sched: encapsulate priority changes in a sched_set_prio static function
[deliverable/linux.git] / kernel / sched / core.c
1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77
78 #include <asm/switch_to.h>
79 #include <asm/tlb.h>
80 #include <asm/irq_regs.h>
81 #include <asm/mutex.h>
82 #ifdef CONFIG_PARAVIRT
83 #include <asm/paravirt.h>
84 #endif
85
86 #include "sched.h"
87 #include "../workqueue_internal.h"
88 #include "../smpboot.h"
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/sched.h>
92
93 DEFINE_MUTEX(sched_domains_mutex);
94 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96 static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98 void update_rq_clock(struct rq *rq)
99 {
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112 }
113
114 /*
115 * Debugging: various feature bits
116 */
117
118 #define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121 const_debug unsigned int sysctl_sched_features =
122 #include "features.h"
123 0;
124
125 #undef SCHED_FEAT
126
127 /*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131 const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
133 /*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
141 /*
142 * period over which we measure -rt task cpu usage in us.
143 * default: 1s
144 */
145 unsigned int sysctl_sched_rt_period = 1000000;
146
147 __read_mostly int scheduler_running;
148
149 /*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153 int sysctl_sched_rt_runtime = 950000;
154
155 /* cpus with isolated domains */
156 cpumask_var_t cpu_isolated_map;
157
158 /*
159 * this_rq_lock - lock this runqueue and disable interrupts.
160 */
161 static struct rq *this_rq_lock(void)
162 __acquires(rq->lock)
163 {
164 struct rq *rq;
165
166 local_irq_disable();
167 rq = this_rq();
168 raw_spin_lock(&rq->lock);
169
170 return rq;
171 }
172
173 #ifdef CONFIG_SCHED_HRTICK
174 /*
175 * Use HR-timers to deliver accurate preemption points.
176 */
177
178 static void hrtick_clear(struct rq *rq)
179 {
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182 }
183
184 /*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188 static enum hrtimer_restart hrtick(struct hrtimer *timer)
189 {
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
194 raw_spin_lock(&rq->lock);
195 update_rq_clock(rq);
196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
197 raw_spin_unlock(&rq->lock);
198
199 return HRTIMER_NORESTART;
200 }
201
202 #ifdef CONFIG_SMP
203
204 static void __hrtick_restart(struct rq *rq)
205 {
206 struct hrtimer *timer = &rq->hrtick_timer;
207
208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
209 }
210
211 /*
212 * called from hardirq (IPI) context
213 */
214 static void __hrtick_start(void *arg)
215 {
216 struct rq *rq = arg;
217
218 raw_spin_lock(&rq->lock);
219 __hrtick_restart(rq);
220 rq->hrtick_csd_pending = 0;
221 raw_spin_unlock(&rq->lock);
222 }
223
224 /*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
229 void hrtick_start(struct rq *rq, u64 delay)
230 {
231 struct hrtimer *timer = &rq->hrtick_timer;
232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
241
242 hrtimer_set_expires(timer, time);
243
244 if (rq == this_rq()) {
245 __hrtick_restart(rq);
246 } else if (!rq->hrtick_csd_pending) {
247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
248 rq->hrtick_csd_pending = 1;
249 }
250 }
251
252 static int
253 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254 {
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
264 hrtick_clear(cpu_rq(cpu));
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269 }
270
271 static __init void init_hrtick(void)
272 {
273 hotcpu_notifier(hotplug_hrtick, 0);
274 }
275 #else
276 /*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
281 void hrtick_start(struct rq *rq, u64 delay)
282 {
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
290 }
291
292 static inline void init_hrtick(void)
293 {
294 }
295 #endif /* CONFIG_SMP */
296
297 static void init_rq_hrtick(struct rq *rq)
298 {
299 #ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
301
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305 #endif
306
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
309 }
310 #else /* CONFIG_SCHED_HRTICK */
311 static inline void hrtick_clear(struct rq *rq)
312 {
313 }
314
315 static inline void init_rq_hrtick(struct rq *rq)
316 {
317 }
318
319 static inline void init_hrtick(void)
320 {
321 }
322 #endif /* CONFIG_SCHED_HRTICK */
323
324 /*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327 #define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340 })
341
342 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
343 /*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348 static bool set_nr_and_not_polling(struct task_struct *p)
349 {
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352 }
353
354 /*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360 static bool set_nr_if_polling(struct task_struct *p)
361 {
362 struct thread_info *ti = task_thread_info(p);
363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376 }
377
378 #else
379 static bool set_nr_and_not_polling(struct task_struct *p)
380 {
381 set_tsk_need_resched(p);
382 return true;
383 }
384
385 #ifdef CONFIG_SMP
386 static bool set_nr_if_polling(struct task_struct *p)
387 {
388 return false;
389 }
390 #endif
391 #endif
392
393 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394 {
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415 }
416
417 void wake_up_q(struct wake_q_head *head)
418 {
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437 }
438
439 /*
440 * resched_curr - mark rq's current task 'to be rescheduled now'.
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
446 void resched_curr(struct rq *rq)
447 {
448 struct task_struct *curr = rq->curr;
449 int cpu;
450
451 lockdep_assert_held(&rq->lock);
452
453 if (test_tsk_need_resched(curr))
454 return;
455
456 cpu = cpu_of(rq);
457
458 if (cpu == smp_processor_id()) {
459 set_tsk_need_resched(curr);
460 set_preempt_need_resched();
461 return;
462 }
463
464 if (set_nr_and_not_polling(curr))
465 smp_send_reschedule(cpu);
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
468 }
469
470 void resched_cpu(int cpu)
471 {
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
476 return;
477 resched_curr(rq);
478 raw_spin_unlock_irqrestore(&rq->lock, flags);
479 }
480
481 #ifdef CONFIG_SMP
482 #ifdef CONFIG_NO_HZ_COMMON
483 /*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
491 int get_nohz_timer_target(void)
492 {
493 int i, cpu = smp_processor_id();
494 struct sched_domain *sd;
495
496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
497 return cpu;
498
499 rcu_read_lock();
500 for_each_domain(cpu, sd) {
501 for_each_cpu(i, sched_domain_span(sd)) {
502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
503 cpu = i;
504 goto unlock;
505 }
506 }
507 }
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
511 unlock:
512 rcu_read_unlock();
513 return cpu;
514 }
515 /*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
525 static void wake_up_idle_cpu(int cpu)
526 {
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
532 if (set_nr_and_not_polling(rq->idle))
533 smp_send_reschedule(cpu);
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
536 }
537
538 static bool wake_up_full_nohz_cpu(int cpu)
539 {
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
546 if (tick_nohz_full_cpu(cpu)) {
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
549 tick_nohz_full_kick_cpu(cpu);
550 return true;
551 }
552
553 return false;
554 }
555
556 void wake_up_nohz_cpu(int cpu)
557 {
558 if (!wake_up_full_nohz_cpu(cpu))
559 wake_up_idle_cpu(cpu);
560 }
561
562 static inline bool got_nohz_idle_kick(void)
563 {
564 int cpu = smp_processor_id();
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
578 }
579
580 #else /* CONFIG_NO_HZ_COMMON */
581
582 static inline bool got_nohz_idle_kick(void)
583 {
584 return false;
585 }
586
587 #endif /* CONFIG_NO_HZ_COMMON */
588
589 #ifdef CONFIG_NO_HZ_FULL
590 bool sched_can_stop_tick(struct rq *rq)
591 {
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
598 /*
599 * If there are more than one RR tasks, we need the tick to effect the
600 * actual RR behaviour.
601 */
602 if (rq->rt.rr_nr_running) {
603 if (rq->rt.rr_nr_running == 1)
604 return true;
605 else
606 return false;
607 }
608
609 /*
610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 * forced preemption between FIFO tasks.
612 */
613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 if (fifo_nr_running)
615 return true;
616
617 /*
618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 * if there's more than one we need the tick for involuntary
620 * preemption.
621 */
622 if (rq->nr_running > 1)
623 return false;
624
625 return true;
626 }
627 #endif /* CONFIG_NO_HZ_FULL */
628
629 void sched_avg_update(struct rq *rq)
630 {
631 s64 period = sched_avg_period();
632
633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
634 /*
635 * Inline assembly required to prevent the compiler
636 * optimising this loop into a divmod call.
637 * See __iter_div_u64_rem() for another example of this.
638 */
639 asm("" : "+rm" (rq->age_stamp));
640 rq->age_stamp += period;
641 rq->rt_avg /= 2;
642 }
643 }
644
645 #endif /* CONFIG_SMP */
646
647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
649 /*
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
654 */
655 int walk_tg_tree_from(struct task_group *from,
656 tg_visitor down, tg_visitor up, void *data)
657 {
658 struct task_group *parent, *child;
659 int ret;
660
661 parent = from;
662
663 down:
664 ret = (*down)(parent, data);
665 if (ret)
666 goto out;
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671 up:
672 continue;
673 }
674 ret = (*up)(parent, data);
675 if (ret || parent == from)
676 goto out;
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
682 out:
683 return ret;
684 }
685
686 int tg_nop(struct task_group *tg, void *data)
687 {
688 return 0;
689 }
690 #endif
691
692 static void set_load_weight(struct task_struct *p)
693 {
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
700 if (idle_policy(p->policy)) {
701 load->weight = scale_load(WEIGHT_IDLEPRIO);
702 load->inv_weight = WMULT_IDLEPRIO;
703 return;
704 }
705
706 load->weight = scale_load(sched_prio_to_weight[prio]);
707 load->inv_weight = sched_prio_to_wmult[prio];
708 }
709
710 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
711 {
712 update_rq_clock(rq);
713 if (!(flags & ENQUEUE_RESTORE))
714 sched_info_queued(rq, p);
715 p->sched_class->enqueue_task(rq, p, flags);
716 }
717
718 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
719 {
720 update_rq_clock(rq);
721 if (!(flags & DEQUEUE_SAVE))
722 sched_info_dequeued(rq, p);
723 p->sched_class->dequeue_task(rq, p, flags);
724 }
725
726 void activate_task(struct rq *rq, struct task_struct *p, int flags)
727 {
728 if (task_contributes_to_load(p))
729 rq->nr_uninterruptible--;
730
731 enqueue_task(rq, p, flags);
732 }
733
734 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
735 {
736 if (task_contributes_to_load(p))
737 rq->nr_uninterruptible++;
738
739 dequeue_task(rq, p, flags);
740 }
741
742 static void update_rq_clock_task(struct rq *rq, s64 delta)
743 {
744 /*
745 * In theory, the compile should just see 0 here, and optimize out the call
746 * to sched_rt_avg_update. But I don't trust it...
747 */
748 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 s64 steal = 0, irq_delta = 0;
750 #endif
751 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
753
754 /*
755 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 * this case when a previous update_rq_clock() happened inside a
757 * {soft,}irq region.
758 *
759 * When this happens, we stop ->clock_task and only update the
760 * prev_irq_time stamp to account for the part that fit, so that a next
761 * update will consume the rest. This ensures ->clock_task is
762 * monotonic.
763 *
764 * It does however cause some slight miss-attribution of {soft,}irq
765 * time, a more accurate solution would be to update the irq_time using
766 * the current rq->clock timestamp, except that would require using
767 * atomic ops.
768 */
769 if (irq_delta > delta)
770 irq_delta = delta;
771
772 rq->prev_irq_time += irq_delta;
773 delta -= irq_delta;
774 #endif
775 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
776 if (static_key_false((&paravirt_steal_rq_enabled))) {
777 steal = paravirt_steal_clock(cpu_of(rq));
778 steal -= rq->prev_steal_time_rq;
779
780 if (unlikely(steal > delta))
781 steal = delta;
782
783 rq->prev_steal_time_rq += steal;
784 delta -= steal;
785 }
786 #endif
787
788 rq->clock_task += delta;
789
790 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
792 sched_rt_avg_update(rq, irq_delta + steal);
793 #endif
794 }
795
796 void sched_set_stop_task(int cpu, struct task_struct *stop)
797 {
798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 struct task_struct *old_stop = cpu_rq(cpu)->stop;
800
801 if (stop) {
802 /*
803 * Make it appear like a SCHED_FIFO task, its something
804 * userspace knows about and won't get confused about.
805 *
806 * Also, it will make PI more or less work without too
807 * much confusion -- but then, stop work should not
808 * rely on PI working anyway.
809 */
810 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
811
812 stop->sched_class = &stop_sched_class;
813 }
814
815 cpu_rq(cpu)->stop = stop;
816
817 if (old_stop) {
818 /*
819 * Reset it back to a normal scheduling class so that
820 * it can die in pieces.
821 */
822 old_stop->sched_class = &rt_sched_class;
823 }
824 }
825
826 /*
827 * __normal_prio - return the priority that is based on the static prio
828 */
829 static inline int __normal_prio(struct task_struct *p)
830 {
831 return p->static_prio;
832 }
833
834 /*
835 * Calculate the expected normal priority: i.e. priority
836 * without taking RT-inheritance into account. Might be
837 * boosted by interactivity modifiers. Changes upon fork,
838 * setprio syscalls, and whenever the interactivity
839 * estimator recalculates.
840 */
841 static inline int normal_prio(struct task_struct *p)
842 {
843 int prio;
844
845 if (task_has_dl_policy(p))
846 prio = MAX_DL_PRIO-1;
847 else if (task_has_rt_policy(p))
848 prio = MAX_RT_PRIO-1 - p->rt_priority;
849 else
850 prio = __normal_prio(p);
851 return prio;
852 }
853
854 /*
855 * Calculate the current priority, i.e. the priority
856 * taken into account by the scheduler. This value might
857 * be boosted by RT tasks, or might be boosted by
858 * interactivity modifiers. Will be RT if the task got
859 * RT-boosted. If not then it returns p->normal_prio.
860 */
861 static int effective_prio(struct task_struct *p)
862 {
863 p->normal_prio = normal_prio(p);
864 /*
865 * If we are RT tasks or we were boosted to RT priority,
866 * keep the priority unchanged. Otherwise, update priority
867 * to the normal priority:
868 */
869 if (!rt_prio(p->prio))
870 return p->normal_prio;
871 return p->prio;
872 }
873
874 /**
875 * task_curr - is this task currently executing on a CPU?
876 * @p: the task in question.
877 *
878 * Return: 1 if the task is currently executing. 0 otherwise.
879 */
880 inline int task_curr(const struct task_struct *p)
881 {
882 return cpu_curr(task_cpu(p)) == p;
883 }
884
885 /*
886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887 * use the balance_callback list if you want balancing.
888 *
889 * this means any call to check_class_changed() must be followed by a call to
890 * balance_callback().
891 */
892 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 const struct sched_class *prev_class,
894 int oldprio)
895 {
896 if (prev_class != p->sched_class) {
897 if (prev_class->switched_from)
898 prev_class->switched_from(rq, p);
899
900 p->sched_class->switched_to(rq, p);
901 } else if (oldprio != p->prio || dl_task(p))
902 p->sched_class->prio_changed(rq, p, oldprio);
903 }
904
905 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
906 {
907 const struct sched_class *class;
908
909 if (p->sched_class == rq->curr->sched_class) {
910 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 } else {
912 for_each_class(class) {
913 if (class == rq->curr->sched_class)
914 break;
915 if (class == p->sched_class) {
916 resched_curr(rq);
917 break;
918 }
919 }
920 }
921
922 /*
923 * A queue event has occurred, and we're going to schedule. In
924 * this case, we can save a useless back to back clock update.
925 */
926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
927 rq_clock_skip_update(rq, true);
928 }
929
930 #ifdef CONFIG_SMP
931 /*
932 * This is how migration works:
933 *
934 * 1) we invoke migration_cpu_stop() on the target CPU using
935 * stop_one_cpu().
936 * 2) stopper starts to run (implicitly forcing the migrated thread
937 * off the CPU)
938 * 3) it checks whether the migrated task is still in the wrong runqueue.
939 * 4) if it's in the wrong runqueue then the migration thread removes
940 * it and puts it into the right queue.
941 * 5) stopper completes and stop_one_cpu() returns and the migration
942 * is done.
943 */
944
945 /*
946 * move_queued_task - move a queued task to new rq.
947 *
948 * Returns (locked) new rq. Old rq's lock is released.
949 */
950 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
951 {
952 lockdep_assert_held(&rq->lock);
953
954 p->on_rq = TASK_ON_RQ_MIGRATING;
955 dequeue_task(rq, p, 0);
956 set_task_cpu(p, new_cpu);
957 raw_spin_unlock(&rq->lock);
958
959 rq = cpu_rq(new_cpu);
960
961 raw_spin_lock(&rq->lock);
962 BUG_ON(task_cpu(p) != new_cpu);
963 enqueue_task(rq, p, 0);
964 p->on_rq = TASK_ON_RQ_QUEUED;
965 check_preempt_curr(rq, p, 0);
966
967 return rq;
968 }
969
970 struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973 };
974
975 /*
976 * Move (not current) task off this cpu, onto dest cpu. We're doing
977 * this because either it can't run here any more (set_cpus_allowed()
978 * away from this CPU, or CPU going down), or because we're
979 * attempting to rebalance this task on exec (sched_exec).
980 *
981 * So we race with normal scheduler movements, but that's OK, as long
982 * as the task is no longer on this CPU.
983 */
984 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
985 {
986 if (unlikely(!cpu_active(dest_cpu)))
987 return rq;
988
989 /* Affinity changed (again). */
990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
991 return rq;
992
993 rq = move_queued_task(rq, p, dest_cpu);
994
995 return rq;
996 }
997
998 /*
999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003 static int migration_cpu_stop(void *data)
1004 {
1005 struct migration_arg *arg = data;
1006 struct task_struct *p = arg->task;
1007 struct rq *rq = this_rq();
1008
1009 /*
1010 * The original target cpu might have gone down and we might
1011 * be on another cpu but it doesn't matter.
1012 */
1013 local_irq_disable();
1014 /*
1015 * We need to explicitly wake pending tasks before running
1016 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 */
1019 sched_ttwu_pending();
1020
1021 raw_spin_lock(&p->pi_lock);
1022 raw_spin_lock(&rq->lock);
1023 /*
1024 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 * we're holding p->pi_lock.
1027 */
1028 if (task_rq(p) == rq && task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 raw_spin_unlock(&rq->lock);
1031 raw_spin_unlock(&p->pi_lock);
1032
1033 local_irq_enable();
1034 return 0;
1035 }
1036
1037 /*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1042 {
1043 cpumask_copy(&p->cpus_allowed, new_mask);
1044 p->nr_cpus_allowed = cpumask_weight(new_mask);
1045 }
1046
1047 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048 {
1049 struct rq *rq = task_rq(p);
1050 bool queued, running;
1051
1052 lockdep_assert_held(&p->pi_lock);
1053
1054 queued = task_on_rq_queued(p);
1055 running = task_current(rq, p);
1056
1057 if (queued) {
1058 /*
1059 * Because __kthread_bind() calls this on blocked tasks without
1060 * holding rq->lock.
1061 */
1062 lockdep_assert_held(&rq->lock);
1063 dequeue_task(rq, p, DEQUEUE_SAVE);
1064 }
1065 if (running)
1066 put_prev_task(rq, p);
1067
1068 p->sched_class->set_cpus_allowed(p, new_mask);
1069
1070 if (running)
1071 p->sched_class->set_curr_task(rq);
1072 if (queued)
1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
1074 }
1075
1076 /*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
1085 static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 const struct cpumask *new_mask, bool check)
1087 {
1088 unsigned long flags;
1089 struct rq *rq;
1090 unsigned int dest_cpu;
1091 int ret = 0;
1092
1093 rq = task_rq_lock(p, &flags);
1094
1095 /*
1096 * Must re-check here, to close a race against __kthread_bind(),
1097 * sched_setaffinity() is not guaranteed to observe the flag.
1098 */
1099 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 ret = -EINVAL;
1101 goto out;
1102 }
1103
1104 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 goto out;
1106
1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
1112 do_set_cpus_allowed(p, new_mask);
1113
1114 /* Can the task run on the task's current CPU? If so, we're done */
1115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 goto out;
1117
1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 struct migration_arg arg = { p, dest_cpu };
1121 /* Need help from migration thread: drop lock and wait. */
1122 task_rq_unlock(rq, p, &flags);
1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 tlb_migrate_finish(p->mm);
1125 return 0;
1126 } else if (task_on_rq_queued(p)) {
1127 /*
1128 * OK, since we're going to drop the lock immediately
1129 * afterwards anyway.
1130 */
1131 lockdep_unpin_lock(&rq->lock);
1132 rq = move_queued_task(rq, p, dest_cpu);
1133 lockdep_pin_lock(&rq->lock);
1134 }
1135 out:
1136 task_rq_unlock(rq, p, &flags);
1137
1138 return ret;
1139 }
1140
1141 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142 {
1143 return __set_cpus_allowed_ptr(p, new_mask, false);
1144 }
1145 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
1147 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1148 {
1149 #ifdef CONFIG_SCHED_DEBUG
1150 /*
1151 * We should never call set_task_cpu() on a blocked task,
1152 * ttwu() will sort out the placement.
1153 */
1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1155 !p->on_rq);
1156
1157 /*
1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 * time relying on p->on_rq.
1161 */
1162 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 p->sched_class == &fair_sched_class &&
1164 (p->on_rq && !task_on_rq_migrating(p)));
1165
1166 #ifdef CONFIG_LOCKDEP
1167 /*
1168 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 *
1171 * sched_move_task() holds both and thus holding either pins the cgroup,
1172 * see task_group().
1173 *
1174 * Furthermore, all task_rq users should acquire both locks, see
1175 * task_rq_lock().
1176 */
1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 lockdep_is_held(&task_rq(p)->lock)));
1179 #endif
1180 #endif
1181
1182 trace_sched_migrate_task(p, new_cpu);
1183
1184 if (task_cpu(p) != new_cpu) {
1185 if (p->sched_class->migrate_task_rq)
1186 p->sched_class->migrate_task_rq(p);
1187 p->se.nr_migrations++;
1188 perf_event_task_migrate(p);
1189 }
1190
1191 __set_task_cpu(p, new_cpu);
1192 }
1193
1194 static void __migrate_swap_task(struct task_struct *p, int cpu)
1195 {
1196 if (task_on_rq_queued(p)) {
1197 struct rq *src_rq, *dst_rq;
1198
1199 src_rq = task_rq(p);
1200 dst_rq = cpu_rq(cpu);
1201
1202 p->on_rq = TASK_ON_RQ_MIGRATING;
1203 deactivate_task(src_rq, p, 0);
1204 set_task_cpu(p, cpu);
1205 activate_task(dst_rq, p, 0);
1206 p->on_rq = TASK_ON_RQ_QUEUED;
1207 check_preempt_curr(dst_rq, p, 0);
1208 } else {
1209 /*
1210 * Task isn't running anymore; make it appear like we migrated
1211 * it before it went to sleep. This means on wakeup we make the
1212 * previous cpu our targer instead of where it really is.
1213 */
1214 p->wake_cpu = cpu;
1215 }
1216 }
1217
1218 struct migration_swap_arg {
1219 struct task_struct *src_task, *dst_task;
1220 int src_cpu, dst_cpu;
1221 };
1222
1223 static int migrate_swap_stop(void *data)
1224 {
1225 struct migration_swap_arg *arg = data;
1226 struct rq *src_rq, *dst_rq;
1227 int ret = -EAGAIN;
1228
1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 return -EAGAIN;
1231
1232 src_rq = cpu_rq(arg->src_cpu);
1233 dst_rq = cpu_rq(arg->dst_cpu);
1234
1235 double_raw_lock(&arg->src_task->pi_lock,
1236 &arg->dst_task->pi_lock);
1237 double_rq_lock(src_rq, dst_rq);
1238
1239 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 goto unlock;
1241
1242 if (task_cpu(arg->src_task) != arg->src_cpu)
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 goto unlock;
1247
1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 goto unlock;
1250
1251 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254 ret = 0;
1255
1256 unlock:
1257 double_rq_unlock(src_rq, dst_rq);
1258 raw_spin_unlock(&arg->dst_task->pi_lock);
1259 raw_spin_unlock(&arg->src_task->pi_lock);
1260
1261 return ret;
1262 }
1263
1264 /*
1265 * Cross migrate two tasks
1266 */
1267 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268 {
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = task_cpu(cur),
1275 .dst_task = p,
1276 .dst_cpu = task_cpu(p),
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 goto out;
1291
1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 goto out;
1294
1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298 out:
1299 return ret;
1300 }
1301
1302 /*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change. If it changes, i.e. @p might have woken up,
1307 * then return zero. When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count). If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
1318 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1319 {
1320 unsigned long flags;
1321 int running, queued;
1322 unsigned long ncsw;
1323 struct rq *rq;
1324
1325 for (;;) {
1326 /*
1327 * We do the initial early heuristics without holding
1328 * any task-queue locks at all. We'll only try to get
1329 * the runqueue lock when things look like they will
1330 * work out!
1331 */
1332 rq = task_rq(p);
1333
1334 /*
1335 * If the task is actively running on another CPU
1336 * still, just relax and busy-wait without holding
1337 * any locks.
1338 *
1339 * NOTE! Since we don't hold any locks, it's not
1340 * even sure that "rq" stays as the right runqueue!
1341 * But we don't care, since "task_running()" will
1342 * return false if the runqueue has changed and p
1343 * is actually now running somewhere else!
1344 */
1345 while (task_running(rq, p)) {
1346 if (match_state && unlikely(p->state != match_state))
1347 return 0;
1348 cpu_relax();
1349 }
1350
1351 /*
1352 * Ok, time to look more closely! We need the rq
1353 * lock now, to be *sure*. If we're wrong, we'll
1354 * just go back and repeat.
1355 */
1356 rq = task_rq_lock(p, &flags);
1357 trace_sched_wait_task(p);
1358 running = task_running(rq, p);
1359 queued = task_on_rq_queued(p);
1360 ncsw = 0;
1361 if (!match_state || p->state == match_state)
1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1363 task_rq_unlock(rq, p, &flags);
1364
1365 /*
1366 * If it changed from the expected state, bail out now.
1367 */
1368 if (unlikely(!ncsw))
1369 break;
1370
1371 /*
1372 * Was it really running after all now that we
1373 * checked with the proper locks actually held?
1374 *
1375 * Oops. Go back and try again..
1376 */
1377 if (unlikely(running)) {
1378 cpu_relax();
1379 continue;
1380 }
1381
1382 /*
1383 * It's not enough that it's not actively running,
1384 * it must be off the runqueue _entirely_, and not
1385 * preempted!
1386 *
1387 * So if it was still runnable (but just not actively
1388 * running right now), it's preempted, and we should
1389 * yield - it could be a while.
1390 */
1391 if (unlikely(queued)) {
1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1396 continue;
1397 }
1398
1399 /*
1400 * Ahh, all good. It wasn't running, and it wasn't
1401 * runnable, which means that it will never become
1402 * running in the future either. We're all done!
1403 */
1404 break;
1405 }
1406
1407 return ncsw;
1408 }
1409
1410 /***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
1417 * NOTE: this function doesn't have to take the runqueue lock,
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
1423 void kick_process(struct task_struct *p)
1424 {
1425 int cpu;
1426
1427 preempt_disable();
1428 cpu = task_cpu(p);
1429 if ((cpu != smp_processor_id()) && task_curr(p))
1430 smp_send_reschedule(cpu);
1431 preempt_enable();
1432 }
1433 EXPORT_SYMBOL_GPL(kick_process);
1434
1435 /*
1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1437 */
1438 static int select_fallback_rq(int cpu, struct task_struct *p)
1439 {
1440 int nid = cpu_to_node(cpu);
1441 const struct cpumask *nodemask = NULL;
1442 enum { cpuset, possible, fail } state = cpuset;
1443 int dest_cpu;
1444
1445 /*
1446 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 * will return -1. There is no cpu on the node, and we should
1448 * select the cpu on the other node.
1449 */
1450 if (nid != -1) {
1451 nodemask = cpumask_of_node(nid);
1452
1453 /* Look for allowed, online CPU in same node. */
1454 for_each_cpu(dest_cpu, nodemask) {
1455 if (!cpu_online(dest_cpu))
1456 continue;
1457 if (!cpu_active(dest_cpu))
1458 continue;
1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 return dest_cpu;
1461 }
1462 }
1463
1464 for (;;) {
1465 /* Any allowed, online CPU? */
1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1467 if (!cpu_online(dest_cpu))
1468 continue;
1469 if (!cpu_active(dest_cpu))
1470 continue;
1471 goto out;
1472 }
1473
1474 /* No more Mr. Nice Guy. */
1475 switch (state) {
1476 case cpuset:
1477 if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 cpuset_cpus_allowed_fallback(p);
1479 state = possible;
1480 break;
1481 }
1482 /* fall-through */
1483 case possible:
1484 do_set_cpus_allowed(p, cpu_possible_mask);
1485 state = fail;
1486 break;
1487
1488 case fail:
1489 BUG();
1490 break;
1491 }
1492 }
1493
1494 out:
1495 if (state != cpuset) {
1496 /*
1497 * Don't tell them about moving exiting tasks or
1498 * kernel threads (both mm NULL), since they never
1499 * leave kernel.
1500 */
1501 if (p->mm && printk_ratelimit()) {
1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1503 task_pid_nr(p), p->comm, cpu);
1504 }
1505 }
1506
1507 return dest_cpu;
1508 }
1509
1510 /*
1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1512 */
1513 static inline
1514 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1515 {
1516 lockdep_assert_held(&p->pi_lock);
1517
1518 if (p->nr_cpus_allowed > 1)
1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1520
1521 /*
1522 * In order not to call set_task_cpu() on a blocking task we need
1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 * cpu.
1525 *
1526 * Since this is common to all placement strategies, this lives here.
1527 *
1528 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 * not worry about this generic constraint ]
1530 */
1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1532 !cpu_online(cpu)))
1533 cpu = select_fallback_rq(task_cpu(p), p);
1534
1535 return cpu;
1536 }
1537
1538 static void update_avg(u64 *avg, u64 sample)
1539 {
1540 s64 diff = sample - *avg;
1541 *avg += diff >> 3;
1542 }
1543
1544 #else
1545
1546 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 const struct cpumask *new_mask, bool check)
1548 {
1549 return set_cpus_allowed_ptr(p, new_mask);
1550 }
1551
1552 #endif /* CONFIG_SMP */
1553
1554 static void
1555 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1556 {
1557 #ifdef CONFIG_SCHEDSTATS
1558 struct rq *rq = this_rq();
1559
1560 #ifdef CONFIG_SMP
1561 int this_cpu = smp_processor_id();
1562
1563 if (cpu == this_cpu) {
1564 schedstat_inc(rq, ttwu_local);
1565 schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 } else {
1567 struct sched_domain *sd;
1568
1569 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1570 rcu_read_lock();
1571 for_each_domain(this_cpu, sd) {
1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 schedstat_inc(sd, ttwu_wake_remote);
1574 break;
1575 }
1576 }
1577 rcu_read_unlock();
1578 }
1579
1580 if (wake_flags & WF_MIGRATED)
1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
1583 #endif /* CONFIG_SMP */
1584
1585 schedstat_inc(rq, ttwu_count);
1586 schedstat_inc(p, se.statistics.nr_wakeups);
1587
1588 if (wake_flags & WF_SYNC)
1589 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1590
1591 #endif /* CONFIG_SCHEDSTATS */
1592 }
1593
1594 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1595 {
1596 activate_task(rq, p, en_flags);
1597 p->on_rq = TASK_ON_RQ_QUEUED;
1598
1599 /* if a worker is waking up, notify workqueue */
1600 if (p->flags & PF_WQ_WORKER)
1601 wq_worker_waking_up(p, cpu_of(rq));
1602 }
1603
1604 /*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
1607 static void
1608 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1609 {
1610 check_preempt_curr(rq, p, wake_flags);
1611 p->state = TASK_RUNNING;
1612 trace_sched_wakeup(p);
1613
1614 #ifdef CONFIG_SMP
1615 if (p->sched_class->task_woken) {
1616 /*
1617 * Our task @p is fully woken up and running; so its safe to
1618 * drop the rq->lock, hereafter rq is only used for statistics.
1619 */
1620 lockdep_unpin_lock(&rq->lock);
1621 p->sched_class->task_woken(rq, p);
1622 lockdep_pin_lock(&rq->lock);
1623 }
1624
1625 if (rq->idle_stamp) {
1626 u64 delta = rq_clock(rq) - rq->idle_stamp;
1627 u64 max = 2*rq->max_idle_balance_cost;
1628
1629 update_avg(&rq->avg_idle, delta);
1630
1631 if (rq->avg_idle > max)
1632 rq->avg_idle = max;
1633
1634 rq->idle_stamp = 0;
1635 }
1636 #endif
1637 }
1638
1639 static void
1640 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641 {
1642 lockdep_assert_held(&rq->lock);
1643
1644 #ifdef CONFIG_SMP
1645 if (p->sched_contributes_to_load)
1646 rq->nr_uninterruptible--;
1647 #endif
1648
1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 ttwu_do_wakeup(rq, p, wake_flags);
1651 }
1652
1653 /*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
1658 */
1659 static int ttwu_remote(struct task_struct *p, int wake_flags)
1660 {
1661 struct rq *rq;
1662 int ret = 0;
1663
1664 rq = __task_rq_lock(p);
1665 if (task_on_rq_queued(p)) {
1666 /* check_preempt_curr() may use rq clock */
1667 update_rq_clock(rq);
1668 ttwu_do_wakeup(rq, p, wake_flags);
1669 ret = 1;
1670 }
1671 __task_rq_unlock(rq);
1672
1673 return ret;
1674 }
1675
1676 #ifdef CONFIG_SMP
1677 void sched_ttwu_pending(void)
1678 {
1679 struct rq *rq = this_rq();
1680 struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 struct task_struct *p;
1682 unsigned long flags;
1683
1684 if (!llist)
1685 return;
1686
1687 raw_spin_lock_irqsave(&rq->lock, flags);
1688 lockdep_pin_lock(&rq->lock);
1689
1690 while (llist) {
1691 p = llist_entry(llist, struct task_struct, wake_entry);
1692 llist = llist_next(llist);
1693 ttwu_do_activate(rq, p, 0);
1694 }
1695
1696 lockdep_unpin_lock(&rq->lock);
1697 raw_spin_unlock_irqrestore(&rq->lock, flags);
1698 }
1699
1700 void scheduler_ipi(void)
1701 {
1702 /*
1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 * this IPI.
1706 */
1707 preempt_fold_need_resched();
1708
1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1710 return;
1711
1712 /*
1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 * traditionally all their work was done from the interrupt return
1715 * path. Now that we actually do some work, we need to make sure
1716 * we do call them.
1717 *
1718 * Some archs already do call them, luckily irq_enter/exit nest
1719 * properly.
1720 *
1721 * Arguably we should visit all archs and update all handlers,
1722 * however a fair share of IPIs are still resched only so this would
1723 * somewhat pessimize the simple resched case.
1724 */
1725 irq_enter();
1726 sched_ttwu_pending();
1727
1728 /*
1729 * Check if someone kicked us for doing the nohz idle load balance.
1730 */
1731 if (unlikely(got_nohz_idle_kick())) {
1732 this_rq()->idle_balance = 1;
1733 raise_softirq_irqoff(SCHED_SOFTIRQ);
1734 }
1735 irq_exit();
1736 }
1737
1738 static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739 {
1740 struct rq *rq = cpu_rq(cpu);
1741
1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 if (!set_nr_if_polling(rq->idle))
1744 smp_send_reschedule(cpu);
1745 else
1746 trace_sched_wake_idle_without_ipi(cpu);
1747 }
1748 }
1749
1750 void wake_up_if_idle(int cpu)
1751 {
1752 struct rq *rq = cpu_rq(cpu);
1753 unsigned long flags;
1754
1755 rcu_read_lock();
1756
1757 if (!is_idle_task(rcu_dereference(rq->curr)))
1758 goto out;
1759
1760 if (set_nr_if_polling(rq->idle)) {
1761 trace_sched_wake_idle_without_ipi(cpu);
1762 } else {
1763 raw_spin_lock_irqsave(&rq->lock, flags);
1764 if (is_idle_task(rq->curr))
1765 smp_send_reschedule(cpu);
1766 /* Else cpu is not in idle, do nothing here */
1767 raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 }
1769
1770 out:
1771 rcu_read_unlock();
1772 }
1773
1774 bool cpus_share_cache(int this_cpu, int that_cpu)
1775 {
1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777 }
1778 #endif /* CONFIG_SMP */
1779
1780 static void ttwu_queue(struct task_struct *p, int cpu)
1781 {
1782 struct rq *rq = cpu_rq(cpu);
1783
1784 #if defined(CONFIG_SMP)
1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1787 ttwu_queue_remote(p, cpu);
1788 return;
1789 }
1790 #endif
1791
1792 raw_spin_lock(&rq->lock);
1793 lockdep_pin_lock(&rq->lock);
1794 ttwu_do_activate(rq, p, 0);
1795 lockdep_unpin_lock(&rq->lock);
1796 raw_spin_unlock(&rq->lock);
1797 }
1798
1799 /*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 * MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 * rq(c1)->lock (if not at the same time, then in that order).
1813 * C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 * CPU0 CPU1 CPU2
1822 *
1823 * LOCK rq(0)->lock
1824 * sched-out X
1825 * sched-in Y
1826 * UNLOCK rq(0)->lock
1827 *
1828 * LOCK rq(0)->lock // orders against CPU0
1829 * dequeue X
1830 * UNLOCK rq(0)->lock
1831 *
1832 * LOCK rq(1)->lock
1833 * enqueue X
1834 * UNLOCK rq(1)->lock
1835 *
1836 * LOCK rq(1)->lock // orders against CPU2
1837 * sched-out Z
1838 * sched-in X
1839 * UNLOCK rq(1)->lock
1840 *
1841 *
1842 * BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 * 1) smp_store_release(X->on_cpu, 0)
1849 * 2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 * LOCK rq(0)->lock LOCK X->pi_lock
1856 * dequeue X
1857 * sched-out X
1858 * smp_store_release(X->on_cpu, 0);
1859 *
1860 * smp_cond_acquire(!X->on_cpu);
1861 * X->state = WAKING
1862 * set_task_cpu(X,2)
1863 *
1864 * LOCK rq(2)->lock
1865 * enqueue X
1866 * X->state = RUNNING
1867 * UNLOCK rq(2)->lock
1868 *
1869 * LOCK rq(2)->lock // orders against CPU1
1870 * sched-out Z
1871 * sched-in X
1872 * UNLOCK rq(2)->lock
1873 *
1874 * UNLOCK X->pi_lock
1875 * UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
1890 /**
1891 * try_to_wake_up - wake up a thread
1892 * @p: the thread to be awakened
1893 * @state: the mask of task states that can be woken
1894 * @wake_flags: wake modifier flags (WF_*)
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
1902 * Return: %true if @p was woken up, %false if it was already running.
1903 * or @state didn't match @p's state.
1904 */
1905 static int
1906 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1907 {
1908 unsigned long flags;
1909 int cpu, success = 0;
1910
1911 /*
1912 * If we are going to wake up a thread waiting for CONDITION we
1913 * need to ensure that CONDITION=1 done by the caller can not be
1914 * reordered with p->state check below. This pairs with mb() in
1915 * set_current_state() the waiting thread does.
1916 */
1917 smp_mb__before_spinlock();
1918 raw_spin_lock_irqsave(&p->pi_lock, flags);
1919 if (!(p->state & state))
1920 goto out;
1921
1922 trace_sched_waking(p);
1923
1924 success = 1; /* we're going to change ->state */
1925 cpu = task_cpu(p);
1926
1927 if (p->on_rq && ttwu_remote(p, wake_flags))
1928 goto stat;
1929
1930 #ifdef CONFIG_SMP
1931 /*
1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 * possible to, falsely, observe p->on_cpu == 0.
1934 *
1935 * One must be running (->on_cpu == 1) in order to remove oneself
1936 * from the runqueue.
1937 *
1938 * [S] ->on_cpu = 1; [L] ->on_rq
1939 * UNLOCK rq->lock
1940 * RMB
1941 * LOCK rq->lock
1942 * [S] ->on_rq = 0; [L] ->on_cpu
1943 *
1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 * from the consecutive calls to schedule(); the first switching to our
1946 * task, the second putting it to sleep.
1947 */
1948 smp_rmb();
1949
1950 /*
1951 * If the owning (remote) cpu is still in the middle of schedule() with
1952 * this task as prev, wait until its done referencing the task.
1953 *
1954 * Pairs with the smp_store_release() in finish_lock_switch().
1955 *
1956 * This ensures that tasks getting woken will be fully ordered against
1957 * their previous state and preserve Program Order.
1958 */
1959 smp_cond_acquire(!p->on_cpu);
1960
1961 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1962 p->state = TASK_WAKING;
1963
1964 if (p->sched_class->task_waking)
1965 p->sched_class->task_waking(p);
1966
1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1968 if (task_cpu(p) != cpu) {
1969 wake_flags |= WF_MIGRATED;
1970 set_task_cpu(p, cpu);
1971 }
1972 #endif /* CONFIG_SMP */
1973
1974 ttwu_queue(p, cpu);
1975 stat:
1976 if (schedstat_enabled())
1977 ttwu_stat(p, cpu, wake_flags);
1978 out:
1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1980
1981 return success;
1982 }
1983
1984 /**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
1988 * Put @p on the run-queue if it's not already there. The caller must
1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1990 * the current task.
1991 */
1992 static void try_to_wake_up_local(struct task_struct *p)
1993 {
1994 struct rq *rq = task_rq(p);
1995
1996 if (WARN_ON_ONCE(rq != this_rq()) ||
1997 WARN_ON_ONCE(p == current))
1998 return;
1999
2000 lockdep_assert_held(&rq->lock);
2001
2002 if (!raw_spin_trylock(&p->pi_lock)) {
2003 /*
2004 * This is OK, because current is on_cpu, which avoids it being
2005 * picked for load-balance and preemption/IRQs are still
2006 * disabled avoiding further scheduler activity on it and we've
2007 * not yet picked a replacement task.
2008 */
2009 lockdep_unpin_lock(&rq->lock);
2010 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&p->pi_lock);
2012 raw_spin_lock(&rq->lock);
2013 lockdep_pin_lock(&rq->lock);
2014 }
2015
2016 if (!(p->state & TASK_NORMAL))
2017 goto out;
2018
2019 trace_sched_waking(p);
2020
2021 if (!task_on_rq_queued(p))
2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
2024 ttwu_do_wakeup(rq, p, 0);
2025 if (schedstat_enabled())
2026 ttwu_stat(p, smp_processor_id(), 0);
2027 out:
2028 raw_spin_unlock(&p->pi_lock);
2029 }
2030
2031 /**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
2043 int wake_up_process(struct task_struct *p)
2044 {
2045 return try_to_wake_up(p, TASK_NORMAL, 0);
2046 }
2047 EXPORT_SYMBOL(wake_up_process);
2048
2049 int wake_up_state(struct task_struct *p, unsigned int state)
2050 {
2051 return try_to_wake_up(p, state, 0);
2052 }
2053
2054 /*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057 void __dl_clear_params(struct task_struct *p)
2058 {
2059 struct sched_dl_entity *dl_se = &p->dl;
2060
2061 dl_se->dl_runtime = 0;
2062 dl_se->dl_deadline = 0;
2063 dl_se->dl_period = 0;
2064 dl_se->flags = 0;
2065 dl_se->dl_bw = 0;
2066
2067 dl_se->dl_throttled = 0;
2068 dl_se->dl_yielded = 0;
2069 }
2070
2071 /*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
2077 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2078 {
2079 p->on_rq = 0;
2080
2081 p->se.on_rq = 0;
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
2084 p->se.prev_sum_exec_runtime = 0;
2085 p->se.nr_migrations = 0;
2086 p->se.vruntime = 0;
2087 INIT_LIST_HEAD(&p->se.group_node);
2088
2089 #ifdef CONFIG_FAIR_GROUP_SCHED
2090 p->se.cfs_rq = NULL;
2091 #endif
2092
2093 #ifdef CONFIG_SCHEDSTATS
2094 /* Even if schedstat is disabled, there should not be garbage */
2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2096 #endif
2097
2098 RB_CLEAR_NODE(&p->dl.rb_node);
2099 init_dl_task_timer(&p->dl);
2100 __dl_clear_params(p);
2101
2102 INIT_LIST_HEAD(&p->rt.run_list);
2103 p->rt.timeout = 0;
2104 p->rt.time_slice = sched_rr_timeslice;
2105 p->rt.on_rq = 0;
2106 p->rt.on_list = 0;
2107
2108 #ifdef CONFIG_PREEMPT_NOTIFIERS
2109 INIT_HLIST_HEAD(&p->preempt_notifiers);
2110 #endif
2111
2112 #ifdef CONFIG_NUMA_BALANCING
2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2115 p->mm->numa_scan_seq = 0;
2116 }
2117
2118 if (clone_flags & CLONE_VM)
2119 p->numa_preferred_nid = current->numa_preferred_nid;
2120 else
2121 p->numa_preferred_nid = -1;
2122
2123 p->node_stamp = 0ULL;
2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2126 p->numa_work.next = &p->numa_work;
2127 p->numa_faults = NULL;
2128 p->last_task_numa_placement = 0;
2129 p->last_sum_exec_runtime = 0;
2130
2131 p->numa_group = NULL;
2132 #endif /* CONFIG_NUMA_BALANCING */
2133 }
2134
2135 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
2137 #ifdef CONFIG_NUMA_BALANCING
2138
2139 void set_numabalancing_state(bool enabled)
2140 {
2141 if (enabled)
2142 static_branch_enable(&sched_numa_balancing);
2143 else
2144 static_branch_disable(&sched_numa_balancing);
2145 }
2146
2147 #ifdef CONFIG_PROC_SYSCTL
2148 int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *lenp, loff_t *ppos)
2150 {
2151 struct ctl_table t;
2152 int err;
2153 int state = static_branch_likely(&sched_numa_balancing);
2154
2155 if (write && !capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 t = *table;
2159 t.data = &state;
2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 if (err < 0)
2162 return err;
2163 if (write)
2164 set_numabalancing_state(state);
2165 return err;
2166 }
2167 #endif
2168 #endif
2169
2170 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172 #ifdef CONFIG_SCHEDSTATS
2173 static void set_schedstats(bool enabled)
2174 {
2175 if (enabled)
2176 static_branch_enable(&sched_schedstats);
2177 else
2178 static_branch_disable(&sched_schedstats);
2179 }
2180
2181 void force_schedstat_enabled(void)
2182 {
2183 if (!schedstat_enabled()) {
2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 static_branch_enable(&sched_schedstats);
2186 }
2187 }
2188
2189 static int __init setup_schedstats(char *str)
2190 {
2191 int ret = 0;
2192 if (!str)
2193 goto out;
2194
2195 if (!strcmp(str, "enable")) {
2196 set_schedstats(true);
2197 ret = 1;
2198 } else if (!strcmp(str, "disable")) {
2199 set_schedstats(false);
2200 ret = 1;
2201 }
2202 out:
2203 if (!ret)
2204 pr_warn("Unable to parse schedstats=\n");
2205
2206 return ret;
2207 }
2208 __setup("schedstats=", setup_schedstats);
2209
2210 #ifdef CONFIG_PROC_SYSCTL
2211 int sysctl_schedstats(struct ctl_table *table, int write,
2212 void __user *buffer, size_t *lenp, loff_t *ppos)
2213 {
2214 struct ctl_table t;
2215 int err;
2216 int state = static_branch_likely(&sched_schedstats);
2217
2218 if (write && !capable(CAP_SYS_ADMIN))
2219 return -EPERM;
2220
2221 t = *table;
2222 t.data = &state;
2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 if (err < 0)
2225 return err;
2226 if (write)
2227 set_schedstats(state);
2228 return err;
2229 }
2230 #endif
2231 #endif
2232
2233 static void sched_set_prio(struct task_struct *p, int prio)
2234 {
2235 p->prio = prio;
2236 }
2237
2238 /*
2239 * fork()/clone()-time setup:
2240 */
2241 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2242 {
2243 unsigned long flags;
2244 int cpu = get_cpu();
2245
2246 __sched_fork(clone_flags, p);
2247 /*
2248 * We mark the process as running here. This guarantees that
2249 * nobody will actually run it, and a signal or other external
2250 * event cannot wake it up and insert it on the runqueue either.
2251 */
2252 p->state = TASK_RUNNING;
2253
2254 /*
2255 * Make sure we do not leak PI boosting priority to the child.
2256 */
2257 sched_set_prio(p, current->normal_prio);
2258
2259 /*
2260 * Revert to default priority/policy on fork if requested.
2261 */
2262 if (unlikely(p->sched_reset_on_fork)) {
2263 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2264 p->policy = SCHED_NORMAL;
2265 p->static_prio = NICE_TO_PRIO(0);
2266 p->rt_priority = 0;
2267 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2268 p->static_prio = NICE_TO_PRIO(0);
2269
2270 p->normal_prio = __normal_prio(p);
2271 sched_set_prio(p, p->normal_prio);
2272 set_load_weight(p);
2273
2274 /*
2275 * We don't need the reset flag anymore after the fork. It has
2276 * fulfilled its duty:
2277 */
2278 p->sched_reset_on_fork = 0;
2279 }
2280
2281 if (dl_prio(p->prio)) {
2282 put_cpu();
2283 return -EAGAIN;
2284 } else if (rt_prio(p->prio)) {
2285 p->sched_class = &rt_sched_class;
2286 } else {
2287 p->sched_class = &fair_sched_class;
2288 }
2289
2290 if (p->sched_class->task_fork)
2291 p->sched_class->task_fork(p);
2292
2293 /*
2294 * The child is not yet in the pid-hash so no cgroup attach races,
2295 * and the cgroup is pinned to this child due to cgroup_fork()
2296 * is ran before sched_fork().
2297 *
2298 * Silence PROVE_RCU.
2299 */
2300 raw_spin_lock_irqsave(&p->pi_lock, flags);
2301 set_task_cpu(p, cpu);
2302 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2303
2304 #ifdef CONFIG_SCHED_INFO
2305 if (likely(sched_info_on()))
2306 memset(&p->sched_info, 0, sizeof(p->sched_info));
2307 #endif
2308 #if defined(CONFIG_SMP)
2309 p->on_cpu = 0;
2310 #endif
2311 init_task_preempt_count(p);
2312 #ifdef CONFIG_SMP
2313 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2314 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2315 #endif
2316
2317 put_cpu();
2318 return 0;
2319 }
2320
2321 unsigned long to_ratio(u64 period, u64 runtime)
2322 {
2323 if (runtime == RUNTIME_INF)
2324 return 1ULL << 20;
2325
2326 /*
2327 * Doing this here saves a lot of checks in all
2328 * the calling paths, and returning zero seems
2329 * safe for them anyway.
2330 */
2331 if (period == 0)
2332 return 0;
2333
2334 return div64_u64(runtime << 20, period);
2335 }
2336
2337 #ifdef CONFIG_SMP
2338 inline struct dl_bw *dl_bw_of(int i)
2339 {
2340 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2341 "sched RCU must be held");
2342 return &cpu_rq(i)->rd->dl_bw;
2343 }
2344
2345 static inline int dl_bw_cpus(int i)
2346 {
2347 struct root_domain *rd = cpu_rq(i)->rd;
2348 int cpus = 0;
2349
2350 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2351 "sched RCU must be held");
2352 for_each_cpu_and(i, rd->span, cpu_active_mask)
2353 cpus++;
2354
2355 return cpus;
2356 }
2357 #else
2358 inline struct dl_bw *dl_bw_of(int i)
2359 {
2360 return &cpu_rq(i)->dl.dl_bw;
2361 }
2362
2363 static inline int dl_bw_cpus(int i)
2364 {
2365 return 1;
2366 }
2367 #endif
2368
2369 /*
2370 * We must be sure that accepting a new task (or allowing changing the
2371 * parameters of an existing one) is consistent with the bandwidth
2372 * constraints. If yes, this function also accordingly updates the currently
2373 * allocated bandwidth to reflect the new situation.
2374 *
2375 * This function is called while holding p's rq->lock.
2376 *
2377 * XXX we should delay bw change until the task's 0-lag point, see
2378 * __setparam_dl().
2379 */
2380 static int dl_overflow(struct task_struct *p, int policy,
2381 const struct sched_attr *attr)
2382 {
2383
2384 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2385 u64 period = attr->sched_period ?: attr->sched_deadline;
2386 u64 runtime = attr->sched_runtime;
2387 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2388 int cpus, err = -1;
2389
2390 if (new_bw == p->dl.dl_bw)
2391 return 0;
2392
2393 /*
2394 * Either if a task, enters, leave, or stays -deadline but changes
2395 * its parameters, we may need to update accordingly the total
2396 * allocated bandwidth of the container.
2397 */
2398 raw_spin_lock(&dl_b->lock);
2399 cpus = dl_bw_cpus(task_cpu(p));
2400 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2401 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2402 __dl_add(dl_b, new_bw);
2403 err = 0;
2404 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2405 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2406 __dl_clear(dl_b, p->dl.dl_bw);
2407 __dl_add(dl_b, new_bw);
2408 err = 0;
2409 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2410 __dl_clear(dl_b, p->dl.dl_bw);
2411 err = 0;
2412 }
2413 raw_spin_unlock(&dl_b->lock);
2414
2415 return err;
2416 }
2417
2418 extern void init_dl_bw(struct dl_bw *dl_b);
2419
2420 /*
2421 * wake_up_new_task - wake up a newly created task for the first time.
2422 *
2423 * This function will do some initial scheduler statistics housekeeping
2424 * that must be done for every newly created context, then puts the task
2425 * on the runqueue and wakes it.
2426 */
2427 void wake_up_new_task(struct task_struct *p)
2428 {
2429 unsigned long flags;
2430 struct rq *rq;
2431
2432 raw_spin_lock_irqsave(&p->pi_lock, flags);
2433 /* Initialize new task's runnable average */
2434 init_entity_runnable_average(&p->se);
2435 #ifdef CONFIG_SMP
2436 /*
2437 * Fork balancing, do it here and not earlier because:
2438 * - cpus_allowed can change in the fork path
2439 * - any previously selected cpu might disappear through hotplug
2440 */
2441 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2442 #endif
2443
2444 rq = __task_rq_lock(p);
2445 activate_task(rq, p, 0);
2446 p->on_rq = TASK_ON_RQ_QUEUED;
2447 trace_sched_wakeup_new(p);
2448 check_preempt_curr(rq, p, WF_FORK);
2449 #ifdef CONFIG_SMP
2450 if (p->sched_class->task_woken) {
2451 /*
2452 * Nothing relies on rq->lock after this, so its fine to
2453 * drop it.
2454 */
2455 lockdep_unpin_lock(&rq->lock);
2456 p->sched_class->task_woken(rq, p);
2457 lockdep_pin_lock(&rq->lock);
2458 }
2459 #endif
2460 task_rq_unlock(rq, p, &flags);
2461 }
2462
2463 #ifdef CONFIG_PREEMPT_NOTIFIERS
2464
2465 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2466
2467 void preempt_notifier_inc(void)
2468 {
2469 static_key_slow_inc(&preempt_notifier_key);
2470 }
2471 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2472
2473 void preempt_notifier_dec(void)
2474 {
2475 static_key_slow_dec(&preempt_notifier_key);
2476 }
2477 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2478
2479 /**
2480 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2481 * @notifier: notifier struct to register
2482 */
2483 void preempt_notifier_register(struct preempt_notifier *notifier)
2484 {
2485 if (!static_key_false(&preempt_notifier_key))
2486 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2487
2488 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2489 }
2490 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2491
2492 /**
2493 * preempt_notifier_unregister - no longer interested in preemption notifications
2494 * @notifier: notifier struct to unregister
2495 *
2496 * This is *not* safe to call from within a preemption notifier.
2497 */
2498 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2499 {
2500 hlist_del(&notifier->link);
2501 }
2502 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2503
2504 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2505 {
2506 struct preempt_notifier *notifier;
2507
2508 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2509 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2510 }
2511
2512 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513 {
2514 if (static_key_false(&preempt_notifier_key))
2515 __fire_sched_in_preempt_notifiers(curr);
2516 }
2517
2518 static void
2519 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2520 struct task_struct *next)
2521 {
2522 struct preempt_notifier *notifier;
2523
2524 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2525 notifier->ops->sched_out(notifier, next);
2526 }
2527
2528 static __always_inline void
2529 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2530 struct task_struct *next)
2531 {
2532 if (static_key_false(&preempt_notifier_key))
2533 __fire_sched_out_preempt_notifiers(curr, next);
2534 }
2535
2536 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2537
2538 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2539 {
2540 }
2541
2542 static inline void
2543 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 struct task_struct *next)
2545 {
2546 }
2547
2548 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2549
2550 /**
2551 * prepare_task_switch - prepare to switch tasks
2552 * @rq: the runqueue preparing to switch
2553 * @prev: the current task that is being switched out
2554 * @next: the task we are going to switch to.
2555 *
2556 * This is called with the rq lock held and interrupts off. It must
2557 * be paired with a subsequent finish_task_switch after the context
2558 * switch.
2559 *
2560 * prepare_task_switch sets up locking and calls architecture specific
2561 * hooks.
2562 */
2563 static inline void
2564 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2565 struct task_struct *next)
2566 {
2567 sched_info_switch(rq, prev, next);
2568 perf_event_task_sched_out(prev, next);
2569 fire_sched_out_preempt_notifiers(prev, next);
2570 prepare_lock_switch(rq, next);
2571 prepare_arch_switch(next);
2572 }
2573
2574 /**
2575 * finish_task_switch - clean up after a task-switch
2576 * @prev: the thread we just switched away from.
2577 *
2578 * finish_task_switch must be called after the context switch, paired
2579 * with a prepare_task_switch call before the context switch.
2580 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2581 * and do any other architecture-specific cleanup actions.
2582 *
2583 * Note that we may have delayed dropping an mm in context_switch(). If
2584 * so, we finish that here outside of the runqueue lock. (Doing it
2585 * with the lock held can cause deadlocks; see schedule() for
2586 * details.)
2587 *
2588 * The context switch have flipped the stack from under us and restored the
2589 * local variables which were saved when this task called schedule() in the
2590 * past. prev == current is still correct but we need to recalculate this_rq
2591 * because prev may have moved to another CPU.
2592 */
2593 static struct rq *finish_task_switch(struct task_struct *prev)
2594 __releases(rq->lock)
2595 {
2596 struct rq *rq = this_rq();
2597 struct mm_struct *mm = rq->prev_mm;
2598 long prev_state;
2599
2600 /*
2601 * The previous task will have left us with a preempt_count of 2
2602 * because it left us after:
2603 *
2604 * schedule()
2605 * preempt_disable(); // 1
2606 * __schedule()
2607 * raw_spin_lock_irq(&rq->lock) // 2
2608 *
2609 * Also, see FORK_PREEMPT_COUNT.
2610 */
2611 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2612 "corrupted preempt_count: %s/%d/0x%x\n",
2613 current->comm, current->pid, preempt_count()))
2614 preempt_count_set(FORK_PREEMPT_COUNT);
2615
2616 rq->prev_mm = NULL;
2617
2618 /*
2619 * A task struct has one reference for the use as "current".
2620 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2621 * schedule one last time. The schedule call will never return, and
2622 * the scheduled task must drop that reference.
2623 *
2624 * We must observe prev->state before clearing prev->on_cpu (in
2625 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2626 * running on another CPU and we could rave with its RUNNING -> DEAD
2627 * transition, resulting in a double drop.
2628 */
2629 prev_state = prev->state;
2630 vtime_task_switch(prev);
2631 perf_event_task_sched_in(prev, current);
2632 finish_lock_switch(rq, prev);
2633 finish_arch_post_lock_switch();
2634
2635 fire_sched_in_preempt_notifiers(current);
2636 if (mm)
2637 mmdrop(mm);
2638 if (unlikely(prev_state == TASK_DEAD)) {
2639 if (prev->sched_class->task_dead)
2640 prev->sched_class->task_dead(prev);
2641
2642 /*
2643 * Remove function-return probe instances associated with this
2644 * task and put them back on the free list.
2645 */
2646 kprobe_flush_task(prev);
2647 put_task_struct(prev);
2648 }
2649
2650 tick_nohz_task_switch();
2651 return rq;
2652 }
2653
2654 #ifdef CONFIG_SMP
2655
2656 /* rq->lock is NOT held, but preemption is disabled */
2657 static void __balance_callback(struct rq *rq)
2658 {
2659 struct callback_head *head, *next;
2660 void (*func)(struct rq *rq);
2661 unsigned long flags;
2662
2663 raw_spin_lock_irqsave(&rq->lock, flags);
2664 head = rq->balance_callback;
2665 rq->balance_callback = NULL;
2666 while (head) {
2667 func = (void (*)(struct rq *))head->func;
2668 next = head->next;
2669 head->next = NULL;
2670 head = next;
2671
2672 func(rq);
2673 }
2674 raw_spin_unlock_irqrestore(&rq->lock, flags);
2675 }
2676
2677 static inline void balance_callback(struct rq *rq)
2678 {
2679 if (unlikely(rq->balance_callback))
2680 __balance_callback(rq);
2681 }
2682
2683 #else
2684
2685 static inline void balance_callback(struct rq *rq)
2686 {
2687 }
2688
2689 #endif
2690
2691 /**
2692 * schedule_tail - first thing a freshly forked thread must call.
2693 * @prev: the thread we just switched away from.
2694 */
2695 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2696 __releases(rq->lock)
2697 {
2698 struct rq *rq;
2699
2700 /*
2701 * New tasks start with FORK_PREEMPT_COUNT, see there and
2702 * finish_task_switch() for details.
2703 *
2704 * finish_task_switch() will drop rq->lock() and lower preempt_count
2705 * and the preempt_enable() will end up enabling preemption (on
2706 * PREEMPT_COUNT kernels).
2707 */
2708
2709 rq = finish_task_switch(prev);
2710 balance_callback(rq);
2711 preempt_enable();
2712
2713 if (current->set_child_tid)
2714 put_user(task_pid_vnr(current), current->set_child_tid);
2715 }
2716
2717 /*
2718 * context_switch - switch to the new MM and the new thread's register state.
2719 */
2720 static __always_inline struct rq *
2721 context_switch(struct rq *rq, struct task_struct *prev,
2722 struct task_struct *next)
2723 {
2724 struct mm_struct *mm, *oldmm;
2725
2726 prepare_task_switch(rq, prev, next);
2727
2728 mm = next->mm;
2729 oldmm = prev->active_mm;
2730 /*
2731 * For paravirt, this is coupled with an exit in switch_to to
2732 * combine the page table reload and the switch backend into
2733 * one hypercall.
2734 */
2735 arch_start_context_switch(prev);
2736
2737 if (!mm) {
2738 next->active_mm = oldmm;
2739 atomic_inc(&oldmm->mm_count);
2740 enter_lazy_tlb(oldmm, next);
2741 } else
2742 switch_mm(oldmm, mm, next);
2743
2744 if (!prev->mm) {
2745 prev->active_mm = NULL;
2746 rq->prev_mm = oldmm;
2747 }
2748 /*
2749 * Since the runqueue lock will be released by the next
2750 * task (which is an invalid locking op but in the case
2751 * of the scheduler it's an obvious special-case), so we
2752 * do an early lockdep release here:
2753 */
2754 lockdep_unpin_lock(&rq->lock);
2755 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2756
2757 /* Here we just switch the register state and the stack. */
2758 switch_to(prev, next, prev);
2759 barrier();
2760
2761 return finish_task_switch(prev);
2762 }
2763
2764 /*
2765 * nr_running and nr_context_switches:
2766 *
2767 * externally visible scheduler statistics: current number of runnable
2768 * threads, total number of context switches performed since bootup.
2769 */
2770 unsigned long nr_running(void)
2771 {
2772 unsigned long i, sum = 0;
2773
2774 for_each_online_cpu(i)
2775 sum += cpu_rq(i)->nr_running;
2776
2777 return sum;
2778 }
2779
2780 /*
2781 * Check if only the current task is running on the cpu.
2782 *
2783 * Caution: this function does not check that the caller has disabled
2784 * preemption, thus the result might have a time-of-check-to-time-of-use
2785 * race. The caller is responsible to use it correctly, for example:
2786 *
2787 * - from a non-preemptable section (of course)
2788 *
2789 * - from a thread that is bound to a single CPU
2790 *
2791 * - in a loop with very short iterations (e.g. a polling loop)
2792 */
2793 bool single_task_running(void)
2794 {
2795 return raw_rq()->nr_running == 1;
2796 }
2797 EXPORT_SYMBOL(single_task_running);
2798
2799 unsigned long long nr_context_switches(void)
2800 {
2801 int i;
2802 unsigned long long sum = 0;
2803
2804 for_each_possible_cpu(i)
2805 sum += cpu_rq(i)->nr_switches;
2806
2807 return sum;
2808 }
2809
2810 unsigned long nr_iowait(void)
2811 {
2812 unsigned long i, sum = 0;
2813
2814 for_each_possible_cpu(i)
2815 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2816
2817 return sum;
2818 }
2819
2820 unsigned long nr_iowait_cpu(int cpu)
2821 {
2822 struct rq *this = cpu_rq(cpu);
2823 return atomic_read(&this->nr_iowait);
2824 }
2825
2826 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2827 {
2828 struct rq *rq = this_rq();
2829 *nr_waiters = atomic_read(&rq->nr_iowait);
2830 *load = rq->load.weight;
2831 }
2832
2833 #ifdef CONFIG_SMP
2834
2835 /*
2836 * sched_exec - execve() is a valuable balancing opportunity, because at
2837 * this point the task has the smallest effective memory and cache footprint.
2838 */
2839 void sched_exec(void)
2840 {
2841 struct task_struct *p = current;
2842 unsigned long flags;
2843 int dest_cpu;
2844
2845 raw_spin_lock_irqsave(&p->pi_lock, flags);
2846 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2847 if (dest_cpu == smp_processor_id())
2848 goto unlock;
2849
2850 if (likely(cpu_active(dest_cpu))) {
2851 struct migration_arg arg = { p, dest_cpu };
2852
2853 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2854 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2855 return;
2856 }
2857 unlock:
2858 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2859 }
2860
2861 #endif
2862
2863 DEFINE_PER_CPU(struct kernel_stat, kstat);
2864 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2865
2866 EXPORT_PER_CPU_SYMBOL(kstat);
2867 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2868
2869 /*
2870 * Return accounted runtime for the task.
2871 * In case the task is currently running, return the runtime plus current's
2872 * pending runtime that have not been accounted yet.
2873 */
2874 unsigned long long task_sched_runtime(struct task_struct *p)
2875 {
2876 unsigned long flags;
2877 struct rq *rq;
2878 u64 ns;
2879
2880 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2881 /*
2882 * 64-bit doesn't need locks to atomically read a 64bit value.
2883 * So we have a optimization chance when the task's delta_exec is 0.
2884 * Reading ->on_cpu is racy, but this is ok.
2885 *
2886 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2887 * If we race with it entering cpu, unaccounted time is 0. This is
2888 * indistinguishable from the read occurring a few cycles earlier.
2889 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2890 * been accounted, so we're correct here as well.
2891 */
2892 if (!p->on_cpu || !task_on_rq_queued(p))
2893 return p->se.sum_exec_runtime;
2894 #endif
2895
2896 rq = task_rq_lock(p, &flags);
2897 /*
2898 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2899 * project cycles that may never be accounted to this
2900 * thread, breaking clock_gettime().
2901 */
2902 if (task_current(rq, p) && task_on_rq_queued(p)) {
2903 update_rq_clock(rq);
2904 p->sched_class->update_curr(rq);
2905 }
2906 ns = p->se.sum_exec_runtime;
2907 task_rq_unlock(rq, p, &flags);
2908
2909 return ns;
2910 }
2911
2912 /*
2913 * This function gets called by the timer code, with HZ frequency.
2914 * We call it with interrupts disabled.
2915 */
2916 void scheduler_tick(void)
2917 {
2918 int cpu = smp_processor_id();
2919 struct rq *rq = cpu_rq(cpu);
2920 struct task_struct *curr = rq->curr;
2921
2922 sched_clock_tick();
2923
2924 raw_spin_lock(&rq->lock);
2925 update_rq_clock(rq);
2926 curr->sched_class->task_tick(rq, curr, 0);
2927 update_cpu_load_active(rq);
2928 calc_global_load_tick(rq);
2929 raw_spin_unlock(&rq->lock);
2930
2931 perf_event_task_tick();
2932
2933 #ifdef CONFIG_SMP
2934 rq->idle_balance = idle_cpu(cpu);
2935 trigger_load_balance(rq);
2936 #endif
2937 rq_last_tick_reset(rq);
2938 }
2939
2940 #ifdef CONFIG_NO_HZ_FULL
2941 /**
2942 * scheduler_tick_max_deferment
2943 *
2944 * Keep at least one tick per second when a single
2945 * active task is running because the scheduler doesn't
2946 * yet completely support full dynticks environment.
2947 *
2948 * This makes sure that uptime, CFS vruntime, load
2949 * balancing, etc... continue to move forward, even
2950 * with a very low granularity.
2951 *
2952 * Return: Maximum deferment in nanoseconds.
2953 */
2954 u64 scheduler_tick_max_deferment(void)
2955 {
2956 struct rq *rq = this_rq();
2957 unsigned long next, now = READ_ONCE(jiffies);
2958
2959 next = rq->last_sched_tick + HZ;
2960
2961 if (time_before_eq(next, now))
2962 return 0;
2963
2964 return jiffies_to_nsecs(next - now);
2965 }
2966 #endif
2967
2968 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2969 defined(CONFIG_PREEMPT_TRACER))
2970
2971 void preempt_count_add(int val)
2972 {
2973 #ifdef CONFIG_DEBUG_PREEMPT
2974 /*
2975 * Underflow?
2976 */
2977 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2978 return;
2979 #endif
2980 __preempt_count_add(val);
2981 #ifdef CONFIG_DEBUG_PREEMPT
2982 /*
2983 * Spinlock count overflowing soon?
2984 */
2985 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2986 PREEMPT_MASK - 10);
2987 #endif
2988 if (preempt_count() == val) {
2989 unsigned long ip = get_lock_parent_ip();
2990 #ifdef CONFIG_DEBUG_PREEMPT
2991 current->preempt_disable_ip = ip;
2992 #endif
2993 trace_preempt_off(CALLER_ADDR0, ip);
2994 }
2995 }
2996 EXPORT_SYMBOL(preempt_count_add);
2997 NOKPROBE_SYMBOL(preempt_count_add);
2998
2999 void preempt_count_sub(int val)
3000 {
3001 #ifdef CONFIG_DEBUG_PREEMPT
3002 /*
3003 * Underflow?
3004 */
3005 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3006 return;
3007 /*
3008 * Is the spinlock portion underflowing?
3009 */
3010 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3011 !(preempt_count() & PREEMPT_MASK)))
3012 return;
3013 #endif
3014
3015 if (preempt_count() == val)
3016 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3017 __preempt_count_sub(val);
3018 }
3019 EXPORT_SYMBOL(preempt_count_sub);
3020 NOKPROBE_SYMBOL(preempt_count_sub);
3021
3022 #endif
3023
3024 /*
3025 * Print scheduling while atomic bug:
3026 */
3027 static noinline void __schedule_bug(struct task_struct *prev)
3028 {
3029 if (oops_in_progress)
3030 return;
3031
3032 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3033 prev->comm, prev->pid, preempt_count());
3034
3035 debug_show_held_locks(prev);
3036 print_modules();
3037 if (irqs_disabled())
3038 print_irqtrace_events(prev);
3039 #ifdef CONFIG_DEBUG_PREEMPT
3040 if (in_atomic_preempt_off()) {
3041 pr_err("Preemption disabled at:");
3042 print_ip_sym(current->preempt_disable_ip);
3043 pr_cont("\n");
3044 }
3045 #endif
3046 dump_stack();
3047 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3048 }
3049
3050 /*
3051 * Various schedule()-time debugging checks and statistics:
3052 */
3053 static inline void schedule_debug(struct task_struct *prev)
3054 {
3055 #ifdef CONFIG_SCHED_STACK_END_CHECK
3056 BUG_ON(task_stack_end_corrupted(prev));
3057 #endif
3058
3059 if (unlikely(in_atomic_preempt_off())) {
3060 __schedule_bug(prev);
3061 preempt_count_set(PREEMPT_DISABLED);
3062 }
3063 rcu_sleep_check();
3064
3065 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3066
3067 schedstat_inc(this_rq(), sched_count);
3068 }
3069
3070 /*
3071 * Pick up the highest-prio task:
3072 */
3073 static inline struct task_struct *
3074 pick_next_task(struct rq *rq, struct task_struct *prev)
3075 {
3076 const struct sched_class *class = &fair_sched_class;
3077 struct task_struct *p;
3078
3079 /*
3080 * Optimization: we know that if all tasks are in
3081 * the fair class we can call that function directly:
3082 */
3083 if (likely(prev->sched_class == class &&
3084 rq->nr_running == rq->cfs.h_nr_running)) {
3085 p = fair_sched_class.pick_next_task(rq, prev);
3086 if (unlikely(p == RETRY_TASK))
3087 goto again;
3088
3089 /* assumes fair_sched_class->next == idle_sched_class */
3090 if (unlikely(!p))
3091 p = idle_sched_class.pick_next_task(rq, prev);
3092
3093 return p;
3094 }
3095
3096 again:
3097 for_each_class(class) {
3098 p = class->pick_next_task(rq, prev);
3099 if (p) {
3100 if (unlikely(p == RETRY_TASK))
3101 goto again;
3102 return p;
3103 }
3104 }
3105
3106 BUG(); /* the idle class will always have a runnable task */
3107 }
3108
3109 /*
3110 * __schedule() is the main scheduler function.
3111 *
3112 * The main means of driving the scheduler and thus entering this function are:
3113 *
3114 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3115 *
3116 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3117 * paths. For example, see arch/x86/entry_64.S.
3118 *
3119 * To drive preemption between tasks, the scheduler sets the flag in timer
3120 * interrupt handler scheduler_tick().
3121 *
3122 * 3. Wakeups don't really cause entry into schedule(). They add a
3123 * task to the run-queue and that's it.
3124 *
3125 * Now, if the new task added to the run-queue preempts the current
3126 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3127 * called on the nearest possible occasion:
3128 *
3129 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3130 *
3131 * - in syscall or exception context, at the next outmost
3132 * preempt_enable(). (this might be as soon as the wake_up()'s
3133 * spin_unlock()!)
3134 *
3135 * - in IRQ context, return from interrupt-handler to
3136 * preemptible context
3137 *
3138 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3139 * then at the next:
3140 *
3141 * - cond_resched() call
3142 * - explicit schedule() call
3143 * - return from syscall or exception to user-space
3144 * - return from interrupt-handler to user-space
3145 *
3146 * WARNING: must be called with preemption disabled!
3147 */
3148 static void __sched notrace __schedule(bool preempt)
3149 {
3150 struct task_struct *prev, *next;
3151 unsigned long *switch_count;
3152 struct rq *rq;
3153 int cpu;
3154
3155 cpu = smp_processor_id();
3156 rq = cpu_rq(cpu);
3157 prev = rq->curr;
3158
3159 /*
3160 * do_exit() calls schedule() with preemption disabled as an exception;
3161 * however we must fix that up, otherwise the next task will see an
3162 * inconsistent (higher) preempt count.
3163 *
3164 * It also avoids the below schedule_debug() test from complaining
3165 * about this.
3166 */
3167 if (unlikely(prev->state == TASK_DEAD))
3168 preempt_enable_no_resched_notrace();
3169
3170 schedule_debug(prev);
3171
3172 if (sched_feat(HRTICK))
3173 hrtick_clear(rq);
3174
3175 local_irq_disable();
3176 rcu_note_context_switch();
3177
3178 /*
3179 * Make sure that signal_pending_state()->signal_pending() below
3180 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3181 * done by the caller to avoid the race with signal_wake_up().
3182 */
3183 smp_mb__before_spinlock();
3184 raw_spin_lock(&rq->lock);
3185 lockdep_pin_lock(&rq->lock);
3186
3187 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3188
3189 switch_count = &prev->nivcsw;
3190 if (!preempt && prev->state) {
3191 if (unlikely(signal_pending_state(prev->state, prev))) {
3192 prev->state = TASK_RUNNING;
3193 } else {
3194 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3195 prev->on_rq = 0;
3196
3197 /*
3198 * If a worker went to sleep, notify and ask workqueue
3199 * whether it wants to wake up a task to maintain
3200 * concurrency.
3201 */
3202 if (prev->flags & PF_WQ_WORKER) {
3203 struct task_struct *to_wakeup;
3204
3205 to_wakeup = wq_worker_sleeping(prev);
3206 if (to_wakeup)
3207 try_to_wake_up_local(to_wakeup);
3208 }
3209 }
3210 switch_count = &prev->nvcsw;
3211 }
3212
3213 if (task_on_rq_queued(prev))
3214 update_rq_clock(rq);
3215
3216 next = pick_next_task(rq, prev);
3217 clear_tsk_need_resched(prev);
3218 clear_preempt_need_resched();
3219 rq->clock_skip_update = 0;
3220
3221 if (likely(prev != next)) {
3222 rq->nr_switches++;
3223 rq->curr = next;
3224 ++*switch_count;
3225
3226 trace_sched_switch(preempt, prev, next);
3227 rq = context_switch(rq, prev, next); /* unlocks the rq */
3228 } else {
3229 lockdep_unpin_lock(&rq->lock);
3230 raw_spin_unlock_irq(&rq->lock);
3231 }
3232
3233 balance_callback(rq);
3234 }
3235 STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
3236
3237 static inline void sched_submit_work(struct task_struct *tsk)
3238 {
3239 if (!tsk->state || tsk_is_pi_blocked(tsk))
3240 return;
3241 /*
3242 * If we are going to sleep and we have plugged IO queued,
3243 * make sure to submit it to avoid deadlocks.
3244 */
3245 if (blk_needs_flush_plug(tsk))
3246 blk_schedule_flush_plug(tsk);
3247 }
3248
3249 asmlinkage __visible void __sched schedule(void)
3250 {
3251 struct task_struct *tsk = current;
3252
3253 sched_submit_work(tsk);
3254 do {
3255 preempt_disable();
3256 __schedule(false);
3257 sched_preempt_enable_no_resched();
3258 } while (need_resched());
3259 }
3260 EXPORT_SYMBOL(schedule);
3261
3262 #ifdef CONFIG_CONTEXT_TRACKING
3263 asmlinkage __visible void __sched schedule_user(void)
3264 {
3265 /*
3266 * If we come here after a random call to set_need_resched(),
3267 * or we have been woken up remotely but the IPI has not yet arrived,
3268 * we haven't yet exited the RCU idle mode. Do it here manually until
3269 * we find a better solution.
3270 *
3271 * NB: There are buggy callers of this function. Ideally we
3272 * should warn if prev_state != CONTEXT_USER, but that will trigger
3273 * too frequently to make sense yet.
3274 */
3275 enum ctx_state prev_state = exception_enter();
3276 schedule();
3277 exception_exit(prev_state);
3278 }
3279 #endif
3280
3281 /**
3282 * schedule_preempt_disabled - called with preemption disabled
3283 *
3284 * Returns with preemption disabled. Note: preempt_count must be 1
3285 */
3286 void __sched schedule_preempt_disabled(void)
3287 {
3288 sched_preempt_enable_no_resched();
3289 schedule();
3290 preempt_disable();
3291 }
3292
3293 static void __sched notrace preempt_schedule_common(void)
3294 {
3295 do {
3296 preempt_disable_notrace();
3297 __schedule(true);
3298 preempt_enable_no_resched_notrace();
3299
3300 /*
3301 * Check again in case we missed a preemption opportunity
3302 * between schedule and now.
3303 */
3304 } while (need_resched());
3305 }
3306
3307 #ifdef CONFIG_PREEMPT
3308 /*
3309 * this is the entry point to schedule() from in-kernel preemption
3310 * off of preempt_enable. Kernel preemptions off return from interrupt
3311 * occur there and call schedule directly.
3312 */
3313 asmlinkage __visible void __sched notrace preempt_schedule(void)
3314 {
3315 /*
3316 * If there is a non-zero preempt_count or interrupts are disabled,
3317 * we do not want to preempt the current task. Just return..
3318 */
3319 if (likely(!preemptible()))
3320 return;
3321
3322 preempt_schedule_common();
3323 }
3324 NOKPROBE_SYMBOL(preempt_schedule);
3325 EXPORT_SYMBOL(preempt_schedule);
3326
3327 /**
3328 * preempt_schedule_notrace - preempt_schedule called by tracing
3329 *
3330 * The tracing infrastructure uses preempt_enable_notrace to prevent
3331 * recursion and tracing preempt enabling caused by the tracing
3332 * infrastructure itself. But as tracing can happen in areas coming
3333 * from userspace or just about to enter userspace, a preempt enable
3334 * can occur before user_exit() is called. This will cause the scheduler
3335 * to be called when the system is still in usermode.
3336 *
3337 * To prevent this, the preempt_enable_notrace will use this function
3338 * instead of preempt_schedule() to exit user context if needed before
3339 * calling the scheduler.
3340 */
3341 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3342 {
3343 enum ctx_state prev_ctx;
3344
3345 if (likely(!preemptible()))
3346 return;
3347
3348 do {
3349 preempt_disable_notrace();
3350 /*
3351 * Needs preempt disabled in case user_exit() is traced
3352 * and the tracer calls preempt_enable_notrace() causing
3353 * an infinite recursion.
3354 */
3355 prev_ctx = exception_enter();
3356 __schedule(true);
3357 exception_exit(prev_ctx);
3358
3359 preempt_enable_no_resched_notrace();
3360 } while (need_resched());
3361 }
3362 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3363
3364 #endif /* CONFIG_PREEMPT */
3365
3366 /*
3367 * this is the entry point to schedule() from kernel preemption
3368 * off of irq context.
3369 * Note, that this is called and return with irqs disabled. This will
3370 * protect us against recursive calling from irq.
3371 */
3372 asmlinkage __visible void __sched preempt_schedule_irq(void)
3373 {
3374 enum ctx_state prev_state;
3375
3376 /* Catch callers which need to be fixed */
3377 BUG_ON(preempt_count() || !irqs_disabled());
3378
3379 prev_state = exception_enter();
3380
3381 do {
3382 preempt_disable();
3383 local_irq_enable();
3384 __schedule(true);
3385 local_irq_disable();
3386 sched_preempt_enable_no_resched();
3387 } while (need_resched());
3388
3389 exception_exit(prev_state);
3390 }
3391
3392 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3393 void *key)
3394 {
3395 return try_to_wake_up(curr->private, mode, wake_flags);
3396 }
3397 EXPORT_SYMBOL(default_wake_function);
3398
3399 #ifdef CONFIG_RT_MUTEXES
3400
3401 /*
3402 * rt_mutex_setprio - set the current priority of a task
3403 * @p: task
3404 * @prio: prio value (kernel-internal form)
3405 *
3406 * This function changes the 'effective' priority of a task. It does
3407 * not touch ->normal_prio like __setscheduler().
3408 *
3409 * Used by the rt_mutex code to implement priority inheritance
3410 * logic. Call site only calls if the priority of the task changed.
3411 */
3412 void rt_mutex_setprio(struct task_struct *p, int prio)
3413 {
3414 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3415 struct rq *rq;
3416 const struct sched_class *prev_class;
3417
3418 BUG_ON(prio > MAX_PRIO);
3419
3420 rq = __task_rq_lock(p);
3421
3422 /*
3423 * Idle task boosting is a nono in general. There is one
3424 * exception, when PREEMPT_RT and NOHZ is active:
3425 *
3426 * The idle task calls get_next_timer_interrupt() and holds
3427 * the timer wheel base->lock on the CPU and another CPU wants
3428 * to access the timer (probably to cancel it). We can safely
3429 * ignore the boosting request, as the idle CPU runs this code
3430 * with interrupts disabled and will complete the lock
3431 * protected section without being interrupted. So there is no
3432 * real need to boost.
3433 */
3434 if (unlikely(p == rq->idle)) {
3435 WARN_ON(p != rq->curr);
3436 WARN_ON(p->pi_blocked_on);
3437 goto out_unlock;
3438 }
3439
3440 trace_sched_pi_setprio(p, prio);
3441 oldprio = p->prio;
3442
3443 if (oldprio == prio)
3444 queue_flag &= ~DEQUEUE_MOVE;
3445
3446 prev_class = p->sched_class;
3447 queued = task_on_rq_queued(p);
3448 running = task_current(rq, p);
3449 if (queued)
3450 dequeue_task(rq, p, queue_flag);
3451 if (running)
3452 put_prev_task(rq, p);
3453
3454 /*
3455 * Boosting condition are:
3456 * 1. -rt task is running and holds mutex A
3457 * --> -dl task blocks on mutex A
3458 *
3459 * 2. -dl task is running and holds mutex A
3460 * --> -dl task blocks on mutex A and could preempt the
3461 * running task
3462 */
3463 if (dl_prio(prio)) {
3464 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3465 if (!dl_prio(p->normal_prio) ||
3466 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3467 p->dl.dl_boosted = 1;
3468 queue_flag |= ENQUEUE_REPLENISH;
3469 } else
3470 p->dl.dl_boosted = 0;
3471 p->sched_class = &dl_sched_class;
3472 } else if (rt_prio(prio)) {
3473 if (dl_prio(oldprio))
3474 p->dl.dl_boosted = 0;
3475 if (oldprio < prio)
3476 queue_flag |= ENQUEUE_HEAD;
3477 p->sched_class = &rt_sched_class;
3478 } else {
3479 if (dl_prio(oldprio))
3480 p->dl.dl_boosted = 0;
3481 if (rt_prio(oldprio))
3482 p->rt.timeout = 0;
3483 p->sched_class = &fair_sched_class;
3484 }
3485
3486 sched_set_prio(p, prio);
3487
3488 if (running)
3489 p->sched_class->set_curr_task(rq);
3490 if (queued)
3491 enqueue_task(rq, p, queue_flag);
3492
3493 check_class_changed(rq, p, prev_class, oldprio);
3494 out_unlock:
3495 preempt_disable(); /* avoid rq from going away on us */
3496 __task_rq_unlock(rq);
3497
3498 balance_callback(rq);
3499 preempt_enable();
3500 }
3501 #endif
3502
3503 void set_user_nice(struct task_struct *p, long nice)
3504 {
3505 int old_prio, delta, queued;
3506 unsigned long flags;
3507 struct rq *rq;
3508
3509 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3510 return;
3511 /*
3512 * We have to be careful, if called from sys_setpriority(),
3513 * the task might be in the middle of scheduling on another CPU.
3514 */
3515 rq = task_rq_lock(p, &flags);
3516 /*
3517 * The RT priorities are set via sched_setscheduler(), but we still
3518 * allow the 'normal' nice value to be set - but as expected
3519 * it wont have any effect on scheduling until the task is
3520 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3521 */
3522 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3523 p->static_prio = NICE_TO_PRIO(nice);
3524 goto out_unlock;
3525 }
3526 queued = task_on_rq_queued(p);
3527 if (queued)
3528 dequeue_task(rq, p, DEQUEUE_SAVE);
3529
3530 p->static_prio = NICE_TO_PRIO(nice);
3531 set_load_weight(p);
3532 old_prio = p->prio;
3533 sched_set_prio(p, effective_prio(p));
3534 delta = p->prio - old_prio;
3535
3536 if (queued) {
3537 enqueue_task(rq, p, ENQUEUE_RESTORE);
3538 /*
3539 * If the task increased its priority or is running and
3540 * lowered its priority, then reschedule its CPU:
3541 */
3542 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3543 resched_curr(rq);
3544 }
3545 out_unlock:
3546 task_rq_unlock(rq, p, &flags);
3547 }
3548 EXPORT_SYMBOL(set_user_nice);
3549
3550 /*
3551 * can_nice - check if a task can reduce its nice value
3552 * @p: task
3553 * @nice: nice value
3554 */
3555 int can_nice(const struct task_struct *p, const int nice)
3556 {
3557 /* convert nice value [19,-20] to rlimit style value [1,40] */
3558 int nice_rlim = nice_to_rlimit(nice);
3559
3560 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3561 capable(CAP_SYS_NICE));
3562 }
3563
3564 #ifdef __ARCH_WANT_SYS_NICE
3565
3566 /*
3567 * sys_nice - change the priority of the current process.
3568 * @increment: priority increment
3569 *
3570 * sys_setpriority is a more generic, but much slower function that
3571 * does similar things.
3572 */
3573 SYSCALL_DEFINE1(nice, int, increment)
3574 {
3575 long nice, retval;
3576
3577 /*
3578 * Setpriority might change our priority at the same moment.
3579 * We don't have to worry. Conceptually one call occurs first
3580 * and we have a single winner.
3581 */
3582 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3583 nice = task_nice(current) + increment;
3584
3585 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3586 if (increment < 0 && !can_nice(current, nice))
3587 return -EPERM;
3588
3589 retval = security_task_setnice(current, nice);
3590 if (retval)
3591 return retval;
3592
3593 set_user_nice(current, nice);
3594 return 0;
3595 }
3596
3597 #endif
3598
3599 /**
3600 * task_prio - return the priority value of a given task.
3601 * @p: the task in question.
3602 *
3603 * Return: The priority value as seen by users in /proc.
3604 * RT tasks are offset by -200. Normal tasks are centered
3605 * around 0, value goes from -16 to +15.
3606 */
3607 int task_prio(const struct task_struct *p)
3608 {
3609 return p->prio - MAX_RT_PRIO;
3610 }
3611
3612 /**
3613 * idle_cpu - is a given cpu idle currently?
3614 * @cpu: the processor in question.
3615 *
3616 * Return: 1 if the CPU is currently idle. 0 otherwise.
3617 */
3618 int idle_cpu(int cpu)
3619 {
3620 struct rq *rq = cpu_rq(cpu);
3621
3622 if (rq->curr != rq->idle)
3623 return 0;
3624
3625 if (rq->nr_running)
3626 return 0;
3627
3628 #ifdef CONFIG_SMP
3629 if (!llist_empty(&rq->wake_list))
3630 return 0;
3631 #endif
3632
3633 return 1;
3634 }
3635
3636 /**
3637 * idle_task - return the idle task for a given cpu.
3638 * @cpu: the processor in question.
3639 *
3640 * Return: The idle task for the cpu @cpu.
3641 */
3642 struct task_struct *idle_task(int cpu)
3643 {
3644 return cpu_rq(cpu)->idle;
3645 }
3646
3647 /**
3648 * find_process_by_pid - find a process with a matching PID value.
3649 * @pid: the pid in question.
3650 *
3651 * The task of @pid, if found. %NULL otherwise.
3652 */
3653 static struct task_struct *find_process_by_pid(pid_t pid)
3654 {
3655 return pid ? find_task_by_vpid(pid) : current;
3656 }
3657
3658 /*
3659 * This function initializes the sched_dl_entity of a newly becoming
3660 * SCHED_DEADLINE task.
3661 *
3662 * Only the static values are considered here, the actual runtime and the
3663 * absolute deadline will be properly calculated when the task is enqueued
3664 * for the first time with its new policy.
3665 */
3666 static void
3667 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3668 {
3669 struct sched_dl_entity *dl_se = &p->dl;
3670
3671 dl_se->dl_runtime = attr->sched_runtime;
3672 dl_se->dl_deadline = attr->sched_deadline;
3673 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3674 dl_se->flags = attr->sched_flags;
3675 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3676
3677 /*
3678 * Changing the parameters of a task is 'tricky' and we're not doing
3679 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3680 *
3681 * What we SHOULD do is delay the bandwidth release until the 0-lag
3682 * point. This would include retaining the task_struct until that time
3683 * and change dl_overflow() to not immediately decrement the current
3684 * amount.
3685 *
3686 * Instead we retain the current runtime/deadline and let the new
3687 * parameters take effect after the current reservation period lapses.
3688 * This is safe (albeit pessimistic) because the 0-lag point is always
3689 * before the current scheduling deadline.
3690 *
3691 * We can still have temporary overloads because we do not delay the
3692 * change in bandwidth until that time; so admission control is
3693 * not on the safe side. It does however guarantee tasks will never
3694 * consume more than promised.
3695 */
3696 }
3697
3698 /*
3699 * sched_setparam() passes in -1 for its policy, to let the functions
3700 * it calls know not to change it.
3701 */
3702 #define SETPARAM_POLICY -1
3703
3704 static void __setscheduler_params(struct task_struct *p,
3705 const struct sched_attr *attr)
3706 {
3707 int policy = attr->sched_policy;
3708
3709 if (policy == SETPARAM_POLICY)
3710 policy = p->policy;
3711
3712 p->policy = policy;
3713
3714 if (dl_policy(policy))
3715 __setparam_dl(p, attr);
3716 else if (fair_policy(policy))
3717 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3718
3719 /*
3720 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3721 * !rt_policy. Always setting this ensures that things like
3722 * getparam()/getattr() don't report silly values for !rt tasks.
3723 */
3724 p->rt_priority = attr->sched_priority;
3725 p->normal_prio = normal_prio(p);
3726 set_load_weight(p);
3727 }
3728
3729 /* Actually do priority change: must hold pi & rq lock. */
3730 static void __setscheduler(struct rq *rq, struct task_struct *p,
3731 const struct sched_attr *attr, bool keep_boost)
3732 {
3733 __setscheduler_params(p, attr);
3734
3735 /*
3736 * Keep a potential priority boosting if called from
3737 * sched_setscheduler().
3738 */
3739 if (keep_boost)
3740 sched_set_prio(p, rt_mutex_get_effective_prio(p,
3741 normal_prio(p)));
3742 else
3743 sched_set_prio(p, normal_prio(p));
3744
3745 if (dl_prio(p->prio))
3746 p->sched_class = &dl_sched_class;
3747 else if (rt_prio(p->prio))
3748 p->sched_class = &rt_sched_class;
3749 else
3750 p->sched_class = &fair_sched_class;
3751 }
3752
3753 static void
3754 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3755 {
3756 struct sched_dl_entity *dl_se = &p->dl;
3757
3758 attr->sched_priority = p->rt_priority;
3759 attr->sched_runtime = dl_se->dl_runtime;
3760 attr->sched_deadline = dl_se->dl_deadline;
3761 attr->sched_period = dl_se->dl_period;
3762 attr->sched_flags = dl_se->flags;
3763 }
3764
3765 /*
3766 * This function validates the new parameters of a -deadline task.
3767 * We ask for the deadline not being zero, and greater or equal
3768 * than the runtime, as well as the period of being zero or
3769 * greater than deadline. Furthermore, we have to be sure that
3770 * user parameters are above the internal resolution of 1us (we
3771 * check sched_runtime only since it is always the smaller one) and
3772 * below 2^63 ns (we have to check both sched_deadline and
3773 * sched_period, as the latter can be zero).
3774 */
3775 static bool
3776 __checkparam_dl(const struct sched_attr *attr)
3777 {
3778 /* deadline != 0 */
3779 if (attr->sched_deadline == 0)
3780 return false;
3781
3782 /*
3783 * Since we truncate DL_SCALE bits, make sure we're at least
3784 * that big.
3785 */
3786 if (attr->sched_runtime < (1ULL << DL_SCALE))
3787 return false;
3788
3789 /*
3790 * Since we use the MSB for wrap-around and sign issues, make
3791 * sure it's not set (mind that period can be equal to zero).
3792 */
3793 if (attr->sched_deadline & (1ULL << 63) ||
3794 attr->sched_period & (1ULL << 63))
3795 return false;
3796
3797 /* runtime <= deadline <= period (if period != 0) */
3798 if ((attr->sched_period != 0 &&
3799 attr->sched_period < attr->sched_deadline) ||
3800 attr->sched_deadline < attr->sched_runtime)
3801 return false;
3802
3803 return true;
3804 }
3805
3806 /*
3807 * check the target process has a UID that matches the current process's
3808 */
3809 static bool check_same_owner(struct task_struct *p)
3810 {
3811 const struct cred *cred = current_cred(), *pcred;
3812 bool match;
3813
3814 rcu_read_lock();
3815 pcred = __task_cred(p);
3816 match = (uid_eq(cred->euid, pcred->euid) ||
3817 uid_eq(cred->euid, pcred->uid));
3818 rcu_read_unlock();
3819 return match;
3820 }
3821
3822 static bool dl_param_changed(struct task_struct *p,
3823 const struct sched_attr *attr)
3824 {
3825 struct sched_dl_entity *dl_se = &p->dl;
3826
3827 if (dl_se->dl_runtime != attr->sched_runtime ||
3828 dl_se->dl_deadline != attr->sched_deadline ||
3829 dl_se->dl_period != attr->sched_period ||
3830 dl_se->flags != attr->sched_flags)
3831 return true;
3832
3833 return false;
3834 }
3835
3836 static int __sched_setscheduler(struct task_struct *p,
3837 const struct sched_attr *attr,
3838 bool user, bool pi)
3839 {
3840 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3841 MAX_RT_PRIO - 1 - attr->sched_priority;
3842 int retval, oldprio, oldpolicy = -1, queued, running;
3843 int new_effective_prio, policy = attr->sched_policy;
3844 unsigned long flags;
3845 const struct sched_class *prev_class;
3846 struct rq *rq;
3847 int reset_on_fork;
3848 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
3849
3850 /* may grab non-irq protected spin_locks */
3851 BUG_ON(in_interrupt());
3852 recheck:
3853 /* double check policy once rq lock held */
3854 if (policy < 0) {
3855 reset_on_fork = p->sched_reset_on_fork;
3856 policy = oldpolicy = p->policy;
3857 } else {
3858 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3859
3860 if (!valid_policy(policy))
3861 return -EINVAL;
3862 }
3863
3864 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3865 return -EINVAL;
3866
3867 /*
3868 * Valid priorities for SCHED_FIFO and SCHED_RR are
3869 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3870 * SCHED_BATCH and SCHED_IDLE is 0.
3871 */
3872 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3873 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3874 return -EINVAL;
3875 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3876 (rt_policy(policy) != (attr->sched_priority != 0)))
3877 return -EINVAL;
3878
3879 /*
3880 * Allow unprivileged RT tasks to decrease priority:
3881 */
3882 if (user && !capable(CAP_SYS_NICE)) {
3883 if (fair_policy(policy)) {
3884 if (attr->sched_nice < task_nice(p) &&
3885 !can_nice(p, attr->sched_nice))
3886 return -EPERM;
3887 }
3888
3889 if (rt_policy(policy)) {
3890 unsigned long rlim_rtprio =
3891 task_rlimit(p, RLIMIT_RTPRIO);
3892
3893 /* can't set/change the rt policy */
3894 if (policy != p->policy && !rlim_rtprio)
3895 return -EPERM;
3896
3897 /* can't increase priority */
3898 if (attr->sched_priority > p->rt_priority &&
3899 attr->sched_priority > rlim_rtprio)
3900 return -EPERM;
3901 }
3902
3903 /*
3904 * Can't set/change SCHED_DEADLINE policy at all for now
3905 * (safest behavior); in the future we would like to allow
3906 * unprivileged DL tasks to increase their relative deadline
3907 * or reduce their runtime (both ways reducing utilization)
3908 */
3909 if (dl_policy(policy))
3910 return -EPERM;
3911
3912 /*
3913 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3914 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3915 */
3916 if (idle_policy(p->policy) && !idle_policy(policy)) {
3917 if (!can_nice(p, task_nice(p)))
3918 return -EPERM;
3919 }
3920
3921 /* can't change other user's priorities */
3922 if (!check_same_owner(p))
3923 return -EPERM;
3924
3925 /* Normal users shall not reset the sched_reset_on_fork flag */
3926 if (p->sched_reset_on_fork && !reset_on_fork)
3927 return -EPERM;
3928 }
3929
3930 if (user) {
3931 retval = security_task_setscheduler(p);
3932 if (retval)
3933 return retval;
3934 }
3935
3936 /*
3937 * make sure no PI-waiters arrive (or leave) while we are
3938 * changing the priority of the task:
3939 *
3940 * To be able to change p->policy safely, the appropriate
3941 * runqueue lock must be held.
3942 */
3943 rq = task_rq_lock(p, &flags);
3944
3945 /*
3946 * Changing the policy of the stop threads its a very bad idea
3947 */
3948 if (p == rq->stop) {
3949 task_rq_unlock(rq, p, &flags);
3950 return -EINVAL;
3951 }
3952
3953 /*
3954 * If not changing anything there's no need to proceed further,
3955 * but store a possible modification of reset_on_fork.
3956 */
3957 if (unlikely(policy == p->policy)) {
3958 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3959 goto change;
3960 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3961 goto change;
3962 if (dl_policy(policy) && dl_param_changed(p, attr))
3963 goto change;
3964
3965 p->sched_reset_on_fork = reset_on_fork;
3966 task_rq_unlock(rq, p, &flags);
3967 return 0;
3968 }
3969 change:
3970
3971 if (user) {
3972 #ifdef CONFIG_RT_GROUP_SCHED
3973 /*
3974 * Do not allow realtime tasks into groups that have no runtime
3975 * assigned.
3976 */
3977 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3978 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3979 !task_group_is_autogroup(task_group(p))) {
3980 task_rq_unlock(rq, p, &flags);
3981 return -EPERM;
3982 }
3983 #endif
3984 #ifdef CONFIG_SMP
3985 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3986 cpumask_t *span = rq->rd->span;
3987
3988 /*
3989 * Don't allow tasks with an affinity mask smaller than
3990 * the entire root_domain to become SCHED_DEADLINE. We
3991 * will also fail if there's no bandwidth available.
3992 */
3993 if (!cpumask_subset(span, &p->cpus_allowed) ||
3994 rq->rd->dl_bw.bw == 0) {
3995 task_rq_unlock(rq, p, &flags);
3996 return -EPERM;
3997 }
3998 }
3999 #endif
4000 }
4001
4002 /* recheck policy now with rq lock held */
4003 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4004 policy = oldpolicy = -1;
4005 task_rq_unlock(rq, p, &flags);
4006 goto recheck;
4007 }
4008
4009 /*
4010 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4011 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4012 * is available.
4013 */
4014 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4015 task_rq_unlock(rq, p, &flags);
4016 return -EBUSY;
4017 }
4018
4019 p->sched_reset_on_fork = reset_on_fork;
4020 oldprio = p->prio;
4021
4022 if (pi) {
4023 /*
4024 * Take priority boosted tasks into account. If the new
4025 * effective priority is unchanged, we just store the new
4026 * normal parameters and do not touch the scheduler class and
4027 * the runqueue. This will be done when the task deboost
4028 * itself.
4029 */
4030 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4031 if (new_effective_prio == oldprio)
4032 queue_flags &= ~DEQUEUE_MOVE;
4033 }
4034
4035 queued = task_on_rq_queued(p);
4036 running = task_current(rq, p);
4037 if (queued)
4038 dequeue_task(rq, p, queue_flags);
4039 if (running)
4040 put_prev_task(rq, p);
4041
4042 prev_class = p->sched_class;
4043 __setscheduler(rq, p, attr, pi);
4044
4045 if (running)
4046 p->sched_class->set_curr_task(rq);
4047 if (queued) {
4048 /*
4049 * We enqueue to tail when the priority of a task is
4050 * increased (user space view).
4051 */
4052 if (oldprio < p->prio)
4053 queue_flags |= ENQUEUE_HEAD;
4054
4055 enqueue_task(rq, p, queue_flags);
4056 }
4057
4058 check_class_changed(rq, p, prev_class, oldprio);
4059 preempt_disable(); /* avoid rq from going away on us */
4060 task_rq_unlock(rq, p, &flags);
4061
4062 if (pi)
4063 rt_mutex_adjust_pi(p);
4064
4065 /*
4066 * Run balance callbacks after we've adjusted the PI chain.
4067 */
4068 balance_callback(rq);
4069 preempt_enable();
4070
4071 return 0;
4072 }
4073
4074 static int _sched_setscheduler(struct task_struct *p, int policy,
4075 const struct sched_param *param, bool check)
4076 {
4077 struct sched_attr attr = {
4078 .sched_policy = policy,
4079 .sched_priority = param->sched_priority,
4080 .sched_nice = PRIO_TO_NICE(p->static_prio),
4081 };
4082
4083 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4084 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4085 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4086 policy &= ~SCHED_RESET_ON_FORK;
4087 attr.sched_policy = policy;
4088 }
4089
4090 return __sched_setscheduler(p, &attr, check, true);
4091 }
4092 /**
4093 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4094 * @p: the task in question.
4095 * @policy: new policy.
4096 * @param: structure containing the new RT priority.
4097 *
4098 * Return: 0 on success. An error code otherwise.
4099 *
4100 * NOTE that the task may be already dead.
4101 */
4102 int sched_setscheduler(struct task_struct *p, int policy,
4103 const struct sched_param *param)
4104 {
4105 return _sched_setscheduler(p, policy, param, true);
4106 }
4107 EXPORT_SYMBOL_GPL(sched_setscheduler);
4108
4109 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4110 {
4111 return __sched_setscheduler(p, attr, true, true);
4112 }
4113 EXPORT_SYMBOL_GPL(sched_setattr);
4114
4115 /**
4116 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4117 * @p: the task in question.
4118 * @policy: new policy.
4119 * @param: structure containing the new RT priority.
4120 *
4121 * Just like sched_setscheduler, only don't bother checking if the
4122 * current context has permission. For example, this is needed in
4123 * stop_machine(): we create temporary high priority worker threads,
4124 * but our caller might not have that capability.
4125 *
4126 * Return: 0 on success. An error code otherwise.
4127 */
4128 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4129 const struct sched_param *param)
4130 {
4131 return _sched_setscheduler(p, policy, param, false);
4132 }
4133 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4134
4135 static int
4136 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4137 {
4138 struct sched_param lparam;
4139 struct task_struct *p;
4140 int retval;
4141
4142 if (!param || pid < 0)
4143 return -EINVAL;
4144 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4145 return -EFAULT;
4146
4147 rcu_read_lock();
4148 retval = -ESRCH;
4149 p = find_process_by_pid(pid);
4150 if (p != NULL)
4151 retval = sched_setscheduler(p, policy, &lparam);
4152 rcu_read_unlock();
4153
4154 return retval;
4155 }
4156
4157 /*
4158 * Mimics kernel/events/core.c perf_copy_attr().
4159 */
4160 static int sched_copy_attr(struct sched_attr __user *uattr,
4161 struct sched_attr *attr)
4162 {
4163 u32 size;
4164 int ret;
4165
4166 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4167 return -EFAULT;
4168
4169 /*
4170 * zero the full structure, so that a short copy will be nice.
4171 */
4172 memset(attr, 0, sizeof(*attr));
4173
4174 ret = get_user(size, &uattr->size);
4175 if (ret)
4176 return ret;
4177
4178 if (size > PAGE_SIZE) /* silly large */
4179 goto err_size;
4180
4181 if (!size) /* abi compat */
4182 size = SCHED_ATTR_SIZE_VER0;
4183
4184 if (size < SCHED_ATTR_SIZE_VER0)
4185 goto err_size;
4186
4187 /*
4188 * If we're handed a bigger struct than we know of,
4189 * ensure all the unknown bits are 0 - i.e. new
4190 * user-space does not rely on any kernel feature
4191 * extensions we dont know about yet.
4192 */
4193 if (size > sizeof(*attr)) {
4194 unsigned char __user *addr;
4195 unsigned char __user *end;
4196 unsigned char val;
4197
4198 addr = (void __user *)uattr + sizeof(*attr);
4199 end = (void __user *)uattr + size;
4200
4201 for (; addr < end; addr++) {
4202 ret = get_user(val, addr);
4203 if (ret)
4204 return ret;
4205 if (val)
4206 goto err_size;
4207 }
4208 size = sizeof(*attr);
4209 }
4210
4211 ret = copy_from_user(attr, uattr, size);
4212 if (ret)
4213 return -EFAULT;
4214
4215 /*
4216 * XXX: do we want to be lenient like existing syscalls; or do we want
4217 * to be strict and return an error on out-of-bounds values?
4218 */
4219 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4220
4221 return 0;
4222
4223 err_size:
4224 put_user(sizeof(*attr), &uattr->size);
4225 return -E2BIG;
4226 }
4227
4228 /**
4229 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4230 * @pid: the pid in question.
4231 * @policy: new policy.
4232 * @param: structure containing the new RT priority.
4233 *
4234 * Return: 0 on success. An error code otherwise.
4235 */
4236 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4237 struct sched_param __user *, param)
4238 {
4239 /* negative values for policy are not valid */
4240 if (policy < 0)
4241 return -EINVAL;
4242
4243 return do_sched_setscheduler(pid, policy, param);
4244 }
4245
4246 /**
4247 * sys_sched_setparam - set/change the RT priority of a thread
4248 * @pid: the pid in question.
4249 * @param: structure containing the new RT priority.
4250 *
4251 * Return: 0 on success. An error code otherwise.
4252 */
4253 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4254 {
4255 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4256 }
4257
4258 /**
4259 * sys_sched_setattr - same as above, but with extended sched_attr
4260 * @pid: the pid in question.
4261 * @uattr: structure containing the extended parameters.
4262 * @flags: for future extension.
4263 */
4264 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4265 unsigned int, flags)
4266 {
4267 struct sched_attr attr;
4268 struct task_struct *p;
4269 int retval;
4270
4271 if (!uattr || pid < 0 || flags)
4272 return -EINVAL;
4273
4274 retval = sched_copy_attr(uattr, &attr);
4275 if (retval)
4276 return retval;
4277
4278 if ((int)attr.sched_policy < 0)
4279 return -EINVAL;
4280
4281 rcu_read_lock();
4282 retval = -ESRCH;
4283 p = find_process_by_pid(pid);
4284 if (p != NULL)
4285 retval = sched_setattr(p, &attr);
4286 rcu_read_unlock();
4287
4288 return retval;
4289 }
4290
4291 /**
4292 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4293 * @pid: the pid in question.
4294 *
4295 * Return: On success, the policy of the thread. Otherwise, a negative error
4296 * code.
4297 */
4298 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4299 {
4300 struct task_struct *p;
4301 int retval;
4302
4303 if (pid < 0)
4304 return -EINVAL;
4305
4306 retval = -ESRCH;
4307 rcu_read_lock();
4308 p = find_process_by_pid(pid);
4309 if (p) {
4310 retval = security_task_getscheduler(p);
4311 if (!retval)
4312 retval = p->policy
4313 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4314 }
4315 rcu_read_unlock();
4316 return retval;
4317 }
4318
4319 /**
4320 * sys_sched_getparam - get the RT priority of a thread
4321 * @pid: the pid in question.
4322 * @param: structure containing the RT priority.
4323 *
4324 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4325 * code.
4326 */
4327 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4328 {
4329 struct sched_param lp = { .sched_priority = 0 };
4330 struct task_struct *p;
4331 int retval;
4332
4333 if (!param || pid < 0)
4334 return -EINVAL;
4335
4336 rcu_read_lock();
4337 p = find_process_by_pid(pid);
4338 retval = -ESRCH;
4339 if (!p)
4340 goto out_unlock;
4341
4342 retval = security_task_getscheduler(p);
4343 if (retval)
4344 goto out_unlock;
4345
4346 if (task_has_rt_policy(p))
4347 lp.sched_priority = p->rt_priority;
4348 rcu_read_unlock();
4349
4350 /*
4351 * This one might sleep, we cannot do it with a spinlock held ...
4352 */
4353 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4354
4355 return retval;
4356
4357 out_unlock:
4358 rcu_read_unlock();
4359 return retval;
4360 }
4361
4362 static int sched_read_attr(struct sched_attr __user *uattr,
4363 struct sched_attr *attr,
4364 unsigned int usize)
4365 {
4366 int ret;
4367
4368 if (!access_ok(VERIFY_WRITE, uattr, usize))
4369 return -EFAULT;
4370
4371 /*
4372 * If we're handed a smaller struct than we know of,
4373 * ensure all the unknown bits are 0 - i.e. old
4374 * user-space does not get uncomplete information.
4375 */
4376 if (usize < sizeof(*attr)) {
4377 unsigned char *addr;
4378 unsigned char *end;
4379
4380 addr = (void *)attr + usize;
4381 end = (void *)attr + sizeof(*attr);
4382
4383 for (; addr < end; addr++) {
4384 if (*addr)
4385 return -EFBIG;
4386 }
4387
4388 attr->size = usize;
4389 }
4390
4391 ret = copy_to_user(uattr, attr, attr->size);
4392 if (ret)
4393 return -EFAULT;
4394
4395 return 0;
4396 }
4397
4398 /**
4399 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4400 * @pid: the pid in question.
4401 * @uattr: structure containing the extended parameters.
4402 * @size: sizeof(attr) for fwd/bwd comp.
4403 * @flags: for future extension.
4404 */
4405 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4406 unsigned int, size, unsigned int, flags)
4407 {
4408 struct sched_attr attr = {
4409 .size = sizeof(struct sched_attr),
4410 };
4411 struct task_struct *p;
4412 int retval;
4413
4414 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4415 size < SCHED_ATTR_SIZE_VER0 || flags)
4416 return -EINVAL;
4417
4418 rcu_read_lock();
4419 p = find_process_by_pid(pid);
4420 retval = -ESRCH;
4421 if (!p)
4422 goto out_unlock;
4423
4424 retval = security_task_getscheduler(p);
4425 if (retval)
4426 goto out_unlock;
4427
4428 attr.sched_policy = p->policy;
4429 if (p->sched_reset_on_fork)
4430 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4431 if (task_has_dl_policy(p))
4432 __getparam_dl(p, &attr);
4433 else if (task_has_rt_policy(p))
4434 attr.sched_priority = p->rt_priority;
4435 else
4436 attr.sched_nice = task_nice(p);
4437
4438 rcu_read_unlock();
4439
4440 retval = sched_read_attr(uattr, &attr, size);
4441 return retval;
4442
4443 out_unlock:
4444 rcu_read_unlock();
4445 return retval;
4446 }
4447
4448 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4449 {
4450 cpumask_var_t cpus_allowed, new_mask;
4451 struct task_struct *p;
4452 int retval;
4453
4454 rcu_read_lock();
4455
4456 p = find_process_by_pid(pid);
4457 if (!p) {
4458 rcu_read_unlock();
4459 return -ESRCH;
4460 }
4461
4462 /* Prevent p going away */
4463 get_task_struct(p);
4464 rcu_read_unlock();
4465
4466 if (p->flags & PF_NO_SETAFFINITY) {
4467 retval = -EINVAL;
4468 goto out_put_task;
4469 }
4470 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4471 retval = -ENOMEM;
4472 goto out_put_task;
4473 }
4474 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4475 retval = -ENOMEM;
4476 goto out_free_cpus_allowed;
4477 }
4478 retval = -EPERM;
4479 if (!check_same_owner(p)) {
4480 rcu_read_lock();
4481 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4482 rcu_read_unlock();
4483 goto out_free_new_mask;
4484 }
4485 rcu_read_unlock();
4486 }
4487
4488 retval = security_task_setscheduler(p);
4489 if (retval)
4490 goto out_free_new_mask;
4491
4492
4493 cpuset_cpus_allowed(p, cpus_allowed);
4494 cpumask_and(new_mask, in_mask, cpus_allowed);
4495
4496 /*
4497 * Since bandwidth control happens on root_domain basis,
4498 * if admission test is enabled, we only admit -deadline
4499 * tasks allowed to run on all the CPUs in the task's
4500 * root_domain.
4501 */
4502 #ifdef CONFIG_SMP
4503 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4504 rcu_read_lock();
4505 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4506 retval = -EBUSY;
4507 rcu_read_unlock();
4508 goto out_free_new_mask;
4509 }
4510 rcu_read_unlock();
4511 }
4512 #endif
4513 again:
4514 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4515
4516 if (!retval) {
4517 cpuset_cpus_allowed(p, cpus_allowed);
4518 if (!cpumask_subset(new_mask, cpus_allowed)) {
4519 /*
4520 * We must have raced with a concurrent cpuset
4521 * update. Just reset the cpus_allowed to the
4522 * cpuset's cpus_allowed
4523 */
4524 cpumask_copy(new_mask, cpus_allowed);
4525 goto again;
4526 }
4527 }
4528 out_free_new_mask:
4529 free_cpumask_var(new_mask);
4530 out_free_cpus_allowed:
4531 free_cpumask_var(cpus_allowed);
4532 out_put_task:
4533 put_task_struct(p);
4534 return retval;
4535 }
4536
4537 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4538 struct cpumask *new_mask)
4539 {
4540 if (len < cpumask_size())
4541 cpumask_clear(new_mask);
4542 else if (len > cpumask_size())
4543 len = cpumask_size();
4544
4545 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4546 }
4547
4548 /**
4549 * sys_sched_setaffinity - set the cpu affinity of a process
4550 * @pid: pid of the process
4551 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4552 * @user_mask_ptr: user-space pointer to the new cpu mask
4553 *
4554 * Return: 0 on success. An error code otherwise.
4555 */
4556 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4557 unsigned long __user *, user_mask_ptr)
4558 {
4559 cpumask_var_t new_mask;
4560 int retval;
4561
4562 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4563 return -ENOMEM;
4564
4565 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4566 if (retval == 0)
4567 retval = sched_setaffinity(pid, new_mask);
4568 free_cpumask_var(new_mask);
4569 return retval;
4570 }
4571
4572 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4573 {
4574 struct task_struct *p;
4575 unsigned long flags;
4576 int retval;
4577
4578 rcu_read_lock();
4579
4580 retval = -ESRCH;
4581 p = find_process_by_pid(pid);
4582 if (!p)
4583 goto out_unlock;
4584
4585 retval = security_task_getscheduler(p);
4586 if (retval)
4587 goto out_unlock;
4588
4589 raw_spin_lock_irqsave(&p->pi_lock, flags);
4590 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4591 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4592
4593 out_unlock:
4594 rcu_read_unlock();
4595
4596 return retval;
4597 }
4598
4599 /**
4600 * sys_sched_getaffinity - get the cpu affinity of a process
4601 * @pid: pid of the process
4602 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4603 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4604 *
4605 * Return: 0 on success. An error code otherwise.
4606 */
4607 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4608 unsigned long __user *, user_mask_ptr)
4609 {
4610 int ret;
4611 cpumask_var_t mask;
4612
4613 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4614 return -EINVAL;
4615 if (len & (sizeof(unsigned long)-1))
4616 return -EINVAL;
4617
4618 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4619 return -ENOMEM;
4620
4621 ret = sched_getaffinity(pid, mask);
4622 if (ret == 0) {
4623 size_t retlen = min_t(size_t, len, cpumask_size());
4624
4625 if (copy_to_user(user_mask_ptr, mask, retlen))
4626 ret = -EFAULT;
4627 else
4628 ret = retlen;
4629 }
4630 free_cpumask_var(mask);
4631
4632 return ret;
4633 }
4634
4635 /**
4636 * sys_sched_yield - yield the current processor to other threads.
4637 *
4638 * This function yields the current CPU to other tasks. If there are no
4639 * other threads running on this CPU then this function will return.
4640 *
4641 * Return: 0.
4642 */
4643 SYSCALL_DEFINE0(sched_yield)
4644 {
4645 struct rq *rq = this_rq_lock();
4646
4647 schedstat_inc(rq, yld_count);
4648 current->sched_class->yield_task(rq);
4649
4650 /*
4651 * Since we are going to call schedule() anyway, there's
4652 * no need to preempt or enable interrupts:
4653 */
4654 __release(rq->lock);
4655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4656 do_raw_spin_unlock(&rq->lock);
4657 sched_preempt_enable_no_resched();
4658
4659 schedule();
4660
4661 return 0;
4662 }
4663
4664 int __sched _cond_resched(void)
4665 {
4666 if (should_resched(0)) {
4667 preempt_schedule_common();
4668 return 1;
4669 }
4670 return 0;
4671 }
4672 EXPORT_SYMBOL(_cond_resched);
4673
4674 /*
4675 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4676 * call schedule, and on return reacquire the lock.
4677 *
4678 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4679 * operations here to prevent schedule() from being called twice (once via
4680 * spin_unlock(), once by hand).
4681 */
4682 int __cond_resched_lock(spinlock_t *lock)
4683 {
4684 int resched = should_resched(PREEMPT_LOCK_OFFSET);
4685 int ret = 0;
4686
4687 lockdep_assert_held(lock);
4688
4689 if (spin_needbreak(lock) || resched) {
4690 spin_unlock(lock);
4691 if (resched)
4692 preempt_schedule_common();
4693 else
4694 cpu_relax();
4695 ret = 1;
4696 spin_lock(lock);
4697 }
4698 return ret;
4699 }
4700 EXPORT_SYMBOL(__cond_resched_lock);
4701
4702 int __sched __cond_resched_softirq(void)
4703 {
4704 BUG_ON(!in_softirq());
4705
4706 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
4707 local_bh_enable();
4708 preempt_schedule_common();
4709 local_bh_disable();
4710 return 1;
4711 }
4712 return 0;
4713 }
4714 EXPORT_SYMBOL(__cond_resched_softirq);
4715
4716 /**
4717 * yield - yield the current processor to other threads.
4718 *
4719 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4720 *
4721 * The scheduler is at all times free to pick the calling task as the most
4722 * eligible task to run, if removing the yield() call from your code breaks
4723 * it, its already broken.
4724 *
4725 * Typical broken usage is:
4726 *
4727 * while (!event)
4728 * yield();
4729 *
4730 * where one assumes that yield() will let 'the other' process run that will
4731 * make event true. If the current task is a SCHED_FIFO task that will never
4732 * happen. Never use yield() as a progress guarantee!!
4733 *
4734 * If you want to use yield() to wait for something, use wait_event().
4735 * If you want to use yield() to be 'nice' for others, use cond_resched().
4736 * If you still want to use yield(), do not!
4737 */
4738 void __sched yield(void)
4739 {
4740 set_current_state(TASK_RUNNING);
4741 sys_sched_yield();
4742 }
4743 EXPORT_SYMBOL(yield);
4744
4745 /**
4746 * yield_to - yield the current processor to another thread in
4747 * your thread group, or accelerate that thread toward the
4748 * processor it's on.
4749 * @p: target task
4750 * @preempt: whether task preemption is allowed or not
4751 *
4752 * It's the caller's job to ensure that the target task struct
4753 * can't go away on us before we can do any checks.
4754 *
4755 * Return:
4756 * true (>0) if we indeed boosted the target task.
4757 * false (0) if we failed to boost the target.
4758 * -ESRCH if there's no task to yield to.
4759 */
4760 int __sched yield_to(struct task_struct *p, bool preempt)
4761 {
4762 struct task_struct *curr = current;
4763 struct rq *rq, *p_rq;
4764 unsigned long flags;
4765 int yielded = 0;
4766
4767 local_irq_save(flags);
4768 rq = this_rq();
4769
4770 again:
4771 p_rq = task_rq(p);
4772 /*
4773 * If we're the only runnable task on the rq and target rq also
4774 * has only one task, there's absolutely no point in yielding.
4775 */
4776 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4777 yielded = -ESRCH;
4778 goto out_irq;
4779 }
4780
4781 double_rq_lock(rq, p_rq);
4782 if (task_rq(p) != p_rq) {
4783 double_rq_unlock(rq, p_rq);
4784 goto again;
4785 }
4786
4787 if (!curr->sched_class->yield_to_task)
4788 goto out_unlock;
4789
4790 if (curr->sched_class != p->sched_class)
4791 goto out_unlock;
4792
4793 if (task_running(p_rq, p) || p->state)
4794 goto out_unlock;
4795
4796 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4797 if (yielded) {
4798 schedstat_inc(rq, yld_count);
4799 /*
4800 * Make p's CPU reschedule; pick_next_entity takes care of
4801 * fairness.
4802 */
4803 if (preempt && rq != p_rq)
4804 resched_curr(p_rq);
4805 }
4806
4807 out_unlock:
4808 double_rq_unlock(rq, p_rq);
4809 out_irq:
4810 local_irq_restore(flags);
4811
4812 if (yielded > 0)
4813 schedule();
4814
4815 return yielded;
4816 }
4817 EXPORT_SYMBOL_GPL(yield_to);
4818
4819 /*
4820 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4821 * that process accounting knows that this is a task in IO wait state.
4822 */
4823 long __sched io_schedule_timeout(long timeout)
4824 {
4825 int old_iowait = current->in_iowait;
4826 struct rq *rq;
4827 long ret;
4828
4829 current->in_iowait = 1;
4830 blk_schedule_flush_plug(current);
4831
4832 delayacct_blkio_start();
4833 rq = raw_rq();
4834 atomic_inc(&rq->nr_iowait);
4835 ret = schedule_timeout(timeout);
4836 current->in_iowait = old_iowait;
4837 atomic_dec(&rq->nr_iowait);
4838 delayacct_blkio_end();
4839
4840 return ret;
4841 }
4842 EXPORT_SYMBOL(io_schedule_timeout);
4843
4844 /**
4845 * sys_sched_get_priority_max - return maximum RT priority.
4846 * @policy: scheduling class.
4847 *
4848 * Return: On success, this syscall returns the maximum
4849 * rt_priority that can be used by a given scheduling class.
4850 * On failure, a negative error code is returned.
4851 */
4852 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4853 {
4854 int ret = -EINVAL;
4855
4856 switch (policy) {
4857 case SCHED_FIFO:
4858 case SCHED_RR:
4859 ret = MAX_USER_RT_PRIO-1;
4860 break;
4861 case SCHED_DEADLINE:
4862 case SCHED_NORMAL:
4863 case SCHED_BATCH:
4864 case SCHED_IDLE:
4865 ret = 0;
4866 break;
4867 }
4868 return ret;
4869 }
4870
4871 /**
4872 * sys_sched_get_priority_min - return minimum RT priority.
4873 * @policy: scheduling class.
4874 *
4875 * Return: On success, this syscall returns the minimum
4876 * rt_priority that can be used by a given scheduling class.
4877 * On failure, a negative error code is returned.
4878 */
4879 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4880 {
4881 int ret = -EINVAL;
4882
4883 switch (policy) {
4884 case SCHED_FIFO:
4885 case SCHED_RR:
4886 ret = 1;
4887 break;
4888 case SCHED_DEADLINE:
4889 case SCHED_NORMAL:
4890 case SCHED_BATCH:
4891 case SCHED_IDLE:
4892 ret = 0;
4893 }
4894 return ret;
4895 }
4896
4897 /**
4898 * sys_sched_rr_get_interval - return the default timeslice of a process.
4899 * @pid: pid of the process.
4900 * @interval: userspace pointer to the timeslice value.
4901 *
4902 * this syscall writes the default timeslice value of a given process
4903 * into the user-space timespec buffer. A value of '0' means infinity.
4904 *
4905 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4906 * an error code.
4907 */
4908 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4909 struct timespec __user *, interval)
4910 {
4911 struct task_struct *p;
4912 unsigned int time_slice;
4913 unsigned long flags;
4914 struct rq *rq;
4915 int retval;
4916 struct timespec t;
4917
4918 if (pid < 0)
4919 return -EINVAL;
4920
4921 retval = -ESRCH;
4922 rcu_read_lock();
4923 p = find_process_by_pid(pid);
4924 if (!p)
4925 goto out_unlock;
4926
4927 retval = security_task_getscheduler(p);
4928 if (retval)
4929 goto out_unlock;
4930
4931 rq = task_rq_lock(p, &flags);
4932 time_slice = 0;
4933 if (p->sched_class->get_rr_interval)
4934 time_slice = p->sched_class->get_rr_interval(rq, p);
4935 task_rq_unlock(rq, p, &flags);
4936
4937 rcu_read_unlock();
4938 jiffies_to_timespec(time_slice, &t);
4939 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4940 return retval;
4941
4942 out_unlock:
4943 rcu_read_unlock();
4944 return retval;
4945 }
4946
4947 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4948
4949 void sched_show_task(struct task_struct *p)
4950 {
4951 unsigned long free = 0;
4952 int ppid;
4953 unsigned long state = p->state;
4954
4955 if (state)
4956 state = __ffs(state) + 1;
4957 printk(KERN_INFO "%-15.15s %c", p->comm,
4958 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4959 #if BITS_PER_LONG == 32
4960 if (state == TASK_RUNNING)
4961 printk(KERN_CONT " running ");
4962 else
4963 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4964 #else
4965 if (state == TASK_RUNNING)
4966 printk(KERN_CONT " running task ");
4967 else
4968 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4969 #endif
4970 #ifdef CONFIG_DEBUG_STACK_USAGE
4971 free = stack_not_used(p);
4972 #endif
4973 ppid = 0;
4974 rcu_read_lock();
4975 if (pid_alive(p))
4976 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4977 rcu_read_unlock();
4978 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4979 task_pid_nr(p), ppid,
4980 (unsigned long)task_thread_info(p)->flags);
4981
4982 print_worker_info(KERN_INFO, p);
4983 show_stack(p, NULL);
4984 }
4985
4986 void show_state_filter(unsigned long state_filter)
4987 {
4988 struct task_struct *g, *p;
4989
4990 #if BITS_PER_LONG == 32
4991 printk(KERN_INFO
4992 " task PC stack pid father\n");
4993 #else
4994 printk(KERN_INFO
4995 " task PC stack pid father\n");
4996 #endif
4997 rcu_read_lock();
4998 for_each_process_thread(g, p) {
4999 /*
5000 * reset the NMI-timeout, listing all files on a slow
5001 * console might take a lot of time:
5002 */
5003 touch_nmi_watchdog();
5004 if (!state_filter || (p->state & state_filter))
5005 sched_show_task(p);
5006 }
5007
5008 touch_all_softlockup_watchdogs();
5009
5010 #ifdef CONFIG_SCHED_DEBUG
5011 sysrq_sched_debug_show();
5012 #endif
5013 rcu_read_unlock();
5014 /*
5015 * Only show locks if all tasks are dumped:
5016 */
5017 if (!state_filter)
5018 debug_show_all_locks();
5019 }
5020
5021 void init_idle_bootup_task(struct task_struct *idle)
5022 {
5023 idle->sched_class = &idle_sched_class;
5024 }
5025
5026 /**
5027 * init_idle - set up an idle thread for a given CPU
5028 * @idle: task in question
5029 * @cpu: cpu the idle task belongs to
5030 *
5031 * NOTE: this function does not set the idle thread's NEED_RESCHED
5032 * flag, to make booting more robust.
5033 */
5034 void init_idle(struct task_struct *idle, int cpu)
5035 {
5036 struct rq *rq = cpu_rq(cpu);
5037 unsigned long flags;
5038
5039 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5040 raw_spin_lock(&rq->lock);
5041
5042 __sched_fork(0, idle);
5043 idle->state = TASK_RUNNING;
5044 idle->se.exec_start = sched_clock();
5045
5046 kasan_unpoison_task_stack(idle);
5047
5048 #ifdef CONFIG_SMP
5049 /*
5050 * Its possible that init_idle() gets called multiple times on a task,
5051 * in that case do_set_cpus_allowed() will not do the right thing.
5052 *
5053 * And since this is boot we can forgo the serialization.
5054 */
5055 set_cpus_allowed_common(idle, cpumask_of(cpu));
5056 #endif
5057 /*
5058 * We're having a chicken and egg problem, even though we are
5059 * holding rq->lock, the cpu isn't yet set to this cpu so the
5060 * lockdep check in task_group() will fail.
5061 *
5062 * Similar case to sched_fork(). / Alternatively we could
5063 * use task_rq_lock() here and obtain the other rq->lock.
5064 *
5065 * Silence PROVE_RCU
5066 */
5067 rcu_read_lock();
5068 __set_task_cpu(idle, cpu);
5069 rcu_read_unlock();
5070
5071 rq->curr = rq->idle = idle;
5072 idle->on_rq = TASK_ON_RQ_QUEUED;
5073 #ifdef CONFIG_SMP
5074 idle->on_cpu = 1;
5075 #endif
5076 raw_spin_unlock(&rq->lock);
5077 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5078
5079 /* Set the preempt count _outside_ the spinlocks! */
5080 init_idle_preempt_count(idle, cpu);
5081
5082 /*
5083 * The idle tasks have their own, simple scheduling class:
5084 */
5085 idle->sched_class = &idle_sched_class;
5086 ftrace_graph_init_idle_task(idle, cpu);
5087 vtime_init_idle(idle, cpu);
5088 #ifdef CONFIG_SMP
5089 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5090 #endif
5091 }
5092
5093 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5094 const struct cpumask *trial)
5095 {
5096 int ret = 1, trial_cpus;
5097 struct dl_bw *cur_dl_b;
5098 unsigned long flags;
5099
5100 if (!cpumask_weight(cur))
5101 return ret;
5102
5103 rcu_read_lock_sched();
5104 cur_dl_b = dl_bw_of(cpumask_any(cur));
5105 trial_cpus = cpumask_weight(trial);
5106
5107 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5108 if (cur_dl_b->bw != -1 &&
5109 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5110 ret = 0;
5111 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5112 rcu_read_unlock_sched();
5113
5114 return ret;
5115 }
5116
5117 int task_can_attach(struct task_struct *p,
5118 const struct cpumask *cs_cpus_allowed)
5119 {
5120 int ret = 0;
5121
5122 /*
5123 * Kthreads which disallow setaffinity shouldn't be moved
5124 * to a new cpuset; we don't want to change their cpu
5125 * affinity and isolating such threads by their set of
5126 * allowed nodes is unnecessary. Thus, cpusets are not
5127 * applicable for such threads. This prevents checking for
5128 * success of set_cpus_allowed_ptr() on all attached tasks
5129 * before cpus_allowed may be changed.
5130 */
5131 if (p->flags & PF_NO_SETAFFINITY) {
5132 ret = -EINVAL;
5133 goto out;
5134 }
5135
5136 #ifdef CONFIG_SMP
5137 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5138 cs_cpus_allowed)) {
5139 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5140 cs_cpus_allowed);
5141 struct dl_bw *dl_b;
5142 bool overflow;
5143 int cpus;
5144 unsigned long flags;
5145
5146 rcu_read_lock_sched();
5147 dl_b = dl_bw_of(dest_cpu);
5148 raw_spin_lock_irqsave(&dl_b->lock, flags);
5149 cpus = dl_bw_cpus(dest_cpu);
5150 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5151 if (overflow)
5152 ret = -EBUSY;
5153 else {
5154 /*
5155 * We reserve space for this task in the destination
5156 * root_domain, as we can't fail after this point.
5157 * We will free resources in the source root_domain
5158 * later on (see set_cpus_allowed_dl()).
5159 */
5160 __dl_add(dl_b, p->dl.dl_bw);
5161 }
5162 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5163 rcu_read_unlock_sched();
5164
5165 }
5166 #endif
5167 out:
5168 return ret;
5169 }
5170
5171 #ifdef CONFIG_SMP
5172
5173 #ifdef CONFIG_NUMA_BALANCING
5174 /* Migrate current task p to target_cpu */
5175 int migrate_task_to(struct task_struct *p, int target_cpu)
5176 {
5177 struct migration_arg arg = { p, target_cpu };
5178 int curr_cpu = task_cpu(p);
5179
5180 if (curr_cpu == target_cpu)
5181 return 0;
5182
5183 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5184 return -EINVAL;
5185
5186 /* TODO: This is not properly updating schedstats */
5187
5188 trace_sched_move_numa(p, curr_cpu, target_cpu);
5189 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5190 }
5191
5192 /*
5193 * Requeue a task on a given node and accurately track the number of NUMA
5194 * tasks on the runqueues
5195 */
5196 void sched_setnuma(struct task_struct *p, int nid)
5197 {
5198 struct rq *rq;
5199 unsigned long flags;
5200 bool queued, running;
5201
5202 rq = task_rq_lock(p, &flags);
5203 queued = task_on_rq_queued(p);
5204 running = task_current(rq, p);
5205
5206 if (queued)
5207 dequeue_task(rq, p, DEQUEUE_SAVE);
5208 if (running)
5209 put_prev_task(rq, p);
5210
5211 p->numa_preferred_nid = nid;
5212
5213 if (running)
5214 p->sched_class->set_curr_task(rq);
5215 if (queued)
5216 enqueue_task(rq, p, ENQUEUE_RESTORE);
5217 task_rq_unlock(rq, p, &flags);
5218 }
5219 #endif /* CONFIG_NUMA_BALANCING */
5220
5221 #ifdef CONFIG_HOTPLUG_CPU
5222 /*
5223 * Ensures that the idle task is using init_mm right before its cpu goes
5224 * offline.
5225 */
5226 void idle_task_exit(void)
5227 {
5228 struct mm_struct *mm = current->active_mm;
5229
5230 BUG_ON(cpu_online(smp_processor_id()));
5231
5232 if (mm != &init_mm) {
5233 switch_mm(mm, &init_mm, current);
5234 finish_arch_post_lock_switch();
5235 }
5236 mmdrop(mm);
5237 }
5238
5239 /*
5240 * Since this CPU is going 'away' for a while, fold any nr_active delta
5241 * we might have. Assumes we're called after migrate_tasks() so that the
5242 * nr_active count is stable.
5243 *
5244 * Also see the comment "Global load-average calculations".
5245 */
5246 static void calc_load_migrate(struct rq *rq)
5247 {
5248 long delta = calc_load_fold_active(rq);
5249 if (delta)
5250 atomic_long_add(delta, &calc_load_tasks);
5251 }
5252
5253 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5254 {
5255 }
5256
5257 static const struct sched_class fake_sched_class = {
5258 .put_prev_task = put_prev_task_fake,
5259 };
5260
5261 static struct task_struct fake_task = {
5262 /*
5263 * Avoid pull_{rt,dl}_task()
5264 */
5265 .prio = MAX_PRIO + 1,
5266 .sched_class = &fake_sched_class,
5267 };
5268
5269 /*
5270 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5271 * try_to_wake_up()->select_task_rq().
5272 *
5273 * Called with rq->lock held even though we'er in stop_machine() and
5274 * there's no concurrency possible, we hold the required locks anyway
5275 * because of lock validation efforts.
5276 */
5277 static void migrate_tasks(struct rq *dead_rq)
5278 {
5279 struct rq *rq = dead_rq;
5280 struct task_struct *next, *stop = rq->stop;
5281 int dest_cpu;
5282
5283 /*
5284 * Fudge the rq selection such that the below task selection loop
5285 * doesn't get stuck on the currently eligible stop task.
5286 *
5287 * We're currently inside stop_machine() and the rq is either stuck
5288 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5289 * either way we should never end up calling schedule() until we're
5290 * done here.
5291 */
5292 rq->stop = NULL;
5293
5294 /*
5295 * put_prev_task() and pick_next_task() sched
5296 * class method both need to have an up-to-date
5297 * value of rq->clock[_task]
5298 */
5299 update_rq_clock(rq);
5300
5301 for (;;) {
5302 /*
5303 * There's this thread running, bail when that's the only
5304 * remaining thread.
5305 */
5306 if (rq->nr_running == 1)
5307 break;
5308
5309 /*
5310 * pick_next_task assumes pinned rq->lock.
5311 */
5312 lockdep_pin_lock(&rq->lock);
5313 next = pick_next_task(rq, &fake_task);
5314 BUG_ON(!next);
5315 next->sched_class->put_prev_task(rq, next);
5316
5317 /*
5318 * Rules for changing task_struct::cpus_allowed are holding
5319 * both pi_lock and rq->lock, such that holding either
5320 * stabilizes the mask.
5321 *
5322 * Drop rq->lock is not quite as disastrous as it usually is
5323 * because !cpu_active at this point, which means load-balance
5324 * will not interfere. Also, stop-machine.
5325 */
5326 lockdep_unpin_lock(&rq->lock);
5327 raw_spin_unlock(&rq->lock);
5328 raw_spin_lock(&next->pi_lock);
5329 raw_spin_lock(&rq->lock);
5330
5331 /*
5332 * Since we're inside stop-machine, _nothing_ should have
5333 * changed the task, WARN if weird stuff happened, because in
5334 * that case the above rq->lock drop is a fail too.
5335 */
5336 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5337 raw_spin_unlock(&next->pi_lock);
5338 continue;
5339 }
5340
5341 /* Find suitable destination for @next, with force if needed. */
5342 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5343
5344 rq = __migrate_task(rq, next, dest_cpu);
5345 if (rq != dead_rq) {
5346 raw_spin_unlock(&rq->lock);
5347 rq = dead_rq;
5348 raw_spin_lock(&rq->lock);
5349 }
5350 raw_spin_unlock(&next->pi_lock);
5351 }
5352
5353 rq->stop = stop;
5354 }
5355 #endif /* CONFIG_HOTPLUG_CPU */
5356
5357 static void set_rq_online(struct rq *rq)
5358 {
5359 if (!rq->online) {
5360 const struct sched_class *class;
5361
5362 cpumask_set_cpu(rq->cpu, rq->rd->online);
5363 rq->online = 1;
5364
5365 for_each_class(class) {
5366 if (class->rq_online)
5367 class->rq_online(rq);
5368 }
5369 }
5370 }
5371
5372 static void set_rq_offline(struct rq *rq)
5373 {
5374 if (rq->online) {
5375 const struct sched_class *class;
5376
5377 for_each_class(class) {
5378 if (class->rq_offline)
5379 class->rq_offline(rq);
5380 }
5381
5382 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5383 rq->online = 0;
5384 }
5385 }
5386
5387 /*
5388 * migration_call - callback that gets triggered when a CPU is added.
5389 * Here we can start up the necessary migration thread for the new CPU.
5390 */
5391 static int
5392 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5393 {
5394 int cpu = (long)hcpu;
5395 unsigned long flags;
5396 struct rq *rq = cpu_rq(cpu);
5397
5398 switch (action & ~CPU_TASKS_FROZEN) {
5399
5400 case CPU_UP_PREPARE:
5401 rq->calc_load_update = calc_load_update;
5402 account_reset_rq(rq);
5403 break;
5404
5405 case CPU_ONLINE:
5406 /* Update our root-domain */
5407 raw_spin_lock_irqsave(&rq->lock, flags);
5408 if (rq->rd) {
5409 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5410
5411 set_rq_online(rq);
5412 }
5413 raw_spin_unlock_irqrestore(&rq->lock, flags);
5414 break;
5415
5416 #ifdef CONFIG_HOTPLUG_CPU
5417 case CPU_DYING:
5418 sched_ttwu_pending();
5419 /* Update our root-domain */
5420 raw_spin_lock_irqsave(&rq->lock, flags);
5421 if (rq->rd) {
5422 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5423 set_rq_offline(rq);
5424 }
5425 migrate_tasks(rq);
5426 BUG_ON(rq->nr_running != 1); /* the migration thread */
5427 raw_spin_unlock_irqrestore(&rq->lock, flags);
5428 break;
5429
5430 case CPU_DEAD:
5431 calc_load_migrate(rq);
5432 break;
5433 #endif
5434 }
5435
5436 update_max_interval();
5437
5438 return NOTIFY_OK;
5439 }
5440
5441 /*
5442 * Register at high priority so that task migration (migrate_all_tasks)
5443 * happens before everything else. This has to be lower priority than
5444 * the notifier in the perf_event subsystem, though.
5445 */
5446 static struct notifier_block migration_notifier = {
5447 .notifier_call = migration_call,
5448 .priority = CPU_PRI_MIGRATION,
5449 };
5450
5451 static void set_cpu_rq_start_time(void)
5452 {
5453 int cpu = smp_processor_id();
5454 struct rq *rq = cpu_rq(cpu);
5455 rq->age_stamp = sched_clock_cpu(cpu);
5456 }
5457
5458 static int sched_cpu_active(struct notifier_block *nfb,
5459 unsigned long action, void *hcpu)
5460 {
5461 int cpu = (long)hcpu;
5462
5463 switch (action & ~CPU_TASKS_FROZEN) {
5464 case CPU_STARTING:
5465 set_cpu_rq_start_time();
5466 return NOTIFY_OK;
5467
5468 case CPU_DOWN_FAILED:
5469 set_cpu_active(cpu, true);
5470 return NOTIFY_OK;
5471
5472 default:
5473 return NOTIFY_DONE;
5474 }
5475 }
5476
5477 static int sched_cpu_inactive(struct notifier_block *nfb,
5478 unsigned long action, void *hcpu)
5479 {
5480 switch (action & ~CPU_TASKS_FROZEN) {
5481 case CPU_DOWN_PREPARE:
5482 set_cpu_active((long)hcpu, false);
5483 return NOTIFY_OK;
5484 default:
5485 return NOTIFY_DONE;
5486 }
5487 }
5488
5489 static int __init migration_init(void)
5490 {
5491 void *cpu = (void *)(long)smp_processor_id();
5492 int err;
5493
5494 /* Initialize migration for the boot CPU */
5495 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5496 BUG_ON(err == NOTIFY_BAD);
5497 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5498 register_cpu_notifier(&migration_notifier);
5499
5500 /* Register cpu active notifiers */
5501 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5502 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5503
5504 return 0;
5505 }
5506 early_initcall(migration_init);
5507
5508 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5509
5510 #ifdef CONFIG_SCHED_DEBUG
5511
5512 static __read_mostly int sched_debug_enabled;
5513
5514 static int __init sched_debug_setup(char *str)
5515 {
5516 sched_debug_enabled = 1;
5517
5518 return 0;
5519 }
5520 early_param("sched_debug", sched_debug_setup);
5521
5522 static inline bool sched_debug(void)
5523 {
5524 return sched_debug_enabled;
5525 }
5526
5527 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5528 struct cpumask *groupmask)
5529 {
5530 struct sched_group *group = sd->groups;
5531
5532 cpumask_clear(groupmask);
5533
5534 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5535
5536 if (!(sd->flags & SD_LOAD_BALANCE)) {
5537 printk("does not load-balance\n");
5538 if (sd->parent)
5539 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5540 " has parent");
5541 return -1;
5542 }
5543
5544 printk(KERN_CONT "span %*pbl level %s\n",
5545 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5546
5547 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5548 printk(KERN_ERR "ERROR: domain->span does not contain "
5549 "CPU%d\n", cpu);
5550 }
5551 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5552 printk(KERN_ERR "ERROR: domain->groups does not contain"
5553 " CPU%d\n", cpu);
5554 }
5555
5556 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5557 do {
5558 if (!group) {
5559 printk("\n");
5560 printk(KERN_ERR "ERROR: group is NULL\n");
5561 break;
5562 }
5563
5564 if (!cpumask_weight(sched_group_cpus(group))) {
5565 printk(KERN_CONT "\n");
5566 printk(KERN_ERR "ERROR: empty group\n");
5567 break;
5568 }
5569
5570 if (!(sd->flags & SD_OVERLAP) &&
5571 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5572 printk(KERN_CONT "\n");
5573 printk(KERN_ERR "ERROR: repeated CPUs\n");
5574 break;
5575 }
5576
5577 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5578
5579 printk(KERN_CONT " %*pbl",
5580 cpumask_pr_args(sched_group_cpus(group)));
5581 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5582 printk(KERN_CONT " (cpu_capacity = %d)",
5583 group->sgc->capacity);
5584 }
5585
5586 group = group->next;
5587 } while (group != sd->groups);
5588 printk(KERN_CONT "\n");
5589
5590 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5591 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5592
5593 if (sd->parent &&
5594 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5595 printk(KERN_ERR "ERROR: parent span is not a superset "
5596 "of domain->span\n");
5597 return 0;
5598 }
5599
5600 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5601 {
5602 int level = 0;
5603
5604 if (!sched_debug_enabled)
5605 return;
5606
5607 if (!sd) {
5608 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5609 return;
5610 }
5611
5612 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5613
5614 for (;;) {
5615 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5616 break;
5617 level++;
5618 sd = sd->parent;
5619 if (!sd)
5620 break;
5621 }
5622 }
5623 #else /* !CONFIG_SCHED_DEBUG */
5624 # define sched_domain_debug(sd, cpu) do { } while (0)
5625 static inline bool sched_debug(void)
5626 {
5627 return false;
5628 }
5629 #endif /* CONFIG_SCHED_DEBUG */
5630
5631 static int sd_degenerate(struct sched_domain *sd)
5632 {
5633 if (cpumask_weight(sched_domain_span(sd)) == 1)
5634 return 1;
5635
5636 /* Following flags need at least 2 groups */
5637 if (sd->flags & (SD_LOAD_BALANCE |
5638 SD_BALANCE_NEWIDLE |
5639 SD_BALANCE_FORK |
5640 SD_BALANCE_EXEC |
5641 SD_SHARE_CPUCAPACITY |
5642 SD_SHARE_PKG_RESOURCES |
5643 SD_SHARE_POWERDOMAIN)) {
5644 if (sd->groups != sd->groups->next)
5645 return 0;
5646 }
5647
5648 /* Following flags don't use groups */
5649 if (sd->flags & (SD_WAKE_AFFINE))
5650 return 0;
5651
5652 return 1;
5653 }
5654
5655 static int
5656 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5657 {
5658 unsigned long cflags = sd->flags, pflags = parent->flags;
5659
5660 if (sd_degenerate(parent))
5661 return 1;
5662
5663 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5664 return 0;
5665
5666 /* Flags needing groups don't count if only 1 group in parent */
5667 if (parent->groups == parent->groups->next) {
5668 pflags &= ~(SD_LOAD_BALANCE |
5669 SD_BALANCE_NEWIDLE |
5670 SD_BALANCE_FORK |
5671 SD_BALANCE_EXEC |
5672 SD_SHARE_CPUCAPACITY |
5673 SD_SHARE_PKG_RESOURCES |
5674 SD_PREFER_SIBLING |
5675 SD_SHARE_POWERDOMAIN);
5676 if (nr_node_ids == 1)
5677 pflags &= ~SD_SERIALIZE;
5678 }
5679 if (~cflags & pflags)
5680 return 0;
5681
5682 return 1;
5683 }
5684
5685 static void free_rootdomain(struct rcu_head *rcu)
5686 {
5687 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5688
5689 cpupri_cleanup(&rd->cpupri);
5690 cpudl_cleanup(&rd->cpudl);
5691 free_cpumask_var(rd->dlo_mask);
5692 free_cpumask_var(rd->rto_mask);
5693 free_cpumask_var(rd->online);
5694 free_cpumask_var(rd->span);
5695 kfree(rd);
5696 }
5697
5698 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5699 {
5700 struct root_domain *old_rd = NULL;
5701 unsigned long flags;
5702
5703 raw_spin_lock_irqsave(&rq->lock, flags);
5704
5705 if (rq->rd) {
5706 old_rd = rq->rd;
5707
5708 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5709 set_rq_offline(rq);
5710
5711 cpumask_clear_cpu(rq->cpu, old_rd->span);
5712
5713 /*
5714 * If we dont want to free the old_rd yet then
5715 * set old_rd to NULL to skip the freeing later
5716 * in this function:
5717 */
5718 if (!atomic_dec_and_test(&old_rd->refcount))
5719 old_rd = NULL;
5720 }
5721
5722 atomic_inc(&rd->refcount);
5723 rq->rd = rd;
5724
5725 cpumask_set_cpu(rq->cpu, rd->span);
5726 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5727 set_rq_online(rq);
5728
5729 raw_spin_unlock_irqrestore(&rq->lock, flags);
5730
5731 if (old_rd)
5732 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5733 }
5734
5735 static int init_rootdomain(struct root_domain *rd)
5736 {
5737 memset(rd, 0, sizeof(*rd));
5738
5739 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5740 goto out;
5741 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5742 goto free_span;
5743 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5744 goto free_online;
5745 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5746 goto free_dlo_mask;
5747
5748 init_dl_bw(&rd->dl_bw);
5749 if (cpudl_init(&rd->cpudl) != 0)
5750 goto free_dlo_mask;
5751
5752 if (cpupri_init(&rd->cpupri) != 0)
5753 goto free_rto_mask;
5754 return 0;
5755
5756 free_rto_mask:
5757 free_cpumask_var(rd->rto_mask);
5758 free_dlo_mask:
5759 free_cpumask_var(rd->dlo_mask);
5760 free_online:
5761 free_cpumask_var(rd->online);
5762 free_span:
5763 free_cpumask_var(rd->span);
5764 out:
5765 return -ENOMEM;
5766 }
5767
5768 /*
5769 * By default the system creates a single root-domain with all cpus as
5770 * members (mimicking the global state we have today).
5771 */
5772 struct root_domain def_root_domain;
5773
5774 static void init_defrootdomain(void)
5775 {
5776 init_rootdomain(&def_root_domain);
5777
5778 atomic_set(&def_root_domain.refcount, 1);
5779 }
5780
5781 static struct root_domain *alloc_rootdomain(void)
5782 {
5783 struct root_domain *rd;
5784
5785 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5786 if (!rd)
5787 return NULL;
5788
5789 if (init_rootdomain(rd) != 0) {
5790 kfree(rd);
5791 return NULL;
5792 }
5793
5794 return rd;
5795 }
5796
5797 static void free_sched_groups(struct sched_group *sg, int free_sgc)
5798 {
5799 struct sched_group *tmp, *first;
5800
5801 if (!sg)
5802 return;
5803
5804 first = sg;
5805 do {
5806 tmp = sg->next;
5807
5808 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5809 kfree(sg->sgc);
5810
5811 kfree(sg);
5812 sg = tmp;
5813 } while (sg != first);
5814 }
5815
5816 static void free_sched_domain(struct rcu_head *rcu)
5817 {
5818 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5819
5820 /*
5821 * If its an overlapping domain it has private groups, iterate and
5822 * nuke them all.
5823 */
5824 if (sd->flags & SD_OVERLAP) {
5825 free_sched_groups(sd->groups, 1);
5826 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5827 kfree(sd->groups->sgc);
5828 kfree(sd->groups);
5829 }
5830 kfree(sd);
5831 }
5832
5833 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5834 {
5835 call_rcu(&sd->rcu, free_sched_domain);
5836 }
5837
5838 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5839 {
5840 for (; sd; sd = sd->parent)
5841 destroy_sched_domain(sd, cpu);
5842 }
5843
5844 /*
5845 * Keep a special pointer to the highest sched_domain that has
5846 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5847 * allows us to avoid some pointer chasing select_idle_sibling().
5848 *
5849 * Also keep a unique ID per domain (we use the first cpu number in
5850 * the cpumask of the domain), this allows us to quickly tell if
5851 * two cpus are in the same cache domain, see cpus_share_cache().
5852 */
5853 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5854 DEFINE_PER_CPU(int, sd_llc_size);
5855 DEFINE_PER_CPU(int, sd_llc_id);
5856 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5857 DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5858 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5859
5860 static void update_top_cache_domain(int cpu)
5861 {
5862 struct sched_domain *sd;
5863 struct sched_domain *busy_sd = NULL;
5864 int id = cpu;
5865 int size = 1;
5866
5867 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5868 if (sd) {
5869 id = cpumask_first(sched_domain_span(sd));
5870 size = cpumask_weight(sched_domain_span(sd));
5871 busy_sd = sd->parent; /* sd_busy */
5872 }
5873 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5874
5875 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5876 per_cpu(sd_llc_size, cpu) = size;
5877 per_cpu(sd_llc_id, cpu) = id;
5878
5879 sd = lowest_flag_domain(cpu, SD_NUMA);
5880 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5881
5882 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5883 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5884 }
5885
5886 /*
5887 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5888 * hold the hotplug lock.
5889 */
5890 static void
5891 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5892 {
5893 struct rq *rq = cpu_rq(cpu);
5894 struct sched_domain *tmp;
5895
5896 /* Remove the sched domains which do not contribute to scheduling. */
5897 for (tmp = sd; tmp; ) {
5898 struct sched_domain *parent = tmp->parent;
5899 if (!parent)
5900 break;
5901
5902 if (sd_parent_degenerate(tmp, parent)) {
5903 tmp->parent = parent->parent;
5904 if (parent->parent)
5905 parent->parent->child = tmp;
5906 /*
5907 * Transfer SD_PREFER_SIBLING down in case of a
5908 * degenerate parent; the spans match for this
5909 * so the property transfers.
5910 */
5911 if (parent->flags & SD_PREFER_SIBLING)
5912 tmp->flags |= SD_PREFER_SIBLING;
5913 destroy_sched_domain(parent, cpu);
5914 } else
5915 tmp = tmp->parent;
5916 }
5917
5918 if (sd && sd_degenerate(sd)) {
5919 tmp = sd;
5920 sd = sd->parent;
5921 destroy_sched_domain(tmp, cpu);
5922 if (sd)
5923 sd->child = NULL;
5924 }
5925
5926 sched_domain_debug(sd, cpu);
5927
5928 rq_attach_root(rq, rd);
5929 tmp = rq->sd;
5930 rcu_assign_pointer(rq->sd, sd);
5931 destroy_sched_domains(tmp, cpu);
5932
5933 update_top_cache_domain(cpu);
5934 }
5935
5936 /* Setup the mask of cpus configured for isolated domains */
5937 static int __init isolated_cpu_setup(char *str)
5938 {
5939 int ret;
5940
5941 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5942 ret = cpulist_parse(str, cpu_isolated_map);
5943 if (ret) {
5944 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5945 return 0;
5946 }
5947 return 1;
5948 }
5949 __setup("isolcpus=", isolated_cpu_setup);
5950
5951 struct s_data {
5952 struct sched_domain ** __percpu sd;
5953 struct root_domain *rd;
5954 };
5955
5956 enum s_alloc {
5957 sa_rootdomain,
5958 sa_sd,
5959 sa_sd_storage,
5960 sa_none,
5961 };
5962
5963 /*
5964 * Build an iteration mask that can exclude certain CPUs from the upwards
5965 * domain traversal.
5966 *
5967 * Asymmetric node setups can result in situations where the domain tree is of
5968 * unequal depth, make sure to skip domains that already cover the entire
5969 * range.
5970 *
5971 * In that case build_sched_domains() will have terminated the iteration early
5972 * and our sibling sd spans will be empty. Domains should always include the
5973 * cpu they're built on, so check that.
5974 *
5975 */
5976 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5977 {
5978 const struct cpumask *span = sched_domain_span(sd);
5979 struct sd_data *sdd = sd->private;
5980 struct sched_domain *sibling;
5981 int i;
5982
5983 for_each_cpu(i, span) {
5984 sibling = *per_cpu_ptr(sdd->sd, i);
5985 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5986 continue;
5987
5988 cpumask_set_cpu(i, sched_group_mask(sg));
5989 }
5990 }
5991
5992 /*
5993 * Return the canonical balance cpu for this group, this is the first cpu
5994 * of this group that's also in the iteration mask.
5995 */
5996 int group_balance_cpu(struct sched_group *sg)
5997 {
5998 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5999 }
6000
6001 static int
6002 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6003 {
6004 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6005 const struct cpumask *span = sched_domain_span(sd);
6006 struct cpumask *covered = sched_domains_tmpmask;
6007 struct sd_data *sdd = sd->private;
6008 struct sched_domain *sibling;
6009 int i;
6010
6011 cpumask_clear(covered);
6012
6013 for_each_cpu(i, span) {
6014 struct cpumask *sg_span;
6015
6016 if (cpumask_test_cpu(i, covered))
6017 continue;
6018
6019 sibling = *per_cpu_ptr(sdd->sd, i);
6020
6021 /* See the comment near build_group_mask(). */
6022 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6023 continue;
6024
6025 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6026 GFP_KERNEL, cpu_to_node(cpu));
6027
6028 if (!sg)
6029 goto fail;
6030
6031 sg_span = sched_group_cpus(sg);
6032 if (sibling->child)
6033 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6034 else
6035 cpumask_set_cpu(i, sg_span);
6036
6037 cpumask_or(covered, covered, sg_span);
6038
6039 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6040 if (atomic_inc_return(&sg->sgc->ref) == 1)
6041 build_group_mask(sd, sg);
6042
6043 /*
6044 * Initialize sgc->capacity such that even if we mess up the
6045 * domains and no possible iteration will get us here, we won't
6046 * die on a /0 trap.
6047 */
6048 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6049
6050 /*
6051 * Make sure the first group of this domain contains the
6052 * canonical balance cpu. Otherwise the sched_domain iteration
6053 * breaks. See update_sg_lb_stats().
6054 */
6055 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6056 group_balance_cpu(sg) == cpu)
6057 groups = sg;
6058
6059 if (!first)
6060 first = sg;
6061 if (last)
6062 last->next = sg;
6063 last = sg;
6064 last->next = first;
6065 }
6066 sd->groups = groups;
6067
6068 return 0;
6069
6070 fail:
6071 free_sched_groups(first, 0);
6072
6073 return -ENOMEM;
6074 }
6075
6076 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6077 {
6078 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6079 struct sched_domain *child = sd->child;
6080
6081 if (child)
6082 cpu = cpumask_first(sched_domain_span(child));
6083
6084 if (sg) {
6085 *sg = *per_cpu_ptr(sdd->sg, cpu);
6086 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6087 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6088 }
6089
6090 return cpu;
6091 }
6092
6093 /*
6094 * build_sched_groups will build a circular linked list of the groups
6095 * covered by the given span, and will set each group's ->cpumask correctly,
6096 * and ->cpu_capacity to 0.
6097 *
6098 * Assumes the sched_domain tree is fully constructed
6099 */
6100 static int
6101 build_sched_groups(struct sched_domain *sd, int cpu)
6102 {
6103 struct sched_group *first = NULL, *last = NULL;
6104 struct sd_data *sdd = sd->private;
6105 const struct cpumask *span = sched_domain_span(sd);
6106 struct cpumask *covered;
6107 int i;
6108
6109 get_group(cpu, sdd, &sd->groups);
6110 atomic_inc(&sd->groups->ref);
6111
6112 if (cpu != cpumask_first(span))
6113 return 0;
6114
6115 lockdep_assert_held(&sched_domains_mutex);
6116 covered = sched_domains_tmpmask;
6117
6118 cpumask_clear(covered);
6119
6120 for_each_cpu(i, span) {
6121 struct sched_group *sg;
6122 int group, j;
6123
6124 if (cpumask_test_cpu(i, covered))
6125 continue;
6126
6127 group = get_group(i, sdd, &sg);
6128 cpumask_setall(sched_group_mask(sg));
6129
6130 for_each_cpu(j, span) {
6131 if (get_group(j, sdd, NULL) != group)
6132 continue;
6133
6134 cpumask_set_cpu(j, covered);
6135 cpumask_set_cpu(j, sched_group_cpus(sg));
6136 }
6137
6138 if (!first)
6139 first = sg;
6140 if (last)
6141 last->next = sg;
6142 last = sg;
6143 }
6144 last->next = first;
6145
6146 return 0;
6147 }
6148
6149 /*
6150 * Initialize sched groups cpu_capacity.
6151 *
6152 * cpu_capacity indicates the capacity of sched group, which is used while
6153 * distributing the load between different sched groups in a sched domain.
6154 * Typically cpu_capacity for all the groups in a sched domain will be same
6155 * unless there are asymmetries in the topology. If there are asymmetries,
6156 * group having more cpu_capacity will pickup more load compared to the
6157 * group having less cpu_capacity.
6158 */
6159 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6160 {
6161 struct sched_group *sg = sd->groups;
6162
6163 WARN_ON(!sg);
6164
6165 do {
6166 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6167 sg = sg->next;
6168 } while (sg != sd->groups);
6169
6170 if (cpu != group_balance_cpu(sg))
6171 return;
6172
6173 update_group_capacity(sd, cpu);
6174 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6175 }
6176
6177 /*
6178 * Initializers for schedule domains
6179 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6180 */
6181
6182 static int default_relax_domain_level = -1;
6183 int sched_domain_level_max;
6184
6185 static int __init setup_relax_domain_level(char *str)
6186 {
6187 if (kstrtoint(str, 0, &default_relax_domain_level))
6188 pr_warn("Unable to set relax_domain_level\n");
6189
6190 return 1;
6191 }
6192 __setup("relax_domain_level=", setup_relax_domain_level);
6193
6194 static void set_domain_attribute(struct sched_domain *sd,
6195 struct sched_domain_attr *attr)
6196 {
6197 int request;
6198
6199 if (!attr || attr->relax_domain_level < 0) {
6200 if (default_relax_domain_level < 0)
6201 return;
6202 else
6203 request = default_relax_domain_level;
6204 } else
6205 request = attr->relax_domain_level;
6206 if (request < sd->level) {
6207 /* turn off idle balance on this domain */
6208 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6209 } else {
6210 /* turn on idle balance on this domain */
6211 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6212 }
6213 }
6214
6215 static void __sdt_free(const struct cpumask *cpu_map);
6216 static int __sdt_alloc(const struct cpumask *cpu_map);
6217
6218 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6219 const struct cpumask *cpu_map)
6220 {
6221 switch (what) {
6222 case sa_rootdomain:
6223 if (!atomic_read(&d->rd->refcount))
6224 free_rootdomain(&d->rd->rcu); /* fall through */
6225 case sa_sd:
6226 free_percpu(d->sd); /* fall through */
6227 case sa_sd_storage:
6228 __sdt_free(cpu_map); /* fall through */
6229 case sa_none:
6230 break;
6231 }
6232 }
6233
6234 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6235 const struct cpumask *cpu_map)
6236 {
6237 memset(d, 0, sizeof(*d));
6238
6239 if (__sdt_alloc(cpu_map))
6240 return sa_sd_storage;
6241 d->sd = alloc_percpu(struct sched_domain *);
6242 if (!d->sd)
6243 return sa_sd_storage;
6244 d->rd = alloc_rootdomain();
6245 if (!d->rd)
6246 return sa_sd;
6247 return sa_rootdomain;
6248 }
6249
6250 /*
6251 * NULL the sd_data elements we've used to build the sched_domain and
6252 * sched_group structure so that the subsequent __free_domain_allocs()
6253 * will not free the data we're using.
6254 */
6255 static void claim_allocations(int cpu, struct sched_domain *sd)
6256 {
6257 struct sd_data *sdd = sd->private;
6258
6259 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6260 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6261
6262 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6263 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6264
6265 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6266 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6267 }
6268
6269 #ifdef CONFIG_NUMA
6270 static int sched_domains_numa_levels;
6271 enum numa_topology_type sched_numa_topology_type;
6272 static int *sched_domains_numa_distance;
6273 int sched_max_numa_distance;
6274 static struct cpumask ***sched_domains_numa_masks;
6275 static int sched_domains_curr_level;
6276 #endif
6277
6278 /*
6279 * SD_flags allowed in topology descriptions.
6280 *
6281 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6282 * SD_SHARE_PKG_RESOURCES - describes shared caches
6283 * SD_NUMA - describes NUMA topologies
6284 * SD_SHARE_POWERDOMAIN - describes shared power domain
6285 *
6286 * Odd one out:
6287 * SD_ASYM_PACKING - describes SMT quirks
6288 */
6289 #define TOPOLOGY_SD_FLAGS \
6290 (SD_SHARE_CPUCAPACITY | \
6291 SD_SHARE_PKG_RESOURCES | \
6292 SD_NUMA | \
6293 SD_ASYM_PACKING | \
6294 SD_SHARE_POWERDOMAIN)
6295
6296 static struct sched_domain *
6297 sd_init(struct sched_domain_topology_level *tl, int cpu)
6298 {
6299 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6300 int sd_weight, sd_flags = 0;
6301
6302 #ifdef CONFIG_NUMA
6303 /*
6304 * Ugly hack to pass state to sd_numa_mask()...
6305 */
6306 sched_domains_curr_level = tl->numa_level;
6307 #endif
6308
6309 sd_weight = cpumask_weight(tl->mask(cpu));
6310
6311 if (tl->sd_flags)
6312 sd_flags = (*tl->sd_flags)();
6313 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6314 "wrong sd_flags in topology description\n"))
6315 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6316
6317 *sd = (struct sched_domain){
6318 .min_interval = sd_weight,
6319 .max_interval = 2*sd_weight,
6320 .busy_factor = 32,
6321 .imbalance_pct = 125,
6322
6323 .cache_nice_tries = 0,
6324 .busy_idx = 0,
6325 .idle_idx = 0,
6326 .newidle_idx = 0,
6327 .wake_idx = 0,
6328 .forkexec_idx = 0,
6329
6330 .flags = 1*SD_LOAD_BALANCE
6331 | 1*SD_BALANCE_NEWIDLE
6332 | 1*SD_BALANCE_EXEC
6333 | 1*SD_BALANCE_FORK
6334 | 0*SD_BALANCE_WAKE
6335 | 1*SD_WAKE_AFFINE
6336 | 0*SD_SHARE_CPUCAPACITY
6337 | 0*SD_SHARE_PKG_RESOURCES
6338 | 0*SD_SERIALIZE
6339 | 0*SD_PREFER_SIBLING
6340 | 0*SD_NUMA
6341 | sd_flags
6342 ,
6343
6344 .last_balance = jiffies,
6345 .balance_interval = sd_weight,
6346 .smt_gain = 0,
6347 .max_newidle_lb_cost = 0,
6348 .next_decay_max_lb_cost = jiffies,
6349 #ifdef CONFIG_SCHED_DEBUG
6350 .name = tl->name,
6351 #endif
6352 };
6353
6354 /*
6355 * Convert topological properties into behaviour.
6356 */
6357
6358 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6359 sd->flags |= SD_PREFER_SIBLING;
6360 sd->imbalance_pct = 110;
6361 sd->smt_gain = 1178; /* ~15% */
6362
6363 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6364 sd->imbalance_pct = 117;
6365 sd->cache_nice_tries = 1;
6366 sd->busy_idx = 2;
6367
6368 #ifdef CONFIG_NUMA
6369 } else if (sd->flags & SD_NUMA) {
6370 sd->cache_nice_tries = 2;
6371 sd->busy_idx = 3;
6372 sd->idle_idx = 2;
6373
6374 sd->flags |= SD_SERIALIZE;
6375 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6376 sd->flags &= ~(SD_BALANCE_EXEC |
6377 SD_BALANCE_FORK |
6378 SD_WAKE_AFFINE);
6379 }
6380
6381 #endif
6382 } else {
6383 sd->flags |= SD_PREFER_SIBLING;
6384 sd->cache_nice_tries = 1;
6385 sd->busy_idx = 2;
6386 sd->idle_idx = 1;
6387 }
6388
6389 sd->private = &tl->data;
6390
6391 return sd;
6392 }
6393
6394 /*
6395 * Topology list, bottom-up.
6396 */
6397 static struct sched_domain_topology_level default_topology[] = {
6398 #ifdef CONFIG_SCHED_SMT
6399 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6400 #endif
6401 #ifdef CONFIG_SCHED_MC
6402 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6403 #endif
6404 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6405 { NULL, },
6406 };
6407
6408 static struct sched_domain_topology_level *sched_domain_topology =
6409 default_topology;
6410
6411 #define for_each_sd_topology(tl) \
6412 for (tl = sched_domain_topology; tl->mask; tl++)
6413
6414 void set_sched_topology(struct sched_domain_topology_level *tl)
6415 {
6416 sched_domain_topology = tl;
6417 }
6418
6419 #ifdef CONFIG_NUMA
6420
6421 static const struct cpumask *sd_numa_mask(int cpu)
6422 {
6423 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6424 }
6425
6426 static void sched_numa_warn(const char *str)
6427 {
6428 static int done = false;
6429 int i,j;
6430
6431 if (done)
6432 return;
6433
6434 done = true;
6435
6436 printk(KERN_WARNING "ERROR: %s\n\n", str);
6437
6438 for (i = 0; i < nr_node_ids; i++) {
6439 printk(KERN_WARNING " ");
6440 for (j = 0; j < nr_node_ids; j++)
6441 printk(KERN_CONT "%02d ", node_distance(i,j));
6442 printk(KERN_CONT "\n");
6443 }
6444 printk(KERN_WARNING "\n");
6445 }
6446
6447 bool find_numa_distance(int distance)
6448 {
6449 int i;
6450
6451 if (distance == node_distance(0, 0))
6452 return true;
6453
6454 for (i = 0; i < sched_domains_numa_levels; i++) {
6455 if (sched_domains_numa_distance[i] == distance)
6456 return true;
6457 }
6458
6459 return false;
6460 }
6461
6462 /*
6463 * A system can have three types of NUMA topology:
6464 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6465 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6466 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6467 *
6468 * The difference between a glueless mesh topology and a backplane
6469 * topology lies in whether communication between not directly
6470 * connected nodes goes through intermediary nodes (where programs
6471 * could run), or through backplane controllers. This affects
6472 * placement of programs.
6473 *
6474 * The type of topology can be discerned with the following tests:
6475 * - If the maximum distance between any nodes is 1 hop, the system
6476 * is directly connected.
6477 * - If for two nodes A and B, located N > 1 hops away from each other,
6478 * there is an intermediary node C, which is < N hops away from both
6479 * nodes A and B, the system is a glueless mesh.
6480 */
6481 static void init_numa_topology_type(void)
6482 {
6483 int a, b, c, n;
6484
6485 n = sched_max_numa_distance;
6486
6487 if (sched_domains_numa_levels <= 1) {
6488 sched_numa_topology_type = NUMA_DIRECT;
6489 return;
6490 }
6491
6492 for_each_online_node(a) {
6493 for_each_online_node(b) {
6494 /* Find two nodes furthest removed from each other. */
6495 if (node_distance(a, b) < n)
6496 continue;
6497
6498 /* Is there an intermediary node between a and b? */
6499 for_each_online_node(c) {
6500 if (node_distance(a, c) < n &&
6501 node_distance(b, c) < n) {
6502 sched_numa_topology_type =
6503 NUMA_GLUELESS_MESH;
6504 return;
6505 }
6506 }
6507
6508 sched_numa_topology_type = NUMA_BACKPLANE;
6509 return;
6510 }
6511 }
6512 }
6513
6514 static void sched_init_numa(void)
6515 {
6516 int next_distance, curr_distance = node_distance(0, 0);
6517 struct sched_domain_topology_level *tl;
6518 int level = 0;
6519 int i, j, k;
6520
6521 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6522 if (!sched_domains_numa_distance)
6523 return;
6524
6525 /*
6526 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6527 * unique distances in the node_distance() table.
6528 *
6529 * Assumes node_distance(0,j) includes all distances in
6530 * node_distance(i,j) in order to avoid cubic time.
6531 */
6532 next_distance = curr_distance;
6533 for (i = 0; i < nr_node_ids; i++) {
6534 for (j = 0; j < nr_node_ids; j++) {
6535 for (k = 0; k < nr_node_ids; k++) {
6536 int distance = node_distance(i, k);
6537
6538 if (distance > curr_distance &&
6539 (distance < next_distance ||
6540 next_distance == curr_distance))
6541 next_distance = distance;
6542
6543 /*
6544 * While not a strong assumption it would be nice to know
6545 * about cases where if node A is connected to B, B is not
6546 * equally connected to A.
6547 */
6548 if (sched_debug() && node_distance(k, i) != distance)
6549 sched_numa_warn("Node-distance not symmetric");
6550
6551 if (sched_debug() && i && !find_numa_distance(distance))
6552 sched_numa_warn("Node-0 not representative");
6553 }
6554 if (next_distance != curr_distance) {
6555 sched_domains_numa_distance[level++] = next_distance;
6556 sched_domains_numa_levels = level;
6557 curr_distance = next_distance;
6558 } else break;
6559 }
6560
6561 /*
6562 * In case of sched_debug() we verify the above assumption.
6563 */
6564 if (!sched_debug())
6565 break;
6566 }
6567
6568 if (!level)
6569 return;
6570
6571 /*
6572 * 'level' contains the number of unique distances, excluding the
6573 * identity distance node_distance(i,i).
6574 *
6575 * The sched_domains_numa_distance[] array includes the actual distance
6576 * numbers.
6577 */
6578
6579 /*
6580 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6581 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6582 * the array will contain less then 'level' members. This could be
6583 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6584 * in other functions.
6585 *
6586 * We reset it to 'level' at the end of this function.
6587 */
6588 sched_domains_numa_levels = 0;
6589
6590 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6591 if (!sched_domains_numa_masks)
6592 return;
6593
6594 /*
6595 * Now for each level, construct a mask per node which contains all
6596 * cpus of nodes that are that many hops away from us.
6597 */
6598 for (i = 0; i < level; i++) {
6599 sched_domains_numa_masks[i] =
6600 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6601 if (!sched_domains_numa_masks[i])
6602 return;
6603
6604 for (j = 0; j < nr_node_ids; j++) {
6605 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6606 if (!mask)
6607 return;
6608
6609 sched_domains_numa_masks[i][j] = mask;
6610
6611 for_each_node(k) {
6612 if (node_distance(j, k) > sched_domains_numa_distance[i])
6613 continue;
6614
6615 cpumask_or(mask, mask, cpumask_of_node(k));
6616 }
6617 }
6618 }
6619
6620 /* Compute default topology size */
6621 for (i = 0; sched_domain_topology[i].mask; i++);
6622
6623 tl = kzalloc((i + level + 1) *
6624 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6625 if (!tl)
6626 return;
6627
6628 /*
6629 * Copy the default topology bits..
6630 */
6631 for (i = 0; sched_domain_topology[i].mask; i++)
6632 tl[i] = sched_domain_topology[i];
6633
6634 /*
6635 * .. and append 'j' levels of NUMA goodness.
6636 */
6637 for (j = 0; j < level; i++, j++) {
6638 tl[i] = (struct sched_domain_topology_level){
6639 .mask = sd_numa_mask,
6640 .sd_flags = cpu_numa_flags,
6641 .flags = SDTL_OVERLAP,
6642 .numa_level = j,
6643 SD_INIT_NAME(NUMA)
6644 };
6645 }
6646
6647 sched_domain_topology = tl;
6648
6649 sched_domains_numa_levels = level;
6650 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6651
6652 init_numa_topology_type();
6653 }
6654
6655 static void sched_domains_numa_masks_set(int cpu)
6656 {
6657 int i, j;
6658 int node = cpu_to_node(cpu);
6659
6660 for (i = 0; i < sched_domains_numa_levels; i++) {
6661 for (j = 0; j < nr_node_ids; j++) {
6662 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6663 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6664 }
6665 }
6666 }
6667
6668 static void sched_domains_numa_masks_clear(int cpu)
6669 {
6670 int i, j;
6671 for (i = 0; i < sched_domains_numa_levels; i++) {
6672 for (j = 0; j < nr_node_ids; j++)
6673 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6674 }
6675 }
6676
6677 /*
6678 * Update sched_domains_numa_masks[level][node] array when new cpus
6679 * are onlined.
6680 */
6681 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6682 unsigned long action,
6683 void *hcpu)
6684 {
6685 int cpu = (long)hcpu;
6686
6687 switch (action & ~CPU_TASKS_FROZEN) {
6688 case CPU_ONLINE:
6689 sched_domains_numa_masks_set(cpu);
6690 break;
6691
6692 case CPU_DEAD:
6693 sched_domains_numa_masks_clear(cpu);
6694 break;
6695
6696 default:
6697 return NOTIFY_DONE;
6698 }
6699
6700 return NOTIFY_OK;
6701 }
6702 #else
6703 static inline void sched_init_numa(void)
6704 {
6705 }
6706
6707 static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6708 unsigned long action,
6709 void *hcpu)
6710 {
6711 return 0;
6712 }
6713 #endif /* CONFIG_NUMA */
6714
6715 static int __sdt_alloc(const struct cpumask *cpu_map)
6716 {
6717 struct sched_domain_topology_level *tl;
6718 int j;
6719
6720 for_each_sd_topology(tl) {
6721 struct sd_data *sdd = &tl->data;
6722
6723 sdd->sd = alloc_percpu(struct sched_domain *);
6724 if (!sdd->sd)
6725 return -ENOMEM;
6726
6727 sdd->sg = alloc_percpu(struct sched_group *);
6728 if (!sdd->sg)
6729 return -ENOMEM;
6730
6731 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6732 if (!sdd->sgc)
6733 return -ENOMEM;
6734
6735 for_each_cpu(j, cpu_map) {
6736 struct sched_domain *sd;
6737 struct sched_group *sg;
6738 struct sched_group_capacity *sgc;
6739
6740 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6741 GFP_KERNEL, cpu_to_node(j));
6742 if (!sd)
6743 return -ENOMEM;
6744
6745 *per_cpu_ptr(sdd->sd, j) = sd;
6746
6747 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6748 GFP_KERNEL, cpu_to_node(j));
6749 if (!sg)
6750 return -ENOMEM;
6751
6752 sg->next = sg;
6753
6754 *per_cpu_ptr(sdd->sg, j) = sg;
6755
6756 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6757 GFP_KERNEL, cpu_to_node(j));
6758 if (!sgc)
6759 return -ENOMEM;
6760
6761 *per_cpu_ptr(sdd->sgc, j) = sgc;
6762 }
6763 }
6764
6765 return 0;
6766 }
6767
6768 static void __sdt_free(const struct cpumask *cpu_map)
6769 {
6770 struct sched_domain_topology_level *tl;
6771 int j;
6772
6773 for_each_sd_topology(tl) {
6774 struct sd_data *sdd = &tl->data;
6775
6776 for_each_cpu(j, cpu_map) {
6777 struct sched_domain *sd;
6778
6779 if (sdd->sd) {
6780 sd = *per_cpu_ptr(sdd->sd, j);
6781 if (sd && (sd->flags & SD_OVERLAP))
6782 free_sched_groups(sd->groups, 0);
6783 kfree(*per_cpu_ptr(sdd->sd, j));
6784 }
6785
6786 if (sdd->sg)
6787 kfree(*per_cpu_ptr(sdd->sg, j));
6788 if (sdd->sgc)
6789 kfree(*per_cpu_ptr(sdd->sgc, j));
6790 }
6791 free_percpu(sdd->sd);
6792 sdd->sd = NULL;
6793 free_percpu(sdd->sg);
6794 sdd->sg = NULL;
6795 free_percpu(sdd->sgc);
6796 sdd->sgc = NULL;
6797 }
6798 }
6799
6800 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6801 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6802 struct sched_domain *child, int cpu)
6803 {
6804 struct sched_domain *sd = sd_init(tl, cpu);
6805 if (!sd)
6806 return child;
6807
6808 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6809 if (child) {
6810 sd->level = child->level + 1;
6811 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6812 child->parent = sd;
6813 sd->child = child;
6814
6815 if (!cpumask_subset(sched_domain_span(child),
6816 sched_domain_span(sd))) {
6817 pr_err("BUG: arch topology borken\n");
6818 #ifdef CONFIG_SCHED_DEBUG
6819 pr_err(" the %s domain not a subset of the %s domain\n",
6820 child->name, sd->name);
6821 #endif
6822 /* Fixup, ensure @sd has at least @child cpus. */
6823 cpumask_or(sched_domain_span(sd),
6824 sched_domain_span(sd),
6825 sched_domain_span(child));
6826 }
6827
6828 }
6829 set_domain_attribute(sd, attr);
6830
6831 return sd;
6832 }
6833
6834 /*
6835 * Build sched domains for a given set of cpus and attach the sched domains
6836 * to the individual cpus
6837 */
6838 static int build_sched_domains(const struct cpumask *cpu_map,
6839 struct sched_domain_attr *attr)
6840 {
6841 enum s_alloc alloc_state;
6842 struct sched_domain *sd;
6843 struct s_data d;
6844 int i, ret = -ENOMEM;
6845
6846 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6847 if (alloc_state != sa_rootdomain)
6848 goto error;
6849
6850 /* Set up domains for cpus specified by the cpu_map. */
6851 for_each_cpu(i, cpu_map) {
6852 struct sched_domain_topology_level *tl;
6853
6854 sd = NULL;
6855 for_each_sd_topology(tl) {
6856 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6857 if (tl == sched_domain_topology)
6858 *per_cpu_ptr(d.sd, i) = sd;
6859 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6860 sd->flags |= SD_OVERLAP;
6861 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6862 break;
6863 }
6864 }
6865
6866 /* Build the groups for the domains */
6867 for_each_cpu(i, cpu_map) {
6868 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6869 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6870 if (sd->flags & SD_OVERLAP) {
6871 if (build_overlap_sched_groups(sd, i))
6872 goto error;
6873 } else {
6874 if (build_sched_groups(sd, i))
6875 goto error;
6876 }
6877 }
6878 }
6879
6880 /* Calculate CPU capacity for physical packages and nodes */
6881 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6882 if (!cpumask_test_cpu(i, cpu_map))
6883 continue;
6884
6885 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6886 claim_allocations(i, sd);
6887 init_sched_groups_capacity(i, sd);
6888 }
6889 }
6890
6891 /* Attach the domains */
6892 rcu_read_lock();
6893 for_each_cpu(i, cpu_map) {
6894 sd = *per_cpu_ptr(d.sd, i);
6895 cpu_attach_domain(sd, d.rd, i);
6896 }
6897 rcu_read_unlock();
6898
6899 ret = 0;
6900 error:
6901 __free_domain_allocs(&d, alloc_state, cpu_map);
6902 return ret;
6903 }
6904
6905 static cpumask_var_t *doms_cur; /* current sched domains */
6906 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6907 static struct sched_domain_attr *dattr_cur;
6908 /* attribues of custom domains in 'doms_cur' */
6909
6910 /*
6911 * Special case: If a kmalloc of a doms_cur partition (array of
6912 * cpumask) fails, then fallback to a single sched domain,
6913 * as determined by the single cpumask fallback_doms.
6914 */
6915 static cpumask_var_t fallback_doms;
6916
6917 /*
6918 * arch_update_cpu_topology lets virtualized architectures update the
6919 * cpu core maps. It is supposed to return 1 if the topology changed
6920 * or 0 if it stayed the same.
6921 */
6922 int __weak arch_update_cpu_topology(void)
6923 {
6924 return 0;
6925 }
6926
6927 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6928 {
6929 int i;
6930 cpumask_var_t *doms;
6931
6932 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6933 if (!doms)
6934 return NULL;
6935 for (i = 0; i < ndoms; i++) {
6936 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6937 free_sched_domains(doms, i);
6938 return NULL;
6939 }
6940 }
6941 return doms;
6942 }
6943
6944 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6945 {
6946 unsigned int i;
6947 for (i = 0; i < ndoms; i++)
6948 free_cpumask_var(doms[i]);
6949 kfree(doms);
6950 }
6951
6952 /*
6953 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6954 * For now this just excludes isolated cpus, but could be used to
6955 * exclude other special cases in the future.
6956 */
6957 static int init_sched_domains(const struct cpumask *cpu_map)
6958 {
6959 int err;
6960
6961 arch_update_cpu_topology();
6962 ndoms_cur = 1;
6963 doms_cur = alloc_sched_domains(ndoms_cur);
6964 if (!doms_cur)
6965 doms_cur = &fallback_doms;
6966 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6967 err = build_sched_domains(doms_cur[0], NULL);
6968 register_sched_domain_sysctl();
6969
6970 return err;
6971 }
6972
6973 /*
6974 * Detach sched domains from a group of cpus specified in cpu_map
6975 * These cpus will now be attached to the NULL domain
6976 */
6977 static void detach_destroy_domains(const struct cpumask *cpu_map)
6978 {
6979 int i;
6980
6981 rcu_read_lock();
6982 for_each_cpu(i, cpu_map)
6983 cpu_attach_domain(NULL, &def_root_domain, i);
6984 rcu_read_unlock();
6985 }
6986
6987 /* handle null as "default" */
6988 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6989 struct sched_domain_attr *new, int idx_new)
6990 {
6991 struct sched_domain_attr tmp;
6992
6993 /* fast path */
6994 if (!new && !cur)
6995 return 1;
6996
6997 tmp = SD_ATTR_INIT;
6998 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6999 new ? (new + idx_new) : &tmp,
7000 sizeof(struct sched_domain_attr));
7001 }
7002
7003 /*
7004 * Partition sched domains as specified by the 'ndoms_new'
7005 * cpumasks in the array doms_new[] of cpumasks. This compares
7006 * doms_new[] to the current sched domain partitioning, doms_cur[].
7007 * It destroys each deleted domain and builds each new domain.
7008 *
7009 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7010 * The masks don't intersect (don't overlap.) We should setup one
7011 * sched domain for each mask. CPUs not in any of the cpumasks will
7012 * not be load balanced. If the same cpumask appears both in the
7013 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7014 * it as it is.
7015 *
7016 * The passed in 'doms_new' should be allocated using
7017 * alloc_sched_domains. This routine takes ownership of it and will
7018 * free_sched_domains it when done with it. If the caller failed the
7019 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7020 * and partition_sched_domains() will fallback to the single partition
7021 * 'fallback_doms', it also forces the domains to be rebuilt.
7022 *
7023 * If doms_new == NULL it will be replaced with cpu_online_mask.
7024 * ndoms_new == 0 is a special case for destroying existing domains,
7025 * and it will not create the default domain.
7026 *
7027 * Call with hotplug lock held
7028 */
7029 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7030 struct sched_domain_attr *dattr_new)
7031 {
7032 int i, j, n;
7033 int new_topology;
7034
7035 mutex_lock(&sched_domains_mutex);
7036
7037 /* always unregister in case we don't destroy any domains */
7038 unregister_sched_domain_sysctl();
7039
7040 /* Let architecture update cpu core mappings. */
7041 new_topology = arch_update_cpu_topology();
7042
7043 n = doms_new ? ndoms_new : 0;
7044
7045 /* Destroy deleted domains */
7046 for (i = 0; i < ndoms_cur; i++) {
7047 for (j = 0; j < n && !new_topology; j++) {
7048 if (cpumask_equal(doms_cur[i], doms_new[j])
7049 && dattrs_equal(dattr_cur, i, dattr_new, j))
7050 goto match1;
7051 }
7052 /* no match - a current sched domain not in new doms_new[] */
7053 detach_destroy_domains(doms_cur[i]);
7054 match1:
7055 ;
7056 }
7057
7058 n = ndoms_cur;
7059 if (doms_new == NULL) {
7060 n = 0;
7061 doms_new = &fallback_doms;
7062 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7063 WARN_ON_ONCE(dattr_new);
7064 }
7065
7066 /* Build new domains */
7067 for (i = 0; i < ndoms_new; i++) {
7068 for (j = 0; j < n && !new_topology; j++) {
7069 if (cpumask_equal(doms_new[i], doms_cur[j])
7070 && dattrs_equal(dattr_new, i, dattr_cur, j))
7071 goto match2;
7072 }
7073 /* no match - add a new doms_new */
7074 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7075 match2:
7076 ;
7077 }
7078
7079 /* Remember the new sched domains */
7080 if (doms_cur != &fallback_doms)
7081 free_sched_domains(doms_cur, ndoms_cur);
7082 kfree(dattr_cur); /* kfree(NULL) is safe */
7083 doms_cur = doms_new;
7084 dattr_cur = dattr_new;
7085 ndoms_cur = ndoms_new;
7086
7087 register_sched_domain_sysctl();
7088
7089 mutex_unlock(&sched_domains_mutex);
7090 }
7091
7092 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7093
7094 /*
7095 * Update cpusets according to cpu_active mask. If cpusets are
7096 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7097 * around partition_sched_domains().
7098 *
7099 * If we come here as part of a suspend/resume, don't touch cpusets because we
7100 * want to restore it back to its original state upon resume anyway.
7101 */
7102 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7103 void *hcpu)
7104 {
7105 switch (action) {
7106 case CPU_ONLINE_FROZEN:
7107 case CPU_DOWN_FAILED_FROZEN:
7108
7109 /*
7110 * num_cpus_frozen tracks how many CPUs are involved in suspend
7111 * resume sequence. As long as this is not the last online
7112 * operation in the resume sequence, just build a single sched
7113 * domain, ignoring cpusets.
7114 */
7115 num_cpus_frozen--;
7116 if (likely(num_cpus_frozen)) {
7117 partition_sched_domains(1, NULL, NULL);
7118 break;
7119 }
7120
7121 /*
7122 * This is the last CPU online operation. So fall through and
7123 * restore the original sched domains by considering the
7124 * cpuset configurations.
7125 */
7126
7127 case CPU_ONLINE:
7128 cpuset_update_active_cpus(true);
7129 break;
7130 default:
7131 return NOTIFY_DONE;
7132 }
7133 return NOTIFY_OK;
7134 }
7135
7136 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7137 void *hcpu)
7138 {
7139 unsigned long flags;
7140 long cpu = (long)hcpu;
7141 struct dl_bw *dl_b;
7142 bool overflow;
7143 int cpus;
7144
7145 switch (action) {
7146 case CPU_DOWN_PREPARE:
7147 rcu_read_lock_sched();
7148 dl_b = dl_bw_of(cpu);
7149
7150 raw_spin_lock_irqsave(&dl_b->lock, flags);
7151 cpus = dl_bw_cpus(cpu);
7152 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7153 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7154
7155 rcu_read_unlock_sched();
7156
7157 if (overflow)
7158 return notifier_from_errno(-EBUSY);
7159 cpuset_update_active_cpus(false);
7160 break;
7161 case CPU_DOWN_PREPARE_FROZEN:
7162 num_cpus_frozen++;
7163 partition_sched_domains(1, NULL, NULL);
7164 break;
7165 default:
7166 return NOTIFY_DONE;
7167 }
7168 return NOTIFY_OK;
7169 }
7170
7171 void __init sched_init_smp(void)
7172 {
7173 cpumask_var_t non_isolated_cpus;
7174
7175 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7176 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7177
7178 sched_init_numa();
7179
7180 /*
7181 * There's no userspace yet to cause hotplug operations; hence all the
7182 * cpu masks are stable and all blatant races in the below code cannot
7183 * happen.
7184 */
7185 mutex_lock(&sched_domains_mutex);
7186 init_sched_domains(cpu_active_mask);
7187 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7188 if (cpumask_empty(non_isolated_cpus))
7189 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7190 mutex_unlock(&sched_domains_mutex);
7191
7192 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7193 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7194 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7195
7196 init_hrtick();
7197
7198 /* Move init over to a non-isolated CPU */
7199 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7200 BUG();
7201 sched_init_granularity();
7202 free_cpumask_var(non_isolated_cpus);
7203
7204 init_sched_rt_class();
7205 init_sched_dl_class();
7206 }
7207 #else
7208 void __init sched_init_smp(void)
7209 {
7210 sched_init_granularity();
7211 }
7212 #endif /* CONFIG_SMP */
7213
7214 int in_sched_functions(unsigned long addr)
7215 {
7216 return in_lock_functions(addr) ||
7217 (addr >= (unsigned long)__sched_text_start
7218 && addr < (unsigned long)__sched_text_end);
7219 }
7220
7221 #ifdef CONFIG_CGROUP_SCHED
7222 /*
7223 * Default task group.
7224 * Every task in system belongs to this group at bootup.
7225 */
7226 struct task_group root_task_group;
7227 LIST_HEAD(task_groups);
7228
7229 /* Cacheline aligned slab cache for task_group */
7230 static struct kmem_cache *task_group_cache __read_mostly;
7231 #endif
7232
7233 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7234
7235 void __init sched_init(void)
7236 {
7237 int i, j;
7238 unsigned long alloc_size = 0, ptr;
7239
7240 #ifdef CONFIG_FAIR_GROUP_SCHED
7241 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7242 #endif
7243 #ifdef CONFIG_RT_GROUP_SCHED
7244 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7245 #endif
7246 if (alloc_size) {
7247 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7248
7249 #ifdef CONFIG_FAIR_GROUP_SCHED
7250 root_task_group.se = (struct sched_entity **)ptr;
7251 ptr += nr_cpu_ids * sizeof(void **);
7252
7253 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7254 ptr += nr_cpu_ids * sizeof(void **);
7255
7256 #endif /* CONFIG_FAIR_GROUP_SCHED */
7257 #ifdef CONFIG_RT_GROUP_SCHED
7258 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7259 ptr += nr_cpu_ids * sizeof(void **);
7260
7261 root_task_group.rt_rq = (struct rt_rq **)ptr;
7262 ptr += nr_cpu_ids * sizeof(void **);
7263
7264 #endif /* CONFIG_RT_GROUP_SCHED */
7265 }
7266 #ifdef CONFIG_CPUMASK_OFFSTACK
7267 for_each_possible_cpu(i) {
7268 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7269 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7270 }
7271 #endif /* CONFIG_CPUMASK_OFFSTACK */
7272
7273 init_rt_bandwidth(&def_rt_bandwidth,
7274 global_rt_period(), global_rt_runtime());
7275 init_dl_bandwidth(&def_dl_bandwidth,
7276 global_rt_period(), global_rt_runtime());
7277
7278 #ifdef CONFIG_SMP
7279 init_defrootdomain();
7280 #endif
7281
7282 #ifdef CONFIG_RT_GROUP_SCHED
7283 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7284 global_rt_period(), global_rt_runtime());
7285 #endif /* CONFIG_RT_GROUP_SCHED */
7286
7287 #ifdef CONFIG_CGROUP_SCHED
7288 task_group_cache = KMEM_CACHE(task_group, 0);
7289
7290 list_add(&root_task_group.list, &task_groups);
7291 INIT_LIST_HEAD(&root_task_group.children);
7292 INIT_LIST_HEAD(&root_task_group.siblings);
7293 autogroup_init(&init_task);
7294 #endif /* CONFIG_CGROUP_SCHED */
7295
7296 for_each_possible_cpu(i) {
7297 struct rq *rq;
7298
7299 rq = cpu_rq(i);
7300 raw_spin_lock_init(&rq->lock);
7301 rq->nr_running = 0;
7302 rq->calc_load_active = 0;
7303 rq->calc_load_update = jiffies + LOAD_FREQ;
7304 init_cfs_rq(&rq->cfs);
7305 init_rt_rq(&rq->rt);
7306 init_dl_rq(&rq->dl);
7307 #ifdef CONFIG_FAIR_GROUP_SCHED
7308 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7309 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7310 /*
7311 * How much cpu bandwidth does root_task_group get?
7312 *
7313 * In case of task-groups formed thr' the cgroup filesystem, it
7314 * gets 100% of the cpu resources in the system. This overall
7315 * system cpu resource is divided among the tasks of
7316 * root_task_group and its child task-groups in a fair manner,
7317 * based on each entity's (task or task-group's) weight
7318 * (se->load.weight).
7319 *
7320 * In other words, if root_task_group has 10 tasks of weight
7321 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7322 * then A0's share of the cpu resource is:
7323 *
7324 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7325 *
7326 * We achieve this by letting root_task_group's tasks sit
7327 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7328 */
7329 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7330 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7331 #endif /* CONFIG_FAIR_GROUP_SCHED */
7332
7333 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7334 #ifdef CONFIG_RT_GROUP_SCHED
7335 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7336 #endif
7337
7338 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7339 rq->cpu_load[j] = 0;
7340
7341 rq->last_load_update_tick = jiffies;
7342
7343 #ifdef CONFIG_SMP
7344 rq->sd = NULL;
7345 rq->rd = NULL;
7346 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7347 rq->balance_callback = NULL;
7348 rq->active_balance = 0;
7349 rq->next_balance = jiffies;
7350 rq->push_cpu = 0;
7351 rq->cpu = i;
7352 rq->online = 0;
7353 rq->idle_stamp = 0;
7354 rq->avg_idle = 2*sysctl_sched_migration_cost;
7355 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7356
7357 INIT_LIST_HEAD(&rq->cfs_tasks);
7358
7359 rq_attach_root(rq, &def_root_domain);
7360 #ifdef CONFIG_NO_HZ_COMMON
7361 rq->nohz_flags = 0;
7362 #endif
7363 #ifdef CONFIG_NO_HZ_FULL
7364 rq->last_sched_tick = 0;
7365 #endif
7366 #endif
7367 init_rq_hrtick(rq);
7368 atomic_set(&rq->nr_iowait, 0);
7369 }
7370
7371 set_load_weight(&init_task);
7372
7373 #ifdef CONFIG_PREEMPT_NOTIFIERS
7374 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7375 #endif
7376
7377 /*
7378 * The boot idle thread does lazy MMU switching as well:
7379 */
7380 atomic_inc(&init_mm.mm_count);
7381 enter_lazy_tlb(&init_mm, current);
7382
7383 /*
7384 * During early bootup we pretend to be a normal task:
7385 */
7386 current->sched_class = &fair_sched_class;
7387
7388 /*
7389 * Make us the idle thread. Technically, schedule() should not be
7390 * called from this thread, however somewhere below it might be,
7391 * but because we are the idle thread, we just pick up running again
7392 * when this runqueue becomes "idle".
7393 */
7394 init_idle(current, smp_processor_id());
7395
7396 calc_load_update = jiffies + LOAD_FREQ;
7397
7398 #ifdef CONFIG_SMP
7399 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7400 /* May be allocated at isolcpus cmdline parse time */
7401 if (cpu_isolated_map == NULL)
7402 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7403 idle_thread_set_boot_cpu();
7404 set_cpu_rq_start_time();
7405 #endif
7406 init_sched_fair_class();
7407
7408 scheduler_running = 1;
7409 }
7410
7411 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7412 static inline int preempt_count_equals(int preempt_offset)
7413 {
7414 int nested = preempt_count() + rcu_preempt_depth();
7415
7416 return (nested == preempt_offset);
7417 }
7418
7419 void __might_sleep(const char *file, int line, int preempt_offset)
7420 {
7421 /*
7422 * Blocking primitives will set (and therefore destroy) current->state,
7423 * since we will exit with TASK_RUNNING make sure we enter with it,
7424 * otherwise we will destroy state.
7425 */
7426 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7427 "do not call blocking ops when !TASK_RUNNING; "
7428 "state=%lx set at [<%p>] %pS\n",
7429 current->state,
7430 (void *)current->task_state_change,
7431 (void *)current->task_state_change);
7432
7433 ___might_sleep(file, line, preempt_offset);
7434 }
7435 EXPORT_SYMBOL(__might_sleep);
7436
7437 void ___might_sleep(const char *file, int line, int preempt_offset)
7438 {
7439 static unsigned long prev_jiffy; /* ratelimiting */
7440
7441 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7442 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7443 !is_idle_task(current)) ||
7444 system_state != SYSTEM_RUNNING || oops_in_progress)
7445 return;
7446 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7447 return;
7448 prev_jiffy = jiffies;
7449
7450 printk(KERN_ERR
7451 "BUG: sleeping function called from invalid context at %s:%d\n",
7452 file, line);
7453 printk(KERN_ERR
7454 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7455 in_atomic(), irqs_disabled(),
7456 current->pid, current->comm);
7457
7458 if (task_stack_end_corrupted(current))
7459 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7460
7461 debug_show_held_locks(current);
7462 if (irqs_disabled())
7463 print_irqtrace_events(current);
7464 #ifdef CONFIG_DEBUG_PREEMPT
7465 if (!preempt_count_equals(preempt_offset)) {
7466 pr_err("Preemption disabled at:");
7467 print_ip_sym(current->preempt_disable_ip);
7468 pr_cont("\n");
7469 }
7470 #endif
7471 dump_stack();
7472 }
7473 EXPORT_SYMBOL(___might_sleep);
7474 #endif
7475
7476 #ifdef CONFIG_MAGIC_SYSRQ
7477 void normalize_rt_tasks(void)
7478 {
7479 struct task_struct *g, *p;
7480 struct sched_attr attr = {
7481 .sched_policy = SCHED_NORMAL,
7482 };
7483
7484 read_lock(&tasklist_lock);
7485 for_each_process_thread(g, p) {
7486 /*
7487 * Only normalize user tasks:
7488 */
7489 if (p->flags & PF_KTHREAD)
7490 continue;
7491
7492 p->se.exec_start = 0;
7493 #ifdef CONFIG_SCHEDSTATS
7494 p->se.statistics.wait_start = 0;
7495 p->se.statistics.sleep_start = 0;
7496 p->se.statistics.block_start = 0;
7497 #endif
7498
7499 if (!dl_task(p) && !rt_task(p)) {
7500 /*
7501 * Renice negative nice level userspace
7502 * tasks back to 0:
7503 */
7504 if (task_nice(p) < 0)
7505 set_user_nice(p, 0);
7506 continue;
7507 }
7508
7509 __sched_setscheduler(p, &attr, false, false);
7510 }
7511 read_unlock(&tasklist_lock);
7512 }
7513
7514 #endif /* CONFIG_MAGIC_SYSRQ */
7515
7516 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7517 /*
7518 * These functions are only useful for the IA64 MCA handling, or kdb.
7519 *
7520 * They can only be called when the whole system has been
7521 * stopped - every CPU needs to be quiescent, and no scheduling
7522 * activity can take place. Using them for anything else would
7523 * be a serious bug, and as a result, they aren't even visible
7524 * under any other configuration.
7525 */
7526
7527 /**
7528 * curr_task - return the current task for a given cpu.
7529 * @cpu: the processor in question.
7530 *
7531 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7532 *
7533 * Return: The current task for @cpu.
7534 */
7535 struct task_struct *curr_task(int cpu)
7536 {
7537 return cpu_curr(cpu);
7538 }
7539
7540 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7541
7542 #ifdef CONFIG_IA64
7543 /**
7544 * set_curr_task - set the current task for a given cpu.
7545 * @cpu: the processor in question.
7546 * @p: the task pointer to set.
7547 *
7548 * Description: This function must only be used when non-maskable interrupts
7549 * are serviced on a separate stack. It allows the architecture to switch the
7550 * notion of the current task on a cpu in a non-blocking manner. This function
7551 * must be called with all CPU's synchronized, and interrupts disabled, the
7552 * and caller must save the original value of the current task (see
7553 * curr_task() above) and restore that value before reenabling interrupts and
7554 * re-starting the system.
7555 *
7556 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7557 */
7558 void set_curr_task(int cpu, struct task_struct *p)
7559 {
7560 cpu_curr(cpu) = p;
7561 }
7562
7563 #endif
7564
7565 #ifdef CONFIG_CGROUP_SCHED
7566 /* task_group_lock serializes the addition/removal of task groups */
7567 static DEFINE_SPINLOCK(task_group_lock);
7568
7569 static void sched_free_group(struct task_group *tg)
7570 {
7571 free_fair_sched_group(tg);
7572 free_rt_sched_group(tg);
7573 autogroup_free(tg);
7574 kmem_cache_free(task_group_cache, tg);
7575 }
7576
7577 /* allocate runqueue etc for a new task group */
7578 struct task_group *sched_create_group(struct task_group *parent)
7579 {
7580 struct task_group *tg;
7581
7582 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7583 if (!tg)
7584 return ERR_PTR(-ENOMEM);
7585
7586 if (!alloc_fair_sched_group(tg, parent))
7587 goto err;
7588
7589 if (!alloc_rt_sched_group(tg, parent))
7590 goto err;
7591
7592 return tg;
7593
7594 err:
7595 sched_free_group(tg);
7596 return ERR_PTR(-ENOMEM);
7597 }
7598
7599 void sched_online_group(struct task_group *tg, struct task_group *parent)
7600 {
7601 unsigned long flags;
7602
7603 spin_lock_irqsave(&task_group_lock, flags);
7604 list_add_rcu(&tg->list, &task_groups);
7605
7606 WARN_ON(!parent); /* root should already exist */
7607
7608 tg->parent = parent;
7609 INIT_LIST_HEAD(&tg->children);
7610 list_add_rcu(&tg->siblings, &parent->children);
7611 spin_unlock_irqrestore(&task_group_lock, flags);
7612 }
7613
7614 /* rcu callback to free various structures associated with a task group */
7615 static void sched_free_group_rcu(struct rcu_head *rhp)
7616 {
7617 /* now it should be safe to free those cfs_rqs */
7618 sched_free_group(container_of(rhp, struct task_group, rcu));
7619 }
7620
7621 void sched_destroy_group(struct task_group *tg)
7622 {
7623 /* wait for possible concurrent references to cfs_rqs complete */
7624 call_rcu(&tg->rcu, sched_free_group_rcu);
7625 }
7626
7627 void sched_offline_group(struct task_group *tg)
7628 {
7629 unsigned long flags;
7630
7631 /* end participation in shares distribution */
7632 unregister_fair_sched_group(tg);
7633
7634 spin_lock_irqsave(&task_group_lock, flags);
7635 list_del_rcu(&tg->list);
7636 list_del_rcu(&tg->siblings);
7637 spin_unlock_irqrestore(&task_group_lock, flags);
7638 }
7639
7640 /* change task's runqueue when it moves between groups.
7641 * The caller of this function should have put the task in its new group
7642 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7643 * reflect its new group.
7644 */
7645 void sched_move_task(struct task_struct *tsk)
7646 {
7647 struct task_group *tg;
7648 int queued, running;
7649 unsigned long flags;
7650 struct rq *rq;
7651
7652 rq = task_rq_lock(tsk, &flags);
7653
7654 running = task_current(rq, tsk);
7655 queued = task_on_rq_queued(tsk);
7656
7657 if (queued)
7658 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
7659 if (unlikely(running))
7660 put_prev_task(rq, tsk);
7661
7662 /*
7663 * All callers are synchronized by task_rq_lock(); we do not use RCU
7664 * which is pointless here. Thus, we pass "true" to task_css_check()
7665 * to prevent lockdep warnings.
7666 */
7667 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7668 struct task_group, css);
7669 tg = autogroup_task_group(tsk, tg);
7670 tsk->sched_task_group = tg;
7671
7672 #ifdef CONFIG_FAIR_GROUP_SCHED
7673 if (tsk->sched_class->task_move_group)
7674 tsk->sched_class->task_move_group(tsk);
7675 else
7676 #endif
7677 set_task_rq(tsk, task_cpu(tsk));
7678
7679 if (unlikely(running))
7680 tsk->sched_class->set_curr_task(rq);
7681 if (queued)
7682 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
7683
7684 task_rq_unlock(rq, tsk, &flags);
7685 }
7686 #endif /* CONFIG_CGROUP_SCHED */
7687
7688 #ifdef CONFIG_RT_GROUP_SCHED
7689 /*
7690 * Ensure that the real time constraints are schedulable.
7691 */
7692 static DEFINE_MUTEX(rt_constraints_mutex);
7693
7694 /* Must be called with tasklist_lock held */
7695 static inline int tg_has_rt_tasks(struct task_group *tg)
7696 {
7697 struct task_struct *g, *p;
7698
7699 /*
7700 * Autogroups do not have RT tasks; see autogroup_create().
7701 */
7702 if (task_group_is_autogroup(tg))
7703 return 0;
7704
7705 for_each_process_thread(g, p) {
7706 if (rt_task(p) && task_group(p) == tg)
7707 return 1;
7708 }
7709
7710 return 0;
7711 }
7712
7713 struct rt_schedulable_data {
7714 struct task_group *tg;
7715 u64 rt_period;
7716 u64 rt_runtime;
7717 };
7718
7719 static int tg_rt_schedulable(struct task_group *tg, void *data)
7720 {
7721 struct rt_schedulable_data *d = data;
7722 struct task_group *child;
7723 unsigned long total, sum = 0;
7724 u64 period, runtime;
7725
7726 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7727 runtime = tg->rt_bandwidth.rt_runtime;
7728
7729 if (tg == d->tg) {
7730 period = d->rt_period;
7731 runtime = d->rt_runtime;
7732 }
7733
7734 /*
7735 * Cannot have more runtime than the period.
7736 */
7737 if (runtime > period && runtime != RUNTIME_INF)
7738 return -EINVAL;
7739
7740 /*
7741 * Ensure we don't starve existing RT tasks.
7742 */
7743 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7744 return -EBUSY;
7745
7746 total = to_ratio(period, runtime);
7747
7748 /*
7749 * Nobody can have more than the global setting allows.
7750 */
7751 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7752 return -EINVAL;
7753
7754 /*
7755 * The sum of our children's runtime should not exceed our own.
7756 */
7757 list_for_each_entry_rcu(child, &tg->children, siblings) {
7758 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7759 runtime = child->rt_bandwidth.rt_runtime;
7760
7761 if (child == d->tg) {
7762 period = d->rt_period;
7763 runtime = d->rt_runtime;
7764 }
7765
7766 sum += to_ratio(period, runtime);
7767 }
7768
7769 if (sum > total)
7770 return -EINVAL;
7771
7772 return 0;
7773 }
7774
7775 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7776 {
7777 int ret;
7778
7779 struct rt_schedulable_data data = {
7780 .tg = tg,
7781 .rt_period = period,
7782 .rt_runtime = runtime,
7783 };
7784
7785 rcu_read_lock();
7786 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7787 rcu_read_unlock();
7788
7789 return ret;
7790 }
7791
7792 static int tg_set_rt_bandwidth(struct task_group *tg,
7793 u64 rt_period, u64 rt_runtime)
7794 {
7795 int i, err = 0;
7796
7797 /*
7798 * Disallowing the root group RT runtime is BAD, it would disallow the
7799 * kernel creating (and or operating) RT threads.
7800 */
7801 if (tg == &root_task_group && rt_runtime == 0)
7802 return -EINVAL;
7803
7804 /* No period doesn't make any sense. */
7805 if (rt_period == 0)
7806 return -EINVAL;
7807
7808 mutex_lock(&rt_constraints_mutex);
7809 read_lock(&tasklist_lock);
7810 err = __rt_schedulable(tg, rt_period, rt_runtime);
7811 if (err)
7812 goto unlock;
7813
7814 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7815 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7816 tg->rt_bandwidth.rt_runtime = rt_runtime;
7817
7818 for_each_possible_cpu(i) {
7819 struct rt_rq *rt_rq = tg->rt_rq[i];
7820
7821 raw_spin_lock(&rt_rq->rt_runtime_lock);
7822 rt_rq->rt_runtime = rt_runtime;
7823 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7824 }
7825 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7826 unlock:
7827 read_unlock(&tasklist_lock);
7828 mutex_unlock(&rt_constraints_mutex);
7829
7830 return err;
7831 }
7832
7833 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7834 {
7835 u64 rt_runtime, rt_period;
7836
7837 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7838 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7839 if (rt_runtime_us < 0)
7840 rt_runtime = RUNTIME_INF;
7841
7842 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7843 }
7844
7845 static long sched_group_rt_runtime(struct task_group *tg)
7846 {
7847 u64 rt_runtime_us;
7848
7849 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7850 return -1;
7851
7852 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7853 do_div(rt_runtime_us, NSEC_PER_USEC);
7854 return rt_runtime_us;
7855 }
7856
7857 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7858 {
7859 u64 rt_runtime, rt_period;
7860
7861 rt_period = rt_period_us * NSEC_PER_USEC;
7862 rt_runtime = tg->rt_bandwidth.rt_runtime;
7863
7864 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7865 }
7866
7867 static long sched_group_rt_period(struct task_group *tg)
7868 {
7869 u64 rt_period_us;
7870
7871 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7872 do_div(rt_period_us, NSEC_PER_USEC);
7873 return rt_period_us;
7874 }
7875 #endif /* CONFIG_RT_GROUP_SCHED */
7876
7877 #ifdef CONFIG_RT_GROUP_SCHED
7878 static int sched_rt_global_constraints(void)
7879 {
7880 int ret = 0;
7881
7882 mutex_lock(&rt_constraints_mutex);
7883 read_lock(&tasklist_lock);
7884 ret = __rt_schedulable(NULL, 0, 0);
7885 read_unlock(&tasklist_lock);
7886 mutex_unlock(&rt_constraints_mutex);
7887
7888 return ret;
7889 }
7890
7891 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7892 {
7893 /* Don't accept realtime tasks when there is no way for them to run */
7894 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7895 return 0;
7896
7897 return 1;
7898 }
7899
7900 #else /* !CONFIG_RT_GROUP_SCHED */
7901 static int sched_rt_global_constraints(void)
7902 {
7903 unsigned long flags;
7904 int i, ret = 0;
7905
7906 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7907 for_each_possible_cpu(i) {
7908 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7909
7910 raw_spin_lock(&rt_rq->rt_runtime_lock);
7911 rt_rq->rt_runtime = global_rt_runtime();
7912 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7913 }
7914 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7915
7916 return ret;
7917 }
7918 #endif /* CONFIG_RT_GROUP_SCHED */
7919
7920 static int sched_dl_global_validate(void)
7921 {
7922 u64 runtime = global_rt_runtime();
7923 u64 period = global_rt_period();
7924 u64 new_bw = to_ratio(period, runtime);
7925 struct dl_bw *dl_b;
7926 int cpu, ret = 0;
7927 unsigned long flags;
7928
7929 /*
7930 * Here we want to check the bandwidth not being set to some
7931 * value smaller than the currently allocated bandwidth in
7932 * any of the root_domains.
7933 *
7934 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7935 * cycling on root_domains... Discussion on different/better
7936 * solutions is welcome!
7937 */
7938 for_each_possible_cpu(cpu) {
7939 rcu_read_lock_sched();
7940 dl_b = dl_bw_of(cpu);
7941
7942 raw_spin_lock_irqsave(&dl_b->lock, flags);
7943 if (new_bw < dl_b->total_bw)
7944 ret = -EBUSY;
7945 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7946
7947 rcu_read_unlock_sched();
7948
7949 if (ret)
7950 break;
7951 }
7952
7953 return ret;
7954 }
7955
7956 static void sched_dl_do_global(void)
7957 {
7958 u64 new_bw = -1;
7959 struct dl_bw *dl_b;
7960 int cpu;
7961 unsigned long flags;
7962
7963 def_dl_bandwidth.dl_period = global_rt_period();
7964 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7965
7966 if (global_rt_runtime() != RUNTIME_INF)
7967 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7968
7969 /*
7970 * FIXME: As above...
7971 */
7972 for_each_possible_cpu(cpu) {
7973 rcu_read_lock_sched();
7974 dl_b = dl_bw_of(cpu);
7975
7976 raw_spin_lock_irqsave(&dl_b->lock, flags);
7977 dl_b->bw = new_bw;
7978 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7979
7980 rcu_read_unlock_sched();
7981 }
7982 }
7983
7984 static int sched_rt_global_validate(void)
7985 {
7986 if (sysctl_sched_rt_period <= 0)
7987 return -EINVAL;
7988
7989 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7990 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7991 return -EINVAL;
7992
7993 return 0;
7994 }
7995
7996 static void sched_rt_do_global(void)
7997 {
7998 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7999 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8000 }
8001
8002 int sched_rt_handler(struct ctl_table *table, int write,
8003 void __user *buffer, size_t *lenp,
8004 loff_t *ppos)
8005 {
8006 int old_period, old_runtime;
8007 static DEFINE_MUTEX(mutex);
8008 int ret;
8009
8010 mutex_lock(&mutex);
8011 old_period = sysctl_sched_rt_period;
8012 old_runtime = sysctl_sched_rt_runtime;
8013
8014 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8015
8016 if (!ret && write) {
8017 ret = sched_rt_global_validate();
8018 if (ret)
8019 goto undo;
8020
8021 ret = sched_dl_global_validate();
8022 if (ret)
8023 goto undo;
8024
8025 ret = sched_rt_global_constraints();
8026 if (ret)
8027 goto undo;
8028
8029 sched_rt_do_global();
8030 sched_dl_do_global();
8031 }
8032 if (0) {
8033 undo:
8034 sysctl_sched_rt_period = old_period;
8035 sysctl_sched_rt_runtime = old_runtime;
8036 }
8037 mutex_unlock(&mutex);
8038
8039 return ret;
8040 }
8041
8042 int sched_rr_handler(struct ctl_table *table, int write,
8043 void __user *buffer, size_t *lenp,
8044 loff_t *ppos)
8045 {
8046 int ret;
8047 static DEFINE_MUTEX(mutex);
8048
8049 mutex_lock(&mutex);
8050 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8051 /* make sure that internally we keep jiffies */
8052 /* also, writing zero resets timeslice to default */
8053 if (!ret && write) {
8054 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8055 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8056 }
8057 mutex_unlock(&mutex);
8058 return ret;
8059 }
8060
8061 #ifdef CONFIG_CGROUP_SCHED
8062
8063 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8064 {
8065 return css ? container_of(css, struct task_group, css) : NULL;
8066 }
8067
8068 static struct cgroup_subsys_state *
8069 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8070 {
8071 struct task_group *parent = css_tg(parent_css);
8072 struct task_group *tg;
8073
8074 if (!parent) {
8075 /* This is early initialization for the top cgroup */
8076 return &root_task_group.css;
8077 }
8078
8079 tg = sched_create_group(parent);
8080 if (IS_ERR(tg))
8081 return ERR_PTR(-ENOMEM);
8082
8083 sched_online_group(tg, parent);
8084
8085 return &tg->css;
8086 }
8087
8088 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8089 {
8090 struct task_group *tg = css_tg(css);
8091
8092 sched_offline_group(tg);
8093 }
8094
8095 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8096 {
8097 struct task_group *tg = css_tg(css);
8098
8099 /*
8100 * Relies on the RCU grace period between css_released() and this.
8101 */
8102 sched_free_group(tg);
8103 }
8104
8105 static void cpu_cgroup_fork(struct task_struct *task)
8106 {
8107 sched_move_task(task);
8108 }
8109
8110 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8111 {
8112 struct task_struct *task;
8113 struct cgroup_subsys_state *css;
8114
8115 cgroup_taskset_for_each(task, css, tset) {
8116 #ifdef CONFIG_RT_GROUP_SCHED
8117 if (!sched_rt_can_attach(css_tg(css), task))
8118 return -EINVAL;
8119 #else
8120 /* We don't support RT-tasks being in separate groups */
8121 if (task->sched_class != &fair_sched_class)
8122 return -EINVAL;
8123 #endif
8124 }
8125 return 0;
8126 }
8127
8128 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8129 {
8130 struct task_struct *task;
8131 struct cgroup_subsys_state *css;
8132
8133 cgroup_taskset_for_each(task, css, tset)
8134 sched_move_task(task);
8135 }
8136
8137 #ifdef CONFIG_FAIR_GROUP_SCHED
8138 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8139 struct cftype *cftype, u64 shareval)
8140 {
8141 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8142 }
8143
8144 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8145 struct cftype *cft)
8146 {
8147 struct task_group *tg = css_tg(css);
8148
8149 return (u64) scale_load_down(tg->shares);
8150 }
8151
8152 #ifdef CONFIG_CFS_BANDWIDTH
8153 static DEFINE_MUTEX(cfs_constraints_mutex);
8154
8155 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8156 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8157
8158 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8159
8160 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8161 {
8162 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8163 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8164
8165 if (tg == &root_task_group)
8166 return -EINVAL;
8167
8168 /*
8169 * Ensure we have at some amount of bandwidth every period. This is
8170 * to prevent reaching a state of large arrears when throttled via
8171 * entity_tick() resulting in prolonged exit starvation.
8172 */
8173 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8174 return -EINVAL;
8175
8176 /*
8177 * Likewise, bound things on the otherside by preventing insane quota
8178 * periods. This also allows us to normalize in computing quota
8179 * feasibility.
8180 */
8181 if (period > max_cfs_quota_period)
8182 return -EINVAL;
8183
8184 /*
8185 * Prevent race between setting of cfs_rq->runtime_enabled and
8186 * unthrottle_offline_cfs_rqs().
8187 */
8188 get_online_cpus();
8189 mutex_lock(&cfs_constraints_mutex);
8190 ret = __cfs_schedulable(tg, period, quota);
8191 if (ret)
8192 goto out_unlock;
8193
8194 runtime_enabled = quota != RUNTIME_INF;
8195 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8196 /*
8197 * If we need to toggle cfs_bandwidth_used, off->on must occur
8198 * before making related changes, and on->off must occur afterwards
8199 */
8200 if (runtime_enabled && !runtime_was_enabled)
8201 cfs_bandwidth_usage_inc();
8202 raw_spin_lock_irq(&cfs_b->lock);
8203 cfs_b->period = ns_to_ktime(period);
8204 cfs_b->quota = quota;
8205
8206 __refill_cfs_bandwidth_runtime(cfs_b);
8207 /* restart the period timer (if active) to handle new period expiry */
8208 if (runtime_enabled)
8209 start_cfs_bandwidth(cfs_b);
8210 raw_spin_unlock_irq(&cfs_b->lock);
8211
8212 for_each_online_cpu(i) {
8213 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8214 struct rq *rq = cfs_rq->rq;
8215
8216 raw_spin_lock_irq(&rq->lock);
8217 cfs_rq->runtime_enabled = runtime_enabled;
8218 cfs_rq->runtime_remaining = 0;
8219
8220 if (cfs_rq->throttled)
8221 unthrottle_cfs_rq(cfs_rq);
8222 raw_spin_unlock_irq(&rq->lock);
8223 }
8224 if (runtime_was_enabled && !runtime_enabled)
8225 cfs_bandwidth_usage_dec();
8226 out_unlock:
8227 mutex_unlock(&cfs_constraints_mutex);
8228 put_online_cpus();
8229
8230 return ret;
8231 }
8232
8233 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8234 {
8235 u64 quota, period;
8236
8237 period = ktime_to_ns(tg->cfs_bandwidth.period);
8238 if (cfs_quota_us < 0)
8239 quota = RUNTIME_INF;
8240 else
8241 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8242
8243 return tg_set_cfs_bandwidth(tg, period, quota);
8244 }
8245
8246 long tg_get_cfs_quota(struct task_group *tg)
8247 {
8248 u64 quota_us;
8249
8250 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8251 return -1;
8252
8253 quota_us = tg->cfs_bandwidth.quota;
8254 do_div(quota_us, NSEC_PER_USEC);
8255
8256 return quota_us;
8257 }
8258
8259 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8260 {
8261 u64 quota, period;
8262
8263 period = (u64)cfs_period_us * NSEC_PER_USEC;
8264 quota = tg->cfs_bandwidth.quota;
8265
8266 return tg_set_cfs_bandwidth(tg, period, quota);
8267 }
8268
8269 long tg_get_cfs_period(struct task_group *tg)
8270 {
8271 u64 cfs_period_us;
8272
8273 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8274 do_div(cfs_period_us, NSEC_PER_USEC);
8275
8276 return cfs_period_us;
8277 }
8278
8279 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8280 struct cftype *cft)
8281 {
8282 return tg_get_cfs_quota(css_tg(css));
8283 }
8284
8285 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8286 struct cftype *cftype, s64 cfs_quota_us)
8287 {
8288 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8289 }
8290
8291 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8292 struct cftype *cft)
8293 {
8294 return tg_get_cfs_period(css_tg(css));
8295 }
8296
8297 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8298 struct cftype *cftype, u64 cfs_period_us)
8299 {
8300 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8301 }
8302
8303 struct cfs_schedulable_data {
8304 struct task_group *tg;
8305 u64 period, quota;
8306 };
8307
8308 /*
8309 * normalize group quota/period to be quota/max_period
8310 * note: units are usecs
8311 */
8312 static u64 normalize_cfs_quota(struct task_group *tg,
8313 struct cfs_schedulable_data *d)
8314 {
8315 u64 quota, period;
8316
8317 if (tg == d->tg) {
8318 period = d->period;
8319 quota = d->quota;
8320 } else {
8321 period = tg_get_cfs_period(tg);
8322 quota = tg_get_cfs_quota(tg);
8323 }
8324
8325 /* note: these should typically be equivalent */
8326 if (quota == RUNTIME_INF || quota == -1)
8327 return RUNTIME_INF;
8328
8329 return to_ratio(period, quota);
8330 }
8331
8332 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8333 {
8334 struct cfs_schedulable_data *d = data;
8335 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8336 s64 quota = 0, parent_quota = -1;
8337
8338 if (!tg->parent) {
8339 quota = RUNTIME_INF;
8340 } else {
8341 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8342
8343 quota = normalize_cfs_quota(tg, d);
8344 parent_quota = parent_b->hierarchical_quota;
8345
8346 /*
8347 * ensure max(child_quota) <= parent_quota, inherit when no
8348 * limit is set
8349 */
8350 if (quota == RUNTIME_INF)
8351 quota = parent_quota;
8352 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8353 return -EINVAL;
8354 }
8355 cfs_b->hierarchical_quota = quota;
8356
8357 return 0;
8358 }
8359
8360 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8361 {
8362 int ret;
8363 struct cfs_schedulable_data data = {
8364 .tg = tg,
8365 .period = period,
8366 .quota = quota,
8367 };
8368
8369 if (quota != RUNTIME_INF) {
8370 do_div(data.period, NSEC_PER_USEC);
8371 do_div(data.quota, NSEC_PER_USEC);
8372 }
8373
8374 rcu_read_lock();
8375 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8376 rcu_read_unlock();
8377
8378 return ret;
8379 }
8380
8381 static int cpu_stats_show(struct seq_file *sf, void *v)
8382 {
8383 struct task_group *tg = css_tg(seq_css(sf));
8384 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8385
8386 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8387 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8388 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8389
8390 return 0;
8391 }
8392 #endif /* CONFIG_CFS_BANDWIDTH */
8393 #endif /* CONFIG_FAIR_GROUP_SCHED */
8394
8395 #ifdef CONFIG_RT_GROUP_SCHED
8396 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8397 struct cftype *cft, s64 val)
8398 {
8399 return sched_group_set_rt_runtime(css_tg(css), val);
8400 }
8401
8402 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8403 struct cftype *cft)
8404 {
8405 return sched_group_rt_runtime(css_tg(css));
8406 }
8407
8408 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8409 struct cftype *cftype, u64 rt_period_us)
8410 {
8411 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8412 }
8413
8414 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8415 struct cftype *cft)
8416 {
8417 return sched_group_rt_period(css_tg(css));
8418 }
8419 #endif /* CONFIG_RT_GROUP_SCHED */
8420
8421 static struct cftype cpu_files[] = {
8422 #ifdef CONFIG_FAIR_GROUP_SCHED
8423 {
8424 .name = "shares",
8425 .read_u64 = cpu_shares_read_u64,
8426 .write_u64 = cpu_shares_write_u64,
8427 },
8428 #endif
8429 #ifdef CONFIG_CFS_BANDWIDTH
8430 {
8431 .name = "cfs_quota_us",
8432 .read_s64 = cpu_cfs_quota_read_s64,
8433 .write_s64 = cpu_cfs_quota_write_s64,
8434 },
8435 {
8436 .name = "cfs_period_us",
8437 .read_u64 = cpu_cfs_period_read_u64,
8438 .write_u64 = cpu_cfs_period_write_u64,
8439 },
8440 {
8441 .name = "stat",
8442 .seq_show = cpu_stats_show,
8443 },
8444 #endif
8445 #ifdef CONFIG_RT_GROUP_SCHED
8446 {
8447 .name = "rt_runtime_us",
8448 .read_s64 = cpu_rt_runtime_read,
8449 .write_s64 = cpu_rt_runtime_write,
8450 },
8451 {
8452 .name = "rt_period_us",
8453 .read_u64 = cpu_rt_period_read_uint,
8454 .write_u64 = cpu_rt_period_write_uint,
8455 },
8456 #endif
8457 { } /* terminate */
8458 };
8459
8460 struct cgroup_subsys cpu_cgrp_subsys = {
8461 .css_alloc = cpu_cgroup_css_alloc,
8462 .css_released = cpu_cgroup_css_released,
8463 .css_free = cpu_cgroup_css_free,
8464 .fork = cpu_cgroup_fork,
8465 .can_attach = cpu_cgroup_can_attach,
8466 .attach = cpu_cgroup_attach,
8467 .legacy_cftypes = cpu_files,
8468 .early_init = true,
8469 };
8470
8471 #endif /* CONFIG_CGROUP_SCHED */
8472
8473 void dump_cpu_task(int cpu)
8474 {
8475 pr_info("Task dump for CPU %d:\n", cpu);
8476 sched_show_task(cpu_curr(cpu));
8477 }
8478
8479 /*
8480 * Nice levels are multiplicative, with a gentle 10% change for every
8481 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8482 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8483 * that remained on nice 0.
8484 *
8485 * The "10% effect" is relative and cumulative: from _any_ nice level,
8486 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8487 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8488 * If a task goes up by ~10% and another task goes down by ~10% then
8489 * the relative distance between them is ~25%.)
8490 */
8491 const int sched_prio_to_weight[40] = {
8492 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8493 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8494 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8495 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8496 /* 0 */ 1024, 820, 655, 526, 423,
8497 /* 5 */ 335, 272, 215, 172, 137,
8498 /* 10 */ 110, 87, 70, 56, 45,
8499 /* 15 */ 36, 29, 23, 18, 15,
8500 };
8501
8502 /*
8503 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8504 *
8505 * In cases where the weight does not change often, we can use the
8506 * precalculated inverse to speed up arithmetics by turning divisions
8507 * into multiplications:
8508 */
8509 const u32 sched_prio_to_wmult[40] = {
8510 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8511 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8512 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8513 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8514 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8515 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8516 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8517 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8518 };
This page took 0.297254 seconds and 5 git commands to generate.