647b60cc5f903bfdb86ac90c48ac69ffa7f0d268
[deliverable/linux.git] / kernel / kthread.c
1 /* Kernel thread helper functions.
2 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
3 *
4 * Creation is done via kthreadd, so that we get a clean environment
5 * even if we're invoked from userspace (think modprobe, hotplug cpu,
6 * etc.).
7 */
8 #include <linux/sched.h>
9 #include <linux/kthread.h>
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/cpuset.h>
13 #include <linux/unistd.h>
14 #include <linux/file.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/slab.h>
18 #include <linux/freezer.h>
19 #include <linux/ptrace.h>
20 #include <linux/uaccess.h>
21 #include <trace/events/sched.h>
22
23 static DEFINE_SPINLOCK(kthread_create_lock);
24 static LIST_HEAD(kthread_create_list);
25 struct task_struct *kthreadd_task;
26
27 struct kthread_create_info
28 {
29 /* Information passed to kthread() from kthreadd. */
30 int (*threadfn)(void *data);
31 void *data;
32 int node;
33
34 /* Result passed back to kthread_create() from kthreadd. */
35 struct task_struct *result;
36 struct completion *done;
37
38 struct list_head list;
39 };
40
41 struct kthread {
42 unsigned long flags;
43 unsigned int cpu;
44 void *data;
45 struct completion parked;
46 struct completion exited;
47 };
48
49 enum KTHREAD_BITS {
50 KTHREAD_IS_PER_CPU = 0,
51 KTHREAD_SHOULD_STOP,
52 KTHREAD_SHOULD_PARK,
53 KTHREAD_IS_PARKED,
54 };
55
56 #define __to_kthread(vfork) \
57 container_of(vfork, struct kthread, exited)
58
59 static inline struct kthread *to_kthread(struct task_struct *k)
60 {
61 return __to_kthread(k->vfork_done);
62 }
63
64 static struct kthread *to_live_kthread(struct task_struct *k)
65 {
66 struct completion *vfork = ACCESS_ONCE(k->vfork_done);
67 if (likely(vfork))
68 return __to_kthread(vfork);
69 return NULL;
70 }
71
72 /**
73 * kthread_should_stop - should this kthread return now?
74 *
75 * When someone calls kthread_stop() on your kthread, it will be woken
76 * and this will return true. You should then return, and your return
77 * value will be passed through to kthread_stop().
78 */
79 bool kthread_should_stop(void)
80 {
81 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
82 }
83 EXPORT_SYMBOL(kthread_should_stop);
84
85 /**
86 * kthread_should_park - should this kthread park now?
87 *
88 * When someone calls kthread_park() on your kthread, it will be woken
89 * and this will return true. You should then do the necessary
90 * cleanup and call kthread_parkme()
91 *
92 * Similar to kthread_should_stop(), but this keeps the thread alive
93 * and in a park position. kthread_unpark() "restarts" the thread and
94 * calls the thread function again.
95 */
96 bool kthread_should_park(void)
97 {
98 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags);
99 }
100 EXPORT_SYMBOL_GPL(kthread_should_park);
101
102 /**
103 * kthread_freezable_should_stop - should this freezable kthread return now?
104 * @was_frozen: optional out parameter, indicates whether %current was frozen
105 *
106 * kthread_should_stop() for freezable kthreads, which will enter
107 * refrigerator if necessary. This function is safe from kthread_stop() /
108 * freezer deadlock and freezable kthreads should use this function instead
109 * of calling try_to_freeze() directly.
110 */
111 bool kthread_freezable_should_stop(bool *was_frozen)
112 {
113 bool frozen = false;
114
115 might_sleep();
116
117 if (unlikely(freezing(current)))
118 frozen = __refrigerator(true);
119
120 if (was_frozen)
121 *was_frozen = frozen;
122
123 return kthread_should_stop();
124 }
125 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
126
127 /**
128 * kthread_data - return data value specified on kthread creation
129 * @task: kthread task in question
130 *
131 * Return the data value specified when kthread @task was created.
132 * The caller is responsible for ensuring the validity of @task when
133 * calling this function.
134 */
135 void *kthread_data(struct task_struct *task)
136 {
137 return to_kthread(task)->data;
138 }
139
140 /**
141 * kthread_probe_data - speculative version of kthread_data()
142 * @task: possible kthread task in question
143 *
144 * @task could be a kthread task. Return the data value specified when it
145 * was created if accessible. If @task isn't a kthread task or its data is
146 * inaccessible for any reason, %NULL is returned. This function requires
147 * that @task itself is safe to dereference.
148 */
149 void *kthread_probe_data(struct task_struct *task)
150 {
151 struct kthread *kthread = to_kthread(task);
152 void *data = NULL;
153
154 probe_kernel_read(&data, &kthread->data, sizeof(data));
155 return data;
156 }
157
158 static void __kthread_parkme(struct kthread *self)
159 {
160 __set_current_state(TASK_PARKED);
161 while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) {
162 if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags))
163 complete(&self->parked);
164 schedule();
165 __set_current_state(TASK_PARKED);
166 }
167 clear_bit(KTHREAD_IS_PARKED, &self->flags);
168 __set_current_state(TASK_RUNNING);
169 }
170
171 void kthread_parkme(void)
172 {
173 __kthread_parkme(to_kthread(current));
174 }
175 EXPORT_SYMBOL_GPL(kthread_parkme);
176
177 static int kthread(void *_create)
178 {
179 /* Copy data: it's on kthread's stack */
180 struct kthread_create_info *create = _create;
181 int (*threadfn)(void *data) = create->threadfn;
182 void *data = create->data;
183 struct completion *done;
184 struct kthread self;
185 int ret;
186
187 self.flags = 0;
188 self.data = data;
189 init_completion(&self.exited);
190 init_completion(&self.parked);
191 current->vfork_done = &self.exited;
192
193 /* If user was SIGKILLed, I release the structure. */
194 done = xchg(&create->done, NULL);
195 if (!done) {
196 kfree(create);
197 do_exit(-EINTR);
198 }
199 /* OK, tell user we're spawned, wait for stop or wakeup */
200 __set_current_state(TASK_UNINTERRUPTIBLE);
201 create->result = current;
202 complete(done);
203 schedule();
204
205 ret = -EINTR;
206
207 if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) {
208 __kthread_parkme(&self);
209 ret = threadfn(data);
210 }
211 /* we can't just return, we must preserve "self" on stack */
212 do_exit(ret);
213 }
214
215 /* called from do_fork() to get node information for about to be created task */
216 int tsk_fork_get_node(struct task_struct *tsk)
217 {
218 #ifdef CONFIG_NUMA
219 if (tsk == kthreadd_task)
220 return tsk->pref_node_fork;
221 #endif
222 return NUMA_NO_NODE;
223 }
224
225 static void create_kthread(struct kthread_create_info *create)
226 {
227 int pid;
228
229 #ifdef CONFIG_NUMA
230 current->pref_node_fork = create->node;
231 #endif
232 /* We want our own signal handler (we take no signals by default). */
233 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
234 if (pid < 0) {
235 /* If user was SIGKILLed, I release the structure. */
236 struct completion *done = xchg(&create->done, NULL);
237
238 if (!done) {
239 kfree(create);
240 return;
241 }
242 create->result = ERR_PTR(pid);
243 complete(done);
244 }
245 }
246
247 static struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
248 void *data, int node,
249 const char namefmt[],
250 va_list args)
251 {
252 DECLARE_COMPLETION_ONSTACK(done);
253 struct task_struct *task;
254 struct kthread_create_info *create = kmalloc(sizeof(*create),
255 GFP_KERNEL);
256
257 if (!create)
258 return ERR_PTR(-ENOMEM);
259 create->threadfn = threadfn;
260 create->data = data;
261 create->node = node;
262 create->done = &done;
263
264 spin_lock(&kthread_create_lock);
265 list_add_tail(&create->list, &kthread_create_list);
266 spin_unlock(&kthread_create_lock);
267
268 wake_up_process(kthreadd_task);
269 /*
270 * Wait for completion in killable state, for I might be chosen by
271 * the OOM killer while kthreadd is trying to allocate memory for
272 * new kernel thread.
273 */
274 if (unlikely(wait_for_completion_killable(&done))) {
275 /*
276 * If I was SIGKILLed before kthreadd (or new kernel thread)
277 * calls complete(), leave the cleanup of this structure to
278 * that thread.
279 */
280 if (xchg(&create->done, NULL))
281 return ERR_PTR(-EINTR);
282 /*
283 * kthreadd (or new kernel thread) will call complete()
284 * shortly.
285 */
286 wait_for_completion(&done);
287 }
288 task = create->result;
289 if (!IS_ERR(task)) {
290 static const struct sched_param param = { .sched_priority = 0 };
291
292 vsnprintf(task->comm, sizeof(task->comm), namefmt, args);
293 /*
294 * root may have changed our (kthreadd's) priority or CPU mask.
295 * The kernel thread should not inherit these properties.
296 */
297 sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
298 set_cpus_allowed_ptr(task, cpu_all_mask);
299 }
300 kfree(create);
301 return task;
302 }
303
304 /**
305 * kthread_create_on_node - create a kthread.
306 * @threadfn: the function to run until signal_pending(current).
307 * @data: data ptr for @threadfn.
308 * @node: task and thread structures for the thread are allocated on this node
309 * @namefmt: printf-style name for the thread.
310 *
311 * Description: This helper function creates and names a kernel
312 * thread. The thread will be stopped: use wake_up_process() to start
313 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
314 * is affine to all CPUs.
315 *
316 * If thread is going to be bound on a particular cpu, give its node
317 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
318 * When woken, the thread will run @threadfn() with @data as its
319 * argument. @threadfn() can either call do_exit() directly if it is a
320 * standalone thread for which no one will call kthread_stop(), or
321 * return when 'kthread_should_stop()' is true (which means
322 * kthread_stop() has been called). The return value should be zero
323 * or a negative error number; it will be passed to kthread_stop().
324 *
325 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
326 */
327 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
328 void *data, int node,
329 const char namefmt[],
330 ...)
331 {
332 struct task_struct *task;
333 va_list args;
334
335 va_start(args, namefmt);
336 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
337 va_end(args);
338
339 return task;
340 }
341 EXPORT_SYMBOL(kthread_create_on_node);
342
343 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
344 {
345 unsigned long flags;
346
347 if (!wait_task_inactive(p, state)) {
348 WARN_ON(1);
349 return;
350 }
351
352 /* It's safe because the task is inactive. */
353 raw_spin_lock_irqsave(&p->pi_lock, flags);
354 do_set_cpus_allowed(p, mask);
355 p->flags |= PF_NO_SETAFFINITY;
356 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
357 }
358
359 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
360 {
361 __kthread_bind_mask(p, cpumask_of(cpu), state);
362 }
363
364 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
365 {
366 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
367 }
368
369 /**
370 * kthread_bind - bind a just-created kthread to a cpu.
371 * @p: thread created by kthread_create().
372 * @cpu: cpu (might not be online, must be possible) for @k to run on.
373 *
374 * Description: This function is equivalent to set_cpus_allowed(),
375 * except that @cpu doesn't need to be online, and the thread must be
376 * stopped (i.e., just returned from kthread_create()).
377 */
378 void kthread_bind(struct task_struct *p, unsigned int cpu)
379 {
380 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
381 }
382 EXPORT_SYMBOL(kthread_bind);
383
384 /**
385 * kthread_create_on_cpu - Create a cpu bound kthread
386 * @threadfn: the function to run until signal_pending(current).
387 * @data: data ptr for @threadfn.
388 * @cpu: The cpu on which the thread should be bound,
389 * @namefmt: printf-style name for the thread. Format is restricted
390 * to "name.*%u". Code fills in cpu number.
391 *
392 * Description: This helper function creates and names a kernel thread
393 * The thread will be woken and put into park mode.
394 */
395 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
396 void *data, unsigned int cpu,
397 const char *namefmt)
398 {
399 struct task_struct *p;
400
401 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
402 cpu);
403 if (IS_ERR(p))
404 return p;
405 kthread_bind(p, cpu);
406 /* CPU hotplug need to bind once again when unparking the thread. */
407 set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
408 to_kthread(p)->cpu = cpu;
409 return p;
410 }
411
412 static void __kthread_unpark(struct task_struct *k, struct kthread *kthread)
413 {
414 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
415 /*
416 * We clear the IS_PARKED bit here as we don't wait
417 * until the task has left the park code. So if we'd
418 * park before that happens we'd see the IS_PARKED bit
419 * which might be about to be cleared.
420 */
421 if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
422 /*
423 * Newly created kthread was parked when the CPU was offline.
424 * The binding was lost and we need to set it again.
425 */
426 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
427 __kthread_bind(k, kthread->cpu, TASK_PARKED);
428 wake_up_state(k, TASK_PARKED);
429 }
430 }
431
432 /**
433 * kthread_unpark - unpark a thread created by kthread_create().
434 * @k: thread created by kthread_create().
435 *
436 * Sets kthread_should_park() for @k to return false, wakes it, and
437 * waits for it to return. If the thread is marked percpu then its
438 * bound to the cpu again.
439 */
440 void kthread_unpark(struct task_struct *k)
441 {
442 struct kthread *kthread = to_live_kthread(k);
443
444 if (kthread)
445 __kthread_unpark(k, kthread);
446 }
447 EXPORT_SYMBOL_GPL(kthread_unpark);
448
449 /**
450 * kthread_park - park a thread created by kthread_create().
451 * @k: thread created by kthread_create().
452 *
453 * Sets kthread_should_park() for @k to return true, wakes it, and
454 * waits for it to return. This can also be called after kthread_create()
455 * instead of calling wake_up_process(): the thread will park without
456 * calling threadfn().
457 *
458 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
459 * If called by the kthread itself just the park bit is set.
460 */
461 int kthread_park(struct task_struct *k)
462 {
463 struct kthread *kthread = to_live_kthread(k);
464 int ret = -ENOSYS;
465
466 if (kthread) {
467 if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) {
468 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
469 if (k != current) {
470 wake_up_process(k);
471 wait_for_completion(&kthread->parked);
472 }
473 }
474 ret = 0;
475 }
476 return ret;
477 }
478 EXPORT_SYMBOL_GPL(kthread_park);
479
480 /**
481 * kthread_stop - stop a thread created by kthread_create().
482 * @k: thread created by kthread_create().
483 *
484 * Sets kthread_should_stop() for @k to return true, wakes it, and
485 * waits for it to exit. This can also be called after kthread_create()
486 * instead of calling wake_up_process(): the thread will exit without
487 * calling threadfn().
488 *
489 * If threadfn() may call do_exit() itself, the caller must ensure
490 * task_struct can't go away.
491 *
492 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
493 * was never called.
494 */
495 int kthread_stop(struct task_struct *k)
496 {
497 struct kthread *kthread;
498 int ret;
499
500 trace_sched_kthread_stop(k);
501
502 get_task_struct(k);
503 kthread = to_live_kthread(k);
504 if (kthread) {
505 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
506 __kthread_unpark(k, kthread);
507 wake_up_process(k);
508 wait_for_completion(&kthread->exited);
509 }
510 ret = k->exit_code;
511 put_task_struct(k);
512
513 trace_sched_kthread_stop_ret(ret);
514 return ret;
515 }
516 EXPORT_SYMBOL(kthread_stop);
517
518 int kthreadd(void *unused)
519 {
520 struct task_struct *tsk = current;
521
522 /* Setup a clean context for our children to inherit. */
523 set_task_comm(tsk, "kthreadd");
524 ignore_signals(tsk);
525 set_cpus_allowed_ptr(tsk, cpu_all_mask);
526 set_mems_allowed(node_states[N_MEMORY]);
527
528 current->flags |= PF_NOFREEZE;
529
530 for (;;) {
531 set_current_state(TASK_INTERRUPTIBLE);
532 if (list_empty(&kthread_create_list))
533 schedule();
534 __set_current_state(TASK_RUNNING);
535
536 spin_lock(&kthread_create_lock);
537 while (!list_empty(&kthread_create_list)) {
538 struct kthread_create_info *create;
539
540 create = list_entry(kthread_create_list.next,
541 struct kthread_create_info, list);
542 list_del_init(&create->list);
543 spin_unlock(&kthread_create_lock);
544
545 create_kthread(create);
546
547 spin_lock(&kthread_create_lock);
548 }
549 spin_unlock(&kthread_create_lock);
550 }
551
552 return 0;
553 }
554
555 void __kthread_init_worker(struct kthread_worker *worker,
556 const char *name,
557 struct lock_class_key *key)
558 {
559 spin_lock_init(&worker->lock);
560 lockdep_set_class_and_name(&worker->lock, key, name);
561 INIT_LIST_HEAD(&worker->work_list);
562 INIT_LIST_HEAD(&worker->delayed_work_list);
563 worker->task = NULL;
564 }
565 EXPORT_SYMBOL_GPL(__kthread_init_worker);
566
567 /**
568 * kthread_worker_fn - kthread function to process kthread_worker
569 * @worker_ptr: pointer to initialized kthread_worker
570 *
571 * This function implements the main cycle of kthread worker. It processes
572 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
573 * is empty.
574 *
575 * The works are not allowed to keep any locks, disable preemption or interrupts
576 * when they finish. There is defined a safe point for freezing when one work
577 * finishes and before a new one is started.
578 *
579 * Also the works must not be handled by more than one worker at the same time,
580 * see also kthread_queue_work().
581 */
582 int kthread_worker_fn(void *worker_ptr)
583 {
584 struct kthread_worker *worker = worker_ptr;
585 struct kthread_work *work;
586
587 /*
588 * FIXME: Update the check and remove the assignment when all kthread
589 * worker users are created using kthread_create_worker*() functions.
590 */
591 WARN_ON(worker->task && worker->task != current);
592 worker->task = current;
593 repeat:
594 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
595
596 if (kthread_should_stop()) {
597 __set_current_state(TASK_RUNNING);
598 spin_lock_irq(&worker->lock);
599 worker->task = NULL;
600 spin_unlock_irq(&worker->lock);
601 return 0;
602 }
603
604 work = NULL;
605 spin_lock_irq(&worker->lock);
606 if (!list_empty(&worker->work_list)) {
607 work = list_first_entry(&worker->work_list,
608 struct kthread_work, node);
609 list_del_init(&work->node);
610 }
611 worker->current_work = work;
612 spin_unlock_irq(&worker->lock);
613
614 if (work) {
615 __set_current_state(TASK_RUNNING);
616 work->func(work);
617 } else if (!freezing(current))
618 schedule();
619
620 try_to_freeze();
621 goto repeat;
622 }
623 EXPORT_SYMBOL_GPL(kthread_worker_fn);
624
625 static struct kthread_worker *
626 __kthread_create_worker(int cpu, const char namefmt[], va_list args)
627 {
628 struct kthread_worker *worker;
629 struct task_struct *task;
630
631 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
632 if (!worker)
633 return ERR_PTR(-ENOMEM);
634
635 kthread_init_worker(worker);
636
637 if (cpu >= 0) {
638 char name[TASK_COMM_LEN];
639
640 /*
641 * kthread_create_worker_on_cpu() allows to pass a generic
642 * namefmt in compare with kthread_create_on_cpu. We need
643 * to format it here.
644 */
645 vsnprintf(name, sizeof(name), namefmt, args);
646 task = kthread_create_on_cpu(kthread_worker_fn, worker,
647 cpu, name);
648 } else {
649 task = __kthread_create_on_node(kthread_worker_fn, worker,
650 -1, namefmt, args);
651 }
652
653 if (IS_ERR(task))
654 goto fail_task;
655
656 worker->task = task;
657 wake_up_process(task);
658 return worker;
659
660 fail_task:
661 kfree(worker);
662 return ERR_CAST(task);
663 }
664
665 /**
666 * kthread_create_worker - create a kthread worker
667 * @namefmt: printf-style name for the kthread worker (task).
668 *
669 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
670 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
671 * when the worker was SIGKILLed.
672 */
673 struct kthread_worker *
674 kthread_create_worker(const char namefmt[], ...)
675 {
676 struct kthread_worker *worker;
677 va_list args;
678
679 va_start(args, namefmt);
680 worker = __kthread_create_worker(-1, namefmt, args);
681 va_end(args);
682
683 return worker;
684 }
685 EXPORT_SYMBOL(kthread_create_worker);
686
687 /**
688 * kthread_create_worker_on_cpu - create a kthread worker and bind it
689 * it to a given CPU and the associated NUMA node.
690 * @cpu: CPU number
691 * @namefmt: printf-style name for the kthread worker (task).
692 *
693 * Use a valid CPU number if you want to bind the kthread worker
694 * to the given CPU and the associated NUMA node.
695 *
696 * A good practice is to add the cpu number also into the worker name.
697 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
698 *
699 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
700 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
701 * when the worker was SIGKILLed.
702 */
703 struct kthread_worker *
704 kthread_create_worker_on_cpu(int cpu, const char namefmt[], ...)
705 {
706 struct kthread_worker *worker;
707 va_list args;
708
709 va_start(args, namefmt);
710 worker = __kthread_create_worker(cpu, namefmt, args);
711 va_end(args);
712
713 return worker;
714 }
715 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
716
717 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
718 struct kthread_work *work)
719 {
720 lockdep_assert_held(&worker->lock);
721 WARN_ON_ONCE(!list_empty(&work->node));
722 /* Do not use a work with >1 worker, see kthread_queue_work() */
723 WARN_ON_ONCE(work->worker && work->worker != worker);
724 }
725
726 /* insert @work before @pos in @worker */
727 static void kthread_insert_work(struct kthread_worker *worker,
728 struct kthread_work *work,
729 struct list_head *pos)
730 {
731 kthread_insert_work_sanity_check(worker, work);
732
733 list_add_tail(&work->node, pos);
734 work->worker = worker;
735 if (!worker->current_work && likely(worker->task))
736 wake_up_process(worker->task);
737 }
738
739 /**
740 * kthread_queue_work - queue a kthread_work
741 * @worker: target kthread_worker
742 * @work: kthread_work to queue
743 *
744 * Queue @work to work processor @task for async execution. @task
745 * must have been created with kthread_worker_create(). Returns %true
746 * if @work was successfully queued, %false if it was already pending.
747 *
748 * Reinitialize the work if it needs to be used by another worker.
749 * For example, when the worker was stopped and started again.
750 */
751 bool kthread_queue_work(struct kthread_worker *worker,
752 struct kthread_work *work)
753 {
754 bool ret = false;
755 unsigned long flags;
756
757 spin_lock_irqsave(&worker->lock, flags);
758 if (list_empty(&work->node)) {
759 kthread_insert_work(worker, work, &worker->work_list);
760 ret = true;
761 }
762 spin_unlock_irqrestore(&worker->lock, flags);
763 return ret;
764 }
765 EXPORT_SYMBOL_GPL(kthread_queue_work);
766
767 /**
768 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
769 * delayed work when the timer expires.
770 * @__data: pointer to the data associated with the timer
771 *
772 * The format of the function is defined by struct timer_list.
773 * It should have been called from irqsafe timer with irq already off.
774 */
775 void kthread_delayed_work_timer_fn(unsigned long __data)
776 {
777 struct kthread_delayed_work *dwork =
778 (struct kthread_delayed_work *)__data;
779 struct kthread_work *work = &dwork->work;
780 struct kthread_worker *worker = work->worker;
781
782 /*
783 * This might happen when a pending work is reinitialized.
784 * It means that it is used a wrong way.
785 */
786 if (WARN_ON_ONCE(!worker))
787 return;
788
789 spin_lock(&worker->lock);
790 /* Work must not be used with >1 worker, see kthread_queue_work(). */
791 WARN_ON_ONCE(work->worker != worker);
792
793 /* Move the work from worker->delayed_work_list. */
794 WARN_ON_ONCE(list_empty(&work->node));
795 list_del_init(&work->node);
796 kthread_insert_work(worker, work, &worker->work_list);
797
798 spin_unlock(&worker->lock);
799 }
800 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
801
802 void __kthread_queue_delayed_work(struct kthread_worker *worker,
803 struct kthread_delayed_work *dwork,
804 unsigned long delay)
805 {
806 struct timer_list *timer = &dwork->timer;
807 struct kthread_work *work = &dwork->work;
808
809 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn ||
810 timer->data != (unsigned long)dwork);
811
812 /*
813 * If @delay is 0, queue @dwork->work immediately. This is for
814 * both optimization and correctness. The earliest @timer can
815 * expire is on the closest next tick and delayed_work users depend
816 * on that there's no such delay when @delay is 0.
817 */
818 if (!delay) {
819 kthread_insert_work(worker, work, &worker->work_list);
820 return;
821 }
822
823 /* Be paranoid and try to detect possible races already now. */
824 kthread_insert_work_sanity_check(worker, work);
825
826 list_add(&work->node, &worker->delayed_work_list);
827 work->worker = worker;
828 timer_stats_timer_set_start_info(&dwork->timer);
829 timer->expires = jiffies + delay;
830 add_timer(timer);
831 }
832
833 /**
834 * kthread_queue_delayed_work - queue the associated kthread work
835 * after a delay.
836 * @worker: target kthread_worker
837 * @dwork: kthread_delayed_work to queue
838 * @delay: number of jiffies to wait before queuing
839 *
840 * If the work has not been pending it starts a timer that will queue
841 * the work after the given @delay. If @delay is zero, it queues the
842 * work immediately.
843 *
844 * Return: %false if the @work has already been pending. It means that
845 * either the timer was running or the work was queued. It returns %true
846 * otherwise.
847 */
848 bool kthread_queue_delayed_work(struct kthread_worker *worker,
849 struct kthread_delayed_work *dwork,
850 unsigned long delay)
851 {
852 struct kthread_work *work = &dwork->work;
853 unsigned long flags;
854 bool ret = false;
855
856 spin_lock_irqsave(&worker->lock, flags);
857
858 if (list_empty(&work->node)) {
859 __kthread_queue_delayed_work(worker, dwork, delay);
860 ret = true;
861 }
862
863 spin_unlock_irqrestore(&worker->lock, flags);
864 return ret;
865 }
866 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
867
868 struct kthread_flush_work {
869 struct kthread_work work;
870 struct completion done;
871 };
872
873 static void kthread_flush_work_fn(struct kthread_work *work)
874 {
875 struct kthread_flush_work *fwork =
876 container_of(work, struct kthread_flush_work, work);
877 complete(&fwork->done);
878 }
879
880 /**
881 * kthread_flush_work - flush a kthread_work
882 * @work: work to flush
883 *
884 * If @work is queued or executing, wait for it to finish execution.
885 */
886 void kthread_flush_work(struct kthread_work *work)
887 {
888 struct kthread_flush_work fwork = {
889 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
890 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
891 };
892 struct kthread_worker *worker;
893 bool noop = false;
894
895 worker = work->worker;
896 if (!worker)
897 return;
898
899 spin_lock_irq(&worker->lock);
900 /* Work must not be used with >1 worker, see kthread_queue_work(). */
901 WARN_ON_ONCE(work->worker != worker);
902
903 if (!list_empty(&work->node))
904 kthread_insert_work(worker, &fwork.work, work->node.next);
905 else if (worker->current_work == work)
906 kthread_insert_work(worker, &fwork.work,
907 worker->work_list.next);
908 else
909 noop = true;
910
911 spin_unlock_irq(&worker->lock);
912
913 if (!noop)
914 wait_for_completion(&fwork.done);
915 }
916 EXPORT_SYMBOL_GPL(kthread_flush_work);
917
918 /**
919 * kthread_flush_worker - flush all current works on a kthread_worker
920 * @worker: worker to flush
921 *
922 * Wait until all currently executing or pending works on @worker are
923 * finished.
924 */
925 void kthread_flush_worker(struct kthread_worker *worker)
926 {
927 struct kthread_flush_work fwork = {
928 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
929 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
930 };
931
932 kthread_queue_work(worker, &fwork.work);
933 wait_for_completion(&fwork.done);
934 }
935 EXPORT_SYMBOL_GPL(kthread_flush_worker);
936
937 /**
938 * kthread_destroy_worker - destroy a kthread worker
939 * @worker: worker to be destroyed
940 *
941 * Flush and destroy @worker. The simple flush is enough because the kthread
942 * worker API is used only in trivial scenarios. There are no multi-step state
943 * machines needed.
944 */
945 void kthread_destroy_worker(struct kthread_worker *worker)
946 {
947 struct task_struct *task;
948
949 task = worker->task;
950 if (WARN_ON(!task))
951 return;
952
953 kthread_flush_worker(worker);
954 kthread_stop(task);
955 WARN_ON(!list_empty(&worker->work_list));
956 kfree(worker);
957 }
958 EXPORT_SYMBOL(kthread_destroy_worker);
This page took 0.05458 seconds and 4 git commands to generate.