Fix: rseq: arm branch to failure
[deliverable/linux.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
68
69 #include <asm/futex.h>
70
71 #include "locking/rtmutex_common.h"
72
73 /*
74 * READ this before attempting to hack on futexes!
75 *
76 * Basic futex operation and ordering guarantees
77 * =============================================
78 *
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
85 *
86 * The waker side modifies the user space value of the futex and calls
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
90 *
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
96 *
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
112 *
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
116 *
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
120 *
121 * CPU 0 CPU 1
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
125 *
126 * waiters++; (a)
127 * smp_mb(); (A) <-- paired with -.
128 * |
129 * lock(hash_bucket(futex)); |
130 * |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
135 * |
136 * `--------> smp_mb(); (B)
137 * if (uval == val)
138 * queue();
139 * unlock(hash_bucket(futex));
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
144 *
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182 #ifdef CONFIG_MMU
183 # define FLAGS_SHARED 0x01
184 #else
185 /*
186 * NOMMU does not have per process address space. Let the compiler optimize
187 * code away.
188 */
189 # define FLAGS_SHARED 0x00
190 #endif
191 #define FLAGS_CLOCKRT 0x02
192 #define FLAGS_HAS_TIMEOUT 0x04
193
194 /*
195 * Priority Inheritance state:
196 */
197 struct futex_pi_state {
198 /*
199 * list of 'owned' pi_state instances - these have to be
200 * cleaned up in do_exit() if the task exits prematurely:
201 */
202 struct list_head list;
203
204 /*
205 * The PI object:
206 */
207 struct rt_mutex pi_mutex;
208
209 struct task_struct *owner;
210 atomic_t refcount;
211
212 union futex_key key;
213 };
214
215 /**
216 * struct futex_q - The hashed futex queue entry, one per waiting task
217 * @list: priority-sorted list of tasks waiting on this futex
218 * @task: the task waiting on the futex
219 * @lock_ptr: the hash bucket lock
220 * @key: the key the futex is hashed on
221 * @pi_state: optional priority inheritance state
222 * @rt_waiter: rt_waiter storage for use with requeue_pi
223 * @requeue_pi_key: the requeue_pi target futex key
224 * @bitset: bitset for the optional bitmasked wakeup
225 *
226 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
227 * we can wake only the relevant ones (hashed queues may be shared).
228 *
229 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
230 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
231 * The order of wakeup is always to make the first condition true, then
232 * the second.
233 *
234 * PI futexes are typically woken before they are removed from the hash list via
235 * the rt_mutex code. See unqueue_me_pi().
236 */
237 struct futex_q {
238 struct plist_node list;
239
240 struct task_struct *task;
241 spinlock_t *lock_ptr;
242 union futex_key key;
243 struct futex_pi_state *pi_state;
244 struct rt_mutex_waiter *rt_waiter;
245 union futex_key *requeue_pi_key;
246 u32 bitset;
247 };
248
249 static const struct futex_q futex_q_init = {
250 /* list gets initialized in queue_me()*/
251 .key = FUTEX_KEY_INIT,
252 .bitset = FUTEX_BITSET_MATCH_ANY
253 };
254
255 /*
256 * Hash buckets are shared by all the futex_keys that hash to the same
257 * location. Each key may have multiple futex_q structures, one for each task
258 * waiting on a futex.
259 */
260 struct futex_hash_bucket {
261 atomic_t waiters;
262 spinlock_t lock;
263 struct plist_head chain;
264 } ____cacheline_aligned_in_smp;
265
266 /*
267 * The base of the bucket array and its size are always used together
268 * (after initialization only in hash_futex()), so ensure that they
269 * reside in the same cacheline.
270 */
271 static struct {
272 struct futex_hash_bucket *queues;
273 unsigned long hashsize;
274 } __futex_data __read_mostly __aligned(2*sizeof(long));
275 #define futex_queues (__futex_data.queues)
276 #define futex_hashsize (__futex_data.hashsize)
277
278
279 /*
280 * Fault injections for futexes.
281 */
282 #ifdef CONFIG_FAIL_FUTEX
283
284 static struct {
285 struct fault_attr attr;
286
287 bool ignore_private;
288 } fail_futex = {
289 .attr = FAULT_ATTR_INITIALIZER,
290 .ignore_private = false,
291 };
292
293 static int __init setup_fail_futex(char *str)
294 {
295 return setup_fault_attr(&fail_futex.attr, str);
296 }
297 __setup("fail_futex=", setup_fail_futex);
298
299 static bool should_fail_futex(bool fshared)
300 {
301 if (fail_futex.ignore_private && !fshared)
302 return false;
303
304 return should_fail(&fail_futex.attr, 1);
305 }
306
307 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
308
309 static int __init fail_futex_debugfs(void)
310 {
311 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
312 struct dentry *dir;
313
314 dir = fault_create_debugfs_attr("fail_futex", NULL,
315 &fail_futex.attr);
316 if (IS_ERR(dir))
317 return PTR_ERR(dir);
318
319 if (!debugfs_create_bool("ignore-private", mode, dir,
320 &fail_futex.ignore_private)) {
321 debugfs_remove_recursive(dir);
322 return -ENOMEM;
323 }
324
325 return 0;
326 }
327
328 late_initcall(fail_futex_debugfs);
329
330 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
331
332 #else
333 static inline bool should_fail_futex(bool fshared)
334 {
335 return false;
336 }
337 #endif /* CONFIG_FAIL_FUTEX */
338
339 static inline void futex_get_mm(union futex_key *key)
340 {
341 atomic_inc(&key->private.mm->mm_count);
342 /*
343 * Ensure futex_get_mm() implies a full barrier such that
344 * get_futex_key() implies a full barrier. This is relied upon
345 * as smp_mb(); (B), see the ordering comment above.
346 */
347 smp_mb__after_atomic();
348 }
349
350 /*
351 * Reflects a new waiter being added to the waitqueue.
352 */
353 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
354 {
355 #ifdef CONFIG_SMP
356 atomic_inc(&hb->waiters);
357 /*
358 * Full barrier (A), see the ordering comment above.
359 */
360 smp_mb__after_atomic();
361 #endif
362 }
363
364 /*
365 * Reflects a waiter being removed from the waitqueue by wakeup
366 * paths.
367 */
368 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
369 {
370 #ifdef CONFIG_SMP
371 atomic_dec(&hb->waiters);
372 #endif
373 }
374
375 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
376 {
377 #ifdef CONFIG_SMP
378 return atomic_read(&hb->waiters);
379 #else
380 return 1;
381 #endif
382 }
383
384 /*
385 * We hash on the keys returned from get_futex_key (see below).
386 */
387 static struct futex_hash_bucket *hash_futex(union futex_key *key)
388 {
389 u32 hash = jhash2((u32*)&key->both.word,
390 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
391 key->both.offset);
392 return &futex_queues[hash & (futex_hashsize - 1)];
393 }
394
395 /*
396 * Return 1 if two futex_keys are equal, 0 otherwise.
397 */
398 static inline int match_futex(union futex_key *key1, union futex_key *key2)
399 {
400 return (key1 && key2
401 && key1->both.word == key2->both.word
402 && key1->both.ptr == key2->both.ptr
403 && key1->both.offset == key2->both.offset);
404 }
405
406 /*
407 * Take a reference to the resource addressed by a key.
408 * Can be called while holding spinlocks.
409 *
410 */
411 static void get_futex_key_refs(union futex_key *key)
412 {
413 if (!key->both.ptr)
414 return;
415
416 /*
417 * On MMU less systems futexes are always "private" as there is no per
418 * process address space. We need the smp wmb nevertheless - yes,
419 * arch/blackfin has MMU less SMP ...
420 */
421 if (!IS_ENABLED(CONFIG_MMU)) {
422 smp_mb(); /* explicit smp_mb(); (B) */
423 return;
424 }
425
426 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
427 case FUT_OFF_INODE:
428 ihold(key->shared.inode); /* implies smp_mb(); (B) */
429 break;
430 case FUT_OFF_MMSHARED:
431 futex_get_mm(key); /* implies smp_mb(); (B) */
432 break;
433 default:
434 /*
435 * Private futexes do not hold reference on an inode or
436 * mm, therefore the only purpose of calling get_futex_key_refs
437 * is because we need the barrier for the lockless waiter check.
438 */
439 smp_mb(); /* explicit smp_mb(); (B) */
440 }
441 }
442
443 /*
444 * Drop a reference to the resource addressed by a key.
445 * The hash bucket spinlock must not be held. This is
446 * a no-op for private futexes, see comment in the get
447 * counterpart.
448 */
449 static void drop_futex_key_refs(union futex_key *key)
450 {
451 if (!key->both.ptr) {
452 /* If we're here then we tried to put a key we failed to get */
453 WARN_ON_ONCE(1);
454 return;
455 }
456
457 if (!IS_ENABLED(CONFIG_MMU))
458 return;
459
460 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
461 case FUT_OFF_INODE:
462 iput(key->shared.inode);
463 break;
464 case FUT_OFF_MMSHARED:
465 mmdrop(key->private.mm);
466 break;
467 }
468 }
469
470 /**
471 * get_futex_key() - Get parameters which are the keys for a futex
472 * @uaddr: virtual address of the futex
473 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
474 * @key: address where result is stored.
475 * @rw: mapping needs to be read/write (values: VERIFY_READ,
476 * VERIFY_WRITE)
477 *
478 * Return: a negative error code or 0
479 *
480 * The key words are stored in *key on success.
481 *
482 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
483 * offset_within_page). For private mappings, it's (uaddr, current->mm).
484 * We can usually work out the index without swapping in the page.
485 *
486 * lock_page() might sleep, the caller should not hold a spinlock.
487 */
488 static int
489 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
490 {
491 unsigned long address = (unsigned long)uaddr;
492 struct mm_struct *mm = current->mm;
493 struct page *page, *tail;
494 struct address_space *mapping;
495 int err, ro = 0;
496
497 /*
498 * The futex address must be "naturally" aligned.
499 */
500 key->both.offset = address % PAGE_SIZE;
501 if (unlikely((address % sizeof(u32)) != 0))
502 return -EINVAL;
503 address -= key->both.offset;
504
505 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
506 return -EFAULT;
507
508 if (unlikely(should_fail_futex(fshared)))
509 return -EFAULT;
510
511 /*
512 * PROCESS_PRIVATE futexes are fast.
513 * As the mm cannot disappear under us and the 'key' only needs
514 * virtual address, we dont even have to find the underlying vma.
515 * Note : We do have to check 'uaddr' is a valid user address,
516 * but access_ok() should be faster than find_vma()
517 */
518 if (!fshared) {
519 key->private.mm = mm;
520 key->private.address = address;
521 get_futex_key_refs(key); /* implies smp_mb(); (B) */
522 return 0;
523 }
524
525 again:
526 /* Ignore any VERIFY_READ mapping (futex common case) */
527 if (unlikely(should_fail_futex(fshared)))
528 return -EFAULT;
529
530 err = get_user_pages_fast(address, 1, 1, &page);
531 /*
532 * If write access is not required (eg. FUTEX_WAIT), try
533 * and get read-only access.
534 */
535 if (err == -EFAULT && rw == VERIFY_READ) {
536 err = get_user_pages_fast(address, 1, 0, &page);
537 ro = 1;
538 }
539 if (err < 0)
540 return err;
541 else
542 err = 0;
543
544 /*
545 * The treatment of mapping from this point on is critical. The page
546 * lock protects many things but in this context the page lock
547 * stabilizes mapping, prevents inode freeing in the shared
548 * file-backed region case and guards against movement to swap cache.
549 *
550 * Strictly speaking the page lock is not needed in all cases being
551 * considered here and page lock forces unnecessarily serialization
552 * From this point on, mapping will be re-verified if necessary and
553 * page lock will be acquired only if it is unavoidable
554 *
555 * Mapping checks require the head page for any compound page so the
556 * head page and mapping is looked up now. For anonymous pages, it
557 * does not matter if the page splits in the future as the key is
558 * based on the address. For filesystem-backed pages, the tail is
559 * required as the index of the page determines the key. For
560 * base pages, there is no tail page and tail == page.
561 */
562 tail = page;
563 page = compound_head(page);
564 mapping = READ_ONCE(page->mapping);
565
566 /*
567 * If page->mapping is NULL, then it cannot be a PageAnon
568 * page; but it might be the ZERO_PAGE or in the gate area or
569 * in a special mapping (all cases which we are happy to fail);
570 * or it may have been a good file page when get_user_pages_fast
571 * found it, but truncated or holepunched or subjected to
572 * invalidate_complete_page2 before we got the page lock (also
573 * cases which we are happy to fail). And we hold a reference,
574 * so refcount care in invalidate_complete_page's remove_mapping
575 * prevents drop_caches from setting mapping to NULL beneath us.
576 *
577 * The case we do have to guard against is when memory pressure made
578 * shmem_writepage move it from filecache to swapcache beneath us:
579 * an unlikely race, but we do need to retry for page->mapping.
580 */
581 if (unlikely(!mapping)) {
582 int shmem_swizzled;
583
584 /*
585 * Page lock is required to identify which special case above
586 * applies. If this is really a shmem page then the page lock
587 * will prevent unexpected transitions.
588 */
589 lock_page(page);
590 shmem_swizzled = PageSwapCache(page) || page->mapping;
591 unlock_page(page);
592 put_page(page);
593
594 if (shmem_swizzled)
595 goto again;
596
597 return -EFAULT;
598 }
599
600 /*
601 * Private mappings are handled in a simple way.
602 *
603 * If the futex key is stored on an anonymous page, then the associated
604 * object is the mm which is implicitly pinned by the calling process.
605 *
606 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
607 * it's a read-only handle, it's expected that futexes attach to
608 * the object not the particular process.
609 */
610 if (PageAnon(page)) {
611 /*
612 * A RO anonymous page will never change and thus doesn't make
613 * sense for futex operations.
614 */
615 if (unlikely(should_fail_futex(fshared)) || ro) {
616 err = -EFAULT;
617 goto out;
618 }
619
620 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
621 key->private.mm = mm;
622 key->private.address = address;
623
624 get_futex_key_refs(key); /* implies smp_mb(); (B) */
625
626 } else {
627 struct inode *inode;
628
629 /*
630 * The associated futex object in this case is the inode and
631 * the page->mapping must be traversed. Ordinarily this should
632 * be stabilised under page lock but it's not strictly
633 * necessary in this case as we just want to pin the inode, not
634 * update the radix tree or anything like that.
635 *
636 * The RCU read lock is taken as the inode is finally freed
637 * under RCU. If the mapping still matches expectations then the
638 * mapping->host can be safely accessed as being a valid inode.
639 */
640 rcu_read_lock();
641
642 if (READ_ONCE(page->mapping) != mapping) {
643 rcu_read_unlock();
644 put_page(page);
645
646 goto again;
647 }
648
649 inode = READ_ONCE(mapping->host);
650 if (!inode) {
651 rcu_read_unlock();
652 put_page(page);
653
654 goto again;
655 }
656
657 /*
658 * Take a reference unless it is about to be freed. Previously
659 * this reference was taken by ihold under the page lock
660 * pinning the inode in place so i_lock was unnecessary. The
661 * only way for this check to fail is if the inode was
662 * truncated in parallel so warn for now if this happens.
663 *
664 * We are not calling into get_futex_key_refs() in file-backed
665 * cases, therefore a successful atomic_inc return below will
666 * guarantee that get_futex_key() will still imply smp_mb(); (B).
667 */
668 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
669 rcu_read_unlock();
670 put_page(page);
671
672 goto again;
673 }
674
675 /* Should be impossible but lets be paranoid for now */
676 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
677 err = -EFAULT;
678 rcu_read_unlock();
679 iput(inode);
680
681 goto out;
682 }
683
684 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
685 key->shared.inode = inode;
686 key->shared.pgoff = basepage_index(tail);
687 rcu_read_unlock();
688 }
689
690 out:
691 put_page(page);
692 return err;
693 }
694
695 static inline void put_futex_key(union futex_key *key)
696 {
697 drop_futex_key_refs(key);
698 }
699
700 /**
701 * fault_in_user_writeable() - Fault in user address and verify RW access
702 * @uaddr: pointer to faulting user space address
703 *
704 * Slow path to fixup the fault we just took in the atomic write
705 * access to @uaddr.
706 *
707 * We have no generic implementation of a non-destructive write to the
708 * user address. We know that we faulted in the atomic pagefault
709 * disabled section so we can as well avoid the #PF overhead by
710 * calling get_user_pages() right away.
711 */
712 static int fault_in_user_writeable(u32 __user *uaddr)
713 {
714 struct mm_struct *mm = current->mm;
715 int ret;
716
717 down_read(&mm->mmap_sem);
718 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
719 FAULT_FLAG_WRITE, NULL);
720 up_read(&mm->mmap_sem);
721
722 return ret < 0 ? ret : 0;
723 }
724
725 /**
726 * futex_top_waiter() - Return the highest priority waiter on a futex
727 * @hb: the hash bucket the futex_q's reside in
728 * @key: the futex key (to distinguish it from other futex futex_q's)
729 *
730 * Must be called with the hb lock held.
731 */
732 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
733 union futex_key *key)
734 {
735 struct futex_q *this;
736
737 plist_for_each_entry(this, &hb->chain, list) {
738 if (match_futex(&this->key, key))
739 return this;
740 }
741 return NULL;
742 }
743
744 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
745 u32 uval, u32 newval)
746 {
747 int ret;
748
749 pagefault_disable();
750 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
751 pagefault_enable();
752
753 return ret;
754 }
755
756 static int get_futex_value_locked(u32 *dest, u32 __user *from)
757 {
758 int ret;
759
760 pagefault_disable();
761 ret = __get_user(*dest, from);
762 pagefault_enable();
763
764 return ret ? -EFAULT : 0;
765 }
766
767
768 /*
769 * PI code:
770 */
771 static int refill_pi_state_cache(void)
772 {
773 struct futex_pi_state *pi_state;
774
775 if (likely(current->pi_state_cache))
776 return 0;
777
778 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
779
780 if (!pi_state)
781 return -ENOMEM;
782
783 INIT_LIST_HEAD(&pi_state->list);
784 /* pi_mutex gets initialized later */
785 pi_state->owner = NULL;
786 atomic_set(&pi_state->refcount, 1);
787 pi_state->key = FUTEX_KEY_INIT;
788
789 current->pi_state_cache = pi_state;
790
791 return 0;
792 }
793
794 static struct futex_pi_state * alloc_pi_state(void)
795 {
796 struct futex_pi_state *pi_state = current->pi_state_cache;
797
798 WARN_ON(!pi_state);
799 current->pi_state_cache = NULL;
800
801 return pi_state;
802 }
803
804 /*
805 * Drops a reference to the pi_state object and frees or caches it
806 * when the last reference is gone.
807 *
808 * Must be called with the hb lock held.
809 */
810 static void put_pi_state(struct futex_pi_state *pi_state)
811 {
812 if (!pi_state)
813 return;
814
815 if (!atomic_dec_and_test(&pi_state->refcount))
816 return;
817
818 /*
819 * If pi_state->owner is NULL, the owner is most probably dying
820 * and has cleaned up the pi_state already
821 */
822 if (pi_state->owner) {
823 raw_spin_lock_irq(&pi_state->owner->pi_lock);
824 list_del_init(&pi_state->list);
825 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
826
827 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
828 }
829
830 if (current->pi_state_cache)
831 kfree(pi_state);
832 else {
833 /*
834 * pi_state->list is already empty.
835 * clear pi_state->owner.
836 * refcount is at 0 - put it back to 1.
837 */
838 pi_state->owner = NULL;
839 atomic_set(&pi_state->refcount, 1);
840 current->pi_state_cache = pi_state;
841 }
842 }
843
844 /*
845 * Look up the task based on what TID userspace gave us.
846 * We dont trust it.
847 */
848 static struct task_struct * futex_find_get_task(pid_t pid)
849 {
850 struct task_struct *p;
851
852 rcu_read_lock();
853 p = find_task_by_vpid(pid);
854 if (p)
855 get_task_struct(p);
856
857 rcu_read_unlock();
858
859 return p;
860 }
861
862 /*
863 * This task is holding PI mutexes at exit time => bad.
864 * Kernel cleans up PI-state, but userspace is likely hosed.
865 * (Robust-futex cleanup is separate and might save the day for userspace.)
866 */
867 void exit_pi_state_list(struct task_struct *curr)
868 {
869 struct list_head *next, *head = &curr->pi_state_list;
870 struct futex_pi_state *pi_state;
871 struct futex_hash_bucket *hb;
872 union futex_key key = FUTEX_KEY_INIT;
873
874 if (!futex_cmpxchg_enabled)
875 return;
876 /*
877 * We are a ZOMBIE and nobody can enqueue itself on
878 * pi_state_list anymore, but we have to be careful
879 * versus waiters unqueueing themselves:
880 */
881 raw_spin_lock_irq(&curr->pi_lock);
882 while (!list_empty(head)) {
883
884 next = head->next;
885 pi_state = list_entry(next, struct futex_pi_state, list);
886 key = pi_state->key;
887 hb = hash_futex(&key);
888 raw_spin_unlock_irq(&curr->pi_lock);
889
890 spin_lock(&hb->lock);
891
892 raw_spin_lock_irq(&curr->pi_lock);
893 /*
894 * We dropped the pi-lock, so re-check whether this
895 * task still owns the PI-state:
896 */
897 if (head->next != next) {
898 spin_unlock(&hb->lock);
899 continue;
900 }
901
902 WARN_ON(pi_state->owner != curr);
903 WARN_ON(list_empty(&pi_state->list));
904 list_del_init(&pi_state->list);
905 pi_state->owner = NULL;
906 raw_spin_unlock_irq(&curr->pi_lock);
907
908 rt_mutex_unlock(&pi_state->pi_mutex);
909
910 spin_unlock(&hb->lock);
911
912 raw_spin_lock_irq(&curr->pi_lock);
913 }
914 raw_spin_unlock_irq(&curr->pi_lock);
915 }
916
917 /*
918 * We need to check the following states:
919 *
920 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
921 *
922 * [1] NULL | --- | --- | 0 | 0/1 | Valid
923 * [2] NULL | --- | --- | >0 | 0/1 | Valid
924 *
925 * [3] Found | NULL | -- | Any | 0/1 | Invalid
926 *
927 * [4] Found | Found | NULL | 0 | 1 | Valid
928 * [5] Found | Found | NULL | >0 | 1 | Invalid
929 *
930 * [6] Found | Found | task | 0 | 1 | Valid
931 *
932 * [7] Found | Found | NULL | Any | 0 | Invalid
933 *
934 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
935 * [9] Found | Found | task | 0 | 0 | Invalid
936 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
937 *
938 * [1] Indicates that the kernel can acquire the futex atomically. We
939 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
940 *
941 * [2] Valid, if TID does not belong to a kernel thread. If no matching
942 * thread is found then it indicates that the owner TID has died.
943 *
944 * [3] Invalid. The waiter is queued on a non PI futex
945 *
946 * [4] Valid state after exit_robust_list(), which sets the user space
947 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
948 *
949 * [5] The user space value got manipulated between exit_robust_list()
950 * and exit_pi_state_list()
951 *
952 * [6] Valid state after exit_pi_state_list() which sets the new owner in
953 * the pi_state but cannot access the user space value.
954 *
955 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
956 *
957 * [8] Owner and user space value match
958 *
959 * [9] There is no transient state which sets the user space TID to 0
960 * except exit_robust_list(), but this is indicated by the
961 * FUTEX_OWNER_DIED bit. See [4]
962 *
963 * [10] There is no transient state which leaves owner and user space
964 * TID out of sync.
965 */
966
967 /*
968 * Validate that the existing waiter has a pi_state and sanity check
969 * the pi_state against the user space value. If correct, attach to
970 * it.
971 */
972 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
973 struct futex_pi_state **ps)
974 {
975 pid_t pid = uval & FUTEX_TID_MASK;
976
977 /*
978 * Userspace might have messed up non-PI and PI futexes [3]
979 */
980 if (unlikely(!pi_state))
981 return -EINVAL;
982
983 WARN_ON(!atomic_read(&pi_state->refcount));
984
985 /*
986 * Handle the owner died case:
987 */
988 if (uval & FUTEX_OWNER_DIED) {
989 /*
990 * exit_pi_state_list sets owner to NULL and wakes the
991 * topmost waiter. The task which acquires the
992 * pi_state->rt_mutex will fixup owner.
993 */
994 if (!pi_state->owner) {
995 /*
996 * No pi state owner, but the user space TID
997 * is not 0. Inconsistent state. [5]
998 */
999 if (pid)
1000 return -EINVAL;
1001 /*
1002 * Take a ref on the state and return success. [4]
1003 */
1004 goto out_state;
1005 }
1006
1007 /*
1008 * If TID is 0, then either the dying owner has not
1009 * yet executed exit_pi_state_list() or some waiter
1010 * acquired the rtmutex in the pi state, but did not
1011 * yet fixup the TID in user space.
1012 *
1013 * Take a ref on the state and return success. [6]
1014 */
1015 if (!pid)
1016 goto out_state;
1017 } else {
1018 /*
1019 * If the owner died bit is not set, then the pi_state
1020 * must have an owner. [7]
1021 */
1022 if (!pi_state->owner)
1023 return -EINVAL;
1024 }
1025
1026 /*
1027 * Bail out if user space manipulated the futex value. If pi
1028 * state exists then the owner TID must be the same as the
1029 * user space TID. [9/10]
1030 */
1031 if (pid != task_pid_vnr(pi_state->owner))
1032 return -EINVAL;
1033 out_state:
1034 atomic_inc(&pi_state->refcount);
1035 *ps = pi_state;
1036 return 0;
1037 }
1038
1039 /*
1040 * Lookup the task for the TID provided from user space and attach to
1041 * it after doing proper sanity checks.
1042 */
1043 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1044 struct futex_pi_state **ps)
1045 {
1046 pid_t pid = uval & FUTEX_TID_MASK;
1047 struct futex_pi_state *pi_state;
1048 struct task_struct *p;
1049
1050 /*
1051 * We are the first waiter - try to look up the real owner and attach
1052 * the new pi_state to it, but bail out when TID = 0 [1]
1053 */
1054 if (!pid)
1055 return -ESRCH;
1056 p = futex_find_get_task(pid);
1057 if (!p)
1058 return -ESRCH;
1059
1060 if (unlikely(p->flags & PF_KTHREAD)) {
1061 put_task_struct(p);
1062 return -EPERM;
1063 }
1064
1065 /*
1066 * We need to look at the task state flags to figure out,
1067 * whether the task is exiting. To protect against the do_exit
1068 * change of the task flags, we do this protected by
1069 * p->pi_lock:
1070 */
1071 raw_spin_lock_irq(&p->pi_lock);
1072 if (unlikely(p->flags & PF_EXITING)) {
1073 /*
1074 * The task is on the way out. When PF_EXITPIDONE is
1075 * set, we know that the task has finished the
1076 * cleanup:
1077 */
1078 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1079
1080 raw_spin_unlock_irq(&p->pi_lock);
1081 put_task_struct(p);
1082 return ret;
1083 }
1084
1085 /*
1086 * No existing pi state. First waiter. [2]
1087 */
1088 pi_state = alloc_pi_state();
1089
1090 /*
1091 * Initialize the pi_mutex in locked state and make @p
1092 * the owner of it:
1093 */
1094 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1095
1096 /* Store the key for possible exit cleanups: */
1097 pi_state->key = *key;
1098
1099 WARN_ON(!list_empty(&pi_state->list));
1100 list_add(&pi_state->list, &p->pi_state_list);
1101 pi_state->owner = p;
1102 raw_spin_unlock_irq(&p->pi_lock);
1103
1104 put_task_struct(p);
1105
1106 *ps = pi_state;
1107
1108 return 0;
1109 }
1110
1111 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1112 union futex_key *key, struct futex_pi_state **ps)
1113 {
1114 struct futex_q *match = futex_top_waiter(hb, key);
1115
1116 /*
1117 * If there is a waiter on that futex, validate it and
1118 * attach to the pi_state when the validation succeeds.
1119 */
1120 if (match)
1121 return attach_to_pi_state(uval, match->pi_state, ps);
1122
1123 /*
1124 * We are the first waiter - try to look up the owner based on
1125 * @uval and attach to it.
1126 */
1127 return attach_to_pi_owner(uval, key, ps);
1128 }
1129
1130 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1131 {
1132 u32 uninitialized_var(curval);
1133
1134 if (unlikely(should_fail_futex(true)))
1135 return -EFAULT;
1136
1137 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1138 return -EFAULT;
1139
1140 /*If user space value changed, let the caller retry */
1141 return curval != uval ? -EAGAIN : 0;
1142 }
1143
1144 /**
1145 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1146 * @uaddr: the pi futex user address
1147 * @hb: the pi futex hash bucket
1148 * @key: the futex key associated with uaddr and hb
1149 * @ps: the pi_state pointer where we store the result of the
1150 * lookup
1151 * @task: the task to perform the atomic lock work for. This will
1152 * be "current" except in the case of requeue pi.
1153 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1154 *
1155 * Return:
1156 * 0 - ready to wait;
1157 * 1 - acquired the lock;
1158 * <0 - error
1159 *
1160 * The hb->lock and futex_key refs shall be held by the caller.
1161 */
1162 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1163 union futex_key *key,
1164 struct futex_pi_state **ps,
1165 struct task_struct *task, int set_waiters)
1166 {
1167 u32 uval, newval, vpid = task_pid_vnr(task);
1168 struct futex_q *match;
1169 int ret;
1170
1171 /*
1172 * Read the user space value first so we can validate a few
1173 * things before proceeding further.
1174 */
1175 if (get_futex_value_locked(&uval, uaddr))
1176 return -EFAULT;
1177
1178 if (unlikely(should_fail_futex(true)))
1179 return -EFAULT;
1180
1181 /*
1182 * Detect deadlocks.
1183 */
1184 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1185 return -EDEADLK;
1186
1187 if ((unlikely(should_fail_futex(true))))
1188 return -EDEADLK;
1189
1190 /*
1191 * Lookup existing state first. If it exists, try to attach to
1192 * its pi_state.
1193 */
1194 match = futex_top_waiter(hb, key);
1195 if (match)
1196 return attach_to_pi_state(uval, match->pi_state, ps);
1197
1198 /*
1199 * No waiter and user TID is 0. We are here because the
1200 * waiters or the owner died bit is set or called from
1201 * requeue_cmp_pi or for whatever reason something took the
1202 * syscall.
1203 */
1204 if (!(uval & FUTEX_TID_MASK)) {
1205 /*
1206 * We take over the futex. No other waiters and the user space
1207 * TID is 0. We preserve the owner died bit.
1208 */
1209 newval = uval & FUTEX_OWNER_DIED;
1210 newval |= vpid;
1211
1212 /* The futex requeue_pi code can enforce the waiters bit */
1213 if (set_waiters)
1214 newval |= FUTEX_WAITERS;
1215
1216 ret = lock_pi_update_atomic(uaddr, uval, newval);
1217 /* If the take over worked, return 1 */
1218 return ret < 0 ? ret : 1;
1219 }
1220
1221 /*
1222 * First waiter. Set the waiters bit before attaching ourself to
1223 * the owner. If owner tries to unlock, it will be forced into
1224 * the kernel and blocked on hb->lock.
1225 */
1226 newval = uval | FUTEX_WAITERS;
1227 ret = lock_pi_update_atomic(uaddr, uval, newval);
1228 if (ret)
1229 return ret;
1230 /*
1231 * If the update of the user space value succeeded, we try to
1232 * attach to the owner. If that fails, no harm done, we only
1233 * set the FUTEX_WAITERS bit in the user space variable.
1234 */
1235 return attach_to_pi_owner(uval, key, ps);
1236 }
1237
1238 /**
1239 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1240 * @q: The futex_q to unqueue
1241 *
1242 * The q->lock_ptr must not be NULL and must be held by the caller.
1243 */
1244 static void __unqueue_futex(struct futex_q *q)
1245 {
1246 struct futex_hash_bucket *hb;
1247
1248 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1249 || WARN_ON(plist_node_empty(&q->list)))
1250 return;
1251
1252 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1253 plist_del(&q->list, &hb->chain);
1254 hb_waiters_dec(hb);
1255 }
1256
1257 /*
1258 * The hash bucket lock must be held when this is called.
1259 * Afterwards, the futex_q must not be accessed. Callers
1260 * must ensure to later call wake_up_q() for the actual
1261 * wakeups to occur.
1262 */
1263 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1264 {
1265 struct task_struct *p = q->task;
1266
1267 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1268 return;
1269
1270 /*
1271 * Queue the task for later wakeup for after we've released
1272 * the hb->lock. wake_q_add() grabs reference to p.
1273 */
1274 wake_q_add(wake_q, p);
1275 __unqueue_futex(q);
1276 /*
1277 * The waiting task can free the futex_q as soon as
1278 * q->lock_ptr = NULL is written, without taking any locks. A
1279 * memory barrier is required here to prevent the following
1280 * store to lock_ptr from getting ahead of the plist_del.
1281 */
1282 smp_wmb();
1283 q->lock_ptr = NULL;
1284 }
1285
1286 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1287 struct futex_hash_bucket *hb)
1288 {
1289 struct task_struct *new_owner;
1290 struct futex_pi_state *pi_state = this->pi_state;
1291 u32 uninitialized_var(curval), newval;
1292 WAKE_Q(wake_q);
1293 bool deboost;
1294 int ret = 0;
1295
1296 if (!pi_state)
1297 return -EINVAL;
1298
1299 /*
1300 * If current does not own the pi_state then the futex is
1301 * inconsistent and user space fiddled with the futex value.
1302 */
1303 if (pi_state->owner != current)
1304 return -EINVAL;
1305
1306 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1307 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1308
1309 /*
1310 * It is possible that the next waiter (the one that brought
1311 * this owner to the kernel) timed out and is no longer
1312 * waiting on the lock.
1313 */
1314 if (!new_owner)
1315 new_owner = this->task;
1316
1317 /*
1318 * We pass it to the next owner. The WAITERS bit is always
1319 * kept enabled while there is PI state around. We cleanup the
1320 * owner died bit, because we are the owner.
1321 */
1322 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1323
1324 if (unlikely(should_fail_futex(true)))
1325 ret = -EFAULT;
1326
1327 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1328 ret = -EFAULT;
1329 } else if (curval != uval) {
1330 /*
1331 * If a unconditional UNLOCK_PI operation (user space did not
1332 * try the TID->0 transition) raced with a waiter setting the
1333 * FUTEX_WAITERS flag between get_user() and locking the hash
1334 * bucket lock, retry the operation.
1335 */
1336 if ((FUTEX_TID_MASK & curval) == uval)
1337 ret = -EAGAIN;
1338 else
1339 ret = -EINVAL;
1340 }
1341 if (ret) {
1342 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1343 return ret;
1344 }
1345
1346 raw_spin_lock(&pi_state->owner->pi_lock);
1347 WARN_ON(list_empty(&pi_state->list));
1348 list_del_init(&pi_state->list);
1349 raw_spin_unlock(&pi_state->owner->pi_lock);
1350
1351 raw_spin_lock(&new_owner->pi_lock);
1352 WARN_ON(!list_empty(&pi_state->list));
1353 list_add(&pi_state->list, &new_owner->pi_state_list);
1354 pi_state->owner = new_owner;
1355 raw_spin_unlock(&new_owner->pi_lock);
1356
1357 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1358
1359 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1360
1361 /*
1362 * First unlock HB so the waiter does not spin on it once he got woken
1363 * up. Second wake up the waiter before the priority is adjusted. If we
1364 * deboost first (and lose our higher priority), then the task might get
1365 * scheduled away before the wake up can take place.
1366 */
1367 spin_unlock(&hb->lock);
1368 wake_up_q(&wake_q);
1369 if (deboost)
1370 rt_mutex_adjust_prio(current);
1371
1372 return 0;
1373 }
1374
1375 /*
1376 * Express the locking dependencies for lockdep:
1377 */
1378 static inline void
1379 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1380 {
1381 if (hb1 <= hb2) {
1382 spin_lock(&hb1->lock);
1383 if (hb1 < hb2)
1384 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1385 } else { /* hb1 > hb2 */
1386 spin_lock(&hb2->lock);
1387 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1388 }
1389 }
1390
1391 static inline void
1392 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1393 {
1394 spin_unlock(&hb1->lock);
1395 if (hb1 != hb2)
1396 spin_unlock(&hb2->lock);
1397 }
1398
1399 /*
1400 * Wake up waiters matching bitset queued on this futex (uaddr).
1401 */
1402 static int
1403 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1404 {
1405 struct futex_hash_bucket *hb;
1406 struct futex_q *this, *next;
1407 union futex_key key = FUTEX_KEY_INIT;
1408 int ret;
1409 WAKE_Q(wake_q);
1410
1411 if (!bitset)
1412 return -EINVAL;
1413
1414 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1415 if (unlikely(ret != 0))
1416 goto out;
1417
1418 hb = hash_futex(&key);
1419
1420 /* Make sure we really have tasks to wakeup */
1421 if (!hb_waiters_pending(hb))
1422 goto out_put_key;
1423
1424 spin_lock(&hb->lock);
1425
1426 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1427 if (match_futex (&this->key, &key)) {
1428 if (this->pi_state || this->rt_waiter) {
1429 ret = -EINVAL;
1430 break;
1431 }
1432
1433 /* Check if one of the bits is set in both bitsets */
1434 if (!(this->bitset & bitset))
1435 continue;
1436
1437 mark_wake_futex(&wake_q, this);
1438 if (++ret >= nr_wake)
1439 break;
1440 }
1441 }
1442
1443 spin_unlock(&hb->lock);
1444 wake_up_q(&wake_q);
1445 out_put_key:
1446 put_futex_key(&key);
1447 out:
1448 return ret;
1449 }
1450
1451 /*
1452 * Wake up all waiters hashed on the physical page that is mapped
1453 * to this virtual address:
1454 */
1455 static int
1456 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1457 int nr_wake, int nr_wake2, int op)
1458 {
1459 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1460 struct futex_hash_bucket *hb1, *hb2;
1461 struct futex_q *this, *next;
1462 int ret, op_ret;
1463 WAKE_Q(wake_q);
1464
1465 retry:
1466 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1467 if (unlikely(ret != 0))
1468 goto out;
1469 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1470 if (unlikely(ret != 0))
1471 goto out_put_key1;
1472
1473 hb1 = hash_futex(&key1);
1474 hb2 = hash_futex(&key2);
1475
1476 retry_private:
1477 double_lock_hb(hb1, hb2);
1478 op_ret = futex_atomic_op_inuser(op, uaddr2);
1479 if (unlikely(op_ret < 0)) {
1480
1481 double_unlock_hb(hb1, hb2);
1482
1483 #ifndef CONFIG_MMU
1484 /*
1485 * we don't get EFAULT from MMU faults if we don't have an MMU,
1486 * but we might get them from range checking
1487 */
1488 ret = op_ret;
1489 goto out_put_keys;
1490 #endif
1491
1492 if (unlikely(op_ret != -EFAULT)) {
1493 ret = op_ret;
1494 goto out_put_keys;
1495 }
1496
1497 ret = fault_in_user_writeable(uaddr2);
1498 if (ret)
1499 goto out_put_keys;
1500
1501 if (!(flags & FLAGS_SHARED))
1502 goto retry_private;
1503
1504 put_futex_key(&key2);
1505 put_futex_key(&key1);
1506 goto retry;
1507 }
1508
1509 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1510 if (match_futex (&this->key, &key1)) {
1511 if (this->pi_state || this->rt_waiter) {
1512 ret = -EINVAL;
1513 goto out_unlock;
1514 }
1515 mark_wake_futex(&wake_q, this);
1516 if (++ret >= nr_wake)
1517 break;
1518 }
1519 }
1520
1521 if (op_ret > 0) {
1522 op_ret = 0;
1523 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1524 if (match_futex (&this->key, &key2)) {
1525 if (this->pi_state || this->rt_waiter) {
1526 ret = -EINVAL;
1527 goto out_unlock;
1528 }
1529 mark_wake_futex(&wake_q, this);
1530 if (++op_ret >= nr_wake2)
1531 break;
1532 }
1533 }
1534 ret += op_ret;
1535 }
1536
1537 out_unlock:
1538 double_unlock_hb(hb1, hb2);
1539 wake_up_q(&wake_q);
1540 out_put_keys:
1541 put_futex_key(&key2);
1542 out_put_key1:
1543 put_futex_key(&key1);
1544 out:
1545 return ret;
1546 }
1547
1548 /**
1549 * requeue_futex() - Requeue a futex_q from one hb to another
1550 * @q: the futex_q to requeue
1551 * @hb1: the source hash_bucket
1552 * @hb2: the target hash_bucket
1553 * @key2: the new key for the requeued futex_q
1554 */
1555 static inline
1556 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1557 struct futex_hash_bucket *hb2, union futex_key *key2)
1558 {
1559
1560 /*
1561 * If key1 and key2 hash to the same bucket, no need to
1562 * requeue.
1563 */
1564 if (likely(&hb1->chain != &hb2->chain)) {
1565 plist_del(&q->list, &hb1->chain);
1566 hb_waiters_dec(hb1);
1567 hb_waiters_inc(hb2);
1568 plist_add(&q->list, &hb2->chain);
1569 q->lock_ptr = &hb2->lock;
1570 }
1571 get_futex_key_refs(key2);
1572 q->key = *key2;
1573 }
1574
1575 /**
1576 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1577 * @q: the futex_q
1578 * @key: the key of the requeue target futex
1579 * @hb: the hash_bucket of the requeue target futex
1580 *
1581 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1582 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1583 * to the requeue target futex so the waiter can detect the wakeup on the right
1584 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1585 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1586 * to protect access to the pi_state to fixup the owner later. Must be called
1587 * with both q->lock_ptr and hb->lock held.
1588 */
1589 static inline
1590 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1591 struct futex_hash_bucket *hb)
1592 {
1593 get_futex_key_refs(key);
1594 q->key = *key;
1595
1596 __unqueue_futex(q);
1597
1598 WARN_ON(!q->rt_waiter);
1599 q->rt_waiter = NULL;
1600
1601 q->lock_ptr = &hb->lock;
1602
1603 wake_up_state(q->task, TASK_NORMAL);
1604 }
1605
1606 /**
1607 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1608 * @pifutex: the user address of the to futex
1609 * @hb1: the from futex hash bucket, must be locked by the caller
1610 * @hb2: the to futex hash bucket, must be locked by the caller
1611 * @key1: the from futex key
1612 * @key2: the to futex key
1613 * @ps: address to store the pi_state pointer
1614 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1615 *
1616 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1617 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1618 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1619 * hb1 and hb2 must be held by the caller.
1620 *
1621 * Return:
1622 * 0 - failed to acquire the lock atomically;
1623 * >0 - acquired the lock, return value is vpid of the top_waiter
1624 * <0 - error
1625 */
1626 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1627 struct futex_hash_bucket *hb1,
1628 struct futex_hash_bucket *hb2,
1629 union futex_key *key1, union futex_key *key2,
1630 struct futex_pi_state **ps, int set_waiters)
1631 {
1632 struct futex_q *top_waiter = NULL;
1633 u32 curval;
1634 int ret, vpid;
1635
1636 if (get_futex_value_locked(&curval, pifutex))
1637 return -EFAULT;
1638
1639 if (unlikely(should_fail_futex(true)))
1640 return -EFAULT;
1641
1642 /*
1643 * Find the top_waiter and determine if there are additional waiters.
1644 * If the caller intends to requeue more than 1 waiter to pifutex,
1645 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1646 * as we have means to handle the possible fault. If not, don't set
1647 * the bit unecessarily as it will force the subsequent unlock to enter
1648 * the kernel.
1649 */
1650 top_waiter = futex_top_waiter(hb1, key1);
1651
1652 /* There are no waiters, nothing for us to do. */
1653 if (!top_waiter)
1654 return 0;
1655
1656 /* Ensure we requeue to the expected futex. */
1657 if (!match_futex(top_waiter->requeue_pi_key, key2))
1658 return -EINVAL;
1659
1660 /*
1661 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1662 * the contended case or if set_waiters is 1. The pi_state is returned
1663 * in ps in contended cases.
1664 */
1665 vpid = task_pid_vnr(top_waiter->task);
1666 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1667 set_waiters);
1668 if (ret == 1) {
1669 requeue_pi_wake_futex(top_waiter, key2, hb2);
1670 return vpid;
1671 }
1672 return ret;
1673 }
1674
1675 /**
1676 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1677 * @uaddr1: source futex user address
1678 * @flags: futex flags (FLAGS_SHARED, etc.)
1679 * @uaddr2: target futex user address
1680 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1681 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1682 * @cmpval: @uaddr1 expected value (or %NULL)
1683 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1684 * pi futex (pi to pi requeue is not supported)
1685 *
1686 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1687 * uaddr2 atomically on behalf of the top waiter.
1688 *
1689 * Return:
1690 * >=0 - on success, the number of tasks requeued or woken;
1691 * <0 - on error
1692 */
1693 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1694 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1695 u32 *cmpval, int requeue_pi)
1696 {
1697 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1698 int drop_count = 0, task_count = 0, ret;
1699 struct futex_pi_state *pi_state = NULL;
1700 struct futex_hash_bucket *hb1, *hb2;
1701 struct futex_q *this, *next;
1702 WAKE_Q(wake_q);
1703
1704 if (requeue_pi) {
1705 /*
1706 * Requeue PI only works on two distinct uaddrs. This
1707 * check is only valid for private futexes. See below.
1708 */
1709 if (uaddr1 == uaddr2)
1710 return -EINVAL;
1711
1712 /*
1713 * requeue_pi requires a pi_state, try to allocate it now
1714 * without any locks in case it fails.
1715 */
1716 if (refill_pi_state_cache())
1717 return -ENOMEM;
1718 /*
1719 * requeue_pi must wake as many tasks as it can, up to nr_wake
1720 * + nr_requeue, since it acquires the rt_mutex prior to
1721 * returning to userspace, so as to not leave the rt_mutex with
1722 * waiters and no owner. However, second and third wake-ups
1723 * cannot be predicted as they involve race conditions with the
1724 * first wake and a fault while looking up the pi_state. Both
1725 * pthread_cond_signal() and pthread_cond_broadcast() should
1726 * use nr_wake=1.
1727 */
1728 if (nr_wake != 1)
1729 return -EINVAL;
1730 }
1731
1732 retry:
1733 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1734 if (unlikely(ret != 0))
1735 goto out;
1736 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1737 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1738 if (unlikely(ret != 0))
1739 goto out_put_key1;
1740
1741 /*
1742 * The check above which compares uaddrs is not sufficient for
1743 * shared futexes. We need to compare the keys:
1744 */
1745 if (requeue_pi && match_futex(&key1, &key2)) {
1746 ret = -EINVAL;
1747 goto out_put_keys;
1748 }
1749
1750 hb1 = hash_futex(&key1);
1751 hb2 = hash_futex(&key2);
1752
1753 retry_private:
1754 hb_waiters_inc(hb2);
1755 double_lock_hb(hb1, hb2);
1756
1757 if (likely(cmpval != NULL)) {
1758 u32 curval;
1759
1760 ret = get_futex_value_locked(&curval, uaddr1);
1761
1762 if (unlikely(ret)) {
1763 double_unlock_hb(hb1, hb2);
1764 hb_waiters_dec(hb2);
1765
1766 ret = get_user(curval, uaddr1);
1767 if (ret)
1768 goto out_put_keys;
1769
1770 if (!(flags & FLAGS_SHARED))
1771 goto retry_private;
1772
1773 put_futex_key(&key2);
1774 put_futex_key(&key1);
1775 goto retry;
1776 }
1777 if (curval != *cmpval) {
1778 ret = -EAGAIN;
1779 goto out_unlock;
1780 }
1781 }
1782
1783 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1784 /*
1785 * Attempt to acquire uaddr2 and wake the top waiter. If we
1786 * intend to requeue waiters, force setting the FUTEX_WAITERS
1787 * bit. We force this here where we are able to easily handle
1788 * faults rather in the requeue loop below.
1789 */
1790 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1791 &key2, &pi_state, nr_requeue);
1792
1793 /*
1794 * At this point the top_waiter has either taken uaddr2 or is
1795 * waiting on it. If the former, then the pi_state will not
1796 * exist yet, look it up one more time to ensure we have a
1797 * reference to it. If the lock was taken, ret contains the
1798 * vpid of the top waiter task.
1799 * If the lock was not taken, we have pi_state and an initial
1800 * refcount on it. In case of an error we have nothing.
1801 */
1802 if (ret > 0) {
1803 WARN_ON(pi_state);
1804 drop_count++;
1805 task_count++;
1806 /*
1807 * If we acquired the lock, then the user space value
1808 * of uaddr2 should be vpid. It cannot be changed by
1809 * the top waiter as it is blocked on hb2 lock if it
1810 * tries to do so. If something fiddled with it behind
1811 * our back the pi state lookup might unearth it. So
1812 * we rather use the known value than rereading and
1813 * handing potential crap to lookup_pi_state.
1814 *
1815 * If that call succeeds then we have pi_state and an
1816 * initial refcount on it.
1817 */
1818 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1819 }
1820
1821 switch (ret) {
1822 case 0:
1823 /* We hold a reference on the pi state. */
1824 break;
1825
1826 /* If the above failed, then pi_state is NULL */
1827 case -EFAULT:
1828 double_unlock_hb(hb1, hb2);
1829 hb_waiters_dec(hb2);
1830 put_futex_key(&key2);
1831 put_futex_key(&key1);
1832 ret = fault_in_user_writeable(uaddr2);
1833 if (!ret)
1834 goto retry;
1835 goto out;
1836 case -EAGAIN:
1837 /*
1838 * Two reasons for this:
1839 * - Owner is exiting and we just wait for the
1840 * exit to complete.
1841 * - The user space value changed.
1842 */
1843 double_unlock_hb(hb1, hb2);
1844 hb_waiters_dec(hb2);
1845 put_futex_key(&key2);
1846 put_futex_key(&key1);
1847 cond_resched();
1848 goto retry;
1849 default:
1850 goto out_unlock;
1851 }
1852 }
1853
1854 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1855 if (task_count - nr_wake >= nr_requeue)
1856 break;
1857
1858 if (!match_futex(&this->key, &key1))
1859 continue;
1860
1861 /*
1862 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1863 * be paired with each other and no other futex ops.
1864 *
1865 * We should never be requeueing a futex_q with a pi_state,
1866 * which is awaiting a futex_unlock_pi().
1867 */
1868 if ((requeue_pi && !this->rt_waiter) ||
1869 (!requeue_pi && this->rt_waiter) ||
1870 this->pi_state) {
1871 ret = -EINVAL;
1872 break;
1873 }
1874
1875 /*
1876 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1877 * lock, we already woke the top_waiter. If not, it will be
1878 * woken by futex_unlock_pi().
1879 */
1880 if (++task_count <= nr_wake && !requeue_pi) {
1881 mark_wake_futex(&wake_q, this);
1882 continue;
1883 }
1884
1885 /* Ensure we requeue to the expected futex for requeue_pi. */
1886 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1887 ret = -EINVAL;
1888 break;
1889 }
1890
1891 /*
1892 * Requeue nr_requeue waiters and possibly one more in the case
1893 * of requeue_pi if we couldn't acquire the lock atomically.
1894 */
1895 if (requeue_pi) {
1896 /*
1897 * Prepare the waiter to take the rt_mutex. Take a
1898 * refcount on the pi_state and store the pointer in
1899 * the futex_q object of the waiter.
1900 */
1901 atomic_inc(&pi_state->refcount);
1902 this->pi_state = pi_state;
1903 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1904 this->rt_waiter,
1905 this->task);
1906 if (ret == 1) {
1907 /*
1908 * We got the lock. We do neither drop the
1909 * refcount on pi_state nor clear
1910 * this->pi_state because the waiter needs the
1911 * pi_state for cleaning up the user space
1912 * value. It will drop the refcount after
1913 * doing so.
1914 */
1915 requeue_pi_wake_futex(this, &key2, hb2);
1916 drop_count++;
1917 continue;
1918 } else if (ret) {
1919 /*
1920 * rt_mutex_start_proxy_lock() detected a
1921 * potential deadlock when we tried to queue
1922 * that waiter. Drop the pi_state reference
1923 * which we took above and remove the pointer
1924 * to the state from the waiters futex_q
1925 * object.
1926 */
1927 this->pi_state = NULL;
1928 put_pi_state(pi_state);
1929 /*
1930 * We stop queueing more waiters and let user
1931 * space deal with the mess.
1932 */
1933 break;
1934 }
1935 }
1936 requeue_futex(this, hb1, hb2, &key2);
1937 drop_count++;
1938 }
1939
1940 /*
1941 * We took an extra initial reference to the pi_state either
1942 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1943 * need to drop it here again.
1944 */
1945 put_pi_state(pi_state);
1946
1947 out_unlock:
1948 double_unlock_hb(hb1, hb2);
1949 wake_up_q(&wake_q);
1950 hb_waiters_dec(hb2);
1951
1952 /*
1953 * drop_futex_key_refs() must be called outside the spinlocks. During
1954 * the requeue we moved futex_q's from the hash bucket at key1 to the
1955 * one at key2 and updated their key pointer. We no longer need to
1956 * hold the references to key1.
1957 */
1958 while (--drop_count >= 0)
1959 drop_futex_key_refs(&key1);
1960
1961 out_put_keys:
1962 put_futex_key(&key2);
1963 out_put_key1:
1964 put_futex_key(&key1);
1965 out:
1966 return ret ? ret : task_count;
1967 }
1968
1969 /* The key must be already stored in q->key. */
1970 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1971 __acquires(&hb->lock)
1972 {
1973 struct futex_hash_bucket *hb;
1974
1975 hb = hash_futex(&q->key);
1976
1977 /*
1978 * Increment the counter before taking the lock so that
1979 * a potential waker won't miss a to-be-slept task that is
1980 * waiting for the spinlock. This is safe as all queue_lock()
1981 * users end up calling queue_me(). Similarly, for housekeeping,
1982 * decrement the counter at queue_unlock() when some error has
1983 * occurred and we don't end up adding the task to the list.
1984 */
1985 hb_waiters_inc(hb);
1986
1987 q->lock_ptr = &hb->lock;
1988
1989 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1990 return hb;
1991 }
1992
1993 static inline void
1994 queue_unlock(struct futex_hash_bucket *hb)
1995 __releases(&hb->lock)
1996 {
1997 spin_unlock(&hb->lock);
1998 hb_waiters_dec(hb);
1999 }
2000
2001 /**
2002 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2003 * @q: The futex_q to enqueue
2004 * @hb: The destination hash bucket
2005 *
2006 * The hb->lock must be held by the caller, and is released here. A call to
2007 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2008 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2009 * or nothing if the unqueue is done as part of the wake process and the unqueue
2010 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2011 * an example).
2012 */
2013 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2014 __releases(&hb->lock)
2015 {
2016 int prio;
2017
2018 /*
2019 * The priority used to register this element is
2020 * - either the real thread-priority for the real-time threads
2021 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2022 * - or MAX_RT_PRIO for non-RT threads.
2023 * Thus, all RT-threads are woken first in priority order, and
2024 * the others are woken last, in FIFO order.
2025 */
2026 prio = min(current->normal_prio, MAX_RT_PRIO);
2027
2028 plist_node_init(&q->list, prio);
2029 plist_add(&q->list, &hb->chain);
2030 q->task = current;
2031 spin_unlock(&hb->lock);
2032 }
2033
2034 /**
2035 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2036 * @q: The futex_q to unqueue
2037 *
2038 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2039 * be paired with exactly one earlier call to queue_me().
2040 *
2041 * Return:
2042 * 1 - if the futex_q was still queued (and we removed unqueued it);
2043 * 0 - if the futex_q was already removed by the waking thread
2044 */
2045 static int unqueue_me(struct futex_q *q)
2046 {
2047 spinlock_t *lock_ptr;
2048 int ret = 0;
2049
2050 /* In the common case we don't take the spinlock, which is nice. */
2051 retry:
2052 /*
2053 * q->lock_ptr can change between this read and the following spin_lock.
2054 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2055 * optimizing lock_ptr out of the logic below.
2056 */
2057 lock_ptr = READ_ONCE(q->lock_ptr);
2058 if (lock_ptr != NULL) {
2059 spin_lock(lock_ptr);
2060 /*
2061 * q->lock_ptr can change between reading it and
2062 * spin_lock(), causing us to take the wrong lock. This
2063 * corrects the race condition.
2064 *
2065 * Reasoning goes like this: if we have the wrong lock,
2066 * q->lock_ptr must have changed (maybe several times)
2067 * between reading it and the spin_lock(). It can
2068 * change again after the spin_lock() but only if it was
2069 * already changed before the spin_lock(). It cannot,
2070 * however, change back to the original value. Therefore
2071 * we can detect whether we acquired the correct lock.
2072 */
2073 if (unlikely(lock_ptr != q->lock_ptr)) {
2074 spin_unlock(lock_ptr);
2075 goto retry;
2076 }
2077 __unqueue_futex(q);
2078
2079 BUG_ON(q->pi_state);
2080
2081 spin_unlock(lock_ptr);
2082 ret = 1;
2083 }
2084
2085 drop_futex_key_refs(&q->key);
2086 return ret;
2087 }
2088
2089 /*
2090 * PI futexes can not be requeued and must remove themself from the
2091 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2092 * and dropped here.
2093 */
2094 static void unqueue_me_pi(struct futex_q *q)
2095 __releases(q->lock_ptr)
2096 {
2097 __unqueue_futex(q);
2098
2099 BUG_ON(!q->pi_state);
2100 put_pi_state(q->pi_state);
2101 q->pi_state = NULL;
2102
2103 spin_unlock(q->lock_ptr);
2104 }
2105
2106 /*
2107 * Fixup the pi_state owner with the new owner.
2108 *
2109 * Must be called with hash bucket lock held and mm->sem held for non
2110 * private futexes.
2111 */
2112 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2113 struct task_struct *newowner)
2114 {
2115 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2116 struct futex_pi_state *pi_state = q->pi_state;
2117 struct task_struct *oldowner = pi_state->owner;
2118 u32 uval, uninitialized_var(curval), newval;
2119 int ret;
2120
2121 /* Owner died? */
2122 if (!pi_state->owner)
2123 newtid |= FUTEX_OWNER_DIED;
2124
2125 /*
2126 * We are here either because we stole the rtmutex from the
2127 * previous highest priority waiter or we are the highest priority
2128 * waiter but failed to get the rtmutex the first time.
2129 * We have to replace the newowner TID in the user space variable.
2130 * This must be atomic as we have to preserve the owner died bit here.
2131 *
2132 * Note: We write the user space value _before_ changing the pi_state
2133 * because we can fault here. Imagine swapped out pages or a fork
2134 * that marked all the anonymous memory readonly for cow.
2135 *
2136 * Modifying pi_state _before_ the user space value would
2137 * leave the pi_state in an inconsistent state when we fault
2138 * here, because we need to drop the hash bucket lock to
2139 * handle the fault. This might be observed in the PID check
2140 * in lookup_pi_state.
2141 */
2142 retry:
2143 if (get_futex_value_locked(&uval, uaddr))
2144 goto handle_fault;
2145
2146 while (1) {
2147 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2148
2149 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2150 goto handle_fault;
2151 if (curval == uval)
2152 break;
2153 uval = curval;
2154 }
2155
2156 /*
2157 * We fixed up user space. Now we need to fix the pi_state
2158 * itself.
2159 */
2160 if (pi_state->owner != NULL) {
2161 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2162 WARN_ON(list_empty(&pi_state->list));
2163 list_del_init(&pi_state->list);
2164 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2165 }
2166
2167 pi_state->owner = newowner;
2168
2169 raw_spin_lock_irq(&newowner->pi_lock);
2170 WARN_ON(!list_empty(&pi_state->list));
2171 list_add(&pi_state->list, &newowner->pi_state_list);
2172 raw_spin_unlock_irq(&newowner->pi_lock);
2173 return 0;
2174
2175 /*
2176 * To handle the page fault we need to drop the hash bucket
2177 * lock here. That gives the other task (either the highest priority
2178 * waiter itself or the task which stole the rtmutex) the
2179 * chance to try the fixup of the pi_state. So once we are
2180 * back from handling the fault we need to check the pi_state
2181 * after reacquiring the hash bucket lock and before trying to
2182 * do another fixup. When the fixup has been done already we
2183 * simply return.
2184 */
2185 handle_fault:
2186 spin_unlock(q->lock_ptr);
2187
2188 ret = fault_in_user_writeable(uaddr);
2189
2190 spin_lock(q->lock_ptr);
2191
2192 /*
2193 * Check if someone else fixed it for us:
2194 */
2195 if (pi_state->owner != oldowner)
2196 return 0;
2197
2198 if (ret)
2199 return ret;
2200
2201 goto retry;
2202 }
2203
2204 static long futex_wait_restart(struct restart_block *restart);
2205
2206 /**
2207 * fixup_owner() - Post lock pi_state and corner case management
2208 * @uaddr: user address of the futex
2209 * @q: futex_q (contains pi_state and access to the rt_mutex)
2210 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2211 *
2212 * After attempting to lock an rt_mutex, this function is called to cleanup
2213 * the pi_state owner as well as handle race conditions that may allow us to
2214 * acquire the lock. Must be called with the hb lock held.
2215 *
2216 * Return:
2217 * 1 - success, lock taken;
2218 * 0 - success, lock not taken;
2219 * <0 - on error (-EFAULT)
2220 */
2221 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2222 {
2223 struct task_struct *owner;
2224 int ret = 0;
2225
2226 if (locked) {
2227 /*
2228 * Got the lock. We might not be the anticipated owner if we
2229 * did a lock-steal - fix up the PI-state in that case:
2230 */
2231 if (q->pi_state->owner != current)
2232 ret = fixup_pi_state_owner(uaddr, q, current);
2233 goto out;
2234 }
2235
2236 /*
2237 * Catch the rare case, where the lock was released when we were on the
2238 * way back before we locked the hash bucket.
2239 */
2240 if (q->pi_state->owner == current) {
2241 /*
2242 * Try to get the rt_mutex now. This might fail as some other
2243 * task acquired the rt_mutex after we removed ourself from the
2244 * rt_mutex waiters list.
2245 */
2246 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2247 locked = 1;
2248 goto out;
2249 }
2250
2251 /*
2252 * pi_state is incorrect, some other task did a lock steal and
2253 * we returned due to timeout or signal without taking the
2254 * rt_mutex. Too late.
2255 */
2256 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2257 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2258 if (!owner)
2259 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2260 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2261 ret = fixup_pi_state_owner(uaddr, q, owner);
2262 goto out;
2263 }
2264
2265 /*
2266 * Paranoia check. If we did not take the lock, then we should not be
2267 * the owner of the rt_mutex.
2268 */
2269 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2270 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2271 "pi-state %p\n", ret,
2272 q->pi_state->pi_mutex.owner,
2273 q->pi_state->owner);
2274
2275 out:
2276 return ret ? ret : locked;
2277 }
2278
2279 /**
2280 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2281 * @hb: the futex hash bucket, must be locked by the caller
2282 * @q: the futex_q to queue up on
2283 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2284 */
2285 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2286 struct hrtimer_sleeper *timeout)
2287 {
2288 /*
2289 * The task state is guaranteed to be set before another task can
2290 * wake it. set_current_state() is implemented using smp_store_mb() and
2291 * queue_me() calls spin_unlock() upon completion, both serializing
2292 * access to the hash list and forcing another memory barrier.
2293 */
2294 set_current_state(TASK_INTERRUPTIBLE);
2295 queue_me(q, hb);
2296
2297 /* Arm the timer */
2298 if (timeout)
2299 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2300
2301 /*
2302 * If we have been removed from the hash list, then another task
2303 * has tried to wake us, and we can skip the call to schedule().
2304 */
2305 if (likely(!plist_node_empty(&q->list))) {
2306 /*
2307 * If the timer has already expired, current will already be
2308 * flagged for rescheduling. Only call schedule if there
2309 * is no timeout, or if it has yet to expire.
2310 */
2311 if (!timeout || timeout->task)
2312 freezable_schedule();
2313 }
2314 __set_current_state(TASK_RUNNING);
2315 }
2316
2317 /**
2318 * futex_wait_setup() - Prepare to wait on a futex
2319 * @uaddr: the futex userspace address
2320 * @val: the expected value
2321 * @flags: futex flags (FLAGS_SHARED, etc.)
2322 * @q: the associated futex_q
2323 * @hb: storage for hash_bucket pointer to be returned to caller
2324 *
2325 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2326 * compare it with the expected value. Handle atomic faults internally.
2327 * Return with the hb lock held and a q.key reference on success, and unlocked
2328 * with no q.key reference on failure.
2329 *
2330 * Return:
2331 * 0 - uaddr contains val and hb has been locked;
2332 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2333 */
2334 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2335 struct futex_q *q, struct futex_hash_bucket **hb)
2336 {
2337 u32 uval;
2338 int ret;
2339
2340 /*
2341 * Access the page AFTER the hash-bucket is locked.
2342 * Order is important:
2343 *
2344 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2345 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2346 *
2347 * The basic logical guarantee of a futex is that it blocks ONLY
2348 * if cond(var) is known to be true at the time of blocking, for
2349 * any cond. If we locked the hash-bucket after testing *uaddr, that
2350 * would open a race condition where we could block indefinitely with
2351 * cond(var) false, which would violate the guarantee.
2352 *
2353 * On the other hand, we insert q and release the hash-bucket only
2354 * after testing *uaddr. This guarantees that futex_wait() will NOT
2355 * absorb a wakeup if *uaddr does not match the desired values
2356 * while the syscall executes.
2357 */
2358 retry:
2359 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2360 if (unlikely(ret != 0))
2361 return ret;
2362
2363 retry_private:
2364 *hb = queue_lock(q);
2365
2366 ret = get_futex_value_locked(&uval, uaddr);
2367
2368 if (ret) {
2369 queue_unlock(*hb);
2370
2371 ret = get_user(uval, uaddr);
2372 if (ret)
2373 goto out;
2374
2375 if (!(flags & FLAGS_SHARED))
2376 goto retry_private;
2377
2378 put_futex_key(&q->key);
2379 goto retry;
2380 }
2381
2382 if (uval != val) {
2383 queue_unlock(*hb);
2384 ret = -EWOULDBLOCK;
2385 }
2386
2387 out:
2388 if (ret)
2389 put_futex_key(&q->key);
2390 return ret;
2391 }
2392
2393 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2394 ktime_t *abs_time, u32 bitset)
2395 {
2396 struct hrtimer_sleeper timeout, *to = NULL;
2397 struct restart_block *restart;
2398 struct futex_hash_bucket *hb;
2399 struct futex_q q = futex_q_init;
2400 int ret;
2401
2402 if (!bitset)
2403 return -EINVAL;
2404 q.bitset = bitset;
2405
2406 if (abs_time) {
2407 to = &timeout;
2408
2409 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2410 CLOCK_REALTIME : CLOCK_MONOTONIC,
2411 HRTIMER_MODE_ABS);
2412 hrtimer_init_sleeper(to, current);
2413 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2414 current->timer_slack_ns);
2415 }
2416
2417 retry:
2418 /*
2419 * Prepare to wait on uaddr. On success, holds hb lock and increments
2420 * q.key refs.
2421 */
2422 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2423 if (ret)
2424 goto out;
2425
2426 /* queue_me and wait for wakeup, timeout, or a signal. */
2427 futex_wait_queue_me(hb, &q, to);
2428
2429 /* If we were woken (and unqueued), we succeeded, whatever. */
2430 ret = 0;
2431 /* unqueue_me() drops q.key ref */
2432 if (!unqueue_me(&q))
2433 goto out;
2434 ret = -ETIMEDOUT;
2435 if (to && !to->task)
2436 goto out;
2437
2438 /*
2439 * We expect signal_pending(current), but we might be the
2440 * victim of a spurious wakeup as well.
2441 */
2442 if (!signal_pending(current))
2443 goto retry;
2444
2445 ret = -ERESTARTSYS;
2446 if (!abs_time)
2447 goto out;
2448
2449 restart = &current->restart_block;
2450 restart->fn = futex_wait_restart;
2451 restart->futex.uaddr = uaddr;
2452 restart->futex.val = val;
2453 restart->futex.time = abs_time->tv64;
2454 restart->futex.bitset = bitset;
2455 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2456
2457 ret = -ERESTART_RESTARTBLOCK;
2458
2459 out:
2460 if (to) {
2461 hrtimer_cancel(&to->timer);
2462 destroy_hrtimer_on_stack(&to->timer);
2463 }
2464 return ret;
2465 }
2466
2467
2468 static long futex_wait_restart(struct restart_block *restart)
2469 {
2470 u32 __user *uaddr = restart->futex.uaddr;
2471 ktime_t t, *tp = NULL;
2472
2473 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2474 t.tv64 = restart->futex.time;
2475 tp = &t;
2476 }
2477 restart->fn = do_no_restart_syscall;
2478
2479 return (long)futex_wait(uaddr, restart->futex.flags,
2480 restart->futex.val, tp, restart->futex.bitset);
2481 }
2482
2483
2484 /*
2485 * Userspace tried a 0 -> TID atomic transition of the futex value
2486 * and failed. The kernel side here does the whole locking operation:
2487 * if there are waiters then it will block as a consequence of relying
2488 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2489 * a 0 value of the futex too.).
2490 *
2491 * Also serves as futex trylock_pi()'ing, and due semantics.
2492 */
2493 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2494 ktime_t *time, int trylock)
2495 {
2496 struct hrtimer_sleeper timeout, *to = NULL;
2497 struct futex_hash_bucket *hb;
2498 struct futex_q q = futex_q_init;
2499 int res, ret;
2500
2501 if (refill_pi_state_cache())
2502 return -ENOMEM;
2503
2504 if (time) {
2505 to = &timeout;
2506 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2507 HRTIMER_MODE_ABS);
2508 hrtimer_init_sleeper(to, current);
2509 hrtimer_set_expires(&to->timer, *time);
2510 }
2511
2512 retry:
2513 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2514 if (unlikely(ret != 0))
2515 goto out;
2516
2517 retry_private:
2518 hb = queue_lock(&q);
2519
2520 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2521 if (unlikely(ret)) {
2522 /*
2523 * Atomic work succeeded and we got the lock,
2524 * or failed. Either way, we do _not_ block.
2525 */
2526 switch (ret) {
2527 case 1:
2528 /* We got the lock. */
2529 ret = 0;
2530 goto out_unlock_put_key;
2531 case -EFAULT:
2532 goto uaddr_faulted;
2533 case -EAGAIN:
2534 /*
2535 * Two reasons for this:
2536 * - Task is exiting and we just wait for the
2537 * exit to complete.
2538 * - The user space value changed.
2539 */
2540 queue_unlock(hb);
2541 put_futex_key(&q.key);
2542 cond_resched();
2543 goto retry;
2544 default:
2545 goto out_unlock_put_key;
2546 }
2547 }
2548
2549 /*
2550 * Only actually queue now that the atomic ops are done:
2551 */
2552 queue_me(&q, hb);
2553
2554 WARN_ON(!q.pi_state);
2555 /*
2556 * Block on the PI mutex:
2557 */
2558 if (!trylock) {
2559 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2560 } else {
2561 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2562 /* Fixup the trylock return value: */
2563 ret = ret ? 0 : -EWOULDBLOCK;
2564 }
2565
2566 spin_lock(q.lock_ptr);
2567 /*
2568 * Fixup the pi_state owner and possibly acquire the lock if we
2569 * haven't already.
2570 */
2571 res = fixup_owner(uaddr, &q, !ret);
2572 /*
2573 * If fixup_owner() returned an error, proprogate that. If it acquired
2574 * the lock, clear our -ETIMEDOUT or -EINTR.
2575 */
2576 if (res)
2577 ret = (res < 0) ? res : 0;
2578
2579 /*
2580 * If fixup_owner() faulted and was unable to handle the fault, unlock
2581 * it and return the fault to userspace.
2582 */
2583 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2584 rt_mutex_unlock(&q.pi_state->pi_mutex);
2585
2586 /* Unqueue and drop the lock */
2587 unqueue_me_pi(&q);
2588
2589 goto out_put_key;
2590
2591 out_unlock_put_key:
2592 queue_unlock(hb);
2593
2594 out_put_key:
2595 put_futex_key(&q.key);
2596 out:
2597 if (to)
2598 destroy_hrtimer_on_stack(&to->timer);
2599 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2600
2601 uaddr_faulted:
2602 queue_unlock(hb);
2603
2604 ret = fault_in_user_writeable(uaddr);
2605 if (ret)
2606 goto out_put_key;
2607
2608 if (!(flags & FLAGS_SHARED))
2609 goto retry_private;
2610
2611 put_futex_key(&q.key);
2612 goto retry;
2613 }
2614
2615 /*
2616 * Userspace attempted a TID -> 0 atomic transition, and failed.
2617 * This is the in-kernel slowpath: we look up the PI state (if any),
2618 * and do the rt-mutex unlock.
2619 */
2620 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2621 {
2622 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2623 union futex_key key = FUTEX_KEY_INIT;
2624 struct futex_hash_bucket *hb;
2625 struct futex_q *match;
2626 int ret;
2627
2628 retry:
2629 if (get_user(uval, uaddr))
2630 return -EFAULT;
2631 /*
2632 * We release only a lock we actually own:
2633 */
2634 if ((uval & FUTEX_TID_MASK) != vpid)
2635 return -EPERM;
2636
2637 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2638 if (ret)
2639 return ret;
2640
2641 hb = hash_futex(&key);
2642 spin_lock(&hb->lock);
2643
2644 /*
2645 * Check waiters first. We do not trust user space values at
2646 * all and we at least want to know if user space fiddled
2647 * with the futex value instead of blindly unlocking.
2648 */
2649 match = futex_top_waiter(hb, &key);
2650 if (match) {
2651 ret = wake_futex_pi(uaddr, uval, match, hb);
2652 /*
2653 * In case of success wake_futex_pi dropped the hash
2654 * bucket lock.
2655 */
2656 if (!ret)
2657 goto out_putkey;
2658 /*
2659 * The atomic access to the futex value generated a
2660 * pagefault, so retry the user-access and the wakeup:
2661 */
2662 if (ret == -EFAULT)
2663 goto pi_faulted;
2664 /*
2665 * A unconditional UNLOCK_PI op raced against a waiter
2666 * setting the FUTEX_WAITERS bit. Try again.
2667 */
2668 if (ret == -EAGAIN) {
2669 spin_unlock(&hb->lock);
2670 put_futex_key(&key);
2671 goto retry;
2672 }
2673 /*
2674 * wake_futex_pi has detected invalid state. Tell user
2675 * space.
2676 */
2677 goto out_unlock;
2678 }
2679
2680 /*
2681 * We have no kernel internal state, i.e. no waiters in the
2682 * kernel. Waiters which are about to queue themselves are stuck
2683 * on hb->lock. So we can safely ignore them. We do neither
2684 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2685 * owner.
2686 */
2687 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2688 goto pi_faulted;
2689
2690 /*
2691 * If uval has changed, let user space handle it.
2692 */
2693 ret = (curval == uval) ? 0 : -EAGAIN;
2694
2695 out_unlock:
2696 spin_unlock(&hb->lock);
2697 out_putkey:
2698 put_futex_key(&key);
2699 return ret;
2700
2701 pi_faulted:
2702 spin_unlock(&hb->lock);
2703 put_futex_key(&key);
2704
2705 ret = fault_in_user_writeable(uaddr);
2706 if (!ret)
2707 goto retry;
2708
2709 return ret;
2710 }
2711
2712 /**
2713 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2714 * @hb: the hash_bucket futex_q was original enqueued on
2715 * @q: the futex_q woken while waiting to be requeued
2716 * @key2: the futex_key of the requeue target futex
2717 * @timeout: the timeout associated with the wait (NULL if none)
2718 *
2719 * Detect if the task was woken on the initial futex as opposed to the requeue
2720 * target futex. If so, determine if it was a timeout or a signal that caused
2721 * the wakeup and return the appropriate error code to the caller. Must be
2722 * called with the hb lock held.
2723 *
2724 * Return:
2725 * 0 = no early wakeup detected;
2726 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2727 */
2728 static inline
2729 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2730 struct futex_q *q, union futex_key *key2,
2731 struct hrtimer_sleeper *timeout)
2732 {
2733 int ret = 0;
2734
2735 /*
2736 * With the hb lock held, we avoid races while we process the wakeup.
2737 * We only need to hold hb (and not hb2) to ensure atomicity as the
2738 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2739 * It can't be requeued from uaddr2 to something else since we don't
2740 * support a PI aware source futex for requeue.
2741 */
2742 if (!match_futex(&q->key, key2)) {
2743 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2744 /*
2745 * We were woken prior to requeue by a timeout or a signal.
2746 * Unqueue the futex_q and determine which it was.
2747 */
2748 plist_del(&q->list, &hb->chain);
2749 hb_waiters_dec(hb);
2750
2751 /* Handle spurious wakeups gracefully */
2752 ret = -EWOULDBLOCK;
2753 if (timeout && !timeout->task)
2754 ret = -ETIMEDOUT;
2755 else if (signal_pending(current))
2756 ret = -ERESTARTNOINTR;
2757 }
2758 return ret;
2759 }
2760
2761 /**
2762 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2763 * @uaddr: the futex we initially wait on (non-pi)
2764 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2765 * the same type, no requeueing from private to shared, etc.
2766 * @val: the expected value of uaddr
2767 * @abs_time: absolute timeout
2768 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2769 * @uaddr2: the pi futex we will take prior to returning to user-space
2770 *
2771 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2772 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2773 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2774 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2775 * without one, the pi logic would not know which task to boost/deboost, if
2776 * there was a need to.
2777 *
2778 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2779 * via the following--
2780 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2781 * 2) wakeup on uaddr2 after a requeue
2782 * 3) signal
2783 * 4) timeout
2784 *
2785 * If 3, cleanup and return -ERESTARTNOINTR.
2786 *
2787 * If 2, we may then block on trying to take the rt_mutex and return via:
2788 * 5) successful lock
2789 * 6) signal
2790 * 7) timeout
2791 * 8) other lock acquisition failure
2792 *
2793 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2794 *
2795 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2796 *
2797 * Return:
2798 * 0 - On success;
2799 * <0 - On error
2800 */
2801 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2802 u32 val, ktime_t *abs_time, u32 bitset,
2803 u32 __user *uaddr2)
2804 {
2805 struct hrtimer_sleeper timeout, *to = NULL;
2806 struct rt_mutex_waiter rt_waiter;
2807 struct rt_mutex *pi_mutex = NULL;
2808 struct futex_hash_bucket *hb;
2809 union futex_key key2 = FUTEX_KEY_INIT;
2810 struct futex_q q = futex_q_init;
2811 int res, ret;
2812
2813 if (uaddr == uaddr2)
2814 return -EINVAL;
2815
2816 if (!bitset)
2817 return -EINVAL;
2818
2819 if (abs_time) {
2820 to = &timeout;
2821 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2822 CLOCK_REALTIME : CLOCK_MONOTONIC,
2823 HRTIMER_MODE_ABS);
2824 hrtimer_init_sleeper(to, current);
2825 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2826 current->timer_slack_ns);
2827 }
2828
2829 /*
2830 * The waiter is allocated on our stack, manipulated by the requeue
2831 * code while we sleep on uaddr.
2832 */
2833 debug_rt_mutex_init_waiter(&rt_waiter);
2834 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2835 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2836 rt_waiter.task = NULL;
2837
2838 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2839 if (unlikely(ret != 0))
2840 goto out;
2841
2842 q.bitset = bitset;
2843 q.rt_waiter = &rt_waiter;
2844 q.requeue_pi_key = &key2;
2845
2846 /*
2847 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2848 * count.
2849 */
2850 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2851 if (ret)
2852 goto out_key2;
2853
2854 /*
2855 * The check above which compares uaddrs is not sufficient for
2856 * shared futexes. We need to compare the keys:
2857 */
2858 if (match_futex(&q.key, &key2)) {
2859 queue_unlock(hb);
2860 ret = -EINVAL;
2861 goto out_put_keys;
2862 }
2863
2864 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2865 futex_wait_queue_me(hb, &q, to);
2866
2867 spin_lock(&hb->lock);
2868 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2869 spin_unlock(&hb->lock);
2870 if (ret)
2871 goto out_put_keys;
2872
2873 /*
2874 * In order for us to be here, we know our q.key == key2, and since
2875 * we took the hb->lock above, we also know that futex_requeue() has
2876 * completed and we no longer have to concern ourselves with a wakeup
2877 * race with the atomic proxy lock acquisition by the requeue code. The
2878 * futex_requeue dropped our key1 reference and incremented our key2
2879 * reference count.
2880 */
2881
2882 /* Check if the requeue code acquired the second futex for us. */
2883 if (!q.rt_waiter) {
2884 /*
2885 * Got the lock. We might not be the anticipated owner if we
2886 * did a lock-steal - fix up the PI-state in that case.
2887 */
2888 if (q.pi_state && (q.pi_state->owner != current)) {
2889 spin_lock(q.lock_ptr);
2890 ret = fixup_pi_state_owner(uaddr2, &q, current);
2891 /*
2892 * Drop the reference to the pi state which
2893 * the requeue_pi() code acquired for us.
2894 */
2895 put_pi_state(q.pi_state);
2896 spin_unlock(q.lock_ptr);
2897 }
2898 } else {
2899 /*
2900 * We have been woken up by futex_unlock_pi(), a timeout, or a
2901 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2902 * the pi_state.
2903 */
2904 WARN_ON(!q.pi_state);
2905 pi_mutex = &q.pi_state->pi_mutex;
2906 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2907 debug_rt_mutex_free_waiter(&rt_waiter);
2908
2909 spin_lock(q.lock_ptr);
2910 /*
2911 * Fixup the pi_state owner and possibly acquire the lock if we
2912 * haven't already.
2913 */
2914 res = fixup_owner(uaddr2, &q, !ret);
2915 /*
2916 * If fixup_owner() returned an error, proprogate that. If it
2917 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2918 */
2919 if (res)
2920 ret = (res < 0) ? res : 0;
2921
2922 /* Unqueue and drop the lock. */
2923 unqueue_me_pi(&q);
2924 }
2925
2926 /*
2927 * If fixup_pi_state_owner() faulted and was unable to handle the
2928 * fault, unlock the rt_mutex and return the fault to userspace.
2929 */
2930 if (ret == -EFAULT) {
2931 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2932 rt_mutex_unlock(pi_mutex);
2933 } else if (ret == -EINTR) {
2934 /*
2935 * We've already been requeued, but cannot restart by calling
2936 * futex_lock_pi() directly. We could restart this syscall, but
2937 * it would detect that the user space "val" changed and return
2938 * -EWOULDBLOCK. Save the overhead of the restart and return
2939 * -EWOULDBLOCK directly.
2940 */
2941 ret = -EWOULDBLOCK;
2942 }
2943
2944 out_put_keys:
2945 put_futex_key(&q.key);
2946 out_key2:
2947 put_futex_key(&key2);
2948
2949 out:
2950 if (to) {
2951 hrtimer_cancel(&to->timer);
2952 destroy_hrtimer_on_stack(&to->timer);
2953 }
2954 return ret;
2955 }
2956
2957 /*
2958 * Support for robust futexes: the kernel cleans up held futexes at
2959 * thread exit time.
2960 *
2961 * Implementation: user-space maintains a per-thread list of locks it
2962 * is holding. Upon do_exit(), the kernel carefully walks this list,
2963 * and marks all locks that are owned by this thread with the
2964 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2965 * always manipulated with the lock held, so the list is private and
2966 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2967 * field, to allow the kernel to clean up if the thread dies after
2968 * acquiring the lock, but just before it could have added itself to
2969 * the list. There can only be one such pending lock.
2970 */
2971
2972 /**
2973 * sys_set_robust_list() - Set the robust-futex list head of a task
2974 * @head: pointer to the list-head
2975 * @len: length of the list-head, as userspace expects
2976 */
2977 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2978 size_t, len)
2979 {
2980 if (!futex_cmpxchg_enabled)
2981 return -ENOSYS;
2982 /*
2983 * The kernel knows only one size for now:
2984 */
2985 if (unlikely(len != sizeof(*head)))
2986 return -EINVAL;
2987
2988 current->robust_list = head;
2989
2990 return 0;
2991 }
2992
2993 /**
2994 * sys_get_robust_list() - Get the robust-futex list head of a task
2995 * @pid: pid of the process [zero for current task]
2996 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2997 * @len_ptr: pointer to a length field, the kernel fills in the header size
2998 */
2999 SYSCALL_DEFINE3(get_robust_list, int, pid,
3000 struct robust_list_head __user * __user *, head_ptr,
3001 size_t __user *, len_ptr)
3002 {
3003 struct robust_list_head __user *head;
3004 unsigned long ret;
3005 struct task_struct *p;
3006
3007 if (!futex_cmpxchg_enabled)
3008 return -ENOSYS;
3009
3010 rcu_read_lock();
3011
3012 ret = -ESRCH;
3013 if (!pid)
3014 p = current;
3015 else {
3016 p = find_task_by_vpid(pid);
3017 if (!p)
3018 goto err_unlock;
3019 }
3020
3021 ret = -EPERM;
3022 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3023 goto err_unlock;
3024
3025 head = p->robust_list;
3026 rcu_read_unlock();
3027
3028 if (put_user(sizeof(*head), len_ptr))
3029 return -EFAULT;
3030 return put_user(head, head_ptr);
3031
3032 err_unlock:
3033 rcu_read_unlock();
3034
3035 return ret;
3036 }
3037
3038 /*
3039 * Process a futex-list entry, check whether it's owned by the
3040 * dying task, and do notification if so:
3041 */
3042 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3043 {
3044 u32 uval, uninitialized_var(nval), mval;
3045
3046 retry:
3047 if (get_user(uval, uaddr))
3048 return -1;
3049
3050 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3051 /*
3052 * Ok, this dying thread is truly holding a futex
3053 * of interest. Set the OWNER_DIED bit atomically
3054 * via cmpxchg, and if the value had FUTEX_WAITERS
3055 * set, wake up a waiter (if any). (We have to do a
3056 * futex_wake() even if OWNER_DIED is already set -
3057 * to handle the rare but possible case of recursive
3058 * thread-death.) The rest of the cleanup is done in
3059 * userspace.
3060 */
3061 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3062 /*
3063 * We are not holding a lock here, but we want to have
3064 * the pagefault_disable/enable() protection because
3065 * we want to handle the fault gracefully. If the
3066 * access fails we try to fault in the futex with R/W
3067 * verification via get_user_pages. get_user() above
3068 * does not guarantee R/W access. If that fails we
3069 * give up and leave the futex locked.
3070 */
3071 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3072 if (fault_in_user_writeable(uaddr))
3073 return -1;
3074 goto retry;
3075 }
3076 if (nval != uval)
3077 goto retry;
3078
3079 /*
3080 * Wake robust non-PI futexes here. The wakeup of
3081 * PI futexes happens in exit_pi_state():
3082 */
3083 if (!pi && (uval & FUTEX_WAITERS))
3084 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3085 }
3086 return 0;
3087 }
3088
3089 /*
3090 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3091 */
3092 static inline int fetch_robust_entry(struct robust_list __user **entry,
3093 struct robust_list __user * __user *head,
3094 unsigned int *pi)
3095 {
3096 unsigned long uentry;
3097
3098 if (get_user(uentry, (unsigned long __user *)head))
3099 return -EFAULT;
3100
3101 *entry = (void __user *)(uentry & ~1UL);
3102 *pi = uentry & 1;
3103
3104 return 0;
3105 }
3106
3107 /*
3108 * Walk curr->robust_list (very carefully, it's a userspace list!)
3109 * and mark any locks found there dead, and notify any waiters.
3110 *
3111 * We silently return on any sign of list-walking problem.
3112 */
3113 void exit_robust_list(struct task_struct *curr)
3114 {
3115 struct robust_list_head __user *head = curr->robust_list;
3116 struct robust_list __user *entry, *next_entry, *pending;
3117 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3118 unsigned int uninitialized_var(next_pi);
3119 unsigned long futex_offset;
3120 int rc;
3121
3122 if (!futex_cmpxchg_enabled)
3123 return;
3124
3125 /*
3126 * Fetch the list head (which was registered earlier, via
3127 * sys_set_robust_list()):
3128 */
3129 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3130 return;
3131 /*
3132 * Fetch the relative futex offset:
3133 */
3134 if (get_user(futex_offset, &head->futex_offset))
3135 return;
3136 /*
3137 * Fetch any possibly pending lock-add first, and handle it
3138 * if it exists:
3139 */
3140 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3141 return;
3142
3143 next_entry = NULL; /* avoid warning with gcc */
3144 while (entry != &head->list) {
3145 /*
3146 * Fetch the next entry in the list before calling
3147 * handle_futex_death:
3148 */
3149 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3150 /*
3151 * A pending lock might already be on the list, so
3152 * don't process it twice:
3153 */
3154 if (entry != pending)
3155 if (handle_futex_death((void __user *)entry + futex_offset,
3156 curr, pi))
3157 return;
3158 if (rc)
3159 return;
3160 entry = next_entry;
3161 pi = next_pi;
3162 /*
3163 * Avoid excessively long or circular lists:
3164 */
3165 if (!--limit)
3166 break;
3167
3168 cond_resched();
3169 }
3170
3171 if (pending)
3172 handle_futex_death((void __user *)pending + futex_offset,
3173 curr, pip);
3174 }
3175
3176 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3177 u32 __user *uaddr2, u32 val2, u32 val3)
3178 {
3179 int cmd = op & FUTEX_CMD_MASK;
3180 unsigned int flags = 0;
3181
3182 if (!(op & FUTEX_PRIVATE_FLAG))
3183 flags |= FLAGS_SHARED;
3184
3185 if (op & FUTEX_CLOCK_REALTIME) {
3186 flags |= FLAGS_CLOCKRT;
3187 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3188 cmd != FUTEX_WAIT_REQUEUE_PI)
3189 return -ENOSYS;
3190 }
3191
3192 switch (cmd) {
3193 case FUTEX_LOCK_PI:
3194 case FUTEX_UNLOCK_PI:
3195 case FUTEX_TRYLOCK_PI:
3196 case FUTEX_WAIT_REQUEUE_PI:
3197 case FUTEX_CMP_REQUEUE_PI:
3198 if (!futex_cmpxchg_enabled)
3199 return -ENOSYS;
3200 }
3201
3202 switch (cmd) {
3203 case FUTEX_WAIT:
3204 val3 = FUTEX_BITSET_MATCH_ANY;
3205 case FUTEX_WAIT_BITSET:
3206 return futex_wait(uaddr, flags, val, timeout, val3);
3207 case FUTEX_WAKE:
3208 val3 = FUTEX_BITSET_MATCH_ANY;
3209 case FUTEX_WAKE_BITSET:
3210 return futex_wake(uaddr, flags, val, val3);
3211 case FUTEX_REQUEUE:
3212 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3213 case FUTEX_CMP_REQUEUE:
3214 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3215 case FUTEX_WAKE_OP:
3216 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3217 case FUTEX_LOCK_PI:
3218 return futex_lock_pi(uaddr, flags, timeout, 0);
3219 case FUTEX_UNLOCK_PI:
3220 return futex_unlock_pi(uaddr, flags);
3221 case FUTEX_TRYLOCK_PI:
3222 return futex_lock_pi(uaddr, flags, NULL, 1);
3223 case FUTEX_WAIT_REQUEUE_PI:
3224 val3 = FUTEX_BITSET_MATCH_ANY;
3225 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3226 uaddr2);
3227 case FUTEX_CMP_REQUEUE_PI:
3228 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3229 }
3230 return -ENOSYS;
3231 }
3232
3233
3234 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3235 struct timespec __user *, utime, u32 __user *, uaddr2,
3236 u32, val3)
3237 {
3238 struct timespec ts;
3239 ktime_t t, *tp = NULL;
3240 u32 val2 = 0;
3241 int cmd = op & FUTEX_CMD_MASK;
3242
3243 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3244 cmd == FUTEX_WAIT_BITSET ||
3245 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3246 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3247 return -EFAULT;
3248 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3249 return -EFAULT;
3250 if (!timespec_valid(&ts))
3251 return -EINVAL;
3252
3253 t = timespec_to_ktime(ts);
3254 if (cmd == FUTEX_WAIT)
3255 t = ktime_add_safe(ktime_get(), t);
3256 tp = &t;
3257 }
3258 /*
3259 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3260 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3261 */
3262 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3263 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3264 val2 = (u32) (unsigned long) utime;
3265
3266 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3267 }
3268
3269 static void __init futex_detect_cmpxchg(void)
3270 {
3271 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3272 u32 curval;
3273
3274 /*
3275 * This will fail and we want it. Some arch implementations do
3276 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3277 * functionality. We want to know that before we call in any
3278 * of the complex code paths. Also we want to prevent
3279 * registration of robust lists in that case. NULL is
3280 * guaranteed to fault and we get -EFAULT on functional
3281 * implementation, the non-functional ones will return
3282 * -ENOSYS.
3283 */
3284 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3285 futex_cmpxchg_enabled = 1;
3286 #endif
3287 }
3288
3289 static int __init futex_init(void)
3290 {
3291 unsigned int futex_shift;
3292 unsigned long i;
3293
3294 #if CONFIG_BASE_SMALL
3295 futex_hashsize = 16;
3296 #else
3297 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3298 #endif
3299
3300 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3301 futex_hashsize, 0,
3302 futex_hashsize < 256 ? HASH_SMALL : 0,
3303 &futex_shift, NULL,
3304 futex_hashsize, futex_hashsize);
3305 futex_hashsize = 1UL << futex_shift;
3306
3307 futex_detect_cmpxchg();
3308
3309 for (i = 0; i < futex_hashsize; i++) {
3310 atomic_set(&futex_queues[i].waiters, 0);
3311 plist_head_init(&futex_queues[i].chain);
3312 spin_lock_init(&futex_queues[i].lock);
3313 }
3314
3315 return 0;
3316 }
3317 __initcall(futex_init);
This page took 0.099888 seconds and 5 git commands to generate.