tracing: add sched_set_prio tracepoint
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 #ifdef CONFIG_SCHED_HRTICK
174 /*
175 * Use HR-timers to deliver accurate preemption points.
176 */
177
178 static void hrtick_clear(struct rq *rq)
179 {
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182 }
183
184 /*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188 static enum hrtimer_restart hrtick(struct hrtimer *timer)
189 {
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
194 raw_spin_lock(&rq->lock);
195 update_rq_clock(rq);
196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 raw_spin_unlock(&rq->lock);
198
199 return HRTIMER_NORESTART;
200 }
201
202 #ifdef CONFIG_SMP
203
204 static void __hrtick_restart(struct rq *rq)
205 {
206 struct hrtimer *timer = &rq->hrtick_timer;
207
208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209 }
210
211 /*
212 * called from hardirq (IPI) context
213 */
214 static void __hrtick_start(void *arg)
215 {
216 struct rq *rq = arg;
217
218 raw_spin_lock(&rq->lock);
219 __hrtick_restart(rq);
220 rq->hrtick_csd_pending = 0;
221 raw_spin_unlock(&rq->lock);
222 }
223
224 /*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
229 void hrtick_start(struct rq *rq, u64 delay)
230 {
231 struct hrtimer *timer = &rq->hrtick_timer;
232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
241
242 hrtimer_set_expires(timer, time);
243
244 if (rq == this_rq()) {
245 __hrtick_restart(rq);
246 } else if (!rq->hrtick_csd_pending) {
247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 rq->hrtick_csd_pending = 1;
249 }
250 }
251
252 static int
253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254 {
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
264 hrtick_clear(cpu_rq(cpu));
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269 }
270
271 static __init void init_hrtick(void)
272 {
273 hotcpu_notifier(hotplug_hrtick, 0);
274 }
275 #else
276 /*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
290 }
291
292 static inline void init_hrtick(void)
293 {
294 }
295 #endif /* CONFIG_SMP */
296
297 static void init_rq_hrtick(struct rq *rq)
298 {
299 #ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
301
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305 #endif
306
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
309 }
310 #else /* CONFIG_SCHED_HRTICK */
311 static inline void hrtick_clear(struct rq *rq)
312 {
313 }
314
315 static inline void init_rq_hrtick(struct rq *rq)
316 {
317 }
318
319 static inline void init_hrtick(void)
320 {
321 }
322 #endif /* CONFIG_SCHED_HRTICK */
323
324 /*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327 #define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340 })
341
342 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343 /*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348 static bool set_nr_and_not_polling(struct task_struct *p)
349 {
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352 }
353
354 /*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360 static bool set_nr_if_polling(struct task_struct *p)
361 {
362 struct thread_info *ti = task_thread_info(p);
363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376 }
377
378 #else
379 static bool set_nr_and_not_polling(struct task_struct *p)
380 {
381 set_tsk_need_resched(p);
382 return true;
383 }
384
385 #ifdef CONFIG_SMP
386 static bool set_nr_if_polling(struct task_struct *p)
387 {
388 return false;
389 }
390 #endif
391 #endif
392
393 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394 {
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415 }
416
417 void wake_up_q(struct wake_q_head *head)
418 {
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437 }
438
439 /*
440 * resched_curr - mark rq's current task 'to be rescheduled now'.
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
446 void resched_curr(struct rq *rq)
447 {
448 struct task_struct *curr = rq->curr;
449 int cpu;
450
451 lockdep_assert_held(&rq->lock);
452
453 if (test_tsk_need_resched(curr))
454 return;
455
456 cpu = cpu_of(rq);
457
458 if (cpu == smp_processor_id()) {
459 set_tsk_need_resched(curr);
460 set_preempt_need_resched();
461 return;
462 }
463
464 if (set_nr_and_not_polling(curr))
465 smp_send_reschedule(cpu);
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
468 }
469
470 void resched_cpu(int cpu)
471 {
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
476 return;
477 resched_curr(rq);
478 raw_spin_unlock_irqrestore(&rq->lock, flags);
479 }
480
481 #ifdef CONFIG_SMP
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
491 int get_nohz_timer_target(void)
492 {
493 int i, cpu = smp_processor_id();
494 struct sched_domain *sd;
495
496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 return cpu;
498
499 rcu_read_lock();
500 for_each_domain(cpu, sd) {
501 for_each_cpu(i, sched_domain_span(sd)) {
502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 cpu = i;
504 goto unlock;
505 }
506 }
507 }
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
511 unlock:
512 rcu_read_unlock();
513 return cpu;
514 }
515 /*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
525 static void wake_up_idle_cpu(int cpu)
526 {
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
532 if (set_nr_and_not_polling(rq->idle))
533 smp_send_reschedule(cpu);
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
536 }
537
538 static bool wake_up_full_nohz_cpu(int cpu)
539 {
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
546 if (tick_nohz_full_cpu(cpu)) {
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
549 tick_nohz_full_kick_cpu(cpu);
550 return true;
551 }
552
553 return false;
554 }
555
556 void wake_up_nohz_cpu(int cpu)
557 {
558 if (!wake_up_full_nohz_cpu(cpu))
559 wake_up_idle_cpu(cpu);
560 }
561
562 static inline bool got_nohz_idle_kick(void)
563 {
564 int cpu = smp_processor_id();
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
578 }
579
580 #else /* CONFIG_NO_HZ_COMMON */
581
582 static inline bool got_nohz_idle_kick(void)
583 {
584 return false;
585 }
586
587 #endif /* CONFIG_NO_HZ_COMMON */
588
589 #ifdef CONFIG_NO_HZ_FULL
590 bool sched_can_stop_tick(struct rq *rq)
591 {
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
598 /*
599 * If there are more than one RR tasks, we need the tick to effect the
600 * actual RR behaviour.
601 */
602 if (rq->rt.rr_nr_running) {
603 if (rq->rt.rr_nr_running == 1)
604 return true;
605 else
606 return false;
607 }
608
609 /*
610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 * forced preemption between FIFO tasks.
612 */
613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 if (fifo_nr_running)
615 return true;
616
617 /*
618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 * if there's more than one we need the tick for involuntary
620 * preemption.
621 */
622 if (rq->nr_running > 1)
623 return false;
624
625 return true;
626 }
627 #endif /* CONFIG_NO_HZ_FULL */
628
629 void sched_avg_update(struct rq *rq)
630 {
631 s64 period = sched_avg_period();
632
633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
634 /*
635 * Inline assembly required to prevent the compiler
636 * optimising this loop into a divmod call.
637 * See __iter_div_u64_rem() for another example of this.
638 */
639 asm("" : "+rm" (rq->age_stamp));
640 rq->age_stamp += period;
641 rq->rt_avg /= 2;
642 }
643 }
644
645 #endif /* CONFIG_SMP */
646
647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649 /*
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
654 */
655 int walk_tg_tree_from(struct task_group *from,
656 tg_visitor down, tg_visitor up, void *data)
657 {
658 struct task_group *parent, *child;
659 int ret;
660
661 parent = from;
662
663 down:
664 ret = (*down)(parent, data);
665 if (ret)
666 goto out;
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671 up:
672 continue;
673 }
674 ret = (*up)(parent, data);
675 if (ret || parent == from)
676 goto out;
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
682 out:
683 return ret;
684 }
685
686 int tg_nop(struct task_group *tg, void *data)
687 {
688 return 0;
689 }
690 #endif
691
692 static void set_load_weight(struct task_struct *p)
693 {
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
700 if (idle_policy(p->policy)) {
701 load->weight = scale_load(WEIGHT_IDLEPRIO);
702 load->inv_weight = WMULT_IDLEPRIO;
703 return;
704 }
705
706 load->weight = scale_load(sched_prio_to_weight[prio]);
707 load->inv_weight = sched_prio_to_wmult[prio];
708 }
709
710 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
711 {
712 update_rq_clock(rq);
713 if (!(flags & ENQUEUE_RESTORE))
714 sched_info_queued(rq, p);
715 p->sched_class->enqueue_task(rq, p, flags);
716 }
717
718 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
719 {
720 update_rq_clock(rq);
721 if (!(flags & DEQUEUE_SAVE))
722 sched_info_dequeued(rq, p);
723 p->sched_class->dequeue_task(rq, p, flags);
724 }
725
726 void activate_task(struct rq *rq, struct task_struct *p, int flags)
727 {
728 if (task_contributes_to_load(p))
729 rq->nr_uninterruptible--;
730
731 enqueue_task(rq, p, flags);
732 }
733
734 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
735 {
736 if (task_contributes_to_load(p))
737 rq->nr_uninterruptible++;
738
739 dequeue_task(rq, p, flags);
740 }
741
742 static void update_rq_clock_task(struct rq *rq, s64 delta)
743 {
744 /*
745 * In theory, the compile should just see 0 here, and optimize out the call
746 * to sched_rt_avg_update. But I don't trust it...
747 */
748 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 s64 steal = 0, irq_delta = 0;
750 #endif
751 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753
754 /*
755 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 * this case when a previous update_rq_clock() happened inside a
757 * {soft,}irq region.
758 *
759 * When this happens, we stop ->clock_task and only update the
760 * prev_irq_time stamp to account for the part that fit, so that a next
761 * update will consume the rest. This ensures ->clock_task is
762 * monotonic.
763 *
764 * It does however cause some slight miss-attribution of {soft,}irq
765 * time, a more accurate solution would be to update the irq_time using
766 * the current rq->clock timestamp, except that would require using
767 * atomic ops.
768 */
769 if (irq_delta > delta)
770 irq_delta = delta;
771
772 rq->prev_irq_time += irq_delta;
773 delta -= irq_delta;
774 #endif
775 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
776 if (static_key_false((&paravirt_steal_rq_enabled))) {
777 steal = paravirt_steal_clock(cpu_of(rq));
778 steal -= rq->prev_steal_time_rq;
779
780 if (unlikely(steal > delta))
781 steal = delta;
782
783 rq->prev_steal_time_rq += steal;
784 delta -= steal;
785 }
786 #endif
787
788 rq->clock_task += delta;
789
790 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
792 sched_rt_avg_update(rq, irq_delta + steal);
793 #endif
794 }
795
796 void sched_set_stop_task(int cpu, struct task_struct *stop)
797 {
798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 struct task_struct *old_stop = cpu_rq(cpu)->stop;
800
801 if (stop) {
802 /*
803 * Make it appear like a SCHED_FIFO task, its something
804 * userspace knows about and won't get confused about.
805 *
806 * Also, it will make PI more or less work without too
807 * much confusion -- but then, stop work should not
808 * rely on PI working anyway.
809 */
810 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
811
812 stop->sched_class = &stop_sched_class;
813 }
814
815 cpu_rq(cpu)->stop = stop;
816
817 if (old_stop) {
818 /*
819 * Reset it back to a normal scheduling class so that
820 * it can die in pieces.
821 */
822 old_stop->sched_class = &rt_sched_class;
823 }
824 }
825
826 /*
827 * __normal_prio - return the priority that is based on the static prio
828 */
829 static inline int __normal_prio(struct task_struct *p)
830 {
831 return p->static_prio;
832 }
833
834 /*
835 * Calculate the expected normal priority: i.e. priority
836 * without taking RT-inheritance into account. Might be
837 * boosted by interactivity modifiers. Changes upon fork,
838 * setprio syscalls, and whenever the interactivity
839 * estimator recalculates.
840 */
841 static inline int normal_prio(struct task_struct *p)
842 {
843 int prio;
844
845 if (task_has_dl_policy(p))
846 prio = MAX_DL_PRIO-1;
847 else if (task_has_rt_policy(p))
848 prio = MAX_RT_PRIO-1 - p->rt_priority;
849 else
850 prio = __normal_prio(p);
851 return prio;
852 }
853
854 /*
855 * Calculate the current priority, i.e. the priority
856 * taken into account by the scheduler. This value might
857 * be boosted by RT tasks, or might be boosted by
858 * interactivity modifiers. Will be RT if the task got
859 * RT-boosted. If not then it returns p->normal_prio.
860 */
861 static int effective_prio(struct task_struct *p)
862 {
863 p->normal_prio = normal_prio(p);
864 /*
865 * If we are RT tasks or we were boosted to RT priority,
866 * keep the priority unchanged. Otherwise, update priority
867 * to the normal priority:
868 */
869 if (!rt_prio(p->prio))
870 return p->normal_prio;
871 return p->prio;
872 }
873
874 /**
875 * task_curr - is this task currently executing on a CPU?
876 * @p: the task in question.
877 *
878 * Return: 1 if the task is currently executing. 0 otherwise.
879 */
880 inline int task_curr(const struct task_struct *p)
881 {
882 return cpu_curr(task_cpu(p)) == p;
883 }
884
885 /*
886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887 * use the balance_callback list if you want balancing.
888 *
889 * this means any call to check_class_changed() must be followed by a call to
890 * balance_callback().
891 */
892 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 const struct sched_class *prev_class,
894 int oldprio)
895 {
896 if (prev_class != p->sched_class) {
897 if (prev_class->switched_from)
898 prev_class->switched_from(rq, p);
899
900 p->sched_class->switched_to(rq, p);
901 } else if (oldprio != p->prio || dl_task(p))
902 p->sched_class->prio_changed(rq, p, oldprio);
903 }
904
905 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
906 {
907 const struct sched_class *class;
908
909 if (p->sched_class == rq->curr->sched_class) {
910 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 } else {
912 for_each_class(class) {
913 if (class == rq->curr->sched_class)
914 break;
915 if (class == p->sched_class) {
916 resched_curr(rq);
917 break;
918 }
919 }
920 }
921
922 /*
923 * A queue event has occurred, and we're going to schedule. In
924 * this case, we can save a useless back to back clock update.
925 */
926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
927 rq_clock_skip_update(rq, true);
928 }
929
930 #ifdef CONFIG_SMP
931 /*
932 * This is how migration works:
933 *
934 * 1) we invoke migration_cpu_stop() on the target CPU using
935 * stop_one_cpu().
936 * 2) stopper starts to run (implicitly forcing the migrated thread
937 * off the CPU)
938 * 3) it checks whether the migrated task is still in the wrong runqueue.
939 * 4) if it's in the wrong runqueue then the migration thread removes
940 * it and puts it into the right queue.
941 * 5) stopper completes and stop_one_cpu() returns and the migration
942 * is done.
943 */
944
945 /*
946 * move_queued_task - move a queued task to new rq.
947 *
948 * Returns (locked) new rq. Old rq's lock is released.
949 */
950 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
951 {
952 lockdep_assert_held(&rq->lock);
953
954 p->on_rq = TASK_ON_RQ_MIGRATING;
955 dequeue_task(rq, p, 0);
956 set_task_cpu(p, new_cpu);
957 raw_spin_unlock(&rq->lock);
958
959 rq = cpu_rq(new_cpu);
960
961 raw_spin_lock(&rq->lock);
962 BUG_ON(task_cpu(p) != new_cpu);
963 enqueue_task(rq, p, 0);
964 p->on_rq = TASK_ON_RQ_QUEUED;
965 check_preempt_curr(rq, p, 0);
966
967 return rq;
968 }
969
970 struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973 };
974
975 /*
976 * Move (not current) task off this cpu, onto dest cpu. We're doing
977 * this because either it can't run here any more (set_cpus_allowed()
978 * away from this CPU, or CPU going down), or because we're
979 * attempting to rebalance this task on exec (sched_exec).
980 *
981 * So we race with normal scheduler movements, but that's OK, as long
982 * as the task is no longer on this CPU.
983 */
984 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
985 {
986 if (unlikely(!cpu_active(dest_cpu)))
987 return rq;
988
989 /* Affinity changed (again). */
990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
991 return rq;
992
993 rq = move_queued_task(rq, p, dest_cpu);
994
995 return rq;
996 }
997
998 /*
999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003 static int migration_cpu_stop(void *data)
1004 {
1005 struct migration_arg *arg = data;
1006 struct task_struct *p = arg->task;
1007 struct rq *rq = this_rq();
1008
1009 /*
1010 * The original target cpu might have gone down and we might
1011 * be on another cpu but it doesn't matter.
1012 */
1013 local_irq_disable();
1014 /*
1015 * We need to explicitly wake pending tasks before running
1016 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 */
1019 sched_ttwu_pending();
1020
1021 raw_spin_lock(&p->pi_lock);
1022 raw_spin_lock(&rq->lock);
1023 /*
1024 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 * we're holding p->pi_lock.
1027 */
1028 if (task_rq(p) == rq && task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 raw_spin_unlock(&rq->lock);
1031 raw_spin_unlock(&p->pi_lock);
1032
1033 local_irq_enable();
1034 return 0;
1035 }
1036
1037 /*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1042 {
1043 cpumask_copy(&p->cpus_allowed, new_mask);
1044 p->nr_cpus_allowed = cpumask_weight(new_mask);
1045 }
1046
1047 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048 {
1049 struct rq *rq = task_rq(p);
1050 bool queued, running;
1051
1052 lockdep_assert_held(&p->pi_lock);
1053
1054 queued = task_on_rq_queued(p);
1055 running = task_current(rq, p);
1056
1057 if (queued) {
1058 /*
1059 * Because __kthread_bind() calls this on blocked tasks without
1060 * holding rq->lock.
1061 */
1062 lockdep_assert_held(&rq->lock);
1063 dequeue_task(rq, p, DEQUEUE_SAVE);
1064 }
1065 if (running)
1066 put_prev_task(rq, p);
1067
1068 p->sched_class->set_cpus_allowed(p, new_mask);
1069
1070 if (running)
1071 p->sched_class->set_curr_task(rq);
1072 if (queued)
1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
1074 }
1075
1076 /*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
1085 static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 const struct cpumask *new_mask, bool check)
1087 {
1088 unsigned long flags;
1089 struct rq *rq;
1090 unsigned int dest_cpu;
1091 int ret = 0;
1092
1093 rq = task_rq_lock(p, &flags);
1094
1095 /*
1096 * Must re-check here, to close a race against __kthread_bind(),
1097 * sched_setaffinity() is not guaranteed to observe the flag.
1098 */
1099 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 ret = -EINVAL;
1101 goto out;
1102 }
1103
1104 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 goto out;
1106
1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
1112 do_set_cpus_allowed(p, new_mask);
1113
1114 /* Can the task run on the task's current CPU? If so, we're done */
1115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 goto out;
1117
1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 struct migration_arg arg = { p, dest_cpu };
1121 /* Need help from migration thread: drop lock and wait. */
1122 task_rq_unlock(rq, p, &flags);
1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 tlb_migrate_finish(p->mm);
1125 return 0;
1126 } else if (task_on_rq_queued(p)) {
1127 /*
1128 * OK, since we're going to drop the lock immediately
1129 * afterwards anyway.
1130 */
1131 lockdep_unpin_lock(&rq->lock);
1132 rq = move_queued_task(rq, p, dest_cpu);
1133 lockdep_pin_lock(&rq->lock);
1134 }
1135 out:
1136 task_rq_unlock(rq, p, &flags);
1137
1138 return ret;
1139 }
1140
1141 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142 {
1143 return __set_cpus_allowed_ptr(p, new_mask, false);
1144 }
1145 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
1147 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1148 {
1149 #ifdef CONFIG_SCHED_DEBUG
1150 /*
1151 * We should never call set_task_cpu() on a blocked task,
1152 * ttwu() will sort out the placement.
1153 */
1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1155 !p->on_rq);
1156
1157 /*
1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 * time relying on p->on_rq.
1161 */
1162 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 p->sched_class == &fair_sched_class &&
1164 (p->on_rq && !task_on_rq_migrating(p)));
1165
1166 #ifdef CONFIG_LOCKDEP
1167 /*
1168 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 *
1171 * sched_move_task() holds both and thus holding either pins the cgroup,
1172 * see task_group().
1173 *
1174 * Furthermore, all task_rq users should acquire both locks, see
1175 * task_rq_lock().
1176 */
1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 lockdep_is_held(&task_rq(p)->lock)));
1179 #endif
1180 #endif
1181
1182 trace_sched_migrate_task(p, new_cpu);
1183
1184 if (task_cpu(p) != new_cpu) {
1185 if (p->sched_class->migrate_task_rq)
1186 p->sched_class->migrate_task_rq(p);
1187 p->se.nr_migrations++;
1188 perf_event_task_migrate(p);
1189 }
1190
1191 __set_task_cpu(p, new_cpu);
1192 }
1193
1194 static void __migrate_swap_task(struct task_struct *p, int cpu)
1195 {
1196 if (task_on_rq_queued(p)) {
1197 struct rq *src_rq, *dst_rq;
1198
1199 src_rq = task_rq(p);
1200 dst_rq = cpu_rq(cpu);
1201
1202 p->on_rq = TASK_ON_RQ_MIGRATING;
1203 deactivate_task(src_rq, p, 0);
1204 set_task_cpu(p, cpu);
1205 activate_task(dst_rq, p, 0);
1206 p->on_rq = TASK_ON_RQ_QUEUED;
1207 check_preempt_curr(dst_rq, p, 0);
1208 } else {
1209 /*
1210 * Task isn't running anymore; make it appear like we migrated
1211 * it before it went to sleep. This means on wakeup we make the
1212 * previous cpu our targer instead of where it really is.
1213 */
1214 p->wake_cpu = cpu;
1215 }
1216 }
1217
1218 struct migration_swap_arg {
1219 struct task_struct *src_task, *dst_task;
1220 int src_cpu, dst_cpu;
1221 };
1222
1223 static int migrate_swap_stop(void *data)
1224 {
1225 struct migration_swap_arg *arg = data;
1226 struct rq *src_rq, *dst_rq;
1227 int ret = -EAGAIN;
1228
1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 return -EAGAIN;
1231
1232 src_rq = cpu_rq(arg->src_cpu);
1233 dst_rq = cpu_rq(arg->dst_cpu);
1234
1235 double_raw_lock(&arg->src_task->pi_lock,
1236 &arg->dst_task->pi_lock);
1237 double_rq_lock(src_rq, dst_rq);
1238
1239 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 goto unlock;
1241
1242 if (task_cpu(arg->src_task) != arg->src_cpu)
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 goto unlock;
1247
1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 goto unlock;
1250
1251 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254 ret = 0;
1255
1256 unlock:
1257 double_rq_unlock(src_rq, dst_rq);
1258 raw_spin_unlock(&arg->dst_task->pi_lock);
1259 raw_spin_unlock(&arg->src_task->pi_lock);
1260
1261 return ret;
1262 }
1263
1264 /*
1265 * Cross migrate two tasks
1266 */
1267 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268 {
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = task_cpu(cur),
1275 .dst_task = p,
1276 .dst_cpu = task_cpu(p),
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 goto out;
1291
1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 goto out;
1294
1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298 out:
1299 return ret;
1300 }
1301
1302 /*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change. If it changes, i.e. @p might have woken up,
1307 * then return zero. When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count). If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
1318 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1319 {
1320 unsigned long flags;
1321 int running, queued;
1322 unsigned long ncsw;
1323 struct rq *rq;
1324
1325 for (;;) {
1326 /*
1327 * We do the initial early heuristics without holding
1328 * any task-queue locks at all. We'll only try to get
1329 * the runqueue lock when things look like they will
1330 * work out!
1331 */
1332 rq = task_rq(p);
1333
1334 /*
1335 * If the task is actively running on another CPU
1336 * still, just relax and busy-wait without holding
1337 * any locks.
1338 *
1339 * NOTE! Since we don't hold any locks, it's not
1340 * even sure that "rq" stays as the right runqueue!
1341 * But we don't care, since "task_running()" will
1342 * return false if the runqueue has changed and p
1343 * is actually now running somewhere else!
1344 */
1345 while (task_running(rq, p)) {
1346 if (match_state && unlikely(p->state != match_state))
1347 return 0;
1348 cpu_relax();
1349 }
1350
1351 /*
1352 * Ok, time to look more closely! We need the rq
1353 * lock now, to be *sure*. If we're wrong, we'll
1354 * just go back and repeat.
1355 */
1356 rq = task_rq_lock(p, &flags);
1357 trace_sched_wait_task(p);
1358 running = task_running(rq, p);
1359 queued = task_on_rq_queued(p);
1360 ncsw = 0;
1361 if (!match_state || p->state == match_state)
1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1363 task_rq_unlock(rq, p, &flags);
1364
1365 /*
1366 * If it changed from the expected state, bail out now.
1367 */
1368 if (unlikely(!ncsw))
1369 break;
1370
1371 /*
1372 * Was it really running after all now that we
1373 * checked with the proper locks actually held?
1374 *
1375 * Oops. Go back and try again..
1376 */
1377 if (unlikely(running)) {
1378 cpu_relax();
1379 continue;
1380 }
1381
1382 /*
1383 * It's not enough that it's not actively running,
1384 * it must be off the runqueue _entirely_, and not
1385 * preempted!
1386 *
1387 * So if it was still runnable (but just not actively
1388 * running right now), it's preempted, and we should
1389 * yield - it could be a while.
1390 */
1391 if (unlikely(queued)) {
1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396 continue;
1397 }
1398
1399 /*
1400 * Ahh, all good. It wasn't running, and it wasn't
1401 * runnable, which means that it will never become
1402 * running in the future either. We're all done!
1403 */
1404 break;
1405 }
1406
1407 return ncsw;
1408 }
1409
1410 /***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
1417 * NOTE: this function doesn't have to take the runqueue lock,
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
1423 void kick_process(struct task_struct *p)
1424 {
1425 int cpu;
1426
1427 preempt_disable();
1428 cpu = task_cpu(p);
1429 if ((cpu != smp_processor_id()) && task_curr(p))
1430 smp_send_reschedule(cpu);
1431 preempt_enable();
1432 }
1433 EXPORT_SYMBOL_GPL(kick_process);
1434
1435 /*
1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1437 */
1438 static int select_fallback_rq(int cpu, struct task_struct *p)
1439 {
1440 int nid = cpu_to_node(cpu);
1441 const struct cpumask *nodemask = NULL;
1442 enum { cpuset, possible, fail } state = cpuset;
1443 int dest_cpu;
1444
1445 /*
1446 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 * will return -1. There is no cpu on the node, and we should
1448 * select the cpu on the other node.
1449 */
1450 if (nid != -1) {
1451 nodemask = cpumask_of_node(nid);
1452
1453 /* Look for allowed, online CPU in same node. */
1454 for_each_cpu(dest_cpu, nodemask) {
1455 if (!cpu_online(dest_cpu))
1456 continue;
1457 if (!cpu_active(dest_cpu))
1458 continue;
1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 return dest_cpu;
1461 }
1462 }
1463
1464 for (;;) {
1465 /* Any allowed, online CPU? */
1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1467 if (!cpu_online(dest_cpu))
1468 continue;
1469 if (!cpu_active(dest_cpu))
1470 continue;
1471 goto out;
1472 }
1473
1474 /* No more Mr. Nice Guy. */
1475 switch (state) {
1476 case cpuset:
1477 if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 cpuset_cpus_allowed_fallback(p);
1479 state = possible;
1480 break;
1481 }
1482 /* fall-through */
1483 case possible:
1484 do_set_cpus_allowed(p, cpu_possible_mask);
1485 state = fail;
1486 break;
1487
1488 case fail:
1489 BUG();
1490 break;
1491 }
1492 }
1493
1494 out:
1495 if (state != cpuset) {
1496 /*
1497 * Don't tell them about moving exiting tasks or
1498 * kernel threads (both mm NULL), since they never
1499 * leave kernel.
1500 */
1501 if (p->mm && printk_ratelimit()) {
1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1503 task_pid_nr(p), p->comm, cpu);
1504 }
1505 }
1506
1507 return dest_cpu;
1508 }
1509
1510 /*
1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1512 */
1513 static inline
1514 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1515 {
1516 lockdep_assert_held(&p->pi_lock);
1517
1518 if (p->nr_cpus_allowed > 1)
1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1520
1521 /*
1522 * In order not to call set_task_cpu() on a blocking task we need
1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 * cpu.
1525 *
1526 * Since this is common to all placement strategies, this lives here.
1527 *
1528 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 * not worry about this generic constraint ]
1530 */
1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1532 !cpu_online(cpu)))
1533 cpu = select_fallback_rq(task_cpu(p), p);
1534
1535 return cpu;
1536 }
1537
1538 static void update_avg(u64 *avg, u64 sample)
1539 {
1540 s64 diff = sample - *avg;
1541 *avg += diff >> 3;
1542 }
1543
1544 #else
1545
1546 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 const struct cpumask *new_mask, bool check)
1548 {
1549 return set_cpus_allowed_ptr(p, new_mask);
1550 }
1551
1552 #endif /* CONFIG_SMP */
1553
1554 static void
1555 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1556 {
1557 #ifdef CONFIG_SCHEDSTATS
1558 struct rq *rq = this_rq();
1559
1560 #ifdef CONFIG_SMP
1561 int this_cpu = smp_processor_id();
1562
1563 if (cpu == this_cpu) {
1564 schedstat_inc(rq, ttwu_local);
1565 schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 } else {
1567 struct sched_domain *sd;
1568
1569 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1570 rcu_read_lock();
1571 for_each_domain(this_cpu, sd) {
1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 schedstat_inc(sd, ttwu_wake_remote);
1574 break;
1575 }
1576 }
1577 rcu_read_unlock();
1578 }
1579
1580 if (wake_flags & WF_MIGRATED)
1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
1583 #endif /* CONFIG_SMP */
1584
1585 schedstat_inc(rq, ttwu_count);
1586 schedstat_inc(p, se.statistics.nr_wakeups);
1587
1588 if (wake_flags & WF_SYNC)
1589 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1590
1591 #endif /* CONFIG_SCHEDSTATS */
1592 }
1593
1594 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1595 {
1596 activate_task(rq, p, en_flags);
1597 p->on_rq = TASK_ON_RQ_QUEUED;
1598
1599 /* if a worker is waking up, notify workqueue */
1600 if (p->flags & PF_WQ_WORKER)
1601 wq_worker_waking_up(p, cpu_of(rq));
1602 }
1603
1604 /*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
1607 static void
1608 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1609 {
1610 check_preempt_curr(rq, p, wake_flags);
1611 p->state = TASK_RUNNING;
1612 trace_sched_wakeup(p);
1613
1614 #ifdef CONFIG_SMP
1615 if (p->sched_class->task_woken) {
1616 /*
1617 * Our task @p is fully woken up and running; so its safe to
1618 * drop the rq->lock, hereafter rq is only used for statistics.
1619 */
1620 lockdep_unpin_lock(&rq->lock);
1621 p->sched_class->task_woken(rq, p);
1622 lockdep_pin_lock(&rq->lock);
1623 }
1624
1625 if (rq->idle_stamp) {
1626 u64 delta = rq_clock(rq) - rq->idle_stamp;
1627 u64 max = 2*rq->max_idle_balance_cost;
1628
1629 update_avg(&rq->avg_idle, delta);
1630
1631 if (rq->avg_idle > max)
1632 rq->avg_idle = max;
1633
1634 rq->idle_stamp = 0;
1635 }
1636 #endif
1637 }
1638
1639 static void
1640 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641 {
1642 lockdep_assert_held(&rq->lock);
1643
1644 #ifdef CONFIG_SMP
1645 if (p->sched_contributes_to_load)
1646 rq->nr_uninterruptible--;
1647 #endif
1648
1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 ttwu_do_wakeup(rq, p, wake_flags);
1651 }
1652
1653 /*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
1658 */
1659 static int ttwu_remote(struct task_struct *p, int wake_flags)
1660 {
1661 struct rq *rq;
1662 int ret = 0;
1663
1664 rq = __task_rq_lock(p);
1665 if (task_on_rq_queued(p)) {
1666 /* check_preempt_curr() may use rq clock */
1667 update_rq_clock(rq);
1668 ttwu_do_wakeup(rq, p, wake_flags);
1669 ret = 1;
1670 }
1671 __task_rq_unlock(rq);
1672
1673 return ret;
1674 }
1675
1676 #ifdef CONFIG_SMP
1677 void sched_ttwu_pending(void)
1678 {
1679 struct rq *rq = this_rq();
1680 struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 struct task_struct *p;
1682 unsigned long flags;
1683
1684 if (!llist)
1685 return;
1686
1687 raw_spin_lock_irqsave(&rq->lock, flags);
1688 lockdep_pin_lock(&rq->lock);
1689
1690 while (llist) {
1691 p = llist_entry(llist, struct task_struct, wake_entry);
1692 llist = llist_next(llist);
1693 ttwu_do_activate(rq, p, 0);
1694 }
1695
1696 lockdep_unpin_lock(&rq->lock);
1697 raw_spin_unlock_irqrestore(&rq->lock, flags);
1698 }
1699
1700 void scheduler_ipi(void)
1701 {
1702 /*
1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 * this IPI.
1706 */
1707 preempt_fold_need_resched();
1708
1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1710 return;
1711
1712 /*
1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 * traditionally all their work was done from the interrupt return
1715 * path. Now that we actually do some work, we need to make sure
1716 * we do call them.
1717 *
1718 * Some archs already do call them, luckily irq_enter/exit nest
1719 * properly.
1720 *
1721 * Arguably we should visit all archs and update all handlers,
1722 * however a fair share of IPIs are still resched only so this would
1723 * somewhat pessimize the simple resched case.
1724 */
1725 irq_enter();
1726 sched_ttwu_pending();
1727
1728 /*
1729 * Check if someone kicked us for doing the nohz idle load balance.
1730 */
1731 if (unlikely(got_nohz_idle_kick())) {
1732 this_rq()->idle_balance = 1;
1733 raise_softirq_irqoff(SCHED_SOFTIRQ);
1734 }
1735 irq_exit();
1736 }
1737
1738 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739 {
1740 struct rq *rq = cpu_rq(cpu);
1741
1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 if (!set_nr_if_polling(rq->idle))
1744 smp_send_reschedule(cpu);
1745 else
1746 trace_sched_wake_idle_without_ipi(cpu);
1747 }
1748 }
1749
1750 void wake_up_if_idle(int cpu)
1751 {
1752 struct rq *rq = cpu_rq(cpu);
1753 unsigned long flags;
1754
1755 rcu_read_lock();
1756
1757 if (!is_idle_task(rcu_dereference(rq->curr)))
1758 goto out;
1759
1760 if (set_nr_if_polling(rq->idle)) {
1761 trace_sched_wake_idle_without_ipi(cpu);
1762 } else {
1763 raw_spin_lock_irqsave(&rq->lock, flags);
1764 if (is_idle_task(rq->curr))
1765 smp_send_reschedule(cpu);
1766 /* Else cpu is not in idle, do nothing here */
1767 raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 }
1769
1770 out:
1771 rcu_read_unlock();
1772 }
1773
1774 bool cpus_share_cache(int this_cpu, int that_cpu)
1775 {
1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777 }
1778 #endif /* CONFIG_SMP */
1779
1780 static void ttwu_queue(struct task_struct *p, int cpu)
1781 {
1782 struct rq *rq = cpu_rq(cpu);
1783
1784 #if defined(CONFIG_SMP)
1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1787 ttwu_queue_remote(p, cpu);
1788 return;
1789 }
1790 #endif
1791
1792 raw_spin_lock(&rq->lock);
1793 lockdep_pin_lock(&rq->lock);
1794 ttwu_do_activate(rq, p, 0);
1795 lockdep_unpin_lock(&rq->lock);
1796 raw_spin_unlock(&rq->lock);
1797 }
1798
1799 /*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 * MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 * rq(c1)->lock (if not at the same time, then in that order).
1813 * C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 * CPU0 CPU1 CPU2
1822 *
1823 * LOCK rq(0)->lock
1824 * sched-out X
1825 * sched-in Y
1826 * UNLOCK rq(0)->lock
1827 *
1828 * LOCK rq(0)->lock // orders against CPU0
1829 * dequeue X
1830 * UNLOCK rq(0)->lock
1831 *
1832 * LOCK rq(1)->lock
1833 * enqueue X
1834 * UNLOCK rq(1)->lock
1835 *
1836 * LOCK rq(1)->lock // orders against CPU2
1837 * sched-out Z
1838 * sched-in X
1839 * UNLOCK rq(1)->lock
1840 *
1841 *
1842 * BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 * 1) smp_store_release(X->on_cpu, 0)
1849 * 2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 * LOCK rq(0)->lock LOCK X->pi_lock
1856 * dequeue X
1857 * sched-out X
1858 * smp_store_release(X->on_cpu, 0);
1859 *
1860 * smp_cond_acquire(!X->on_cpu);
1861 * X->state = WAKING
1862 * set_task_cpu(X,2)
1863 *
1864 * LOCK rq(2)->lock
1865 * enqueue X
1866 * X->state = RUNNING
1867 * UNLOCK rq(2)->lock
1868 *
1869 * LOCK rq(2)->lock // orders against CPU1
1870 * sched-out Z
1871 * sched-in X
1872 * UNLOCK rq(2)->lock
1873 *
1874 * UNLOCK X->pi_lock
1875 * UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
1890 /**
1891 * try_to_wake_up - wake up a thread
1892 * @p: the thread to be awakened
1893 * @state: the mask of task states that can be woken
1894 * @wake_flags: wake modifier flags (WF_*)
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
1902 * Return: %true if @p was woken up, %false if it was already running.
1903 * or @state didn't match @p's state.
1904 */
1905 static int
1906 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1907 {
1908 unsigned long flags;
1909 int cpu, success = 0;
1910
1911 /*
1912 * If we are going to wake up a thread waiting for CONDITION we
1913 * need to ensure that CONDITION=1 done by the caller can not be
1914 * reordered with p->state check below. This pairs with mb() in
1915 * set_current_state() the waiting thread does.
1916 */
1917 smp_mb__before_spinlock();
1918 raw_spin_lock_irqsave(&p->pi_lock, flags);
1919 if (!(p->state & state))
1920 goto out;
1921
1922 trace_sched_waking(p);
1923
1924 success = 1; /* we're going to change ->state */
1925 cpu = task_cpu(p);
1926
1927 if (p->on_rq && ttwu_remote(p, wake_flags))
1928 goto stat;
1929
1930 #ifdef CONFIG_SMP
1931 /*
1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 * possible to, falsely, observe p->on_cpu == 0.
1934 *
1935 * One must be running (->on_cpu == 1) in order to remove oneself
1936 * from the runqueue.
1937 *
1938 * [S] ->on_cpu = 1; [L] ->on_rq
1939 * UNLOCK rq->lock
1940 * RMB
1941 * LOCK rq->lock
1942 * [S] ->on_rq = 0; [L] ->on_cpu
1943 *
1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 * from the consecutive calls to schedule(); the first switching to our
1946 * task, the second putting it to sleep.
1947 */
1948 smp_rmb();
1949
1950 /*
1951 * If the owning (remote) cpu is still in the middle of schedule() with
1952 * this task as prev, wait until its done referencing the task.
1953 *
1954 * Pairs with the smp_store_release() in finish_lock_switch().
1955 *
1956 * This ensures that tasks getting woken will be fully ordered against
1957 * their previous state and preserve Program Order.
1958 */
1959 smp_cond_acquire(!p->on_cpu);
1960
1961 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1962 p->state = TASK_WAKING;
1963
1964 if (p->sched_class->task_waking)
1965 p->sched_class->task_waking(p);
1966
1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1968 if (task_cpu(p) != cpu) {
1969 wake_flags |= WF_MIGRATED;
1970 set_task_cpu(p, cpu);
1971 }
1972 #endif /* CONFIG_SMP */
1973
1974 ttwu_queue(p, cpu);
1975 stat:
1976 if (schedstat_enabled())
1977 ttwu_stat(p, cpu, wake_flags);
1978 out:
1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1980
1981 return success;
1982 }
1983
1984 /**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
1988 * Put @p on the run-queue if it's not already there. The caller must
1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1990 * the current task.
1991 */
1992 static void try_to_wake_up_local(struct task_struct *p)
1993 {
1994 struct rq *rq = task_rq(p);
1995
1996 if (WARN_ON_ONCE(rq != this_rq()) ||
1997 WARN_ON_ONCE(p == current))
1998 return;
1999
2000 lockdep_assert_held(&rq->lock);
2001
2002 if (!raw_spin_trylock(&p->pi_lock)) {
2003 /*
2004 * This is OK, because current is on_cpu, which avoids it being
2005 * picked for load-balance and preemption/IRQs are still
2006 * disabled avoiding further scheduler activity on it and we've
2007 * not yet picked a replacement task.
2008 */
2009 lockdep_unpin_lock(&rq->lock);
2010 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&p->pi_lock);
2012 raw_spin_lock(&rq->lock);
2013 lockdep_pin_lock(&rq->lock);
2014 }
2015
2016 if (!(p->state & TASK_NORMAL))
2017 goto out;
2018
2019 trace_sched_waking(p);
2020
2021 if (!task_on_rq_queued(p))
2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
2024 ttwu_do_wakeup(rq, p, 0);
2025 if (schedstat_enabled())
2026 ttwu_stat(p, smp_processor_id(), 0);
2027 out:
2028 raw_spin_unlock(&p->pi_lock);
2029 }
2030
2031 /**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
2043 int wake_up_process(struct task_struct *p)
2044 {
2045 return try_to_wake_up(p, TASK_NORMAL, 0);
2046 }
2047 EXPORT_SYMBOL(wake_up_process);
2048
2049 int wake_up_state(struct task_struct *p, unsigned int state)
2050 {
2051 return try_to_wake_up(p, state, 0);
2052 }
2053
2054 /*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057 void __dl_clear_params(struct task_struct *p)
2058 {
2059 struct sched_dl_entity *dl_se = &p->dl;
2060
2061 dl_se->dl_runtime = 0;
2062 dl_se->dl_deadline = 0;
2063 dl_se->dl_period = 0;
2064 dl_se->flags = 0;
2065 dl_se->dl_bw = 0;
2066
2067 dl_se->dl_throttled = 0;
2068 dl_se->dl_yielded = 0;
2069 }
2070
2071 /*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
2077 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2078 {
2079 p->on_rq = 0;
2080
2081 p->se.on_rq = 0;
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
2084 p->se.prev_sum_exec_runtime = 0;
2085 p->se.nr_migrations = 0;
2086 p->se.vruntime = 0;
2087 INIT_LIST_HEAD(&p->se.group_node);
2088
2089 #ifdef CONFIG_FAIR_GROUP_SCHED
2090 p->se.cfs_rq = NULL;
2091 #endif
2092
2093 #ifdef CONFIG_SCHEDSTATS
2094 /* Even if schedstat is disabled, there should not be garbage */
2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2096 #endif
2097
2098 RB_CLEAR_NODE(&p->dl.rb_node);
2099 init_dl_task_timer(&p->dl);
2100 __dl_clear_params(p);
2101
2102 INIT_LIST_HEAD(&p->rt.run_list);
2103 p->rt.timeout = 0;
2104 p->rt.time_slice = sched_rr_timeslice;
2105 p->rt.on_rq = 0;
2106 p->rt.on_list = 0;
2107
2108 #ifdef CONFIG_PREEMPT_NOTIFIERS
2109 INIT_HLIST_HEAD(&p->preempt_notifiers);
2110 #endif
2111
2112 #ifdef CONFIG_NUMA_BALANCING
2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2115 p->mm->numa_scan_seq = 0;
2116 }
2117
2118 if (clone_flags & CLONE_VM)
2119 p->numa_preferred_nid = current->numa_preferred_nid;
2120 else
2121 p->numa_preferred_nid = -1;
2122
2123 p->node_stamp = 0ULL;
2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2126 p->numa_work.next = &p->numa_work;
2127 p->numa_faults = NULL;
2128 p->last_task_numa_placement = 0;
2129 p->last_sum_exec_runtime = 0;
2130
2131 p->numa_group = NULL;
2132 #endif /* CONFIG_NUMA_BALANCING */
2133 }
2134
2135 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
2137 #ifdef CONFIG_NUMA_BALANCING
2138
2139 void set_numabalancing_state(bool enabled)
2140 {
2141 if (enabled)
2142 static_branch_enable(&sched_numa_balancing);
2143 else
2144 static_branch_disable(&sched_numa_balancing);
2145 }
2146
2147 #ifdef CONFIG_PROC_SYSCTL
2148 int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *lenp, loff_t *ppos)
2150 {
2151 struct ctl_table t;
2152 int err;
2153 int state = static_branch_likely(&sched_numa_balancing);
2154
2155 if (write && !capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 t = *table;
2159 t.data = &state;
2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 if (err < 0)
2162 return err;
2163 if (write)
2164 set_numabalancing_state(state);
2165 return err;
2166 }
2167 #endif
2168 #endif
2169
2170 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172 #ifdef CONFIG_SCHEDSTATS
2173 static void set_schedstats(bool enabled)
2174 {
2175 if (enabled)
2176 static_branch_enable(&sched_schedstats);
2177 else
2178 static_branch_disable(&sched_schedstats);
2179 }
2180
2181 void force_schedstat_enabled(void)
2182 {
2183 if (!schedstat_enabled()) {
2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 static_branch_enable(&sched_schedstats);
2186 }
2187 }
2188
2189 static int __init setup_schedstats(char *str)
2190 {
2191 int ret = 0;
2192 if (!str)
2193 goto out;
2194
2195 if (!strcmp(str, "enable")) {
2196 set_schedstats(true);
2197 ret = 1;
2198 } else if (!strcmp(str, "disable")) {
2199 set_schedstats(false);
2200 ret = 1;
2201 }
2202 out:
2203 if (!ret)
2204 pr_warn("Unable to parse schedstats=\n");
2205
2206 return ret;
2207 }
2208 __setup("schedstats=", setup_schedstats);
2209
2210 #ifdef CONFIG_PROC_SYSCTL
2211 int sysctl_schedstats(struct ctl_table *table, int write,
2212 void __user *buffer, size_t *lenp, loff_t *ppos)
2213 {
2214 struct ctl_table t;
2215 int err;
2216 int state = static_branch_likely(&sched_schedstats);
2217
2218 if (write && !capable(CAP_SYS_ADMIN))
2219 return -EPERM;
2220
2221 t = *table;
2222 t.data = &state;
2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 if (err < 0)
2225 return err;
2226 if (write)
2227 set_schedstats(state);
2228 return err;
2229 }
2230 #endif
2231 #endif
2232
2233 static void sched_set_prio(struct task_struct *p, int prio)
2234 {
2235 trace_sched_set_prio(p, prio);
2236 p->prio = prio;
2237 }
2238
2239 /*
2240 * fork()/clone()-time setup:
2241 */
2242 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2243 {
2244 unsigned long flags;
2245 int cpu = get_cpu();
2246
2247 __sched_fork(clone_flags, p);
2248 /*
2249 * We mark the process as running here. This guarantees that
2250 * nobody will actually run it, and a signal or other external
2251 * event cannot wake it up and insert it on the runqueue either.
2252 */
2253 p->state = TASK_RUNNING;
2254
2255 /*
2256 * Make sure we do not leak PI boosting priority to the child.
2257 */
2258 sched_set_prio(p, current->normal_prio);
2259
2260 /*
2261 * Revert to default priority/policy on fork if requested.
2262 */
2263 if (unlikely(p->sched_reset_on_fork)) {
2264 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2265 p->policy = SCHED_NORMAL;
2266 p->static_prio = NICE_TO_PRIO(0);
2267 p->rt_priority = 0;
2268 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2269 p->static_prio = NICE_TO_PRIO(0);
2270
2271 p->normal_prio = __normal_prio(p);
2272 sched_set_prio(p, p->normal_prio);
2273 set_load_weight(p);
2274
2275 /*
2276 * We don't need the reset flag anymore after the fork. It has
2277 * fulfilled its duty:
2278 */
2279 p->sched_reset_on_fork = 0;
2280 }
2281
2282 if (dl_prio(p->prio)) {
2283 put_cpu();
2284 return -EAGAIN;
2285 } else if (rt_prio(p->prio)) {
2286 p->sched_class = &rt_sched_class;
2287 } else {
2288 p->sched_class = &fair_sched_class;
2289 }
2290
2291 if (p->sched_class->task_fork)
2292 p->sched_class->task_fork(p);
2293
2294 /*
2295 * The child is not yet in the pid-hash so no cgroup attach races,
2296 * and the cgroup is pinned to this child due to cgroup_fork()
2297 * is ran before sched_fork().
2298 *
2299 * Silence PROVE_RCU.
2300 */
2301 raw_spin_lock_irqsave(&p->pi_lock, flags);
2302 set_task_cpu(p, cpu);
2303 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2304
2305 #ifdef CONFIG_SCHED_INFO
2306 if (likely(sched_info_on()))
2307 memset(&p->sched_info, 0, sizeof(p->sched_info));
2308 #endif
2309 #if defined(CONFIG_SMP)
2310 p->on_cpu = 0;
2311 #endif
2312 init_task_preempt_count(p);
2313 #ifdef CONFIG_SMP
2314 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2315 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2316 #endif
2317
2318 put_cpu();
2319 return 0;
2320 }
2321
2322 unsigned long to_ratio(u64 period, u64 runtime)
2323 {
2324 if (runtime == RUNTIME_INF)
2325 return 1ULL << 20;
2326
2327 /*
2328 * Doing this here saves a lot of checks in all
2329 * the calling paths, and returning zero seems
2330 * safe for them anyway.
2331 */
2332 if (period == 0)
2333 return 0;
2334
2335 return div64_u64(runtime << 20, period);
2336 }
2337
2338 #ifdef CONFIG_SMP
2339 inline struct dl_bw *dl_bw_of(int i)
2340 {
2341 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2342 "sched RCU must be held");
2343 return &cpu_rq(i)->rd->dl_bw;
2344 }
2345
2346 static inline int dl_bw_cpus(int i)
2347 {
2348 struct root_domain *rd = cpu_rq(i)->rd;
2349 int cpus = 0;
2350
2351 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2352 "sched RCU must be held");
2353 for_each_cpu_and(i, rd->span, cpu_active_mask)
2354 cpus++;
2355
2356 return cpus;
2357 }
2358 #else
2359 inline struct dl_bw *dl_bw_of(int i)
2360 {
2361 return &cpu_rq(i)->dl.dl_bw;
2362 }
2363
2364 static inline int dl_bw_cpus(int i)
2365 {
2366 return 1;
2367 }
2368 #endif
2369
2370 /*
2371 * We must be sure that accepting a new task (or allowing changing the
2372 * parameters of an existing one) is consistent with the bandwidth
2373 * constraints. If yes, this function also accordingly updates the currently
2374 * allocated bandwidth to reflect the new situation.
2375 *
2376 * This function is called while holding p's rq->lock.
2377 *
2378 * XXX we should delay bw change until the task's 0-lag point, see
2379 * __setparam_dl().
2380 */
2381 static int dl_overflow(struct task_struct *p, int policy,
2382 const struct sched_attr *attr)
2383 {
2384
2385 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2386 u64 period = attr->sched_period ?: attr->sched_deadline;
2387 u64 runtime = attr->sched_runtime;
2388 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2389 int cpus, err = -1;
2390
2391 if (new_bw == p->dl.dl_bw)
2392 return 0;
2393
2394 /*
2395 * Either if a task, enters, leave, or stays -deadline but changes
2396 * its parameters, we may need to update accordingly the total
2397 * allocated bandwidth of the container.
2398 */
2399 raw_spin_lock(&dl_b->lock);
2400 cpus = dl_bw_cpus(task_cpu(p));
2401 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2402 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2403 __dl_add(dl_b, new_bw);
2404 err = 0;
2405 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2406 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2407 __dl_clear(dl_b, p->dl.dl_bw);
2408 __dl_add(dl_b, new_bw);
2409 err = 0;
2410 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2411 __dl_clear(dl_b, p->dl.dl_bw);
2412 err = 0;
2413 }
2414 raw_spin_unlock(&dl_b->lock);
2415
2416 return err;
2417 }
2418
2419 extern void init_dl_bw(struct dl_bw *dl_b);
2420
2421 /*
2422 * wake_up_new_task - wake up a newly created task for the first time.
2423 *
2424 * This function will do some initial scheduler statistics housekeeping
2425 * that must be done for every newly created context, then puts the task
2426 * on the runqueue and wakes it.
2427 */
2428 void wake_up_new_task(struct task_struct *p)
2429 {
2430 unsigned long flags;
2431 struct rq *rq;
2432
2433 raw_spin_lock_irqsave(&p->pi_lock, flags);
2434 /* Initialize new task's runnable average */
2435 init_entity_runnable_average(&p->se);
2436 #ifdef CONFIG_SMP
2437 /*
2438 * Fork balancing, do it here and not earlier because:
2439 * - cpus_allowed can change in the fork path
2440 * - any previously selected cpu might disappear through hotplug
2441 */
2442 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2443 #endif
2444
2445 rq = __task_rq_lock(p);
2446 activate_task(rq, p, 0);
2447 p->on_rq = TASK_ON_RQ_QUEUED;
2448 trace_sched_wakeup_new(p);
2449 check_preempt_curr(rq, p, WF_FORK);
2450 #ifdef CONFIG_SMP
2451 if (p->sched_class->task_woken) {
2452 /*
2453 * Nothing relies on rq->lock after this, so its fine to
2454 * drop it.
2455 */
2456 lockdep_unpin_lock(&rq->lock);
2457 p->sched_class->task_woken(rq, p);
2458 lockdep_pin_lock(&rq->lock);
2459 }
2460 #endif
2461 task_rq_unlock(rq, p, &flags);
2462 }
2463
2464 #ifdef CONFIG_PREEMPT_NOTIFIERS
2465
2466 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2467
2468 void preempt_notifier_inc(void)
2469 {
2470 static_key_slow_inc(&preempt_notifier_key);
2471 }
2472 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2473
2474 void preempt_notifier_dec(void)
2475 {
2476 static_key_slow_dec(&preempt_notifier_key);
2477 }
2478 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2479
2480 /**
2481 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2482 * @notifier: notifier struct to register
2483 */
2484 void preempt_notifier_register(struct preempt_notifier *notifier)
2485 {
2486 if (!static_key_false(&preempt_notifier_key))
2487 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2488
2489 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2490 }
2491 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2492
2493 /**
2494 * preempt_notifier_unregister - no longer interested in preemption notifications
2495 * @notifier: notifier struct to unregister
2496 *
2497 * This is *not* safe to call from within a preemption notifier.
2498 */
2499 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2500 {
2501 hlist_del(&notifier->link);
2502 }
2503 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2504
2505 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2506 {
2507 struct preempt_notifier *notifier;
2508
2509 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2510 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2511 }
2512
2513 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2514 {
2515 if (static_key_false(&preempt_notifier_key))
2516 __fire_sched_in_preempt_notifiers(curr);
2517 }
2518
2519 static void
2520 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 struct task_struct *next)
2522 {
2523 struct preempt_notifier *notifier;
2524
2525 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2526 notifier->ops->sched_out(notifier, next);
2527 }
2528
2529 static __always_inline void
2530 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2531 struct task_struct *next)
2532 {
2533 if (static_key_false(&preempt_notifier_key))
2534 __fire_sched_out_preempt_notifiers(curr, next);
2535 }
2536
2537 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2538
2539 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2540 {
2541 }
2542
2543 static inline void
2544 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2545 struct task_struct *next)
2546 {
2547 }
2548
2549 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2550
2551 /**
2552 * prepare_task_switch - prepare to switch tasks
2553 * @rq: the runqueue preparing to switch
2554 * @prev: the current task that is being switched out
2555 * @next: the task we are going to switch to.
2556 *
2557 * This is called with the rq lock held and interrupts off. It must
2558 * be paired with a subsequent finish_task_switch after the context
2559 * switch.
2560 *
2561 * prepare_task_switch sets up locking and calls architecture specific
2562 * hooks.
2563 */
2564 static inline void
2565 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2566 struct task_struct *next)
2567 {
2568 sched_info_switch(rq, prev, next);
2569 perf_event_task_sched_out(prev, next);
2570 fire_sched_out_preempt_notifiers(prev, next);
2571 prepare_lock_switch(rq, next);
2572 prepare_arch_switch(next);
2573 }
2574
2575 /**
2576 * finish_task_switch - clean up after a task-switch
2577 * @prev: the thread we just switched away from.
2578 *
2579 * finish_task_switch must be called after the context switch, paired
2580 * with a prepare_task_switch call before the context switch.
2581 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2582 * and do any other architecture-specific cleanup actions.
2583 *
2584 * Note that we may have delayed dropping an mm in context_switch(). If
2585 * so, we finish that here outside of the runqueue lock. (Doing it
2586 * with the lock held can cause deadlocks; see schedule() for
2587 * details.)
2588 *
2589 * The context switch have flipped the stack from under us and restored the
2590 * local variables which were saved when this task called schedule() in the
2591 * past. prev == current is still correct but we need to recalculate this_rq
2592 * because prev may have moved to another CPU.
2593 */
2594 static struct rq *finish_task_switch(struct task_struct *prev)
2595 __releases(rq->lock)
2596 {
2597 struct rq *rq = this_rq();
2598 struct mm_struct *mm = rq->prev_mm;
2599 long prev_state;
2600
2601 /*
2602 * The previous task will have left us with a preempt_count of 2
2603 * because it left us after:
2604 *
2605 * schedule()
2606 * preempt_disable(); // 1
2607 * __schedule()
2608 * raw_spin_lock_irq(&rq->lock) // 2
2609 *
2610 * Also, see FORK_PREEMPT_COUNT.
2611 */
2612 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2613 "corrupted preempt_count: %s/%d/0x%x\n",
2614 current->comm, current->pid, preempt_count()))
2615 preempt_count_set(FORK_PREEMPT_COUNT);
2616
2617 rq->prev_mm = NULL;
2618
2619 /*
2620 * A task struct has one reference for the use as "current".
2621 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2622 * schedule one last time. The schedule call will never return, and
2623 * the scheduled task must drop that reference.
2624 *
2625 * We must observe prev->state before clearing prev->on_cpu (in
2626 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2627 * running on another CPU and we could rave with its RUNNING -> DEAD
2628 * transition, resulting in a double drop.
2629 */
2630 prev_state = prev->state;
2631 vtime_task_switch(prev);
2632 perf_event_task_sched_in(prev, current);
2633 finish_lock_switch(rq, prev);
2634 finish_arch_post_lock_switch();
2635
2636 fire_sched_in_preempt_notifiers(current);
2637 if (mm)
2638 mmdrop(mm);
2639 if (unlikely(prev_state == TASK_DEAD)) {
2640 if (prev->sched_class->task_dead)
2641 prev->sched_class->task_dead(prev);
2642
2643 /*
2644 * Remove function-return probe instances associated with this
2645 * task and put them back on the free list.
2646 */
2647 kprobe_flush_task(prev);
2648 put_task_struct(prev);
2649 }
2650
2651 tick_nohz_task_switch();
2652 return rq;
2653 }
2654
2655 #ifdef CONFIG_SMP
2656
2657 /* rq->lock is NOT held, but preemption is disabled */
2658 static void __balance_callback(struct rq *rq)
2659 {
2660 struct callback_head *head, *next;
2661 void (*func)(struct rq *rq);
2662 unsigned long flags;
2663
2664 raw_spin_lock_irqsave(&rq->lock, flags);
2665 head = rq->balance_callback;
2666 rq->balance_callback = NULL;
2667 while (head) {
2668 func = (void (*)(struct rq *))head->func;
2669 next = head->next;
2670 head->next = NULL;
2671 head = next;
2672
2673 func(rq);
2674 }
2675 raw_spin_unlock_irqrestore(&rq->lock, flags);
2676 }
2677
2678 static inline void balance_callback(struct rq *rq)
2679 {
2680 if (unlikely(rq->balance_callback))
2681 __balance_callback(rq);
2682 }
2683
2684 #else
2685
2686 static inline void balance_callback(struct rq *rq)
2687 {
2688 }
2689
2690 #endif
2691
2692 /**
2693 * schedule_tail - first thing a freshly forked thread must call.
2694 * @prev: the thread we just switched away from.
2695 */
2696 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2697 __releases(rq->lock)
2698 {
2699 struct rq *rq;
2700
2701 /*
2702 * New tasks start with FORK_PREEMPT_COUNT, see there and
2703 * finish_task_switch() for details.
2704 *
2705 * finish_task_switch() will drop rq->lock() and lower preempt_count
2706 * and the preempt_enable() will end up enabling preemption (on
2707 * PREEMPT_COUNT kernels).
2708 */
2709
2710 rq = finish_task_switch(prev);
2711 balance_callback(rq);
2712 preempt_enable();
2713
2714 if (current->set_child_tid)
2715 put_user(task_pid_vnr(current), current->set_child_tid);
2716 }
2717
2718 /*
2719 * context_switch - switch to the new MM and the new thread's register state.
2720 */
2721 static __always_inline struct rq *
2722 context_switch(struct rq *rq, struct task_struct *prev,
2723 struct task_struct *next)
2724 {
2725 struct mm_struct *mm, *oldmm;
2726
2727 prepare_task_switch(rq, prev, next);
2728
2729 mm = next->mm;
2730 oldmm = prev->active_mm;
2731 /*
2732 * For paravirt, this is coupled with an exit in switch_to to
2733 * combine the page table reload and the switch backend into
2734 * one hypercall.
2735 */
2736 arch_start_context_switch(prev);
2737
2738 if (!mm) {
2739 next->active_mm = oldmm;
2740 atomic_inc(&oldmm->mm_count);
2741 enter_lazy_tlb(oldmm, next);
2742 } else
2743 switch_mm(oldmm, mm, next);
2744
2745 if (!prev->mm) {
2746 prev->active_mm = NULL;
2747 rq->prev_mm = oldmm;
2748 }
2749 /*
2750 * Since the runqueue lock will be released by the next
2751 * task (which is an invalid locking op but in the case
2752 * of the scheduler it's an obvious special-case), so we
2753 * do an early lockdep release here:
2754 */
2755 lockdep_unpin_lock(&rq->lock);
2756 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2757
2758 /* Here we just switch the register state and the stack. */
2759 switch_to(prev, next, prev);
2760 barrier();
2761
2762 return finish_task_switch(prev);
2763 }
2764
2765 /*
2766 * nr_running and nr_context_switches:
2767 *
2768 * externally visible scheduler statistics: current number of runnable
2769 * threads, total number of context switches performed since bootup.
2770 */
2771 unsigned long nr_running(void)
2772 {
2773 unsigned long i, sum = 0;
2774
2775 for_each_online_cpu(i)
2776 sum += cpu_rq(i)->nr_running;
2777
2778 return sum;
2779 }
2780
2781 /*
2782 * Check if only the current task is running on the cpu.
2783 *
2784 * Caution: this function does not check that the caller has disabled
2785 * preemption, thus the result might have a time-of-check-to-time-of-use
2786 * race. The caller is responsible to use it correctly, for example:
2787 *
2788 * - from a non-preemptable section (of course)
2789 *
2790 * - from a thread that is bound to a single CPU
2791 *
2792 * - in a loop with very short iterations (e.g. a polling loop)
2793 */
2794 bool single_task_running(void)
2795 {
2796 return raw_rq()->nr_running == 1;
2797 }
2798 EXPORT_SYMBOL(single_task_running);
2799
2800 unsigned long long nr_context_switches(void)
2801 {
2802 int i;
2803 unsigned long long sum = 0;
2804
2805 for_each_possible_cpu(i)
2806 sum += cpu_rq(i)->nr_switches;
2807
2808 return sum;
2809 }
2810
2811 unsigned long nr_iowait(void)
2812 {
2813 unsigned long i, sum = 0;
2814
2815 for_each_possible_cpu(i)
2816 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2817
2818 return sum;
2819 }
2820
2821 unsigned long nr_iowait_cpu(int cpu)
2822 {
2823 struct rq *this = cpu_rq(cpu);
2824 return atomic_read(&this->nr_iowait);
2825 }
2826
2827 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2828 {
2829 struct rq *rq = this_rq();
2830 *nr_waiters = atomic_read(&rq->nr_iowait);
2831 *load = rq->load.weight;
2832 }
2833
2834 #ifdef CONFIG_SMP
2835
2836 /*
2837 * sched_exec - execve() is a valuable balancing opportunity, because at
2838 * this point the task has the smallest effective memory and cache footprint.
2839 */
2840 void sched_exec(void)
2841 {
2842 struct task_struct *p = current;
2843 unsigned long flags;
2844 int dest_cpu;
2845
2846 raw_spin_lock_irqsave(&p->pi_lock, flags);
2847 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2848 if (dest_cpu == smp_processor_id())
2849 goto unlock;
2850
2851 if (likely(cpu_active(dest_cpu))) {
2852 struct migration_arg arg = { p, dest_cpu };
2853
2854 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2855 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2856 return;
2857 }
2858 unlock:
2859 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2860 }
2861
2862 #endif
2863
2864 DEFINE_PER_CPU(struct kernel_stat, kstat);
2865 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2866
2867 EXPORT_PER_CPU_SYMBOL(kstat);
2868 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2869
2870 /*
2871 * Return accounted runtime for the task.
2872 * In case the task is currently running, return the runtime plus current's
2873 * pending runtime that have not been accounted yet.
2874 */
2875 unsigned long long task_sched_runtime(struct task_struct *p)
2876 {
2877 unsigned long flags;
2878 struct rq *rq;
2879 u64 ns;
2880
2881 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2882 /*
2883 * 64-bit doesn't need locks to atomically read a 64bit value.
2884 * So we have a optimization chance when the task's delta_exec is 0.
2885 * Reading ->on_cpu is racy, but this is ok.
2886 *
2887 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2888 * If we race with it entering cpu, unaccounted time is 0. This is
2889 * indistinguishable from the read occurring a few cycles earlier.
2890 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2891 * been accounted, so we're correct here as well.
2892 */
2893 if (!p->on_cpu || !task_on_rq_queued(p))
2894 return p->se.sum_exec_runtime;
2895 #endif
2896
2897 rq = task_rq_lock(p, &flags);
2898 /*
2899 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2900 * project cycles that may never be accounted to this
2901 * thread, breaking clock_gettime().
2902 */
2903 if (task_current(rq, p) && task_on_rq_queued(p)) {
2904 update_rq_clock(rq);
2905 p->sched_class->update_curr(rq);
2906 }
2907 ns = p->se.sum_exec_runtime;
2908 task_rq_unlock(rq, p, &flags);
2909
2910 return ns;
2911 }
2912
2913 /*
2914 * This function gets called by the timer code, with HZ frequency.
2915 * We call it with interrupts disabled.
2916 */
2917 void scheduler_tick(void)
2918 {
2919 int cpu = smp_processor_id();
2920 struct rq *rq = cpu_rq(cpu);
2921 struct task_struct *curr = rq->curr;
2922
2923 sched_clock_tick();
2924
2925 raw_spin_lock(&rq->lock);
2926 update_rq_clock(rq);
2927 curr->sched_class->task_tick(rq, curr, 0);
2928 update_cpu_load_active(rq);
2929 calc_global_load_tick(rq);
2930 raw_spin_unlock(&rq->lock);
2931
2932 perf_event_task_tick();
2933
2934 #ifdef CONFIG_SMP
2935 rq->idle_balance = idle_cpu(cpu);
2936 trigger_load_balance(rq);
2937 #endif
2938 rq_last_tick_reset(rq);
2939 }
2940
2941 #ifdef CONFIG_NO_HZ_FULL
2942 /**
2943 * scheduler_tick_max_deferment
2944 *
2945 * Keep at least one tick per second when a single
2946 * active task is running because the scheduler doesn't
2947 * yet completely support full dynticks environment.
2948 *
2949 * This makes sure that uptime, CFS vruntime, load
2950 * balancing, etc... continue to move forward, even
2951 * with a very low granularity.
2952 *
2953 * Return: Maximum deferment in nanoseconds.
2954 */
2955 u64 scheduler_tick_max_deferment(void)
2956 {
2957 struct rq *rq = this_rq();
2958 unsigned long next, now = READ_ONCE(jiffies);
2959
2960 next = rq->last_sched_tick + HZ;
2961
2962 if (time_before_eq(next, now))
2963 return 0;
2964
2965 return jiffies_to_nsecs(next - now);
2966 }
2967 #endif
2968
2969 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2970 defined(CONFIG_PREEMPT_TRACER))
2971
2972 void preempt_count_add(int val)
2973 {
2974 #ifdef CONFIG_DEBUG_PREEMPT
2975 /*
2976 * Underflow?
2977 */
2978 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2979 return;
2980 #endif
2981 __preempt_count_add(val);
2982 #ifdef CONFIG_DEBUG_PREEMPT
2983 /*
2984 * Spinlock count overflowing soon?
2985 */
2986 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2987 PREEMPT_MASK - 10);
2988 #endif
2989 if (preempt_count() == val) {
2990 unsigned long ip = get_lock_parent_ip();
2991 #ifdef CONFIG_DEBUG_PREEMPT
2992 current->preempt_disable_ip = ip;
2993 #endif
2994 trace_preempt_off(CALLER_ADDR0, ip);
2995 }
2996 }
2997 EXPORT_SYMBOL(preempt_count_add);
2998 NOKPROBE_SYMBOL(preempt_count_add);
2999
3000 void preempt_count_sub(int val)
3001 {
3002 #ifdef CONFIG_DEBUG_PREEMPT
3003 /*
3004 * Underflow?
3005 */
3006 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3007 return;
3008 /*
3009 * Is the spinlock portion underflowing?
3010 */
3011 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3012 !(preempt_count() & PREEMPT_MASK)))
3013 return;
3014 #endif
3015
3016 if (preempt_count() == val)
3017 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3018 __preempt_count_sub(val);
3019 }
3020 EXPORT_SYMBOL(preempt_count_sub);
3021 NOKPROBE_SYMBOL(preempt_count_sub);
3022
3023 #endif
3024
3025 /*
3026 * Print scheduling while atomic bug:
3027 */
3028 static noinline void __schedule_bug(struct task_struct *prev)
3029 {
3030 if (oops_in_progress)
3031 return;
3032
3033 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3034 prev->comm, prev->pid, preempt_count());
3035
3036 debug_show_held_locks(prev);
3037 print_modules();
3038 if (irqs_disabled())
3039 print_irqtrace_events(prev);
3040 #ifdef CONFIG_DEBUG_PREEMPT
3041 if (in_atomic_preempt_off()) {
3042 pr_err("Preemption disabled at:");
3043 print_ip_sym(current->preempt_disable_ip);
3044 pr_cont("\n");
3045 }
3046 #endif
3047 dump_stack();
3048 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3049 }
3050
3051 /*
3052 * Various schedule()-time debugging checks and statistics:
3053 */
3054 static inline void schedule_debug(struct task_struct *prev)
3055 {
3056 #ifdef CONFIG_SCHED_STACK_END_CHECK
3057 BUG_ON(task_stack_end_corrupted(prev));
3058 #endif
3059
3060 if (unlikely(in_atomic_preempt_off())) {
3061 __schedule_bug(prev);
3062 preempt_count_set(PREEMPT_DISABLED);
3063 }
3064 rcu_sleep_check();
3065
3066 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3067
3068 schedstat_inc(this_rq(), sched_count);
3069 }
3070
3071 /*
3072 * Pick up the highest-prio task:
3073 */
3074 static inline struct task_struct *
3075 pick_next_task(struct rq *rq, struct task_struct *prev)
3076 {
3077 const struct sched_class *class = &fair_sched_class;
3078 struct task_struct *p;
3079
3080 /*
3081 * Optimization: we know that if all tasks are in
3082 * the fair class we can call that function directly:
3083 */
3084 if (likely(prev->sched_class == class &&
3085 rq->nr_running == rq->cfs.h_nr_running)) {
3086 p = fair_sched_class.pick_next_task(rq, prev);
3087 if (unlikely(p == RETRY_TASK))
3088 goto again;
3089
3090 /* assumes fair_sched_class->next == idle_sched_class */
3091 if (unlikely(!p))
3092 p = idle_sched_class.pick_next_task(rq, prev);
3093
3094 return p;
3095 }
3096
3097 again:
3098 for_each_class(class) {
3099 p = class->pick_next_task(rq, prev);
3100 if (p) {
3101 if (unlikely(p == RETRY_TASK))
3102 goto again;
3103 return p;
3104 }
3105 }
3106
3107 BUG(); /* the idle class will always have a runnable task */
3108 }
3109
3110 /*
3111 * __schedule() is the main scheduler function.
3112 *
3113 * The main means of driving the scheduler and thus entering this function are:
3114 *
3115 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3116 *
3117 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3118 * paths. For example, see arch/x86/entry_64.S.
3119 *
3120 * To drive preemption between tasks, the scheduler sets the flag in timer
3121 * interrupt handler scheduler_tick().
3122 *
3123 * 3. Wakeups don't really cause entry into schedule(). They add a
3124 * task to the run-queue and that's it.
3125 *
3126 * Now, if the new task added to the run-queue preempts the current
3127 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3128 * called on the nearest possible occasion:
3129 *
3130 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3131 *
3132 * - in syscall or exception context, at the next outmost
3133 * preempt_enable(). (this might be as soon as the wake_up()'s
3134 * spin_unlock()!)
3135 *
3136 * - in IRQ context, return from interrupt-handler to
3137 * preemptible context
3138 *
3139 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3140 * then at the next:
3141 *
3142 * - cond_resched() call
3143 * - explicit schedule() call
3144 * - return from syscall or exception to user-space
3145 * - return from interrupt-handler to user-space
3146 *
3147 * WARNING: must be called with preemption disabled!
3148 */
3149 static void __sched notrace __schedule(bool preempt)
3150 {
3151 struct task_struct *prev, *next;
3152 unsigned long *switch_count;
3153 struct rq *rq;
3154 int cpu;
3155
3156 cpu = smp_processor_id();
3157 rq = cpu_rq(cpu);
3158 prev = rq->curr;
3159
3160 /*
3161 * do_exit() calls schedule() with preemption disabled as an exception;
3162 * however we must fix that up, otherwise the next task will see an
3163 * inconsistent (higher) preempt count.
3164 *
3165 * It also avoids the below schedule_debug() test from complaining
3166 * about this.
3167 */
3168 if (unlikely(prev->state == TASK_DEAD))
3169 preempt_enable_no_resched_notrace();
3170
3171 schedule_debug(prev);
3172
3173 if (sched_feat(HRTICK))
3174 hrtick_clear(rq);
3175
3176 local_irq_disable();
3177 rcu_note_context_switch();
3178
3179 /*
3180 * Make sure that signal_pending_state()->signal_pending() below
3181 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3182 * done by the caller to avoid the race with signal_wake_up().
3183 */
3184 smp_mb__before_spinlock();
3185 raw_spin_lock(&rq->lock);
3186 lockdep_pin_lock(&rq->lock);
3187
3188 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3189
3190 switch_count = &prev->nivcsw;
3191 if (!preempt && prev->state) {
3192 if (unlikely(signal_pending_state(prev->state, prev))) {
3193 prev->state = TASK_RUNNING;
3194 } else {
3195 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3196 prev->on_rq = 0;
3197
3198 /*
3199 * If a worker went to sleep, notify and ask workqueue
3200 * whether it wants to wake up a task to maintain
3201 * concurrency.
3202 */
3203 if (prev->flags & PF_WQ_WORKER) {
3204 struct task_struct *to_wakeup;
3205
3206 to_wakeup = wq_worker_sleeping(prev);
3207 if (to_wakeup)
3208 try_to_wake_up_local(to_wakeup);
3209 }
3210 }
3211 switch_count = &prev->nvcsw;
3212 }
3213
3214 if (task_on_rq_queued(prev))
3215 update_rq_clock(rq);
3216
3217 next = pick_next_task(rq, prev);
3218 clear_tsk_need_resched(prev);
3219 clear_preempt_need_resched();
3220 rq->clock_skip_update = 0;
3221
3222 if (likely(prev != next)) {
3223 rq->nr_switches++;
3224 rq->curr = next;
3225 ++*switch_count;
3226
3227 trace_sched_switch(preempt, prev, next);
3228 rq = context_switch(rq, prev, next); /* unlocks the rq */
3229 } else {
3230 lockdep_unpin_lock(&rq->lock);
3231 raw_spin_unlock_irq(&rq->lock);
3232 }
3233
3234 balance_callback(rq);
3235 }
3236 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3237
3238 static inline void sched_submit_work(struct task_struct *tsk)
3239 {
3240 if (!tsk->state || tsk_is_pi_blocked(tsk))
3241 return;
3242 /*
3243 * If we are going to sleep and we have plugged IO queued,
3244 * make sure to submit it to avoid deadlocks.
3245 */
3246 if (blk_needs_flush_plug(tsk))
3247 blk_schedule_flush_plug(tsk);
3248 }
3249
3250 asmlinkage __visible void __sched schedule(void)
3251 {
3252 struct task_struct *tsk = current;
3253
3254 sched_submit_work(tsk);
3255 do {
3256 preempt_disable();
3257 __schedule(false);
3258 sched_preempt_enable_no_resched();
3259 } while (need_resched());
3260 }
3261 EXPORT_SYMBOL(schedule);
3262
3263 #ifdef CONFIG_CONTEXT_TRACKING
3264 asmlinkage __visible void __sched schedule_user(void)
3265 {
3266 /*
3267 * If we come here after a random call to set_need_resched(),
3268 * or we have been woken up remotely but the IPI has not yet arrived,
3269 * we haven't yet exited the RCU idle mode. Do it here manually until
3270 * we find a better solution.
3271 *
3272 * NB: There are buggy callers of this function. Ideally we
3273 * should warn if prev_state != CONTEXT_USER, but that will trigger
3274 * too frequently to make sense yet.
3275 */
3276 enum ctx_state prev_state = exception_enter();
3277 schedule();
3278 exception_exit(prev_state);
3279 }
3280 #endif
3281
3282 /**
3283 * schedule_preempt_disabled - called with preemption disabled
3284 *
3285 * Returns with preemption disabled. Note: preempt_count must be 1
3286 */
3287 void __sched schedule_preempt_disabled(void)
3288 {
3289 sched_preempt_enable_no_resched();
3290 schedule();
3291 preempt_disable();
3292 }
3293
3294 static void __sched notrace preempt_schedule_common(void)
3295 {
3296 do {
3297 preempt_disable_notrace();
3298 __schedule(true);
3299 preempt_enable_no_resched_notrace();
3300
3301 /*
3302 * Check again in case we missed a preemption opportunity
3303 * between schedule and now.
3304 */
3305 } while (need_resched());
3306 }
3307
3308 #ifdef CONFIG_PREEMPT
3309 /*
3310 * this is the entry point to schedule() from in-kernel preemption
3311 * off of preempt_enable. Kernel preemptions off return from interrupt
3312 * occur there and call schedule directly.
3313 */
3314 asmlinkage __visible void __sched notrace preempt_schedule(void)
3315 {
3316 /*
3317 * If there is a non-zero preempt_count or interrupts are disabled,
3318 * we do not want to preempt the current task. Just return..
3319 */
3320 if (likely(!preemptible()))
3321 return;
3322
3323 preempt_schedule_common();
3324 }
3325 NOKPROBE_SYMBOL(preempt_schedule);
3326 EXPORT_SYMBOL(preempt_schedule);
3327
3328 /**
3329 * preempt_schedule_notrace - preempt_schedule called by tracing
3330 *
3331 * The tracing infrastructure uses preempt_enable_notrace to prevent
3332 * recursion and tracing preempt enabling caused by the tracing
3333 * infrastructure itself. But as tracing can happen in areas coming
3334 * from userspace or just about to enter userspace, a preempt enable
3335 * can occur before user_exit() is called. This will cause the scheduler
3336 * to be called when the system is still in usermode.
3337 *
3338 * To prevent this, the preempt_enable_notrace will use this function
3339 * instead of preempt_schedule() to exit user context if needed before
3340 * calling the scheduler.
3341 */
3342 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3343 {
3344 enum ctx_state prev_ctx;
3345
3346 if (likely(!preemptible()))
3347 return;
3348
3349 do {
3350 preempt_disable_notrace();
3351 /*
3352 * Needs preempt disabled in case user_exit() is traced
3353 * and the tracer calls preempt_enable_notrace() causing
3354 * an infinite recursion.
3355 */
3356 prev_ctx = exception_enter();
3357 __schedule(true);
3358 exception_exit(prev_ctx);
3359
3360 preempt_enable_no_resched_notrace();
3361 } while (need_resched());
3362 }
3363 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3364
3365 #endif /* CONFIG_PREEMPT */
3366
3367 /*
3368 * this is the entry point to schedule() from kernel preemption
3369 * off of irq context.
3370 * Note, that this is called and return with irqs disabled. This will
3371 * protect us against recursive calling from irq.
3372 */
3373 asmlinkage __visible void __sched preempt_schedule_irq(void)
3374 {
3375 enum ctx_state prev_state;
3376
3377 /* Catch callers which need to be fixed */
3378 BUG_ON(preempt_count() || !irqs_disabled());
3379
3380 prev_state = exception_enter();
3381
3382 do {
3383 preempt_disable();
3384 local_irq_enable();
3385 __schedule(true);
3386 local_irq_disable();
3387 sched_preempt_enable_no_resched();
3388 } while (need_resched());
3389
3390 exception_exit(prev_state);
3391 }
3392
3393 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3394 void *key)
3395 {
3396 return try_to_wake_up(curr->private, mode, wake_flags);
3397 }
3398 EXPORT_SYMBOL(default_wake_function);
3399
3400 #ifdef CONFIG_RT_MUTEXES
3401
3402 /*
3403 * rt_mutex_setprio - set the current priority of a task
3404 * @p: task
3405 * @prio: prio value (kernel-internal form)
3406 *
3407 * This function changes the 'effective' priority of a task. It does
3408 * not touch ->normal_prio like __setscheduler().
3409 *
3410 * Used by the rt_mutex code to implement priority inheritance
3411 * logic. Call site only calls if the priority of the task changed.
3412 */
3413 void rt_mutex_setprio(struct task_struct *p, int prio)
3414 {
3415 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3416 struct rq *rq;
3417 const struct sched_class *prev_class;
3418
3419 BUG_ON(prio > MAX_PRIO);
3420
3421 rq = __task_rq_lock(p);
3422
3423 /*
3424 * Idle task boosting is a nono in general. There is one
3425 * exception, when PREEMPT_RT and NOHZ is active:
3426 *
3427 * The idle task calls get_next_timer_interrupt() and holds
3428 * the timer wheel base->lock on the CPU and another CPU wants
3429 * to access the timer (probably to cancel it). We can safely
3430 * ignore the boosting request, as the idle CPU runs this code
3431 * with interrupts disabled and will complete the lock
3432 * protected section without being interrupted. So there is no
3433 * real need to boost.
3434 */
3435 if (unlikely(p == rq->idle)) {
3436 WARN_ON(p != rq->curr);
3437 WARN_ON(p->pi_blocked_on);
3438 goto out_unlock;
3439 }
3440
3441 trace_sched_pi_setprio(p, prio);
3442 oldprio = p->prio;
3443
3444 if (oldprio == prio)
3445 queue_flag &= ~DEQUEUE_MOVE;
3446
3447 prev_class = p->sched_class;
3448 queued = task_on_rq_queued(p);
3449 running = task_current(rq, p);
3450 if (queued)
3451 dequeue_task(rq, p, queue_flag);
3452 if (running)
3453 put_prev_task(rq, p);
3454
3455 /*
3456 * Boosting condition are:
3457 * 1. -rt task is running and holds mutex A
3458 * --> -dl task blocks on mutex A
3459 *
3460 * 2. -dl task is running and holds mutex A
3461 * --> -dl task blocks on mutex A and could preempt the
3462 * running task
3463 */
3464 if (dl_prio(prio)) {
3465 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3466 if (!dl_prio(p->normal_prio) ||
3467 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3468 p->dl.dl_boosted = 1;
3469 queue_flag |= ENQUEUE_REPLENISH;
3470 } else
3471 p->dl.dl_boosted = 0;
3472 p->sched_class = &dl_sched_class;
3473 } else if (rt_prio(prio)) {
3474 if (dl_prio(oldprio))
3475 p->dl.dl_boosted = 0;
3476 if (oldprio < prio)
3477 queue_flag |= ENQUEUE_HEAD;
3478 p->sched_class = &rt_sched_class;
3479 } else {
3480 if (dl_prio(oldprio))
3481 p->dl.dl_boosted = 0;
3482 if (rt_prio(oldprio))
3483 p->rt.timeout = 0;
3484 p->sched_class = &fair_sched_class;
3485 }
3486
3487 sched_set_prio(p, prio);
3488
3489 if (running)
3490 p->sched_class->set_curr_task(rq);
3491 if (queued)
3492 enqueue_task(rq, p, queue_flag);
3493
3494 check_class_changed(rq, p, prev_class, oldprio);
3495 out_unlock:
3496 preempt_disable(); /* avoid rq from going away on us */
3497 __task_rq_unlock(rq);
3498
3499 balance_callback(rq);
3500 preempt_enable();
3501 }
3502 #endif
3503
3504 void set_user_nice(struct task_struct *p, long nice)
3505 {
3506 int old_prio, delta, queued;
3507 unsigned long flags;
3508 struct rq *rq;
3509
3510 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3511 return;
3512 /*
3513 * We have to be careful, if called from sys_setpriority(),
3514 * the task might be in the middle of scheduling on another CPU.
3515 */
3516 rq = task_rq_lock(p, &flags);
3517 /*
3518 * The RT priorities are set via sched_setscheduler(), but we still
3519 * allow the 'normal' nice value to be set - but as expected
3520 * it wont have any effect on scheduling until the task is
3521 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3522 */
3523 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3524 p->static_prio = NICE_TO_PRIO(nice);
3525 goto out_unlock;
3526 }
3527 queued = task_on_rq_queued(p);
3528 if (queued)
3529 dequeue_task(rq, p, DEQUEUE_SAVE);
3530
3531 p->static_prio = NICE_TO_PRIO(nice);
3532 set_load_weight(p);
3533 old_prio = p->prio;
3534 sched_set_prio(p, effective_prio(p));
3535 delta = p->prio - old_prio;
3536
3537 if (queued) {
3538 enqueue_task(rq, p, ENQUEUE_RESTORE);
3539 /*
3540 * If the task increased its priority or is running and
3541 * lowered its priority, then reschedule its CPU:
3542 */
3543 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3544 resched_curr(rq);
3545 }
3546 out_unlock:
3547 task_rq_unlock(rq, p, &flags);
3548 }
3549 EXPORT_SYMBOL(set_user_nice);
3550
3551 /*
3552 * can_nice - check if a task can reduce its nice value
3553 * @p: task
3554 * @nice: nice value
3555 */
3556 int can_nice(const struct task_struct *p, const int nice)
3557 {
3558 /* convert nice value [19,-20] to rlimit style value [1,40] */
3559 int nice_rlim = nice_to_rlimit(nice);
3560
3561 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3562 capable(CAP_SYS_NICE));
3563 }
3564
3565 #ifdef __ARCH_WANT_SYS_NICE
3566
3567 /*
3568 * sys_nice - change the priority of the current process.
3569 * @increment: priority increment
3570 *
3571 * sys_setpriority is a more generic, but much slower function that
3572 * does similar things.
3573 */
3574 SYSCALL_DEFINE1(nice, int, increment)
3575 {
3576 long nice, retval;
3577
3578 /*
3579 * Setpriority might change our priority at the same moment.
3580 * We don't have to worry. Conceptually one call occurs first
3581 * and we have a single winner.
3582 */
3583 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3584 nice = task_nice(current) + increment;
3585
3586 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3587 if (increment < 0 && !can_nice(current, nice))
3588 return -EPERM;
3589
3590 retval = security_task_setnice(current, nice);
3591 if (retval)
3592 return retval;
3593
3594 set_user_nice(current, nice);
3595 return 0;
3596 }
3597
3598 #endif
3599
3600 /**
3601 * task_prio - return the priority value of a given task.
3602 * @p: the task in question.
3603 *
3604 * Return: The priority value as seen by users in /proc.
3605 * RT tasks are offset by -200. Normal tasks are centered
3606 * around 0, value goes from -16 to +15.
3607 */
3608 int task_prio(const struct task_struct *p)
3609 {
3610 return p->prio - MAX_RT_PRIO;
3611 }
3612
3613 /**
3614 * idle_cpu - is a given cpu idle currently?
3615 * @cpu: the processor in question.
3616 *
3617 * Return: 1 if the CPU is currently idle. 0 otherwise.
3618 */
3619 int idle_cpu(int cpu)
3620 {
3621 struct rq *rq = cpu_rq(cpu);
3622
3623 if (rq->curr != rq->idle)
3624 return 0;
3625
3626 if (rq->nr_running)
3627 return 0;
3628
3629 #ifdef CONFIG_SMP
3630 if (!llist_empty(&rq->wake_list))
3631 return 0;
3632 #endif
3633
3634 return 1;
3635 }
3636
3637 /**
3638 * idle_task - return the idle task for a given cpu.
3639 * @cpu: the processor in question.
3640 *
3641 * Return: The idle task for the cpu @cpu.
3642 */
3643 struct task_struct *idle_task(int cpu)
3644 {
3645 return cpu_rq(cpu)->idle;
3646 }
3647
3648 /**
3649 * find_process_by_pid - find a process with a matching PID value.
3650 * @pid: the pid in question.
3651 *
3652 * The task of @pid, if found. %NULL otherwise.
3653 */
3654 static struct task_struct *find_process_by_pid(pid_t pid)
3655 {
3656 return pid ? find_task_by_vpid(pid) : current;
3657 }
3658
3659 /*
3660 * This function initializes the sched_dl_entity of a newly becoming
3661 * SCHED_DEADLINE task.
3662 *
3663 * Only the static values are considered here, the actual runtime and the
3664 * absolute deadline will be properly calculated when the task is enqueued
3665 * for the first time with its new policy.
3666 */
3667 static void
3668 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3669 {
3670 struct sched_dl_entity *dl_se = &p->dl;
3671
3672 dl_se->dl_runtime = attr->sched_runtime;
3673 dl_se->dl_deadline = attr->sched_deadline;
3674 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3675 dl_se->flags = attr->sched_flags;
3676 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3677
3678 /*
3679 * Changing the parameters of a task is 'tricky' and we're not doing
3680 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3681 *
3682 * What we SHOULD do is delay the bandwidth release until the 0-lag
3683 * point. This would include retaining the task_struct until that time
3684 * and change dl_overflow() to not immediately decrement the current
3685 * amount.
3686 *
3687 * Instead we retain the current runtime/deadline and let the new
3688 * parameters take effect after the current reservation period lapses.
3689 * This is safe (albeit pessimistic) because the 0-lag point is always
3690 * before the current scheduling deadline.
3691 *
3692 * We can still have temporary overloads because we do not delay the
3693 * change in bandwidth until that time; so admission control is
3694 * not on the safe side. It does however guarantee tasks will never
3695 * consume more than promised.
3696 */
3697 }
3698
3699 /*
3700 * sched_setparam() passes in -1 for its policy, to let the functions
3701 * it calls know not to change it.
3702 */
3703 #define SETPARAM_POLICY -1
3704
3705 static void __setscheduler_params(struct task_struct *p,
3706 const struct sched_attr *attr)
3707 {
3708 int policy = attr->sched_policy;
3709
3710 if (policy == SETPARAM_POLICY)
3711 policy = p->policy;
3712
3713 p->policy = policy;
3714
3715 if (dl_policy(policy))
3716 __setparam_dl(p, attr);
3717 else if (fair_policy(policy))
3718 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3719
3720 /*
3721 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3722 * !rt_policy. Always setting this ensures that things like
3723 * getparam()/getattr() don't report silly values for !rt tasks.
3724 */
3725 p->rt_priority = attr->sched_priority;
3726 p->normal_prio = normal_prio(p);
3727 set_load_weight(p);
3728 }
3729
3730 /* Actually do priority change: must hold pi & rq lock. */
3731 static void __setscheduler(struct rq *rq, struct task_struct *p,
3732 const struct sched_attr *attr, bool keep_boost)
3733 {
3734 __setscheduler_params(p, attr);
3735
3736 /*
3737 * Keep a potential priority boosting if called from
3738 * sched_setscheduler().
3739 */
3740 if (keep_boost)
3741 sched_set_prio(p, rt_mutex_get_effective_prio(p,
3742 normal_prio(p)));
3743 else
3744 sched_set_prio(p, normal_prio(p));
3745
3746 if (dl_prio(p->prio))
3747 p->sched_class = &dl_sched_class;
3748 else if (rt_prio(p->prio))
3749 p->sched_class = &rt_sched_class;
3750 else
3751 p->sched_class = &fair_sched_class;
3752 }
3753
3754 static void
3755 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3756 {
3757 struct sched_dl_entity *dl_se = &p->dl;
3758
3759 attr->sched_priority = p->rt_priority;
3760 attr->sched_runtime = dl_se->dl_runtime;
3761 attr->sched_deadline = dl_se->dl_deadline;
3762 attr->sched_period = dl_se->dl_period;
3763 attr->sched_flags = dl_se->flags;
3764 }
3765
3766 /*
3767 * This function validates the new parameters of a -deadline task.
3768 * We ask for the deadline not being zero, and greater or equal
3769 * than the runtime, as well as the period of being zero or
3770 * greater than deadline. Furthermore, we have to be sure that
3771 * user parameters are above the internal resolution of 1us (we
3772 * check sched_runtime only since it is always the smaller one) and
3773 * below 2^63 ns (we have to check both sched_deadline and
3774 * sched_period, as the latter can be zero).
3775 */
3776 static bool
3777 __checkparam_dl(const struct sched_attr *attr)
3778 {
3779 /* deadline != 0 */
3780 if (attr->sched_deadline == 0)
3781 return false;
3782
3783 /*
3784 * Since we truncate DL_SCALE bits, make sure we're at least
3785 * that big.
3786 */
3787 if (attr->sched_runtime < (1ULL << DL_SCALE))
3788 return false;
3789
3790 /*
3791 * Since we use the MSB for wrap-around and sign issues, make
3792 * sure it's not set (mind that period can be equal to zero).
3793 */
3794 if (attr->sched_deadline & (1ULL << 63) ||
3795 attr->sched_period & (1ULL << 63))
3796 return false;
3797
3798 /* runtime <= deadline <= period (if period != 0) */
3799 if ((attr->sched_period != 0 &&
3800 attr->sched_period < attr->sched_deadline) ||
3801 attr->sched_deadline < attr->sched_runtime)
3802 return false;
3803
3804 return true;
3805 }
3806
3807 /*
3808 * check the target process has a UID that matches the current process's
3809 */
3810 static bool check_same_owner(struct task_struct *p)
3811 {
3812 const struct cred *cred = current_cred(), *pcred;
3813 bool match;
3814
3815 rcu_read_lock();
3816 pcred = __task_cred(p);
3817 match = (uid_eq(cred->euid, pcred->euid) ||
3818 uid_eq(cred->euid, pcred->uid));
3819 rcu_read_unlock();
3820 return match;
3821 }
3822
3823 static bool dl_param_changed(struct task_struct *p,
3824 const struct sched_attr *attr)
3825 {
3826 struct sched_dl_entity *dl_se = &p->dl;
3827
3828 if (dl_se->dl_runtime != attr->sched_runtime ||
3829 dl_se->dl_deadline != attr->sched_deadline ||
3830 dl_se->dl_period != attr->sched_period ||
3831 dl_se->flags != attr->sched_flags)
3832 return true;
3833
3834 return false;
3835 }
3836
3837 static int __sched_setscheduler(struct task_struct *p,
3838 const struct sched_attr *attr,
3839 bool user, bool pi)
3840 {
3841 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3842 MAX_RT_PRIO - 1 - attr->sched_priority;
3843 int retval, oldprio, oldpolicy = -1, queued, running;
3844 int new_effective_prio, policy = attr->sched_policy;
3845 unsigned long flags;
3846 const struct sched_class *prev_class;
3847 struct rq *rq;
3848 int reset_on_fork;
3849 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3850
3851 /* may grab non-irq protected spin_locks */
3852 BUG_ON(in_interrupt());
3853 recheck:
3854 /* double check policy once rq lock held */
3855 if (policy < 0) {
3856 reset_on_fork = p->sched_reset_on_fork;
3857 policy = oldpolicy = p->policy;
3858 } else {
3859 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3860
3861 if (!valid_policy(policy))
3862 return -EINVAL;
3863 }
3864
3865 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3866 return -EINVAL;
3867
3868 /*
3869 * Valid priorities for SCHED_FIFO and SCHED_RR are
3870 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3871 * SCHED_BATCH and SCHED_IDLE is 0.
3872 */
3873 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3874 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3875 return -EINVAL;
3876 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3877 (rt_policy(policy) != (attr->sched_priority != 0)))
3878 return -EINVAL;
3879
3880 /*
3881 * Allow unprivileged RT tasks to decrease priority:
3882 */
3883 if (user && !capable(CAP_SYS_NICE)) {
3884 if (fair_policy(policy)) {
3885 if (attr->sched_nice < task_nice(p) &&
3886 !can_nice(p, attr->sched_nice))
3887 return -EPERM;
3888 }
3889
3890 if (rt_policy(policy)) {
3891 unsigned long rlim_rtprio =
3892 task_rlimit(p, RLIMIT_RTPRIO);
3893
3894 /* can't set/change the rt policy */
3895 if (policy != p->policy && !rlim_rtprio)
3896 return -EPERM;
3897
3898 /* can't increase priority */
3899 if (attr->sched_priority > p->rt_priority &&
3900 attr->sched_priority > rlim_rtprio)
3901 return -EPERM;
3902 }
3903
3904 /*
3905 * Can't set/change SCHED_DEADLINE policy at all for now
3906 * (safest behavior); in the future we would like to allow
3907 * unprivileged DL tasks to increase their relative deadline
3908 * or reduce their runtime (both ways reducing utilization)
3909 */
3910 if (dl_policy(policy))
3911 return -EPERM;
3912
3913 /*
3914 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3915 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3916 */
3917 if (idle_policy(p->policy) && !idle_policy(policy)) {
3918 if (!can_nice(p, task_nice(p)))
3919 return -EPERM;
3920 }
3921
3922 /* can't change other user's priorities */
3923 if (!check_same_owner(p))
3924 return -EPERM;
3925
3926 /* Normal users shall not reset the sched_reset_on_fork flag */
3927 if (p->sched_reset_on_fork && !reset_on_fork)
3928 return -EPERM;
3929 }
3930
3931 if (user) {
3932 retval = security_task_setscheduler(p);
3933 if (retval)
3934 return retval;
3935 }
3936
3937 /*
3938 * make sure no PI-waiters arrive (or leave) while we are
3939 * changing the priority of the task:
3940 *
3941 * To be able to change p->policy safely, the appropriate
3942 * runqueue lock must be held.
3943 */
3944 rq = task_rq_lock(p, &flags);
3945
3946 /*
3947 * Changing the policy of the stop threads its a very bad idea
3948 */
3949 if (p == rq->stop) {
3950 task_rq_unlock(rq, p, &flags);
3951 return -EINVAL;
3952 }
3953
3954 /*
3955 * If not changing anything there's no need to proceed further,
3956 * but store a possible modification of reset_on_fork.
3957 */
3958 if (unlikely(policy == p->policy)) {
3959 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3960 goto change;
3961 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3962 goto change;
3963 if (dl_policy(policy) && dl_param_changed(p, attr))
3964 goto change;
3965
3966 p->sched_reset_on_fork = reset_on_fork;
3967 task_rq_unlock(rq, p, &flags);
3968 return 0;
3969 }
3970 change:
3971
3972 if (user) {
3973 #ifdef CONFIG_RT_GROUP_SCHED
3974 /*
3975 * Do not allow realtime tasks into groups that have no runtime
3976 * assigned.
3977 */
3978 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3979 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3980 !task_group_is_autogroup(task_group(p))) {
3981 task_rq_unlock(rq, p, &flags);
3982 return -EPERM;
3983 }
3984 #endif
3985 #ifdef CONFIG_SMP
3986 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3987 cpumask_t *span = rq->rd->span;
3988
3989 /*
3990 * Don't allow tasks with an affinity mask smaller than
3991 * the entire root_domain to become SCHED_DEADLINE. We
3992 * will also fail if there's no bandwidth available.
3993 */
3994 if (!cpumask_subset(span, &p->cpus_allowed) ||
3995 rq->rd->dl_bw.bw == 0) {
3996 task_rq_unlock(rq, p, &flags);
3997 return -EPERM;
3998 }
3999 }
4000 #endif
4001 }
4002
4003 /* recheck policy now with rq lock held */
4004 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4005 policy = oldpolicy = -1;
4006 task_rq_unlock(rq, p, &flags);
4007 goto recheck;
4008 }
4009
4010 /*
4011 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4012 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4013 * is available.
4014 */
4015 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4016 task_rq_unlock(rq, p, &flags);
4017 return -EBUSY;
4018 }
4019
4020 p->sched_reset_on_fork = reset_on_fork;
4021 oldprio = p->prio;
4022
4023 if (pi) {
4024 /*
4025 * Take priority boosted tasks into account. If the new
4026 * effective priority is unchanged, we just store the new
4027 * normal parameters and do not touch the scheduler class and
4028 * the runqueue. This will be done when the task deboost
4029 * itself.
4030 */
4031 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4032 if (new_effective_prio == oldprio)
4033 queue_flags &= ~DEQUEUE_MOVE;
4034 }
4035
4036 queued = task_on_rq_queued(p);
4037 running = task_current(rq, p);
4038 if (queued)
4039 dequeue_task(rq, p, queue_flags);
4040 if (running)
4041 put_prev_task(rq, p);
4042
4043 prev_class = p->sched_class;
4044 __setscheduler(rq, p, attr, pi);
4045
4046 if (running)
4047 p->sched_class->set_curr_task(rq);
4048 if (queued) {
4049 /*
4050 * We enqueue to tail when the priority of a task is
4051 * increased (user space view).
4052 */
4053 if (oldprio < p->prio)
4054 queue_flags |= ENQUEUE_HEAD;
4055
4056 enqueue_task(rq, p, queue_flags);
4057 }
4058
4059 check_class_changed(rq, p, prev_class, oldprio);
4060 preempt_disable(); /* avoid rq from going away on us */
4061 task_rq_unlock(rq, p, &flags);
4062
4063 if (pi)
4064 rt_mutex_adjust_pi(p);
4065
4066 /*
4067 * Run balance callbacks after we've adjusted the PI chain.
4068 */
4069 balance_callback(rq);
4070 preempt_enable();
4071
4072 return 0;
4073 }
4074
4075 static int _sched_setscheduler(struct task_struct *p, int policy,
4076 const struct sched_param *param, bool check)
4077 {
4078 struct sched_attr attr = {
4079 .sched_policy = policy,
4080 .sched_priority = param->sched_priority,
4081 .sched_nice = PRIO_TO_NICE(p->static_prio),
4082 };
4083
4084 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4085 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4086 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4087 policy &= ~SCHED_RESET_ON_FORK;
4088 attr.sched_policy = policy;
4089 }
4090
4091 return __sched_setscheduler(p, &attr, check, true);
4092 }
4093 /**
4094 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4095 * @p: the task in question.
4096 * @policy: new policy.
4097 * @param: structure containing the new RT priority.
4098 *
4099 * Return: 0 on success. An error code otherwise.
4100 *
4101 * NOTE that the task may be already dead.
4102 */
4103 int sched_setscheduler(struct task_struct *p, int policy,
4104 const struct sched_param *param)
4105 {
4106 return _sched_setscheduler(p, policy, param, true);
4107 }
4108 EXPORT_SYMBOL_GPL(sched_setscheduler);
4109
4110 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4111 {
4112 return __sched_setscheduler(p, attr, true, true);
4113 }
4114 EXPORT_SYMBOL_GPL(sched_setattr);
4115
4116 /**
4117 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4118 * @p: the task in question.
4119 * @policy: new policy.
4120 * @param: structure containing the new RT priority.
4121 *
4122 * Just like sched_setscheduler, only don't bother checking if the
4123 * current context has permission. For example, this is needed in
4124 * stop_machine(): we create temporary high priority worker threads,
4125 * but our caller might not have that capability.
4126 *
4127 * Return: 0 on success. An error code otherwise.
4128 */
4129 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4130 const struct sched_param *param)
4131 {
4132 return _sched_setscheduler(p, policy, param, false);
4133 }
4134 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4135
4136 static int
4137 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4138 {
4139 struct sched_param lparam;
4140 struct task_struct *p;
4141 int retval;
4142
4143 if (!param || pid < 0)
4144 return -EINVAL;
4145 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4146 return -EFAULT;
4147
4148 rcu_read_lock();
4149 retval = -ESRCH;
4150 p = find_process_by_pid(pid);
4151 if (p != NULL)
4152 retval = sched_setscheduler(p, policy, &lparam);
4153 rcu_read_unlock();
4154
4155 return retval;
4156 }
4157
4158 /*
4159 * Mimics kernel/events/core.c perf_copy_attr().
4160 */
4161 static int sched_copy_attr(struct sched_attr __user *uattr,
4162 struct sched_attr *attr)
4163 {
4164 u32 size;
4165 int ret;
4166
4167 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4168 return -EFAULT;
4169
4170 /*
4171 * zero the full structure, so that a short copy will be nice.
4172 */
4173 memset(attr, 0, sizeof(*attr));
4174
4175 ret = get_user(size, &uattr->size);
4176 if (ret)
4177 return ret;
4178
4179 if (size > PAGE_SIZE) /* silly large */
4180 goto err_size;
4181
4182 if (!size) /* abi compat */
4183 size = SCHED_ATTR_SIZE_VER0;
4184
4185 if (size < SCHED_ATTR_SIZE_VER0)
4186 goto err_size;
4187
4188 /*
4189 * If we're handed a bigger struct than we know of,
4190 * ensure all the unknown bits are 0 - i.e. new
4191 * user-space does not rely on any kernel feature
4192 * extensions we dont know about yet.
4193 */
4194 if (size > sizeof(*attr)) {
4195 unsigned char __user *addr;
4196 unsigned char __user *end;
4197 unsigned char val;
4198
4199 addr = (void __user *)uattr + sizeof(*attr);
4200 end = (void __user *)uattr + size;
4201
4202 for (; addr < end; addr++) {
4203 ret = get_user(val, addr);
4204 if (ret)
4205 return ret;
4206 if (val)
4207 goto err_size;
4208 }
4209 size = sizeof(*attr);
4210 }
4211
4212 ret = copy_from_user(attr, uattr, size);
4213 if (ret)
4214 return -EFAULT;
4215
4216 /*
4217 * XXX: do we want to be lenient like existing syscalls; or do we want
4218 * to be strict and return an error on out-of-bounds values?
4219 */
4220 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4221
4222 return 0;
4223
4224 err_size:
4225 put_user(sizeof(*attr), &uattr->size);
4226 return -E2BIG;
4227 }
4228
4229 /**
4230 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4231 * @pid: the pid in question.
4232 * @policy: new policy.
4233 * @param: structure containing the new RT priority.
4234 *
4235 * Return: 0 on success. An error code otherwise.
4236 */
4237 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4238 struct sched_param __user *, param)
4239 {
4240 /* negative values for policy are not valid */
4241 if (policy < 0)
4242 return -EINVAL;
4243
4244 return do_sched_setscheduler(pid, policy, param);
4245 }
4246
4247 /**
4248 * sys_sched_setparam - set/change the RT priority of a thread
4249 * @pid: the pid in question.
4250 * @param: structure containing the new RT priority.
4251 *
4252 * Return: 0 on success. An error code otherwise.
4253 */
4254 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4255 {
4256 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4257 }
4258
4259 /**
4260 * sys_sched_setattr - same as above, but with extended sched_attr
4261 * @pid: the pid in question.
4262 * @uattr: structure containing the extended parameters.
4263 * @flags: for future extension.
4264 */
4265 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4266 unsigned int, flags)
4267 {
4268 struct sched_attr attr;
4269 struct task_struct *p;
4270 int retval;
4271
4272 if (!uattr || pid < 0 || flags)
4273 return -EINVAL;
4274
4275 retval = sched_copy_attr(uattr, &attr);
4276 if (retval)
4277 return retval;
4278
4279 if ((int)attr.sched_policy < 0)
4280 return -EINVAL;
4281
4282 rcu_read_lock();
4283 retval = -ESRCH;
4284 p = find_process_by_pid(pid);
4285 if (p != NULL)
4286 retval = sched_setattr(p, &attr);
4287 rcu_read_unlock();
4288
4289 return retval;
4290 }
4291
4292 /**
4293 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4294 * @pid: the pid in question.
4295 *
4296 * Return: On success, the policy of the thread. Otherwise, a negative error
4297 * code.
4298 */
4299 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4300 {
4301 struct task_struct *p;
4302 int retval;
4303
4304 if (pid < 0)
4305 return -EINVAL;
4306
4307 retval = -ESRCH;
4308 rcu_read_lock();
4309 p = find_process_by_pid(pid);
4310 if (p) {
4311 retval = security_task_getscheduler(p);
4312 if (!retval)
4313 retval = p->policy
4314 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4315 }
4316 rcu_read_unlock();
4317 return retval;
4318 }
4319
4320 /**
4321 * sys_sched_getparam - get the RT priority of a thread
4322 * @pid: the pid in question.
4323 * @param: structure containing the RT priority.
4324 *
4325 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4326 * code.
4327 */
4328 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4329 {
4330 struct sched_param lp = { .sched_priority = 0 };
4331 struct task_struct *p;
4332 int retval;
4333
4334 if (!param || pid < 0)
4335 return -EINVAL;
4336
4337 rcu_read_lock();
4338 p = find_process_by_pid(pid);
4339 retval = -ESRCH;
4340 if (!p)
4341 goto out_unlock;
4342
4343 retval = security_task_getscheduler(p);
4344 if (retval)
4345 goto out_unlock;
4346
4347 if (task_has_rt_policy(p))
4348 lp.sched_priority = p->rt_priority;
4349 rcu_read_unlock();
4350
4351 /*
4352 * This one might sleep, we cannot do it with a spinlock held ...
4353 */
4354 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4355
4356 return retval;
4357
4358 out_unlock:
4359 rcu_read_unlock();
4360 return retval;
4361 }
4362
4363 static int sched_read_attr(struct sched_attr __user *uattr,
4364 struct sched_attr *attr,
4365 unsigned int usize)
4366 {
4367 int ret;
4368
4369 if (!access_ok(VERIFY_WRITE, uattr, usize))
4370 return -EFAULT;
4371
4372 /*
4373 * If we're handed a smaller struct than we know of,
4374 * ensure all the unknown bits are 0 - i.e. old
4375 * user-space does not get uncomplete information.
4376 */
4377 if (usize < sizeof(*attr)) {
4378 unsigned char *addr;
4379 unsigned char *end;
4380
4381 addr = (void *)attr + usize;
4382 end = (void *)attr + sizeof(*attr);
4383
4384 for (; addr < end; addr++) {
4385 if (*addr)
4386 return -EFBIG;
4387 }
4388
4389 attr->size = usize;
4390 }
4391
4392 ret = copy_to_user(uattr, attr, attr->size);
4393 if (ret)
4394 return -EFAULT;
4395
4396 return 0;
4397 }
4398
4399 /**
4400 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4401 * @pid: the pid in question.
4402 * @uattr: structure containing the extended parameters.
4403 * @size: sizeof(attr) for fwd/bwd comp.
4404 * @flags: for future extension.
4405 */
4406 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4407 unsigned int, size, unsigned int, flags)
4408 {
4409 struct sched_attr attr = {
4410 .size = sizeof(struct sched_attr),
4411 };
4412 struct task_struct *p;
4413 int retval;
4414
4415 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4416 size < SCHED_ATTR_SIZE_VER0 || flags)
4417 return -EINVAL;
4418
4419 rcu_read_lock();
4420 p = find_process_by_pid(pid);
4421 retval = -ESRCH;
4422 if (!p)
4423 goto out_unlock;
4424
4425 retval = security_task_getscheduler(p);
4426 if (retval)
4427 goto out_unlock;
4428
4429 attr.sched_policy = p->policy;
4430 if (p->sched_reset_on_fork)
4431 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4432 if (task_has_dl_policy(p))
4433 __getparam_dl(p, &attr);
4434 else if (task_has_rt_policy(p))
4435 attr.sched_priority = p->rt_priority;
4436 else
4437 attr.sched_nice = task_nice(p);
4438
4439 rcu_read_unlock();
4440
4441 retval = sched_read_attr(uattr, &attr, size);
4442 return retval;
4443
4444 out_unlock:
4445 rcu_read_unlock();
4446 return retval;
4447 }
4448
4449 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4450 {
4451 cpumask_var_t cpus_allowed, new_mask;
4452 struct task_struct *p;
4453 int retval;
4454
4455 rcu_read_lock();
4456
4457 p = find_process_by_pid(pid);
4458 if (!p) {
4459 rcu_read_unlock();
4460 return -ESRCH;
4461 }
4462
4463 /* Prevent p going away */
4464 get_task_struct(p);
4465 rcu_read_unlock();
4466
4467 if (p->flags & PF_NO_SETAFFINITY) {
4468 retval = -EINVAL;
4469 goto out_put_task;
4470 }
4471 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4472 retval = -ENOMEM;
4473 goto out_put_task;
4474 }
4475 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4476 retval = -ENOMEM;
4477 goto out_free_cpus_allowed;
4478 }
4479 retval = -EPERM;
4480 if (!check_same_owner(p)) {
4481 rcu_read_lock();
4482 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4483 rcu_read_unlock();
4484 goto out_free_new_mask;
4485 }
4486 rcu_read_unlock();
4487 }
4488
4489 retval = security_task_setscheduler(p);
4490 if (retval)
4491 goto out_free_new_mask;
4492
4493
4494 cpuset_cpus_allowed(p, cpus_allowed);
4495 cpumask_and(new_mask, in_mask, cpus_allowed);
4496
4497 /*
4498 * Since bandwidth control happens on root_domain basis,
4499 * if admission test is enabled, we only admit -deadline
4500 * tasks allowed to run on all the CPUs in the task's
4501 * root_domain.
4502 */
4503 #ifdef CONFIG_SMP
4504 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4505 rcu_read_lock();
4506 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4507 retval = -EBUSY;
4508 rcu_read_unlock();
4509 goto out_free_new_mask;
4510 }
4511 rcu_read_unlock();
4512 }
4513 #endif
4514 again:
4515 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4516
4517 if (!retval) {
4518 cpuset_cpus_allowed(p, cpus_allowed);
4519 if (!cpumask_subset(new_mask, cpus_allowed)) {
4520 /*
4521 * We must have raced with a concurrent cpuset
4522 * update. Just reset the cpus_allowed to the
4523 * cpuset's cpus_allowed
4524 */
4525 cpumask_copy(new_mask, cpus_allowed);
4526 goto again;
4527 }
4528 }
4529 out_free_new_mask:
4530 free_cpumask_var(new_mask);
4531 out_free_cpus_allowed:
4532 free_cpumask_var(cpus_allowed);
4533 out_put_task:
4534 put_task_struct(p);
4535 return retval;
4536 }
4537
4538 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4539 struct cpumask *new_mask)
4540 {
4541 if (len < cpumask_size())
4542 cpumask_clear(new_mask);
4543 else if (len > cpumask_size())
4544 len = cpumask_size();
4545
4546 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4547 }
4548
4549 /**
4550 * sys_sched_setaffinity - set the cpu affinity of a process
4551 * @pid: pid of the process
4552 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4553 * @user_mask_ptr: user-space pointer to the new cpu mask
4554 *
4555 * Return: 0 on success. An error code otherwise.
4556 */
4557 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4558 unsigned long __user *, user_mask_ptr)
4559 {
4560 cpumask_var_t new_mask;
4561 int retval;
4562
4563 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4564 return -ENOMEM;
4565
4566 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4567 if (retval == 0)
4568 retval = sched_setaffinity(pid, new_mask);
4569 free_cpumask_var(new_mask);
4570 return retval;
4571 }
4572
4573 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4574 {
4575 struct task_struct *p;
4576 unsigned long flags;
4577 int retval;
4578
4579 rcu_read_lock();
4580
4581 retval = -ESRCH;
4582 p = find_process_by_pid(pid);
4583 if (!p)
4584 goto out_unlock;
4585
4586 retval = security_task_getscheduler(p);
4587 if (retval)
4588 goto out_unlock;
4589
4590 raw_spin_lock_irqsave(&p->pi_lock, flags);
4591 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4592 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4593
4594 out_unlock:
4595 rcu_read_unlock();
4596
4597 return retval;
4598 }
4599
4600 /**
4601 * sys_sched_getaffinity - get the cpu affinity of a process
4602 * @pid: pid of the process
4603 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4604 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4605 *
4606 * Return: 0 on success. An error code otherwise.
4607 */
4608 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4609 unsigned long __user *, user_mask_ptr)
4610 {
4611 int ret;
4612 cpumask_var_t mask;
4613
4614 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4615 return -EINVAL;
4616 if (len & (sizeof(unsigned long)-1))
4617 return -EINVAL;
4618
4619 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4620 return -ENOMEM;
4621
4622 ret = sched_getaffinity(pid, mask);
4623 if (ret == 0) {
4624 size_t retlen = min_t(size_t, len, cpumask_size());
4625
4626 if (copy_to_user(user_mask_ptr, mask, retlen))
4627 ret = -EFAULT;
4628 else
4629 ret = retlen;
4630 }
4631 free_cpumask_var(mask);
4632
4633 return ret;
4634 }
4635
4636 /**
4637 * sys_sched_yield - yield the current processor to other threads.
4638 *
4639 * This function yields the current CPU to other tasks. If there are no
4640 * other threads running on this CPU then this function will return.
4641 *
4642 * Return: 0.
4643 */
4644 SYSCALL_DEFINE0(sched_yield)
4645 {
4646 struct rq *rq = this_rq_lock();
4647
4648 schedstat_inc(rq, yld_count);
4649 current->sched_class->yield_task(rq);
4650
4651 /*
4652 * Since we are going to call schedule() anyway, there's
4653 * no need to preempt or enable interrupts:
4654 */
4655 __release(rq->lock);
4656 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4657 do_raw_spin_unlock(&rq->lock);
4658 sched_preempt_enable_no_resched();
4659
4660 schedule();
4661
4662 return 0;
4663 }
4664
4665 int __sched _cond_resched(void)
4666 {
4667 if (should_resched(0)) {
4668 preempt_schedule_common();
4669 return 1;
4670 }
4671 return 0;
4672 }
4673 EXPORT_SYMBOL(_cond_resched);
4674
4675 /*
4676 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4677 * call schedule, and on return reacquire the lock.
4678 *
4679 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4680 * operations here to prevent schedule() from being called twice (once via
4681 * spin_unlock(), once by hand).
4682 */
4683 int __cond_resched_lock(spinlock_t *lock)
4684 {
4685 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4686 int ret = 0;
4687
4688 lockdep_assert_held(lock);
4689
4690 if (spin_needbreak(lock) || resched) {
4691 spin_unlock(lock);
4692 if (resched)
4693 preempt_schedule_common();
4694 else
4695 cpu_relax();
4696 ret = 1;
4697 spin_lock(lock);
4698 }
4699 return ret;
4700 }
4701 EXPORT_SYMBOL(__cond_resched_lock);
4702
4703 int __sched __cond_resched_softirq(void)
4704 {
4705 BUG_ON(!in_softirq());
4706
4707 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4708 local_bh_enable();
4709 preempt_schedule_common();
4710 local_bh_disable();
4711 return 1;
4712 }
4713 return 0;
4714 }
4715 EXPORT_SYMBOL(__cond_resched_softirq);
4716
4717 /**
4718 * yield - yield the current processor to other threads.
4719 *
4720 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4721 *
4722 * The scheduler is at all times free to pick the calling task as the most
4723 * eligible task to run, if removing the yield() call from your code breaks
4724 * it, its already broken.
4725 *
4726 * Typical broken usage is:
4727 *
4728 * while (!event)
4729 * yield();
4730 *
4731 * where one assumes that yield() will let 'the other' process run that will
4732 * make event true. If the current task is a SCHED_FIFO task that will never
4733 * happen. Never use yield() as a progress guarantee!!
4734 *
4735 * If you want to use yield() to wait for something, use wait_event().
4736 * If you want to use yield() to be 'nice' for others, use cond_resched().
4737 * If you still want to use yield(), do not!
4738 */
4739 void __sched yield(void)
4740 {
4741 set_current_state(TASK_RUNNING);
4742 sys_sched_yield();
4743 }
4744 EXPORT_SYMBOL(yield);
4745
4746 /**
4747 * yield_to - yield the current processor to another thread in
4748 * your thread group, or accelerate that thread toward the
4749 * processor it's on.
4750 * @p: target task
4751 * @preempt: whether task preemption is allowed or not
4752 *
4753 * It's the caller's job to ensure that the target task struct
4754 * can't go away on us before we can do any checks.
4755 *
4756 * Return:
4757 * true (>0) if we indeed boosted the target task.
4758 * false (0) if we failed to boost the target.
4759 * -ESRCH if there's no task to yield to.
4760 */
4761 int __sched yield_to(struct task_struct *p, bool preempt)
4762 {
4763 struct task_struct *curr = current;
4764 struct rq *rq, *p_rq;
4765 unsigned long flags;
4766 int yielded = 0;
4767
4768 local_irq_save(flags);
4769 rq = this_rq();
4770
4771 again:
4772 p_rq = task_rq(p);
4773 /*
4774 * If we're the only runnable task on the rq and target rq also
4775 * has only one task, there's absolutely no point in yielding.
4776 */
4777 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4778 yielded = -ESRCH;
4779 goto out_irq;
4780 }
4781
4782 double_rq_lock(rq, p_rq);
4783 if (task_rq(p) != p_rq) {
4784 double_rq_unlock(rq, p_rq);
4785 goto again;
4786 }
4787
4788 if (!curr->sched_class->yield_to_task)
4789 goto out_unlock;
4790
4791 if (curr->sched_class != p->sched_class)
4792 goto out_unlock;
4793
4794 if (task_running(p_rq, p) || p->state)
4795 goto out_unlock;
4796
4797 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4798 if (yielded) {
4799 schedstat_inc(rq, yld_count);
4800 /*
4801 * Make p's CPU reschedule; pick_next_entity takes care of
4802 * fairness.
4803 */
4804 if (preempt && rq != p_rq)
4805 resched_curr(p_rq);
4806 }
4807
4808 out_unlock:
4809 double_rq_unlock(rq, p_rq);
4810 out_irq:
4811 local_irq_restore(flags);
4812
4813 if (yielded > 0)
4814 schedule();
4815
4816 return yielded;
4817 }
4818 EXPORT_SYMBOL_GPL(yield_to);
4819
4820 /*
4821 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4822 * that process accounting knows that this is a task in IO wait state.
4823 */
4824 long __sched io_schedule_timeout(long timeout)
4825 {
4826 int old_iowait = current->in_iowait;
4827 struct rq *rq;
4828 long ret;
4829
4830 current->in_iowait = 1;
4831 blk_schedule_flush_plug(current);
4832
4833 delayacct_blkio_start();
4834 rq = raw_rq();
4835 atomic_inc(&rq->nr_iowait);
4836 ret = schedule_timeout(timeout);
4837 current->in_iowait = old_iowait;
4838 atomic_dec(&rq->nr_iowait);
4839 delayacct_blkio_end();
4840
4841 return ret;
4842 }
4843 EXPORT_SYMBOL(io_schedule_timeout);
4844
4845 /**
4846 * sys_sched_get_priority_max - return maximum RT priority.
4847 * @policy: scheduling class.
4848 *
4849 * Return: On success, this syscall returns the maximum
4850 * rt_priority that can be used by a given scheduling class.
4851 * On failure, a negative error code is returned.
4852 */
4853 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4854 {
4855 int ret = -EINVAL;
4856
4857 switch (policy) {
4858 case SCHED_FIFO:
4859 case SCHED_RR:
4860 ret = MAX_USER_RT_PRIO-1;
4861 break;
4862 case SCHED_DEADLINE:
4863 case SCHED_NORMAL:
4864 case SCHED_BATCH:
4865 case SCHED_IDLE:
4866 ret = 0;
4867 break;
4868 }
4869 return ret;
4870 }
4871
4872 /**
4873 * sys_sched_get_priority_min - return minimum RT priority.
4874 * @policy: scheduling class.
4875 *
4876 * Return: On success, this syscall returns the minimum
4877 * rt_priority that can be used by a given scheduling class.
4878 * On failure, a negative error code is returned.
4879 */
4880 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4881 {
4882 int ret = -EINVAL;
4883
4884 switch (policy) {
4885 case SCHED_FIFO:
4886 case SCHED_RR:
4887 ret = 1;
4888 break;
4889 case SCHED_DEADLINE:
4890 case SCHED_NORMAL:
4891 case SCHED_BATCH:
4892 case SCHED_IDLE:
4893 ret = 0;
4894 }
4895 return ret;
4896 }
4897
4898 /**
4899 * sys_sched_rr_get_interval - return the default timeslice of a process.
4900 * @pid: pid of the process.
4901 * @interval: userspace pointer to the timeslice value.
4902 *
4903 * this syscall writes the default timeslice value of a given process
4904 * into the user-space timespec buffer. A value of '0' means infinity.
4905 *
4906 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4907 * an error code.
4908 */
4909 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4910 struct timespec __user *, interval)
4911 {
4912 struct task_struct *p;
4913 unsigned int time_slice;
4914 unsigned long flags;
4915 struct rq *rq;
4916 int retval;
4917 struct timespec t;
4918
4919 if (pid < 0)
4920 return -EINVAL;
4921
4922 retval = -ESRCH;
4923 rcu_read_lock();
4924 p = find_process_by_pid(pid);
4925 if (!p)
4926 goto out_unlock;
4927
4928 retval = security_task_getscheduler(p);
4929 if (retval)
4930 goto out_unlock;
4931
4932 rq = task_rq_lock(p, &flags);
4933 time_slice = 0;
4934 if (p->sched_class->get_rr_interval)
4935 time_slice = p->sched_class->get_rr_interval(rq, p);
4936 task_rq_unlock(rq, p, &flags);
4937
4938 rcu_read_unlock();
4939 jiffies_to_timespec(time_slice, &t);
4940 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4941 return retval;
4942
4943 out_unlock:
4944 rcu_read_unlock();
4945 return retval;
4946 }
4947
4948 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4949
4950 void sched_show_task(struct task_struct *p)
4951 {
4952 unsigned long free = 0;
4953 int ppid;
4954 unsigned long state = p->state;
4955
4956 if (state)
4957 state = __ffs(state) + 1;
4958 printk(KERN_INFO "%-15.15s %c", p->comm,
4959 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4960 #if BITS_PER_LONG == 32
4961 if (state == TASK_RUNNING)
4962 printk(KERN_CONT " running ");
4963 else
4964 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4965 #else
4966 if (state == TASK_RUNNING)
4967 printk(KERN_CONT " running task ");
4968 else
4969 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4970 #endif
4971 #ifdef CONFIG_DEBUG_STACK_USAGE
4972 free = stack_not_used(p);
4973 #endif
4974 ppid = 0;
4975 rcu_read_lock();
4976 if (pid_alive(p))
4977 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4978 rcu_read_unlock();
4979 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4980 task_pid_nr(p), ppid,
4981 (unsigned long)task_thread_info(p)->flags);
4982
4983 print_worker_info(KERN_INFO, p);
4984 show_stack(p, NULL);
4985 }
4986
4987 void show_state_filter(unsigned long state_filter)
4988 {
4989 struct task_struct *g, *p;
4990
4991 #if BITS_PER_LONG == 32
4992 printk(KERN_INFO
4993 " task PC stack pid father\n");
4994 #else
4995 printk(KERN_INFO
4996 " task PC stack pid father\n");
4997 #endif
4998 rcu_read_lock();
4999 for_each_process_thread(g, p) {
5000 /*
5001 * reset the NMI-timeout, listing all files on a slow
5002 * console might take a lot of time:
5003 */
5004 touch_nmi_watchdog();
5005 if (!state_filter || (p->state & state_filter))
5006 sched_show_task(p);
5007 }
5008
5009 touch_all_softlockup_watchdogs();
5010
5011 #ifdef CONFIG_SCHED_DEBUG
5012 sysrq_sched_debug_show();
5013 #endif
5014 rcu_read_unlock();
5015 /*
5016 * Only show locks if all tasks are dumped:
5017 */
5018 if (!state_filter)
5019 debug_show_all_locks();
5020 }
5021
5022 void init_idle_bootup_task(struct task_struct *idle)
5023 {
5024 idle->sched_class = &idle_sched_class;
5025 }
5026
5027 /**
5028 * init_idle - set up an idle thread for a given CPU
5029 * @idle: task in question
5030 * @cpu: cpu the idle task belongs to
5031 *
5032 * NOTE: this function does not set the idle thread's NEED_RESCHED
5033 * flag, to make booting more robust.
5034 */
5035 void init_idle(struct task_struct *idle, int cpu)
5036 {
5037 struct rq *rq = cpu_rq(cpu);
5038 unsigned long flags;
5039
5040 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5041 raw_spin_lock(&rq->lock);
5042
5043 __sched_fork(0, idle);
5044 idle->state = TASK_RUNNING;
5045 idle->se.exec_start = sched_clock();
5046
5047 kasan_unpoison_task_stack(idle);
5048
5049 #ifdef CONFIG_SMP
5050 /*
5051 * Its possible that init_idle() gets called multiple times on a task,
5052 * in that case do_set_cpus_allowed() will not do the right thing.
5053 *
5054 * And since this is boot we can forgo the serialization.
5055 */
5056 set_cpus_allowed_common(idle, cpumask_of(cpu));
5057 #endif
5058 /*
5059 * We're having a chicken and egg problem, even though we are
5060 * holding rq->lock, the cpu isn't yet set to this cpu so the
5061 * lockdep check in task_group() will fail.
5062 *
5063 * Similar case to sched_fork(). / Alternatively we could
5064 * use task_rq_lock() here and obtain the other rq->lock.
5065 *
5066 * Silence PROVE_RCU
5067 */
5068 rcu_read_lock();
5069 __set_task_cpu(idle, cpu);
5070 rcu_read_unlock();
5071
5072 rq->curr = rq->idle = idle;
5073 idle->on_rq = TASK_ON_RQ_QUEUED;
5074 #ifdef CONFIG_SMP
5075 idle->on_cpu = 1;
5076 #endif
5077 raw_spin_unlock(&rq->lock);
5078 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5079
5080 /* Set the preempt count _outside_ the spinlocks! */
5081 init_idle_preempt_count(idle, cpu);
5082
5083 /*
5084 * The idle tasks have their own, simple scheduling class:
5085 */
5086 idle->sched_class = &idle_sched_class;
5087 ftrace_graph_init_idle_task(idle, cpu);
5088 vtime_init_idle(idle, cpu);
5089 #ifdef CONFIG_SMP
5090 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5091 #endif
5092 }
5093
5094 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5095 const struct cpumask *trial)
5096 {
5097 int ret = 1, trial_cpus;
5098 struct dl_bw *cur_dl_b;
5099 unsigned long flags;
5100
5101 if (!cpumask_weight(cur))
5102 return ret;
5103
5104 rcu_read_lock_sched();
5105 cur_dl_b = dl_bw_of(cpumask_any(cur));
5106 trial_cpus = cpumask_weight(trial);
5107
5108 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5109 if (cur_dl_b->bw != -1 &&
5110 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5111 ret = 0;
5112 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5113 rcu_read_unlock_sched();
5114
5115 return ret;
5116 }
5117
5118 int task_can_attach(struct task_struct *p,
5119 const struct cpumask *cs_cpus_allowed)
5120 {
5121 int ret = 0;
5122
5123 /*
5124 * Kthreads which disallow setaffinity shouldn't be moved
5125 * to a new cpuset; we don't want to change their cpu
5126 * affinity and isolating such threads by their set of
5127 * allowed nodes is unnecessary. Thus, cpusets are not
5128 * applicable for such threads. This prevents checking for
5129 * success of set_cpus_allowed_ptr() on all attached tasks
5130 * before cpus_allowed may be changed.
5131 */
5132 if (p->flags & PF_NO_SETAFFINITY) {
5133 ret = -EINVAL;
5134 goto out;
5135 }
5136
5137 #ifdef CONFIG_SMP
5138 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5139 cs_cpus_allowed)) {
5140 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5141 cs_cpus_allowed);
5142 struct dl_bw *dl_b;
5143 bool overflow;
5144 int cpus;
5145 unsigned long flags;
5146
5147 rcu_read_lock_sched();
5148 dl_b = dl_bw_of(dest_cpu);
5149 raw_spin_lock_irqsave(&dl_b->lock, flags);
5150 cpus = dl_bw_cpus(dest_cpu);
5151 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5152 if (overflow)
5153 ret = -EBUSY;
5154 else {
5155 /*
5156 * We reserve space for this task in the destination
5157 * root_domain, as we can't fail after this point.
5158 * We will free resources in the source root_domain
5159 * later on (see set_cpus_allowed_dl()).
5160 */
5161 __dl_add(dl_b, p->dl.dl_bw);
5162 }
5163 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5164 rcu_read_unlock_sched();
5165
5166 }
5167 #endif
5168 out:
5169 return ret;
5170 }
5171
5172 #ifdef CONFIG_SMP
5173
5174 #ifdef CONFIG_NUMA_BALANCING
5175 /* Migrate current task p to target_cpu */
5176 int migrate_task_to(struct task_struct *p, int target_cpu)
5177 {
5178 struct migration_arg arg = { p, target_cpu };
5179 int curr_cpu = task_cpu(p);
5180
5181 if (curr_cpu == target_cpu)
5182 return 0;
5183
5184 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5185 return -EINVAL;
5186
5187 /* TODO: This is not properly updating schedstats */
5188
5189 trace_sched_move_numa(p, curr_cpu, target_cpu);
5190 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5191 }
5192
5193 /*
5194 * Requeue a task on a given node and accurately track the number of NUMA
5195 * tasks on the runqueues
5196 */
5197 void sched_setnuma(struct task_struct *p, int nid)
5198 {
5199 struct rq *rq;
5200 unsigned long flags;
5201 bool queued, running;
5202
5203 rq = task_rq_lock(p, &flags);
5204 queued = task_on_rq_queued(p);
5205 running = task_current(rq, p);
5206
5207 if (queued)
5208 dequeue_task(rq, p, DEQUEUE_SAVE);
5209 if (running)
5210 put_prev_task(rq, p);
5211
5212 p->numa_preferred_nid = nid;
5213
5214 if (running)
5215 p->sched_class->set_curr_task(rq);
5216 if (queued)
5217 enqueue_task(rq, p, ENQUEUE_RESTORE);
5218 task_rq_unlock(rq, p, &flags);
5219 }
5220 #endif /* CONFIG_NUMA_BALANCING */
5221
5222 #ifdef CONFIG_HOTPLUG_CPU
5223 /*
5224 * Ensures that the idle task is using init_mm right before its cpu goes
5225 * offline.
5226 */
5227 void idle_task_exit(void)
5228 {
5229 struct mm_struct *mm = current->active_mm;
5230
5231 BUG_ON(cpu_online(smp_processor_id()));
5232
5233 if (mm != &init_mm) {
5234 switch_mm(mm, &init_mm, current);
5235 finish_arch_post_lock_switch();
5236 }
5237 mmdrop(mm);
5238 }
5239
5240 /*
5241 * Since this CPU is going 'away' for a while, fold any nr_active delta
5242 * we might have. Assumes we're called after migrate_tasks() so that the
5243 * nr_active count is stable.
5244 *
5245 * Also see the comment "Global load-average calculations".
5246 */
5247 static void calc_load_migrate(struct rq *rq)
5248 {
5249 long delta = calc_load_fold_active(rq);
5250 if (delta)
5251 atomic_long_add(delta, &calc_load_tasks);
5252 }
5253
5254 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5255 {
5256 }
5257
5258 static const struct sched_class fake_sched_class = {
5259 .put_prev_task = put_prev_task_fake,
5260 };
5261
5262 static struct task_struct fake_task = {
5263 /*
5264 * Avoid pull_{rt,dl}_task()
5265 */
5266 .prio = MAX_PRIO + 1,
5267 .sched_class = &fake_sched_class,
5268 };
5269
5270 /*
5271 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5272 * try_to_wake_up()->select_task_rq().
5273 *
5274 * Called with rq->lock held even though we'er in stop_machine() and
5275 * there's no concurrency possible, we hold the required locks anyway
5276 * because of lock validation efforts.
5277 */
5278 static void migrate_tasks(struct rq *dead_rq)
5279 {
5280 struct rq *rq = dead_rq;
5281 struct task_struct *next, *stop = rq->stop;
5282 int dest_cpu;
5283
5284 /*
5285 * Fudge the rq selection such that the below task selection loop
5286 * doesn't get stuck on the currently eligible stop task.
5287 *
5288 * We're currently inside stop_machine() and the rq is either stuck
5289 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5290 * either way we should never end up calling schedule() until we're
5291 * done here.
5292 */
5293 rq->stop = NULL;
5294
5295 /*
5296 * put_prev_task() and pick_next_task() sched
5297 * class method both need to have an up-to-date
5298 * value of rq->clock[_task]
5299 */
5300 update_rq_clock(rq);
5301
5302 for (;;) {
5303 /*
5304 * There's this thread running, bail when that's the only
5305 * remaining thread.
5306 */
5307 if (rq->nr_running == 1)
5308 break;
5309
5310 /*
5311 * pick_next_task assumes pinned rq->lock.
5312 */
5313 lockdep_pin_lock(&rq->lock);
5314 next = pick_next_task(rq, &fake_task);
5315 BUG_ON(!next);
5316 next->sched_class->put_prev_task(rq, next);
5317
5318 /*
5319 * Rules for changing task_struct::cpus_allowed are holding
5320 * both pi_lock and rq->lock, such that holding either
5321 * stabilizes the mask.
5322 *
5323 * Drop rq->lock is not quite as disastrous as it usually is
5324 * because !cpu_active at this point, which means load-balance
5325 * will not interfere. Also, stop-machine.
5326 */
5327 lockdep_unpin_lock(&rq->lock);
5328 raw_spin_unlock(&rq->lock);
5329 raw_spin_lock(&next->pi_lock);
5330 raw_spin_lock(&rq->lock);
5331
5332 /*
5333 * Since we're inside stop-machine, _nothing_ should have
5334 * changed the task, WARN if weird stuff happened, because in
5335 * that case the above rq->lock drop is a fail too.
5336 */
5337 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5338 raw_spin_unlock(&next->pi_lock);
5339 continue;
5340 }
5341
5342 /* Find suitable destination for @next, with force if needed. */
5343 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5344
5345 rq = __migrate_task(rq, next, dest_cpu);
5346 if (rq != dead_rq) {
5347 raw_spin_unlock(&rq->lock);
5348 rq = dead_rq;
5349 raw_spin_lock(&rq->lock);
5350 }
5351 raw_spin_unlock(&next->pi_lock);
5352 }
5353
5354 rq->stop = stop;
5355 }
5356 #endif /* CONFIG_HOTPLUG_CPU */
5357
5358 static void set_rq_online(struct rq *rq)
5359 {
5360 if (!rq->online) {
5361 const struct sched_class *class;
5362
5363 cpumask_set_cpu(rq->cpu, rq->rd->online);
5364 rq->online = 1;
5365
5366 for_each_class(class) {
5367 if (class->rq_online)
5368 class->rq_online(rq);
5369 }
5370 }
5371 }
5372
5373 static void set_rq_offline(struct rq *rq)
5374 {
5375 if (rq->online) {
5376 const struct sched_class *class;
5377
5378 for_each_class(class) {
5379 if (class->rq_offline)
5380 class->rq_offline(rq);
5381 }
5382
5383 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5384 rq->online = 0;
5385 }
5386 }
5387
5388 /*
5389 * migration_call - callback that gets triggered when a CPU is added.
5390 * Here we can start up the necessary migration thread for the new CPU.
5391 */
5392 static int
5393 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5394 {
5395 int cpu = (long)hcpu;
5396 unsigned long flags;
5397 struct rq *rq = cpu_rq(cpu);
5398
5399 switch (action & ~CPU_TASKS_FROZEN) {
5400
5401 case CPU_UP_PREPARE:
5402 rq->calc_load_update = calc_load_update;
5403 account_reset_rq(rq);
5404 break;
5405
5406 case CPU_ONLINE:
5407 /* Update our root-domain */
5408 raw_spin_lock_irqsave(&rq->lock, flags);
5409 if (rq->rd) {
5410 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5411
5412 set_rq_online(rq);
5413 }
5414 raw_spin_unlock_irqrestore(&rq->lock, flags);
5415 break;
5416
5417 #ifdef CONFIG_HOTPLUG_CPU
5418 case CPU_DYING:
5419 sched_ttwu_pending();
5420 /* Update our root-domain */
5421 raw_spin_lock_irqsave(&rq->lock, flags);
5422 if (rq->rd) {
5423 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5424 set_rq_offline(rq);
5425 }
5426 migrate_tasks(rq);
5427 BUG_ON(rq->nr_running != 1); /* the migration thread */
5428 raw_spin_unlock_irqrestore(&rq->lock, flags);
5429 break;
5430
5431 case CPU_DEAD:
5432 calc_load_migrate(rq);
5433 break;
5434 #endif
5435 }
5436
5437 update_max_interval();
5438
5439 return NOTIFY_OK;
5440 }
5441
5442 /*
5443 * Register at high priority so that task migration (migrate_all_tasks)
5444 * happens before everything else. This has to be lower priority than
5445 * the notifier in the perf_event subsystem, though.
5446 */
5447 static struct notifier_block migration_notifier = {
5448 .notifier_call = migration_call,
5449 .priority = CPU_PRI_MIGRATION,
5450 };
5451
5452 static void set_cpu_rq_start_time(void)
5453 {
5454 int cpu = smp_processor_id();
5455 struct rq *rq = cpu_rq(cpu);
5456 rq->age_stamp = sched_clock_cpu(cpu);
5457 }
5458
5459 static int sched_cpu_active(struct notifier_block *nfb,
5460 unsigned long action, void *hcpu)
5461 {
5462 int cpu = (long)hcpu;
5463
5464 switch (action & ~CPU_TASKS_FROZEN) {
5465 case CPU_STARTING:
5466 set_cpu_rq_start_time();
5467 return NOTIFY_OK;
5468
5469 case CPU_DOWN_FAILED:
5470 set_cpu_active(cpu, true);
5471 return NOTIFY_OK;
5472
5473 default:
5474 return NOTIFY_DONE;
5475 }
5476 }
5477
5478 static int sched_cpu_inactive(struct notifier_block *nfb,
5479 unsigned long action, void *hcpu)
5480 {
5481 switch (action & ~CPU_TASKS_FROZEN) {
5482 case CPU_DOWN_PREPARE:
5483 set_cpu_active((long)hcpu, false);
5484 return NOTIFY_OK;
5485 default:
5486 return NOTIFY_DONE;
5487 }
5488 }
5489
5490 static int __init migration_init(void)
5491 {
5492 void *cpu = (void *)(long)smp_processor_id();
5493 int err;
5494
5495 /* Initialize migration for the boot CPU */
5496 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5497 BUG_ON(err == NOTIFY_BAD);
5498 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5499 register_cpu_notifier(&migration_notifier);
5500
5501 /* Register cpu active notifiers */
5502 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5503 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5504
5505 return 0;
5506 }
5507 early_initcall(migration_init);
5508
5509 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5510
5511 #ifdef CONFIG_SCHED_DEBUG
5512
5513 static __read_mostly int sched_debug_enabled;
5514
5515 static int __init sched_debug_setup(char *str)
5516 {
5517 sched_debug_enabled = 1;
5518
5519 return 0;
5520 }
5521 early_param("sched_debug", sched_debug_setup);
5522
5523 static inline bool sched_debug(void)
5524 {
5525 return sched_debug_enabled;
5526 }
5527
5528 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5529 struct cpumask *groupmask)
5530 {
5531 struct sched_group *group = sd->groups;
5532
5533 cpumask_clear(groupmask);
5534
5535 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5536
5537 if (!(sd->flags & SD_LOAD_BALANCE)) {
5538 printk("does not load-balance\n");
5539 if (sd->parent)
5540 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5541 " has parent");
5542 return -1;
5543 }
5544
5545 printk(KERN_CONT "span %*pbl level %s\n",
5546 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5547
5548 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5549 printk(KERN_ERR "ERROR: domain->span does not contain "
5550 "CPU%d\n", cpu);
5551 }
5552 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5553 printk(KERN_ERR "ERROR: domain->groups does not contain"
5554 " CPU%d\n", cpu);
5555 }
5556
5557 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5558 do {
5559 if (!group) {
5560 printk("\n");
5561 printk(KERN_ERR "ERROR: group is NULL\n");
5562 break;
5563 }
5564
5565 if (!cpumask_weight(sched_group_cpus(group))) {
5566 printk(KERN_CONT "\n");
5567 printk(KERN_ERR "ERROR: empty group\n");
5568 break;
5569 }
5570
5571 if (!(sd->flags & SD_OVERLAP) &&
5572 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5573 printk(KERN_CONT "\n");
5574 printk(KERN_ERR "ERROR: repeated CPUs\n");
5575 break;
5576 }
5577
5578 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5579
5580 printk(KERN_CONT " %*pbl",
5581 cpumask_pr_args(sched_group_cpus(group)));
5582 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5583 printk(KERN_CONT " (cpu_capacity = %d)",
5584 group->sgc->capacity);
5585 }
5586
5587 group = group->next;
5588 } while (group != sd->groups);
5589 printk(KERN_CONT "\n");
5590
5591 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5592 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5593
5594 if (sd->parent &&
5595 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5596 printk(KERN_ERR "ERROR: parent span is not a superset "
5597 "of domain->span\n");
5598 return 0;
5599 }
5600
5601 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5602 {
5603 int level = 0;
5604
5605 if (!sched_debug_enabled)
5606 return;
5607
5608 if (!sd) {
5609 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5610 return;
5611 }
5612
5613 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5614
5615 for (;;) {
5616 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5617 break;
5618 level++;
5619 sd = sd->parent;
5620 if (!sd)
5621 break;
5622 }
5623 }
5624 #else /* !CONFIG_SCHED_DEBUG */
5625 # define sched_domain_debug(sd, cpu) do { } while (0)
5626 static inline bool sched_debug(void)
5627 {
5628 return false;
5629 }
5630 #endif /* CONFIG_SCHED_DEBUG */
5631
5632 static int sd_degenerate(struct sched_domain *sd)
5633 {
5634 if (cpumask_weight(sched_domain_span(sd)) == 1)
5635 return 1;
5636
5637 /* Following flags need at least 2 groups */
5638 if (sd->flags & (SD_LOAD_BALANCE |
5639 SD_BALANCE_NEWIDLE |
5640 SD_BALANCE_FORK |
5641 SD_BALANCE_EXEC |
5642 SD_SHARE_CPUCAPACITY |
5643 SD_SHARE_PKG_RESOURCES |
5644 SD_SHARE_POWERDOMAIN)) {
5645 if (sd->groups != sd->groups->next)
5646 return 0;
5647 }
5648
5649 /* Following flags don't use groups */
5650 if (sd->flags & (SD_WAKE_AFFINE))
5651 return 0;
5652
5653 return 1;
5654 }
5655
5656 static int
5657 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5658 {
5659 unsigned long cflags = sd->flags, pflags = parent->flags;
5660
5661 if (sd_degenerate(parent))
5662 return 1;
5663
5664 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5665 return 0;
5666
5667 /* Flags needing groups don't count if only 1 group in parent */
5668 if (parent->groups == parent->groups->next) {
5669 pflags &= ~(SD_LOAD_BALANCE |
5670 SD_BALANCE_NEWIDLE |
5671 SD_BALANCE_FORK |
5672 SD_BALANCE_EXEC |
5673 SD_SHARE_CPUCAPACITY |
5674 SD_SHARE_PKG_RESOURCES |
5675 SD_PREFER_SIBLING |
5676 SD_SHARE_POWERDOMAIN);
5677 if (nr_node_ids == 1)
5678 pflags &= ~SD_SERIALIZE;
5679 }
5680 if (~cflags & pflags)
5681 return 0;
5682
5683 return 1;
5684 }
5685
5686 static void free_rootdomain(struct rcu_head *rcu)
5687 {
5688 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5689
5690 cpupri_cleanup(&rd->cpupri);
5691 cpudl_cleanup(&rd->cpudl);
5692 free_cpumask_var(rd->dlo_mask);
5693 free_cpumask_var(rd->rto_mask);
5694 free_cpumask_var(rd->online);
5695 free_cpumask_var(rd->span);
5696 kfree(rd);
5697 }
5698
5699 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5700 {
5701 struct root_domain *old_rd = NULL;
5702 unsigned long flags;
5703
5704 raw_spin_lock_irqsave(&rq->lock, flags);
5705
5706 if (rq->rd) {
5707 old_rd = rq->rd;
5708
5709 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5710 set_rq_offline(rq);
5711
5712 cpumask_clear_cpu(rq->cpu, old_rd->span);
5713
5714 /*
5715 * If we dont want to free the old_rd yet then
5716 * set old_rd to NULL to skip the freeing later
5717 * in this function:
5718 */
5719 if (!atomic_dec_and_test(&old_rd->refcount))
5720 old_rd = NULL;
5721 }
5722
5723 atomic_inc(&rd->refcount);
5724 rq->rd = rd;
5725
5726 cpumask_set_cpu(rq->cpu, rd->span);
5727 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5728 set_rq_online(rq);
5729
5730 raw_spin_unlock_irqrestore(&rq->lock, flags);
5731
5732 if (old_rd)
5733 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5734 }
5735
5736 static int init_rootdomain(struct root_domain *rd)
5737 {
5738 memset(rd, 0, sizeof(*rd));
5739
5740 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5741 goto out;
5742 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5743 goto free_span;
5744 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5745 goto free_online;
5746 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5747 goto free_dlo_mask;
5748
5749 init_dl_bw(&rd->dl_bw);
5750 if (cpudl_init(&rd->cpudl) != 0)
5751 goto free_dlo_mask;
5752
5753 if (cpupri_init(&rd->cpupri) != 0)
5754 goto free_rto_mask;
5755 return 0;
5756
5757 free_rto_mask:
5758 free_cpumask_var(rd->rto_mask);
5759 free_dlo_mask:
5760 free_cpumask_var(rd->dlo_mask);
5761 free_online:
5762 free_cpumask_var(rd->online);
5763 free_span:
5764 free_cpumask_var(rd->span);
5765 out:
5766 return -ENOMEM;
5767 }
5768
5769 /*
5770 * By default the system creates a single root-domain with all cpus as
5771 * members (mimicking the global state we have today).
5772 */
5773 struct root_domain def_root_domain;
5774
5775 static void init_defrootdomain(void)
5776 {
5777 init_rootdomain(&def_root_domain);
5778
5779 atomic_set(&def_root_domain.refcount, 1);
5780 }
5781
5782 static struct root_domain *alloc_rootdomain(void)
5783 {
5784 struct root_domain *rd;
5785
5786 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5787 if (!rd)
5788 return NULL;
5789
5790 if (init_rootdomain(rd) != 0) {
5791 kfree(rd);
5792 return NULL;
5793 }
5794
5795 return rd;
5796 }
5797
5798 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5799 {
5800 struct sched_group *tmp, *first;
5801
5802 if (!sg)
5803 return;
5804
5805 first = sg;
5806 do {
5807 tmp = sg->next;
5808
5809 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5810 kfree(sg->sgc);
5811
5812 kfree(sg);
5813 sg = tmp;
5814 } while (sg != first);
5815 }
5816
5817 static void free_sched_domain(struct rcu_head *rcu)
5818 {
5819 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5820
5821 /*
5822 * If its an overlapping domain it has private groups, iterate and
5823 * nuke them all.
5824 */
5825 if (sd->flags & SD_OVERLAP) {
5826 free_sched_groups(sd->groups, 1);
5827 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5828 kfree(sd->groups->sgc);
5829 kfree(sd->groups);
5830 }
5831 kfree(sd);
5832 }
5833
5834 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5835 {
5836 call_rcu(&sd->rcu, free_sched_domain);
5837 }
5838
5839 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5840 {
5841 for (; sd; sd = sd->parent)
5842 destroy_sched_domain(sd, cpu);
5843 }
5844
5845 /*
5846 * Keep a special pointer to the highest sched_domain that has
5847 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5848 * allows us to avoid some pointer chasing select_idle_sibling().
5849 *
5850 * Also keep a unique ID per domain (we use the first cpu number in
5851 * the cpumask of the domain), this allows us to quickly tell if
5852 * two cpus are in the same cache domain, see cpus_share_cache().
5853 */
5854 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5855 DEFINE_PER_CPU(int, sd_llc_size);
5856 DEFINE_PER_CPU(int, sd_llc_id);
5857 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5858 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5859 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5860
5861 static void update_top_cache_domain(int cpu)
5862 {
5863 struct sched_domain *sd;
5864 struct sched_domain *busy_sd = NULL;
5865 int id = cpu;
5866 int size = 1;
5867
5868 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5869 if (sd) {
5870 id = cpumask_first(sched_domain_span(sd));
5871 size = cpumask_weight(sched_domain_span(sd));
5872 busy_sd = sd->parent; /* sd_busy */
5873 }
5874 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5875
5876 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5877 per_cpu(sd_llc_size, cpu) = size;
5878 per_cpu(sd_llc_id, cpu) = id;
5879
5880 sd = lowest_flag_domain(cpu, SD_NUMA);
5881 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5882
5883 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5884 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5885 }
5886
5887 /*
5888 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5889 * hold the hotplug lock.
5890 */
5891 static void
5892 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5893 {
5894 struct rq *rq = cpu_rq(cpu);
5895 struct sched_domain *tmp;
5896
5897 /* Remove the sched domains which do not contribute to scheduling. */
5898 for (tmp = sd; tmp; ) {
5899 struct sched_domain *parent = tmp->parent;
5900 if (!parent)
5901 break;
5902
5903 if (sd_parent_degenerate(tmp, parent)) {
5904 tmp->parent = parent->parent;
5905 if (parent->parent)
5906 parent->parent->child = tmp;
5907 /*
5908 * Transfer SD_PREFER_SIBLING down in case of a
5909 * degenerate parent; the spans match for this
5910 * so the property transfers.
5911 */
5912 if (parent->flags & SD_PREFER_SIBLING)
5913 tmp->flags |= SD_PREFER_SIBLING;
5914 destroy_sched_domain(parent, cpu);
5915 } else
5916 tmp = tmp->parent;
5917 }
5918
5919 if (sd && sd_degenerate(sd)) {
5920 tmp = sd;
5921 sd = sd->parent;
5922 destroy_sched_domain(tmp, cpu);
5923 if (sd)
5924 sd->child = NULL;
5925 }
5926
5927 sched_domain_debug(sd, cpu);
5928
5929 rq_attach_root(rq, rd);
5930 tmp = rq->sd;
5931 rcu_assign_pointer(rq->sd, sd);
5932 destroy_sched_domains(tmp, cpu);
5933
5934 update_top_cache_domain(cpu);
5935 }
5936
5937 /* Setup the mask of cpus configured for isolated domains */
5938 static int __init isolated_cpu_setup(char *str)
5939 {
5940 int ret;
5941
5942 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5943 ret = cpulist_parse(str, cpu_isolated_map);
5944 if (ret) {
5945 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5946 return 0;
5947 }
5948 return 1;
5949 }
5950 __setup("isolcpus=", isolated_cpu_setup);
5951
5952 struct s_data {
5953 struct sched_domain ** __percpu sd;
5954 struct root_domain *rd;
5955 };
5956
5957 enum s_alloc {
5958 sa_rootdomain,
5959 sa_sd,
5960 sa_sd_storage,
5961 sa_none,
5962 };
5963
5964 /*
5965 * Build an iteration mask that can exclude certain CPUs from the upwards
5966 * domain traversal.
5967 *
5968 * Asymmetric node setups can result in situations where the domain tree is of
5969 * unequal depth, make sure to skip domains that already cover the entire
5970 * range.
5971 *
5972 * In that case build_sched_domains() will have terminated the iteration early
5973 * and our sibling sd spans will be empty. Domains should always include the
5974 * cpu they're built on, so check that.
5975 *
5976 */
5977 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5978 {
5979 const struct cpumask *span = sched_domain_span(sd);
5980 struct sd_data *sdd = sd->private;
5981 struct sched_domain *sibling;
5982 int i;
5983
5984 for_each_cpu(i, span) {
5985 sibling = *per_cpu_ptr(sdd->sd, i);
5986 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5987 continue;
5988
5989 cpumask_set_cpu(i, sched_group_mask(sg));
5990 }
5991 }
5992
5993 /*
5994 * Return the canonical balance cpu for this group, this is the first cpu
5995 * of this group that's also in the iteration mask.
5996 */
5997 int group_balance_cpu(struct sched_group *sg)
5998 {
5999 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6000 }
6001
6002 static int
6003 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6004 {
6005 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6006 const struct cpumask *span = sched_domain_span(sd);
6007 struct cpumask *covered = sched_domains_tmpmask;
6008 struct sd_data *sdd = sd->private;
6009 struct sched_domain *sibling;
6010 int i;
6011
6012 cpumask_clear(covered);
6013
6014 for_each_cpu(i, span) {
6015 struct cpumask *sg_span;
6016
6017 if (cpumask_test_cpu(i, covered))
6018 continue;
6019
6020 sibling = *per_cpu_ptr(sdd->sd, i);
6021
6022 /* See the comment near build_group_mask(). */
6023 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6024 continue;
6025
6026 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6027 GFP_KERNEL, cpu_to_node(cpu));
6028
6029 if (!sg)
6030 goto fail;
6031
6032 sg_span = sched_group_cpus(sg);
6033 if (sibling->child)
6034 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6035 else
6036 cpumask_set_cpu(i, sg_span);
6037
6038 cpumask_or(covered, covered, sg_span);
6039
6040 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6041 if (atomic_inc_return(&sg->sgc->ref) == 1)
6042 build_group_mask(sd, sg);
6043
6044 /*
6045 * Initialize sgc->capacity such that even if we mess up the
6046 * domains and no possible iteration will get us here, we won't
6047 * die on a /0 trap.
6048 */
6049 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6050
6051 /*
6052 * Make sure the first group of this domain contains the
6053 * canonical balance cpu. Otherwise the sched_domain iteration
6054 * breaks. See update_sg_lb_stats().
6055 */
6056 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6057 group_balance_cpu(sg) == cpu)
6058 groups = sg;
6059
6060 if (!first)
6061 first = sg;
6062 if (last)
6063 last->next = sg;
6064 last = sg;
6065 last->next = first;
6066 }
6067 sd->groups = groups;
6068
6069 return 0;
6070
6071 fail:
6072 free_sched_groups(first, 0);
6073
6074 return -ENOMEM;
6075 }
6076
6077 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6078 {
6079 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6080 struct sched_domain *child = sd->child;
6081
6082 if (child)
6083 cpu = cpumask_first(sched_domain_span(child));
6084
6085 if (sg) {
6086 *sg = *per_cpu_ptr(sdd->sg, cpu);
6087 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6088 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6089 }
6090
6091 return cpu;
6092 }
6093
6094 /*
6095 * build_sched_groups will build a circular linked list of the groups
6096 * covered by the given span, and will set each group's ->cpumask correctly,
6097 * and ->cpu_capacity to 0.
6098 *
6099 * Assumes the sched_domain tree is fully constructed
6100 */
6101 static int
6102 build_sched_groups(struct sched_domain *sd, int cpu)
6103 {
6104 struct sched_group *first = NULL, *last = NULL;
6105 struct sd_data *sdd = sd->private;
6106 const struct cpumask *span = sched_domain_span(sd);
6107 struct cpumask *covered;
6108 int i;
6109
6110 get_group(cpu, sdd, &sd->groups);
6111 atomic_inc(&sd->groups->ref);
6112
6113 if (cpu != cpumask_first(span))
6114 return 0;
6115
6116 lockdep_assert_held(&sched_domains_mutex);
6117 covered = sched_domains_tmpmask;
6118
6119 cpumask_clear(covered);
6120
6121 for_each_cpu(i, span) {
6122 struct sched_group *sg;
6123 int group, j;
6124
6125 if (cpumask_test_cpu(i, covered))
6126 continue;
6127
6128 group = get_group(i, sdd, &sg);
6129 cpumask_setall(sched_group_mask(sg));
6130
6131 for_each_cpu(j, span) {
6132 if (get_group(j, sdd, NULL) != group)
6133 continue;
6134
6135 cpumask_set_cpu(j, covered);
6136 cpumask_set_cpu(j, sched_group_cpus(sg));
6137 }
6138
6139 if (!first)
6140 first = sg;
6141 if (last)
6142 last->next = sg;
6143 last = sg;
6144 }
6145 last->next = first;
6146
6147 return 0;
6148 }
6149
6150 /*
6151 * Initialize sched groups cpu_capacity.
6152 *
6153 * cpu_capacity indicates the capacity of sched group, which is used while
6154 * distributing the load between different sched groups in a sched domain.
6155 * Typically cpu_capacity for all the groups in a sched domain will be same
6156 * unless there are asymmetries in the topology. If there are asymmetries,
6157 * group having more cpu_capacity will pickup more load compared to the
6158 * group having less cpu_capacity.
6159 */
6160 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6161 {
6162 struct sched_group *sg = sd->groups;
6163
6164 WARN_ON(!sg);
6165
6166 do {
6167 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6168 sg = sg->next;
6169 } while (sg != sd->groups);
6170
6171 if (cpu != group_balance_cpu(sg))
6172 return;
6173
6174 update_group_capacity(sd, cpu);
6175 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6176 }
6177
6178 /*
6179 * Initializers for schedule domains
6180 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6181 */
6182
6183 static int default_relax_domain_level = -1;
6184 int sched_domain_level_max;
6185
6186 static int __init setup_relax_domain_level(char *str)
6187 {
6188 if (kstrtoint(str, 0, &default_relax_domain_level))
6189 pr_warn("Unable to set relax_domain_level\n");
6190
6191 return 1;
6192 }
6193 __setup("relax_domain_level=", setup_relax_domain_level);
6194
6195 static void set_domain_attribute(struct sched_domain *sd,
6196 struct sched_domain_attr *attr)
6197 {
6198 int request;
6199
6200 if (!attr || attr->relax_domain_level < 0) {
6201 if (default_relax_domain_level < 0)
6202 return;
6203 else
6204 request = default_relax_domain_level;
6205 } else
6206 request = attr->relax_domain_level;
6207 if (request < sd->level) {
6208 /* turn off idle balance on this domain */
6209 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6210 } else {
6211 /* turn on idle balance on this domain */
6212 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6213 }
6214 }
6215
6216 static void __sdt_free(const struct cpumask *cpu_map);
6217 static int __sdt_alloc(const struct cpumask *cpu_map);
6218
6219 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6220 const struct cpumask *cpu_map)
6221 {
6222 switch (what) {
6223 case sa_rootdomain:
6224 if (!atomic_read(&d->rd->refcount))
6225 free_rootdomain(&d->rd->rcu); /* fall through */
6226 case sa_sd:
6227 free_percpu(d->sd); /* fall through */
6228 case sa_sd_storage:
6229 __sdt_free(cpu_map); /* fall through */
6230 case sa_none:
6231 break;
6232 }
6233 }
6234
6235 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6236 const struct cpumask *cpu_map)
6237 {
6238 memset(d, 0, sizeof(*d));
6239
6240 if (__sdt_alloc(cpu_map))
6241 return sa_sd_storage;
6242 d->sd = alloc_percpu(struct sched_domain *);
6243 if (!d->sd)
6244 return sa_sd_storage;
6245 d->rd = alloc_rootdomain();
6246 if (!d->rd)
6247 return sa_sd;
6248 return sa_rootdomain;
6249 }
6250
6251 /*
6252 * NULL the sd_data elements we've used to build the sched_domain and
6253 * sched_group structure so that the subsequent __free_domain_allocs()
6254 * will not free the data we're using.
6255 */
6256 static void claim_allocations(int cpu, struct sched_domain *sd)
6257 {
6258 struct sd_data *sdd = sd->private;
6259
6260 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6261 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6262
6263 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6264 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6265
6266 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6267 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6268 }
6269
6270 #ifdef CONFIG_NUMA
6271 static int sched_domains_numa_levels;
6272 enum numa_topology_type sched_numa_topology_type;
6273 static int *sched_domains_numa_distance;
6274 int sched_max_numa_distance;
6275 static struct cpumask ***sched_domains_numa_masks;
6276 static int sched_domains_curr_level;
6277 #endif
6278
6279 /*
6280 * SD_flags allowed in topology descriptions.
6281 *
6282 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6283 * SD_SHARE_PKG_RESOURCES - describes shared caches
6284 * SD_NUMA - describes NUMA topologies
6285 * SD_SHARE_POWERDOMAIN - describes shared power domain
6286 *
6287 * Odd one out:
6288 * SD_ASYM_PACKING - describes SMT quirks
6289 */
6290 #define TOPOLOGY_SD_FLAGS \
6291 (SD_SHARE_CPUCAPACITY | \
6292 SD_SHARE_PKG_RESOURCES | \
6293 SD_NUMA | \
6294 SD_ASYM_PACKING | \
6295 SD_SHARE_POWERDOMAIN)
6296
6297 static struct sched_domain *
6298 sd_init(struct sched_domain_topology_level *tl, int cpu)
6299 {
6300 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6301 int sd_weight, sd_flags = 0;
6302
6303 #ifdef CONFIG_NUMA
6304 /*
6305 * Ugly hack to pass state to sd_numa_mask()...
6306 */
6307 sched_domains_curr_level = tl->numa_level;
6308 #endif
6309
6310 sd_weight = cpumask_weight(tl->mask(cpu));
6311
6312 if (tl->sd_flags)
6313 sd_flags = (*tl->sd_flags)();
6314 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6315 "wrong sd_flags in topology description\n"))
6316 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6317
6318 *sd = (struct sched_domain){
6319 .min_interval = sd_weight,
6320 .max_interval = 2*sd_weight,
6321 .busy_factor = 32,
6322 .imbalance_pct = 125,
6323
6324 .cache_nice_tries = 0,
6325 .busy_idx = 0,
6326 .idle_idx = 0,
6327 .newidle_idx = 0,
6328 .wake_idx = 0,
6329 .forkexec_idx = 0,
6330
6331 .flags = 1*SD_LOAD_BALANCE
6332 | 1*SD_BALANCE_NEWIDLE
6333 | 1*SD_BALANCE_EXEC
6334 | 1*SD_BALANCE_FORK
6335 | 0*SD_BALANCE_WAKE
6336 | 1*SD_WAKE_AFFINE
6337 | 0*SD_SHARE_CPUCAPACITY
6338 | 0*SD_SHARE_PKG_RESOURCES
6339 | 0*SD_SERIALIZE
6340 | 0*SD_PREFER_SIBLING
6341 | 0*SD_NUMA
6342 | sd_flags
6343 ,
6344
6345 .last_balance = jiffies,
6346 .balance_interval = sd_weight,
6347 .smt_gain = 0,
6348 .max_newidle_lb_cost = 0,
6349 .next_decay_max_lb_cost = jiffies,
6350 #ifdef CONFIG_SCHED_DEBUG
6351 .name = tl->name,
6352 #endif
6353 };
6354
6355 /*
6356 * Convert topological properties into behaviour.
6357 */
6358
6359 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6360 sd->flags |= SD_PREFER_SIBLING;
6361 sd->imbalance_pct = 110;
6362 sd->smt_gain = 1178; /* ~15% */
6363
6364 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6365 sd->imbalance_pct = 117;
6366 sd->cache_nice_tries = 1;
6367 sd->busy_idx = 2;
6368
6369 #ifdef CONFIG_NUMA
6370 } else if (sd->flags & SD_NUMA) {
6371 sd->cache_nice_tries = 2;
6372 sd->busy_idx = 3;
6373 sd->idle_idx = 2;
6374
6375 sd->flags |= SD_SERIALIZE;
6376 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6377 sd->flags &= ~(SD_BALANCE_EXEC |
6378 SD_BALANCE_FORK |
6379 SD_WAKE_AFFINE);
6380 }
6381
6382 #endif
6383 } else {
6384 sd->flags |= SD_PREFER_SIBLING;
6385 sd->cache_nice_tries = 1;
6386 sd->busy_idx = 2;
6387 sd->idle_idx = 1;
6388 }
6389
6390 sd->private = &tl->data;
6391
6392 return sd;
6393 }
6394
6395 /*
6396 * Topology list, bottom-up.
6397 */
6398 static struct sched_domain_topology_level default_topology[] = {
6399 #ifdef CONFIG_SCHED_SMT
6400 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6401 #endif
6402 #ifdef CONFIG_SCHED_MC
6403 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6404 #endif
6405 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6406 { NULL, },
6407 };
6408
6409 static struct sched_domain_topology_level *sched_domain_topology =
6410 default_topology;
6411
6412 #define for_each_sd_topology(tl) \
6413 for (tl = sched_domain_topology; tl->mask; tl++)
6414
6415 void set_sched_topology(struct sched_domain_topology_level *tl)
6416 {
6417 sched_domain_topology = tl;
6418 }
6419
6420 #ifdef CONFIG_NUMA
6421
6422 static const struct cpumask *sd_numa_mask(int cpu)
6423 {
6424 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6425 }
6426
6427 static void sched_numa_warn(const char *str)
6428 {
6429 static int done = false;
6430 int i,j;
6431
6432 if (done)
6433 return;
6434
6435 done = true;
6436
6437 printk(KERN_WARNING "ERROR: %s\n\n", str);
6438
6439 for (i = 0; i < nr_node_ids; i++) {
6440 printk(KERN_WARNING " ");
6441 for (j = 0; j < nr_node_ids; j++)
6442 printk(KERN_CONT "%02d ", node_distance(i,j));
6443 printk(KERN_CONT "\n");
6444 }
6445 printk(KERN_WARNING "\n");
6446 }
6447
6448 bool find_numa_distance(int distance)
6449 {
6450 int i;
6451
6452 if (distance == node_distance(0, 0))
6453 return true;
6454
6455 for (i = 0; i < sched_domains_numa_levels; i++) {
6456 if (sched_domains_numa_distance[i] == distance)
6457 return true;
6458 }
6459
6460 return false;
6461 }
6462
6463 /*
6464 * A system can have three types of NUMA topology:
6465 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6466 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6467 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6468 *
6469 * The difference between a glueless mesh topology and a backplane
6470 * topology lies in whether communication between not directly
6471 * connected nodes goes through intermediary nodes (where programs
6472 * could run), or through backplane controllers. This affects
6473 * placement of programs.
6474 *
6475 * The type of topology can be discerned with the following tests:
6476 * - If the maximum distance between any nodes is 1 hop, the system
6477 * is directly connected.
6478 * - If for two nodes A and B, located N > 1 hops away from each other,
6479 * there is an intermediary node C, which is < N hops away from both
6480 * nodes A and B, the system is a glueless mesh.
6481 */
6482 static void init_numa_topology_type(void)
6483 {
6484 int a, b, c, n;
6485
6486 n = sched_max_numa_distance;
6487
6488 if (sched_domains_numa_levels <= 1) {
6489 sched_numa_topology_type = NUMA_DIRECT;
6490 return;
6491 }
6492
6493 for_each_online_node(a) {
6494 for_each_online_node(b) {
6495 /* Find two nodes furthest removed from each other. */
6496 if (node_distance(a, b) < n)
6497 continue;
6498
6499 /* Is there an intermediary node between a and b? */
6500 for_each_online_node(c) {
6501 if (node_distance(a, c) < n &&
6502 node_distance(b, c) < n) {
6503 sched_numa_topology_type =
6504 NUMA_GLUELESS_MESH;
6505 return;
6506 }
6507 }
6508
6509 sched_numa_topology_type = NUMA_BACKPLANE;
6510 return;
6511 }
6512 }
6513 }
6514
6515 static void sched_init_numa(void)
6516 {
6517 int next_distance, curr_distance = node_distance(0, 0);
6518 struct sched_domain_topology_level *tl;
6519 int level = 0;
6520 int i, j, k;
6521
6522 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6523 if (!sched_domains_numa_distance)
6524 return;
6525
6526 /*
6527 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6528 * unique distances in the node_distance() table.
6529 *
6530 * Assumes node_distance(0,j) includes all distances in
6531 * node_distance(i,j) in order to avoid cubic time.
6532 */
6533 next_distance = curr_distance;
6534 for (i = 0; i < nr_node_ids; i++) {
6535 for (j = 0; j < nr_node_ids; j++) {
6536 for (k = 0; k < nr_node_ids; k++) {
6537 int distance = node_distance(i, k);
6538
6539 if (distance > curr_distance &&
6540 (distance < next_distance ||
6541 next_distance == curr_distance))
6542 next_distance = distance;
6543
6544 /*
6545 * While not a strong assumption it would be nice to know
6546 * about cases where if node A is connected to B, B is not
6547 * equally connected to A.
6548 */
6549 if (sched_debug() && node_distance(k, i) != distance)
6550 sched_numa_warn("Node-distance not symmetric");
6551
6552 if (sched_debug() && i && !find_numa_distance(distance))
6553 sched_numa_warn("Node-0 not representative");
6554 }
6555 if (next_distance != curr_distance) {
6556 sched_domains_numa_distance[level++] = next_distance;
6557 sched_domains_numa_levels = level;
6558 curr_distance = next_distance;
6559 } else break;
6560 }
6561
6562 /*
6563 * In case of sched_debug() we verify the above assumption.
6564 */
6565 if (!sched_debug())
6566 break;
6567 }
6568
6569 if (!level)
6570 return;
6571
6572 /*
6573 * 'level' contains the number of unique distances, excluding the
6574 * identity distance node_distance(i,i).
6575 *
6576 * The sched_domains_numa_distance[] array includes the actual distance
6577 * numbers.
6578 */
6579
6580 /*
6581 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6582 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6583 * the array will contain less then 'level' members. This could be
6584 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6585 * in other functions.
6586 *
6587 * We reset it to 'level' at the end of this function.
6588 */
6589 sched_domains_numa_levels = 0;
6590
6591 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6592 if (!sched_domains_numa_masks)
6593 return;
6594
6595 /*
6596 * Now for each level, construct a mask per node which contains all
6597 * cpus of nodes that are that many hops away from us.
6598 */
6599 for (i = 0; i < level; i++) {
6600 sched_domains_numa_masks[i] =
6601 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6602 if (!sched_domains_numa_masks[i])
6603 return;
6604
6605 for (j = 0; j < nr_node_ids; j++) {
6606 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6607 if (!mask)
6608 return;
6609
6610 sched_domains_numa_masks[i][j] = mask;
6611
6612 for_each_node(k) {
6613 if (node_distance(j, k) > sched_domains_numa_distance[i])
6614 continue;
6615
6616 cpumask_or(mask, mask, cpumask_of_node(k));
6617 }
6618 }
6619 }
6620
6621 /* Compute default topology size */
6622 for (i = 0; sched_domain_topology[i].mask; i++);
6623
6624 tl = kzalloc((i + level + 1) *
6625 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6626 if (!tl)
6627 return;
6628
6629 /*
6630 * Copy the default topology bits..
6631 */
6632 for (i = 0; sched_domain_topology[i].mask; i++)
6633 tl[i] = sched_domain_topology[i];
6634
6635 /*
6636 * .. and append 'j' levels of NUMA goodness.
6637 */
6638 for (j = 0; j < level; i++, j++) {
6639 tl[i] = (struct sched_domain_topology_level){
6640 .mask = sd_numa_mask,
6641 .sd_flags = cpu_numa_flags,
6642 .flags = SDTL_OVERLAP,
6643 .numa_level = j,
6644 SD_INIT_NAME(NUMA)
6645 };
6646 }
6647
6648 sched_domain_topology = tl;
6649
6650 sched_domains_numa_levels = level;
6651 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6652
6653 init_numa_topology_type();
6654 }
6655
6656 static void sched_domains_numa_masks_set(int cpu)
6657 {
6658 int i, j;
6659 int node = cpu_to_node(cpu);
6660
6661 for (i = 0; i < sched_domains_numa_levels; i++) {
6662 for (j = 0; j < nr_node_ids; j++) {
6663 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6664 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6665 }
6666 }
6667 }
6668
6669 static void sched_domains_numa_masks_clear(int cpu)
6670 {
6671 int i, j;
6672 for (i = 0; i < sched_domains_numa_levels; i++) {
6673 for (j = 0; j < nr_node_ids; j++)
6674 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6675 }
6676 }
6677
6678 /*
6679 * Update sched_domains_numa_masks[level][node] array when new cpus
6680 * are onlined.
6681 */
6682 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6683 unsigned long action,
6684 void *hcpu)
6685 {
6686 int cpu = (long)hcpu;
6687
6688 switch (action & ~CPU_TASKS_FROZEN) {
6689 case CPU_ONLINE:
6690 sched_domains_numa_masks_set(cpu);
6691 break;
6692
6693 case CPU_DEAD:
6694 sched_domains_numa_masks_clear(cpu);
6695 break;
6696
6697 default:
6698 return NOTIFY_DONE;
6699 }
6700
6701 return NOTIFY_OK;
6702 }
6703 #else
6704 static inline void sched_init_numa(void)
6705 {
6706 }
6707
6708 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6709 unsigned long action,
6710 void *hcpu)
6711 {
6712 return 0;
6713 }
6714 #endif /* CONFIG_NUMA */
6715
6716 static int __sdt_alloc(const struct cpumask *cpu_map)
6717 {
6718 struct sched_domain_topology_level *tl;
6719 int j;
6720
6721 for_each_sd_topology(tl) {
6722 struct sd_data *sdd = &tl->data;
6723
6724 sdd->sd = alloc_percpu(struct sched_domain *);
6725 if (!sdd->sd)
6726 return -ENOMEM;
6727
6728 sdd->sg = alloc_percpu(struct sched_group *);
6729 if (!sdd->sg)
6730 return -ENOMEM;
6731
6732 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6733 if (!sdd->sgc)
6734 return -ENOMEM;
6735
6736 for_each_cpu(j, cpu_map) {
6737 struct sched_domain *sd;
6738 struct sched_group *sg;
6739 struct sched_group_capacity *sgc;
6740
6741 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6742 GFP_KERNEL, cpu_to_node(j));
6743 if (!sd)
6744 return -ENOMEM;
6745
6746 *per_cpu_ptr(sdd->sd, j) = sd;
6747
6748 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6749 GFP_KERNEL, cpu_to_node(j));
6750 if (!sg)
6751 return -ENOMEM;
6752
6753 sg->next = sg;
6754
6755 *per_cpu_ptr(sdd->sg, j) = sg;
6756
6757 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6758 GFP_KERNEL, cpu_to_node(j));
6759 if (!sgc)
6760 return -ENOMEM;
6761
6762 *per_cpu_ptr(sdd->sgc, j) = sgc;
6763 }
6764 }
6765
6766 return 0;
6767 }
6768
6769 static void __sdt_free(const struct cpumask *cpu_map)
6770 {
6771 struct sched_domain_topology_level *tl;
6772 int j;
6773
6774 for_each_sd_topology(tl) {
6775 struct sd_data *sdd = &tl->data;
6776
6777 for_each_cpu(j, cpu_map) {
6778 struct sched_domain *sd;
6779
6780 if (sdd->sd) {
6781 sd = *per_cpu_ptr(sdd->sd, j);
6782 if (sd && (sd->flags & SD_OVERLAP))
6783 free_sched_groups(sd->groups, 0);
6784 kfree(*per_cpu_ptr(sdd->sd, j));
6785 }
6786
6787 if (sdd->sg)
6788 kfree(*per_cpu_ptr(sdd->sg, j));
6789 if (sdd->sgc)
6790 kfree(*per_cpu_ptr(sdd->sgc, j));
6791 }
6792 free_percpu(sdd->sd);
6793 sdd->sd = NULL;
6794 free_percpu(sdd->sg);
6795 sdd->sg = NULL;
6796 free_percpu(sdd->sgc);
6797 sdd->sgc = NULL;
6798 }
6799 }
6800
6801 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6802 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6803 struct sched_domain *child, int cpu)
6804 {
6805 struct sched_domain *sd = sd_init(tl, cpu);
6806 if (!sd)
6807 return child;
6808
6809 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6810 if (child) {
6811 sd->level = child->level + 1;
6812 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6813 child->parent = sd;
6814 sd->child = child;
6815
6816 if (!cpumask_subset(sched_domain_span(child),
6817 sched_domain_span(sd))) {
6818 pr_err("BUG: arch topology borken\n");
6819 #ifdef CONFIG_SCHED_DEBUG
6820 pr_err(" the %s domain not a subset of the %s domain\n",
6821 child->name, sd->name);
6822 #endif
6823 /* Fixup, ensure @sd has at least @child cpus. */
6824 cpumask_or(sched_domain_span(sd),
6825 sched_domain_span(sd),
6826 sched_domain_span(child));
6827 }
6828
6829 }
6830 set_domain_attribute(sd, attr);
6831
6832 return sd;
6833 }
6834
6835 /*
6836 * Build sched domains for a given set of cpus and attach the sched domains
6837 * to the individual cpus
6838 */
6839 static int build_sched_domains(const struct cpumask *cpu_map,
6840 struct sched_domain_attr *attr)
6841 {
6842 enum s_alloc alloc_state;
6843 struct sched_domain *sd;
6844 struct s_data d;
6845 int i, ret = -ENOMEM;
6846
6847 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6848 if (alloc_state != sa_rootdomain)
6849 goto error;
6850
6851 /* Set up domains for cpus specified by the cpu_map. */
6852 for_each_cpu(i, cpu_map) {
6853 struct sched_domain_topology_level *tl;
6854
6855 sd = NULL;
6856 for_each_sd_topology(tl) {
6857 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6858 if (tl == sched_domain_topology)
6859 *per_cpu_ptr(d.sd, i) = sd;
6860 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6861 sd->flags |= SD_OVERLAP;
6862 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6863 break;
6864 }
6865 }
6866
6867 /* Build the groups for the domains */
6868 for_each_cpu(i, cpu_map) {
6869 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6870 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6871 if (sd->flags & SD_OVERLAP) {
6872 if (build_overlap_sched_groups(sd, i))
6873 goto error;
6874 } else {
6875 if (build_sched_groups(sd, i))
6876 goto error;
6877 }
6878 }
6879 }
6880
6881 /* Calculate CPU capacity for physical packages and nodes */
6882 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6883 if (!cpumask_test_cpu(i, cpu_map))
6884 continue;
6885
6886 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6887 claim_allocations(i, sd);
6888 init_sched_groups_capacity(i, sd);
6889 }
6890 }
6891
6892 /* Attach the domains */
6893 rcu_read_lock();
6894 for_each_cpu(i, cpu_map) {
6895 sd = *per_cpu_ptr(d.sd, i);
6896 cpu_attach_domain(sd, d.rd, i);
6897 }
6898 rcu_read_unlock();
6899
6900 ret = 0;
6901 error:
6902 __free_domain_allocs(&d, alloc_state, cpu_map);
6903 return ret;
6904 }
6905
6906 static cpumask_var_t *doms_cur; /* current sched domains */
6907 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6908 static struct sched_domain_attr *dattr_cur;
6909 /* attribues of custom domains in 'doms_cur' */
6910
6911 /*
6912 * Special case: If a kmalloc of a doms_cur partition (array of
6913 * cpumask) fails, then fallback to a single sched domain,
6914 * as determined by the single cpumask fallback_doms.
6915 */
6916 static cpumask_var_t fallback_doms;
6917
6918 /*
6919 * arch_update_cpu_topology lets virtualized architectures update the
6920 * cpu core maps. It is supposed to return 1 if the topology changed
6921 * or 0 if it stayed the same.
6922 */
6923 int __weak arch_update_cpu_topology(void)
6924 {
6925 return 0;
6926 }
6927
6928 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6929 {
6930 int i;
6931 cpumask_var_t *doms;
6932
6933 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6934 if (!doms)
6935 return NULL;
6936 for (i = 0; i < ndoms; i++) {
6937 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6938 free_sched_domains(doms, i);
6939 return NULL;
6940 }
6941 }
6942 return doms;
6943 }
6944
6945 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6946 {
6947 unsigned int i;
6948 for (i = 0; i < ndoms; i++)
6949 free_cpumask_var(doms[i]);
6950 kfree(doms);
6951 }
6952
6953 /*
6954 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6955 * For now this just excludes isolated cpus, but could be used to
6956 * exclude other special cases in the future.
6957 */
6958 static int init_sched_domains(const struct cpumask *cpu_map)
6959 {
6960 int err;
6961
6962 arch_update_cpu_topology();
6963 ndoms_cur = 1;
6964 doms_cur = alloc_sched_domains(ndoms_cur);
6965 if (!doms_cur)
6966 doms_cur = &fallback_doms;
6967 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6968 err = build_sched_domains(doms_cur[0], NULL);
6969 register_sched_domain_sysctl();
6970
6971 return err;
6972 }
6973
6974 /*
6975 * Detach sched domains from a group of cpus specified in cpu_map
6976 * These cpus will now be attached to the NULL domain
6977 */
6978 static void detach_destroy_domains(const struct cpumask *cpu_map)
6979 {
6980 int i;
6981
6982 rcu_read_lock();
6983 for_each_cpu(i, cpu_map)
6984 cpu_attach_domain(NULL, &def_root_domain, i);
6985 rcu_read_unlock();
6986 }
6987
6988 /* handle null as "default" */
6989 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6990 struct sched_domain_attr *new, int idx_new)
6991 {
6992 struct sched_domain_attr tmp;
6993
6994 /* fast path */
6995 if (!new && !cur)
6996 return 1;
6997
6998 tmp = SD_ATTR_INIT;
6999 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7000 new ? (new + idx_new) : &tmp,
7001 sizeof(struct sched_domain_attr));
7002 }
7003
7004 /*
7005 * Partition sched domains as specified by the 'ndoms_new'
7006 * cpumasks in the array doms_new[] of cpumasks. This compares
7007 * doms_new[] to the current sched domain partitioning, doms_cur[].
7008 * It destroys each deleted domain and builds each new domain.
7009 *
7010 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7011 * The masks don't intersect (don't overlap.) We should setup one
7012 * sched domain for each mask. CPUs not in any of the cpumasks will
7013 * not be load balanced. If the same cpumask appears both in the
7014 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7015 * it as it is.
7016 *
7017 * The passed in 'doms_new' should be allocated using
7018 * alloc_sched_domains. This routine takes ownership of it and will
7019 * free_sched_domains it when done with it. If the caller failed the
7020 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7021 * and partition_sched_domains() will fallback to the single partition
7022 * 'fallback_doms', it also forces the domains to be rebuilt.
7023 *
7024 * If doms_new == NULL it will be replaced with cpu_online_mask.
7025 * ndoms_new == 0 is a special case for destroying existing domains,
7026 * and it will not create the default domain.
7027 *
7028 * Call with hotplug lock held
7029 */
7030 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7031 struct sched_domain_attr *dattr_new)
7032 {
7033 int i, j, n;
7034 int new_topology;
7035
7036 mutex_lock(&sched_domains_mutex);
7037
7038 /* always unregister in case we don't destroy any domains */
7039 unregister_sched_domain_sysctl();
7040
7041 /* Let architecture update cpu core mappings. */
7042 new_topology = arch_update_cpu_topology();
7043
7044 n = doms_new ? ndoms_new : 0;
7045
7046 /* Destroy deleted domains */
7047 for (i = 0; i < ndoms_cur; i++) {
7048 for (j = 0; j < n && !new_topology; j++) {
7049 if (cpumask_equal(doms_cur[i], doms_new[j])
7050 && dattrs_equal(dattr_cur, i, dattr_new, j))
7051 goto match1;
7052 }
7053 /* no match - a current sched domain not in new doms_new[] */
7054 detach_destroy_domains(doms_cur[i]);
7055 match1:
7056 ;
7057 }
7058
7059 n = ndoms_cur;
7060 if (doms_new == NULL) {
7061 n = 0;
7062 doms_new = &fallback_doms;
7063 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7064 WARN_ON_ONCE(dattr_new);
7065 }
7066
7067 /* Build new domains */
7068 for (i = 0; i < ndoms_new; i++) {
7069 for (j = 0; j < n && !new_topology; j++) {
7070 if (cpumask_equal(doms_new[i], doms_cur[j])
7071 && dattrs_equal(dattr_new, i, dattr_cur, j))
7072 goto match2;
7073 }
7074 /* no match - add a new doms_new */
7075 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7076 match2:
7077 ;
7078 }
7079
7080 /* Remember the new sched domains */
7081 if (doms_cur != &fallback_doms)
7082 free_sched_domains(doms_cur, ndoms_cur);
7083 kfree(dattr_cur); /* kfree(NULL) is safe */
7084 doms_cur = doms_new;
7085 dattr_cur = dattr_new;
7086 ndoms_cur = ndoms_new;
7087
7088 register_sched_domain_sysctl();
7089
7090 mutex_unlock(&sched_domains_mutex);
7091 }
7092
7093 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7094
7095 /*
7096 * Update cpusets according to cpu_active mask. If cpusets are
7097 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7098 * around partition_sched_domains().
7099 *
7100 * If we come here as part of a suspend/resume, don't touch cpusets because we
7101 * want to restore it back to its original state upon resume anyway.
7102 */
7103 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7104 void *hcpu)
7105 {
7106 switch (action) {
7107 case CPU_ONLINE_FROZEN:
7108 case CPU_DOWN_FAILED_FROZEN:
7109
7110 /*
7111 * num_cpus_frozen tracks how many CPUs are involved in suspend
7112 * resume sequence. As long as this is not the last online
7113 * operation in the resume sequence, just build a single sched
7114 * domain, ignoring cpusets.
7115 */
7116 num_cpus_frozen--;
7117 if (likely(num_cpus_frozen)) {
7118 partition_sched_domains(1, NULL, NULL);
7119 break;
7120 }
7121
7122 /*
7123 * This is the last CPU online operation. So fall through and
7124 * restore the original sched domains by considering the
7125 * cpuset configurations.
7126 */
7127
7128 case CPU_ONLINE:
7129 cpuset_update_active_cpus(true);
7130 break;
7131 default:
7132 return NOTIFY_DONE;
7133 }
7134 return NOTIFY_OK;
7135 }
7136
7137 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7138 void *hcpu)
7139 {
7140 unsigned long flags;
7141 long cpu = (long)hcpu;
7142 struct dl_bw *dl_b;
7143 bool overflow;
7144 int cpus;
7145
7146 switch (action) {
7147 case CPU_DOWN_PREPARE:
7148 rcu_read_lock_sched();
7149 dl_b = dl_bw_of(cpu);
7150
7151 raw_spin_lock_irqsave(&dl_b->lock, flags);
7152 cpus = dl_bw_cpus(cpu);
7153 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7154 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7155
7156 rcu_read_unlock_sched();
7157
7158 if (overflow)
7159 return notifier_from_errno(-EBUSY);
7160 cpuset_update_active_cpus(false);
7161 break;
7162 case CPU_DOWN_PREPARE_FROZEN:
7163 num_cpus_frozen++;
7164 partition_sched_domains(1, NULL, NULL);
7165 break;
7166 default:
7167 return NOTIFY_DONE;
7168 }
7169 return NOTIFY_OK;
7170 }
7171
7172 void __init sched_init_smp(void)
7173 {
7174 cpumask_var_t non_isolated_cpus;
7175
7176 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7177 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7178
7179 sched_init_numa();
7180
7181 /*
7182 * There's no userspace yet to cause hotplug operations; hence all the
7183 * cpu masks are stable and all blatant races in the below code cannot
7184 * happen.
7185 */
7186 mutex_lock(&sched_domains_mutex);
7187 init_sched_domains(cpu_active_mask);
7188 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7189 if (cpumask_empty(non_isolated_cpus))
7190 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7191 mutex_unlock(&sched_domains_mutex);
7192
7193 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7194 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7195 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7196
7197 init_hrtick();
7198
7199 /* Move init over to a non-isolated CPU */
7200 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7201 BUG();
7202 sched_init_granularity();
7203 free_cpumask_var(non_isolated_cpus);
7204
7205 init_sched_rt_class();
7206 init_sched_dl_class();
7207 }
7208 #else
7209 void __init sched_init_smp(void)
7210 {
7211 sched_init_granularity();
7212 }
7213 #endif /* CONFIG_SMP */
7214
7215 int in_sched_functions(unsigned long addr)
7216 {
7217 return in_lock_functions(addr) ||
7218 (addr >= (unsigned long)__sched_text_start
7219 && addr < (unsigned long)__sched_text_end);
7220 }
7221
7222 #ifdef CONFIG_CGROUP_SCHED
7223 /*
7224 * Default task group.
7225 * Every task in system belongs to this group at bootup.
7226 */
7227 struct task_group root_task_group;
7228 LIST_HEAD(task_groups);
7229
7230 /* Cacheline aligned slab cache for task_group */
7231 static struct kmem_cache *task_group_cache __read_mostly;
7232 #endif
7233
7234 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7235
7236 void __init sched_init(void)
7237 {
7238 int i, j;
7239 unsigned long alloc_size = 0, ptr;
7240
7241 #ifdef CONFIG_FAIR_GROUP_SCHED
7242 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7243 #endif
7244 #ifdef CONFIG_RT_GROUP_SCHED
7245 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7246 #endif
7247 if (alloc_size) {
7248 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7249
7250 #ifdef CONFIG_FAIR_GROUP_SCHED
7251 root_task_group.se = (struct sched_entity **)ptr;
7252 ptr += nr_cpu_ids * sizeof(void **);
7253
7254 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7255 ptr += nr_cpu_ids * sizeof(void **);
7256
7257 #endif /* CONFIG_FAIR_GROUP_SCHED */
7258 #ifdef CONFIG_RT_GROUP_SCHED
7259 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7260 ptr += nr_cpu_ids * sizeof(void **);
7261
7262 root_task_group.rt_rq = (struct rt_rq **)ptr;
7263 ptr += nr_cpu_ids * sizeof(void **);
7264
7265 #endif /* CONFIG_RT_GROUP_SCHED */
7266 }
7267 #ifdef CONFIG_CPUMASK_OFFSTACK
7268 for_each_possible_cpu(i) {
7269 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7270 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7271 }
7272 #endif /* CONFIG_CPUMASK_OFFSTACK */
7273
7274 init_rt_bandwidth(&def_rt_bandwidth,
7275 global_rt_period(), global_rt_runtime());
7276 init_dl_bandwidth(&def_dl_bandwidth,
7277 global_rt_period(), global_rt_runtime());
7278
7279 #ifdef CONFIG_SMP
7280 init_defrootdomain();
7281 #endif
7282
7283 #ifdef CONFIG_RT_GROUP_SCHED
7284 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7285 global_rt_period(), global_rt_runtime());
7286 #endif /* CONFIG_RT_GROUP_SCHED */
7287
7288 #ifdef CONFIG_CGROUP_SCHED
7289 task_group_cache = KMEM_CACHE(task_group, 0);
7290
7291 list_add(&root_task_group.list, &task_groups);
7292 INIT_LIST_HEAD(&root_task_group.children);
7293 INIT_LIST_HEAD(&root_task_group.siblings);
7294 autogroup_init(&init_task);
7295 #endif /* CONFIG_CGROUP_SCHED */
7296
7297 for_each_possible_cpu(i) {
7298 struct rq *rq;
7299
7300 rq = cpu_rq(i);
7301 raw_spin_lock_init(&rq->lock);
7302 rq->nr_running = 0;
7303 rq->calc_load_active = 0;
7304 rq->calc_load_update = jiffies + LOAD_FREQ;
7305 init_cfs_rq(&rq->cfs);
7306 init_rt_rq(&rq->rt);
7307 init_dl_rq(&rq->dl);
7308 #ifdef CONFIG_FAIR_GROUP_SCHED
7309 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7310 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7311 /*
7312 * How much cpu bandwidth does root_task_group get?
7313 *
7314 * In case of task-groups formed thr' the cgroup filesystem, it
7315 * gets 100% of the cpu resources in the system. This overall
7316 * system cpu resource is divided among the tasks of
7317 * root_task_group and its child task-groups in a fair manner,
7318 * based on each entity's (task or task-group's) weight
7319 * (se->load.weight).
7320 *
7321 * In other words, if root_task_group has 10 tasks of weight
7322 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7323 * then A0's share of the cpu resource is:
7324 *
7325 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7326 *
7327 * We achieve this by letting root_task_group's tasks sit
7328 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7329 */
7330 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7331 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7332 #endif /* CONFIG_FAIR_GROUP_SCHED */
7333
7334 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7335 #ifdef CONFIG_RT_GROUP_SCHED
7336 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7337 #endif
7338
7339 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7340 rq->cpu_load[j] = 0;
7341
7342 rq->last_load_update_tick = jiffies;
7343
7344 #ifdef CONFIG_SMP
7345 rq->sd = NULL;
7346 rq->rd = NULL;
7347 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7348 rq->balance_callback = NULL;
7349 rq->active_balance = 0;
7350 rq->next_balance = jiffies;
7351 rq->push_cpu = 0;
7352 rq->cpu = i;
7353 rq->online = 0;
7354 rq->idle_stamp = 0;
7355 rq->avg_idle = 2*sysctl_sched_migration_cost;
7356 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7357
7358 INIT_LIST_HEAD(&rq->cfs_tasks);
7359
7360 rq_attach_root(rq, &def_root_domain);
7361 #ifdef CONFIG_NO_HZ_COMMON
7362 rq->nohz_flags = 0;
7363 #endif
7364 #ifdef CONFIG_NO_HZ_FULL
7365 rq->last_sched_tick = 0;
7366 #endif
7367 #endif
7368 init_rq_hrtick(rq);
7369 atomic_set(&rq->nr_iowait, 0);
7370 }
7371
7372 set_load_weight(&init_task);
7373
7374 #ifdef CONFIG_PREEMPT_NOTIFIERS
7375 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7376 #endif
7377
7378 /*
7379 * The boot idle thread does lazy MMU switching as well:
7380 */
7381 atomic_inc(&init_mm.mm_count);
7382 enter_lazy_tlb(&init_mm, current);
7383
7384 /*
7385 * During early bootup we pretend to be a normal task:
7386 */
7387 current->sched_class = &fair_sched_class;
7388
7389 /*
7390 * Make us the idle thread. Technically, schedule() should not be
7391 * called from this thread, however somewhere below it might be,
7392 * but because we are the idle thread, we just pick up running again
7393 * when this runqueue becomes "idle".
7394 */
7395 init_idle(current, smp_processor_id());
7396
7397 calc_load_update = jiffies + LOAD_FREQ;
7398
7399 #ifdef CONFIG_SMP
7400 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7401 /* May be allocated at isolcpus cmdline parse time */
7402 if (cpu_isolated_map == NULL)
7403 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7404 idle_thread_set_boot_cpu();
7405 set_cpu_rq_start_time();
7406 #endif
7407 init_sched_fair_class();
7408
7409 scheduler_running = 1;
7410 }
7411
7412 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7413 static inline int preempt_count_equals(int preempt_offset)
7414 {
7415 int nested = preempt_count() + rcu_preempt_depth();
7416
7417 return (nested == preempt_offset);
7418 }
7419
7420 void __might_sleep(const char *file, int line, int preempt_offset)
7421 {
7422 /*
7423 * Blocking primitives will set (and therefore destroy) current->state,
7424 * since we will exit with TASK_RUNNING make sure we enter with it,
7425 * otherwise we will destroy state.
7426 */
7427 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7428 "do not call blocking ops when !TASK_RUNNING; "
7429 "state=%lx set at [<%p>] %pS\n",
7430 current->state,
7431 (void *)current->task_state_change,
7432 (void *)current->task_state_change);
7433
7434 ___might_sleep(file, line, preempt_offset);
7435 }
7436 EXPORT_SYMBOL(__might_sleep);
7437
7438 void ___might_sleep(const char *file, int line, int preempt_offset)
7439 {
7440 static unsigned long prev_jiffy; /* ratelimiting */
7441
7442 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7443 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7444 !is_idle_task(current)) ||
7445 system_state != SYSTEM_RUNNING || oops_in_progress)
7446 return;
7447 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7448 return;
7449 prev_jiffy = jiffies;
7450
7451 printk(KERN_ERR
7452 "BUG: sleeping function called from invalid context at %s:%d\n",
7453 file, line);
7454 printk(KERN_ERR
7455 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7456 in_atomic(), irqs_disabled(),
7457 current->pid, current->comm);
7458
7459 if (task_stack_end_corrupted(current))
7460 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7461
7462 debug_show_held_locks(current);
7463 if (irqs_disabled())
7464 print_irqtrace_events(current);
7465 #ifdef CONFIG_DEBUG_PREEMPT
7466 if (!preempt_count_equals(preempt_offset)) {
7467 pr_err("Preemption disabled at:");
7468 print_ip_sym(current->preempt_disable_ip);
7469 pr_cont("\n");
7470 }
7471 #endif
7472 dump_stack();
7473 }
7474 EXPORT_SYMBOL(___might_sleep);
7475 #endif
7476
7477 #ifdef CONFIG_MAGIC_SYSRQ
7478 void normalize_rt_tasks(void)
7479 {
7480 struct task_struct *g, *p;
7481 struct sched_attr attr = {
7482 .sched_policy = SCHED_NORMAL,
7483 };
7484
7485 read_lock(&tasklist_lock);
7486 for_each_process_thread(g, p) {
7487 /*
7488 * Only normalize user tasks:
7489 */
7490 if (p->flags & PF_KTHREAD)
7491 continue;
7492
7493 p->se.exec_start = 0;
7494 #ifdef CONFIG_SCHEDSTATS
7495 p->se.statistics.wait_start = 0;
7496 p->se.statistics.sleep_start = 0;
7497 p->se.statistics.block_start = 0;
7498 #endif
7499
7500 if (!dl_task(p) && !rt_task(p)) {
7501 /*
7502 * Renice negative nice level userspace
7503 * tasks back to 0:
7504 */
7505 if (task_nice(p) < 0)
7506 set_user_nice(p, 0);
7507 continue;
7508 }
7509
7510 __sched_setscheduler(p, &attr, false, false);
7511 }
7512 read_unlock(&tasklist_lock);
7513 }
7514
7515 #endif /* CONFIG_MAGIC_SYSRQ */
7516
7517 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7518 /*
7519 * These functions are only useful for the IA64 MCA handling, or kdb.
7520 *
7521 * They can only be called when the whole system has been
7522 * stopped - every CPU needs to be quiescent, and no scheduling
7523 * activity can take place. Using them for anything else would
7524 * be a serious bug, and as a result, they aren't even visible
7525 * under any other configuration.
7526 */
7527
7528 /**
7529 * curr_task - return the current task for a given cpu.
7530 * @cpu: the processor in question.
7531 *
7532 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7533 *
7534 * Return: The current task for @cpu.
7535 */
7536 struct task_struct *curr_task(int cpu)
7537 {
7538 return cpu_curr(cpu);
7539 }
7540
7541 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7542
7543 #ifdef CONFIG_IA64
7544 /**
7545 * set_curr_task - set the current task for a given cpu.
7546 * @cpu: the processor in question.
7547 * @p: the task pointer to set.
7548 *
7549 * Description: This function must only be used when non-maskable interrupts
7550 * are serviced on a separate stack. It allows the architecture to switch the
7551 * notion of the current task on a cpu in a non-blocking manner. This function
7552 * must be called with all CPU's synchronized, and interrupts disabled, the
7553 * and caller must save the original value of the current task (see
7554 * curr_task() above) and restore that value before reenabling interrupts and
7555 * re-starting the system.
7556 *
7557 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7558 */
7559 void set_curr_task(int cpu, struct task_struct *p)
7560 {
7561 cpu_curr(cpu) = p;
7562 }
7563
7564 #endif
7565
7566 #ifdef CONFIG_CGROUP_SCHED
7567 /* task_group_lock serializes the addition/removal of task groups */
7568 static DEFINE_SPINLOCK(task_group_lock);
7569
7570 static void sched_free_group(struct task_group *tg)
7571 {
7572 free_fair_sched_group(tg);
7573 free_rt_sched_group(tg);
7574 autogroup_free(tg);
7575 kmem_cache_free(task_group_cache, tg);
7576 }
7577
7578 /* allocate runqueue etc for a new task group */
7579 struct task_group *sched_create_group(struct task_group *parent)
7580 {
7581 struct task_group *tg;
7582
7583 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7584 if (!tg)
7585 return ERR_PTR(-ENOMEM);
7586
7587 if (!alloc_fair_sched_group(tg, parent))
7588 goto err;
7589
7590 if (!alloc_rt_sched_group(tg, parent))
7591 goto err;
7592
7593 return tg;
7594
7595 err:
7596 sched_free_group(tg);
7597 return ERR_PTR(-ENOMEM);
7598 }
7599
7600 void sched_online_group(struct task_group *tg, struct task_group *parent)
7601 {
7602 unsigned long flags;
7603
7604 spin_lock_irqsave(&task_group_lock, flags);
7605 list_add_rcu(&tg->list, &task_groups);
7606
7607 WARN_ON(!parent); /* root should already exist */
7608
7609 tg->parent = parent;
7610 INIT_LIST_HEAD(&tg->children);
7611 list_add_rcu(&tg->siblings, &parent->children);
7612 spin_unlock_irqrestore(&task_group_lock, flags);
7613 }
7614
7615 /* rcu callback to free various structures associated with a task group */
7616 static void sched_free_group_rcu(struct rcu_head *rhp)
7617 {
7618 /* now it should be safe to free those cfs_rqs */
7619 sched_free_group(container_of(rhp, struct task_group, rcu));
7620 }
7621
7622 void sched_destroy_group(struct task_group *tg)
7623 {
7624 /* wait for possible concurrent references to cfs_rqs complete */
7625 call_rcu(&tg->rcu, sched_free_group_rcu);
7626 }
7627
7628 void sched_offline_group(struct task_group *tg)
7629 {
7630 unsigned long flags;
7631
7632 /* end participation in shares distribution */
7633 unregister_fair_sched_group(tg);
7634
7635 spin_lock_irqsave(&task_group_lock, flags);
7636 list_del_rcu(&tg->list);
7637 list_del_rcu(&tg->siblings);
7638 spin_unlock_irqrestore(&task_group_lock, flags);
7639 }
7640
7641 /* change task's runqueue when it moves between groups.
7642 * The caller of this function should have put the task in its new group
7643 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7644 * reflect its new group.
7645 */
7646 void sched_move_task(struct task_struct *tsk)
7647 {
7648 struct task_group *tg;
7649 int queued, running;
7650 unsigned long flags;
7651 struct rq *rq;
7652
7653 rq = task_rq_lock(tsk, &flags);
7654
7655 running = task_current(rq, tsk);
7656 queued = task_on_rq_queued(tsk);
7657
7658 if (queued)
7659 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7660 if (unlikely(running))
7661 put_prev_task(rq, tsk);
7662
7663 /*
7664 * All callers are synchronized by task_rq_lock(); we do not use RCU
7665 * which is pointless here. Thus, we pass "true" to task_css_check()
7666 * to prevent lockdep warnings.
7667 */
7668 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7669 struct task_group, css);
7670 tg = autogroup_task_group(tsk, tg);
7671 tsk->sched_task_group = tg;
7672
7673 #ifdef CONFIG_FAIR_GROUP_SCHED
7674 if (tsk->sched_class->task_move_group)
7675 tsk->sched_class->task_move_group(tsk);
7676 else
7677 #endif
7678 set_task_rq(tsk, task_cpu(tsk));
7679
7680 if (unlikely(running))
7681 tsk->sched_class->set_curr_task(rq);
7682 if (queued)
7683 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7684
7685 task_rq_unlock(rq, tsk, &flags);
7686 }
7687 #endif /* CONFIG_CGROUP_SCHED */
7688
7689 #ifdef CONFIG_RT_GROUP_SCHED
7690 /*
7691 * Ensure that the real time constraints are schedulable.
7692 */
7693 static DEFINE_MUTEX(rt_constraints_mutex);
7694
7695 /* Must be called with tasklist_lock held */
7696 static inline int tg_has_rt_tasks(struct task_group *tg)
7697 {
7698 struct task_struct *g, *p;
7699
7700 /*
7701 * Autogroups do not have RT tasks; see autogroup_create().
7702 */
7703 if (task_group_is_autogroup(tg))
7704 return 0;
7705
7706 for_each_process_thread(g, p) {
7707 if (rt_task(p) && task_group(p) == tg)
7708 return 1;
7709 }
7710
7711 return 0;
7712 }
7713
7714 struct rt_schedulable_data {
7715 struct task_group *tg;
7716 u64 rt_period;
7717 u64 rt_runtime;
7718 };
7719
7720 static int tg_rt_schedulable(struct task_group *tg, void *data)
7721 {
7722 struct rt_schedulable_data *d = data;
7723 struct task_group *child;
7724 unsigned long total, sum = 0;
7725 u64 period, runtime;
7726
7727 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7728 runtime = tg->rt_bandwidth.rt_runtime;
7729
7730 if (tg == d->tg) {
7731 period = d->rt_period;
7732 runtime = d->rt_runtime;
7733 }
7734
7735 /*
7736 * Cannot have more runtime than the period.
7737 */
7738 if (runtime > period && runtime != RUNTIME_INF)
7739 return -EINVAL;
7740
7741 /*
7742 * Ensure we don't starve existing RT tasks.
7743 */
7744 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7745 return -EBUSY;
7746
7747 total = to_ratio(period, runtime);
7748
7749 /*
7750 * Nobody can have more than the global setting allows.
7751 */
7752 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7753 return -EINVAL;
7754
7755 /*
7756 * The sum of our children's runtime should not exceed our own.
7757 */
7758 list_for_each_entry_rcu(child, &tg->children, siblings) {
7759 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7760 runtime = child->rt_bandwidth.rt_runtime;
7761
7762 if (child == d->tg) {
7763 period = d->rt_period;
7764 runtime = d->rt_runtime;
7765 }
7766
7767 sum += to_ratio(period, runtime);
7768 }
7769
7770 if (sum > total)
7771 return -EINVAL;
7772
7773 return 0;
7774 }
7775
7776 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7777 {
7778 int ret;
7779
7780 struct rt_schedulable_data data = {
7781 .tg = tg,
7782 .rt_period = period,
7783 .rt_runtime = runtime,
7784 };
7785
7786 rcu_read_lock();
7787 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7788 rcu_read_unlock();
7789
7790 return ret;
7791 }
7792
7793 static int tg_set_rt_bandwidth(struct task_group *tg,
7794 u64 rt_period, u64 rt_runtime)
7795 {
7796 int i, err = 0;
7797
7798 /*
7799 * Disallowing the root group RT runtime is BAD, it would disallow the
7800 * kernel creating (and or operating) RT threads.
7801 */
7802 if (tg == &root_task_group && rt_runtime == 0)
7803 return -EINVAL;
7804
7805 /* No period doesn't make any sense. */
7806 if (rt_period == 0)
7807 return -EINVAL;
7808
7809 mutex_lock(&rt_constraints_mutex);
7810 read_lock(&tasklist_lock);
7811 err = __rt_schedulable(tg, rt_period, rt_runtime);
7812 if (err)
7813 goto unlock;
7814
7815 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7816 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7817 tg->rt_bandwidth.rt_runtime = rt_runtime;
7818
7819 for_each_possible_cpu(i) {
7820 struct rt_rq *rt_rq = tg->rt_rq[i];
7821
7822 raw_spin_lock(&rt_rq->rt_runtime_lock);
7823 rt_rq->rt_runtime = rt_runtime;
7824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7825 }
7826 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7827 unlock:
7828 read_unlock(&tasklist_lock);
7829 mutex_unlock(&rt_constraints_mutex);
7830
7831 return err;
7832 }
7833
7834 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7835 {
7836 u64 rt_runtime, rt_period;
7837
7838 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7839 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7840 if (rt_runtime_us < 0)
7841 rt_runtime = RUNTIME_INF;
7842
7843 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7844 }
7845
7846 static long sched_group_rt_runtime(struct task_group *tg)
7847 {
7848 u64 rt_runtime_us;
7849
7850 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7851 return -1;
7852
7853 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7854 do_div(rt_runtime_us, NSEC_PER_USEC);
7855 return rt_runtime_us;
7856 }
7857
7858 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7859 {
7860 u64 rt_runtime, rt_period;
7861
7862 rt_period = rt_period_us * NSEC_PER_USEC;
7863 rt_runtime = tg->rt_bandwidth.rt_runtime;
7864
7865 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7866 }
7867
7868 static long sched_group_rt_period(struct task_group *tg)
7869 {
7870 u64 rt_period_us;
7871
7872 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7873 do_div(rt_period_us, NSEC_PER_USEC);
7874 return rt_period_us;
7875 }
7876 #endif /* CONFIG_RT_GROUP_SCHED */
7877
7878 #ifdef CONFIG_RT_GROUP_SCHED
7879 static int sched_rt_global_constraints(void)
7880 {
7881 int ret = 0;
7882
7883 mutex_lock(&rt_constraints_mutex);
7884 read_lock(&tasklist_lock);
7885 ret = __rt_schedulable(NULL, 0, 0);
7886 read_unlock(&tasklist_lock);
7887 mutex_unlock(&rt_constraints_mutex);
7888
7889 return ret;
7890 }
7891
7892 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7893 {
7894 /* Don't accept realtime tasks when there is no way for them to run */
7895 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7896 return 0;
7897
7898 return 1;
7899 }
7900
7901 #else /* !CONFIG_RT_GROUP_SCHED */
7902 static int sched_rt_global_constraints(void)
7903 {
7904 unsigned long flags;
7905 int i, ret = 0;
7906
7907 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7908 for_each_possible_cpu(i) {
7909 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7910
7911 raw_spin_lock(&rt_rq->rt_runtime_lock);
7912 rt_rq->rt_runtime = global_rt_runtime();
7913 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7914 }
7915 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7916
7917 return ret;
7918 }
7919 #endif /* CONFIG_RT_GROUP_SCHED */
7920
7921 static int sched_dl_global_validate(void)
7922 {
7923 u64 runtime = global_rt_runtime();
7924 u64 period = global_rt_period();
7925 u64 new_bw = to_ratio(period, runtime);
7926 struct dl_bw *dl_b;
7927 int cpu, ret = 0;
7928 unsigned long flags;
7929
7930 /*
7931 * Here we want to check the bandwidth not being set to some
7932 * value smaller than the currently allocated bandwidth in
7933 * any of the root_domains.
7934 *
7935 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7936 * cycling on root_domains... Discussion on different/better
7937 * solutions is welcome!
7938 */
7939 for_each_possible_cpu(cpu) {
7940 rcu_read_lock_sched();
7941 dl_b = dl_bw_of(cpu);
7942
7943 raw_spin_lock_irqsave(&dl_b->lock, flags);
7944 if (new_bw < dl_b->total_bw)
7945 ret = -EBUSY;
7946 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7947
7948 rcu_read_unlock_sched();
7949
7950 if (ret)
7951 break;
7952 }
7953
7954 return ret;
7955 }
7956
7957 static void sched_dl_do_global(void)
7958 {
7959 u64 new_bw = -1;
7960 struct dl_bw *dl_b;
7961 int cpu;
7962 unsigned long flags;
7963
7964 def_dl_bandwidth.dl_period = global_rt_period();
7965 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7966
7967 if (global_rt_runtime() != RUNTIME_INF)
7968 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7969
7970 /*
7971 * FIXME: As above...
7972 */
7973 for_each_possible_cpu(cpu) {
7974 rcu_read_lock_sched();
7975 dl_b = dl_bw_of(cpu);
7976
7977 raw_spin_lock_irqsave(&dl_b->lock, flags);
7978 dl_b->bw = new_bw;
7979 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7980
7981 rcu_read_unlock_sched();
7982 }
7983 }
7984
7985 static int sched_rt_global_validate(void)
7986 {
7987 if (sysctl_sched_rt_period <= 0)
7988 return -EINVAL;
7989
7990 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7991 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7992 return -EINVAL;
7993
7994 return 0;
7995 }
7996
7997 static void sched_rt_do_global(void)
7998 {
7999 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8000 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8001 }
8002
8003 int sched_rt_handler(struct ctl_table *table, int write,
8004 void __user *buffer, size_t *lenp,
8005 loff_t *ppos)
8006 {
8007 int old_period, old_runtime;
8008 static DEFINE_MUTEX(mutex);
8009 int ret;
8010
8011 mutex_lock(&mutex);
8012 old_period = sysctl_sched_rt_period;
8013 old_runtime = sysctl_sched_rt_runtime;
8014
8015 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8016
8017 if (!ret && write) {
8018 ret = sched_rt_global_validate();
8019 if (ret)
8020 goto undo;
8021
8022 ret = sched_dl_global_validate();
8023 if (ret)
8024 goto undo;
8025
8026 ret = sched_rt_global_constraints();
8027 if (ret)
8028 goto undo;
8029
8030 sched_rt_do_global();
8031 sched_dl_do_global();
8032 }
8033 if (0) {
8034 undo:
8035 sysctl_sched_rt_period = old_period;
8036 sysctl_sched_rt_runtime = old_runtime;
8037 }
8038 mutex_unlock(&mutex);
8039
8040 return ret;
8041 }
8042
8043 int sched_rr_handler(struct ctl_table *table, int write,
8044 void __user *buffer, size_t *lenp,
8045 loff_t *ppos)
8046 {
8047 int ret;
8048 static DEFINE_MUTEX(mutex);
8049
8050 mutex_lock(&mutex);
8051 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8052 /* make sure that internally we keep jiffies */
8053 /* also, writing zero resets timeslice to default */
8054 if (!ret && write) {
8055 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8056 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8057 }
8058 mutex_unlock(&mutex);
8059 return ret;
8060 }
8061
8062 #ifdef CONFIG_CGROUP_SCHED
8063
8064 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8065 {
8066 return css ? container_of(css, struct task_group, css) : NULL;
8067 }
8068
8069 static struct cgroup_subsys_state *
8070 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8071 {
8072 struct task_group *parent = css_tg(parent_css);
8073 struct task_group *tg;
8074
8075 if (!parent) {
8076 /* This is early initialization for the top cgroup */
8077 return &root_task_group.css;
8078 }
8079
8080 tg = sched_create_group(parent);
8081 if (IS_ERR(tg))
8082 return ERR_PTR(-ENOMEM);
8083
8084 sched_online_group(tg, parent);
8085
8086 return &tg->css;
8087 }
8088
8089 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8090 {
8091 struct task_group *tg = css_tg(css);
8092
8093 sched_offline_group(tg);
8094 }
8095
8096 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8097 {
8098 struct task_group *tg = css_tg(css);
8099
8100 /*
8101 * Relies on the RCU grace period between css_released() and this.
8102 */
8103 sched_free_group(tg);
8104 }
8105
8106 static void cpu_cgroup_fork(struct task_struct *task)
8107 {
8108 sched_move_task(task);
8109 }
8110
8111 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8112 {
8113 struct task_struct *task;
8114 struct cgroup_subsys_state *css;
8115
8116 cgroup_taskset_for_each(task, css, tset) {
8117 #ifdef CONFIG_RT_GROUP_SCHED
8118 if (!sched_rt_can_attach(css_tg(css), task))
8119 return -EINVAL;
8120 #else
8121 /* We don't support RT-tasks being in separate groups */
8122 if (task->sched_class != &fair_sched_class)
8123 return -EINVAL;
8124 #endif
8125 }
8126 return 0;
8127 }
8128
8129 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8130 {
8131 struct task_struct *task;
8132 struct cgroup_subsys_state *css;
8133
8134 cgroup_taskset_for_each(task, css, tset)
8135 sched_move_task(task);
8136 }
8137
8138 #ifdef CONFIG_FAIR_GROUP_SCHED
8139 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8140 struct cftype *cftype, u64 shareval)
8141 {
8142 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8143 }
8144
8145 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8146 struct cftype *cft)
8147 {
8148 struct task_group *tg = css_tg(css);
8149
8150 return (u64) scale_load_down(tg->shares);
8151 }
8152
8153 #ifdef CONFIG_CFS_BANDWIDTH
8154 static DEFINE_MUTEX(cfs_constraints_mutex);
8155
8156 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8157 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8158
8159 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8160
8161 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8162 {
8163 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8164 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8165
8166 if (tg == &root_task_group)
8167 return -EINVAL;
8168
8169 /*
8170 * Ensure we have at some amount of bandwidth every period. This is
8171 * to prevent reaching a state of large arrears when throttled via
8172 * entity_tick() resulting in prolonged exit starvation.
8173 */
8174 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8175 return -EINVAL;
8176
8177 /*
8178 * Likewise, bound things on the otherside by preventing insane quota
8179 * periods. This also allows us to normalize in computing quota
8180 * feasibility.
8181 */
8182 if (period > max_cfs_quota_period)
8183 return -EINVAL;
8184
8185 /*
8186 * Prevent race between setting of cfs_rq->runtime_enabled and
8187 * unthrottle_offline_cfs_rqs().
8188 */
8189 get_online_cpus();
8190 mutex_lock(&cfs_constraints_mutex);
8191 ret = __cfs_schedulable(tg, period, quota);
8192 if (ret)
8193 goto out_unlock;
8194
8195 runtime_enabled = quota != RUNTIME_INF;
8196 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8197 /*
8198 * If we need to toggle cfs_bandwidth_used, off->on must occur
8199 * before making related changes, and on->off must occur afterwards
8200 */
8201 if (runtime_enabled && !runtime_was_enabled)
8202 cfs_bandwidth_usage_inc();
8203 raw_spin_lock_irq(&cfs_b->lock);
8204 cfs_b->period = ns_to_ktime(period);
8205 cfs_b->quota = quota;
8206
8207 __refill_cfs_bandwidth_runtime(cfs_b);
8208 /* restart the period timer (if active) to handle new period expiry */
8209 if (runtime_enabled)
8210 start_cfs_bandwidth(cfs_b);
8211 raw_spin_unlock_irq(&cfs_b->lock);
8212
8213 for_each_online_cpu(i) {
8214 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8215 struct rq *rq = cfs_rq->rq;
8216
8217 raw_spin_lock_irq(&rq->lock);
8218 cfs_rq->runtime_enabled = runtime_enabled;
8219 cfs_rq->runtime_remaining = 0;
8220
8221 if (cfs_rq->throttled)
8222 unthrottle_cfs_rq(cfs_rq);
8223 raw_spin_unlock_irq(&rq->lock);
8224 }
8225 if (runtime_was_enabled && !runtime_enabled)
8226 cfs_bandwidth_usage_dec();
8227 out_unlock:
8228 mutex_unlock(&cfs_constraints_mutex);
8229 put_online_cpus();
8230
8231 return ret;
8232 }
8233
8234 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8235 {
8236 u64 quota, period;
8237
8238 period = ktime_to_ns(tg->cfs_bandwidth.period);
8239 if (cfs_quota_us < 0)
8240 quota = RUNTIME_INF;
8241 else
8242 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8243
8244 return tg_set_cfs_bandwidth(tg, period, quota);
8245 }
8246
8247 long tg_get_cfs_quota(struct task_group *tg)
8248 {
8249 u64 quota_us;
8250
8251 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8252 return -1;
8253
8254 quota_us = tg->cfs_bandwidth.quota;
8255 do_div(quota_us, NSEC_PER_USEC);
8256
8257 return quota_us;
8258 }
8259
8260 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8261 {
8262 u64 quota, period;
8263
8264 period = (u64)cfs_period_us * NSEC_PER_USEC;
8265 quota = tg->cfs_bandwidth.quota;
8266
8267 return tg_set_cfs_bandwidth(tg, period, quota);
8268 }
8269
8270 long tg_get_cfs_period(struct task_group *tg)
8271 {
8272 u64 cfs_period_us;
8273
8274 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8275 do_div(cfs_period_us, NSEC_PER_USEC);
8276
8277 return cfs_period_us;
8278 }
8279
8280 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8281 struct cftype *cft)
8282 {
8283 return tg_get_cfs_quota(css_tg(css));
8284 }
8285
8286 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8287 struct cftype *cftype, s64 cfs_quota_us)
8288 {
8289 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8290 }
8291
8292 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8293 struct cftype *cft)
8294 {
8295 return tg_get_cfs_period(css_tg(css));
8296 }
8297
8298 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8299 struct cftype *cftype, u64 cfs_period_us)
8300 {
8301 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8302 }
8303
8304 struct cfs_schedulable_data {
8305 struct task_group *tg;
8306 u64 period, quota;
8307 };
8308
8309 /*
8310 * normalize group quota/period to be quota/max_period
8311 * note: units are usecs
8312 */
8313 static u64 normalize_cfs_quota(struct task_group *tg,
8314 struct cfs_schedulable_data *d)
8315 {
8316 u64 quota, period;
8317
8318 if (tg == d->tg) {
8319 period = d->period;
8320 quota = d->quota;
8321 } else {
8322 period = tg_get_cfs_period(tg);
8323 quota = tg_get_cfs_quota(tg);
8324 }
8325
8326 /* note: these should typically be equivalent */
8327 if (quota == RUNTIME_INF || quota == -1)
8328 return RUNTIME_INF;
8329
8330 return to_ratio(period, quota);
8331 }
8332
8333 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8334 {
8335 struct cfs_schedulable_data *d = data;
8336 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8337 s64 quota = 0, parent_quota = -1;
8338
8339 if (!tg->parent) {
8340 quota = RUNTIME_INF;
8341 } else {
8342 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8343
8344 quota = normalize_cfs_quota(tg, d);
8345 parent_quota = parent_b->hierarchical_quota;
8346
8347 /*
8348 * ensure max(child_quota) <= parent_quota, inherit when no
8349 * limit is set
8350 */
8351 if (quota == RUNTIME_INF)
8352 quota = parent_quota;
8353 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8354 return -EINVAL;
8355 }
8356 cfs_b->hierarchical_quota = quota;
8357
8358 return 0;
8359 }
8360
8361 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8362 {
8363 int ret;
8364 struct cfs_schedulable_data data = {
8365 .tg = tg,
8366 .period = period,
8367 .quota = quota,
8368 };
8369
8370 if (quota != RUNTIME_INF) {
8371 do_div(data.period, NSEC_PER_USEC);
8372 do_div(data.quota, NSEC_PER_USEC);
8373 }
8374
8375 rcu_read_lock();
8376 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8377 rcu_read_unlock();
8378
8379 return ret;
8380 }
8381
8382 static int cpu_stats_show(struct seq_file *sf, void *v)
8383 {
8384 struct task_group *tg = css_tg(seq_css(sf));
8385 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8386
8387 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8388 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8389 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8390
8391 return 0;
8392 }
8393 #endif /* CONFIG_CFS_BANDWIDTH */
8394 #endif /* CONFIG_FAIR_GROUP_SCHED */
8395
8396 #ifdef CONFIG_RT_GROUP_SCHED
8397 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8398 struct cftype *cft, s64 val)
8399 {
8400 return sched_group_set_rt_runtime(css_tg(css), val);
8401 }
8402
8403 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8404 struct cftype *cft)
8405 {
8406 return sched_group_rt_runtime(css_tg(css));
8407 }
8408
8409 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8410 struct cftype *cftype, u64 rt_period_us)
8411 {
8412 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8413 }
8414
8415 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8416 struct cftype *cft)
8417 {
8418 return sched_group_rt_period(css_tg(css));
8419 }
8420 #endif /* CONFIG_RT_GROUP_SCHED */
8421
8422 static struct cftype cpu_files[] = {
8423 #ifdef CONFIG_FAIR_GROUP_SCHED
8424 {
8425 .name = "shares",
8426 .read_u64 = cpu_shares_read_u64,
8427 .write_u64 = cpu_shares_write_u64,
8428 },
8429 #endif
8430 #ifdef CONFIG_CFS_BANDWIDTH
8431 {
8432 .name = "cfs_quota_us",
8433 .read_s64 = cpu_cfs_quota_read_s64,
8434 .write_s64 = cpu_cfs_quota_write_s64,
8435 },
8436 {
8437 .name = "cfs_period_us",
8438 .read_u64 = cpu_cfs_period_read_u64,
8439 .write_u64 = cpu_cfs_period_write_u64,
8440 },
8441 {
8442 .name = "stat",
8443 .seq_show = cpu_stats_show,
8444 },
8445 #endif
8446 #ifdef CONFIG_RT_GROUP_SCHED
8447 {
8448 .name = "rt_runtime_us",
8449 .read_s64 = cpu_rt_runtime_read,
8450 .write_s64 = cpu_rt_runtime_write,
8451 },
8452 {
8453 .name = "rt_period_us",
8454 .read_u64 = cpu_rt_period_read_uint,
8455 .write_u64 = cpu_rt_period_write_uint,
8456 },
8457 #endif
8458 { } /* terminate */
8459 };
8460
8461 struct cgroup_subsys cpu_cgrp_subsys = {
8462 .css_alloc = cpu_cgroup_css_alloc,
8463 .css_released = cpu_cgroup_css_released,
8464 .css_free = cpu_cgroup_css_free,
8465 .fork = cpu_cgroup_fork,
8466 .can_attach = cpu_cgroup_can_attach,
8467 .attach = cpu_cgroup_attach,
8468 .legacy_cftypes = cpu_files,
8469 .early_init = true,
8470 };
8471
8472 #endif /* CONFIG_CGROUP_SCHED */
8473
8474 void dump_cpu_task(int cpu)
8475 {
8476 pr_info("Task dump for CPU %d:\n", cpu);
8477 sched_show_task(cpu_curr(cpu));
8478 }
8479
8480 /*
8481 * Nice levels are multiplicative, with a gentle 10% change for every
8482 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8483 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8484 * that remained on nice 0.
8485 *
8486 * The "10% effect" is relative and cumulative: from _any_ nice level,
8487 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8488 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8489 * If a task goes up by ~10% and another task goes down by ~10% then
8490 * the relative distance between them is ~25%.)
8491 */
8492 const int sched_prio_to_weight[40] = {
8493 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8494 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8495 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8496 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8497 /* 0 */ 1024, 820, 655, 526, 423,
8498 /* 5 */ 335, 272, 215, 172, 137,
8499 /* 10 */ 110, 87, 70, 56, 45,
8500 /* 15 */ 36, 29, 23, 18, 15,
8501 };
8502
8503 /*
8504 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8505 *
8506 * In cases where the weight does not change often, we can use the
8507 * precalculated inverse to speed up arithmetics by turning divisions
8508 * into multiplications:
8509 */
8510 const u32 sched_prio_to_wmult[40] = {
8511 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8512 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8513 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8514 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8515 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8516 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8517 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8518 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8519 };
This page took 0.252751 seconds and 5 git commands to generate.