Merge remote-tracking branch 'rcu/rcu/next'
[deliverable/linux.git] / kernel / rcu / tree.c
1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/export.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
53 #include <linux/delay.h>
54 #include <linux/stop_machine.h>
55 #include <linux/random.h>
56 #include <linux/trace_events.h>
57 #include <linux/suspend.h>
58
59 #include "tree.h"
60 #include "rcu.h"
61
62 #ifdef MODULE_PARAM_PREFIX
63 #undef MODULE_PARAM_PREFIX
64 #endif
65 #define MODULE_PARAM_PREFIX "rcutree."
66
67 /* Data structures. */
68
69 /*
70 * In order to export the rcu_state name to the tracing tools, it
71 * needs to be added in the __tracepoint_string section.
72 * This requires defining a separate variable tp_<sname>_varname
73 * that points to the string being used, and this will allow
74 * the tracing userspace tools to be able to decipher the string
75 * address to the matching string.
76 */
77 #ifdef CONFIG_TRACING
78 # define DEFINE_RCU_TPS(sname) \
79 static char sname##_varname[] = #sname; \
80 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
81 # define RCU_STATE_NAME(sname) sname##_varname
82 #else
83 # define DEFINE_RCU_TPS(sname)
84 # define RCU_STATE_NAME(sname) __stringify(sname)
85 #endif
86
87 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
88 DEFINE_RCU_TPS(sname) \
89 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
90 struct rcu_state sname##_state = { \
91 .level = { &sname##_state.node[0] }, \
92 .rda = &sname##_data, \
93 .call = cr, \
94 .gp_state = RCU_GP_IDLE, \
95 .gpnum = 0UL - 300UL, \
96 .completed = 0UL - 300UL, \
97 .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
98 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
99 .orphan_donetail = &sname##_state.orphan_donelist, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
102 .abbr = sabbr, \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
105 }
106
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
109
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
112
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 static int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
128
129 /*
130 * The rcu_scheduler_active variable transitions from zero to one just
131 * before the first task is spawned. So when this variable is zero, RCU
132 * can assume that there is but one task, allowing RCU to (for example)
133 * optimize synchronize_rcu() to a simple barrier(). When this variable
134 * is one, RCU must actually do all the hard work required to detect real
135 * grace periods. This variable is also used to suppress boot-time false
136 * positives from lockdep-RCU error checking.
137 */
138 int rcu_scheduler_active __read_mostly;
139 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
141 /*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153 static int rcu_scheduler_fully_active __read_mostly;
154
155 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
158 static void invoke_rcu_core(void);
159 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
160 static void rcu_report_exp_rdp(struct rcu_state *rsp,
161 struct rcu_data *rdp, bool wake);
162 static void sync_sched_exp_online_cleanup(int cpu);
163
164 /* rcuc/rcub kthread realtime priority */
165 #ifdef CONFIG_RCU_KTHREAD_PRIO
166 static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
167 #else /* #ifdef CONFIG_RCU_KTHREAD_PRIO */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 #endif /* #else #ifdef CONFIG_RCU_KTHREAD_PRIO */
170 module_param(kthread_prio, int, 0644);
171
172 /* Delay in jiffies for grace-period initialization delays, debug only. */
173
174 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT
175 static int gp_preinit_delay = CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT_DELAY;
176 module_param(gp_preinit_delay, int, 0644);
177 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
178 static const int gp_preinit_delay;
179 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_PREINIT */
180
181 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT
182 static int gp_init_delay = CONFIG_RCU_TORTURE_TEST_SLOW_INIT_DELAY;
183 module_param(gp_init_delay, int, 0644);
184 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
185 static const int gp_init_delay;
186 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_INIT */
187
188 #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP
189 static int gp_cleanup_delay = CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP_DELAY;
190 module_param(gp_cleanup_delay, int, 0644);
191 #else /* #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
192 static const int gp_cleanup_delay;
193 #endif /* #else #ifdef CONFIG_RCU_TORTURE_TEST_SLOW_CLEANUP */
194
195 /*
196 * Number of grace periods between delays, normalized by the duration of
197 * the delay. The longer the the delay, the more the grace periods between
198 * each delay. The reason for this normalization is that it means that,
199 * for non-zero delays, the overall slowdown of grace periods is constant
200 * regardless of the duration of the delay. This arrangement balances
201 * the need for long delays to increase some race probabilities with the
202 * need for fast grace periods to increase other race probabilities.
203 */
204 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
205
206 /*
207 * Track the rcutorture test sequence number and the update version
208 * number within a given test. The rcutorture_testseq is incremented
209 * on every rcutorture module load and unload, so has an odd value
210 * when a test is running. The rcutorture_vernum is set to zero
211 * when rcutorture starts and is incremented on each rcutorture update.
212 * These variables enable correlating rcutorture output with the
213 * RCU tracing information.
214 */
215 unsigned long rcutorture_testseq;
216 unsigned long rcutorture_vernum;
217
218 /*
219 * Compute the mask of online CPUs for the specified rcu_node structure.
220 * This will not be stable unless the rcu_node structure's ->lock is
221 * held, but the bit corresponding to the current CPU will be stable
222 * in most contexts.
223 */
224 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
225 {
226 return READ_ONCE(rnp->qsmaskinitnext);
227 }
228
229 /*
230 * Return true if an RCU grace period is in progress. The READ_ONCE()s
231 * permit this function to be invoked without holding the root rcu_node
232 * structure's ->lock, but of course results can be subject to change.
233 */
234 static int rcu_gp_in_progress(struct rcu_state *rsp)
235 {
236 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
237 }
238
239 /*
240 * Note a quiescent state. Because we do not need to know
241 * how many quiescent states passed, just if there was at least
242 * one since the start of the grace period, this just sets a flag.
243 * The caller must have disabled preemption.
244 */
245 void rcu_sched_qs(void)
246 {
247 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
248 return;
249 trace_rcu_grace_period(TPS("rcu_sched"),
250 __this_cpu_read(rcu_sched_data.gpnum),
251 TPS("cpuqs"));
252 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
253 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
254 return;
255 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
256 rcu_report_exp_rdp(&rcu_sched_state,
257 this_cpu_ptr(&rcu_sched_data), true);
258 }
259
260 void rcu_bh_qs(void)
261 {
262 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
263 trace_rcu_grace_period(TPS("rcu_bh"),
264 __this_cpu_read(rcu_bh_data.gpnum),
265 TPS("cpuqs"));
266 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
267 }
268 }
269
270 static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
271
272 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
273 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
274 .dynticks = ATOMIC_INIT(1),
275 #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
276 .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
277 .dynticks_idle = ATOMIC_INIT(1),
278 #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
279 };
280
281 DEFINE_PER_CPU_SHARED_ALIGNED(unsigned long, rcu_qs_ctr);
282 EXPORT_PER_CPU_SYMBOL_GPL(rcu_qs_ctr);
283
284 /*
285 * Let the RCU core know that this CPU has gone through the scheduler,
286 * which is a quiescent state. This is called when the need for a
287 * quiescent state is urgent, so we burn an atomic operation and full
288 * memory barriers to let the RCU core know about it, regardless of what
289 * this CPU might (or might not) do in the near future.
290 *
291 * We inform the RCU core by emulating a zero-duration dyntick-idle
292 * period, which we in turn do by incrementing the ->dynticks counter
293 * by two.
294 *
295 * The caller must have disabled interrupts.
296 */
297 static void rcu_momentary_dyntick_idle(void)
298 {
299 struct rcu_data *rdp;
300 struct rcu_dynticks *rdtp;
301 int resched_mask;
302 struct rcu_state *rsp;
303
304 /*
305 * Yes, we can lose flag-setting operations. This is OK, because
306 * the flag will be set again after some delay.
307 */
308 resched_mask = raw_cpu_read(rcu_sched_qs_mask);
309 raw_cpu_write(rcu_sched_qs_mask, 0);
310
311 /* Find the flavor that needs a quiescent state. */
312 for_each_rcu_flavor(rsp) {
313 rdp = raw_cpu_ptr(rsp->rda);
314 if (!(resched_mask & rsp->flavor_mask))
315 continue;
316 smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
317 if (READ_ONCE(rdp->mynode->completed) !=
318 READ_ONCE(rdp->cond_resched_completed))
319 continue;
320
321 /*
322 * Pretend to be momentarily idle for the quiescent state.
323 * This allows the grace-period kthread to record the
324 * quiescent state, with no need for this CPU to do anything
325 * further.
326 */
327 rdtp = this_cpu_ptr(&rcu_dynticks);
328 smp_mb__before_atomic(); /* Earlier stuff before QS. */
329 atomic_add(2, &rdtp->dynticks); /* QS. */
330 smp_mb__after_atomic(); /* Later stuff after QS. */
331 break;
332 }
333 }
334
335 /*
336 * Note a context switch. This is a quiescent state for RCU-sched,
337 * and requires special handling for preemptible RCU.
338 * The caller must have disabled interrupts.
339 */
340 void rcu_note_context_switch(void)
341 {
342 barrier(); /* Avoid RCU read-side critical sections leaking down. */
343 trace_rcu_utilization(TPS("Start context switch"));
344 rcu_sched_qs();
345 rcu_preempt_note_context_switch();
346 if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
347 rcu_momentary_dyntick_idle();
348 trace_rcu_utilization(TPS("End context switch"));
349 barrier(); /* Avoid RCU read-side critical sections leaking up. */
350 }
351 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
352
353 /*
354 * Register a quiescent state for all RCU flavors. If there is an
355 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
356 * dyntick-idle quiescent state visible to other CPUs (but only for those
357 * RCU flavors in desperate need of a quiescent state, which will normally
358 * be none of them). Either way, do a lightweight quiescent state for
359 * all RCU flavors.
360 *
361 * The barrier() calls are redundant in the common case when this is
362 * called externally, but just in case this is called from within this
363 * file.
364 *
365 */
366 void rcu_all_qs(void)
367 {
368 unsigned long flags;
369
370 barrier(); /* Avoid RCU read-side critical sections leaking down. */
371 if (unlikely(raw_cpu_read(rcu_sched_qs_mask))) {
372 local_irq_save(flags);
373 rcu_momentary_dyntick_idle();
374 local_irq_restore(flags);
375 }
376 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))) {
377 /*
378 * Yes, we just checked a per-CPU variable with preemption
379 * enabled, so we might be migrated to some other CPU at
380 * this point. That is OK because in that case, the
381 * migration will supply the needed quiescent state.
382 * We might end up needlessly disabling preemption and
383 * invoking rcu_sched_qs() on the destination CPU, but
384 * the probability and cost are both quite low, so this
385 * should not be a problem in practice.
386 */
387 preempt_disable();
388 rcu_sched_qs();
389 preempt_enable();
390 }
391 this_cpu_inc(rcu_qs_ctr);
392 barrier(); /* Avoid RCU read-side critical sections leaking up. */
393 }
394 EXPORT_SYMBOL_GPL(rcu_all_qs);
395
396 static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
397 static long qhimark = 10000; /* If this many pending, ignore blimit. */
398 static long qlowmark = 100; /* Once only this many pending, use blimit. */
399
400 module_param(blimit, long, 0444);
401 module_param(qhimark, long, 0444);
402 module_param(qlowmark, long, 0444);
403
404 static ulong jiffies_till_first_fqs = ULONG_MAX;
405 static ulong jiffies_till_next_fqs = ULONG_MAX;
406 static bool rcu_kick_kthreads;
407
408 module_param(jiffies_till_first_fqs, ulong, 0644);
409 module_param(jiffies_till_next_fqs, ulong, 0644);
410 module_param(rcu_kick_kthreads, bool, 0644);
411
412 /*
413 * How long the grace period must be before we start recruiting
414 * quiescent-state help from rcu_note_context_switch().
415 */
416 static ulong jiffies_till_sched_qs = HZ / 20;
417 module_param(jiffies_till_sched_qs, ulong, 0644);
418
419 static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
420 struct rcu_data *rdp);
421 static void force_qs_rnp(struct rcu_state *rsp,
422 int (*f)(struct rcu_data *rsp, bool *isidle,
423 unsigned long *maxj),
424 bool *isidle, unsigned long *maxj);
425 static void force_quiescent_state(struct rcu_state *rsp);
426 static int rcu_pending(void);
427
428 /*
429 * Return the number of RCU batches started thus far for debug & stats.
430 */
431 unsigned long rcu_batches_started(void)
432 {
433 return rcu_state_p->gpnum;
434 }
435 EXPORT_SYMBOL_GPL(rcu_batches_started);
436
437 /*
438 * Return the number of RCU-sched batches started thus far for debug & stats.
439 */
440 unsigned long rcu_batches_started_sched(void)
441 {
442 return rcu_sched_state.gpnum;
443 }
444 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
445
446 /*
447 * Return the number of RCU BH batches started thus far for debug & stats.
448 */
449 unsigned long rcu_batches_started_bh(void)
450 {
451 return rcu_bh_state.gpnum;
452 }
453 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
454
455 /*
456 * Return the number of RCU batches completed thus far for debug & stats.
457 */
458 unsigned long rcu_batches_completed(void)
459 {
460 return rcu_state_p->completed;
461 }
462 EXPORT_SYMBOL_GPL(rcu_batches_completed);
463
464 /*
465 * Return the number of RCU-sched batches completed thus far for debug & stats.
466 */
467 unsigned long rcu_batches_completed_sched(void)
468 {
469 return rcu_sched_state.completed;
470 }
471 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
472
473 /*
474 * Return the number of RCU BH batches completed thus far for debug & stats.
475 */
476 unsigned long rcu_batches_completed_bh(void)
477 {
478 return rcu_bh_state.completed;
479 }
480 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
481
482 /*
483 * Return the number of RCU expedited batches completed thus far for
484 * debug & stats. Odd numbers mean that a batch is in progress, even
485 * numbers mean idle. The value returned will thus be roughly double
486 * the cumulative batches since boot.
487 */
488 unsigned long rcu_exp_batches_completed(void)
489 {
490 return rcu_state_p->expedited_sequence;
491 }
492 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
493
494 /*
495 * Return the number of RCU-sched expedited batches completed thus far
496 * for debug & stats. Similar to rcu_exp_batches_completed().
497 */
498 unsigned long rcu_exp_batches_completed_sched(void)
499 {
500 return rcu_sched_state.expedited_sequence;
501 }
502 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
503
504 /*
505 * Force a quiescent state.
506 */
507 void rcu_force_quiescent_state(void)
508 {
509 force_quiescent_state(rcu_state_p);
510 }
511 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
512
513 /*
514 * Force a quiescent state for RCU BH.
515 */
516 void rcu_bh_force_quiescent_state(void)
517 {
518 force_quiescent_state(&rcu_bh_state);
519 }
520 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
521
522 /*
523 * Force a quiescent state for RCU-sched.
524 */
525 void rcu_sched_force_quiescent_state(void)
526 {
527 force_quiescent_state(&rcu_sched_state);
528 }
529 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
530
531 /*
532 * Show the state of the grace-period kthreads.
533 */
534 void show_rcu_gp_kthreads(void)
535 {
536 struct rcu_state *rsp;
537
538 for_each_rcu_flavor(rsp) {
539 pr_info("%s: wait state: %d ->state: %#lx\n",
540 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
541 /* sched_show_task(rsp->gp_kthread); */
542 }
543 }
544 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
545
546 /*
547 * Record the number of times rcutorture tests have been initiated and
548 * terminated. This information allows the debugfs tracing stats to be
549 * correlated to the rcutorture messages, even when the rcutorture module
550 * is being repeatedly loaded and unloaded. In other words, we cannot
551 * store this state in rcutorture itself.
552 */
553 void rcutorture_record_test_transition(void)
554 {
555 rcutorture_testseq++;
556 rcutorture_vernum = 0;
557 }
558 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
559
560 /*
561 * Send along grace-period-related data for rcutorture diagnostics.
562 */
563 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
564 unsigned long *gpnum, unsigned long *completed)
565 {
566 struct rcu_state *rsp = NULL;
567
568 switch (test_type) {
569 case RCU_FLAVOR:
570 rsp = rcu_state_p;
571 break;
572 case RCU_BH_FLAVOR:
573 rsp = &rcu_bh_state;
574 break;
575 case RCU_SCHED_FLAVOR:
576 rsp = &rcu_sched_state;
577 break;
578 default:
579 break;
580 }
581 if (rsp != NULL) {
582 *flags = READ_ONCE(rsp->gp_flags);
583 *gpnum = READ_ONCE(rsp->gpnum);
584 *completed = READ_ONCE(rsp->completed);
585 return;
586 }
587 *flags = 0;
588 *gpnum = 0;
589 *completed = 0;
590 }
591 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
592
593 /*
594 * Record the number of writer passes through the current rcutorture test.
595 * This is also used to correlate debugfs tracing stats with the rcutorture
596 * messages.
597 */
598 void rcutorture_record_progress(unsigned long vernum)
599 {
600 rcutorture_vernum++;
601 }
602 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
603
604 /*
605 * Does the CPU have callbacks ready to be invoked?
606 */
607 static int
608 cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
609 {
610 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
611 rdp->nxttail[RCU_DONE_TAIL] != NULL;
612 }
613
614 /*
615 * Return the root node of the specified rcu_state structure.
616 */
617 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
618 {
619 return &rsp->node[0];
620 }
621
622 /*
623 * Is there any need for future grace periods?
624 * Interrupts must be disabled. If the caller does not hold the root
625 * rnp_node structure's ->lock, the results are advisory only.
626 */
627 static int rcu_future_needs_gp(struct rcu_state *rsp)
628 {
629 struct rcu_node *rnp = rcu_get_root(rsp);
630 int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
631 int *fp = &rnp->need_future_gp[idx];
632
633 return READ_ONCE(*fp);
634 }
635
636 /*
637 * Does the current CPU require a not-yet-started grace period?
638 * The caller must have disabled interrupts to prevent races with
639 * normal callback registry.
640 */
641 static bool
642 cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
643 {
644 int i;
645
646 if (rcu_gp_in_progress(rsp))
647 return false; /* No, a grace period is already in progress. */
648 if (rcu_future_needs_gp(rsp))
649 return true; /* Yes, a no-CBs CPU needs one. */
650 if (!rdp->nxttail[RCU_NEXT_TAIL])
651 return false; /* No, this is a no-CBs (or offline) CPU. */
652 if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
653 return true; /* Yes, CPU has newly registered callbacks. */
654 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
655 if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
656 ULONG_CMP_LT(READ_ONCE(rsp->completed),
657 rdp->nxtcompleted[i]))
658 return true; /* Yes, CBs for future grace period. */
659 return false; /* No grace period needed. */
660 }
661
662 /*
663 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
664 *
665 * If the new value of the ->dynticks_nesting counter now is zero,
666 * we really have entered idle, and must do the appropriate accounting.
667 * The caller must have disabled interrupts.
668 */
669 static void rcu_eqs_enter_common(long long oldval, bool user)
670 {
671 struct rcu_state *rsp;
672 struct rcu_data *rdp;
673 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
674
675 trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
676 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
677 !user && !is_idle_task(current)) {
678 struct task_struct *idle __maybe_unused =
679 idle_task(smp_processor_id());
680
681 trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
682 rcu_ftrace_dump(DUMP_ORIG);
683 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
684 current->pid, current->comm,
685 idle->pid, idle->comm); /* must be idle task! */
686 }
687 for_each_rcu_flavor(rsp) {
688 rdp = this_cpu_ptr(rsp->rda);
689 do_nocb_deferred_wakeup(rdp);
690 }
691 rcu_prepare_for_idle();
692 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
693 smp_mb__before_atomic(); /* See above. */
694 atomic_inc(&rdtp->dynticks);
695 smp_mb__after_atomic(); /* Force ordering with next sojourn. */
696 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
697 atomic_read(&rdtp->dynticks) & 0x1);
698 rcu_dynticks_task_enter();
699
700 /*
701 * It is illegal to enter an extended quiescent state while
702 * in an RCU read-side critical section.
703 */
704 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
705 "Illegal idle entry in RCU read-side critical section.");
706 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
707 "Illegal idle entry in RCU-bh read-side critical section.");
708 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
709 "Illegal idle entry in RCU-sched read-side critical section.");
710 }
711
712 /*
713 * Enter an RCU extended quiescent state, which can be either the
714 * idle loop or adaptive-tickless usermode execution.
715 */
716 static void rcu_eqs_enter(bool user)
717 {
718 long long oldval;
719 struct rcu_dynticks *rdtp;
720
721 rdtp = this_cpu_ptr(&rcu_dynticks);
722 oldval = rdtp->dynticks_nesting;
723 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
724 (oldval & DYNTICK_TASK_NEST_MASK) == 0);
725 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
726 rdtp->dynticks_nesting = 0;
727 rcu_eqs_enter_common(oldval, user);
728 } else {
729 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
730 }
731 }
732
733 /**
734 * rcu_idle_enter - inform RCU that current CPU is entering idle
735 *
736 * Enter idle mode, in other words, -leave- the mode in which RCU
737 * read-side critical sections can occur. (Though RCU read-side
738 * critical sections can occur in irq handlers in idle, a possibility
739 * handled by irq_enter() and irq_exit().)
740 *
741 * We crowbar the ->dynticks_nesting field to zero to allow for
742 * the possibility of usermode upcalls having messed up our count
743 * of interrupt nesting level during the prior busy period.
744 */
745 void rcu_idle_enter(void)
746 {
747 unsigned long flags;
748
749 local_irq_save(flags);
750 rcu_eqs_enter(false);
751 rcu_sysidle_enter(0);
752 local_irq_restore(flags);
753 }
754 EXPORT_SYMBOL_GPL(rcu_idle_enter);
755
756 #ifdef CONFIG_NO_HZ_FULL
757 /**
758 * rcu_user_enter - inform RCU that we are resuming userspace.
759 *
760 * Enter RCU idle mode right before resuming userspace. No use of RCU
761 * is permitted between this call and rcu_user_exit(). This way the
762 * CPU doesn't need to maintain the tick for RCU maintenance purposes
763 * when the CPU runs in userspace.
764 */
765 void rcu_user_enter(void)
766 {
767 rcu_eqs_enter(1);
768 }
769 #endif /* CONFIG_NO_HZ_FULL */
770
771 /**
772 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
773 *
774 * Exit from an interrupt handler, which might possibly result in entering
775 * idle mode, in other words, leaving the mode in which read-side critical
776 * sections can occur. The caller must have disabled interrupts.
777 *
778 * This code assumes that the idle loop never does anything that might
779 * result in unbalanced calls to irq_enter() and irq_exit(). If your
780 * architecture violates this assumption, RCU will give you what you
781 * deserve, good and hard. But very infrequently and irreproducibly.
782 *
783 * Use things like work queues to work around this limitation.
784 *
785 * You have been warned.
786 */
787 void rcu_irq_exit(void)
788 {
789 long long oldval;
790 struct rcu_dynticks *rdtp;
791
792 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_exit() invoked with irqs enabled!!!");
793 rdtp = this_cpu_ptr(&rcu_dynticks);
794 oldval = rdtp->dynticks_nesting;
795 rdtp->dynticks_nesting--;
796 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
797 rdtp->dynticks_nesting < 0);
798 if (rdtp->dynticks_nesting)
799 trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
800 else
801 rcu_eqs_enter_common(oldval, true);
802 rcu_sysidle_enter(1);
803 }
804
805 /*
806 * Wrapper for rcu_irq_exit() where interrupts are enabled.
807 */
808 void rcu_irq_exit_irqson(void)
809 {
810 unsigned long flags;
811
812 local_irq_save(flags);
813 rcu_irq_exit();
814 local_irq_restore(flags);
815 }
816
817 /*
818 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
819 *
820 * If the new value of the ->dynticks_nesting counter was previously zero,
821 * we really have exited idle, and must do the appropriate accounting.
822 * The caller must have disabled interrupts.
823 */
824 static void rcu_eqs_exit_common(long long oldval, int user)
825 {
826 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
827
828 rcu_dynticks_task_exit();
829 smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
830 atomic_inc(&rdtp->dynticks);
831 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
832 smp_mb__after_atomic(); /* See above. */
833 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
834 !(atomic_read(&rdtp->dynticks) & 0x1));
835 rcu_cleanup_after_idle();
836 trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
837 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
838 !user && !is_idle_task(current)) {
839 struct task_struct *idle __maybe_unused =
840 idle_task(smp_processor_id());
841
842 trace_rcu_dyntick(TPS("Error on exit: not idle task"),
843 oldval, rdtp->dynticks_nesting);
844 rcu_ftrace_dump(DUMP_ORIG);
845 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
846 current->pid, current->comm,
847 idle->pid, idle->comm); /* must be idle task! */
848 }
849 }
850
851 /*
852 * Exit an RCU extended quiescent state, which can be either the
853 * idle loop or adaptive-tickless usermode execution.
854 */
855 static void rcu_eqs_exit(bool user)
856 {
857 struct rcu_dynticks *rdtp;
858 long long oldval;
859
860 rdtp = this_cpu_ptr(&rcu_dynticks);
861 oldval = rdtp->dynticks_nesting;
862 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
863 if (oldval & DYNTICK_TASK_NEST_MASK) {
864 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
865 } else {
866 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
867 rcu_eqs_exit_common(oldval, user);
868 }
869 }
870
871 /**
872 * rcu_idle_exit - inform RCU that current CPU is leaving idle
873 *
874 * Exit idle mode, in other words, -enter- the mode in which RCU
875 * read-side critical sections can occur.
876 *
877 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
878 * allow for the possibility of usermode upcalls messing up our count
879 * of interrupt nesting level during the busy period that is just
880 * now starting.
881 */
882 void rcu_idle_exit(void)
883 {
884 unsigned long flags;
885
886 local_irq_save(flags);
887 rcu_eqs_exit(false);
888 rcu_sysidle_exit(0);
889 local_irq_restore(flags);
890 }
891 EXPORT_SYMBOL_GPL(rcu_idle_exit);
892
893 #ifdef CONFIG_NO_HZ_FULL
894 /**
895 * rcu_user_exit - inform RCU that we are exiting userspace.
896 *
897 * Exit RCU idle mode while entering the kernel because it can
898 * run a RCU read side critical section anytime.
899 */
900 void rcu_user_exit(void)
901 {
902 rcu_eqs_exit(1);
903 }
904 #endif /* CONFIG_NO_HZ_FULL */
905
906 /**
907 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
908 *
909 * Enter an interrupt handler, which might possibly result in exiting
910 * idle mode, in other words, entering the mode in which read-side critical
911 * sections can occur. The caller must have disabled interrupts.
912 *
913 * Note that the Linux kernel is fully capable of entering an interrupt
914 * handler that it never exits, for example when doing upcalls to
915 * user mode! This code assumes that the idle loop never does upcalls to
916 * user mode. If your architecture does do upcalls from the idle loop (or
917 * does anything else that results in unbalanced calls to the irq_enter()
918 * and irq_exit() functions), RCU will give you what you deserve, good
919 * and hard. But very infrequently and irreproducibly.
920 *
921 * Use things like work queues to work around this limitation.
922 *
923 * You have been warned.
924 */
925 void rcu_irq_enter(void)
926 {
927 struct rcu_dynticks *rdtp;
928 long long oldval;
929
930 RCU_LOCKDEP_WARN(!irqs_disabled(), "rcu_irq_enter() invoked with irqs enabled!!!");
931 rdtp = this_cpu_ptr(&rcu_dynticks);
932 oldval = rdtp->dynticks_nesting;
933 rdtp->dynticks_nesting++;
934 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
935 rdtp->dynticks_nesting == 0);
936 if (oldval)
937 trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
938 else
939 rcu_eqs_exit_common(oldval, true);
940 rcu_sysidle_exit(1);
941 }
942
943 /*
944 * Wrapper for rcu_irq_enter() where interrupts are enabled.
945 */
946 void rcu_irq_enter_irqson(void)
947 {
948 unsigned long flags;
949
950 local_irq_save(flags);
951 rcu_irq_enter();
952 local_irq_restore(flags);
953 }
954
955 /**
956 * rcu_nmi_enter - inform RCU of entry to NMI context
957 *
958 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
959 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
960 * that the CPU is active. This implementation permits nested NMIs, as
961 * long as the nesting level does not overflow an int. (You will probably
962 * run out of stack space first.)
963 */
964 void rcu_nmi_enter(void)
965 {
966 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
967 int incby = 2;
968
969 /* Complain about underflow. */
970 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
971
972 /*
973 * If idle from RCU viewpoint, atomically increment ->dynticks
974 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
975 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
976 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
977 * to be in the outermost NMI handler that interrupted an RCU-idle
978 * period (observation due to Andy Lutomirski).
979 */
980 if (!(atomic_read(&rdtp->dynticks) & 0x1)) {
981 smp_mb__before_atomic(); /* Force delay from prior write. */
982 atomic_inc(&rdtp->dynticks);
983 /* atomic_inc() before later RCU read-side crit sects */
984 smp_mb__after_atomic(); /* See above. */
985 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
986 incby = 1;
987 }
988 rdtp->dynticks_nmi_nesting += incby;
989 barrier();
990 }
991
992 /**
993 * rcu_nmi_exit - inform RCU of exit from NMI context
994 *
995 * If we are returning from the outermost NMI handler that interrupted an
996 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
997 * to let the RCU grace-period handling know that the CPU is back to
998 * being RCU-idle.
999 */
1000 void rcu_nmi_exit(void)
1001 {
1002 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1003
1004 /*
1005 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
1006 * (We are exiting an NMI handler, so RCU better be paying attention
1007 * to us!)
1008 */
1009 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
1010 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
1011
1012 /*
1013 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
1014 * leave it in non-RCU-idle state.
1015 */
1016 if (rdtp->dynticks_nmi_nesting != 1) {
1017 rdtp->dynticks_nmi_nesting -= 2;
1018 return;
1019 }
1020
1021 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
1022 rdtp->dynticks_nmi_nesting = 0;
1023 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
1024 smp_mb__before_atomic(); /* See above. */
1025 atomic_inc(&rdtp->dynticks);
1026 smp_mb__after_atomic(); /* Force delay to next write. */
1027 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
1028 }
1029
1030 /**
1031 * __rcu_is_watching - are RCU read-side critical sections safe?
1032 *
1033 * Return true if RCU is watching the running CPU, which means that
1034 * this CPU can safely enter RCU read-side critical sections. Unlike
1035 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
1036 * least disabled preemption.
1037 */
1038 bool notrace __rcu_is_watching(void)
1039 {
1040 return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
1041 }
1042
1043 /**
1044 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1045 *
1046 * If the current CPU is in its idle loop and is neither in an interrupt
1047 * or NMI handler, return true.
1048 */
1049 bool notrace rcu_is_watching(void)
1050 {
1051 bool ret;
1052
1053 preempt_disable_notrace();
1054 ret = __rcu_is_watching();
1055 preempt_enable_notrace();
1056 return ret;
1057 }
1058 EXPORT_SYMBOL_GPL(rcu_is_watching);
1059
1060 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1061
1062 /*
1063 * Is the current CPU online? Disable preemption to avoid false positives
1064 * that could otherwise happen due to the current CPU number being sampled,
1065 * this task being preempted, its old CPU being taken offline, resuming
1066 * on some other CPU, then determining that its old CPU is now offline.
1067 * It is OK to use RCU on an offline processor during initial boot, hence
1068 * the check for rcu_scheduler_fully_active. Note also that it is OK
1069 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1070 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1071 * offline to continue to use RCU for one jiffy after marking itself
1072 * offline in the cpu_online_mask. This leniency is necessary given the
1073 * non-atomic nature of the online and offline processing, for example,
1074 * the fact that a CPU enters the scheduler after completing the teardown
1075 * of the CPU.
1076 *
1077 * This is also why RCU internally marks CPUs online during in the
1078 * preparation phase and offline after the CPU has been taken down.
1079 *
1080 * Disable checking if in an NMI handler because we cannot safely report
1081 * errors from NMI handlers anyway.
1082 */
1083 bool rcu_lockdep_current_cpu_online(void)
1084 {
1085 struct rcu_data *rdp;
1086 struct rcu_node *rnp;
1087 bool ret;
1088
1089 if (in_nmi())
1090 return true;
1091 preempt_disable();
1092 rdp = this_cpu_ptr(&rcu_sched_data);
1093 rnp = rdp->mynode;
1094 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1095 !rcu_scheduler_fully_active;
1096 preempt_enable();
1097 return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1100
1101 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1102
1103 /**
1104 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1105 *
1106 * If the current CPU is idle or running at a first-level (not nested)
1107 * interrupt from idle, return true. The caller must have at least
1108 * disabled preemption.
1109 */
1110 static int rcu_is_cpu_rrupt_from_idle(void)
1111 {
1112 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
1113 }
1114
1115 /*
1116 * Snapshot the specified CPU's dynticks counter so that we can later
1117 * credit them with an implicit quiescent state. Return 1 if this CPU
1118 * is in dynticks idle mode, which is an extended quiescent state.
1119 */
1120 static int dyntick_save_progress_counter(struct rcu_data *rdp,
1121 bool *isidle, unsigned long *maxj)
1122 {
1123 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
1124 rcu_sysidle_check_cpu(rdp, isidle, maxj);
1125 if ((rdp->dynticks_snap & 0x1) == 0) {
1126 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1127 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4,
1128 rdp->mynode->gpnum))
1129 WRITE_ONCE(rdp->gpwrap, true);
1130 return 1;
1131 }
1132 return 0;
1133 }
1134
1135 /*
1136 * Return true if the specified CPU has passed through a quiescent
1137 * state by virtue of being in or having passed through an dynticks
1138 * idle state since the last call to dyntick_save_progress_counter()
1139 * for this same CPU, or by virtue of having been offline.
1140 */
1141 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
1142 bool *isidle, unsigned long *maxj)
1143 {
1144 unsigned int curr;
1145 int *rcrmp;
1146 unsigned int snap;
1147
1148 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
1149 snap = (unsigned int)rdp->dynticks_snap;
1150
1151 /*
1152 * If the CPU passed through or entered a dynticks idle phase with
1153 * no active irq/NMI handlers, then we can safely pretend that the CPU
1154 * already acknowledged the request to pass through a quiescent
1155 * state. Either way, that CPU cannot possibly be in an RCU
1156 * read-side critical section that started before the beginning
1157 * of the current RCU grace period.
1158 */
1159 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
1160 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1161 rdp->dynticks_fqs++;
1162 return 1;
1163 }
1164
1165 /*
1166 * Check for the CPU being offline, but only if the grace period
1167 * is old enough. We don't need to worry about the CPU changing
1168 * state: If we see it offline even once, it has been through a
1169 * quiescent state.
1170 *
1171 * The reason for insisting that the grace period be at least
1172 * one jiffy old is that CPUs that are not quite online and that
1173 * have just gone offline can still execute RCU read-side critical
1174 * sections.
1175 */
1176 if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
1177 return 0; /* Grace period is not old enough. */
1178 barrier();
1179 if (cpu_is_offline(rdp->cpu)) {
1180 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1181 rdp->offline_fqs++;
1182 return 1;
1183 }
1184
1185 /*
1186 * A CPU running for an extended time within the kernel can
1187 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1188 * even context-switching back and forth between a pair of
1189 * in-kernel CPU-bound tasks cannot advance grace periods.
1190 * So if the grace period is old enough, make the CPU pay attention.
1191 * Note that the unsynchronized assignments to the per-CPU
1192 * rcu_sched_qs_mask variable are safe. Yes, setting of
1193 * bits can be lost, but they will be set again on the next
1194 * force-quiescent-state pass. So lost bit sets do not result
1195 * in incorrect behavior, merely in a grace period lasting
1196 * a few jiffies longer than it might otherwise. Because
1197 * there are at most four threads involved, and because the
1198 * updates are only once every few jiffies, the probability of
1199 * lossage (and thus of slight grace-period extension) is
1200 * quite low.
1201 *
1202 * Note that if the jiffies_till_sched_qs boot/sysfs parameter
1203 * is set too high, we override with half of the RCU CPU stall
1204 * warning delay.
1205 */
1206 rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
1207 if (ULONG_CMP_GE(jiffies,
1208 rdp->rsp->gp_start + jiffies_till_sched_qs) ||
1209 ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
1210 if (!(READ_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
1211 WRITE_ONCE(rdp->cond_resched_completed,
1212 READ_ONCE(rdp->mynode->completed));
1213 smp_mb(); /* ->cond_resched_completed before *rcrmp. */
1214 WRITE_ONCE(*rcrmp,
1215 READ_ONCE(*rcrmp) + rdp->rsp->flavor_mask);
1216 }
1217 rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
1218 }
1219
1220 /* And if it has been a really long time, kick the CPU as well. */
1221 if (ULONG_CMP_GE(jiffies,
1222 rdp->rsp->gp_start + 2 * jiffies_till_sched_qs) ||
1223 ULONG_CMP_GE(jiffies, rdp->rsp->gp_start + jiffies_till_sched_qs))
1224 resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
1225
1226 return 0;
1227 }
1228
1229 static void record_gp_stall_check_time(struct rcu_state *rsp)
1230 {
1231 unsigned long j = jiffies;
1232 unsigned long j1;
1233
1234 rsp->gp_start = j;
1235 smp_wmb(); /* Record start time before stall time. */
1236 j1 = rcu_jiffies_till_stall_check();
1237 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1238 rsp->jiffies_resched = j + j1 / 2;
1239 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1240 }
1241
1242 /*
1243 * Convert a ->gp_state value to a character string.
1244 */
1245 static const char *gp_state_getname(short gs)
1246 {
1247 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1248 return "???";
1249 return gp_state_names[gs];
1250 }
1251
1252 /*
1253 * Complain about starvation of grace-period kthread.
1254 */
1255 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1256 {
1257 unsigned long gpa;
1258 unsigned long j;
1259
1260 j = jiffies;
1261 gpa = READ_ONCE(rsp->gp_activity);
1262 if (j - gpa > 2 * HZ) {
1263 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx\n",
1264 rsp->name, j - gpa,
1265 rsp->gpnum, rsp->completed,
1266 rsp->gp_flags,
1267 gp_state_getname(rsp->gp_state), rsp->gp_state,
1268 rsp->gp_kthread ? rsp->gp_kthread->state : ~0);
1269 if (rsp->gp_kthread) {
1270 sched_show_task(rsp->gp_kthread);
1271 wake_up_process(rsp->gp_kthread);
1272 }
1273 }
1274 }
1275
1276 /*
1277 * Dump stacks of all tasks running on stalled CPUs.
1278 */
1279 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1280 {
1281 int cpu;
1282 unsigned long flags;
1283 struct rcu_node *rnp;
1284
1285 rcu_for_each_leaf_node(rsp, rnp) {
1286 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1287 if (rnp->qsmask != 0) {
1288 for_each_leaf_node_possible_cpu(rnp, cpu)
1289 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1290 dump_cpu_task(cpu);
1291 }
1292 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1293 }
1294 }
1295
1296 /*
1297 * If too much time has passed in the current grace period, and if
1298 * so configured, go kick the relevant kthreads.
1299 */
1300 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1301 {
1302 unsigned long j;
1303
1304 if (!rcu_kick_kthreads)
1305 return;
1306 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1307 if (time_after(jiffies, j) && rsp->gp_kthread &&
1308 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1309 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1310 rcu_ftrace_dump(DUMP_ALL);
1311 wake_up_process(rsp->gp_kthread);
1312 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1313 }
1314 }
1315
1316 static inline void panic_on_rcu_stall(void)
1317 {
1318 if (sysctl_panic_on_rcu_stall)
1319 panic("RCU Stall\n");
1320 }
1321
1322 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1323 {
1324 int cpu;
1325 long delta;
1326 unsigned long flags;
1327 unsigned long gpa;
1328 unsigned long j;
1329 int ndetected = 0;
1330 struct rcu_node *rnp = rcu_get_root(rsp);
1331 long totqlen = 0;
1332
1333 /* Kick and suppress, if so configured. */
1334 rcu_stall_kick_kthreads(rsp);
1335 if (rcu_cpu_stall_suppress)
1336 return;
1337
1338 /* Only let one CPU complain about others per time interval. */
1339
1340 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1341 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1342 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1343 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1344 return;
1345 }
1346 WRITE_ONCE(rsp->jiffies_stall,
1347 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1348 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1349
1350 /*
1351 * OK, time to rat on our buddy...
1352 * See Documentation/RCU/stallwarn.txt for info on how to debug
1353 * RCU CPU stall warnings.
1354 */
1355 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1356 rsp->name);
1357 print_cpu_stall_info_begin();
1358 rcu_for_each_leaf_node(rsp, rnp) {
1359 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1360 ndetected += rcu_print_task_stall(rnp);
1361 if (rnp->qsmask != 0) {
1362 for_each_leaf_node_possible_cpu(rnp, cpu)
1363 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1364 print_cpu_stall_info(rsp, cpu);
1365 ndetected++;
1366 }
1367 }
1368 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1369 }
1370
1371 print_cpu_stall_info_end();
1372 for_each_possible_cpu(cpu)
1373 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1374 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1375 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1376 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1377 if (ndetected) {
1378 rcu_dump_cpu_stacks(rsp);
1379 } else {
1380 if (READ_ONCE(rsp->gpnum) != gpnum ||
1381 READ_ONCE(rsp->completed) == gpnum) {
1382 pr_err("INFO: Stall ended before state dump start\n");
1383 } else {
1384 j = jiffies;
1385 gpa = READ_ONCE(rsp->gp_activity);
1386 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1387 rsp->name, j - gpa, j, gpa,
1388 jiffies_till_next_fqs,
1389 rcu_get_root(rsp)->qsmask);
1390 /* In this case, the current CPU might be at fault. */
1391 sched_show_task(current);
1392 }
1393 }
1394
1395 /* Complain about tasks blocking the grace period. */
1396 rcu_print_detail_task_stall(rsp);
1397
1398 rcu_check_gp_kthread_starvation(rsp);
1399
1400 panic_on_rcu_stall();
1401
1402 force_quiescent_state(rsp); /* Kick them all. */
1403 }
1404
1405 static void print_cpu_stall(struct rcu_state *rsp)
1406 {
1407 int cpu;
1408 unsigned long flags;
1409 struct rcu_node *rnp = rcu_get_root(rsp);
1410 long totqlen = 0;
1411
1412 /* Kick and suppress, if so configured. */
1413 rcu_stall_kick_kthreads(rsp);
1414 if (rcu_cpu_stall_suppress)
1415 return;
1416
1417 /*
1418 * OK, time to rat on ourselves...
1419 * See Documentation/RCU/stallwarn.txt for info on how to debug
1420 * RCU CPU stall warnings.
1421 */
1422 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1423 print_cpu_stall_info_begin();
1424 print_cpu_stall_info(rsp, smp_processor_id());
1425 print_cpu_stall_info_end();
1426 for_each_possible_cpu(cpu)
1427 totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
1428 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1429 jiffies - rsp->gp_start,
1430 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1431
1432 rcu_check_gp_kthread_starvation(rsp);
1433
1434 rcu_dump_cpu_stacks(rsp);
1435
1436 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1437 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1438 WRITE_ONCE(rsp->jiffies_stall,
1439 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1440 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1441
1442 panic_on_rcu_stall();
1443
1444 /*
1445 * Attempt to revive the RCU machinery by forcing a context switch.
1446 *
1447 * A context switch would normally allow the RCU state machine to make
1448 * progress and it could be we're stuck in kernel space without context
1449 * switches for an entirely unreasonable amount of time.
1450 */
1451 resched_cpu(smp_processor_id());
1452 }
1453
1454 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1455 {
1456 unsigned long completed;
1457 unsigned long gpnum;
1458 unsigned long gps;
1459 unsigned long j;
1460 unsigned long js;
1461 struct rcu_node *rnp;
1462
1463 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1464 !rcu_gp_in_progress(rsp))
1465 return;
1466 rcu_stall_kick_kthreads(rsp);
1467 j = jiffies;
1468
1469 /*
1470 * Lots of memory barriers to reject false positives.
1471 *
1472 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1473 * then rsp->gp_start, and finally rsp->completed. These values
1474 * are updated in the opposite order with memory barriers (or
1475 * equivalent) during grace-period initialization and cleanup.
1476 * Now, a false positive can occur if we get an new value of
1477 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1478 * the memory barriers, the only way that this can happen is if one
1479 * grace period ends and another starts between these two fetches.
1480 * Detect this by comparing rsp->completed with the previous fetch
1481 * from rsp->gpnum.
1482 *
1483 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1484 * and rsp->gp_start suffice to forestall false positives.
1485 */
1486 gpnum = READ_ONCE(rsp->gpnum);
1487 smp_rmb(); /* Pick up ->gpnum first... */
1488 js = READ_ONCE(rsp->jiffies_stall);
1489 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1490 gps = READ_ONCE(rsp->gp_start);
1491 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1492 completed = READ_ONCE(rsp->completed);
1493 if (ULONG_CMP_GE(completed, gpnum) ||
1494 ULONG_CMP_LT(j, js) ||
1495 ULONG_CMP_GE(gps, js))
1496 return; /* No stall or GP completed since entering function. */
1497 rnp = rdp->mynode;
1498 if (rcu_gp_in_progress(rsp) &&
1499 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1500
1501 /* We haven't checked in, so go dump stack. */
1502 print_cpu_stall(rsp);
1503
1504 } else if (rcu_gp_in_progress(rsp) &&
1505 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1506
1507 /* They had a few time units to dump stack, so complain. */
1508 print_other_cpu_stall(rsp, gpnum);
1509 }
1510 }
1511
1512 /**
1513 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1514 *
1515 * Set the stall-warning timeout way off into the future, thus preventing
1516 * any RCU CPU stall-warning messages from appearing in the current set of
1517 * RCU grace periods.
1518 *
1519 * The caller must disable hard irqs.
1520 */
1521 void rcu_cpu_stall_reset(void)
1522 {
1523 struct rcu_state *rsp;
1524
1525 for_each_rcu_flavor(rsp)
1526 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1527 }
1528
1529 /*
1530 * Initialize the specified rcu_data structure's default callback list
1531 * to empty. The default callback list is the one that is not used by
1532 * no-callbacks CPUs.
1533 */
1534 static void init_default_callback_list(struct rcu_data *rdp)
1535 {
1536 int i;
1537
1538 rdp->nxtlist = NULL;
1539 for (i = 0; i < RCU_NEXT_SIZE; i++)
1540 rdp->nxttail[i] = &rdp->nxtlist;
1541 }
1542
1543 /*
1544 * Initialize the specified rcu_data structure's callback list to empty.
1545 */
1546 static void init_callback_list(struct rcu_data *rdp)
1547 {
1548 if (init_nocb_callback_list(rdp))
1549 return;
1550 init_default_callback_list(rdp);
1551 }
1552
1553 /*
1554 * Determine the value that ->completed will have at the end of the
1555 * next subsequent grace period. This is used to tag callbacks so that
1556 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1557 * been dyntick-idle for an extended period with callbacks under the
1558 * influence of RCU_FAST_NO_HZ.
1559 *
1560 * The caller must hold rnp->lock with interrupts disabled.
1561 */
1562 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1563 struct rcu_node *rnp)
1564 {
1565 /*
1566 * If RCU is idle, we just wait for the next grace period.
1567 * But we can only be sure that RCU is idle if we are looking
1568 * at the root rcu_node structure -- otherwise, a new grace
1569 * period might have started, but just not yet gotten around
1570 * to initializing the current non-root rcu_node structure.
1571 */
1572 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1573 return rnp->completed + 1;
1574
1575 /*
1576 * Otherwise, wait for a possible partial grace period and
1577 * then the subsequent full grace period.
1578 */
1579 return rnp->completed + 2;
1580 }
1581
1582 /*
1583 * Trace-event helper function for rcu_start_future_gp() and
1584 * rcu_nocb_wait_gp().
1585 */
1586 static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1587 unsigned long c, const char *s)
1588 {
1589 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1590 rnp->completed, c, rnp->level,
1591 rnp->grplo, rnp->grphi, s);
1592 }
1593
1594 /*
1595 * Start some future grace period, as needed to handle newly arrived
1596 * callbacks. The required future grace periods are recorded in each
1597 * rcu_node structure's ->need_future_gp field. Returns true if there
1598 * is reason to awaken the grace-period kthread.
1599 *
1600 * The caller must hold the specified rcu_node structure's ->lock.
1601 */
1602 static bool __maybe_unused
1603 rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1604 unsigned long *c_out)
1605 {
1606 unsigned long c;
1607 int i;
1608 bool ret = false;
1609 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1610
1611 /*
1612 * Pick up grace-period number for new callbacks. If this
1613 * grace period is already marked as needed, return to the caller.
1614 */
1615 c = rcu_cbs_completed(rdp->rsp, rnp);
1616 trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1617 if (rnp->need_future_gp[c & 0x1]) {
1618 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1619 goto out;
1620 }
1621
1622 /*
1623 * If either this rcu_node structure or the root rcu_node structure
1624 * believe that a grace period is in progress, then we must wait
1625 * for the one following, which is in "c". Because our request
1626 * will be noticed at the end of the current grace period, we don't
1627 * need to explicitly start one. We only do the lockless check
1628 * of rnp_root's fields if the current rcu_node structure thinks
1629 * there is no grace period in flight, and because we hold rnp->lock,
1630 * the only possible change is when rnp_root's two fields are
1631 * equal, in which case rnp_root->gpnum might be concurrently
1632 * incremented. But that is OK, as it will just result in our
1633 * doing some extra useless work.
1634 */
1635 if (rnp->gpnum != rnp->completed ||
1636 READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1637 rnp->need_future_gp[c & 0x1]++;
1638 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1639 goto out;
1640 }
1641
1642 /*
1643 * There might be no grace period in progress. If we don't already
1644 * hold it, acquire the root rcu_node structure's lock in order to
1645 * start one (if needed).
1646 */
1647 if (rnp != rnp_root)
1648 raw_spin_lock_rcu_node(rnp_root);
1649
1650 /*
1651 * Get a new grace-period number. If there really is no grace
1652 * period in progress, it will be smaller than the one we obtained
1653 * earlier. Adjust callbacks as needed. Note that even no-CBs
1654 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1655 */
1656 c = rcu_cbs_completed(rdp->rsp, rnp_root);
1657 for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1658 if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1659 rdp->nxtcompleted[i] = c;
1660
1661 /*
1662 * If the needed for the required grace period is already
1663 * recorded, trace and leave.
1664 */
1665 if (rnp_root->need_future_gp[c & 0x1]) {
1666 trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1667 goto unlock_out;
1668 }
1669
1670 /* Record the need for the future grace period. */
1671 rnp_root->need_future_gp[c & 0x1]++;
1672
1673 /* If a grace period is not already in progress, start one. */
1674 if (rnp_root->gpnum != rnp_root->completed) {
1675 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1676 } else {
1677 trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1678 ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1679 }
1680 unlock_out:
1681 if (rnp != rnp_root)
1682 raw_spin_unlock_rcu_node(rnp_root);
1683 out:
1684 if (c_out != NULL)
1685 *c_out = c;
1686 return ret;
1687 }
1688
1689 /*
1690 * Clean up any old requests for the just-ended grace period. Also return
1691 * whether any additional grace periods have been requested. Also invoke
1692 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1693 * waiting for this grace period to complete.
1694 */
1695 static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1696 {
1697 int c = rnp->completed;
1698 int needmore;
1699 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1700
1701 rnp->need_future_gp[c & 0x1] = 0;
1702 needmore = rnp->need_future_gp[(c + 1) & 0x1];
1703 trace_rcu_future_gp(rnp, rdp, c,
1704 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1705 return needmore;
1706 }
1707
1708 /*
1709 * Awaken the grace-period kthread for the specified flavor of RCU.
1710 * Don't do a self-awaken, and don't bother awakening when there is
1711 * nothing for the grace-period kthread to do (as in several CPUs
1712 * raced to awaken, and we lost), and finally don't try to awaken
1713 * a kthread that has not yet been created.
1714 */
1715 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1716 {
1717 if (current == rsp->gp_kthread ||
1718 !READ_ONCE(rsp->gp_flags) ||
1719 !rsp->gp_kthread)
1720 return;
1721 swake_up(&rsp->gp_wq);
1722 }
1723
1724 /*
1725 * If there is room, assign a ->completed number to any callbacks on
1726 * this CPU that have not already been assigned. Also accelerate any
1727 * callbacks that were previously assigned a ->completed number that has
1728 * since proven to be too conservative, which can happen if callbacks get
1729 * assigned a ->completed number while RCU is idle, but with reference to
1730 * a non-root rcu_node structure. This function is idempotent, so it does
1731 * not hurt to call it repeatedly. Returns an flag saying that we should
1732 * awaken the RCU grace-period kthread.
1733 *
1734 * The caller must hold rnp->lock with interrupts disabled.
1735 */
1736 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1737 struct rcu_data *rdp)
1738 {
1739 unsigned long c;
1740 int i;
1741 bool ret;
1742
1743 /* If the CPU has no callbacks, nothing to do. */
1744 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1745 return false;
1746
1747 /*
1748 * Starting from the sublist containing the callbacks most
1749 * recently assigned a ->completed number and working down, find the
1750 * first sublist that is not assignable to an upcoming grace period.
1751 * Such a sublist has something in it (first two tests) and has
1752 * a ->completed number assigned that will complete sooner than
1753 * the ->completed number for newly arrived callbacks (last test).
1754 *
1755 * The key point is that any later sublist can be assigned the
1756 * same ->completed number as the newly arrived callbacks, which
1757 * means that the callbacks in any of these later sublist can be
1758 * grouped into a single sublist, whether or not they have already
1759 * been assigned a ->completed number.
1760 */
1761 c = rcu_cbs_completed(rsp, rnp);
1762 for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1763 if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1764 !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1765 break;
1766
1767 /*
1768 * If there are no sublist for unassigned callbacks, leave.
1769 * At the same time, advance "i" one sublist, so that "i" will
1770 * index into the sublist where all the remaining callbacks should
1771 * be grouped into.
1772 */
1773 if (++i >= RCU_NEXT_TAIL)
1774 return false;
1775
1776 /*
1777 * Assign all subsequent callbacks' ->completed number to the next
1778 * full grace period and group them all in the sublist initially
1779 * indexed by "i".
1780 */
1781 for (; i <= RCU_NEXT_TAIL; i++) {
1782 rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1783 rdp->nxtcompleted[i] = c;
1784 }
1785 /* Record any needed additional grace periods. */
1786 ret = rcu_start_future_gp(rnp, rdp, NULL);
1787
1788 /* Trace depending on how much we were able to accelerate. */
1789 if (!*rdp->nxttail[RCU_WAIT_TAIL])
1790 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1791 else
1792 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1793 return ret;
1794 }
1795
1796 /*
1797 * Move any callbacks whose grace period has completed to the
1798 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1799 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1800 * sublist. This function is idempotent, so it does not hurt to
1801 * invoke it repeatedly. As long as it is not invoked -too- often...
1802 * Returns true if the RCU grace-period kthread needs to be awakened.
1803 *
1804 * The caller must hold rnp->lock with interrupts disabled.
1805 */
1806 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1807 struct rcu_data *rdp)
1808 {
1809 int i, j;
1810
1811 /* If the CPU has no callbacks, nothing to do. */
1812 if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1813 return false;
1814
1815 /*
1816 * Find all callbacks whose ->completed numbers indicate that they
1817 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1818 */
1819 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1820 if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1821 break;
1822 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1823 }
1824 /* Clean up any sublist tail pointers that were misordered above. */
1825 for (j = RCU_WAIT_TAIL; j < i; j++)
1826 rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1827
1828 /* Copy down callbacks to fill in empty sublists. */
1829 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1830 if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1831 break;
1832 rdp->nxttail[j] = rdp->nxttail[i];
1833 rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1834 }
1835
1836 /* Classify any remaining callbacks. */
1837 return rcu_accelerate_cbs(rsp, rnp, rdp);
1838 }
1839
1840 /*
1841 * Update CPU-local rcu_data state to record the beginnings and ends of
1842 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1843 * structure corresponding to the current CPU, and must have irqs disabled.
1844 * Returns true if the grace-period kthread needs to be awakened.
1845 */
1846 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1847 struct rcu_data *rdp)
1848 {
1849 bool ret;
1850 bool need_gp;
1851
1852 /* Handle the ends of any preceding grace periods first. */
1853 if (rdp->completed == rnp->completed &&
1854 !unlikely(READ_ONCE(rdp->gpwrap))) {
1855
1856 /* No grace period end, so just accelerate recent callbacks. */
1857 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1858
1859 } else {
1860
1861 /* Advance callbacks. */
1862 ret = rcu_advance_cbs(rsp, rnp, rdp);
1863
1864 /* Remember that we saw this grace-period completion. */
1865 rdp->completed = rnp->completed;
1866 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1867 }
1868
1869 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1870 /*
1871 * If the current grace period is waiting for this CPU,
1872 * set up to detect a quiescent state, otherwise don't
1873 * go looking for one.
1874 */
1875 rdp->gpnum = rnp->gpnum;
1876 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1877 need_gp = !!(rnp->qsmask & rdp->grpmask);
1878 rdp->cpu_no_qs.b.norm = need_gp;
1879 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
1880 rdp->core_needs_qs = need_gp;
1881 zero_cpu_stall_ticks(rdp);
1882 WRITE_ONCE(rdp->gpwrap, false);
1883 }
1884 return ret;
1885 }
1886
1887 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1888 {
1889 unsigned long flags;
1890 bool needwake;
1891 struct rcu_node *rnp;
1892
1893 local_irq_save(flags);
1894 rnp = rdp->mynode;
1895 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1896 rdp->completed == READ_ONCE(rnp->completed) &&
1897 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1898 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1899 local_irq_restore(flags);
1900 return;
1901 }
1902 needwake = __note_gp_changes(rsp, rnp, rdp);
1903 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1904 if (needwake)
1905 rcu_gp_kthread_wake(rsp);
1906 }
1907
1908 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1909 {
1910 if (delay > 0 &&
1911 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1912 schedule_timeout_uninterruptible(delay);
1913 }
1914
1915 /*
1916 * Initialize a new grace period. Return false if no grace period required.
1917 */
1918 static bool rcu_gp_init(struct rcu_state *rsp)
1919 {
1920 unsigned long oldmask;
1921 struct rcu_data *rdp;
1922 struct rcu_node *rnp = rcu_get_root(rsp);
1923
1924 WRITE_ONCE(rsp->gp_activity, jiffies);
1925 raw_spin_lock_irq_rcu_node(rnp);
1926 if (!READ_ONCE(rsp->gp_flags)) {
1927 /* Spurious wakeup, tell caller to go back to sleep. */
1928 raw_spin_unlock_irq_rcu_node(rnp);
1929 return false;
1930 }
1931 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1932
1933 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1934 /*
1935 * Grace period already in progress, don't start another.
1936 * Not supposed to be able to happen.
1937 */
1938 raw_spin_unlock_irq_rcu_node(rnp);
1939 return false;
1940 }
1941
1942 /* Advance to a new grace period and initialize state. */
1943 record_gp_stall_check_time(rsp);
1944 /* Record GP times before starting GP, hence smp_store_release(). */
1945 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1946 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1947 raw_spin_unlock_irq_rcu_node(rnp);
1948
1949 /*
1950 * Apply per-leaf buffered online and offline operations to the
1951 * rcu_node tree. Note that this new grace period need not wait
1952 * for subsequent online CPUs, and that quiescent-state forcing
1953 * will handle subsequent offline CPUs.
1954 */
1955 rcu_for_each_leaf_node(rsp, rnp) {
1956 rcu_gp_slow(rsp, gp_preinit_delay);
1957 raw_spin_lock_irq_rcu_node(rnp);
1958 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1959 !rnp->wait_blkd_tasks) {
1960 /* Nothing to do on this leaf rcu_node structure. */
1961 raw_spin_unlock_irq_rcu_node(rnp);
1962 continue;
1963 }
1964
1965 /* Record old state, apply changes to ->qsmaskinit field. */
1966 oldmask = rnp->qsmaskinit;
1967 rnp->qsmaskinit = rnp->qsmaskinitnext;
1968
1969 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1970 if (!oldmask != !rnp->qsmaskinit) {
1971 if (!oldmask) /* First online CPU for this rcu_node. */
1972 rcu_init_new_rnp(rnp);
1973 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1974 rnp->wait_blkd_tasks = true;
1975 else /* Last offline CPU and can propagate. */
1976 rcu_cleanup_dead_rnp(rnp);
1977 }
1978
1979 /*
1980 * If all waited-on tasks from prior grace period are
1981 * done, and if all this rcu_node structure's CPUs are
1982 * still offline, propagate up the rcu_node tree and
1983 * clear ->wait_blkd_tasks. Otherwise, if one of this
1984 * rcu_node structure's CPUs has since come back online,
1985 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1986 * checks for this, so just call it unconditionally).
1987 */
1988 if (rnp->wait_blkd_tasks &&
1989 (!rcu_preempt_has_tasks(rnp) ||
1990 rnp->qsmaskinit)) {
1991 rnp->wait_blkd_tasks = false;
1992 rcu_cleanup_dead_rnp(rnp);
1993 }
1994
1995 raw_spin_unlock_irq_rcu_node(rnp);
1996 }
1997
1998 /*
1999 * Set the quiescent-state-needed bits in all the rcu_node
2000 * structures for all currently online CPUs in breadth-first order,
2001 * starting from the root rcu_node structure, relying on the layout
2002 * of the tree within the rsp->node[] array. Note that other CPUs
2003 * will access only the leaves of the hierarchy, thus seeing that no
2004 * grace period is in progress, at least until the corresponding
2005 * leaf node has been initialized.
2006 *
2007 * The grace period cannot complete until the initialization
2008 * process finishes, because this kthread handles both.
2009 */
2010 rcu_for_each_node_breadth_first(rsp, rnp) {
2011 rcu_gp_slow(rsp, gp_init_delay);
2012 raw_spin_lock_irq_rcu_node(rnp);
2013 rdp = this_cpu_ptr(rsp->rda);
2014 rcu_preempt_check_blocked_tasks(rnp);
2015 rnp->qsmask = rnp->qsmaskinit;
2016 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2017 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2018 WRITE_ONCE(rnp->completed, rsp->completed);
2019 if (rnp == rdp->mynode)
2020 (void)__note_gp_changes(rsp, rnp, rdp);
2021 rcu_preempt_boost_start_gp(rnp);
2022 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2023 rnp->level, rnp->grplo,
2024 rnp->grphi, rnp->qsmask);
2025 raw_spin_unlock_irq_rcu_node(rnp);
2026 cond_resched_rcu_qs();
2027 WRITE_ONCE(rsp->gp_activity, jiffies);
2028 }
2029
2030 return true;
2031 }
2032
2033 /*
2034 * Helper function for wait_event_interruptible_timeout() wakeup
2035 * at force-quiescent-state time.
2036 */
2037 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2038 {
2039 struct rcu_node *rnp = rcu_get_root(rsp);
2040
2041 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2042 *gfp = READ_ONCE(rsp->gp_flags);
2043 if (*gfp & RCU_GP_FLAG_FQS)
2044 return true;
2045
2046 /* The current grace period has completed. */
2047 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2048 return true;
2049
2050 return false;
2051 }
2052
2053 /*
2054 * Do one round of quiescent-state forcing.
2055 */
2056 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2057 {
2058 bool isidle = false;
2059 unsigned long maxj;
2060 struct rcu_node *rnp = rcu_get_root(rsp);
2061
2062 WRITE_ONCE(rsp->gp_activity, jiffies);
2063 rsp->n_force_qs++;
2064 if (first_time) {
2065 /* Collect dyntick-idle snapshots. */
2066 if (is_sysidle_rcu_state(rsp)) {
2067 isidle = true;
2068 maxj = jiffies - ULONG_MAX / 4;
2069 }
2070 force_qs_rnp(rsp, dyntick_save_progress_counter,
2071 &isidle, &maxj);
2072 rcu_sysidle_report_gp(rsp, isidle, maxj);
2073 } else {
2074 /* Handle dyntick-idle and offline CPUs. */
2075 isidle = true;
2076 force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
2077 }
2078 /* Clear flag to prevent immediate re-entry. */
2079 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2080 raw_spin_lock_irq_rcu_node(rnp);
2081 WRITE_ONCE(rsp->gp_flags,
2082 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2083 raw_spin_unlock_irq_rcu_node(rnp);
2084 }
2085 }
2086
2087 /*
2088 * Clean up after the old grace period.
2089 */
2090 static void rcu_gp_cleanup(struct rcu_state *rsp)
2091 {
2092 unsigned long gp_duration;
2093 bool needgp = false;
2094 int nocb = 0;
2095 struct rcu_data *rdp;
2096 struct rcu_node *rnp = rcu_get_root(rsp);
2097 struct swait_queue_head *sq;
2098
2099 WRITE_ONCE(rsp->gp_activity, jiffies);
2100 raw_spin_lock_irq_rcu_node(rnp);
2101 gp_duration = jiffies - rsp->gp_start;
2102 if (gp_duration > rsp->gp_max)
2103 rsp->gp_max = gp_duration;
2104
2105 /*
2106 * We know the grace period is complete, but to everyone else
2107 * it appears to still be ongoing. But it is also the case
2108 * that to everyone else it looks like there is nothing that
2109 * they can do to advance the grace period. It is therefore
2110 * safe for us to drop the lock in order to mark the grace
2111 * period as completed in all of the rcu_node structures.
2112 */
2113 raw_spin_unlock_irq_rcu_node(rnp);
2114
2115 /*
2116 * Propagate new ->completed value to rcu_node structures so
2117 * that other CPUs don't have to wait until the start of the next
2118 * grace period to process their callbacks. This also avoids
2119 * some nasty RCU grace-period initialization races by forcing
2120 * the end of the current grace period to be completely recorded in
2121 * all of the rcu_node structures before the beginning of the next
2122 * grace period is recorded in any of the rcu_node structures.
2123 */
2124 rcu_for_each_node_breadth_first(rsp, rnp) {
2125 raw_spin_lock_irq_rcu_node(rnp);
2126 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2127 WARN_ON_ONCE(rnp->qsmask);
2128 WRITE_ONCE(rnp->completed, rsp->gpnum);
2129 rdp = this_cpu_ptr(rsp->rda);
2130 if (rnp == rdp->mynode)
2131 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2132 /* smp_mb() provided by prior unlock-lock pair. */
2133 nocb += rcu_future_gp_cleanup(rsp, rnp);
2134 sq = rcu_nocb_gp_get(rnp);
2135 raw_spin_unlock_irq_rcu_node(rnp);
2136 rcu_nocb_gp_cleanup(sq);
2137 cond_resched_rcu_qs();
2138 WRITE_ONCE(rsp->gp_activity, jiffies);
2139 rcu_gp_slow(rsp, gp_cleanup_delay);
2140 }
2141 rnp = rcu_get_root(rsp);
2142 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2143 rcu_nocb_gp_set(rnp, nocb);
2144
2145 /* Declare grace period done. */
2146 WRITE_ONCE(rsp->completed, rsp->gpnum);
2147 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2148 rsp->gp_state = RCU_GP_IDLE;
2149 rdp = this_cpu_ptr(rsp->rda);
2150 /* Advance CBs to reduce false positives below. */
2151 needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2152 if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2153 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2154 trace_rcu_grace_period(rsp->name,
2155 READ_ONCE(rsp->gpnum),
2156 TPS("newreq"));
2157 }
2158 raw_spin_unlock_irq_rcu_node(rnp);
2159 }
2160
2161 /*
2162 * Body of kthread that handles grace periods.
2163 */
2164 static int __noreturn rcu_gp_kthread(void *arg)
2165 {
2166 bool first_gp_fqs;
2167 int gf;
2168 unsigned long j;
2169 int ret;
2170 struct rcu_state *rsp = arg;
2171 struct rcu_node *rnp = rcu_get_root(rsp);
2172
2173 rcu_bind_gp_kthread();
2174 for (;;) {
2175
2176 /* Handle grace-period start. */
2177 for (;;) {
2178 trace_rcu_grace_period(rsp->name,
2179 READ_ONCE(rsp->gpnum),
2180 TPS("reqwait"));
2181 rsp->gp_state = RCU_GP_WAIT_GPS;
2182 swait_event_interruptible(rsp->gp_wq,
2183 READ_ONCE(rsp->gp_flags) &
2184 RCU_GP_FLAG_INIT);
2185 rsp->gp_state = RCU_GP_DONE_GPS;
2186 /* Locking provides needed memory barrier. */
2187 if (rcu_gp_init(rsp))
2188 break;
2189 cond_resched_rcu_qs();
2190 WRITE_ONCE(rsp->gp_activity, jiffies);
2191 WARN_ON(signal_pending(current));
2192 trace_rcu_grace_period(rsp->name,
2193 READ_ONCE(rsp->gpnum),
2194 TPS("reqwaitsig"));
2195 }
2196
2197 /* Handle quiescent-state forcing. */
2198 first_gp_fqs = true;
2199 j = jiffies_till_first_fqs;
2200 if (j > HZ) {
2201 j = HZ;
2202 jiffies_till_first_fqs = HZ;
2203 }
2204 ret = 0;
2205 for (;;) {
2206 if (!ret) {
2207 rsp->jiffies_force_qs = jiffies + j;
2208 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2209 jiffies + 3 * j);
2210 }
2211 trace_rcu_grace_period(rsp->name,
2212 READ_ONCE(rsp->gpnum),
2213 TPS("fqswait"));
2214 rsp->gp_state = RCU_GP_WAIT_FQS;
2215 ret = swait_event_interruptible_timeout(rsp->gp_wq,
2216 rcu_gp_fqs_check_wake(rsp, &gf), j);
2217 rsp->gp_state = RCU_GP_DOING_FQS;
2218 /* Locking provides needed memory barriers. */
2219 /* If grace period done, leave loop. */
2220 if (!READ_ONCE(rnp->qsmask) &&
2221 !rcu_preempt_blocked_readers_cgp(rnp))
2222 break;
2223 /* If time for quiescent-state forcing, do it. */
2224 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2225 (gf & RCU_GP_FLAG_FQS)) {
2226 trace_rcu_grace_period(rsp->name,
2227 READ_ONCE(rsp->gpnum),
2228 TPS("fqsstart"));
2229 rcu_gp_fqs(rsp, first_gp_fqs);
2230 first_gp_fqs = false;
2231 trace_rcu_grace_period(rsp->name,
2232 READ_ONCE(rsp->gpnum),
2233 TPS("fqsend"));
2234 cond_resched_rcu_qs();
2235 WRITE_ONCE(rsp->gp_activity, jiffies);
2236 ret = 0; /* Force full wait till next FQS. */
2237 j = jiffies_till_next_fqs;
2238 if (j > HZ) {
2239 j = HZ;
2240 jiffies_till_next_fqs = HZ;
2241 } else if (j < 1) {
2242 j = 1;
2243 jiffies_till_next_fqs = 1;
2244 }
2245 } else {
2246 /* Deal with stray signal. */
2247 cond_resched_rcu_qs();
2248 WRITE_ONCE(rsp->gp_activity, jiffies);
2249 WARN_ON(signal_pending(current));
2250 trace_rcu_grace_period(rsp->name,
2251 READ_ONCE(rsp->gpnum),
2252 TPS("fqswaitsig"));
2253 ret = 1; /* Keep old FQS timing. */
2254 j = jiffies;
2255 if (time_after(jiffies, rsp->jiffies_force_qs))
2256 j = 1;
2257 else
2258 j = rsp->jiffies_force_qs - j;
2259 }
2260 }
2261
2262 /* Handle grace-period end. */
2263 rsp->gp_state = RCU_GP_CLEANUP;
2264 rcu_gp_cleanup(rsp);
2265 rsp->gp_state = RCU_GP_CLEANED;
2266 }
2267 }
2268
2269 /*
2270 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2271 * in preparation for detecting the next grace period. The caller must hold
2272 * the root node's ->lock and hard irqs must be disabled.
2273 *
2274 * Note that it is legal for a dying CPU (which is marked as offline) to
2275 * invoke this function. This can happen when the dying CPU reports its
2276 * quiescent state.
2277 *
2278 * Returns true if the grace-period kthread must be awakened.
2279 */
2280 static bool
2281 rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2282 struct rcu_data *rdp)
2283 {
2284 if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2285 /*
2286 * Either we have not yet spawned the grace-period
2287 * task, this CPU does not need another grace period,
2288 * or a grace period is already in progress.
2289 * Either way, don't start a new grace period.
2290 */
2291 return false;
2292 }
2293 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2294 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2295 TPS("newreq"));
2296
2297 /*
2298 * We can't do wakeups while holding the rnp->lock, as that
2299 * could cause possible deadlocks with the rq->lock. Defer
2300 * the wakeup to our caller.
2301 */
2302 return true;
2303 }
2304
2305 /*
2306 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2307 * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
2308 * is invoked indirectly from rcu_advance_cbs(), which would result in
2309 * endless recursion -- or would do so if it wasn't for the self-deadlock
2310 * that is encountered beforehand.
2311 *
2312 * Returns true if the grace-period kthread needs to be awakened.
2313 */
2314 static bool rcu_start_gp(struct rcu_state *rsp)
2315 {
2316 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2317 struct rcu_node *rnp = rcu_get_root(rsp);
2318 bool ret = false;
2319
2320 /*
2321 * If there is no grace period in progress right now, any
2322 * callbacks we have up to this point will be satisfied by the
2323 * next grace period. Also, advancing the callbacks reduces the
2324 * probability of false positives from cpu_needs_another_gp()
2325 * resulting in pointless grace periods. So, advance callbacks
2326 * then start the grace period!
2327 */
2328 ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2329 ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2330 return ret;
2331 }
2332
2333 /*
2334 * Report a full set of quiescent states to the specified rcu_state data
2335 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2336 * kthread if another grace period is required. Whether we wake
2337 * the grace-period kthread or it awakens itself for the next round
2338 * of quiescent-state forcing, that kthread will clean up after the
2339 * just-completed grace period. Note that the caller must hold rnp->lock,
2340 * which is released before return.
2341 */
2342 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2343 __releases(rcu_get_root(rsp)->lock)
2344 {
2345 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2346 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2347 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2348 rcu_gp_kthread_wake(rsp);
2349 }
2350
2351 /*
2352 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2353 * Allows quiescent states for a group of CPUs to be reported at one go
2354 * to the specified rcu_node structure, though all the CPUs in the group
2355 * must be represented by the same rcu_node structure (which need not be a
2356 * leaf rcu_node structure, though it often will be). The gps parameter
2357 * is the grace-period snapshot, which means that the quiescent states
2358 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2359 * must be held upon entry, and it is released before return.
2360 */
2361 static void
2362 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2363 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2364 __releases(rnp->lock)
2365 {
2366 unsigned long oldmask = 0;
2367 struct rcu_node *rnp_c;
2368
2369 /* Walk up the rcu_node hierarchy. */
2370 for (;;) {
2371 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2372
2373 /*
2374 * Our bit has already been cleared, or the
2375 * relevant grace period is already over, so done.
2376 */
2377 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2378 return;
2379 }
2380 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2381 rnp->qsmask &= ~mask;
2382 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2383 mask, rnp->qsmask, rnp->level,
2384 rnp->grplo, rnp->grphi,
2385 !!rnp->gp_tasks);
2386 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2387
2388 /* Other bits still set at this level, so done. */
2389 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2390 return;
2391 }
2392 mask = rnp->grpmask;
2393 if (rnp->parent == NULL) {
2394
2395 /* No more levels. Exit loop holding root lock. */
2396
2397 break;
2398 }
2399 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2400 rnp_c = rnp;
2401 rnp = rnp->parent;
2402 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2403 oldmask = rnp_c->qsmask;
2404 }
2405
2406 /*
2407 * Get here if we are the last CPU to pass through a quiescent
2408 * state for this grace period. Invoke rcu_report_qs_rsp()
2409 * to clean up and start the next grace period if one is needed.
2410 */
2411 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2412 }
2413
2414 /*
2415 * Record a quiescent state for all tasks that were previously queued
2416 * on the specified rcu_node structure and that were blocking the current
2417 * RCU grace period. The caller must hold the specified rnp->lock with
2418 * irqs disabled, and this lock is released upon return, but irqs remain
2419 * disabled.
2420 */
2421 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2422 struct rcu_node *rnp, unsigned long flags)
2423 __releases(rnp->lock)
2424 {
2425 unsigned long gps;
2426 unsigned long mask;
2427 struct rcu_node *rnp_p;
2428
2429 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2430 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2431 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2432 return; /* Still need more quiescent states! */
2433 }
2434
2435 rnp_p = rnp->parent;
2436 if (rnp_p == NULL) {
2437 /*
2438 * Only one rcu_node structure in the tree, so don't
2439 * try to report up to its nonexistent parent!
2440 */
2441 rcu_report_qs_rsp(rsp, flags);
2442 return;
2443 }
2444
2445 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2446 gps = rnp->gpnum;
2447 mask = rnp->grpmask;
2448 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2449 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2450 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2451 }
2452
2453 /*
2454 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2455 * structure. This must be called from the specified CPU.
2456 */
2457 static void
2458 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2459 {
2460 unsigned long flags;
2461 unsigned long mask;
2462 bool needwake;
2463 struct rcu_node *rnp;
2464
2465 rnp = rdp->mynode;
2466 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2467 if ((rdp->cpu_no_qs.b.norm &&
2468 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) ||
2469 rdp->gpnum != rnp->gpnum || rnp->completed == rnp->gpnum ||
2470 rdp->gpwrap) {
2471
2472 /*
2473 * The grace period in which this quiescent state was
2474 * recorded has ended, so don't report it upwards.
2475 * We will instead need a new quiescent state that lies
2476 * within the current grace period.
2477 */
2478 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2479 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_qs_ctr);
2480 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2481 return;
2482 }
2483 mask = rdp->grpmask;
2484 if ((rnp->qsmask & mask) == 0) {
2485 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2486 } else {
2487 rdp->core_needs_qs = false;
2488
2489 /*
2490 * This GP can't end until cpu checks in, so all of our
2491 * callbacks can be processed during the next GP.
2492 */
2493 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2494
2495 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2496 /* ^^^ Released rnp->lock */
2497 if (needwake)
2498 rcu_gp_kthread_wake(rsp);
2499 }
2500 }
2501
2502 /*
2503 * Check to see if there is a new grace period of which this CPU
2504 * is not yet aware, and if so, set up local rcu_data state for it.
2505 * Otherwise, see if this CPU has just passed through its first
2506 * quiescent state for this grace period, and record that fact if so.
2507 */
2508 static void
2509 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2510 {
2511 /* Check for grace-period ends and beginnings. */
2512 note_gp_changes(rsp, rdp);
2513
2514 /*
2515 * Does this CPU still need to do its part for current grace period?
2516 * If no, return and let the other CPUs do their part as well.
2517 */
2518 if (!rdp->core_needs_qs)
2519 return;
2520
2521 /*
2522 * Was there a quiescent state since the beginning of the grace
2523 * period? If no, then exit and wait for the next call.
2524 */
2525 if (rdp->cpu_no_qs.b.norm &&
2526 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr))
2527 return;
2528
2529 /*
2530 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2531 * judge of that).
2532 */
2533 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2534 }
2535
2536 /*
2537 * Send the specified CPU's RCU callbacks to the orphanage. The
2538 * specified CPU must be offline, and the caller must hold the
2539 * ->orphan_lock.
2540 */
2541 static void
2542 rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
2543 struct rcu_node *rnp, struct rcu_data *rdp)
2544 {
2545 /* No-CBs CPUs do not have orphanable callbacks. */
2546 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) || rcu_is_nocb_cpu(rdp->cpu))
2547 return;
2548
2549 /*
2550 * Orphan the callbacks. First adjust the counts. This is safe
2551 * because _rcu_barrier() excludes CPU-hotplug operations, so it
2552 * cannot be running now. Thus no memory barrier is required.
2553 */
2554 if (rdp->nxtlist != NULL) {
2555 rsp->qlen_lazy += rdp->qlen_lazy;
2556 rsp->qlen += rdp->qlen;
2557 rdp->n_cbs_orphaned += rdp->qlen;
2558 rdp->qlen_lazy = 0;
2559 WRITE_ONCE(rdp->qlen, 0);
2560 }
2561
2562 /*
2563 * Next, move those callbacks still needing a grace period to
2564 * the orphanage, where some other CPU will pick them up.
2565 * Some of the callbacks might have gone partway through a grace
2566 * period, but that is too bad. They get to start over because we
2567 * cannot assume that grace periods are synchronized across CPUs.
2568 * We don't bother updating the ->nxttail[] array yet, instead
2569 * we just reset the whole thing later on.
2570 */
2571 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
2572 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
2573 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
2574 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2575 }
2576
2577 /*
2578 * Then move the ready-to-invoke callbacks to the orphanage,
2579 * where some other CPU will pick them up. These will not be
2580 * required to pass though another grace period: They are done.
2581 */
2582 if (rdp->nxtlist != NULL) {
2583 *rsp->orphan_donetail = rdp->nxtlist;
2584 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
2585 }
2586
2587 /*
2588 * Finally, initialize the rcu_data structure's list to empty and
2589 * disallow further callbacks on this CPU.
2590 */
2591 init_callback_list(rdp);
2592 rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2593 }
2594
2595 /*
2596 * Adopt the RCU callbacks from the specified rcu_state structure's
2597 * orphanage. The caller must hold the ->orphan_lock.
2598 */
2599 static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
2600 {
2601 int i;
2602 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2603
2604 /* No-CBs CPUs are handled specially. */
2605 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2606 rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
2607 return;
2608
2609 /* Do the accounting first. */
2610 rdp->qlen_lazy += rsp->qlen_lazy;
2611 rdp->qlen += rsp->qlen;
2612 rdp->n_cbs_adopted += rsp->qlen;
2613 if (rsp->qlen_lazy != rsp->qlen)
2614 rcu_idle_count_callbacks_posted();
2615 rsp->qlen_lazy = 0;
2616 rsp->qlen = 0;
2617
2618 /*
2619 * We do not need a memory barrier here because the only way we
2620 * can get here if there is an rcu_barrier() in flight is if
2621 * we are the task doing the rcu_barrier().
2622 */
2623
2624 /* First adopt the ready-to-invoke callbacks. */
2625 if (rsp->orphan_donelist != NULL) {
2626 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
2627 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
2628 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
2629 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2630 rdp->nxttail[i] = rsp->orphan_donetail;
2631 rsp->orphan_donelist = NULL;
2632 rsp->orphan_donetail = &rsp->orphan_donelist;
2633 }
2634
2635 /* And then adopt the callbacks that still need a grace period. */
2636 if (rsp->orphan_nxtlist != NULL) {
2637 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
2638 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
2639 rsp->orphan_nxtlist = NULL;
2640 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
2641 }
2642 }
2643
2644 /*
2645 * Trace the fact that this CPU is going offline.
2646 */
2647 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2648 {
2649 RCU_TRACE(unsigned long mask);
2650 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2651 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2652
2653 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2654 return;
2655
2656 RCU_TRACE(mask = rdp->grpmask);
2657 trace_rcu_grace_period(rsp->name,
2658 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2659 TPS("cpuofl"));
2660 }
2661
2662 /*
2663 * All CPUs for the specified rcu_node structure have gone offline,
2664 * and all tasks that were preempted within an RCU read-side critical
2665 * section while running on one of those CPUs have since exited their RCU
2666 * read-side critical section. Some other CPU is reporting this fact with
2667 * the specified rcu_node structure's ->lock held and interrupts disabled.
2668 * This function therefore goes up the tree of rcu_node structures,
2669 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2670 * the leaf rcu_node structure's ->qsmaskinit field has already been
2671 * updated
2672 *
2673 * This function does check that the specified rcu_node structure has
2674 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2675 * prematurely. That said, invoking it after the fact will cost you
2676 * a needless lock acquisition. So once it has done its work, don't
2677 * invoke it again.
2678 */
2679 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2680 {
2681 long mask;
2682 struct rcu_node *rnp = rnp_leaf;
2683
2684 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2685 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2686 return;
2687 for (;;) {
2688 mask = rnp->grpmask;
2689 rnp = rnp->parent;
2690 if (!rnp)
2691 break;
2692 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2693 rnp->qsmaskinit &= ~mask;
2694 rnp->qsmask &= ~mask;
2695 if (rnp->qsmaskinit) {
2696 raw_spin_unlock_rcu_node(rnp);
2697 /* irqs remain disabled. */
2698 return;
2699 }
2700 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2701 }
2702 }
2703
2704 /*
2705 * The CPU has been completely removed, and some other CPU is reporting
2706 * this fact from process context. Do the remainder of the cleanup,
2707 * including orphaning the outgoing CPU's RCU callbacks, and also
2708 * adopting them. There can only be one CPU hotplug operation at a time,
2709 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2710 */
2711 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2712 {
2713 unsigned long flags;
2714 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2715 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2716
2717 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2718 return;
2719
2720 /* Adjust any no-longer-needed kthreads. */
2721 rcu_boost_kthread_setaffinity(rnp, -1);
2722
2723 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2724 raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2725 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2726 rcu_adopt_orphan_cbs(rsp, flags);
2727 raw_spin_unlock_irqrestore(&rsp->orphan_lock, flags);
2728
2729 WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2730 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2731 cpu, rdp->qlen, rdp->nxtlist);
2732 }
2733
2734 /*
2735 * Invoke any RCU callbacks that have made it to the end of their grace
2736 * period. Thottle as specified by rdp->blimit.
2737 */
2738 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2739 {
2740 unsigned long flags;
2741 struct rcu_head *next, *list, **tail;
2742 long bl, count, count_lazy;
2743 int i;
2744
2745 /* If no callbacks are ready, just return. */
2746 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2747 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2748 trace_rcu_batch_end(rsp->name, 0, !!READ_ONCE(rdp->nxtlist),
2749 need_resched(), is_idle_task(current),
2750 rcu_is_callbacks_kthread());
2751 return;
2752 }
2753
2754 /*
2755 * Extract the list of ready callbacks, disabling to prevent
2756 * races with call_rcu() from interrupt handlers.
2757 */
2758 local_irq_save(flags);
2759 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2760 bl = rdp->blimit;
2761 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2762 list = rdp->nxtlist;
2763 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2764 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
2765 tail = rdp->nxttail[RCU_DONE_TAIL];
2766 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2767 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2768 rdp->nxttail[i] = &rdp->nxtlist;
2769 local_irq_restore(flags);
2770
2771 /* Invoke callbacks. */
2772 count = count_lazy = 0;
2773 while (list) {
2774 next = list->next;
2775 prefetch(next);
2776 debug_rcu_head_unqueue(list);
2777 if (__rcu_reclaim(rsp->name, list))
2778 count_lazy++;
2779 list = next;
2780 /* Stop only if limit reached and CPU has something to do. */
2781 if (++count >= bl &&
2782 (need_resched() ||
2783 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2784 break;
2785 }
2786
2787 local_irq_save(flags);
2788 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2789 is_idle_task(current),
2790 rcu_is_callbacks_kthread());
2791
2792 /* Update count, and requeue any remaining callbacks. */
2793 if (list != NULL) {
2794 *tail = rdp->nxtlist;
2795 rdp->nxtlist = list;
2796 for (i = 0; i < RCU_NEXT_SIZE; i++)
2797 if (&rdp->nxtlist == rdp->nxttail[i])
2798 rdp->nxttail[i] = tail;
2799 else
2800 break;
2801 }
2802 smp_mb(); /* List handling before counting for rcu_barrier(). */
2803 rdp->qlen_lazy -= count_lazy;
2804 WRITE_ONCE(rdp->qlen, rdp->qlen - count);
2805 rdp->n_cbs_invoked += count;
2806
2807 /* Reinstate batch limit if we have worked down the excess. */
2808 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
2809 rdp->blimit = blimit;
2810
2811 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2812 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2813 rdp->qlen_last_fqs_check = 0;
2814 rdp->n_force_qs_snap = rsp->n_force_qs;
2815 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2816 rdp->qlen_last_fqs_check = rdp->qlen;
2817 WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2818
2819 local_irq_restore(flags);
2820
2821 /* Re-invoke RCU core processing if there are callbacks remaining. */
2822 if (cpu_has_callbacks_ready_to_invoke(rdp))
2823 invoke_rcu_core();
2824 }
2825
2826 /*
2827 * Check to see if this CPU is in a non-context-switch quiescent state
2828 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2829 * Also schedule RCU core processing.
2830 *
2831 * This function must be called from hardirq context. It is normally
2832 * invoked from the scheduling-clock interrupt.
2833 */
2834 void rcu_check_callbacks(int user)
2835 {
2836 trace_rcu_utilization(TPS("Start scheduler-tick"));
2837 increment_cpu_stall_ticks();
2838 if (user || rcu_is_cpu_rrupt_from_idle()) {
2839
2840 /*
2841 * Get here if this CPU took its interrupt from user
2842 * mode or from the idle loop, and if this is not a
2843 * nested interrupt. In this case, the CPU is in
2844 * a quiescent state, so note it.
2845 *
2846 * No memory barrier is required here because both
2847 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2848 * variables that other CPUs neither access nor modify,
2849 * at least not while the corresponding CPU is online.
2850 */
2851
2852 rcu_sched_qs();
2853 rcu_bh_qs();
2854
2855 } else if (!in_softirq()) {
2856
2857 /*
2858 * Get here if this CPU did not take its interrupt from
2859 * softirq, in other words, if it is not interrupting
2860 * a rcu_bh read-side critical section. This is an _bh
2861 * critical section, so note it.
2862 */
2863
2864 rcu_bh_qs();
2865 }
2866 rcu_preempt_check_callbacks();
2867 if (rcu_pending())
2868 invoke_rcu_core();
2869 if (user)
2870 rcu_note_voluntary_context_switch(current);
2871 trace_rcu_utilization(TPS("End scheduler-tick"));
2872 }
2873
2874 /*
2875 * Scan the leaf rcu_node structures, processing dyntick state for any that
2876 * have not yet encountered a quiescent state, using the function specified.
2877 * Also initiate boosting for any threads blocked on the root rcu_node.
2878 *
2879 * The caller must have suppressed start of new grace periods.
2880 */
2881 static void force_qs_rnp(struct rcu_state *rsp,
2882 int (*f)(struct rcu_data *rsp, bool *isidle,
2883 unsigned long *maxj),
2884 bool *isidle, unsigned long *maxj)
2885 {
2886 int cpu;
2887 unsigned long flags;
2888 unsigned long mask;
2889 struct rcu_node *rnp;
2890
2891 rcu_for_each_leaf_node(rsp, rnp) {
2892 cond_resched_rcu_qs();
2893 mask = 0;
2894 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2895 if (rnp->qsmask == 0) {
2896 if (rcu_state_p == &rcu_sched_state ||
2897 rsp != rcu_state_p ||
2898 rcu_preempt_blocked_readers_cgp(rnp)) {
2899 /*
2900 * No point in scanning bits because they
2901 * are all zero. But we might need to
2902 * priority-boost blocked readers.
2903 */
2904 rcu_initiate_boost(rnp, flags);
2905 /* rcu_initiate_boost() releases rnp->lock */
2906 continue;
2907 }
2908 if (rnp->parent &&
2909 (rnp->parent->qsmask & rnp->grpmask)) {
2910 /*
2911 * Race between grace-period
2912 * initialization and task exiting RCU
2913 * read-side critical section: Report.
2914 */
2915 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2916 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2917 continue;
2918 }
2919 }
2920 for_each_leaf_node_possible_cpu(rnp, cpu) {
2921 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2922 if ((rnp->qsmask & bit) != 0) {
2923 if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2924 mask |= bit;
2925 }
2926 }
2927 if (mask != 0) {
2928 /* Idle/offline CPUs, report (releases rnp->lock. */
2929 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2930 } else {
2931 /* Nothing to do here, so just drop the lock. */
2932 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2933 }
2934 }
2935 }
2936
2937 /*
2938 * Force quiescent states on reluctant CPUs, and also detect which
2939 * CPUs are in dyntick-idle mode.
2940 */
2941 static void force_quiescent_state(struct rcu_state *rsp)
2942 {
2943 unsigned long flags;
2944 bool ret;
2945 struct rcu_node *rnp;
2946 struct rcu_node *rnp_old = NULL;
2947
2948 /* Funnel through hierarchy to reduce memory contention. */
2949 rnp = __this_cpu_read(rsp->rda->mynode);
2950 for (; rnp != NULL; rnp = rnp->parent) {
2951 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2952 !raw_spin_trylock(&rnp->fqslock);
2953 if (rnp_old != NULL)
2954 raw_spin_unlock(&rnp_old->fqslock);
2955 if (ret) {
2956 rsp->n_force_qs_lh++;
2957 return;
2958 }
2959 rnp_old = rnp;
2960 }
2961 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2962
2963 /* Reached the root of the rcu_node tree, acquire lock. */
2964 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2965 raw_spin_unlock(&rnp_old->fqslock);
2966 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2967 rsp->n_force_qs_lh++;
2968 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2969 return; /* Someone beat us to it. */
2970 }
2971 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2972 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2973 rcu_gp_kthread_wake(rsp);
2974 }
2975
2976 /*
2977 * This does the RCU core processing work for the specified rcu_state
2978 * and rcu_data structures. This may be called only from the CPU to
2979 * whom the rdp belongs.
2980 */
2981 static void
2982 __rcu_process_callbacks(struct rcu_state *rsp)
2983 {
2984 unsigned long flags;
2985 bool needwake;
2986 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2987
2988 WARN_ON_ONCE(rdp->beenonline == 0);
2989
2990 /* Update RCU state based on any recent quiescent states. */
2991 rcu_check_quiescent_state(rsp, rdp);
2992
2993 /* Does this CPU require a not-yet-started grace period? */
2994 local_irq_save(flags);
2995 if (cpu_needs_another_gp(rsp, rdp)) {
2996 raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2997 needwake = rcu_start_gp(rsp);
2998 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2999 if (needwake)
3000 rcu_gp_kthread_wake(rsp);
3001 } else {
3002 local_irq_restore(flags);
3003 }
3004
3005 /* If there are callbacks ready, invoke them. */
3006 if (cpu_has_callbacks_ready_to_invoke(rdp))
3007 invoke_rcu_callbacks(rsp, rdp);
3008
3009 /* Do any needed deferred wakeups of rcuo kthreads. */
3010 do_nocb_deferred_wakeup(rdp);
3011 }
3012
3013 /*
3014 * Do RCU core processing for the current CPU.
3015 */
3016 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
3017 {
3018 struct rcu_state *rsp;
3019
3020 if (cpu_is_offline(smp_processor_id()))
3021 return;
3022 trace_rcu_utilization(TPS("Start RCU core"));
3023 for_each_rcu_flavor(rsp)
3024 __rcu_process_callbacks(rsp);
3025 trace_rcu_utilization(TPS("End RCU core"));
3026 }
3027
3028 /*
3029 * Schedule RCU callback invocation. If the specified type of RCU
3030 * does not support RCU priority boosting, just do a direct call,
3031 * otherwise wake up the per-CPU kernel kthread. Note that because we
3032 * are running on the current CPU with softirqs disabled, the
3033 * rcu_cpu_kthread_task cannot disappear out from under us.
3034 */
3035 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
3036 {
3037 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
3038 return;
3039 if (likely(!rsp->boost)) {
3040 rcu_do_batch(rsp, rdp);
3041 return;
3042 }
3043 invoke_rcu_callbacks_kthread();
3044 }
3045
3046 static void invoke_rcu_core(void)
3047 {
3048 if (cpu_online(smp_processor_id()))
3049 raise_softirq(RCU_SOFTIRQ);
3050 }
3051
3052 /*
3053 * Handle any core-RCU processing required by a call_rcu() invocation.
3054 */
3055 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
3056 struct rcu_head *head, unsigned long flags)
3057 {
3058 bool needwake;
3059
3060 /*
3061 * If called from an extended quiescent state, invoke the RCU
3062 * core in order to force a re-evaluation of RCU's idleness.
3063 */
3064 if (!rcu_is_watching())
3065 invoke_rcu_core();
3066
3067 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
3068 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
3069 return;
3070
3071 /*
3072 * Force the grace period if too many callbacks or too long waiting.
3073 * Enforce hysteresis, and don't invoke force_quiescent_state()
3074 * if some other CPU has recently done so. Also, don't bother
3075 * invoking force_quiescent_state() if the newly enqueued callback
3076 * is the only one waiting for a grace period to complete.
3077 */
3078 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
3079
3080 /* Are we ignoring a completed grace period? */
3081 note_gp_changes(rsp, rdp);
3082
3083 /* Start a new grace period if one not already started. */
3084 if (!rcu_gp_in_progress(rsp)) {
3085 struct rcu_node *rnp_root = rcu_get_root(rsp);
3086
3087 raw_spin_lock_rcu_node(rnp_root);
3088 needwake = rcu_start_gp(rsp);
3089 raw_spin_unlock_rcu_node(rnp_root);
3090 if (needwake)
3091 rcu_gp_kthread_wake(rsp);
3092 } else {
3093 /* Give the grace period a kick. */
3094 rdp->blimit = LONG_MAX;
3095 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
3096 *rdp->nxttail[RCU_DONE_TAIL] != head)
3097 force_quiescent_state(rsp);
3098 rdp->n_force_qs_snap = rsp->n_force_qs;
3099 rdp->qlen_last_fqs_check = rdp->qlen;
3100 }
3101 }
3102 }
3103
3104 /*
3105 * RCU callback function to leak a callback.
3106 */
3107 static void rcu_leak_callback(struct rcu_head *rhp)
3108 {
3109 }
3110
3111 /*
3112 * Helper function for call_rcu() and friends. The cpu argument will
3113 * normally be -1, indicating "currently running CPU". It may specify
3114 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
3115 * is expected to specify a CPU.
3116 */
3117 static void
3118 __call_rcu(struct rcu_head *head, rcu_callback_t func,
3119 struct rcu_state *rsp, int cpu, bool lazy)
3120 {
3121 unsigned long flags;
3122 struct rcu_data *rdp;
3123
3124 /* Misaligned rcu_head! */
3125 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3126
3127 if (debug_rcu_head_queue(head)) {
3128 /* Probable double call_rcu(), so leak the callback. */
3129 WRITE_ONCE(head->func, rcu_leak_callback);
3130 WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
3131 return;
3132 }
3133 head->func = func;
3134 head->next = NULL;
3135 local_irq_save(flags);
3136 rdp = this_cpu_ptr(rsp->rda);
3137
3138 /* Add the callback to our list. */
3139 if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
3140 int offline;
3141
3142 if (cpu != -1)
3143 rdp = per_cpu_ptr(rsp->rda, cpu);
3144 if (likely(rdp->mynode)) {
3145 /* Post-boot, so this should be for a no-CBs CPU. */
3146 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3147 WARN_ON_ONCE(offline);
3148 /* Offline CPU, _call_rcu() illegal, leak callback. */
3149 local_irq_restore(flags);
3150 return;
3151 }
3152 /*
3153 * Very early boot, before rcu_init(). Initialize if needed
3154 * and then drop through to queue the callback.
3155 */
3156 BUG_ON(cpu != -1);
3157 WARN_ON_ONCE(!rcu_is_watching());
3158 if (!likely(rdp->nxtlist))
3159 init_default_callback_list(rdp);
3160 }
3161 WRITE_ONCE(rdp->qlen, rdp->qlen + 1);
3162 if (lazy)
3163 rdp->qlen_lazy++;
3164 else
3165 rcu_idle_count_callbacks_posted();
3166 smp_mb(); /* Count before adding callback for rcu_barrier(). */
3167 *rdp->nxttail[RCU_NEXT_TAIL] = head;
3168 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
3169
3170 if (__is_kfree_rcu_offset((unsigned long)func))
3171 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3172 rdp->qlen_lazy, rdp->qlen);
3173 else
3174 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
3175
3176 /* Go handle any RCU core processing required. */
3177 __call_rcu_core(rsp, rdp, head, flags);
3178 local_irq_restore(flags);
3179 }
3180
3181 /*
3182 * Queue an RCU-sched callback for invocation after a grace period.
3183 */
3184 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3185 {
3186 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3187 }
3188 EXPORT_SYMBOL_GPL(call_rcu_sched);
3189
3190 /*
3191 * Queue an RCU callback for invocation after a quicker grace period.
3192 */
3193 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3194 {
3195 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3196 }
3197 EXPORT_SYMBOL_GPL(call_rcu_bh);
3198
3199 /*
3200 * Queue an RCU callback for lazy invocation after a grace period.
3201 * This will likely be later named something like "call_rcu_lazy()",
3202 * but this change will require some way of tagging the lazy RCU
3203 * callbacks in the list of pending callbacks. Until then, this
3204 * function may only be called from __kfree_rcu().
3205 */
3206 void kfree_call_rcu(struct rcu_head *head,
3207 rcu_callback_t func)
3208 {
3209 __call_rcu(head, func, rcu_state_p, -1, 1);
3210 }
3211 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3212
3213 /*
3214 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3215 * any blocking grace-period wait automatically implies a grace period
3216 * if there is only one CPU online at any point time during execution
3217 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3218 * occasionally incorrectly indicate that there are multiple CPUs online
3219 * when there was in fact only one the whole time, as this just adds
3220 * some overhead: RCU still operates correctly.
3221 */
3222 static inline int rcu_blocking_is_gp(void)
3223 {
3224 int ret;
3225
3226 might_sleep(); /* Check for RCU read-side critical section. */
3227 preempt_disable();
3228 ret = num_online_cpus() <= 1;
3229 preempt_enable();
3230 return ret;
3231 }
3232
3233 /**
3234 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3235 *
3236 * Control will return to the caller some time after a full rcu-sched
3237 * grace period has elapsed, in other words after all currently executing
3238 * rcu-sched read-side critical sections have completed. These read-side
3239 * critical sections are delimited by rcu_read_lock_sched() and
3240 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3241 * local_irq_disable(), and so on may be used in place of
3242 * rcu_read_lock_sched().
3243 *
3244 * This means that all preempt_disable code sequences, including NMI and
3245 * non-threaded hardware-interrupt handlers, in progress on entry will
3246 * have completed before this primitive returns. However, this does not
3247 * guarantee that softirq handlers will have completed, since in some
3248 * kernels, these handlers can run in process context, and can block.
3249 *
3250 * Note that this guarantee implies further memory-ordering guarantees.
3251 * On systems with more than one CPU, when synchronize_sched() returns,
3252 * each CPU is guaranteed to have executed a full memory barrier since the
3253 * end of its last RCU-sched read-side critical section whose beginning
3254 * preceded the call to synchronize_sched(). In addition, each CPU having
3255 * an RCU read-side critical section that extends beyond the return from
3256 * synchronize_sched() is guaranteed to have executed a full memory barrier
3257 * after the beginning of synchronize_sched() and before the beginning of
3258 * that RCU read-side critical section. Note that these guarantees include
3259 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3260 * that are executing in the kernel.
3261 *
3262 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3263 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3264 * to have executed a full memory barrier during the execution of
3265 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3266 * again only if the system has more than one CPU).
3267 *
3268 * This primitive provides the guarantees made by the (now removed)
3269 * synchronize_kernel() API. In contrast, synchronize_rcu() only
3270 * guarantees that rcu_read_lock() sections will have completed.
3271 * In "classic RCU", these two guarantees happen to be one and
3272 * the same, but can differ in realtime RCU implementations.
3273 */
3274 void synchronize_sched(void)
3275 {
3276 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3277 lock_is_held(&rcu_lock_map) ||
3278 lock_is_held(&rcu_sched_lock_map),
3279 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3280 if (rcu_blocking_is_gp())
3281 return;
3282 if (rcu_gp_is_expedited())
3283 synchronize_sched_expedited();
3284 else
3285 wait_rcu_gp(call_rcu_sched);
3286 }
3287 EXPORT_SYMBOL_GPL(synchronize_sched);
3288
3289 /**
3290 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3291 *
3292 * Control will return to the caller some time after a full rcu_bh grace
3293 * period has elapsed, in other words after all currently executing rcu_bh
3294 * read-side critical sections have completed. RCU read-side critical
3295 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3296 * and may be nested.
3297 *
3298 * See the description of synchronize_sched() for more detailed information
3299 * on memory ordering guarantees.
3300 */
3301 void synchronize_rcu_bh(void)
3302 {
3303 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3304 lock_is_held(&rcu_lock_map) ||
3305 lock_is_held(&rcu_sched_lock_map),
3306 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3307 if (rcu_blocking_is_gp())
3308 return;
3309 if (rcu_gp_is_expedited())
3310 synchronize_rcu_bh_expedited();
3311 else
3312 wait_rcu_gp(call_rcu_bh);
3313 }
3314 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3315
3316 /**
3317 * get_state_synchronize_rcu - Snapshot current RCU state
3318 *
3319 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3320 * to determine whether or not a full grace period has elapsed in the
3321 * meantime.
3322 */
3323 unsigned long get_state_synchronize_rcu(void)
3324 {
3325 /*
3326 * Any prior manipulation of RCU-protected data must happen
3327 * before the load from ->gpnum.
3328 */
3329 smp_mb(); /* ^^^ */
3330
3331 /*
3332 * Make sure this load happens before the purportedly
3333 * time-consuming work between get_state_synchronize_rcu()
3334 * and cond_synchronize_rcu().
3335 */
3336 return smp_load_acquire(&rcu_state_p->gpnum);
3337 }
3338 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3339
3340 /**
3341 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3342 *
3343 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3344 *
3345 * If a full RCU grace period has elapsed since the earlier call to
3346 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3347 * synchronize_rcu() to wait for a full grace period.
3348 *
3349 * Yes, this function does not take counter wrap into account. But
3350 * counter wrap is harmless. If the counter wraps, we have waited for
3351 * more than 2 billion grace periods (and way more on a 64-bit system!),
3352 * so waiting for one additional grace period should be just fine.
3353 */
3354 void cond_synchronize_rcu(unsigned long oldstate)
3355 {
3356 unsigned long newstate;
3357
3358 /*
3359 * Ensure that this load happens before any RCU-destructive
3360 * actions the caller might carry out after we return.
3361 */
3362 newstate = smp_load_acquire(&rcu_state_p->completed);
3363 if (ULONG_CMP_GE(oldstate, newstate))
3364 synchronize_rcu();
3365 }
3366 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3367
3368 /**
3369 * get_state_synchronize_sched - Snapshot current RCU-sched state
3370 *
3371 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3372 * to determine whether or not a full grace period has elapsed in the
3373 * meantime.
3374 */
3375 unsigned long get_state_synchronize_sched(void)
3376 {
3377 /*
3378 * Any prior manipulation of RCU-protected data must happen
3379 * before the load from ->gpnum.
3380 */
3381 smp_mb(); /* ^^^ */
3382
3383 /*
3384 * Make sure this load happens before the purportedly
3385 * time-consuming work between get_state_synchronize_sched()
3386 * and cond_synchronize_sched().
3387 */
3388 return smp_load_acquire(&rcu_sched_state.gpnum);
3389 }
3390 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3391
3392 /**
3393 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3394 *
3395 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3396 *
3397 * If a full RCU-sched grace period has elapsed since the earlier call to
3398 * get_state_synchronize_sched(), just return. Otherwise, invoke
3399 * synchronize_sched() to wait for a full grace period.
3400 *
3401 * Yes, this function does not take counter wrap into account. But
3402 * counter wrap is harmless. If the counter wraps, we have waited for
3403 * more than 2 billion grace periods (and way more on a 64-bit system!),
3404 * so waiting for one additional grace period should be just fine.
3405 */
3406 void cond_synchronize_sched(unsigned long oldstate)
3407 {
3408 unsigned long newstate;
3409
3410 /*
3411 * Ensure that this load happens before any RCU-destructive
3412 * actions the caller might carry out after we return.
3413 */
3414 newstate = smp_load_acquire(&rcu_sched_state.completed);
3415 if (ULONG_CMP_GE(oldstate, newstate))
3416 synchronize_sched();
3417 }
3418 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3419
3420 /* Adjust sequence number for start of update-side operation. */
3421 static void rcu_seq_start(unsigned long *sp)
3422 {
3423 WRITE_ONCE(*sp, *sp + 1);
3424 smp_mb(); /* Ensure update-side operation after counter increment. */
3425 WARN_ON_ONCE(!(*sp & 0x1));
3426 }
3427
3428 /* Adjust sequence number for end of update-side operation. */
3429 static void rcu_seq_end(unsigned long *sp)
3430 {
3431 smp_mb(); /* Ensure update-side operation before counter increment. */
3432 WRITE_ONCE(*sp, *sp + 1);
3433 WARN_ON_ONCE(*sp & 0x1);
3434 }
3435
3436 /* Take a snapshot of the update side's sequence number. */
3437 static unsigned long rcu_seq_snap(unsigned long *sp)
3438 {
3439 unsigned long s;
3440
3441 s = (READ_ONCE(*sp) + 3) & ~0x1;
3442 smp_mb(); /* Above access must not bleed into critical section. */
3443 return s;
3444 }
3445
3446 /*
3447 * Given a snapshot from rcu_seq_snap(), determine whether or not a
3448 * full update-side operation has occurred.
3449 */
3450 static bool rcu_seq_done(unsigned long *sp, unsigned long s)
3451 {
3452 return ULONG_CMP_GE(READ_ONCE(*sp), s);
3453 }
3454
3455 /*
3456 * Check to see if there is any immediate RCU-related work to be done
3457 * by the current CPU, for the specified type of RCU, returning 1 if so.
3458 * The checks are in order of increasing expense: checks that can be
3459 * carried out against CPU-local state are performed first. However,
3460 * we must check for CPU stalls first, else we might not get a chance.
3461 */
3462 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3463 {
3464 struct rcu_node *rnp = rdp->mynode;
3465
3466 rdp->n_rcu_pending++;
3467
3468 /* Check for CPU stalls, if enabled. */
3469 check_cpu_stall(rsp, rdp);
3470
3471 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3472 if (rcu_nohz_full_cpu(rsp))
3473 return 0;
3474
3475 /* Is the RCU core waiting for a quiescent state from this CPU? */
3476 if (rcu_scheduler_fully_active &&
3477 rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
3478 rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_qs_ctr)) {
3479 rdp->n_rp_core_needs_qs++;
3480 } else if (rdp->core_needs_qs &&
3481 (!rdp->cpu_no_qs.b.norm ||
3482 rdp->rcu_qs_ctr_snap != __this_cpu_read(rcu_qs_ctr))) {
3483 rdp->n_rp_report_qs++;
3484 return 1;
3485 }
3486
3487 /* Does this CPU have callbacks ready to invoke? */
3488 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
3489 rdp->n_rp_cb_ready++;
3490 return 1;
3491 }
3492
3493 /* Has RCU gone idle with this CPU needing another grace period? */
3494 if (cpu_needs_another_gp(rsp, rdp)) {
3495 rdp->n_rp_cpu_needs_gp++;
3496 return 1;
3497 }
3498
3499 /* Has another RCU grace period completed? */
3500 if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
3501 rdp->n_rp_gp_completed++;
3502 return 1;
3503 }
3504
3505 /* Has a new RCU grace period started? */
3506 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3507 unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
3508 rdp->n_rp_gp_started++;
3509 return 1;
3510 }
3511
3512 /* Does this CPU need a deferred NOCB wakeup? */
3513 if (rcu_nocb_need_deferred_wakeup(rdp)) {
3514 rdp->n_rp_nocb_defer_wakeup++;
3515 return 1;
3516 }
3517
3518 /* nothing to do */
3519 rdp->n_rp_need_nothing++;
3520 return 0;
3521 }
3522
3523 /*
3524 * Check to see if there is any immediate RCU-related work to be done
3525 * by the current CPU, returning 1 if so. This function is part of the
3526 * RCU implementation; it is -not- an exported member of the RCU API.
3527 */
3528 static int rcu_pending(void)
3529 {
3530 struct rcu_state *rsp;
3531
3532 for_each_rcu_flavor(rsp)
3533 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3534 return 1;
3535 return 0;
3536 }
3537
3538 /*
3539 * Return true if the specified CPU has any callback. If all_lazy is
3540 * non-NULL, store an indication of whether all callbacks are lazy.
3541 * (If there are no callbacks, all of them are deemed to be lazy.)
3542 */
3543 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3544 {
3545 bool al = true;
3546 bool hc = false;
3547 struct rcu_data *rdp;
3548 struct rcu_state *rsp;
3549
3550 for_each_rcu_flavor(rsp) {
3551 rdp = this_cpu_ptr(rsp->rda);
3552 if (!rdp->nxtlist)
3553 continue;
3554 hc = true;
3555 if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
3556 al = false;
3557 break;
3558 }
3559 }
3560 if (all_lazy)
3561 *all_lazy = al;
3562 return hc;
3563 }
3564
3565 /*
3566 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3567 * the compiler is expected to optimize this away.
3568 */
3569 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3570 int cpu, unsigned long done)
3571 {
3572 trace_rcu_barrier(rsp->name, s, cpu,
3573 atomic_read(&rsp->barrier_cpu_count), done);
3574 }
3575
3576 /*
3577 * RCU callback function for _rcu_barrier(). If we are last, wake
3578 * up the task executing _rcu_barrier().
3579 */
3580 static void rcu_barrier_callback(struct rcu_head *rhp)
3581 {
3582 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3583 struct rcu_state *rsp = rdp->rsp;
3584
3585 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3586 _rcu_barrier_trace(rsp, "LastCB", -1, rsp->barrier_sequence);
3587 complete(&rsp->barrier_completion);
3588 } else {
3589 _rcu_barrier_trace(rsp, "CB", -1, rsp->barrier_sequence);
3590 }
3591 }
3592
3593 /*
3594 * Called with preemption disabled, and from cross-cpu IRQ context.
3595 */
3596 static void rcu_barrier_func(void *type)
3597 {
3598 struct rcu_state *rsp = type;
3599 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3600
3601 _rcu_barrier_trace(rsp, "IRQ", -1, rsp->barrier_sequence);
3602 atomic_inc(&rsp->barrier_cpu_count);
3603 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
3604 }
3605
3606 /*
3607 * Orchestrate the specified type of RCU barrier, waiting for all
3608 * RCU callbacks of the specified type to complete.
3609 */
3610 static void _rcu_barrier(struct rcu_state *rsp)
3611 {
3612 int cpu;
3613 struct rcu_data *rdp;
3614 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3615
3616 _rcu_barrier_trace(rsp, "Begin", -1, s);
3617
3618 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3619 mutex_lock(&rsp->barrier_mutex);
3620
3621 /* Did someone else do our work for us? */
3622 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3623 _rcu_barrier_trace(rsp, "EarlyExit", -1, rsp->barrier_sequence);
3624 smp_mb(); /* caller's subsequent code after above check. */
3625 mutex_unlock(&rsp->barrier_mutex);
3626 return;
3627 }
3628
3629 /* Mark the start of the barrier operation. */
3630 rcu_seq_start(&rsp->barrier_sequence);
3631 _rcu_barrier_trace(rsp, "Inc1", -1, rsp->barrier_sequence);
3632
3633 /*
3634 * Initialize the count to one rather than to zero in order to
3635 * avoid a too-soon return to zero in case of a short grace period
3636 * (or preemption of this task). Exclude CPU-hotplug operations
3637 * to ensure that no offline CPU has callbacks queued.
3638 */
3639 init_completion(&rsp->barrier_completion);
3640 atomic_set(&rsp->barrier_cpu_count, 1);
3641 get_online_cpus();
3642
3643 /*
3644 * Force each CPU with callbacks to register a new callback.
3645 * When that callback is invoked, we will know that all of the
3646 * corresponding CPU's preceding callbacks have been invoked.
3647 */
3648 for_each_possible_cpu(cpu) {
3649 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3650 continue;
3651 rdp = per_cpu_ptr(rsp->rda, cpu);
3652 if (rcu_is_nocb_cpu(cpu)) {
3653 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3654 _rcu_barrier_trace(rsp, "OfflineNoCB", cpu,
3655 rsp->barrier_sequence);
3656 } else {
3657 _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3658 rsp->barrier_sequence);
3659 smp_mb__before_atomic();
3660 atomic_inc(&rsp->barrier_cpu_count);
3661 __call_rcu(&rdp->barrier_head,
3662 rcu_barrier_callback, rsp, cpu, 0);
3663 }
3664 } else if (READ_ONCE(rdp->qlen)) {
3665 _rcu_barrier_trace(rsp, "OnlineQ", cpu,
3666 rsp->barrier_sequence);
3667 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3668 } else {
3669 _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3670 rsp->barrier_sequence);
3671 }
3672 }
3673 put_online_cpus();
3674
3675 /*
3676 * Now that we have an rcu_barrier_callback() callback on each
3677 * CPU, and thus each counted, remove the initial count.
3678 */
3679 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3680 complete(&rsp->barrier_completion);
3681
3682 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3683 wait_for_completion(&rsp->barrier_completion);
3684
3685 /* Mark the end of the barrier operation. */
3686 _rcu_barrier_trace(rsp, "Inc2", -1, rsp->barrier_sequence);
3687 rcu_seq_end(&rsp->barrier_sequence);
3688
3689 /* Other rcu_barrier() invocations can now safely proceed. */
3690 mutex_unlock(&rsp->barrier_mutex);
3691 }
3692
3693 /**
3694 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3695 */
3696 void rcu_barrier_bh(void)
3697 {
3698 _rcu_barrier(&rcu_bh_state);
3699 }
3700 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3701
3702 /**
3703 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3704 */
3705 void rcu_barrier_sched(void)
3706 {
3707 _rcu_barrier(&rcu_sched_state);
3708 }
3709 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3710
3711 /*
3712 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3713 * first CPU in a given leaf rcu_node structure coming online. The caller
3714 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3715 * disabled.
3716 */
3717 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3718 {
3719 long mask;
3720 struct rcu_node *rnp = rnp_leaf;
3721
3722 for (;;) {
3723 mask = rnp->grpmask;
3724 rnp = rnp->parent;
3725 if (rnp == NULL)
3726 return;
3727 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3728 rnp->qsmaskinit |= mask;
3729 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3730 }
3731 }
3732
3733 /*
3734 * Do boot-time initialization of a CPU's per-CPU RCU data.
3735 */
3736 static void __init
3737 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3738 {
3739 unsigned long flags;
3740 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3741 struct rcu_node *rnp = rcu_get_root(rsp);
3742
3743 /* Set up local state, ensuring consistent view of global state. */
3744 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3745 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3746 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3747 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3748 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
3749 rdp->cpu = cpu;
3750 rdp->rsp = rsp;
3751 rcu_boot_init_nocb_percpu_data(rdp);
3752 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3753 }
3754
3755 /*
3756 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3757 * offline event can be happening at a given time. Note also that we
3758 * can accept some slop in the rsp->completed access due to the fact
3759 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3760 */
3761 static void
3762 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3763 {
3764 unsigned long flags;
3765 unsigned long mask;
3766 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3767 struct rcu_node *rnp = rcu_get_root(rsp);
3768
3769 /* Set up local state, ensuring consistent view of global state. */
3770 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3771 rdp->qlen_last_fqs_check = 0;
3772 rdp->n_force_qs_snap = rsp->n_force_qs;
3773 rdp->blimit = blimit;
3774 if (!rdp->nxtlist)
3775 init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
3776 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3777 rcu_sysidle_init_percpu_data(rdp->dynticks);
3778 atomic_set(&rdp->dynticks->dynticks,
3779 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3780 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3781
3782 /*
3783 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3784 * propagation up the rcu_node tree will happen at the beginning
3785 * of the next grace period.
3786 */
3787 rnp = rdp->mynode;
3788 mask = rdp->grpmask;
3789 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3790 if (!rdp->beenonline)
3791 WRITE_ONCE(rsp->ncpus, READ_ONCE(rsp->ncpus) + 1);
3792 rdp->beenonline = true; /* We have now been online. */
3793 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3794 rdp->completed = rnp->completed;
3795 rdp->cpu_no_qs.b.norm = true;
3796 rdp->rcu_qs_ctr_snap = per_cpu(rcu_qs_ctr, cpu);
3797 rdp->core_needs_qs = false;
3798 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3799 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3800 }
3801
3802 int rcutree_prepare_cpu(unsigned int cpu)
3803 {
3804 struct rcu_state *rsp;
3805
3806 for_each_rcu_flavor(rsp)
3807 rcu_init_percpu_data(cpu, rsp);
3808
3809 rcu_prepare_kthreads(cpu);
3810 rcu_spawn_all_nocb_kthreads(cpu);
3811
3812 return 0;
3813 }
3814
3815 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3816 {
3817 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3818
3819 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3820 }
3821
3822 int rcutree_online_cpu(unsigned int cpu)
3823 {
3824 sync_sched_exp_online_cleanup(cpu);
3825 rcutree_affinity_setting(cpu, -1);
3826 return 0;
3827 }
3828
3829 int rcutree_offline_cpu(unsigned int cpu)
3830 {
3831 rcutree_affinity_setting(cpu, cpu);
3832 return 0;
3833 }
3834
3835
3836 int rcutree_dying_cpu(unsigned int cpu)
3837 {
3838 struct rcu_state *rsp;
3839
3840 for_each_rcu_flavor(rsp)
3841 rcu_cleanup_dying_cpu(rsp);
3842 return 0;
3843 }
3844
3845 int rcutree_dead_cpu(unsigned int cpu)
3846 {
3847 struct rcu_state *rsp;
3848
3849 for_each_rcu_flavor(rsp) {
3850 rcu_cleanup_dead_cpu(cpu, rsp);
3851 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3852 }
3853 return 0;
3854 }
3855
3856 /*
3857 * Mark the specified CPU as being online so that subsequent grace periods
3858 * (both expedited and normal) will wait on it. Note that this means that
3859 * incoming CPUs are not allowed to use RCU read-side critical sections
3860 * until this function is called. Failing to observe this restriction
3861 * will result in lockdep splats.
3862 */
3863 void rcu_cpu_starting(unsigned int cpu)
3864 {
3865 unsigned long flags;
3866 unsigned long mask;
3867 struct rcu_data *rdp;
3868 struct rcu_node *rnp;
3869 struct rcu_state *rsp;
3870
3871 for_each_rcu_flavor(rsp) {
3872 rdp = this_cpu_ptr(rsp->rda);
3873 rnp = rdp->mynode;
3874 mask = rdp->grpmask;
3875 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3876 rnp->qsmaskinitnext |= mask;
3877 rnp->expmaskinitnext |= mask;
3878 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3879 }
3880 }
3881
3882 #ifdef CONFIG_HOTPLUG_CPU
3883 /*
3884 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3885 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3886 * bit masks.
3887 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3888 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3889 * bit masks.
3890 */
3891 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3892 {
3893 unsigned long flags;
3894 unsigned long mask;
3895 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3896 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3897
3898 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3899 mask = rdp->grpmask;
3900 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3901 rnp->qsmaskinitnext &= ~mask;
3902 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3903 }
3904
3905 void rcu_report_dead(unsigned int cpu)
3906 {
3907 struct rcu_state *rsp;
3908
3909 /* QS for any half-done expedited RCU-sched GP. */
3910 preempt_disable();
3911 rcu_report_exp_rdp(&rcu_sched_state,
3912 this_cpu_ptr(rcu_sched_state.rda), true);
3913 preempt_enable();
3914 for_each_rcu_flavor(rsp)
3915 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3916 }
3917 #endif
3918
3919 static int rcu_pm_notify(struct notifier_block *self,
3920 unsigned long action, void *hcpu)
3921 {
3922 switch (action) {
3923 case PM_HIBERNATION_PREPARE:
3924 case PM_SUSPEND_PREPARE:
3925 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3926 rcu_expedite_gp();
3927 break;
3928 case PM_POST_HIBERNATION:
3929 case PM_POST_SUSPEND:
3930 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3931 rcu_unexpedite_gp();
3932 break;
3933 default:
3934 break;
3935 }
3936 return NOTIFY_OK;
3937 }
3938
3939 /*
3940 * Spawn the kthreads that handle each RCU flavor's grace periods.
3941 */
3942 static int __init rcu_spawn_gp_kthread(void)
3943 {
3944 unsigned long flags;
3945 int kthread_prio_in = kthread_prio;
3946 struct rcu_node *rnp;
3947 struct rcu_state *rsp;
3948 struct sched_param sp;
3949 struct task_struct *t;
3950
3951 /* Force priority into range. */
3952 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3953 kthread_prio = 1;
3954 else if (kthread_prio < 0)
3955 kthread_prio = 0;
3956 else if (kthread_prio > 99)
3957 kthread_prio = 99;
3958 if (kthread_prio != kthread_prio_in)
3959 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3960 kthread_prio, kthread_prio_in);
3961
3962 rcu_scheduler_fully_active = 1;
3963 for_each_rcu_flavor(rsp) {
3964 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3965 BUG_ON(IS_ERR(t));
3966 rnp = rcu_get_root(rsp);
3967 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3968 rsp->gp_kthread = t;
3969 if (kthread_prio) {
3970 sp.sched_priority = kthread_prio;
3971 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3972 }
3973 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3974 wake_up_process(t);
3975 }
3976 rcu_spawn_nocb_kthreads();
3977 rcu_spawn_boost_kthreads();
3978 return 0;
3979 }
3980 early_initcall(rcu_spawn_gp_kthread);
3981
3982 /*
3983 * This function is invoked towards the end of the scheduler's initialization
3984 * process. Before this is called, the idle task might contain
3985 * RCU read-side critical sections (during which time, this idle
3986 * task is booting the system). After this function is called, the
3987 * idle tasks are prohibited from containing RCU read-side critical
3988 * sections. This function also enables RCU lockdep checking.
3989 */
3990 void rcu_scheduler_starting(void)
3991 {
3992 WARN_ON(num_online_cpus() != 1);
3993 WARN_ON(nr_context_switches() > 0);
3994 rcu_scheduler_active = 1;
3995 }
3996
3997 /*
3998 * Compute the per-level fanout, either using the exact fanout specified
3999 * or balancing the tree, depending on the rcu_fanout_exact boot parameter.
4000 */
4001 static void __init rcu_init_levelspread(int *levelspread, const int *levelcnt)
4002 {
4003 int i;
4004
4005 if (rcu_fanout_exact) {
4006 levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
4007 for (i = rcu_num_lvls - 2; i >= 0; i--)
4008 levelspread[i] = RCU_FANOUT;
4009 } else {
4010 int ccur;
4011 int cprv;
4012
4013 cprv = nr_cpu_ids;
4014 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4015 ccur = levelcnt[i];
4016 levelspread[i] = (cprv + ccur - 1) / ccur;
4017 cprv = ccur;
4018 }
4019 }
4020 }
4021
4022 /*
4023 * Helper function for rcu_init() that initializes one rcu_state structure.
4024 */
4025 static void __init rcu_init_one(struct rcu_state *rsp)
4026 {
4027 static const char * const buf[] = RCU_NODE_NAME_INIT;
4028 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4029 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4030 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4031 static u8 fl_mask = 0x1;
4032
4033 int levelcnt[RCU_NUM_LVLS]; /* # nodes in each level. */
4034 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4035 int cpustride = 1;
4036 int i;
4037 int j;
4038 struct rcu_node *rnp;
4039
4040 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4041
4042 /* Silence gcc 4.8 false positive about array index out of range. */
4043 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4044 panic("rcu_init_one: rcu_num_lvls out of range");
4045
4046 /* Initialize the level-tracking arrays. */
4047
4048 for (i = 0; i < rcu_num_lvls; i++)
4049 levelcnt[i] = num_rcu_lvl[i];
4050 for (i = 1; i < rcu_num_lvls; i++)
4051 rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
4052 rcu_init_levelspread(levelspread, levelcnt);
4053 rsp->flavor_mask = fl_mask;
4054 fl_mask <<= 1;
4055
4056 /* Initialize the elements themselves, starting from the leaves. */
4057
4058 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4059 cpustride *= levelspread[i];
4060 rnp = rsp->level[i];
4061 for (j = 0; j < levelcnt[i]; j++, rnp++) {
4062 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4063 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4064 &rcu_node_class[i], buf[i]);
4065 raw_spin_lock_init(&rnp->fqslock);
4066 lockdep_set_class_and_name(&rnp->fqslock,
4067 &rcu_fqs_class[i], fqs[i]);
4068 rnp->gpnum = rsp->gpnum;
4069 rnp->completed = rsp->completed;
4070 rnp->qsmask = 0;
4071 rnp->qsmaskinit = 0;
4072 rnp->grplo = j * cpustride;
4073 rnp->grphi = (j + 1) * cpustride - 1;
4074 if (rnp->grphi >= nr_cpu_ids)
4075 rnp->grphi = nr_cpu_ids - 1;
4076 if (i == 0) {
4077 rnp->grpnum = 0;
4078 rnp->grpmask = 0;
4079 rnp->parent = NULL;
4080 } else {
4081 rnp->grpnum = j % levelspread[i - 1];
4082 rnp->grpmask = 1UL << rnp->grpnum;
4083 rnp->parent = rsp->level[i - 1] +
4084 j / levelspread[i - 1];
4085 }
4086 rnp->level = i;
4087 INIT_LIST_HEAD(&rnp->blkd_tasks);
4088 rcu_init_one_nocb(rnp);
4089 init_waitqueue_head(&rnp->exp_wq[0]);
4090 init_waitqueue_head(&rnp->exp_wq[1]);
4091 init_waitqueue_head(&rnp->exp_wq[2]);
4092 init_waitqueue_head(&rnp->exp_wq[3]);
4093 spin_lock_init(&rnp->exp_lock);
4094 }
4095 }
4096
4097 init_swait_queue_head(&rsp->gp_wq);
4098 init_swait_queue_head(&rsp->expedited_wq);
4099 rnp = rsp->level[rcu_num_lvls - 1];
4100 for_each_possible_cpu(i) {
4101 while (i > rnp->grphi)
4102 rnp++;
4103 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4104 rcu_boot_init_percpu_data(i, rsp);
4105 }
4106 list_add(&rsp->flavors, &rcu_struct_flavors);
4107 }
4108
4109 /*
4110 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4111 * replace the definitions in tree.h because those are needed to size
4112 * the ->node array in the rcu_state structure.
4113 */
4114 static void __init rcu_init_geometry(void)
4115 {
4116 ulong d;
4117 int i;
4118 int rcu_capacity[RCU_NUM_LVLS];
4119
4120 /*
4121 * Initialize any unspecified boot parameters.
4122 * The default values of jiffies_till_first_fqs and
4123 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4124 * value, which is a function of HZ, then adding one for each
4125 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4126 */
4127 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4128 if (jiffies_till_first_fqs == ULONG_MAX)
4129 jiffies_till_first_fqs = d;
4130 if (jiffies_till_next_fqs == ULONG_MAX)
4131 jiffies_till_next_fqs = d;
4132
4133 /* If the compile-time values are accurate, just leave. */
4134 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4135 nr_cpu_ids == NR_CPUS)
4136 return;
4137 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
4138 rcu_fanout_leaf, nr_cpu_ids);
4139
4140 /*
4141 * The boot-time rcu_fanout_leaf parameter must be at least two
4142 * and cannot exceed the number of bits in the rcu_node masks.
4143 * Complain and fall back to the compile-time values if this
4144 * limit is exceeded.
4145 */
4146 if (rcu_fanout_leaf < 2 ||
4147 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4148 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4149 WARN_ON(1);
4150 return;
4151 }
4152
4153 /*
4154 * Compute number of nodes that can be handled an rcu_node tree
4155 * with the given number of levels.
4156 */
4157 rcu_capacity[0] = rcu_fanout_leaf;
4158 for (i = 1; i < RCU_NUM_LVLS; i++)
4159 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4160
4161 /*
4162 * The tree must be able to accommodate the configured number of CPUs.
4163 * If this limit is exceeded, fall back to the compile-time values.
4164 */
4165 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4166 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4167 WARN_ON(1);
4168 return;
4169 }
4170
4171 /* Calculate the number of levels in the tree. */
4172 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4173 }
4174 rcu_num_lvls = i + 1;
4175
4176 /* Calculate the number of rcu_nodes at each level of the tree. */
4177 for (i = 0; i < rcu_num_lvls; i++) {
4178 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4179 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4180 }
4181
4182 /* Calculate the total number of rcu_node structures. */
4183 rcu_num_nodes = 0;
4184 for (i = 0; i < rcu_num_lvls; i++)
4185 rcu_num_nodes += num_rcu_lvl[i];
4186 }
4187
4188 /*
4189 * Dump out the structure of the rcu_node combining tree associated
4190 * with the rcu_state structure referenced by rsp.
4191 */
4192 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4193 {
4194 int level = 0;
4195 struct rcu_node *rnp;
4196
4197 pr_info("rcu_node tree layout dump\n");
4198 pr_info(" ");
4199 rcu_for_each_node_breadth_first(rsp, rnp) {
4200 if (rnp->level != level) {
4201 pr_cont("\n");
4202 pr_info(" ");
4203 level = rnp->level;
4204 }
4205 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4206 }
4207 pr_cont("\n");
4208 }
4209
4210 void __init rcu_init(void)
4211 {
4212 int cpu;
4213
4214 rcu_early_boot_tests();
4215
4216 rcu_bootup_announce();
4217 rcu_init_geometry();
4218 rcu_init_one(&rcu_bh_state);
4219 rcu_init_one(&rcu_sched_state);
4220 if (dump_tree)
4221 rcu_dump_rcu_node_tree(&rcu_sched_state);
4222 __rcu_init_preempt();
4223 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4224
4225 /*
4226 * We don't need protection against CPU-hotplug here because
4227 * this is called early in boot, before either interrupts
4228 * or the scheduler are operational.
4229 */
4230 pm_notifier(rcu_pm_notify, 0);
4231 for_each_online_cpu(cpu) {
4232 rcutree_prepare_cpu(cpu);
4233 rcu_cpu_starting(cpu);
4234 }
4235 }
4236
4237 #include "tree_exp.h"
4238 #include "tree_plugin.h"
This page took 0.124718 seconds and 5 git commands to generate.