mm_init(mm);
679 clear_tlb_flush_pending(mm);
680 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
681 mm->pmd_huge_pte = NULL;
682 #endif
683
684 if (current->mm) {
685 mm->flags = current->mm->flags & MMF_INIT_MASK;
686 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
687 } else {
688 mm->flags = default_dump_filter;
689 mm->def_flags = 0;
690 }
691
692 if (mm_alloc_pgd(mm))
693 goto fail_nopgd;
694
695 if (init_new_context(p, mm))
696 goto fail_nocontext;
697
698 return mm;
699
700 fail_nocontext:
701 mm_free_pgd(mm);
702 fail_nopgd:
703 free_mm(mm);
704 return NULL;
705 }
706
707 static void check_mm(struct mm_struct *mm)
708 {
709 int i;
710
711 for (i = 0; i < NR_MM_COUNTERS; i++) {
712 long x = atomic_long_read(&mm->rss_stat.count[i]);
713
714 if (unlikely(x))
715 printk(KERN_ALERT "BUG: Bad rss-counter state "
716 "mm:%p idx:%d val:%ld\n", mm, i, x);
717 }
718
719 if (atomic_long_read(&mm->nr_ptes))
720 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
721 atomic_long_read(&mm->nr_ptes));
722 if (mm_nr_pmds(mm))
723 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
724 mm_nr_pmds(mm));
725
726 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
727 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
728 #endif
729 }
730
731 /*
732 * Allocate and initialize an mm_struct.
733 */
734 struct mm_struct *mm_alloc(void)
735 {
736 struct mm_struct *mm;
737
738 mm = allocate_mm();
739 if (!mm)
740 return NULL;
741
742 memset(mm, 0, sizeof(*mm));
743 return mm_init(mm, current);
744 }
745
746 /*
747 * Called when the last reference to the mm
748 * is dropped: either by a lazy thread or by
749 * mmput. Free the page directory and the mm.
750 */
751 void __mmdrop(struct mm_struct *mm)
752 {
753 BUG_ON(mm == &init_mm);
754 mm_free_pgd(mm);
755 destroy_context(mm);
756 mmu_notifier_mm_destroy(mm);
757 check_mm(mm);
758 free_mm(mm);
759 }
760 EXPORT_SYMBOL_GPL(__mmdrop);
761
762 static inline void __mmput(struct mm_struct *mm)
763 {
764 VM_BUG_ON(atomic_read(&mm->mm_users));
765
766 uprobe_clear_state(mm);
767 exit_aio(mm);
768 ksm_exit(mm);
769 khugepaged_exit(mm); /* must run before exit_mmap */
770 exit_mmap(mm);
771 set_mm_exe_file(mm, NULL);
772 if (!list_empty(&mm->mmlist)) {
773 spin_lock(&mmlist_lock);
774 list_del(&mm->mmlist);
775 spin_unlock(&mmlist_lock);
776 }
777 if (mm->binfmt)
778 module_put(mm->binfmt->module);
779 mmdrop(mm);
780 }
781
782 /*
783 * Decrement the use count and release all resources for an mm.
784 */
785 void mmput(struct mm_struct *mm)
786 {
787 might_sleep();
788
789 if (atomic_dec_and_test(&mm->mm_users))
790 __mmput(mm);
791 }
792 EXPORT_SYMBOL_GPL(mmput);
793
794 #ifdef CONFIG_MMU
795 static void mmput_async_fn(struct work_struct *work)
796 {
797 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
798 __mmput(mm);
799 }
800
801 void mmput_async(struct mm_struct *mm)
802 {
803 if (atomic_dec_and_test(&mm->mm_users)) {
804 INIT_WORK(&mm->async_put_work, mmput_async_fn);
805 schedule_work(&mm->async_put_work);
806 }
807 }
808 #endif
809
810 /**
811 * set_mm_exe_file - change a reference to the mm's executable file
812 *
813 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
814 *
815 * Main users are mmput() and sys_execve(). Callers prevent concurrent
816 * invocations: in mmput() nobody alive left, in execve task is single
817 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
818 * mm->exe_file, but does so without using set_mm_exe_file() in order
819 * to do avoid the need for any locks.
820 */
821 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
822 {
823 struct file *old_exe_file;
824
825 /*
826 * It is safe to dereference the exe_file without RCU as
827 * this function is only called if nobody else can access
828 * this mm -- see comment above for justification.
829 */
830 old_exe_file = rcu_dereference_raw(mm->exe_file);
831
832 if (new_exe_file)
833 get_file(new_exe_file);
834 rcu_assign_pointer(mm->exe_file, new_exe_file);
835 if (old_exe_file)
836 fput(old_exe_file);
837 }
838
839 /**
840 * get_mm_exe_file - acquire a reference to the mm's executable file
841 *
842 * Returns %NULL if mm has no associated executable file.
843 * User must release file via fput().
844 */
845 struct file *get_mm_exe_file(struct mm_struct *mm)
846 {
847 struct file *exe_file;
848
849 rcu_read_lock();
850 exe_file = rcu_dereference(mm->exe_file);
851 if (exe_file && !get_file_rcu(exe_file))
852 exe_file = NULL;
853 rcu_read_unlock();
854 return exe_file;
855 }
856 EXPORT_SYMBOL(get_mm_exe_file);
857
858 /**
859 * get_task_exe_file - acquire a reference to the task's executable file
860 *
861 * Returns %NULL if task's mm (if any) has no associated executable file or
862 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
863 * User must release file via fput().
864 */
865 struct file *get_task_exe_file(struct task_struct *task)
866 {
867 struct file *exe_file = NULL;
868 struct mm_struct *mm;
869
870 task_lock(task);
871 mm = task->mm;
872 if (mm) {
873 if (!(task->flags & PF_KTHREAD))
874 exe_file = get_mm_exe_file(mm);
875 }
876 task_unlock(task);
877 return exe_file;
878 }
879 EXPORT_SYMBOL(get_task_exe_file);
880
881 /**
882 * get_task_mm - acquire a reference to the task's mm
883 *
884 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
885 * this kernel workthread has transiently adopted a user mm with use_mm,
886 * to do its AIO) is not set and if so returns a reference to it, after
887 * bumping up the use count. User must release the mm via mmput()
888 * after use. Typically used by /proc and ptrace.
889 */
890 struct mm_struct *get_task_mm(struct task_struct *task)
891 {
892 struct mm_struct *mm;
893
894 task_lock(task);
895 mm = task->mm;
896 if (mm) {
897 if (task->flags & PF_KTHREAD)
898 mm = NULL;
899 else
900 atomic_inc(&mm->mm_users);
901 }
902 task_unlock(task);
903 return mm;
904 }
905 EXPORT_SYMBOL_GPL(get_task_mm);
906
907 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
908 {
909 struct mm_struct *mm;
910 int err;
911
912 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
913 if (err)
914 return ERR_PTR(err);
915
916 mm = get_task_mm(task);
917 if (mm && mm != current->mm &&
918 !ptrace_may_access(task, mode)) {
919 mmput(mm);
920 mm = ERR_PTR(-EACCES);
921 }
922 mutex_unlock(&task->signal->cred_guard_mutex);
923
924 return mm;
925 }
926
927 static void complete_vfork_done(struct task_struct *tsk)
928 {
929 struct completion *vfork;
930
931 task_lock(tsk);
932 vfork = tsk->vfork_done;
933 if (likely(vfork)) {
934 tsk->vfork_done = NULL;
935 complete(vfork);
936 }
937 task_unlock(tsk);
938 }
939
940 static int wait_for_vfork_done(struct task_struct *child,
941 struct completion *vfork)
942 {
943 int killed;
944
945 freezer_do_not_count();
946 killed = wait_for_completion_killable(vfork);
947 freezer_count();
948
949 if (killed) {
950 task_lock(child);
951 child->vfork_done = NULL;
952 task_unlock(child);
953 }
954
955 put_task_struct(child);
956 return killed;
957 }
958
959 /* Please note the differences between mmput and mm_release.
960 * mmput is called whenever we stop holding onto a mm_struct,
961 * error success whatever.
962 *
963 * mm_release is called after a mm_struct has been removed
964 * from the current process.
965 *
966 * This difference is important for error handling, when we
967 * only half set up a mm_struct for a new process and need to restore
968 * the old one. Because we mmput the new mm_struct before
969 * restoring the old one. . .
970 * Eric Biederman 10 January 1998
971 */
972 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
973 {
974 /* Get rid of any futexes when releasing the mm */
975 #ifdef CONFIG_FUTEX
976 if (unlikely(tsk->robust_list)) {
977 exit_robust_list(tsk);
978 tsk->robust_list = NULL;
979 }
980 #ifdef CONFIG_COMPAT
981 if (unlikely(tsk->compat_robust_list)) {
982 compat_exit_robust_list(tsk);
983 tsk->compat_robust_list = NULL;
984 }
985 #endif
986 if (unlikely(!list_empty(&tsk->pi_state_list)))
987 exit_pi_state_list(tsk);
988 #endif
989
990 uprobe_free_utask(tsk);
991
992 /* Get rid of any cached register state */
993 deactivate_mm(tsk, mm);
994
995 /*
996 * Signal userspace if we're not exiting with a core dump
997 * because we want to leave the value intact for debugging
998 * purposes.
999 */
1000 if (tsk->clear_child_tid) {
1001 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1002 atomic_read(&mm->mm_users) > 1) {
1003 /*
1004 * We don't check the error code - if userspace has
1005 * not set up a proper pointer then tough luck.
1006 */
1007 put_user(0, tsk->clear_child_tid);
1008 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1009 1, NULL, NULL, 0);
1010 }
1011 tsk->clear_child_tid = NULL;
1012 }
1013
1014 /*
1015 * All done, finally we can wake up parent and return this mm to him.
1016 * Also kthread_stop() uses this completion for synchronization.
1017 */
1018 if (tsk->vfork_done)
1019 complete_vfork_done(tsk);
1020 }
1021
1022 /*
1023 * Allocate a new mm structure and copy contents from the
1024 * mm structure of the passed in task structure.
1025 */
1026 static struct mm_struct *dup_mm(struct task_struct *tsk)
1027 {
1028 struct mm_struct *mm, *oldmm = current->mm;
1029 int err;
1030
1031 mm = allocate_mm();
1032 if (!mm)
1033 goto fail_nomem;
1034
1035 memcpy(mm, oldmm, sizeof(*mm));
1036
1037 if (!mm_init(mm, tsk))
1038 goto fail_nomem;
1039
1040 err = dup_mmap(mm, oldmm);
1041 if (err)
1042 goto free_pt;
1043
1044 mm->hiwater_rss = get_mm_rss(mm);
1045 mm->hiwater_vm = mm->total_vm;
1046
1047 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1048 goto free_pt;
1049
1050 return mm;
1051
1052 free_pt:
1053 /* don't put binfmt in mmput, we haven't got module yet */
1054 mm->binfmt = NULL;
1055 mmput(mm);
1056
1057 fail_nomem:
1058 return NULL;
1059 }
1060
1061 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1062 {
1063 struct mm_struct *mm, *oldmm;
1064 int retval;
1065
1066 tsk->min_flt = tsk->maj_flt = 0;
1067 tsk->nvcsw = tsk->nivcsw = 0;
1068 #ifdef CONFIG_DETECT_HUNG_TASK
1069 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1070 #endif
1071
1072 tsk->mm = NULL;
1073 tsk->active_mm = NULL;
1074
1075 /*
1076 * Are we cloning a kernel thread?
1077 *
1078 * We need to steal a active VM for that..
1079 */
1080 oldmm = current->mm;
1081 if (!oldmm)
1082 return 0;
1083
1084 /* initialize the new vmacache entries */
1085 vmacache_flush(tsk);
1086
1087 if (clone_flags & CLONE_VM) {
1088 atomic_inc(&oldmm->mm_users);
1089 mm = oldmm;
1090 goto good_mm;
1091 }
1092
1093 retval = -ENOMEM;
1094 mm = dup_mm(tsk);
1095 if (!mm)
1096 goto fail_nomem;
1097
1098 good_mm:
1099 tsk->mm = mm;
1100 tsk->active_mm = mm;
1101 return 0;
1102
1103 fail_nomem:
1104 return retval;
1105 }
1106
1107 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1108 {
1109 struct fs_struct *fs = current->fs;
1110 if (clone_flags & CLONE_FS) {
1111 /* tsk->fs is already what we want */
1112 spin_lock(&fs->lock);
1113 if (fs->in_exec) {
1114 spin_unlock(&fs->lock);
1115 return -EAGAIN;
1116 }
1117 fs->users++;
1118 spin_unlock(&fs->lock);
1119 return 0;
1120 }
1121 tsk->fs = copy_fs_struct(fs);
1122 if (!tsk->fs)
1123 return -ENOMEM;
1124 return 0;
1125 }
1126
1127 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1128 {
1129 struct files_struct *oldf, *newf;
1130 int error = 0;
1131
1132 /*
1133 * A background process may not have any files ...
1134 */
1135 oldf = current->files;
1136 if (!oldf)
1137 goto out;
1138
1139 if (clone_flags & CLONE_FILES) {
1140 atomic_inc(&oldf->count);
1141 goto out;
1142 }
1143
1144 newf = dup_fd(oldf, &error);
1145 if (!newf)
1146 goto out;
1147
1148 tsk->files = newf;
1149 error = 0;
1150 out:
1151 return error;
1152 }
1153
1154 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1155 {
1156 #ifdef CONFIG_BLOCK
1157 struct io_context *ioc = current->io_context;
1158 struct io_context *new_ioc;
1159
1160 if (!ioc)
1161 return 0;
1162 /*
1163 * Share io context with parent, if CLONE_IO is set
1164 */
1165 if (clone_flags & CLONE_IO) {
1166 ioc_task_link(ioc);
1167 tsk->io_context = ioc;
1168 } else if (ioprio_valid(ioc->ioprio)) {
1169 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1170 if (unlikely(!new_ioc))
1171 return -ENOMEM;
1172
1173 new_ioc->ioprio = ioc->ioprio;
1174 put_io_context(new_ioc);
1175 }
1176 #endif
1177 return 0;
1178 }
1179
1180 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1181 {
1182 struct sighand_struct *sig;
1183
1184 if (clone_flags & CLONE_SIGHAND) {
1185 atomic_inc(&current->sighand->count);
1186 return 0;
1187 }
1188 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1189 rcu_assign_pointer(tsk->sighand, sig);
1190 if (!sig)
1191 return -ENOMEM;
1192
1193 atomic_set(&sig->count, 1);
1194 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1195 return 0;
1196 }
1197
1198 void __cleanup_sighand(struct sighand_struct *sighand)
1199 {
1200 if (atomic_dec_and_test(&sighand->count)) {
1201 signalfd_cleanup(sighand);
1202 /*
1203 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1204 * without an RCU grace period, see __lock_task_sighand().
1205 */
1206 kmem_cache_free(sighand_cachep, sighand);
1207 }
1208 }
1209
1210 /*
1211 * Initialize POSIX timer handling for a thread group.
1212 */
1213 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1214 {
1215 unsigned long cpu_limit;
1216
1217 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1218 if (cpu_limit != RLIM_INFINITY) {
1219 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1220 sig->cputimer.running = true;
1221 }
1222
1223 /* The timer lists. */
1224 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1225 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1226 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1227 }
1228
1229 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1230 {
1231 struct signal_struct *sig;
1232
1233 if (clone_flags & CLONE_THREAD)
1234 return 0;
1235
1236 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1237 tsk->signal = sig;
1238 if (!sig)
1239 return -ENOMEM;
1240
1241 sig->nr_threads = 1;
1242 atomic_set(&sig->live, 1);
1243 atomic_set(&sig->sigcnt, 1);
1244
1245 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1246 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1247 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1248
1249 init_waitqueue_head(&sig->wait_chldexit);
1250 sig->curr_target = tsk;
1251 init_sigpending(&sig->shared_pending);
1252 INIT_LIST_HEAD(&sig->posix_timers);
1253 seqlock_init(&sig->stats_lock);
1254 prev_cputime_init(&sig->prev_cputime);
1255
1256 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1257 sig->real_timer.function = it_real_fn;
1258
1259 task_lock(current->group_leader);
1260 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1261 task_unlock(current->group_leader);
1262
1263 posix_cpu_timers_init_group(sig);
1264
1265 tty_audit_fork(sig);
1266 sched_autogroup_fork(sig);
1267
1268 sig->oom_score_adj = current->signal->oom_score_adj;
1269 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1270
1271 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1272 current->signal->is_child_subreaper;
1273
1274 mutex_init(&sig->cred_guard_mutex);
1275
1276 return 0;
1277 }
1278
1279 static void copy_seccomp(struct task_struct *p)
1280 {
1281 #ifdef CONFIG_SECCOMP
1282 /*
1283 * Must be called with sighand->lock held, which is common to
1284 * all threads in the group. Holding cred_guard_mutex is not
1285 * needed because this new task is not yet running and cannot
1286 * be racing exec.
1287 */
1288 assert_spin_locked(&current->sighand->siglock);
1289
1290 /* Ref-count the new filter user, and assign it. */
1291 get_seccomp_filter(current);
1292 p->seccomp = current->seccomp;
1293
1294 /*
1295 * Explicitly enable no_new_privs here in case it got set
1296 * between the task_struct being duplicated and holding the
1297 * sighand lock. The seccomp state and nnp must be in sync.
1298 */
1299 if (task_no_new_privs(current))
1300 task_set_no_new_privs(p);
1301
1302 /*
1303 * If the parent gained a seccomp mode after copying thread
1304 * flags and between before we held the sighand lock, we have
1305 * to manually enable the seccomp thread flag here.
1306 */
1307 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1308 set_tsk_thread_flag(p, TIF_SECCOMP);
1309 #endif
1310 }
1311
1312 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1313 {
1314 current->clear_child_tid = tidptr;
1315
1316 return task_pid_vnr(current);
1317 }
1318
1319 static void rt_mutex_init_task(struct task_struct *p)
1320 {
1321 raw_spin_lock_init(&p->pi_lock);
1322 #ifdef CONFIG_RT_MUTEXES
1323 p->pi_waiters = RB_ROOT;
1324 p->pi_waiters_leftmost = NULL;
1325 p->pi_blocked_on = NULL;
1326 #endif
1327 }
1328
1329 /*
1330 * Initialize POSIX timer handling for a single task.
1331 */
1332 static void posix_cpu_timers_init(struct task_struct *tsk)
1333 {
1334 tsk->cputime_expires.prof_exp = 0;
1335 tsk->cputime_expires.virt_exp = 0;
1336 tsk->cputime_expires.sched_exp = 0;
1337 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1338 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1339 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1340 }
1341
1342 static inline void
1343 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1344 {
1345 task->pids[type].pid = pid;
1346 }
1347
1348 /*
1349 * This creates a new process as a copy of the old one,
1350 * but does not actually start it yet.
1351 *
1352 * It copies the registers, and all the appropriate
1353 * parts of the process environment (as per the clone
1354 * flags). The actual kick-off is left to the caller.
1355 */
1356 static __latent_entropy struct task_struct *copy_process(
1357 unsigned long clone_flags,
1358 unsigned long stack_start,
1359 unsigned long stack_size,
1360 int __user *child_tidptr,
1361 struct pid *pid,
1362 int trace,
1363 unsigned long tls,
1364 int node)
1365 {
1366 int retval;
1367 struct task_struct *p;
1368
1369 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1370 return ERR_PTR(-EINVAL);
1371
1372 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1373 return ERR_PTR(-EINVAL);
1374
1375 /*
1376 * Thread groups must share signals as well, and detached threads
1377 * can only be started up within the thread group.
1378 */
1379 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1380 return ERR_PTR(-EINVAL);
1381
1382 /*
1383 * Shared signal handlers imply shared VM. By way of the above,
1384 * thread groups also imply shared VM. Blocking this case allows
1385 * for various simplifications in other code.
1386 */
1387 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1388 return ERR_PTR(-EINVAL);
1389
1390 /*
1391 * Siblings of global init remain as zombies on exit since they are
1392 * not reaped by their parent (swapper). To solve this and to avoid
1393 * multi-rooted process trees, prevent global and container-inits
1394 * from creating siblings.
1395 */
1396 if ((clone_flags & CLONE_PARENT) &&
1397 current->signal->flags & SIGNAL_UNKILLABLE)
1398 return ERR_PTR(-EINVAL);
1399
1400 /*
1401 * If the new process will be in a different pid or user namespace
1402 * do not allow it to share a thread group with the forking task.
1403 */
1404 if (clone_flags & CLONE_THREAD) {
1405 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1406 (task_active_pid_ns(current) !=
1407 current->nsproxy->pid_ns_for_children))
1408 return ERR_PTR(-EINVAL);
1409 }
1410
1411 retval = security_task_create(clone_flags);
1412 if (retval)
1413 goto fork_out;
1414
1415 retval = -ENOMEM;
1416 p = dup_task_struct(current, node);
1417 if (!p)
1418 goto fork_out;
1419
1420 ftrace_graph_init_task(p);
1421
1422 rt_mutex_init_task(p);
1423
1424 #ifdef CONFIG_PROVE_LOCKING
1425 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1426 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1427 #endif
1428 retval = -EAGAIN;
1429 if (atomic_read(&p->real_cred->user->processes) >=
1430 task_rlimit(p, RLIMIT_NPROC)) {
1431 if (p->real_cred->user != INIT_USER &&
1432 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1433 goto bad_fork_free;
1434 }
1435 current->flags &= ~PF_NPROC_EXCEEDED;
1436
1437 retval = copy_creds(p, clone_flags);
1438 if (retval < 0)
1439 goto bad_fork_free;
1440
1441 /*
1442 * If multiple threads are within copy_process(), then this check
1443 * triggers too late. This doesn't hurt, the check is only there
1444 * to stop root fork bombs.
1445 */
1446 retval = -EAGAIN;
1447 if (nr_threads >= max_threads)
1448 goto bad_fork_cleanup_count;
1449
1450 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1451 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1452 p->flags |= PF_FORKNOEXEC;
1453 INIT_LIST_HEAD(&p->children);
1454 INIT_LIST_HEAD(&p->sibling);
1455 rcu_copy_process(p);
1456 p->vfork_done = NULL;
1457 spin_lock_init(&p->alloc_lock);
1458
1459 init_sigpending(&p->pending);
1460
1461 p->utime = p->stime = p->gtime = 0;
1462 p->utimescaled = p->stimescaled = 0;
1463 prev_cputime_init(&p->prev_cputime);
1464
1465 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1466 seqcount_init(&p->vtime_seqcount);
1467 p->vtime_snap = 0;
1468 p->vtime_snap_whence = VTIME_INACTIVE;
1469 #endif
1470
1471 #if defined(SPLIT_RSS_COUNTING)
1472 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1473 #endif
1474
1475 p->default_timer_slack_ns = current->timer_slack_ns;
1476
1477 task_io_accounting_init(&p->ioac);
1478 acct_clear_integrals(p);
1479
1480 posix_cpu_timers_init(p);
1481
1482 p->start_time = ktime_get_ns();
1483 p->real_start_time = ktime_get_boot_ns();
1484 p->io_context = NULL;
1485 p->audit_context = NULL;
1486 cgroup_fork(p);
1487 #ifdef CONFIG_NUMA
1488 p->mempolicy = mpol_dup(p->mempolicy);
1489 if (IS_ERR(p->mempolicy)) {
1490 retval = PTR_ERR(p->mempolicy);
1491 p->mempolicy = NULL;
1492 goto bad_fork_cleanup_threadgroup_lock;
1493 }
1494 #endif
1495 #ifdef CONFIG_CPUSETS
1496 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1497 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1498 seqcount_init(&p->mems_allowed_seq);
1499 #endif
1500 #ifdef CONFIG_TRACE_IRQFLAGS
1501 p->irq_events = 0;
1502 p->hardirqs_enabled = 0;
1503 p->hardirq_enable_ip = 0;
1504 p->hardirq_enable_event = 0;
1505 p->hardirq_disable_ip = _THIS_IP_;
1506 p->hardirq_disable_event = 0;
1507 p->softirqs_enabled = 1;
1508 p->softirq_enable_ip = _THIS_IP_;
1509 p->softirq_enable_event = 0;
1510 p->softirq_disable_ip = 0;
1511 p->softirq_disable_event = 0;
1512 p->hardirq_context = 0;
1513 p->softirq_context = 0;
1514 #endif
1515
1516 p->pagefault_disabled = 0;
1517
1518 #ifdef CONFIG_LOCKDEP
1519 p->lockdep_depth = 0; /* no locks held yet */
1520 p->curr_chain_key = 0;
1521 p->lockdep_recursion = 0;
1522 #endif
1523
1524 #ifdef CONFIG_DEBUG_MUTEXES
1525 p->blocked_on = NULL; /* not blocked yet */
1526 #endif
1527 #ifdef CONFIG_BCACHE
1528 p->sequential_io = 0;
1529 p->sequential_io_avg = 0;
1530 #endif
1531
1532 /* Perform scheduler related setup. Assign this task to a CPU. */
1533 retval = sched_fork(clone_flags, p);
1534 if (retval)
1535 goto bad_fork_cleanup_policy;
1536
1537 retval = perf_event_init_task(p);
1538 if (retval)
1539 goto bad_fork_cleanup_policy;
1540 retval = audit_alloc(p);
1541 if (retval)
1542 goto bad_fork_cleanup_perf;
1543 /* copy all the process information */
1544 shm_init_task(p);
1545 retval = copy_semundo(clone_flags, p);
1546 if (retval)
1547 goto bad_fork_cleanup_audit;
1548 retval = copy_files(clone_flags, p);
1549 if (retval)
1550 goto bad_fork_cleanup_semundo;
1551 retval = copy_fs(clone_flags, p);
1552 if (retval)
1553 goto bad_fork_cleanup_files;
1554 retval = copy_sighand(clone_flags, p);
1555 if (retval)
1556 goto bad_fork_cleanup_fs;
1557 retval = copy_signal(clone_flags, p);
1558 if (retval)
1559 goto bad_fork_cleanup_sighand;
1560 retval = copy_mm(clone_flags, p);
1561 if (retval)
1562 goto bad_fork_cleanup_signal;
1563 retval = copy_namespaces(clone_flags, p);
1564 if (retval)
1565 goto bad_fork_cleanup_mm;
1566 retval = copy_io(clone_flags, p);
1567 if (retval)
1568 goto bad_fork_cleanup_namespaces;
1569 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1570 if (retval)
1571 goto bad_fork_cleanup_io;
1572
1573 if (pid != &init_struct_pid) {
1574 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1575 if (IS_ERR(pid)) {
1576 retval = PTR_ERR(pid);
1577 goto bad_fork_cleanup_thread;
1578 }
1579 }
1580
1581 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1582 /*
1583 * Clear TID on mm_release()?
1584 */
1585 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1586 #ifdef CONFIG_BLOCK
1587 p->plug = NULL;
1588 #endif
1589 #ifdef CONFIG_FUTEX
1590 p->robust_list = NULL;
1591 #ifdef CONFIG_COMPAT
1592 p->compat_robust_list = NULL;
1593 #endif
1594 INIT_LIST_HEAD(&p->pi_state_list);
1595 p->pi_state_cache = NULL;
1596 #endif
1597 /*
1598 * sigaltstack should be cleared when sharing the same VM
1599 */
1600 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1601 sas_ss_reset(p);
1602
1603 /*
1604 * Syscall tracing and stepping should be turned off in the
1605 * child regardless of CLONE_PTRACE.
1606 */
1607 user_disable_single_step(p);
1608 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1609 #ifdef TIF_SYSCALL_EMU
1610 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1611 #endif
1612 clear_all_latency_tracing(p);
1613
1614 /* ok, now we should be set up.. */
1615 p->pid = pid_nr(pid);
1616 if (clone_flags & CLONE_THREAD) {
1617 p->exit_signal = -1;
1618 p->group_leader = current->group_leader;
1619 p->tgid = current->tgid;
1620 } else {
1621 if (clone_flags & CLONE_PARENT)
1622 p->exit_signal = current->group_leader->exit_signal;
1623 else
1624 p->exit_signal = (clone_flags & CSIGNAL);
1625 p->group_leader = p;
1626 p->tgid = p->pid;
1627 }
1628
1629 p->nr_dirtied = 0;
1630 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1631 p->dirty_paused_when = 0;
1632
1633 p->pdeath_signal = 0;
1634 INIT_LIST_HEAD(&p->thread_group);
1635 p->task_works = NULL;
1636
1637 threadgroup_change_begin(current);
1638 /*
1639 * Ensure that the cgroup subsystem policies allow the new process to be
1640 * forked. It should be noted the the new process's css_set can be changed
1641 * between here and cgroup_post_fork() if an organisation operation is in
1642 * progress.
1643 */
1644 retval = cgroup_can_fork(p);
1645 if (retval)
1646 goto bad_fork_free_pid;
1647
1648 /*
1649 * Make it visible to the rest of the system, but dont wake it up yet.
1650 * Need tasklist lock for parent etc handling!
1651 */
1652 write_lock_irq(&tasklist_lock);
1653
1654 /* CLONE_PARENT re-uses the old parent */
1655 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1656 p->real_parent = current->real_parent;
1657 p->parent_exec_id = current->parent_exec_id;
1658 } else {
1659 p->real_parent = current;
1660 p->parent_exec_id = current->self_exec_id;
1661 }
1662
1663 spin_lock(&current->sighand->siglock);
1664
1665 /*
1666 * Copy seccomp details explicitly here, in case they were changed
1667 * before holding sighand lock.
1668 */
1669 copy_seccomp(p);
1670
1671 /*
1672 * Process group and session signals need to be delivered to just the
1673 * parent before the fork or both the parent and the child after the
1674 * fork. Restart if a signal comes in before we add the new process to
1675 * it's process group.
1676 * A fatal signal pending means that current will exit, so the new
1677 * thread can't slip out of an OOM kill (or normal SIGKILL).
1678 */
1679 recalc_sigpending();
1680 if (signal_pending(current)) {
1681 spin_unlock(&current->sighand->siglock);
1682 write_unlock_irq(&tasklist_lock);
1683 retval = -ERESTARTNOINTR;
1684 goto bad_fork_cancel_cgroup;
1685 }
1686
1687 if (likely(p->pid)) {
1688 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1689
1690 init_task_pid(p, PIDTYPE_PID, pid);
1691 if (thread_group_leader(p)) {
1692 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1693 init_task_pid(p, PIDTYPE_SID, task_session(current));
1694
1695 if (is_child_reaper(pid)) {
1696 ns_of_pid(pid)->child_reaper = p;
1697 p->signal->flags |= SIGNAL_UNKILLABLE;
1698 }
1699
1700 p->signal->leader_pid = pid;
1701 p->signal->tty = tty_kref_get(current->signal->tty);
1702 list_add_tail(&p->sibling, &p->real_parent->children);
1703 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1704 attach_pid(p, PIDTYPE_PGID);
1705 attach_pid(p, PIDTYPE_SID);
1706 __this_cpu_inc(process_counts);
1707 } else {
1708 current->signal->nr_threads++;
1709 atomic_inc(&current->signal->live);
1710 atomic_inc(&current->signal->sigcnt);
1711 list_add_tail_rcu(&p->thread_group,
1712 &p->group_leader->thread_group);
1713 list_add_tail_rcu(&p->thread_node,
1714 &p->signal->thread_head);
1715 }
1716 attach_pid(p, PIDTYPE_PID);
1717 nr_threads++;
1718 }
1719
1720 total_forks++;
1721 spin_unlock(&current->sighand->siglock);
1722 syscall_tracepoint_update(p);
1723 write_unlock_irq(&tasklist_lock);
1724
1725 proc_fork_connector(p);
1726 cgroup_post_fork(p);
1727 threadgroup_change_end(current);
1728 perf_event_fork(p);
1729
1730 trace_task_newtask(p, clone_flags);
1731 uprobe_copy_process(p, clone_flags);
1732
1733 return p;
1734
1735 bad_fork_cancel_cgroup:
1736 cgroup_cancel_fork(p);
1737 bad_fork_free_pid:
1738 threadgroup_change_end(current);
1739 if (pid != &init_struct_pid)
1740 free_pid(pid);
1741 bad_fork_cleanup_thread:
1742 exit_thread(p);
1743 bad_fork_cleanup_io:
1744 if (p->io_context)
1745 exit_io_context(p);
1746 bad_fork_cleanup_namespaces:
1747 exit_task_namespaces(p);
1748 bad_fork_cleanup_mm:
1749 if (p->mm)
1750 mmput(p->mm);
1751 bad_fork_cleanup_signal:
1752 if (!(clone_flags & CLONE_THREAD))
1753 free_signal_struct(p->signal);
1754 bad_fork_cleanup_sighand:
1755 __cleanup_sighand(p->sighand);
1756 bad_fork_cleanup_fs:
1757 exit_fs(p); /* blocking */
1758 bad_fork_cleanup_files:
1759 exit_files(p); /* blocking */
1760 bad_fork_cleanup_semundo:
1761 exit_sem(p);
1762 bad_fork_cleanup_audit:
1763 audit_free(p);
1764 bad_fork_cleanup_perf:
1765 perf_event_free_task(p);
1766 bad_fork_cleanup_policy:
1767 #ifdef CONFIG_NUMA
1768 mpol_put(p->mempolicy);
1769 bad_fork_cleanup_threadgroup_lock:
1770 #endif
1771 delayacct_tsk_free(p);
1772 bad_fork_cleanup_count:
1773 atomic_dec(&p->cred->user->processes);
1774 exit_creds(p);
1775 bad_fork_free:
1776 free_task(p);
1777 fork_out:
1778 return ERR_PTR(retval);
1779 }
1780
1781 static inline void init_idle_pids(struct pid_link *links)
1782 {
1783 enum pid_type type;
1784
1785 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1786 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1787 links[type].pid = &init_struct_pid;
1788 }
1789 }
1790
1791 struct task_struct *fork_idle(int cpu)
1792 {
1793 struct task_struct *task;
1794 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1795 cpu_to_node(cpu));
1796 if (!IS_ERR(task)) {
1797 init_idle_pids(task->pids);
1798 init_idle(task, cpu);
1799 }
1800
1801 return task;
1802 }
1803
1804 /*
1805 * Ok, this is the main fork-routine.
1806 *
1807 * It copies the process, and if successful kick-starts
1808 * it and waits for it to finish using the VM if required.
1809 */
1810 long _do_fork(unsigned long clone_flags,
1811 unsigned long stack_start,
1812 unsigned long stack_size,
1813 int __user *parent_tidptr,
1814 int __user *child_tidptr,
1815 unsigned long tls)
1816 {
1817 struct task_struct *p;
1818 int trace = 0;
1819 long nr;
1820
1821 /*
1822 * Determine whether and which event to report to ptracer. When
1823 * called from kernel_thread or CLONE_UNTRACED is explicitly
1824 * requested, no event is reported; otherwise, report if the event
1825 * for the type of forking is enabled.
1826 */
1827 if (!(clone_flags & CLONE_UNTRACED)) {
1828 if (clone_flags & CLONE_VFORK)
1829 trace = PTRACE_EVENT_VFORK;
1830 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1831 trace = PTRACE_EVENT_CLONE;
1832 else
1833 trace = PTRACE_EVENT_FORK;
1834
1835 if (likely(!ptrace_event_enabled(current, trace)))
1836 trace = 0;
1837 }
1838
1839 p = copy_process(clone_flags, stack_start, stack_size,
1840 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1841 add_latent_entropy();
1842 /*
1843 * Do this prior waking up the new thread - the thread pointer
1844 * might get invalid after that point, if the thread exits quickly.
1845 */
1846 if (!IS_ERR(p)) {
1847 struct completion vfork;
1848 struct pid *pid;
1849
1850 trace_sched_process_fork(current, p);
1851
1852 pid = get_task_pid(p, PIDTYPE_PID);
1853 nr = pid_vnr(pid);
1854
1855 if (clone_flags & CLONE_PARENT_SETTID)
1856 put_user(nr, parent_tidptr);
1857
1858 if (clone_flags & CLONE_VFORK) {
1859 p->vfork_done = &vfork;
1860 init_completion(&vfork);
1861 get_task_struct(p);
1862 }
1863
1864 wake_up_new_task(p);
1865
1866 /* forking complete and child started to run, tell ptracer */
1867 if (unlikely(trace))
1868 ptrace_event_pid(trace, pid);
1869
1870 if (clone_flags & CLONE_VFORK) {
1871 if (!wait_for_vfork_done(p, &vfork))
1872 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1873 }
1874
1875 put_pid(pid);
1876 } else {
1877 nr = PTR_ERR(p);
1878 }
1879 return nr;
1880 }
1881
1882 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1883 /* For compatibility with architectures that call do_fork directly rather than
1884 * using the syscall entry points below. */
1885 long do_fork(unsigned long clone_flags,
1886 unsigned long stack_start,
1887 unsigned long stack_size,
1888 int __user *parent_tidptr,
1889 int __user *child_tidptr)
1890 {
1891 return _do_fork(clone_flags, stack_start, stack_size,
1892 parent_tidptr, child_tidptr, 0);
1893 }
1894 #endif
1895
1896 /*
1897 * Create a kernel thread.
1898 */
1899 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1900 {
1901 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1902 (unsigned long)arg, NULL, NULL, 0);
1903 }
1904
1905 #ifdef __ARCH_WANT_SYS_FORK
1906 SYSCALL_DEFINE0(fork)
1907 {
1908 #ifdef CONFIG_MMU
1909 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1910 #else
1911 /* can not support in nommu mode */
1912 return -EINVAL;
1913 #endif
1914 }
1915 #endif
1916
1917 #ifdef __ARCH_WANT_SYS_VFORK
1918 SYSCALL_DEFINE0(vfork)
1919 {
1920 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1921 0, NULL, NULL, 0);
1922 }
1923 #endif
1924
1925 #ifdef __ARCH_WANT_SYS_CLONE
1926 #ifdef CONFIG_CLONE_BACKWARDS
1927 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1928 int __user *, parent_tidptr,
1929 unsigned long, tls,
1930 int __user *, child_tidptr)
1931 #elif defined(CONFIG_CLONE_BACKWARDS2)
1932 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1933 int __user *, parent_tidptr,
1934 int __user *, child_tidptr,
1935 unsigned long, tls)
1936 #elif defined(CONFIG_CLONE_BACKWARDS3)
1937 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1938 int, stack_size,
1939 int __user *, parent_tidptr,
1940 int __user *, child_tidptr,
1941 unsigned long, tls)
1942 #else
1943 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1944 int __user *, parent_tidptr,
1945 int __user *, child_tidptr,
1946 unsigned long, tls)
1947 #endif
1948 {
1949 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1950 }
1951 #endif
1952
1953 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1954 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1955 #endif
1956
1957 static void sighand_ctor(void *data)
1958 {
1959 struct sighand_struct *sighand = data;
1960
1961 spin_lock_init(&sighand->siglock);
1962 init_waitqueue_head(&sighand->signalfd_wqh);
1963 }
1964
1965 void __init proc_caches_init(void)
1966 {
1967 sighand_cachep = kmem_cache_create("sighand_cache",
1968 sizeof(struct sighand_struct), 0,
1969 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1970 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1971 signal_cachep = kmem_cache_create("signal_cache",
1972 sizeof(struct signal_struct), 0,
1973 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1974 NULL);
1975 files_cachep = kmem_cache_create("files_cache",
1976 sizeof(struct files_struct), 0,
1977 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1978 NULL);
1979 fs_cachep = kmem_cache_create("fs_cache",
1980 sizeof(struct fs_struct), 0,
1981 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1982 NULL);
1983 /*
1984 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1985 * whole struct cpumask for the OFFSTACK case. We could change
1986 * this to *only* allocate as much of it as required by the
1987 * maximum number of CPU's we can ever have. The cpumask_allocation
1988 * is at the end of the structure, exactly for that reason.
1989 */
1990 mm_cachep = kmem_cache_create("mm_struct",
1991 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1992 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1993 NULL);
1994 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1995 mmap_init();
1996 nsproxy_cache_init();
1997 }
1998
1999 /*
2000 * Check constraints on flags passed to the unshare system call.
2001 */
2002 static int check_unshare_flags(unsigned long unshare_flags)
2003 {
2004 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2005 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2006 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2007 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2008 return -EINVAL;
2009 /*
2010 * Not implemented, but pretend it works if there is nothing
2011 * to unshare. Note that unsharing the address space or the
2012 * signal handlers also need to unshare the signal queues (aka
2013 * CLONE_THREAD).
2014 */
2015 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2016 if (!thread_group_empty(current))
2017 return -EINVAL;
2018 }
2019 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2020 if (atomic_read(&current->sighand->count) > 1)
2021 return -EINVAL;
2022 }
2023 if (unshare_flags & CLONE_VM) {
2024 if (!current_is_single_threaded())
2025 return -EINVAL;
2026 }
2027
2028 return 0;
2029 }
2030
2031 /*
2032 * Unshare the filesystem structure if it is being shared
2033 */
2034 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2035 {
2036 struct fs_struct *fs = current->fs;
2037
2038 if (!(unshare_flags & CLONE_FS) || !fs)
2039 return 0;
2040
2041 /* don't need lock here; in the worst case we'll do useless copy */
2042 if (fs->users == 1)
2043 return 0;
2044
2045 *new_fsp = copy_fs_struct(fs);
2046 if (!*new_fsp)
2047 return -ENOMEM;
2048
2049 return 0;
2050 }
2051
2052 /*
2053 * Unshare file descriptor table if it is being shared
2054 */
2055 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2056 {
2057 struct files_struct *fd = current->files;
2058 int error = 0;
2059
2060 if ((unshare_flags & CLONE_FILES) &&
2061 (fd && atomic_read(&fd->count) > 1)) {
2062 *new_fdp = dup_fd(fd, &error);
2063 if (!*new_fdp)
2064 return error;
2065 }
2066
2067 return 0;
2068 }
2069
2070 /*
2071 * unshare allows a process to 'unshare' part of the process
2072 * context which was originally shared using clone. copy_*
2073 * functions used by do_fork() cannot be used here directly
2074 * because they modify an inactive task_struct that is being
2075 * constructed. Here we are modifying the current, active,
2076 * task_struct.
2077 */
2078 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2079 {
2080 struct fs_struct *fs, *new_fs = NULL;
2081 struct files_struct *fd, *new_fd = NULL;
2082 struct cred *new_cred = NULL;
2083 struct nsproxy *new_nsproxy = NULL;
2084 int do_sysvsem = 0;
2085 int err;
2086
2087 /*
2088 * If unsharing a user namespace must also unshare the thread group
2089 * and unshare the filesystem root and working directories.
2090 */
2091 if (unshare_flags & CLONE_NEWUSER)
2092 unshare_flags |= CLONE_THREAD | CLONE_FS;
2093 /*
2094 * If unsharing vm, must also unshare signal handlers.
2095 */
2096 if (unshare_flags & CLONE_VM)
2097 unshare_flags |= CLONE_SIGHAND;
2098 /*
2099 * If unsharing a signal handlers, must also unshare the signal queues.
2100 */
2101 if (unshare_flags & CLONE_SIGHAND)
2102 unshare_flags |= CLONE_THREAD;
2103 /*
2104 * If unsharing namespace, must also unshare filesystem information.
2105 */
2106 if (unshare_flags & CLONE_NEWNS)
2107 unshare_flags |= CLONE_FS;
2108
2109 err = check_unshare_flags(unshare_flags);
2110 if (err)
2111 goto bad_unshare_out;
2112 /*
2113 * CLONE_NEWIPC must also detach from the undolist: after switching
2114 * to a new ipc namespace, the semaphore arrays from the old
2115 * namespace are unreachable.
2116 */
2117 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2118 do_sysvsem = 1;
2119 err = unshare_fs(unshare_flags, &new_fs);
2120 if (err)
2121 goto bad_unshare_out;
2122 err = unshare_fd(unshare_flags, &new_fd);
2123 if (err)
2124 goto bad_unshare_cleanup_fs;
2125 err = unshare_userns(unshare_flags, &new_cred);
2126 if (err)
2127 goto bad_unshare_cleanup_fd;
2128 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2129 new_cred, new_fs);
2130 if (err)
2131 goto bad_unshare_cleanup_cred;
2132
2133 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2134 if (do_sysvsem) {
2135 /*
2136 * CLONE_SYSVSEM is equivalent to sys_exit().
2137 */
2138 exit_sem(current);
2139 }
2140 if (unshare_flags & CLONE_NEWIPC) {
2141 /* Orphan segments in old ns (see sem above). */
2142 exit_shm(current);
2143 shm_init_task(current);
2144 }
2145
2146 if (new_nsproxy)
2147 switch_task_namespaces(current, new_nsproxy);
2148
2149 task_lock(current);
2150
2151 if (new_fs) {
2152 fs = current->fs;
2153 spin_lock(&fs->lock);
2154 current->fs = new_fs;
2155 if (--fs->users)
2156 new_fs = NULL;
2157 else
2158 new_fs = fs;
2159 spin_unlock(&fs->lock);
2160 }
2161
2162 if (new_fd) {
2163 fd = current->files;
2164 current->files = new_fd;
2165 new_fd = fd;
2166 }
2167
2168 task_unlock(current);
2169
2170 if (new_cred) {
2171 /* Install the new user namespace */
2172 commit_creds(new_cred);
2173 new_cred = NULL;
2174 }
2175 }
2176
2177 bad_unshare_cleanup_cred:
2178 if (new_cred)
2179 put_cred(new_cred);
2180 bad_unshare_cleanup_fd:
2181 if (new_fd)
2182 put_files_struct(new_fd);
2183
2184 bad_unshare_cleanup_fs:
2185 if (new_fs)
2186 free_fs_struct(new_fs);
2187
2188 bad_unshare_out:
2189 return err;
2190 }
2191
2192 /*
2193 * Helper to unshare the files of the current task.
2194 * We don't want to expose copy_files internals to
2195 * the exec layer of the kernel.
2196 */
2197
2198 int unshare_files(struct files_struct **displaced)
2199 {
2200 struct task_struct *task = current;
2201 struct files_struct *copy = NULL;
2202 int error;
2203
2204 error = unshare_fd(CLONE_FILES, &copy);
2205 if (error || !copy) {
2206 *displaced = NULL;
2207 return error;
2208 }
2209 *displaced = task->files;
2210 task_lock(task);
2211 task->files = copy;
2212 task_unlock(task);
2213 return 0;
2214 }
2215
2216 int sysctl_max_threads(struct ctl_table *table, int write,
2217 void __user *buffer, size_t *lenp, loff_t *ppos)
2218 {
2219 struct ctl_table t;
2220 int ret;
2221 int threads = max_threads;
2222 int min = MIN_THREADS;
2223 int max = MAX_THREADS;
2224
2225 t = *table;
2226 t.data = &threads;
2227 t.extra1 = &min;
2228 t.extra2 = &max;
2229
2230 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2231 if (ret || !write)
2232 return ret;
2233
2234 set_max_threads(threads);
2235
2236 return 0;
2237 }
This page took 0.098107 seconds and 5 git commands to generate.