tracing: add sched_set_prio tracepoint
[deliverable/linux.git] / kernel / relay.c
1 /*
2 * Public API and common code for kernel->userspace relay file support.
3 *
4 * See Documentation/filesystems/relay.txt for an overview.
5 *
6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
8 *
9 * Moved to kernel/relay.c by Paul Mundt, 2006.
10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
11 * (mathieu.desnoyers@polymtl.ca)
12 *
13 * This file is released under the GPL.
14 */
15 #include <linux/errno.h>
16 #include <linux/stddef.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <linux/string.h>
20 #include <linux/relay.h>
21 #include <linux/vmalloc.h>
22 #include <linux/mm.h>
23 #include <linux/cpu.h>
24 #include <linux/splice.h>
25
26 /* list of open channels, for cpu hotplug */
27 static DEFINE_MUTEX(relay_channels_mutex);
28 static LIST_HEAD(relay_channels);
29
30 /*
31 * close() vm_op implementation for relay file mapping.
32 */
33 static void relay_file_mmap_close(struct vm_area_struct *vma)
34 {
35 struct rchan_buf *buf = vma->vm_private_data;
36 buf->chan->cb->buf_unmapped(buf, vma->vm_file);
37 }
38
39 /*
40 * fault() vm_op implementation for relay file mapping.
41 */
42 static int relay_buf_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
43 {
44 struct page *page;
45 struct rchan_buf *buf = vma->vm_private_data;
46 pgoff_t pgoff = vmf->pgoff;
47
48 if (!buf)
49 return VM_FAULT_OOM;
50
51 page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
52 if (!page)
53 return VM_FAULT_SIGBUS;
54 get_page(page);
55 vmf->page = page;
56
57 return 0;
58 }
59
60 /*
61 * vm_ops for relay file mappings.
62 */
63 static const struct vm_operations_struct relay_file_mmap_ops = {
64 .fault = relay_buf_fault,
65 .close = relay_file_mmap_close,
66 };
67
68 /*
69 * allocate an array of pointers of struct page
70 */
71 static struct page **relay_alloc_page_array(unsigned int n_pages)
72 {
73 const size_t pa_size = n_pages * sizeof(struct page *);
74 if (pa_size > PAGE_SIZE)
75 return vzalloc(pa_size);
76 return kzalloc(pa_size, GFP_KERNEL);
77 }
78
79 /*
80 * free an array of pointers of struct page
81 */
82 static void relay_free_page_array(struct page **array)
83 {
84 kvfree(array);
85 }
86
87 /**
88 * relay_mmap_buf: - mmap channel buffer to process address space
89 * @buf: relay channel buffer
90 * @vma: vm_area_struct describing memory to be mapped
91 *
92 * Returns 0 if ok, negative on error
93 *
94 * Caller should already have grabbed mmap_sem.
95 */
96 static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
97 {
98 unsigned long length = vma->vm_end - vma->vm_start;
99 struct file *filp = vma->vm_file;
100
101 if (!buf)
102 return -EBADF;
103
104 if (length != (unsigned long)buf->chan->alloc_size)
105 return -EINVAL;
106
107 vma->vm_ops = &relay_file_mmap_ops;
108 vma->vm_flags |= VM_DONTEXPAND;
109 vma->vm_private_data = buf;
110 buf->chan->cb->buf_mapped(buf, filp);
111
112 return 0;
113 }
114
115 /**
116 * relay_alloc_buf - allocate a channel buffer
117 * @buf: the buffer struct
118 * @size: total size of the buffer
119 *
120 * Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
121 * passed in size will get page aligned, if it isn't already.
122 */
123 static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
124 {
125 void *mem;
126 unsigned int i, j, n_pages;
127
128 *size = PAGE_ALIGN(*size);
129 n_pages = *size >> PAGE_SHIFT;
130
131 buf->page_array = relay_alloc_page_array(n_pages);
132 if (!buf->page_array)
133 return NULL;
134
135 for (i = 0; i < n_pages; i++) {
136 buf->page_array[i] = alloc_page(GFP_KERNEL);
137 if (unlikely(!buf->page_array[i]))
138 goto depopulate;
139 set_page_private(buf->page_array[i], (unsigned long)buf);
140 }
141 mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
142 if (!mem)
143 goto depopulate;
144
145 memset(mem, 0, *size);
146 buf->page_count = n_pages;
147 return mem;
148
149 depopulate:
150 for (j = 0; j < i; j++)
151 __free_page(buf->page_array[j]);
152 relay_free_page_array(buf->page_array);
153 return NULL;
154 }
155
156 /**
157 * relay_create_buf - allocate and initialize a channel buffer
158 * @chan: the relay channel
159 *
160 * Returns channel buffer if successful, %NULL otherwise.
161 */
162 static struct rchan_buf *relay_create_buf(struct rchan *chan)
163 {
164 struct rchan_buf *buf;
165
166 if (chan->n_subbufs > UINT_MAX / sizeof(size_t *))
167 return NULL;
168
169 buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
170 if (!buf)
171 return NULL;
172 buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
173 if (!buf->padding)
174 goto free_buf;
175
176 buf->start = relay_alloc_buf(buf, &chan->alloc_size);
177 if (!buf->start)
178 goto free_buf;
179
180 buf->chan = chan;
181 kref_get(&buf->chan->kref);
182 return buf;
183
184 free_buf:
185 kfree(buf->padding);
186 kfree(buf);
187 return NULL;
188 }
189
190 /**
191 * relay_destroy_channel - free the channel struct
192 * @kref: target kernel reference that contains the relay channel
193 *
194 * Should only be called from kref_put().
195 */
196 static void relay_destroy_channel(struct kref *kref)
197 {
198 struct rchan *chan = container_of(kref, struct rchan, kref);
199 kfree(chan);
200 }
201
202 /**
203 * relay_destroy_buf - destroy an rchan_buf struct and associated buffer
204 * @buf: the buffer struct
205 */
206 static void relay_destroy_buf(struct rchan_buf *buf)
207 {
208 struct rchan *chan = buf->chan;
209 unsigned int i;
210
211 if (likely(buf->start)) {
212 vunmap(buf->start);
213 for (i = 0; i < buf->page_count; i++)
214 __free_page(buf->page_array[i]);
215 relay_free_page_array(buf->page_array);
216 }
217 chan->buf[buf->cpu] = NULL;
218 kfree(buf->padding);
219 kfree(buf);
220 kref_put(&chan->kref, relay_destroy_channel);
221 }
222
223 /**
224 * relay_remove_buf - remove a channel buffer
225 * @kref: target kernel reference that contains the relay buffer
226 *
227 * Removes the file from the filesystem, which also frees the
228 * rchan_buf_struct and the channel buffer. Should only be called from
229 * kref_put().
230 */
231 static void relay_remove_buf(struct kref *kref)
232 {
233 struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
234 relay_destroy_buf(buf);
235 }
236
237 /**
238 * relay_buf_empty - boolean, is the channel buffer empty?
239 * @buf: channel buffer
240 *
241 * Returns 1 if the buffer is empty, 0 otherwise.
242 */
243 static int relay_buf_empty(struct rchan_buf *buf)
244 {
245 return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
246 }
247
248 /**
249 * relay_buf_full - boolean, is the channel buffer full?
250 * @buf: channel buffer
251 *
252 * Returns 1 if the buffer is full, 0 otherwise.
253 */
254 int relay_buf_full(struct rchan_buf *buf)
255 {
256 size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
257 return (ready >= buf->chan->n_subbufs) ? 1 : 0;
258 }
259 EXPORT_SYMBOL_GPL(relay_buf_full);
260
261 /*
262 * High-level relay kernel API and associated functions.
263 */
264
265 /*
266 * rchan_callback implementations defining default channel behavior. Used
267 * in place of corresponding NULL values in client callback struct.
268 */
269
270 /*
271 * subbuf_start() default callback. Does nothing.
272 */
273 static int subbuf_start_default_callback (struct rchan_buf *buf,
274 void *subbuf,
275 void *prev_subbuf,
276 size_t prev_padding)
277 {
278 if (relay_buf_full(buf))
279 return 0;
280
281 return 1;
282 }
283
284 /*
285 * buf_mapped() default callback. Does nothing.
286 */
287 static void buf_mapped_default_callback(struct rchan_buf *buf,
288 struct file *filp)
289 {
290 }
291
292 /*
293 * buf_unmapped() default callback. Does nothing.
294 */
295 static void buf_unmapped_default_callback(struct rchan_buf *buf,
296 struct file *filp)
297 {
298 }
299
300 /*
301 * create_buf_file_create() default callback. Does nothing.
302 */
303 static struct dentry *create_buf_file_default_callback(const char *filename,
304 struct dentry *parent,
305 umode_t mode,
306 struct rchan_buf *buf,
307 int *is_global)
308 {
309 return NULL;
310 }
311
312 /*
313 * remove_buf_file() default callback. Does nothing.
314 */
315 static int remove_buf_file_default_callback(struct dentry *dentry)
316 {
317 return -EINVAL;
318 }
319
320 /* relay channel default callbacks */
321 static struct rchan_callbacks default_channel_callbacks = {
322 .subbuf_start = subbuf_start_default_callback,
323 .buf_mapped = buf_mapped_default_callback,
324 .buf_unmapped = buf_unmapped_default_callback,
325 .create_buf_file = create_buf_file_default_callback,
326 .remove_buf_file = remove_buf_file_default_callback,
327 };
328
329 /**
330 * wakeup_readers - wake up readers waiting on a channel
331 * @data: contains the channel buffer
332 *
333 * This is the timer function used to defer reader waking.
334 */
335 static void wakeup_readers(unsigned long data)
336 {
337 struct rchan_buf *buf = (struct rchan_buf *)data;
338 wake_up_interruptible(&buf->read_wait);
339 }
340
341 /**
342 * __relay_reset - reset a channel buffer
343 * @buf: the channel buffer
344 * @init: 1 if this is a first-time initialization
345 *
346 * See relay_reset() for description of effect.
347 */
348 static void __relay_reset(struct rchan_buf *buf, unsigned int init)
349 {
350 size_t i;
351
352 if (init) {
353 init_waitqueue_head(&buf->read_wait);
354 kref_init(&buf->kref);
355 setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
356 } else
357 del_timer_sync(&buf->timer);
358
359 buf->subbufs_produced = 0;
360 buf->subbufs_consumed = 0;
361 buf->bytes_consumed = 0;
362 buf->finalized = 0;
363 buf->data = buf->start;
364 buf->offset = 0;
365
366 for (i = 0; i < buf->chan->n_subbufs; i++)
367 buf->padding[i] = 0;
368
369 buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
370 }
371
372 /**
373 * relay_reset - reset the channel
374 * @chan: the channel
375 *
376 * This has the effect of erasing all data from all channel buffers
377 * and restarting the channel in its initial state. The buffers
378 * are not freed, so any mappings are still in effect.
379 *
380 * NOTE. Care should be taken that the channel isn't actually
381 * being used by anything when this call is made.
382 */
383 void relay_reset(struct rchan *chan)
384 {
385 unsigned int i;
386
387 if (!chan)
388 return;
389
390 if (chan->is_global && chan->buf[0]) {
391 __relay_reset(chan->buf[0], 0);
392 return;
393 }
394
395 mutex_lock(&relay_channels_mutex);
396 for_each_possible_cpu(i)
397 if (chan->buf[i])
398 __relay_reset(chan->buf[i], 0);
399 mutex_unlock(&relay_channels_mutex);
400 }
401 EXPORT_SYMBOL_GPL(relay_reset);
402
403 static inline void relay_set_buf_dentry(struct rchan_buf *buf,
404 struct dentry *dentry)
405 {
406 buf->dentry = dentry;
407 d_inode(buf->dentry)->i_size = buf->early_bytes;
408 }
409
410 static struct dentry *relay_create_buf_file(struct rchan *chan,
411 struct rchan_buf *buf,
412 unsigned int cpu)
413 {
414 struct dentry *dentry;
415 char *tmpname;
416
417 tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
418 if (!tmpname)
419 return NULL;
420 snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
421
422 /* Create file in fs */
423 dentry = chan->cb->create_buf_file(tmpname, chan->parent,
424 S_IRUSR, buf,
425 &chan->is_global);
426
427 kfree(tmpname);
428
429 return dentry;
430 }
431
432 /*
433 * relay_open_buf - create a new relay channel buffer
434 *
435 * used by relay_open() and CPU hotplug.
436 */
437 static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
438 {
439 struct rchan_buf *buf = NULL;
440 struct dentry *dentry;
441
442 if (chan->is_global)
443 return chan->buf[0];
444
445 buf = relay_create_buf(chan);
446 if (!buf)
447 return NULL;
448
449 if (chan->has_base_filename) {
450 dentry = relay_create_buf_file(chan, buf, cpu);
451 if (!dentry)
452 goto free_buf;
453 relay_set_buf_dentry(buf, dentry);
454 }
455
456 buf->cpu = cpu;
457 __relay_reset(buf, 1);
458
459 if(chan->is_global) {
460 chan->buf[0] = buf;
461 buf->cpu = 0;
462 }
463
464 return buf;
465
466 free_buf:
467 relay_destroy_buf(buf);
468 return NULL;
469 }
470
471 /**
472 * relay_close_buf - close a channel buffer
473 * @buf: channel buffer
474 *
475 * Marks the buffer finalized and restores the default callbacks.
476 * The channel buffer and channel buffer data structure are then freed
477 * automatically when the last reference is given up.
478 */
479 static void relay_close_buf(struct rchan_buf *buf)
480 {
481 buf->finalized = 1;
482 del_timer_sync(&buf->timer);
483 buf->chan->cb->remove_buf_file(buf->dentry);
484 kref_put(&buf->kref, relay_remove_buf);
485 }
486
487 static void setup_callbacks(struct rchan *chan,
488 struct rchan_callbacks *cb)
489 {
490 if (!cb) {
491 chan->cb = &default_channel_callbacks;
492 return;
493 }
494
495 if (!cb->subbuf_start)
496 cb->subbuf_start = subbuf_start_default_callback;
497 if (!cb->buf_mapped)
498 cb->buf_mapped = buf_mapped_default_callback;
499 if (!cb->buf_unmapped)
500 cb->buf_unmapped = buf_unmapped_default_callback;
501 if (!cb->create_buf_file)
502 cb->create_buf_file = create_buf_file_default_callback;
503 if (!cb->remove_buf_file)
504 cb->remove_buf_file = remove_buf_file_default_callback;
505 chan->cb = cb;
506 }
507
508 /**
509 * relay_hotcpu_callback - CPU hotplug callback
510 * @nb: notifier block
511 * @action: hotplug action to take
512 * @hcpu: CPU number
513 *
514 * Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
515 */
516 static int relay_hotcpu_callback(struct notifier_block *nb,
517 unsigned long action,
518 void *hcpu)
519 {
520 unsigned int hotcpu = (unsigned long)hcpu;
521 struct rchan *chan;
522
523 switch(action) {
524 case CPU_UP_PREPARE:
525 case CPU_UP_PREPARE_FROZEN:
526 mutex_lock(&relay_channels_mutex);
527 list_for_each_entry(chan, &relay_channels, list) {
528 if (chan->buf[hotcpu])
529 continue;
530 chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
531 if(!chan->buf[hotcpu]) {
532 printk(KERN_ERR
533 "relay_hotcpu_callback: cpu %d buffer "
534 "creation failed\n", hotcpu);
535 mutex_unlock(&relay_channels_mutex);
536 return notifier_from_errno(-ENOMEM);
537 }
538 }
539 mutex_unlock(&relay_channels_mutex);
540 break;
541 case CPU_DEAD:
542 case CPU_DEAD_FROZEN:
543 /* No need to flush the cpu : will be flushed upon
544 * final relay_flush() call. */
545 break;
546 }
547 return NOTIFY_OK;
548 }
549
550 /**
551 * relay_open - create a new relay channel
552 * @base_filename: base name of files to create, %NULL for buffering only
553 * @parent: dentry of parent directory, %NULL for root directory or buffer
554 * @subbuf_size: size of sub-buffers
555 * @n_subbufs: number of sub-buffers
556 * @cb: client callback functions
557 * @private_data: user-defined data
558 *
559 * Returns channel pointer if successful, %NULL otherwise.
560 *
561 * Creates a channel buffer for each cpu using the sizes and
562 * attributes specified. The created channel buffer files
563 * will be named base_filename0...base_filenameN-1. File
564 * permissions will be %S_IRUSR.
565 */
566 struct rchan *relay_open(const char *base_filename,
567 struct dentry *parent,
568 size_t subbuf_size,
569 size_t n_subbufs,
570 struct rchan_callbacks *cb,
571 void *private_data)
572 {
573 unsigned int i;
574 struct rchan *chan;
575
576 if (!(subbuf_size && n_subbufs))
577 return NULL;
578 if (subbuf_size > UINT_MAX / n_subbufs)
579 return NULL;
580
581 chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
582 if (!chan)
583 return NULL;
584
585 chan->version = RELAYFS_CHANNEL_VERSION;
586 chan->n_subbufs = n_subbufs;
587 chan->subbuf_size = subbuf_size;
588 chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
589 chan->parent = parent;
590 chan->private_data = private_data;
591 if (base_filename) {
592 chan->has_base_filename = 1;
593 strlcpy(chan->base_filename, base_filename, NAME_MAX);
594 }
595 setup_callbacks(chan, cb);
596 kref_init(&chan->kref);
597
598 mutex_lock(&relay_channels_mutex);
599 for_each_online_cpu(i) {
600 chan->buf[i] = relay_open_buf(chan, i);
601 if (!chan->buf[i])
602 goto free_bufs;
603 }
604 list_add(&chan->list, &relay_channels);
605 mutex_unlock(&relay_channels_mutex);
606
607 return chan;
608
609 free_bufs:
610 for_each_possible_cpu(i) {
611 if (chan->buf[i])
612 relay_close_buf(chan->buf[i]);
613 }
614
615 kref_put(&chan->kref, relay_destroy_channel);
616 mutex_unlock(&relay_channels_mutex);
617 return NULL;
618 }
619 EXPORT_SYMBOL_GPL(relay_open);
620
621 struct rchan_percpu_buf_dispatcher {
622 struct rchan_buf *buf;
623 struct dentry *dentry;
624 };
625
626 /* Called in atomic context. */
627 static void __relay_set_buf_dentry(void *info)
628 {
629 struct rchan_percpu_buf_dispatcher *p = info;
630
631 relay_set_buf_dentry(p->buf, p->dentry);
632 }
633
634 /**
635 * relay_late_setup_files - triggers file creation
636 * @chan: channel to operate on
637 * @base_filename: base name of files to create
638 * @parent: dentry of parent directory, %NULL for root directory
639 *
640 * Returns 0 if successful, non-zero otherwise.
641 *
642 * Use to setup files for a previously buffer-only channel.
643 * Useful to do early tracing in kernel, before VFS is up, for example.
644 */
645 int relay_late_setup_files(struct rchan *chan,
646 const char *base_filename,
647 struct dentry *parent)
648 {
649 int err = 0;
650 unsigned int i, curr_cpu;
651 unsigned long flags;
652 struct dentry *dentry;
653 struct rchan_percpu_buf_dispatcher disp;
654
655 if (!chan || !base_filename)
656 return -EINVAL;
657
658 strlcpy(chan->base_filename, base_filename, NAME_MAX);
659
660 mutex_lock(&relay_channels_mutex);
661 /* Is chan already set up? */
662 if (unlikely(chan->has_base_filename)) {
663 mutex_unlock(&relay_channels_mutex);
664 return -EEXIST;
665 }
666 chan->has_base_filename = 1;
667 chan->parent = parent;
668 curr_cpu = get_cpu();
669 /*
670 * The CPU hotplug notifier ran before us and created buffers with
671 * no files associated. So it's safe to call relay_setup_buf_file()
672 * on all currently online CPUs.
673 */
674 for_each_online_cpu(i) {
675 if (unlikely(!chan->buf[i])) {
676 WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
677 err = -EINVAL;
678 break;
679 }
680
681 dentry = relay_create_buf_file(chan, chan->buf[i], i);
682 if (unlikely(!dentry)) {
683 err = -EINVAL;
684 break;
685 }
686
687 if (curr_cpu == i) {
688 local_irq_save(flags);
689 relay_set_buf_dentry(chan->buf[i], dentry);
690 local_irq_restore(flags);
691 } else {
692 disp.buf = chan->buf[i];
693 disp.dentry = dentry;
694 smp_mb();
695 /* relay_channels_mutex must be held, so wait. */
696 err = smp_call_function_single(i,
697 __relay_set_buf_dentry,
698 &disp, 1);
699 }
700 if (unlikely(err))
701 break;
702 }
703 put_cpu();
704 mutex_unlock(&relay_channels_mutex);
705
706 return err;
707 }
708
709 /**
710 * relay_switch_subbuf - switch to a new sub-buffer
711 * @buf: channel buffer
712 * @length: size of current event
713 *
714 * Returns either the length passed in or 0 if full.
715 *
716 * Performs sub-buffer-switch tasks such as invoking callbacks,
717 * updating padding counts, waking up readers, etc.
718 */
719 size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
720 {
721 void *old, *new;
722 size_t old_subbuf, new_subbuf;
723
724 if (unlikely(length > buf->chan->subbuf_size))
725 goto toobig;
726
727 if (buf->offset != buf->chan->subbuf_size + 1) {
728 buf->prev_padding = buf->chan->subbuf_size - buf->offset;
729 old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
730 buf->padding[old_subbuf] = buf->prev_padding;
731 buf->subbufs_produced++;
732 if (buf->dentry)
733 d_inode(buf->dentry)->i_size +=
734 buf->chan->subbuf_size -
735 buf->padding[old_subbuf];
736 else
737 buf->early_bytes += buf->chan->subbuf_size -
738 buf->padding[old_subbuf];
739 smp_mb();
740 if (waitqueue_active(&buf->read_wait))
741 /*
742 * Calling wake_up_interruptible() from here
743 * will deadlock if we happen to be logging
744 * from the scheduler (trying to re-grab
745 * rq->lock), so defer it.
746 */
747 mod_timer(&buf->timer, jiffies + 1);
748 }
749
750 old = buf->data;
751 new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
752 new = buf->start + new_subbuf * buf->chan->subbuf_size;
753 buf->offset = 0;
754 if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
755 buf->offset = buf->chan->subbuf_size + 1;
756 return 0;
757 }
758 buf->data = new;
759 buf->padding[new_subbuf] = 0;
760
761 if (unlikely(length + buf->offset > buf->chan->subbuf_size))
762 goto toobig;
763
764 return length;
765
766 toobig:
767 buf->chan->last_toobig = length;
768 return 0;
769 }
770 EXPORT_SYMBOL_GPL(relay_switch_subbuf);
771
772 /**
773 * relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
774 * @chan: the channel
775 * @cpu: the cpu associated with the channel buffer to update
776 * @subbufs_consumed: number of sub-buffers to add to current buf's count
777 *
778 * Adds to the channel buffer's consumed sub-buffer count.
779 * subbufs_consumed should be the number of sub-buffers newly consumed,
780 * not the total consumed.
781 *
782 * NOTE. Kernel clients don't need to call this function if the channel
783 * mode is 'overwrite'.
784 */
785 void relay_subbufs_consumed(struct rchan *chan,
786 unsigned int cpu,
787 size_t subbufs_consumed)
788 {
789 struct rchan_buf *buf;
790
791 if (!chan)
792 return;
793
794 if (cpu >= NR_CPUS || !chan->buf[cpu] ||
795 subbufs_consumed > chan->n_subbufs)
796 return;
797
798 buf = chan->buf[cpu];
799 if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
800 buf->subbufs_consumed = buf->subbufs_produced;
801 else
802 buf->subbufs_consumed += subbufs_consumed;
803 }
804 EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
805
806 /**
807 * relay_close - close the channel
808 * @chan: the channel
809 *
810 * Closes all channel buffers and frees the channel.
811 */
812 void relay_close(struct rchan *chan)
813 {
814 unsigned int i;
815
816 if (!chan)
817 return;
818
819 mutex_lock(&relay_channels_mutex);
820 if (chan->is_global && chan->buf[0])
821 relay_close_buf(chan->buf[0]);
822 else
823 for_each_possible_cpu(i)
824 if (chan->buf[i])
825 relay_close_buf(chan->buf[i]);
826
827 if (chan->last_toobig)
828 printk(KERN_WARNING "relay: one or more items not logged "
829 "[item size (%Zd) > sub-buffer size (%Zd)]\n",
830 chan->last_toobig, chan->subbuf_size);
831
832 list_del(&chan->list);
833 kref_put(&chan->kref, relay_destroy_channel);
834 mutex_unlock(&relay_channels_mutex);
835 }
836 EXPORT_SYMBOL_GPL(relay_close);
837
838 /**
839 * relay_flush - close the channel
840 * @chan: the channel
841 *
842 * Flushes all channel buffers, i.e. forces buffer switch.
843 */
844 void relay_flush(struct rchan *chan)
845 {
846 unsigned int i;
847
848 if (!chan)
849 return;
850
851 if (chan->is_global && chan->buf[0]) {
852 relay_switch_subbuf(chan->buf[0], 0);
853 return;
854 }
855
856 mutex_lock(&relay_channels_mutex);
857 for_each_possible_cpu(i)
858 if (chan->buf[i])
859 relay_switch_subbuf(chan->buf[i], 0);
860 mutex_unlock(&relay_channels_mutex);
861 }
862 EXPORT_SYMBOL_GPL(relay_flush);
863
864 /**
865 * relay_file_open - open file op for relay files
866 * @inode: the inode
867 * @filp: the file
868 *
869 * Increments the channel buffer refcount.
870 */
871 static int relay_file_open(struct inode *inode, struct file *filp)
872 {
873 struct rchan_buf *buf = inode->i_private;
874 kref_get(&buf->kref);
875 filp->private_data = buf;
876
877 return nonseekable_open(inode, filp);
878 }
879
880 /**
881 * relay_file_mmap - mmap file op for relay files
882 * @filp: the file
883 * @vma: the vma describing what to map
884 *
885 * Calls upon relay_mmap_buf() to map the file into user space.
886 */
887 static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
888 {
889 struct rchan_buf *buf = filp->private_data;
890 return relay_mmap_buf(buf, vma);
891 }
892
893 /**
894 * relay_file_poll - poll file op for relay files
895 * @filp: the file
896 * @wait: poll table
897 *
898 * Poll implemention.
899 */
900 static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
901 {
902 unsigned int mask = 0;
903 struct rchan_buf *buf = filp->private_data;
904
905 if (buf->finalized)
906 return POLLERR;
907
908 if (filp->f_mode & FMODE_READ) {
909 poll_wait(filp, &buf->read_wait, wait);
910 if (!relay_buf_empty(buf))
911 mask |= POLLIN | POLLRDNORM;
912 }
913
914 return mask;
915 }
916
917 /**
918 * relay_file_release - release file op for relay files
919 * @inode: the inode
920 * @filp: the file
921 *
922 * Decrements the channel refcount, as the filesystem is
923 * no longer using it.
924 */
925 static int relay_file_release(struct inode *inode, struct file *filp)
926 {
927 struct rchan_buf *buf = filp->private_data;
928 kref_put(&buf->kref, relay_remove_buf);
929
930 return 0;
931 }
932
933 /*
934 * relay_file_read_consume - update the consumed count for the buffer
935 */
936 static void relay_file_read_consume(struct rchan_buf *buf,
937 size_t read_pos,
938 size_t bytes_consumed)
939 {
940 size_t subbuf_size = buf->chan->subbuf_size;
941 size_t n_subbufs = buf->chan->n_subbufs;
942 size_t read_subbuf;
943
944 if (buf->subbufs_produced == buf->subbufs_consumed &&
945 buf->offset == buf->bytes_consumed)
946 return;
947
948 if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
949 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
950 buf->bytes_consumed = 0;
951 }
952
953 buf->bytes_consumed += bytes_consumed;
954 if (!read_pos)
955 read_subbuf = buf->subbufs_consumed % n_subbufs;
956 else
957 read_subbuf = read_pos / buf->chan->subbuf_size;
958 if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
959 if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
960 (buf->offset == subbuf_size))
961 return;
962 relay_subbufs_consumed(buf->chan, buf->cpu, 1);
963 buf->bytes_consumed = 0;
964 }
965 }
966
967 /*
968 * relay_file_read_avail - boolean, are there unconsumed bytes available?
969 */
970 static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
971 {
972 size_t subbuf_size = buf->chan->subbuf_size;
973 size_t n_subbufs = buf->chan->n_subbufs;
974 size_t produced = buf->subbufs_produced;
975 size_t consumed = buf->subbufs_consumed;
976
977 relay_file_read_consume(buf, read_pos, 0);
978
979 consumed = buf->subbufs_consumed;
980
981 if (unlikely(buf->offset > subbuf_size)) {
982 if (produced == consumed)
983 return 0;
984 return 1;
985 }
986
987 if (unlikely(produced - consumed >= n_subbufs)) {
988 consumed = produced - n_subbufs + 1;
989 buf->subbufs_consumed = consumed;
990 buf->bytes_consumed = 0;
991 }
992
993 produced = (produced % n_subbufs) * subbuf_size + buf->offset;
994 consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
995
996 if (consumed > produced)
997 produced += n_subbufs * subbuf_size;
998
999 if (consumed == produced) {
1000 if (buf->offset == subbuf_size &&
1001 buf->subbufs_produced > buf->subbufs_consumed)
1002 return 1;
1003 return 0;
1004 }
1005
1006 return 1;
1007 }
1008
1009 /**
1010 * relay_file_read_subbuf_avail - return bytes available in sub-buffer
1011 * @read_pos: file read position
1012 * @buf: relay channel buffer
1013 */
1014 static size_t relay_file_read_subbuf_avail(size_t read_pos,
1015 struct rchan_buf *buf)
1016 {
1017 size_t padding, avail = 0;
1018 size_t read_subbuf, read_offset, write_subbuf, write_offset;
1019 size_t subbuf_size = buf->chan->subbuf_size;
1020
1021 write_subbuf = (buf->data - buf->start) / subbuf_size;
1022 write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1023 read_subbuf = read_pos / subbuf_size;
1024 read_offset = read_pos % subbuf_size;
1025 padding = buf->padding[read_subbuf];
1026
1027 if (read_subbuf == write_subbuf) {
1028 if (read_offset + padding < write_offset)
1029 avail = write_offset - (read_offset + padding);
1030 } else
1031 avail = (subbuf_size - padding) - read_offset;
1032
1033 return avail;
1034 }
1035
1036 /**
1037 * relay_file_read_start_pos - find the first available byte to read
1038 * @read_pos: file read position
1039 * @buf: relay channel buffer
1040 *
1041 * If the @read_pos is in the middle of padding, return the
1042 * position of the first actually available byte, otherwise
1043 * return the original value.
1044 */
1045 static size_t relay_file_read_start_pos(size_t read_pos,
1046 struct rchan_buf *buf)
1047 {
1048 size_t read_subbuf, padding, padding_start, padding_end;
1049 size_t subbuf_size = buf->chan->subbuf_size;
1050 size_t n_subbufs = buf->chan->n_subbufs;
1051 size_t consumed = buf->subbufs_consumed % n_subbufs;
1052
1053 if (!read_pos)
1054 read_pos = consumed * subbuf_size + buf->bytes_consumed;
1055 read_subbuf = read_pos / subbuf_size;
1056 padding = buf->padding[read_subbuf];
1057 padding_start = (read_subbuf + 1) * subbuf_size - padding;
1058 padding_end = (read_subbuf + 1) * subbuf_size;
1059 if (read_pos >= padding_start && read_pos < padding_end) {
1060 read_subbuf = (read_subbuf + 1) % n_subbufs;
1061 read_pos = read_subbuf * subbuf_size;
1062 }
1063
1064 return read_pos;
1065 }
1066
1067 /**
1068 * relay_file_read_end_pos - return the new read position
1069 * @read_pos: file read position
1070 * @buf: relay channel buffer
1071 * @count: number of bytes to be read
1072 */
1073 static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1074 size_t read_pos,
1075 size_t count)
1076 {
1077 size_t read_subbuf, padding, end_pos;
1078 size_t subbuf_size = buf->chan->subbuf_size;
1079 size_t n_subbufs = buf->chan->n_subbufs;
1080
1081 read_subbuf = read_pos / subbuf_size;
1082 padding = buf->padding[read_subbuf];
1083 if (read_pos % subbuf_size + count + padding == subbuf_size)
1084 end_pos = (read_subbuf + 1) * subbuf_size;
1085 else
1086 end_pos = read_pos + count;
1087 if (end_pos >= subbuf_size * n_subbufs)
1088 end_pos = 0;
1089
1090 return end_pos;
1091 }
1092
1093 /*
1094 * subbuf_read_actor - read up to one subbuf's worth of data
1095 */
1096 static int subbuf_read_actor(size_t read_start,
1097 struct rchan_buf *buf,
1098 size_t avail,
1099 read_descriptor_t *desc)
1100 {
1101 void *from;
1102 int ret = 0;
1103
1104 from = buf->start + read_start;
1105 ret = avail;
1106 if (copy_to_user(desc->arg.buf, from, avail)) {
1107 desc->error = -EFAULT;
1108 ret = 0;
1109 }
1110 desc->arg.data += ret;
1111 desc->written += ret;
1112 desc->count -= ret;
1113
1114 return ret;
1115 }
1116
1117 typedef int (*subbuf_actor_t) (size_t read_start,
1118 struct rchan_buf *buf,
1119 size_t avail,
1120 read_descriptor_t *desc);
1121
1122 /*
1123 * relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
1124 */
1125 static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
1126 subbuf_actor_t subbuf_actor,
1127 read_descriptor_t *desc)
1128 {
1129 struct rchan_buf *buf = filp->private_data;
1130 size_t read_start, avail;
1131 int ret;
1132
1133 if (!desc->count)
1134 return 0;
1135
1136 inode_lock(file_inode(filp));
1137 do {
1138 if (!relay_file_read_avail(buf, *ppos))
1139 break;
1140
1141 read_start = relay_file_read_start_pos(*ppos, buf);
1142 avail = relay_file_read_subbuf_avail(read_start, buf);
1143 if (!avail)
1144 break;
1145
1146 avail = min(desc->count, avail);
1147 ret = subbuf_actor(read_start, buf, avail, desc);
1148 if (desc->error < 0)
1149 break;
1150
1151 if (ret) {
1152 relay_file_read_consume(buf, read_start, ret);
1153 *ppos = relay_file_read_end_pos(buf, read_start, ret);
1154 }
1155 } while (desc->count && ret);
1156 inode_unlock(file_inode(filp));
1157
1158 return desc->written;
1159 }
1160
1161 static ssize_t relay_file_read(struct file *filp,
1162 char __user *buffer,
1163 size_t count,
1164 loff_t *ppos)
1165 {
1166 read_descriptor_t desc;
1167 desc.written = 0;
1168 desc.count = count;
1169 desc.arg.buf = buffer;
1170 desc.error = 0;
1171 return relay_file_read_subbufs(filp, ppos, subbuf_read_actor, &desc);
1172 }
1173
1174 static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1175 {
1176 rbuf->bytes_consumed += bytes_consumed;
1177
1178 if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1179 relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1180 rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1181 }
1182 }
1183
1184 static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1185 struct pipe_buffer *buf)
1186 {
1187 struct rchan_buf *rbuf;
1188
1189 rbuf = (struct rchan_buf *)page_private(buf->page);
1190 relay_consume_bytes(rbuf, buf->private);
1191 }
1192
1193 static const struct pipe_buf_operations relay_pipe_buf_ops = {
1194 .can_merge = 0,
1195 .confirm = generic_pipe_buf_confirm,
1196 .release = relay_pipe_buf_release,
1197 .steal = generic_pipe_buf_steal,
1198 .get = generic_pipe_buf_get,
1199 };
1200
1201 static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1202 {
1203 }
1204
1205 /*
1206 * subbuf_splice_actor - splice up to one subbuf's worth of data
1207 */
1208 static ssize_t subbuf_splice_actor(struct file *in,
1209 loff_t *ppos,
1210 struct pipe_inode_info *pipe,
1211 size_t len,
1212 unsigned int flags,
1213 int *nonpad_ret)
1214 {
1215 unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1216 struct rchan_buf *rbuf = in->private_data;
1217 unsigned int subbuf_size = rbuf->chan->subbuf_size;
1218 uint64_t pos = (uint64_t) *ppos;
1219 uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1220 size_t read_start = (size_t) do_div(pos, alloc_size);
1221 size_t read_subbuf = read_start / subbuf_size;
1222 size_t padding = rbuf->padding[read_subbuf];
1223 size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1224 struct page *pages[PIPE_DEF_BUFFERS];
1225 struct partial_page partial[PIPE_DEF_BUFFERS];
1226 struct splice_pipe_desc spd = {
1227 .pages = pages,
1228 .nr_pages = 0,
1229 .nr_pages_max = PIPE_DEF_BUFFERS,
1230 .partial = partial,
1231 .flags = flags,
1232 .ops = &relay_pipe_buf_ops,
1233 .spd_release = relay_page_release,
1234 };
1235 ssize_t ret;
1236
1237 if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1238 return 0;
1239 if (splice_grow_spd(pipe, &spd))
1240 return -ENOMEM;
1241
1242 /*
1243 * Adjust read len, if longer than what is available
1244 */
1245 if (len > (subbuf_size - read_start % subbuf_size))
1246 len = subbuf_size - read_start % subbuf_size;
1247
1248 subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1249 pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1250 poff = read_start & ~PAGE_MASK;
1251 nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1252
1253 for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1254 unsigned int this_len, this_end, private;
1255 unsigned int cur_pos = read_start + total_len;
1256
1257 if (!len)
1258 break;
1259
1260 this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1261 private = this_len;
1262
1263 spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1264 spd.partial[spd.nr_pages].offset = poff;
1265
1266 this_end = cur_pos + this_len;
1267 if (this_end >= nonpad_end) {
1268 this_len = nonpad_end - cur_pos;
1269 private = this_len + padding;
1270 }
1271 spd.partial[spd.nr_pages].len = this_len;
1272 spd.partial[spd.nr_pages].private = private;
1273
1274 len -= this_len;
1275 total_len += this_len;
1276 poff = 0;
1277 pidx = (pidx + 1) % subbuf_pages;
1278
1279 if (this_end >= nonpad_end) {
1280 spd.nr_pages++;
1281 break;
1282 }
1283 }
1284
1285 ret = 0;
1286 if (!spd.nr_pages)
1287 goto out;
1288
1289 ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1290 if (ret < 0 || ret < total_len)
1291 goto out;
1292
1293 if (read_start + ret == nonpad_end)
1294 ret += padding;
1295
1296 out:
1297 splice_shrink_spd(&spd);
1298 return ret;
1299 }
1300
1301 static ssize_t relay_file_splice_read(struct file *in,
1302 loff_t *ppos,
1303 struct pipe_inode_info *pipe,
1304 size_t len,
1305 unsigned int flags)
1306 {
1307 ssize_t spliced;
1308 int ret;
1309 int nonpad_ret = 0;
1310
1311 ret = 0;
1312 spliced = 0;
1313
1314 while (len && !spliced) {
1315 ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1316 if (ret < 0)
1317 break;
1318 else if (!ret) {
1319 if (flags & SPLICE_F_NONBLOCK)
1320 ret = -EAGAIN;
1321 break;
1322 }
1323
1324 *ppos += ret;
1325 if (ret > len)
1326 len = 0;
1327 else
1328 len -= ret;
1329 spliced += nonpad_ret;
1330 nonpad_ret = 0;
1331 }
1332
1333 if (spliced)
1334 return spliced;
1335
1336 return ret;
1337 }
1338
1339 const struct file_operations relay_file_operations = {
1340 .open = relay_file_open,
1341 .poll = relay_file_poll,
1342 .mmap = relay_file_mmap,
1343 .read = relay_file_read,
1344 .llseek = no_llseek,
1345 .release = relay_file_release,
1346 .splice_read = relay_file_splice_read,
1347 };
1348 EXPORT_SYMBOL_GPL(relay_file_operations);
1349
1350 static __init int relay_init(void)
1351 {
1352
1353 hotcpu_notifier(relay_hotcpu_callback, 0);
1354 return 0;
1355 }
1356
1357 early_initcall(relay_init);
This page took 0.056893 seconds and 5 git commands to generate.